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Solutions of definable ODEs with regular separation and
dichotomy interlacement versus Hardy

Olivier Le Gal, Mickaël Matusinski and Fernando Sanz Sánchez

Abstract. We introduce a notion of regular separation for solutions of systems of
ODEs y0 D F.x; y/, where F is definable in a polynomially bounded o-minimal
structure and y D .y1; y2/. Given a pair of solutions with flat contact, we prove that,
if one of them has the property of regular separation, the pair is either interlaced
or generates a Hardy field. We adapt this result to trajectories of three-dimensional
vector fields with definable coefficients. In the particular case of real analytic vec-
tor fields, it improves the dichotomy interlaced/separated of certain integral pencils,
obtained by F. Cano, R. Moussu and the third author. In this context, we show that
the set of trajectories with the regular separation property and asymptotic to a formal
invariant curve is never empty and it is represented by a subanalytic set of min-
imal dimension containing the curve. Finally, we show how to construct examples
of formal invariant curves which are transcendental with respect to subanalytic sets,
using the so-called (SAT) property, introduced by J.-P. Rolin, R. Shaefke and the
third author.

1. Introduction

We consider a system of two ordinary differential equations

(SF )
²
y01 D f1.x; y1; y2/;

y02 D f2.x; y1; y2/;

where F D .f1; f2/W� ! R2 is a C 1 map on some open set � � RC � R2, where
.0; 0; 0/ 2 �. A solution at 0 of (SF ) (sometimes called simply a solution) is a C 1 map
 W .0; a/! R2, whose graph is contained in�, satisfying system (SF ). We are interested
in this article in the relative behavior of two distinct solutions of (SF ), following similar
studies addressed in various contexts, in particular, by M. Rosenlicht [16] and M. Bosh-
ernitzan [3] in the setting of Hardy fields, and by F. Cano, R. Moussu and F. Sanz for
analytic vector fields [4], [5].
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The possible relative behaviors of the solutions strongly depend on the nature of the
function F . When (SF ) is an autonomous linear system, i.e., F is a linear map in .y1; y2/
and does not depend on the variable x, C. Miller [14] and M. Tychonievic [19] give a com-
plete classification of the solutions in model theoretic terms, which refines the classical
dichotomy “spiraling” versus “non-oscillating” for trajectories of planar vector fields. If F
is a linear map in .y1; y2/ whose coefficients are functions of x definable in an o-minimal
structure, O. Le Gal, F. Sanz and P. Speissegger [11] show that either any two given solu-
tions of (SF ) are interlaced, or all solutions belong to a common o-minimal structure. This
confirms the following heuristic statement (H) (for “tame” differential systems) that can
already be pulled out from [4], [5]:

(H) Relative oscillation of two solutions requires infinite twisting.

Here we focus on systems (SF ) that we call definable systems, where F is a tame function
in the broader sense of o-minimal geometry [7], [21]. More precisely, F is assumed to
be a function definable in a given o-minimal and polynomially bounded expansion R of
the field of real numbers (see the following section for the specific properties that we
will use here). From now on, definability will always refer to definability with parameters
in the structure R. Let us mention that this comprises the aforementioned contexts of
linear, semi-algebraic or globally subanalytic functions. We introduce two notions in this
context: regular separation – inspired by a similar property developed by S. Łojasiewicz
in semi-analytic geometry, see, for instance, [13] – and flat contact.

Definition 1.1. (1) Let  be a solution of a definable system (SF ). We say that  has
the regular separation property (with respect to R) if for any map f WR3 ! R
definable in R whose domain contains the graph of  , there exists a real number
a > 0 such that either

8x 2 .0; a/; f .x; .x// D 0

or
9k 2 N; 8x 2 .0; a/; jf .x; .x//j � xk :

(2) Let ; ı be two different solutions of a definable system (SF ), and let � WD ı �  .
The solutions  and ı are said to have flat contact if

8k 2 N; 9a > 0; 8x 2 .0; a/; k�.x/k � xk :

In order to give a precise statement, let us introduce, for a given pair of solutions, the
notion of interlacement and the associated ring of definable germs.

Definition 1.2. Let ; ı be two different solutions of (SF ), and let � WD ı �  .
(1) We say that  and ı are interlaced if the plane curve x 7! �.x/, for x 2 .0; a/

and a > 0, spirals infinitely around the origin. In other words, any continuous
measure � W .0; a/! R of the angle between .1; 0/ and ‚.x/ WD �.x/

k�.x/k
satisfies

limx!0 �.x/ D C1 or �1.
(2) We call ring of definable germs over ;ı the ring F .x;;ı/ consisting of the germs

at 0C of compositions x 7! f .x; .x/; ı.x//, with f ranging over all definable
functions from R5 to R whose domain contains the graph of x 7! ..x/; ı.x//.



Non-interlaced solutions and Hardy fields 1503

Let us recall that a Hardy field is a subring of the ring of germs of functions hWR! R
at 0C, which is a field and is closed under the natural derivation [16]. The main result
of the present paper is the following one. It provides another instance of the heuristic
principle (H) in the context of definable systems of differential equations.

Theorem 1.3. Let (SF ) be a differential system as above, where F is definable in a poly-
nomially bounded o-minimal structure R expanding R, and let  be a solution at 0 of (SF )
which has the regular separation property. Let ı be another solution of (SF ) which has
flat contact with  . Then either F .x; ; ı/ is a Hardy field, or else  and ı are interlaced.

We prove Theorem 1.3 in Section 2.
In Section 3, we adapt Theorem 1.3 to trajectories of three-dimensional definable vec-

tor fields. In this way, we partially generalize the results about non-oscillating trajectories
of analytic vector fields by F. Cano, R. Moussu and the third author [4], [5]. The main
result is Theorem 3.9. Under the hypothesis that one of the trajectories has the regular
separation property, it provides a more precise version of the dichotomy “enlacé” (our
present notion of interlacement) versus “séparé” established in [5] for a pair of trajector-
ies having flat contact.

In Section 4, we focus on the family PC of trajectories of an analytic vector field,
which are asymptotic to a given formal curve C . Our objective is to describe the sub-
set T of trajectories in PC which have the regular separation property. We realize T by
determining a subanalytic set S which contains a representative of a trajectory if and
only if it belongs to T , and prove that T is never empty (Theorem 4.4). The dimension
of S measures the transcendence of C with respect to subanalytic sets, and we give some
implications of our result in two cases: dim.S/ D 1 (analytic axis) and dim.S/ D 3 (tran-
scendent axis).

Accordingly, analytic vector fields that have a transcendent formal invariant curve
provide integral pencils of maximal dimension for which all members satisfy the hypo-
thesis of Theorem 1.3. The purpose of the last section, Section 5, is to exhibit examples
of this kind. Even if this case is probably generic, it is not easy to prove that a particular
formal curve is transcendent with respect to subanalytic sets. We derive this property from
a strong analytic transcendence condition (SAT) introduced and studied in [15].

2. Proof of Theorem 1.3

2.1. Preliminary properties

Since we deal with properties of germs, we often need to restrict to smaller domains.
In order to ease the reading, we interchangeably use the expressions “ultimately”, “for
small x”, “for x close to 0”, that must be understood as “there exists a positive real a
such that, for x 2 .0; a/”. Likewise, a curve cW .0; a/!M “meets infinitely many times”
a subset X � M if there is an infinite sequence .tn/ 2 .0; a/N tending to 0 such that
c.tn/ 2 X .

We assume the reader to be familiar with the basic notions and properties of o-minimal
geometry as presented, e.g., in [7], [21]. We consider a polynomially bounded o-minimal
structure R expanding the field of real number R. Recall that a function is called definable
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if its graph is a definable set. For instance, the characteristic function of a definable set X ,
that is, the map 1X , defined by 1X .x/ D 1 if x 2 X , 1X .x/ D 0 if x … X , is a definable
function. The sign function R 3 x 7! sign.x/ 2 ¹C;�; 0º is also definable, up to identi-
fying ¹C;�; 0º with ¹1;�1; 0º in the obvious way. We will repeatedly use the fact that
various operations like taking the supremum, passing to the limit or differentiating, pro-
duce definable functions as soon as their entries are definable. The main tool of o-minimal
geometry we use is the existence of a cell decomposition for definable sets. We refer the
reader to [20] for details, and to Theorem 6.7 of [7] for the particular version of the cell
decomposition theorem that we use here. We denote by k � k the Euclidean norm on Rn.

The next lemma shows that regular separation implies non-oscillation with respect to
definable sets: ultimately, a curve that has the regular separation property is either included
in a definable set X or else does not meet X .

Lemma 2.1. Let  be a solution of a definable system (SF ) which has the regular sep-
aration property, and let X be a definable subset of R3. Suppose that there exists an
infinite sequence .xn/! 0 such that .xn; .xn// 2X . Then there exists a > 0 such thatX
contains the graph of  for x < a.

Proof. Set g.x/ WD 1� 1X .x; .x//, where 1X is the characteristic function ofX . Then g
is the composition of a definable function with  . It is either bounded from below by a
power of x or identically 0. Since it vanishes on .xn/, it cannot be bounded from below.
So g D 0 for small x, which means X contains the graph of  for small x.

Lemma 2.2. Let  be a solution of a definable system (SF ) which has the regular sep-
aration property, and let S WR4 ! R be a definable map. Then there exists a > 0, m > 0

and a sign ˛ 2 ¹�; 0;Cº such that

8x 2 .0; a/; 8z 2 R; 0 < z < xm H) sign.S.x; .x/; z// D ˛:

Proof. Let s.x; y1; y2/D limz!0;z>0.1RC � 1R�/ ı S.x; y1; y2; z/. Then s is definable,
well defined and has a value in ¹�1; 0; 1º depending on the sign of S.x; y1; y2; z/ for
small positive z. By the regular separation property, s.x; .x// has ultimately constant
value, then constant sign ˛ for small x.

Now, let r.x; y1; y2/ D sup¹z � 1 W 8z0; 0 < z0 < z ) sign.S.x; y1; y2; z// D ˛º.
Again, r is definable, and moreover, for small x, r.x; .x// > 0 by the definition of ˛. So,
from regular separation, there exists a > 0,m> 0 such that x 2 .0;a/) r.x;.x// > xm,
which is the statement of the lemma.

We will also use the following elementary result “à la Rolle”, whose proof is left to
the reader.

Proposition 2.3. Let f WR! R be a differentiable map and let a < b be two consecutive
zeros of f . Then f 0.a/f 0.b/ � 0.

2.2. The proof

We first reduce the proof to that of the following seemingly weaker property.

Proposition 2.4. With the same hypotheses of Theorem 1.3, either any germ in F .x; ; ı/

has an ultimate sign, or else  and ı are interlaced.
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Proof of (Proposition 2.4 ) Theorem 1.3). Suppose that ; ı are not interlaced. Since
any germ ' in F .x; ; ı/ has an ultimate sign, one can define the germ of 1=' as soon
as the germ of ' is not zero, i.e., as soon as '.x/ ¤ 0 for any x close enough to 0.
So F .x; ; ı/ is a field. It remains to show that this field is closed under derivation.

For this, let gWR5 ! R be a definable function whose domain contains the graph of
.; ı/ restricted to .0; a/ for some a > 0. By the cell decomposition theorem, see (2.11)
on p. 52 of [20], and Theorem 6.7 of [7], there exists a C 1 cell decomposition C of R5

such that, for any cell C 2 C , the restriction gjC of g to C is C 1. Since there are
finitely many cells in C , the curve x 7! .x; ; ı/ meets at least one cell C infinitely many
times as x goes to 0. Denote by 1C WR5 ! R the characteristic function of C . Since
1� 1C is a definable function and  , ı are not interlaced, by Proposition 2.4, the function
x 7! 1 � 1C .x; .x/; ı.x// has an ultimate sign as x goes to zero. Since .x; .x/; ı.x//
meets C infinitely many times, 1� 1C .x; .x/; ı.x// vanishes infinitely many times, then
identically. Hence, the graph of .; ı/ is contained in C for small x.

Now, x 7! .x; ; ı/ is a C 1 curve whose image is included in C and the restriction of g
to C is C 1. So the composition g ı .x; ; ı/ is C 1. Moreover, its derivative is the compos-
ition of the differential of gjC with the derivative of x 7! .x; ; ı/. Since ; ı are solutions
of (SF ), this derivative is itself the composition of a definable function with .x;; ı/. Sum-
marizing, g.x; ; ı/ is ultimately C 1, and the germ of its derivative belongs to F .x; ; ı/,
which concludes the proof.

Proof of Proposition 2.4. Let (SF ) be a definable system and let  , ı be solutions at 0
of (SF ) that satisfy the hypotheses of Theorem 1.3. We prove Proposition 2.4 by showing
that if a germ in F .x; ; ı/ does not have constant sign, then ; ı are interlaced. Let
gWR5!R be definable in R, and whose domain contains the graph of .; ı/. SetG.x/ WD
g.x; 1.x/; 2.x/; ı1.x/; ı2.x//. We shall conclude that ; ı are interlaced if G does not
have an ultimate sign as x goes to 0.

Denote as before �.x/ D .�1.x/; �2.x// WD ı.x/ � .x/. Define

h.x; y1; y2; z1; z2/ D g.x; y1; y2; y1 C z1; y2 C z2/;

so that h is a definable function whose domain contains the graph of .; �/ and such that
h.x; .x/; �.x//D G.x/. Note that .; �/ is a solution at 0 of the differential system ( QSF ):

( QSF )

8̂̂̂<̂
ˆ̂:
y01 D f1.x; y1; y2/;

y02 D f2.x; y1; y2/;

z01 D f3.x; y1; y2; z1; z2/;

z02 D f4.x; y1; y2; z1; z2/;

where f3 and f4 are the definable functions given by

f3.x; y1; y2; z1; z2/ WD f1.x; y1 C z1; y2 C z2/ � f1.x; y1; y2/;

f4.x; y1; y2; z1; z2/ WD f2.x; y1 C z1; y2 C z2/ � f2.x; y1; y2/:

We set QF D .f1; f2; f3; f4/ and cWR! R5, x 7! .x; .x/; �.x//.
Up to extending h by zero, we assume that its domain is R5. By the already cited cell

decomposition theorem, there exists a cell decomposition C of R5 into cells of class C 1
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adapted to the signs of z1, z2 and h. This means that, for each cell C in C , the restrictions
z1jC , z2jC and hjC have constant sign.

In the following claims, we describe the intersection of the cells of C with the image
of c. Denote by �0; �1 the linear projections given by

�0WR
5
! R3; �0W .x; y1; y2; z1; z2/ 7! .x; y1; y2/;

�1WR
5
! R4; �1W .x; y1; y2; z1; z2/ 7! .x; y1; y2; z1/:

We introduce A and B, respectively, the cell decompositions of R3 and R4 induced by C :
the cells of A and B are, respectively, the images �0.C / and �1.C / of cells C 2 C .

Claim 2.5. There exists a unique A 2 A such that �0.c.x// 2 A for small x.

Proof. As A is a finite partition of R3, at least one cell A 2 A contains infinitely many
points of the curve x 7! �0.c.x//when x goes to 0. Since �0.c.x//D .x;.x// and  has
the regular separation property, Lemma 2.1 shows that �0.c.x// belongs to A for small x.
Finally, A is a partition, so x 7! �0.c.x// cannot ultimately meet any other cell in A

but A, so A is unique.

The decomposition of A �R � R4 induced by B is given by:
• finitely many graphs of definable maps over A, totally ordered, including the null

function (since the partition is adapted to z1 D 0); we denote these functions by ��r <
� � � < ��1 < �0 WD 0 < �1 < � � � < �`;

• the strips between these graphs, given and denoted by

.�j�1; �j / WD
®
.x; y1; y2; z1/ W .x; y1; y2/ 2 A; �j�1.x; y1; y2/<z1< �j .x; y1; y2/

¯
for j D �r; : : : ; `C 1, where we put ��r�1 � �1 and �`C1 � C1.
We set B� WD .��1; 0/, B0 WD A � ¹0º and BC WD .0; �1/.

Claim 2.6. For small x, �1.c.x// 2 B� [ B0 [ BC.

Proof. Since  has the regular separation property and ��1 and �1 do not vanish over A,
which contains the graph of  by Claim 2.5, there exist natural numbers n, m such that,
ultimately, j��1.x; .x//j > xn and j�1.x; .x//j > xm. On the other hand, since  and ı
have flat contact, j�1.x/j< xmax.n;m/ for small x. So, ��1.x;.x// < �1.x/ < �1.x;.x//
for small x.

For ˛ 2 ¹�; 0;Cº, the decomposition of B˛ � R induced by C consists of finitely
many graphs of definable functions  ˛�r˛ < � � � <  ˛0 WD 0 < � � � <  ˛`˛ over B˛ � R4

and strips . ˛j�1;  
˛
j / for j D �r˛; : : : ; `˛ C 1 (where, as above,  ˛�r˛�1 WD �1 and

 ˛`˛C1 WD C1). We denote by C� D . 0�1; 0/ and CC D .0;  01 / the two strips over B0

adjacent to B0 � ¹0º D A � .0; 0/. As in Claim 2.6, we get that:

Claim 2.7. For small x, �1.c.x// 2 B0) c.x/ 2 CC [ C�.

Proof. Following the same proof as in Claim 2.6, the regular separation of  and the
flatness of �2 give that  0�1.x; .x/; 0/ < �2.x/ <  

0
1 .x; .x/; 0/ for small x. Now, since

 and ı are different solutions of (SF ), �.x/ ¤ .0; 0/ for small x. Hence, ultimately,
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if �1.c.x// 2 B0, then �1.x/ D 0, so �2.x/ ¤ 0. We obtain that c.x/ … B0 � ¹0º, so
c.x/ 2 CC [ C�, as required.

Claim 2.8. If G has not an ultimate sign, then the parameterized curve x 7! �1.c.x//

meets B0 infinitely many times as x goes to 0.

Proof. We proceed by contradiction. Suppose that �1.c.x// does not meet B0 infinitely
many times as x goes to 0. Then �1 has an ultimate sign, say �1.x/ > 0 for small x (the
case �1.x/ < 0 is similar). So, from Claim 2.6, c.x/ 2 BC �R ultimately.

Note that h has a constant sign on each connected component of the union

U D

`C[
jDrC�1

. Cj ;  
C

jC1/

of the strips of C over BC. Since G D h ı c has not an ultimate sign and the curve c is
continuous, its image meets infinitely many times the complement of U in BC � R, that
is, the graphs of the  Cj . Hence, there is an index k such that the curve c meets infinitely
many times the graph of  Ck .

Let w.x; y1; y2; z1; z2/ WD z2 �  
C

k
.x; y1; y2; z1/, so w ı c.x/ vanishes whenever

c.x/ belongs to the graph  Ck . We first prove that, ultimately, the sign of .w ı c/0.x/ is
constant, in fact equal to 0, when w.c.x// D 0. For this, remark that

.w ı c/0.x/ D dw.c.x//.c0.x// D dw.c.x//.1; QF .c.x///;

and set

S.x; y1; y2; z1/

D dw.x; y1; y2; z1;  
C

k
.x; y1; y2; z1//

�
1; QF .x; y1; y2; z1;  

C

k
.x; y1; y2; z1//

�
:

Then S is definable, so, by Lemma 2.2, there exists a sign ˛ 2 ¹�; 0;Cº and m > 0 such
that, ultimately,

(1) 0 < z1 < x
m
H) sign.S.x; .x/; z1// D ˛:

In particular, for small x, 0 < �1.x/ < xm. So, if w.c.x// D 0, then

sign..w ı c/0.x// D sign.S.x; .x/; �1.x/// D ˛:

This is impossible if ˛ ¤ 0: the differentiable map w ı c vanishes infinitely many
times, but its derivative would have a constant nonzero sign when w ı c.x/ D 0, con-
tradicting Proposition 2.3. So ˛ D 0, i.e., .w ı c/0.x/ D 0, whenever w ı c.x/ D 0 for
small x.

We get from equation (1) and system ( QSF ) that, for small x and 0 < z1 < xm,

f4.v/ D d 
C

k
.u/.1; f1.v/; f2.v/; f3.v//; with u WD .x; .x/; z1/; v WD .u;  Ck .u//:

But this leads again to a contradiction. Indeed, let �.x/ WD  Ck .x; .x/; �1.x//. Then
�0.x/ D d C

k
.x; .x/; �1.x//.1; 

0.x/; �01.x// D f4.x; .x/; �1.x/; �.x//, so � and �2
satisfy the same differential equation. By uniqueness of solutions, � and �2 coincide since
�.x/D �2.x/whenever c.x/ belongs to the graph of Ck . This means that c.x/ is included
in the graph of  Ck , which contradicts the fact that h ı c has no ultimate sign (recall that h
has constant sign over the graph of  C

k
). Claim 2.8 is proven.



O. Le Gal, M. Matusinski and F. Sanz Sánchez 1508

We now have all the elements to complete the proof of Proposition 2.4. Let

‚.x/ WD
�.x/

k�.x/k
2 S1:

Choose a continuous function � W .0;a/!R such that‚.x/D .cos�.x/;sin�.x//. Remark
that � is in fact C 1 since ‚ is.

Claim 2.9. If G has not an ultimate sign, the angle �.x/ diverges to infinity as x tends
to 0.

Proof. From Claim 2.8, if G has not an ultimate sign, the function x 7! �1.x/ vanishes
infinitely many times as x goes to 0. From Claim 2.7, �1.x/ D 0) c.x/ 2 CC [ C�,
so at least one of these two cells, say CC (the proof for C� being analogous), intersects
infinitely many times the curve x 7! c.x/ as x tends to 0.

We first show that, for small x, the derivative � 0.x/ has a constant nonzero sign when
c.x/ 2 CC. Indeed, if �1.x/ D 0 and �2.x/ > 0, then �.x/ D �

2
mod 2� , so � 0.x/ has a

sign opposite to the one of �01.x/, because �01.x/D�k�.x/k�
0.x/ at such a value. So � 0.x/

has a sign opposite to that of f3.x; .x/; 0; �2.x// when �1.x/ D 0. We apply Lemma 2.2
to the map

.x; y1; y2; z2/ 7! f3.x; y1; y2; 0; z2/:

There exists m > 0 and a sign ˛ 2 ¹�; 0;Cº such that, for small x,

0 < z2 < x
m
H) sign.f3.x; .x/; 0; z2// D ˛:

For small x, j�2.x/j < xm, so, sign.� 0.x//D�˛ whenever c.x/ 2 CC. Moreover, ˛ ¤ 0.
Otherwise, the null function would be a solution of the same differential equation z01 D
f3.x; .x/; z1; �2.x// as the one for �1, and, locally, at any value x for which �1.x/ D 0,
this solution coincides with �1, and then everywhere by uniqueness. It would imply that
c.x/ 2 CC ultimately, while h has constant sign on CC, a contradiction.

For simplicity, suppose ˛ D C (the proof for ˛ D � is similar). Since � 0.x/ ¤ 0 if
�.x/ D �

2
mod 2� , ��1.�=2C 2�Z/ is discrete. Let .xn/! 0 be the infinite decreasing

sequence formed by the elements of ��1.�=2C 2�Z/. By the definition of this sequence
.xn/ and the continuity of � , we have that �.xnC1/� �.xn/D 2�sn, with sn 2 ¹�1; 0; 1º.
Since � 0.xnC1/ < 0, we cannot have sn D �1, and, since � 0.xnC1/� 0.xn/ > 0, we cannot
have sn D 0 either. Hence, �.xnC1/ D �.xn/C 2� for all n, and limn!1 �.xn/ D C1.
Moreover, since �.xnC1/ > �.x/ > �.xn/ for any x 2 .xnC1; xn/, we get

lim
x!0

�.x/ D lim
n!1

�.xn/ D C1;

which ends the proof.

To conclude the proof of Proposition 2.4, consider  and ı which satisfy the hypo-
thesis. Then either any germ in F .x;; ı/ has an ultimate sign, which is the first alternative
of the proposition, or there exists G 2 F .x; ; ı/ which has not an ultimate sign. Then
Claim 2.9 shows that any continuous measure �.x/ of the angle between ‚.x/ and .1; 0/
diverges to ˙1 as x tends to 0. In other words,  and ı are interlaced, that is to say, the
second alternative of the proposition holds.
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3. Dichotomy “interlaced or separated” for trajectories of definable
vector fields

We consider a vector field � of class C 1 in a neighborhood of 0 2 R3, definable in some
polynomially bounded o-minimal structure R, and such that �.0/ D 0. A trajectory (at
zero) of � is the image � D c..0; a// of an integral curve c of � , that is, of a parameter-
ized C 1 curve cW .0; a/! R3 n ¹0º, a > 0, with limt!0C c.t/ D 0, .�.c//�1.0/ D ; and
�.c/ ^ c0 D 0. We might also denote � by jcj and say that c is a parameterization of � .
We are only interested in the behavior of � near 0, and we identify trajectories as soon as
they have the same germ at 0.

3.1. Adapted charts and regular separation

A definable chart C D .V; X/ at 0 (a chart for short) consists of an open definable set
V � R3 such that 0 2 V , and a definable mappingX WV !R3, which is a diffeomorphism
onto its image, such that limV 3p!0X.p/ D 0. A chart C D .V; .x; y1; y2// is said to
be adapted to a trajectory � if V contains a representative of the germ at 0 of � and
the restriction of dx.�/ to this representative is positive. In this situation, � \ V can be
parameterized by x: by the inverse function theorem, there is a unique parameterization
cW .0; a/! V of � \ V such that x.c.t//D t . We denote C .x/D .C;1.x/; C;2.x// WD
.y1.c.x//; y2.c.x///. Accordingly, if C is adapted to a trajectory �, we define ıC .x/ by
.x; ıC .x// 2 �, and limx!0 ıC .x/ D 0. Note that if .V; .x; y1; y2// is adapted to � , then
so is any other definable chart of the form .V; .x; z1; z2//. For p 2 V n .dx.�//�1.0/, set

FC .p/ WD
�
f1C .p/ WD

dy1.�/

dx.�/
.p/; f2C .p/ WD

dy2.�/

dx.�/
.p/

�
:

So, C and ıC are both solutions of the differential system .SFC / in the sense of the
previous sections.

Definition 3.1. • Let � be a trajectory of �. We will say that � has the regular separa-
tion property if there exists a definable chart C adapted to � such that:

(i) The map C has the regular separation property in the sense of Definition 1.1.
(ii) For any definable function f WR3!R, if limx!0 f .x;C .x//D 0, then 9k 2

N, 9a > 0 such that jf .x; C .x//j < x1=k for all x 2 .0; a/.
• Let � , � be trajectories of �. We will say that �; � have flat contact if they admit

a common adapted chart C such that C and ıC have flat contact in the sense of
Definition 1.1.

Notice that our definition of flat contact requires the existence of a common adapted
chart. This condition is not always fulfilled, as shown by Example 21 of [17], which gives
a family of trajectories of an analytic vector field, all included in a common “flat horn”, but
none of these trajectories can be parameterized by any analytic coordinate. Condition (ii)
above might seem superfluous, since it is not needed to apply Theorem 1.3. However, we
will see that (ii) ensures that C has the regular separation property independently of the
chart C . Moreover, the flat contact between C and ıC will be shown to be independent
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of the adapted chart C if � has the regular separation property. The need for condition (ii)
appears clearly in the following example.

Example 3.2. Consider the vector field

� D x2
@

@x
C y2x

@

@y
C z

@

@z
:

If � is a trajectory of � at the origin contained in ¹x > 0º \ ¹y > 0º, then the charts
C D .R3; .x; y; z// and C 0 D .R3; .y; x; z// are both adapted to � . One can describe
these trajectories as a family .�˛;ˇ / indexed by parameters .˛; ˇ/ 2 R�C �R, where �˛;ˇ
has respective parameterizations in the charts C and C 0 given by

.x; 
˛;ˇ
C .x// D

�
x;
�

log
˛

x

��1
; ˇe�1=x

�
;

.y; 
˛;ˇ
C 0 .y// D .y; ˛e

�1=y ; ˇe�
1
˛ e

1=y

/:

For any ˛ > 0, the map ˛;0C satisfies the regular separation property (Definition 1.1),
so �˛;0 satisfies condition (i) for regular separation of trajectories (Definition 3.1). But
condition (ii) is not satisfied by ˛;0C (with f .x; y; z/ D y, for instance). This does not
yet show that �˛;0 does not have the regular separation property (since Definition 3.1 only
requires one chart), but it will follow from Proposition 3.3 below.

In the chart C 0, note that none among the functions ˛;0C 0 has the regular separation
property, since their first coordinate is neither zero nor bounded from below by a power
of y. This shows that condition (i) might depend on the chart C .

The present example also shows that flat contact between C and ıC depends on the
chart C . In the chart C 0, if ˛ ¤ ˛0, the maps ˛;ˇC 0 and ˛

0;ˇ 0

C 0 have flat contact, while the
corresponding ˛;ˇC and ˛

0;ˇ 0

C do not have flat contact (the difference between their first
coordinate is not flat with respect to x). However, the trajectories �˛;ˇ and �˛0;ˇ 0 have flat
contact according to Definition 3.1, since their parameterizations have flat contact in at
least one chart.

Proposition 3.3. Assume that � has the regular separation property. If C is a chart adap-
ted to � , then C satisfies (i) and (ii) of Definition 3.1.

Proof. Let C D .V; X D .x; y1; y2// be a chart adapted to � and let C 0 D .V 0; X 0 D

.x0; y01; y
0
2// be a chart satisfying conditions (i) and (ii) of Definition 3.1. Let f be a

definable function whose domain contains � , fC D f ı X�1, fC 0 D f ı X 0�1. Note
that fC .t; C .t// D fC 0.t

0; C 0.t
0//, with t 0 D x0.X�1.t; C .t///, or, equivalently, t D

x.X 0�1.t 0; C 0.t
0///. So t and t 0 are simultaneously positive and t tends to 0 if and only

if t 0 does too.
In particular, if fC 0.t 0; C 0.t 0// D 0 for small t 0, then fC .t; C .t// D 0 for small t .

Otherwise, from condition (i), there is an n such that jfC .t; C .t//j> t 0n for small t 0. But,
from condition (ii), since x ıX 0�1 is a definable function whose domain contains � , there
is a k such that t < t 01=k , so t 0 > tk . Finally, if fC .t; C .t// does not vanish identically,
jfC .t; C .t//j > t

kn, so C has the regular separation property (Definition 1.1).
Moreover, by (i), there existsN > 0 such that t > t 0N . If limt!0 f .t;C .t//D 0, there

existsM > 0 such that jf .t; C .t//j< t 01=M , again by (ii). We obtain that jf .t; C .t//j<
t1=.NM/, which shows property (ii) for C .
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3.2. Flat contact and interlacement

Proposition 3.4. Assume that � has the regular separation property and that � has flat
contact with � . Then, for any chart .V; T / adapted to � , there exists V 0 � V such that
C 0 WD .V 0; T / is adapted to � and �, and C 0 and ıC 0 have flat contact.

Proof. Let C D .W;X D .x; y1; y2// be a chart adapted to both � and �, such that C
and ıC have flat contact. Let .V; T D .t; z1; z2// be a chart adapted to � . We may assume
that V is bounded.

For p 2 V \W and r > 0, we set

BC .p; r/ D
®
q 2 V \W W kX.q/ �X.p/k < r

¯
:

Let V 0 D ¹p 2 V \W W dt.�/.p/ > 0º and r.p/D sup¹r > 0;BC .p; r/� V 0º. Then r is
definable and positive over � \ V \W , so, by Proposition 3.3, r.X�1.x; C .x/// > xN

for some N > 0 and for all sufficiently small x. On the other hand, by flat contact,
kıC .x/ � C .x/k < x

N for sufficiently small x. So, X�1.x; ıC .x// ultimately belongs
to V 0, which proves that V 0 contains a representative of the germ at 0 of �. Hence,
C 0 D .V 0; .t; z1; z2// is adapted to �.

Let n � 1. Let us show that kC 0.t/ � ıC 0.t/k=tn is bounded for small t . Given t ,
we set ht D T �1.t; ıC 0.t// 2 �, X.ht / D .x; ıC .x// and gx D X�1.x; C .x// 2 � ,
gt D T

�1.t; C 0.t// 2 � . Moreover, we set t 0 D t .gx/ (so T .gx/ D .t 0; C 0.t 0///. Note
that x, gx , gt , t 0 all depend on the given data t . In what follows, we let t , t 0 and x vary,
but keeping the previous relations between them.

We have

kC 0.t/ � ıC 0.t/k D kT .gt / � T .ht /k � kT .gt / � T .gx/k C kT .gx/ � T .ht /k:

We get a bound for the two terms kT .gt /� T .gx/k and kT .gx/� T .ht /k independently.
Bound for kT .gx/ � T .ht /k. For p 2 V 0, let

�.p/ WD sup
®
r > 0 W 8q 2 BC .p; r/; kT .q/ � T .p/k < t.q/

n
¯
:

The map � is definable, and positive over � , so, ultimately, �.gx/ > xm for some m
by regular separation of � , while kX.gx/ �X.ht /k < xm, i.e., gx 2 BC .ht ; xm/, by flat
contact between C and ıC . Hence, for small x, kT .gx/� T .ht /k< tn, and, in particular,
kT .gx/ � T .ht /k=t

n is bounded as t tends to 0.
Bound for kT .gt / � T .gx/k. Let

s WD

s
dz1.�/2 C dz2.�/2

dt.�/2
;

so k.C 0/0.t/k D s.gt /. The function 1=s is definable and positive over � , so, by regular
separation and Proposition 3.3, there exists ˛ > 0 such that 1=s.gt / > t˛ , i.e., s.gt / < t�˛

for small t . We set

R.p/ WD sup
®
r > 0 W 8q 2 BC .p; r/; jt .p/ � t .q/j < t.q/

nC˛
¯
:
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Again, the map R is definable, and positive over � , so, by regular separation, there exists
m > 0 such that R.gx/ > xm for small x, while, by flat contact, kıC .x/� C .x/k < xm,
i.e., kX.ht /�X.gx/k<R.gx/. In other words, ht 2B.gx ;R.gx//, so, for small x (hence
small t ), jt .gx/ � t .ht /j < t.ht /nC˛ , i.e., jt 0 � t j < tnC˛ . But

kT .gx/ � T .gt /k
2
D jt 0 � t j2 C kC 0.t

0/ � C 0.t/k
2

� jt 0 � t j2 C
�

sup
�2.t;t 0/

k.C 0/
0.�/k � jt 0 � t j

�2
� .1Cmax.t�˛; t 0�˛/2/jt 0 � t j2:

For small t , jt � t 0j < tnC˛ and 1Cmax.t�˛; t 0�˛/2 <Mt�2˛ for someM 2 R, because
jt 0 � t j < tnC˛ also implies that t=t 0 is bounded. So we finally obtain that

kT .gx/ � T .gt /k �Mt�˛tnC˛ �Mtn:

In particular, kT .gx/ � T .gt /k=tn is bounded as t tends to 0, which concludes the proof
that C 0 and ıC 0 have flat contact.

Proposition 3.5. Assume that � has the regular separation property and that � has flat
contact with � . Then the property of interlacement of C and ıC does not depend on the
choice of a chart C adapted to � .

Our proof is based on the two following claims, similar to Lemmas 1.7 and 1.8 in [5].
For both of them, we fix a chart C D .V; .x; y1; y2// adapted to � , which we assume
– according to Proposition 3.4 – to be also adapted to �.

Claim 3.6. Let C 0 D .V 0; .x; z1; z2// be another chart adapted to both � and �. If C
and ıC are interlaced, then so are C 0 and ıC 0 .

Proof. Set Y D .x; y1; y2/ and Z D .x; z1; z2/. Since C and ıC are interlaced, there
exists an infinite decreasing sequence .tn/ tending to 0 such that C;2.t2n/� ıC;2.t2n/D 0
(every time � � 0 mod Œ�� in Definition 1.2) while C;2.t2nC1/ � ıC;2.t2nC1/ ¤ 0 (e.g.,
every time � � �=2 mod Œ��). Set

D.x; z1; z2; z
0
1; z
0
2/ D y2.Z

�1.x; z1; z2// � y2.Z
�1.x; z01; z

0
2//:

Then �W t 7! D.t; C 0.t/; ıC 0.t// vanishes over .t2n/n2N , but vanishes at no point of
.t2nC1/n2N . Since � is the composition of a definable function with t 7! .t;C 0.t/; ıC 0.t//,
this implies that the ring F .x; C 0.x/; ıC 0.x// is not a Hardy field. So, by Theorem 1.3
and Propositions 3.3 and 3.4, C 0 and ıC 0 are interlaced.

Claim 3.7. Suppose that C 0 D .V; .y1; x; y2// is adapted to � and �. If C and ıC are
interlaced, then so are C 0 and ıC 0 .

Proof. Since C and ıC are interlaced, there is an infinite decreasing sequence .xn/n2N

tending to 0 such that

C;1.x2n/ D ıC;1.x2n/ and C;1.x2nC1/ ¤ ıC;1.x2nC1/:

Let tn WD C;1.xn/, so that xn D C 0;1.tn/. Then x2n D C 0;1.t2n/ D ıC 0;1.t2n/, while
x2nC1 D C 0;1.t2nC1/ ¤ ıC 0;1.t2nC1/; otherwise, ıC;1.x2nC1/ D t2nC1 D C;1.x2nC1/,
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which is false. Then C 0;1 � ıC 0;1 vanishes over the sequence .t2n/n2N that tends to 0,
while it vanishes at no point of the sequence .t2nC1/n2N , that tends to 0 too. It follows
that F .x; C 0.x/; ıC 0.x// is not a Hardy field, so from Theorem 1.3, C 0 and ıC 0 are
interlaced.

Proof of Proposition 3.5. Let C0 D .V0; .x; y1; y2// be a chart adapted to � such that C0
and ıC0 are interlaced, and let C1 D .V1; .t; z1; z2// be another chart adapted to � . There
is a chart C2 D .V2; .x; y

0
1; y
0
2// that is adapted to � and � and such that dy01.�/ > 0,

dy02.�/ > 0, e.g., set y0i D �yi if dyi .�/ < 0, or y0i D yi C x if dyi .�/ � 0. Similarly,
there is a chart C3 D .V3; .t; z01; z

0
2// adapted to � such that dz01.�/ > 0 and dz02.�/ > 0.

We may assume that z01; z
0
2 are chosen so that C4 D .V4; .x; z

0
1; z
0
2// is a chart adapted

to � (for instance, we change z01 to z01 C ˛x C ˇy
0
1 C y

0
2 with generic ˛; ˇ;  > 0 and

use the fact that .x; y01; y
0
2/ is a chart). According to Proposition 3.4, up to considering

smaller domains, all the charts above are also assumed to be adapted to �.
SetW D V0 \ V1 \ V2 \ V3 \ V4, and restrict the domains of C0;C1;C2;C3;C4 toW

(keeping the same names). From Claim 3.6, we get that C2 and ıC2 are interlaced. From
Claim 3.6, C4 and ıC4 are interlaced. From Claim 3.7, C5 D .W; .z01; x; z

0
2// is a chart

adapted to � and�, and C5 and ıC5 are interlaced. From Claim 3.6, C6 D .W; .z01; t; z
0
2//

is also a chart adapted to � and �, and C6 and ıC6 are interlaced. From Claim 3.7, C3
and ıC3 are interlaced for C3 D .W; .t; z01; z

0
2//. And, finally, from Claim 3.6, C1 and ıC1

are interlaced, which was to be proven.

3.3. Dichotomy interlacement versus separation by projection

Definition 3.8. Let � , � be trajectories of �.
(1) We say that � and � are interlaced if there is a common adapted chart C such

that C and ıC are interlaced.
(2) We say that F is a projection adapted to .�; �/ if F WU � R3 ! R2 is a defin-

able submersion on an open domain U with limp!0 F.p/ D 0, and � \ U (resp.
� \ U ) is a representative of the germ at 0 of � (resp. �).

By Proposition 3.5, the definition of interlacement does not depend on the chart C if
one of the trajectories has the property of regular separation and if they have flat contact.

In the following theorem, we provide a stronger version of the alternative “interlaced
versus separated” proven in Théorème I of [5] for non-oscillating trajectories of analytic
vector fields which share the same iterated tangents (see Section 4 for details). More pre-
cisely, our version replaces an existential quantifier by a universal one, and is valid for
vector fields definable in a polynomially bounded o-minimal expansion of R.

Theorem 3.9. Let �;� be trajectories of � such that � has the regular separation prop-
erty and �;� have flat contact. Then, either � and � are interlaced, or for any definable
projection F adapted to .�; �/, the germ at 0 of F.�/ \ F.�/ has a connected repres-
entative. The two properties of this alternative are mutually exclusive.

Proof. We assume that � and� are not interlaced. Choose a chartCD.V;XD.x1;x2;x3//
adapted to both � and � and fix F D .F1; F2/WW ! R2 a projection adapted to .�;�/.
We shall conclude that the germ at 0 of F.�/ \ F.�/ has a connected representative.
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First, assume that dF1^dF2.X�1.x;C .x/// vanishes identically for small x. SinceF
is a submersion, we get that F1 and F2 are both constant over � , and sinceX�1.x; C .x//
tends to 0 when x does, F.x; C .x// D 0 for small x. Now x 7! .F 21 C F

2
2 /.x; ıC .x//

belongs to the Hardy field F .x; C ; ıC / and either vanishes identically or else does not
vanish for small x. Depending whether it vanishes or not, ¹0º or ; is a connected repres-
entative of the germ at 0 of F.�/ \ F.�/.

Suppose now that dF1 ^ dF2.X�1.x; C .x/// does not identically vanish for small x.
From regular separation of � , ultimately, it never vanishes. Up to replacing F1 by �F1,
we suppose that dF1.�/ > 0 over � . For i D 1; 2; 3, define

Vi WD
®
p 2 W \ V W dF1.p/ ^ dF2.p/ ^ dxi .p/ ¤ 0

¯
:

For a given p, since .x1; x2; x3/ is a diffeomorphism, .dx1.p/; dx2.p/; dx3.p// is a
basis of the dual of TpR3. So at least one form among them, say dxk.p/, is independ-
ent from .dF1.p/; dF2.p//. Since F is a submersion, .dF1.p/; dF2.p// has rank 2,
so dF1.p/ ^ dF2.p/ ^ dxk.p/ ¤ 0. This shows that V1 [ V2 [ V3 D W \ V . These
sets Vi , i D 1; 2; 3, are open and definable. By regular separation of � , there is an index k
such that .x; C .x// belongs to Vk for small x. So .F1; F2; xk/ is a local diffeomorph-
ism on Vk , and Vk contains a representative of the germ of � at 0. Up to shrinking Vk ,
we assume that .F1; F2; xk/ is injective and � has a connected representative contained
in Vk . So C 0 D .Vk ; .F1; F2; xk// is a chart adapted to � . From Proposition 3.4, it is
also adapted to �, up to shrinking again Vk . From Proposition 3.5 and Theorem 1.3,
F2.t; C 0.t// � F2.t; ıC 0.t// belongs to a Hardy field. Then either it vanishes identically,
and the germ at 0 of F.�/\F.�/ coincides with the germ at 0 of F.�/, which has a con-
nected representative, or ultimately it does not vanish, and ; is a connected representative
of F.�/ \ F.�/.

Finally, to prove that the properties are mutually exclusive, assume that �;� are inter-
laced and take C D .V; .x; y1; y2// a chart adapted to � and � such that C ; ıC are
interlaced. Then ¹.x; y1/ W x > 0; y1 D C;1.x/D ıC;1.x/º is a discrete infinite sequence
in R2 that approaches .0; 0/. The map F WV ! R2, F.x; y1; y2/ D .x; y1/ is a definable
projection adapted to �; � such that the germ at 0 of F.�/ \ F.�/ has no connected
representative.

4. Integral pencils of analytic vector fields

Let � be a real analytic vector field in a neighborhood of 0 2 R3 such that �.0/ D 0. Such
a � (up to restricting its domain) is definable in the o-minimal and polynomially bounded
structure Ran of globally subanalytic sets [20]. Our purpose is to apply the results of the
previous section to trajectories of � asymptotic to a formal curve, and to clarify their links
with works by F. Cano et al. [4], [5]. We first recall some notions of these papers.

A (real irreducible) formal curve C at .R3; 0/ is an equivalence class of formal
parameterizations C.t/ 2 .tRŒŒt ��/3 n ¹.0; 0; 0/º (up to formal reparameterization). One
can bi-univocally associate to a formal curve its sequence IT .C/ D ¹pnºn�0 of iter-
ated tangents (also called sequence of infinitely near points, see, for instance, [6], [23]).
The sequence IT .C/ is obtained recursively as follows: we set p0 WD 0, C0 WD C , and
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for j � 0, if �j is the blow-up centered at pj , CjC1 is the strict transform of Cj by �j and
pjC1 WD CjC1.0/. Replacing projective blow-ups by spherical ones (see [8] or [22]) in
this construction, C provides two sequences CC D ¹pCn º, C� D ¹p�n º of oriented iterated
tangents for C , each one corresponding to a (formal) half-branch of C (determined by the
sign of t ). Given a half branch C� , � 2 ¹C; �º, and a subanalytic set A with 0 2 A,
we say that C� is contained in A if for all j � 0, p�jC1 2 AjC1 WD ��1j .Aj n ¹p

�
j º/,

where �j is the spherical blow-up at p�j and A0 D A. If C.t/ is convergent, the set
Cı D ¹C.t/ W t 2 .0; ı/º materializes one half branch C� , and C� is contained in A means
that Cı � A for small ı > 0.

Let � be a trajectory at 0 of the vector field �. Following p. 287 of [4], we say
that � has the property of iterated (oriented) tangents if we can associate a sequence
IT .�/ D ¹qnºn�0 to � by the following process: set q0 WD 0, �0 WD � and for j � 0, the
point qjC1 is the unique accumulation point of �jC1 WD ��1j .�j / in ��1j .qj /, where �j
is the spherical blow-up at qj . For instance, if � is non-oscillating with respect to semi-
analytic sets (i.e., its intersection with any semi-analytic set has finitely many connected
components), Proposition 1.2 of [4] shows that � has iterated tangents.

Definition 4.1. We say that a trajectory � is asymptotic to a half-branch C� of a formal
curve at .R3; 0/ if � has the property of iterated tangents and IT .�/ D C� . The set PC�

composed of all trajectories of � that are asymptotic to a given half-branch C� is called
the integral pencil of � with (half )-axis C� .

A trajectory can be asymptotic to at most one half-branch C� , and thus different
formal half-branches determine disjoint integral pencils. On the other hand, given a formal
curve C , if PC� ¤ ; for one of its half-branches C� , then C is invariant for the vec-
tor field �, i.e., being C.t/ a parameterization, one has �jC.t/ D h.t/ dC.t/

dt
for some

h.t/ 2 RŒŒt �� (the proof given in Proposition 2.1.1 of [4] in the convergent case applies
to formal curves). If C is not contained in the singular locus of �, we say that the axis is
non-degenerated.

Lemma 4.2. Let PCC be a pencil with a formal non-degenerated axis and let �;� be two
trajectories in PCC . Then � and � have flat contact.

Proof. Let C be the formal curve at .R3; 0/ having CC as one of its half-branches. Let
B D .U; .x; y; z// be an analytic chart at 0 2 R3 such that CC is not contained in x D 0.
Since C is non-degenerated, C is not contained in the set ¹dx.�/ D 0º. Up to considering
a finite composition of blow-ups at points in the sequence of iterated tangents of CC, we
can assume that dx.�/ has constant nonzero sign over an open subanalytic set containing
the germs of � and�. This shows that the chartB is adapted to � and�, up to replacing x
by �x.

Consider a parameterization of C of Puiseux type C.t/D .t� ; �.t// 2 .tRŒŒt ��/3 in the
chart B . From the definition of iterated tangents, we get the following property for B :

(4.1) 8N 2 N�1; kB.t
�/ � JN �.t/k D o.t

N / for t > 0;

where JN �.t/ denotes the truncation of �.t/ up to order N . We say that B has C as
Puiseux expansion if (4.1) holds.
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Similarly, ıB has C as Puiseux expansion. Thus, given n 2 N, if �n > 0 is such that

sup
®
kB.t

�/ � Jn��.t/k; kB.t
�/ � Jn��.t/k

¯
�
1

2
tn� for 0 < t < �n;

then we obtain that kB.x/ � ıB.x/k � xn for any x < ��n. The associated respective
parameterizations B ; ıB W .0; a/! R2 of �;� have flat contact as required.

Remark 4.3. We notice that for a trajectory, to have a given Puiseux expansion is neces-
sary and sufficient to belong to the corresponding integral pencil. More precisely, if � is a
trajectory, B D .U; .x; y; z// an adapted chart, .x; B.x// the associated parameterization
and CC the half-branch of C.t/ D .t� ; �.t// contained in x > 0, then � belongs to PCC

if and only if B satisfies (4.1).

Let us prove that an integral pencil with a non-degenerated axis has at least one tra-
jectory with the regular separation property.

Theorem 4.4. Let PCC be an integral pencil with a non-degenerated axis CC of an ana-
lytic vector field � at .R3; 0/. Let S be a subanalytic set such that CC � S (in the sense of
the second paragraph of the present section) and having minimal dimension among those
subanalytic sets with this property. Then the following hold:

(i) There exists at least one trajectory in the pencil PCC contained in S .

(ii) A trajectory � 2 PCC has the regular separation property if and only if � � S in
a neighborhood of 0.

Proof. Let s D dimS . If s D 1, then C is a convergent analytic curve and S contains the
connected component, � , of C n ¹0º whose oriented iterated tangents correspond to CC.
Since � is invariant for � and not contained in the singular locus of �, � satisfies (i).
The conclusion of (ii) is also clear in this case: a trajectory having the regular separation
property and flat contact with the trajectory � (definable) must coincide with � (as germs).

Assume that s > 1. Up to taking a stratification of S , we may assume that S is an
analytic submanifold of pure dimension s. Moreover, we may also assume that S is
everywhere tangent to � (otherwise, the locus of tangency between S and � would be
a subanalytic set containing CC and of dimension less than s).

In order to prove (i), it suffices to prove it after a blow-up �Y WM ! R3 with smooth
analytic center Y through 0 such that dim.Y / � 1. In fact, for any such center, we have
CC 6� Y (since CC is not convergent because s > 1), so that the transform zCC of CC by
�Y is a well defined formal half-curve at some p 2 M . Moreover, zCC is invariant by a
vector field z� at .M; p/ and, using the characterization (4.1) via Puiseux expansions, �Y
establishes a bijection between the pencils P zCC and PCC of z� and �, respectively. With
this remark and using Hironaka’s rectilinearization theorem [9], we may assume that S
is a smooth analytic manifold at 0. When s D 2, item (i) is a consequence of Seiden-
berg’s reduction of planar vector fields [18] (C correspond to either a stable, unstable, or
central manifold, up to further punctual blowing-ups). When s D 3, item (i) follows from
Bonckaert, Theorem 2.1 of [2].

Let us prove (ii) in the case s > 1. Suppose that � 2 PCC is contained in S near 0.
Consider an analytic chart B D .U; .x; y1; y2// at the origin in which C has a Puiseux’s
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parameterization C.t/D .t� ; �.t// and so that C is transversal to ¹x D 0º. Up to changing
the sign of x, we may assume that � � ¹x > 0º. Note that � is non-oscillating with respect
to semi-analytic sets by Théorème 1 of [4], since C is divergent (if it were convergent, we
would have � equal to one of its half branches and in fact s D 1). Thus, according to
Lemme 1.9 of [5], the chart B is adapted to � . Consider the solution B W .0; a/! R2

associated to � in this chart and let us show that B satisfies the two conditions (i) and (ii)
of Definition 3.1.

Let h be a subanalytic function such that � � Dom.h/. We notice that � is also non-
oscillating with respect to subanalytic sets (Corollary 1.5 of [5]) so that the function x 7!
h.x;B.x// has ultimately a sign when x! 0. Assume that it is positive for any x 2 .0;a/
and that limx!0 h.x; B.x// D 0.

First, by (4.1), we have that kB.x/k � x1=N for some N > 0 sufficiently big and for
small x. Using Lion’s preparation theorem for subanalytic functions [12] and again the
non-oscillation of � with respect to subanalytic sets, we obtain that jh.B.x//j � x1=N

0

for N 0 > 0 sufficiently big. This proves condition (ii) of Definition 3.1.
Let us now show condition (i) of Definition 3.1. For this, assume that hj� does not

identically vanish near 0. Taking a subanalytic stratification adapted to S andZ WD h�1.0/,
we may assume that S \Z D ;. Let CC WD ¹pnº,M0 WDR3, and let �nWMn!Mn�1 be
the spherical blow-up at pn�1 for n� 1. Denote also…n WD �1 ı �2 ı � � � ı �nWMn!R3.
By minimality of s, CC 6� @S , and hence there exists n� 1 such that pn 62…�1n .@S n ¹0º/.
Let V be an open neighborhood of pn in Mn such that V \ …�1n .@S n ¹0º/ D ;. Set
g WD h ı…n and let us show that

(4.2) ¹g D 0º \ V \…�1n .S n ¹0º/ � D WD …
�1
n .0/:

Let q 2 V \…�1n .S n ¹0º/ be such that q 62D and suppose that g.q/D 0. Then…n.q/ 2

S n ¹0º and …n.q/ 2 Z. Since S \ Z � @S , we would have q 2 …�1n .@S n ¹0º/, which
is impossible because …�1n .@S n ¹0º/ \ V D ;. This shows (4.2).

Now, the map f WD x ı…njV is a subanalytic function in V satisfying

¹f D 0º \…�1n .S n ¹0º/ � D \ V:

Applying the Łojasiewicz inequality to f; g (see, for instance, [9] or [1]), there exists
c > 0, ˛ > 0 such that

jg.q/j � cjf .q/j˛ 8q 2 …�1n .S n ¹0º/:

Using this last inequality for the points q 2 …�1n .�/ � …
�1
n .S n ¹0º/, we finally obtain,

for any x > 0 sufficiently small, that

h.x; B.x// � c.x.x; B.x///
˛
D cx˛:

This proves the regular separation property for the solution B (condition (i) of Defini-
tion 1.2) and finishes the proof of the “if” part of Theorem 4.4 (ii).

Finally, let us prove the “only if” part of Theorem 4.4 (ii). Let � 2 PCC . Assume
that� has the regular separation property. Consider B D .V; .x; y1; y2// an adapted chart
for � and denote x 7! .x; ıB.x// 2 V the parameterization of � in this chart. Since ıB
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has the regular separation property, either .x; ıB.x// 2 S ultimately, or .x; ıB.x// … S
for all small x (Lemma 2.1). We assume the latter, and get to a contradiction. From the
already proven assertion (i) and the “if” part of assertion (ii) in Theorem 4.4, S contains
a trajectory � with regular separation. By Lemma 4.2, � and � have flat contact. Then,
from Proposition 3.4,B is adapted to � , and B and ıB have flat contact, where .x;B.x//
parameterizes � . Let d WV !R be the subanalytic function p 7! infq2S\V kp� qk, that is,
the distance to S (in the chart B). By regular separation, d.x; ıB.x// is either identically
zero or bounded from below by a power of x. But d.x; ıB.x// � kıB.x/ � B.x/k and
kıB � Bk is ultimately smaller than any power of x, so d.x; ıB.x// � 0, which means
that .x; ıB.x// 2 S . Finally, � � S n S D @S near 0. Since IT .�/ D CC, this implies
that CC � @S . But dim @S < dimS , which contradicts the minimality of s. This achieves
the proof of Theorem 4.4.

Using Theorem 4.4 and Lemma 4.2, we can apply the results obtained in Section 3
to pairs of trajectories in a pencil with non-degenerated axis CC, provided that one of
them belongs to the subanalytic set S of minimal dimension s which contains the formal
half-axis.

Application to pencils with analytic axis. The case s D 1 corresponds to convergent
axis. Then the unique trajectory CC of PCC having the regular separation property is
obtained as the sum of the series C.t/with a sign condition on t . In this case, Theorem 1.3
says that, given another trajectory � 2 PCC , either the pair CC; � is interlaced or the
ring of germs of subanalytic functions restricted to � is a Hardy field. It is well known
that the latter is equivalent to being non-oscillating with respect to analytic sets (and non-
oscillation with respect to analytic sets or to subanalytic sets are equivalent for trajectories,
see Corollaire 1.5 of [5]), so in this case, Theorem 1.3 only recovers the alternative non-
oscillating/spiraling of Théorème 1 of [4].

Despite this discussion, Theorem 3.9 provides us with a little bit more information in
the non-oscillating situation: since the axis CC has also the regular separation property in
any polynomially bounded o-minimal structure which defines the subanalytic sets, we can
enlarge the class of sets with which a trajectory in the pencil does not oscillate with. More
precisely, we have the following corollary.

Corollary 4.5. Let PCC be an integral pencil of an analytic vector field at .R3; 0/ with a
non-degenerated convergent axis CC. Let � 2 PCC be a non-oscillating trajectory of the
pencil parameterized by .x; ıB.x// in an analytic chart B D .U; .x; y1; y2// at the origin
for which CC � ¹x > 0º. Then, for any polynomially bounded o-minimal structure R

expanding Ran, the ring FR.x; ıB/ of germs at x D 0 of functions of the form x 7!

h.x; ıB.x//, where h is definable in R, is a Hardy field.

Applications to transcendental axis. If CC is not included in any subanalytic set of
positive codimension (this is, when s D 3), we will say that the axis CC is subanalytically
transcendental. In this case, all the trajectories in the pencil have the regular separation
property and the results in Section 3 fully apply to any pair of trajectories in it.

We remark that interlaced integral pencils of non-oscillating trajectories provide exam-
ples of pencils with subanalytically transcendental formal axis (see Théorème II and the
discussion on p. 29 of [5]). In this case, Theorem 1.3 gives no more information for the
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relative behavior of a pair of trajectories than the one already established in that reference:
the trajectories are two by two interlaced.

On the other hand, if we have a non-interlaced integral pencil with subanalytically
transcendental axis, as already mentioned in Section 3, we obtain a better description than
the “séparé” condition of [5] for pairs of trajectories. The following result summarizes this
new contribution.

Corollary 4.6. Let PCC be a separated (i.e., non-interlaced) integral pencil of an analytic
vector field at .R3; 0/ with a formal subanalytically transcendental axis. Then, given any
pair of trajectories �;� 2 PCC , the following assertions hold:

(1) Any analytic chart B D .U; .x; y1; y2// at the origin such that CC � ¹x > 0º is
adapted to both � , � and, being .x; B.x//, .x; ıB.x// their respective paramet-
erizations in B , the ring FB.x; B ; ıB/ of germs at x D 0 of functions of the form
x 7! h.x; B.x/; ıB.x//, where h is a subanalytic function, is a Hardy field.

(2) For any subanalytic submersion F W V ! R2 defined in an open set V � R3

containing � [ � and satisfying limp!0 F.p/ D 0, either F.z�/ D F.z�/ or
F.z�/ \ F.z�/ D ; for some representatives z� , z� of �;�, respectively.

5. Transcendental axis and the SAT condition – Examples

In order to apply Corollary 4.6, we need to construct separated pencils with subanalytically
transcendental axis. So far, we do not know any such example in the literature. This section
is devoted to provide examples of such integral pencils, with different “sizes”: the pencil
may consist of a solitary trajectory, a “surface” of trajectories (one-parameter family) or a
whole “open domain” of trajectories (a two-parameter family).

The main ingredient used to produce examples is the so-called strongly analytic tran-
scendence (SAT) property introduced in J.-P. Rolin, R. Schaefke and the third author’s
work [15]. By its very definition, it expresses a condition of transcendence of a formal
curve with respect to analytic sets, strengthened by the possibility of right composition
by polynomials (we recall the definition below). We prove that the SAT property assures
the transcendence with respect to subanalytic sets (Proposition 5.5). For that, we show
that SAT is preserved by local blow-ups with analytic smooth centers and use Hironaka’s
rectilinearization theorem [9].

A first difficulty is that an analytically transcendental axis (i.e., a formal invariant curve
not contained in any analytic set of positive codimension) may not be subanalytically
transcendental, as the following example shows.

Example 5.1 (See also a similar example in [10]). Let � be the analytic vector field

�.x; y; z/ D x3
@

@x
C x.y � x/

@

@y
C z.y � x/.1 � x/

@

@z
:

The vector field � is singular at 0, and .x; y.x/; z.x// parameterizes a trajectory of � for
x > 0 if and only if the functions y;z satisfy the following system of differential equations:´

x2y0 D y � x; (a)

x3z0 D z.y � x/.1 � x/; (b)
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The differential equation (a) does not depend on z. It is the classical Euler differential
equation, whose solutions for x > 0 all tend to 0 and are asymptotic to the formal power
series

Oh.x/ WD

1X
nD0

nŠxnC1:

Now, by dividing (b) by x3 and since y � x D x2y0, we get that

z0.x/ D z.x/
� 1
x
C

�y.x/
x

�0�
;

which gives z.x/ D Axey.x/=x for some A 2 R.
In particular, if A D 1, then, for any choice h.x/, x > 0, of a solution of equation (a),

the image of x 7! .x; h.x/; xeh.x/=x/ is a trajectory of � at 0, which is asymptotic to the
axis CC associated to the parameterized formal curve

C.t/ WD .t; Oh.t/; te
Oh.t/=t /;

and contained in ¹x > 0º. (The series te Oh.t/=t is obtained from e1Ct D eC et C e t
2

2
C � � � ,

as Oh.t/=t 2 1C tRŒŒt ��.) So the pencil PCC contains a (nonempty) family of trajectories,
parameterized by the choice of a solution of equation (a).

Since Oh is divergent, the minimal dimension s of a subanalytic set that contains CC is
at least 2. Moreover, since the subanalytic surface

S D
®
.x; y; z/ 2 R3 W z D xey=x ; 0 < y < 3x

¯
contains the trajectories of PCC , CC � S , we have that s D 2. In particular, CC is not
subanalytically transcendental.

It however happens that CC is analytically transcendental. Indeed, if X is analytic
and contains CC, the intersection S \ X is a subanalytic set that contains CC, hence
dim.S \X/ � 2, therefore S � X . But S is not included in any analytic set but R3 near 0
(this is a variation of a classical example due to Osgood, see Example 2.14 of [1]). Indeed,
if f is analytic at 0 and vanishes on S , then f .x; xy; xey/ vanishes on an open set close
to 0, and then everywhere. Assuming that f .x; y; z/ D

P
.i;j;k/2N3 fijkx

iyj zk , this can
be rewritten as

f .x; xy; xey/ D
X
n2N

xn
X

iCjCkDn

fijk y
j .ey/k D 0;

which implies that all fijk are zero since ey is transcendental over RŒy�.

In the previous example, the formal curve C is analytically transcendental but its
transform by the blow-up at the origin is not analytically transcendental anymore. The
following lemma clarifies the relation between subanalytic and analytic transcendence in
terms of blow-ups. We leave the proof to the reader. It is a consequence of Hironaka’s rec-
tilinearization theorem [9], which asserts that any subanalytic set can be transformed into
a semi-analytic set by a finite sequence of local blow-ups with smooth analytic centers.
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Lemma 5.2. Let C be a formal curve at 0 2 Rn. The following are equivalent:
(1) The curve C is subanalytically transcendental.

(2) The curve C is analytically transcendental and its strict transform by any finite
sequence of local blow-ups with smooth analytic centers is also analytically tran-
scendental.

We now recall the SAT property, introduced in [15] for formal solutions of systems of
ordinary differential equations. We first need the following notions. For a given q � 1, a
polynomial P.x/ 2 RŒx� is called q-short if P.0/ D 0 and degP < .q C 1/valP , where
valP denotes the order of P at 0. We will say that P is positive if P .valP/.0/ > 0 (where
P .k/ is the k-th derivative of P ). Also, as a matter of notation, for k � 0 and h.x/ 2RŒŒx��
a formal power series, we write

Tkh.x/ D
h.x/ � Jkh.x/

xk
;

where Jkh.x/ is the truncation of h.x/ up to and including degree k (thus, in particular,
Tkh.0/ D 0).

Definition 5.3. Fix q 2N�1. LetH.x/D .H1.x/; : : : ;Hn.x// 2 .xRŒŒx��/n. We say that
H.x/ is q-strongly analytically transcendent (q-SAT for short, or SAT if q is given) if for
any k 2N; l 2N�1 and for any family of distinct q-short positive polynomialsP1; : : : ;Pl ,
we have that

(5.1) f
�
x; TkH.P1.x//; TkH.P2.x//; : : : ; TkH.Pl .x//

�
D 0 H) f � 0

for any convergent series f .x;Z/ 2 R¹x;Zº in 1C nl variables.

Remark 5.4. Condition (5.1) means that the formal curve CkH;P .x/ is analytically tran-
scendental, where H.x/ D .H1.x/; : : : ;Hn.x//, P D .P1; : : : ; Pl / and

CkH;P .x/ D
�
x; TkH.P1.x//; TkH.P2.x//; : : : ; TkH.Pl .x//

�
:

Furthermore, analytic transcendence is preserved under analytic isomorphism. Indeed, if
C.x/ 2 .xRŒŒx��/m is transcendental and ‰W .Rm; 0/! .Rm; 0/ is analytic and invertible
at 0, then f ı ‰ ı C.x/ D 0 implies f ı ‰ D 0, that gives f D 0, since ‰ is invert-
ible. Together with the fact that a curve Ck�ıH;P .x/ can be expressed as Ck�ıH;P .x/ D

‰.CkH;P .x// with an invertible ‰ if � is invertible, this shows that the q-SAT property is
preserved under analytic isomorphism.

The stability of analytic transcendence can be pushed further as follows, and we will
use this later on. If C.x/ 2 .xRŒŒx��/m is transcendental and ‰W .Rm; 0/ ! .Rm; 0/ is
analytic and invertible in an open set U with 0 2 U , then ‰ ı C.x/ is transcendental.
Indeed, if f is analytic, f ı ‰ ı C.x/ D 0 still gives f ı ‰ D 0, so f vanishes on the
image of ‰, which contains an open set close to 0. So f D 0 everywhere. We will call
quasi-isomorphism an analytic mapping ‰W .Rm; 0/! .Rm; 0/ of the form ‰.x;w/ D
.x;  .x;w//, where x 2 R, w 2 Rm�1, and that is invertible in an open set with 0 in its
closure.

The following proposition shows that if H is q-SAT, then the composition of H with
distinct q-short positive polynomials is subanalytically transcendental.
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Proposition 5.5. Suppose thatH.x/ 2 .xRŒŒx��/n has the q-SAT property, and let P1.x/;
: : : ; Pl .x/ be distinct q-short positive polynomials. Let C be the formal curve parameter-
ized by

C.x/ D
�
x;H.P1.x//;H.P2.x//; : : : ;H.Pl .x//

�
:

Then C is subanalytically transcendental.

Proof. By the SAT property, the curve C.x/ is analytically transcendental. Using Lem-
ma 5.2 and Remark 5.4, it suffices to show that if �Z is a local blow-up with a smooth
analytic center Z at 0 2 R1Cnl and zC is the strict transform of C by �Z , then zC can be
parameterized by

zC.x/ D ‰
�
x; TkH.P1.x//; : : : ; TkH.Pl .x//

�
;

where k is a positive integer and ‰ is a quasi-isomorphism. This is easily deduced from
the three following facts.

Claim 5.6. If C.x/ D .x; c.x// is a formal curve and Z a smooth analytic center that
does not contain the curve, then the lift eC of the curve by the blow-up �Z with center Z
has a parameterization of the formeC.x/ D ˆ.x; Tk. ı C.x///;

for some k > 0 and some quasi-isomorphisms ˆ and ‰ D .x;  /.

Claim 5.7. If ‰ D .x;  / is a quasi-isomorphism and C.x/ D .x; c.x// is a formal
curve, then the curve .x; Tk. ı C.x/// is the image of the curve .x; Tkc.x// by a quasi-
isomorphism ˆ:

.x; Tk. ı C.x/// D ˆ.x; Tkc.x//:

Claim 5.8. The curve .x; Tk.H ı P.x///, with, for short,

H ı P.x/ D
�
Hi ı Pj .x/; i D 1; : : : ; n; j D 1; : : : ; l

�
;

is the image by a quasi-isomorphism ‰ of the curve�
x; .TkHi / ı .Pj .x//; i D 1; : : : ; n; j D 1; : : : ; l

�
:

With the same notation as above, .x; Tk.H ı P.x/// D ‰.x; .TkH/ ı P.x//:

To complete the proof from the claims, it suffices to note that Claim 5.6 applies to
our curve, as it is analytically transcendental, hence cannot be included in the analytic
center Z. Applying Claim 5.7 and then Claim 5.8 to the resulting curve gives exactly our
assertion.

The proofs of the claims used for proving Proposition 5.5 follow.

Proof of Claim 5.6. The introduction of the quasi-isomorphism ‰ allows to make arbit-
rary choices of analytic coordinates as long as the x variable remains unchanged. We
consider whether the curve is tangent to Z or not. If not, we choose a system of coordin-
ates .x; y; z/, y D y1; : : : ; ym, z D z1; : : : ; zr (with m C r D nl) such that Z D ¹x D
g.z/; y D 0º, and c.x/ D .cy.x/; cz.x// have order at least 2 (C is tangent to the x axis).
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We choose local coordinates . Qx; Qy; Qz/ for the blow-up given by xD Qx, yD . Qx � g.Qz//Qy,
z D Qz (so the exceptional divisor has equation Qx D g.Qz/). In these coordinates, the lift eC
of C by �Z has parameterization .x; cy.x/

x�g.cz.x//
; cz.x//. The function h.x; z/ D 1

1�g.xz/=x
is analytic in a neighborhood of 0, so eC can be expressed in terms of T1c.x/ aseC.x/ D .x;ec.x// D .x; h.x; T1cz.x//T1cy.x/; xT1cz.x// D ˆ.x; T1c.x//;

where ˆW .x; y; z/ 7! .x; h.x; z/y; xz/ is a quasi-isomorphism as announced.
If Z and C.x/ are tangent, we choose local coordinates .x; y1; y; z/ such that Z D

¹y1 D 0;yD 0º, c.x/D .c1.x/; cy.x/; cz.x//, where c1.x/D xk.1C Tkc1.x// has order
k > 1, and cy, cz have order (strictly) larger than k. In the usual coordinate system for the
blow-up, the lift of C by �Z has parameterization .x; c1.x/; cy.x/=c1.x/; cz.x//, which
can be expressed in terms of Tkc.x/:

eC.x/ D �x; xk.1C Tkc1.x//; Tkcy.x/

1C Tkc1.x/
; xkTkcz.x/

�
:

Since .x; y1; y; z/ 7! .x; xk.1 C y1/;
y

1Cy1
; xkz/ is a quasi-isomorphism, we have the

desired form for eC.x/.
Proof of Claim 5.7. Since TkC1 D TkT1, we only treat the case k D 1. We can suppose
that c.x/ D xT1c.x/ has order at least 2. Writing  .x; y/ D  0.x/C

P
j˛j�1  ˛.x/y˛

(the  i .x/’s are vectors of same length as c.x/), we have

T1. .x; c.x/// D T1 0.x/C
X
j˛j�1

 ˛.x/x
j˛j�1.T1c.x//

˛;

and we set �.x; y/ D T1 0.x/C
P
j˛j�1 ˛.x/x

j˛j�1y˛ . Denote ˆ.x; y/ D .x; �.x; y//.
Then ˆ is a quasi-isomorphism and .x; T1. ı c.x/// D ‰.x; T1c.x//.

Proof of Claim 5.8. According to Claim 5.7, we only need to prove it for k D 1. We sup-
pose, with no loss of generality, thatH.x/D xT1H.x/ has order greater than 1, and write

T1.Hi ı Pj .x// D
1

x
Hi .Pj .x// D

Hi .Pj .x//

Pj .x/

Pj .x/

x
D
Pj .x/

x
.T1Hi / ı .Pj .x//:

Since the polynomials Pj have order at least 1, the mapping ‰ is a quasi-isomorphism
with

‰.x;w/ D
�
x;
Pj .x/

x
wi;j ; i D 1 : : : ; n; j D 1; : : : ; l

�
;

and where w D .wi;j ; i D 1 : : : ; n; j D 1; : : : ; l/.

Proposition 5.5 provides us with examples of subanalytically transcendental curves in
any dimension once we have a tuple of formal power series H.x/ with the SAT property.
In Theorem 2.4 of [15], the authors give conditions in order to guarantee that a formal
solution of a system of analytic ordinary differential equations has the SAT property. These
conditions only concern the eigenvalues of the linearization of the system and the Stokes



O. Le Gal, M. Matusinski and F. Sanz Sánchez 1524

phenomena of the formal solution. A particular case where their result applies is the well-
known Euler equation

x2y0 D y � x;

whose (unique) formal solutionE.x/D
P
n�0nŠx

nC1 has the q-SAT property with qD 1.
This property and Proposition 5.5 allows to construct the following examples of non-
interlaced integral pencils with subanalytically transcendental axis. Any trajectory of such
pencils has the regular separation property by Proposition 4.4, so they illustrate the results
of Section 3 and Corollary 4.6.

Example 5.9. Consider the vector field

�1 D 2x
2 @

@x
C 2.y � x/

@

@y
C .z � 2x/

@

@z
:

The formal curve C.x/ D .x; E.x/; E.2x// is invariant by �1 and subanalytically tran-
scendental by Proposition 5.5. For any of the two associated half-curves C� � ¹�x > 0º,
� 2 ¹C;�º, the integral pencil PC� is separated by Section 4.4 of [5], since the eigenval-
ues ¹0; 2; 1º of the linear part d�1.0/ are all real and distinct. Note also that x D 0 is the
unstable manifold W u of �1 and that C.x/ is the formal center manifold of �1.

The coordinate x grows along any integral curve not contained in W u. As a con-
sequence, there exists a unique trajectory of � contained in ¹x < 0º which accumulates
to the origin, so that PC� has a unique element (a pencil of “dimension” one). This is a
solitary trajectory in the sense of [10]. On the contrary, any trajectory issued from a point
in the half-space ¹x > 0º accumulates to the origin and its germ belongs to PCC (a pencil
of “dimension” three).

Example 5.10. The vector field

�2 D x
2 @

@x
C .y � x/

@

@y
� .z C x/

@

@z

has as formal invariant curve C.x/ D .x; E.x/; E.�x//. This curve is not included in
the situation of Proposition 5.5 with H.x/ D E.x/, since P.x/ D �x is not a positive
1-short polynomial. However, using Theorem 2.4 of [15], we can observe that H.x/ D
.E.x/; E.�x// has the 1-SAT property: H.x/ is a formal solution of a system of ODEs
for which the linear part has eigenvalues ¹1;�1º with distinct argument, and H.x/ has a
nontrivial Stokes phenomenon along both singular directions R>0 and R<0. We obtain, by
Proposition 5.5, that C is subanalytically transcendental. Since Spec.d�2.0//D¹0;1;�1º,
the vector field �2 has unique center-stable W cs and center-unstable W cu manifolds, both
two-dimensional. Moreover, the germ of any trajectory of �2 accumulating to 0 must
be included either in W cs or in W cu (depending if it accumulates to 0 for t ! C1 or
t ! �1 for the time parameter t ). Also, as in Example 5.9, the coordinate x grows on
each trajectory not contained in the invariant surface ¹x D 0º. Consequently, we obtain
two separated pencils PCC , PC� , associated to the corresponding half-branches C� D

C \ ¹�x > 0º of C , both of “dimension” 2. More precisely, Y � DW cs \ ¹x < 0º (respect-
ively Y C D W cu \ ¹x > 0º) realizes the integral pencil PC� (respectively PCC ) in the
sense that any integral curve in Y � is a representative of an element of PC� and each ele-
ment of PC� is contained in Y � . It is worth to remark that neitherW cs norW cu is analytic,
otherwise C would not be analytically transcendental.
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Example 5.11. Consider the analytic vector field

�3 D x
2 @

@x
C .y � x/

@

@y
C

� 1C 2x
.1C x/2

z �
x.1C 2x/

1C x

� @
@z
:

It has the formal invariant curve C.x/ D .x;E.x/;E.x C x2//. The polynomial P.x/ D
x C x2 is not a 1-short polynomial. It is proven in Lemme 3.1 of [15] that there exists an
analytic function f .x; z1; z2/ 6� 0 at the origin such that

f .x;E.x/; E.x C x2// D 0:

Consequently, C � Sf WD ¹f D 0º and it is not analytically transcendental. Note that Sf
has dimension two since C is not convergent. The integral pencil PCC , where CC is the
associated half-curve contained in ¹x > 0º, is separated and contains the germ of any tra-
jectory issued from a point in ¹x > 0º in a small neighborhood of the origin. However, only
those trajectories contained in Sf have the property of regular separation (with respect to
the polynomially bounded o-minimal structure R D Ran of subanalytic sets).

Note that the vector field �3 in Example 5.11 has rational coefficients, thus it is also
definable in the structure Ralg of semi-algebraic sets. We suspect (but we did not prove
it) that the surface Sf is not semi-algebraic. If so, the formal curve would be transcend-
ental with respect to semi-algebraic sets, and analogously to Proposition 4.4, we could
obtain the regular separation property for all trajectories with respect to semi-algebraic
functions, and apply Theorem 1.3 for the polynomially bounded o-minimal structure Ralg.
The following example makes use of this principle.

Example 5.12. Consider the polynomial vector field

� D x2
@

@x
C .y � x/

@

@y
C yz

@

@z
:

For any � 2 R n ¹0º, the formal curve C�.x/ D .x; E.x/; �x exp.E.x/// is invariant.
Each C� is not analytically transcendental, since C� is contained in the analytic surface
S� D ¹z ��y exp.y/D 0º. But C� is algebraically transcendental; otherwise, if C� were
contained in some semi-algebraic surface B , then C� would be one of the components of
the analytic curve B \ S�, which is impossible since C� is divergent.
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