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On degenerations of Z=2-Godeaux surfaces

Eduardo Dias, Carlos Rito and Giancarlo Urzúa

Abstract. We compute equations for the Coughlan’s family of Godeaux surfaces
with torsion Z=2, which we call Z=2-Godeaux surfaces, and we show that it is
(at most) 7 dimensional. We classify all non-rational KSBA degenerations W of
Z=2-Godeaux surfaces with one Wahl singularity, showing that W is birational to
particular either Enriques surfaces, or D2;n elliptic surfaces, with n D 3; 4 or 6. We
present examples for all possibilities in the first case, and for n D 3; 4 in the second.

1. Introduction

Smooth minimal complex projective surfaces of general type with the lowest possible
numerical invariants, namely geometric genus pg D 0 and self-intersection of the canon-
ical divisor K2 D 1, are known to exist since Godeaux’ construction in 1931 [12]. His
surface has topological fundamental group Z=5. Surfaces of general type with K2 D 1,
pg D 0 are called numerical Godeaux surfaces. Miyaoka [20] showed that the order of
their torsion group is at most 5, and Reid [26] excluded the case .Z=2/2, so their possible
torsion groups are Z=n with 1 � n � 5. All of them are realizable. Reid constructed the
moduli space for the cases n D 5; 4; 3, and it follows from his work that the topological
fundamental group coincides with the torsion group for nD 5; 4. Urzúa and Coughlan [8]
showed that the same happens for n D 3. In those three cases, the moduli space is unira-
tional and irreducible of dimension 8. Reid conjectured that the same should happen for
numerical Godeaux surfaces with torsion Z=2 and with no torsion. Both cases remain a
challenge as far as we know. It is not even known if the topological fundamental groups
are indeed Z=2 and trivial respectively. A proof of irreducibility of their moduli spaces
would imply it, because there are several examples with fundamental groups isomorphic
to Z=2, see e.g. [17], and trivial, see e.g. [19], respectively. (In the recent preprint [9], the
first two authors have settled Reid’s conjecture for Z=2-Godeaux surfaces. The starting
point of [9] relies on the computations done in this paper.) Several authors have worked
on these surfaces, and there are some unrelated constructions of some components of the
moduli space. (See e.g. [5], §6 in [4], [2] for a survey on pg D 0 surfaces and various ref-
erences, and [23]). In the case of Z=2-Godeaux surfaces, Catanese and Debarre [4] show
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that their étale double covers are surfaces with birational bicanonical map and hyperel-
liptic canonical curve, and they do a general study of its canonical ring. Coughlan [7]
gives the construction of a family depending on 8 parameters.

In this paper, we implement Coughlan’s construction, overcoming some computational
difficulties, and we obtain explicit equations for his family of surfaces. We show that it
depends on at most 7 parameters. We recall that it is expected an irreducible 8-dimensional
moduli space, and so Coughlan’s family would not describe an open subset of the moduli
space1. Each surface is embedded in the projective space P .1; 2; 2; 2; 3; 3; 3; 3; 4/, and we
give equations for the embedding by the tricanonical map into P 7, as well as the image by
the bicanonical map, an octic surface in P 3. Moreover, we show that the étale coverings of
Coughlan’s surfaces belong to the 16-dimensional component ME described in § 5 of [4],
thus their topological fundamental group is Z=2.

We also classify deformations to non-rational surfaces W with a unique Wahl singu-
larity, and ample canonical class. Hence these surfacesW belong to the Kollár–Shepherd–
Barron–Alexeev (KSBA) compactification of the moduli space of Godeaux surfaces [1,18]
(see [13]). The relevance of stable surfaces with one Wahl singularity is that, under no
obstructions in deformation, they represent boundary divisors in the KSBA compactifica-
tion (see [13], §9), and they are abundant (see e.g. [29]). What allows us to classify is the
recent work [24] which optimally bounds Wahl singularities in stable surfaces with one
singularity. Using that work and the particular situation of degenerations of Z=2-Godeaux
surfaces, in this paper we show that the smooth minimal model of W is a particular either
Enriques surface or D2;n elliptic surface, with n 2 3; 4; 6. We give a complete list of the
geometric possibilities and the singularities that may occur.

The description of an Enriques surface as a double plane makes the construction of
examples for this case simpler, and in fact we give constructions for all cases in the list.
Although we also use the explicit MMP in [15, 30] to show existence for some cases.

The case of D2;n elliptic surfaces is much harder: explicit constructions are difficult
to obtain, so we take a different approach. We search for such degenerations using our
equations of Coughlan’s family of Z=2-Godeaux surfaces. The method is to study ran-
dom surfaces, working over finite fields, in order to get ideas of where the interesting
cases may be, and then try to construct it over the complex numbers. We explicitly obtain
codimension 1 families of D2;4 and D2;3 elliptic surfaces (containing a .�4/-curve). The
existence of the first case can also be proved via MMP [15, 30] and we indicate how, but
of course this is not explicit. That case appears in several constructions by deformations,
suggesting that the irreducibility of the moduli space may hold. The second case is more
interesting because one can show the existence ofD2;3 surfaces with a .�4/-curve inside,
whose contraction can be Q-Gorenstein smoothed to simply connected Godeaux surfaces
(see e.g. [30], §5).

The paper is organized as follows. In Section 2.1, we give a complete list of possib-
ilities for the deformations to non-rational surfaces with one Wahl singularity that may
occur. In Sections 2.2 and 2.3, we construct several examples of such degenerations: all
possible cases with W an Enriques surface, with explicit constructions; and two differ-
ent cases with W a D2;4 surface, using deformation theory and MMP. In Section 3, we

1Deformation theory has been used to show the existence of 8-dimensional components of the moduli space
of Z=2-Godeaux surfaces, see e.g. [31], [17], and Remark 3.8.
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describe how to find explicit equations for Coughlan’s family of Z=2-Godeaux surfaces,
using computer algebra, and we show that it is (at most) 7-dimensional. Finally, in Sec-
tion 4, we explain how to find, in this family, equations for surfaces in the cases where W
is a D2;4 or D2;3 surface.

Notation
• A .�m/-curve is a curve isomorphic to P 1 with self-intersection �m.
• ADn;m surface is a smooth projective surface with an elliptic fibration over P 1 which

has two fibres of multiplicities n;m, and pg D 0. The fundamental group of Dn;m is
Z=gcd.n;m/ (see e.g. [11], §3).

• A Z=2-Godeaux surface is a smooth minimal projective surface with pg D 0,K2 D 1,
and �ét

1 D Z=2 (which is equivalent to have torsion group Z=2).
• If � WX ! W is a birational morphism, then exc.�/ is the exceptional divisor. The

strict transform of an irreducible curve � in W will be denoted by � again.
• A cyclic quotient singularity Y , denoted by 1

m
.1; q/, is a germ at the origin of the

quotient of C2 by the action of �m given by .x; y/ 7! .�mx; �
q
my/, where �m is

a primitive mth root of 1, and q is an integer with 0 < q < m and gcd.q; m/ D 1.
If � W zY ! Y is the minimal resolution of Y , then the exceptional curves Ei D P 1

of � , with 1 � i � s, form a chain such that E2
i D �bi , where m=q D Œb1; : : : ; bs�

is the Hirzebruch–Jung continued fraction. Commonly we will refer to exc.�/ as
Œb1; : : : ; bs�.

• The Kodaira dimension of X is denoted by �.X/.
• A KSBA surface in this paper is a normal projective surface with log-canonical singu-

larities and ample canonical class [18].

2. Non-rational degenerations with one Wahl singularity

A Wahl singularity is a cyclic quotient singularity of the type 1=n2.1; na � 1/ with
0 < a < n coprime. Equivalently, they are precisely the cyclic quotient singularities which
admit a smoothing with Milnor number equal to zero. KSBA surfaces with one Wahl sin-
gularity turn out to be abundant in the closure of the moduli space of surfaces of general
type. When in addition there are no local-to-global obstructions, these surfaces represent
divisors in the KSBA compactification (see [13], §4). In this section we classify all pos-
sible degenerations of Z=2-Godeaux surfaces into non-rational KSBA surfaces with one
Wahl singularity. The main tool is [24], where we can find explicit optimal bounds for
Wahl singularities and some useful features for particularly “small” cases.

2.1. List of possibilities

Theorem 2.1. Let W be a Q-Gorenstein degeneration of a Z=2-Godeaux surface which
has one Wahl singularity and KW ample. If � WX ! W is the minimal resolution and X
is not rational, then X belongs to the following list:
Case A. �.X/ D 1.

.A1/ The surface X is a D2;3, and exc.�/ D Œ4�.
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.A2/ The surface X is a D2;6, and exc.�/ D Œ4�.

.A3/ The surface X is a D2;4, and exc.�/ D Œ4�.

.A4/ The surface X is the blow-up at one point of a D2;4, and exc.�/ D Œ5; 2�. The
.�1/-curve intersects the .�5/-curve with multiplicity 2.

.A5/ The surfaceX is the blow-up of aD2;4 twice at the node of the multiplicity four I1

fiber, and exc.�/ D Œ3; 5; 2�. The surface D2;4 contains a .�3/-curve which is a
4-section.

Case B. �.X/ D 0, and X is an Enriques surface blown-up.

.B1/ Once, and exc.�/ D Œ5; 2�. The .�1/-curve intersects the .�5/-curve with multi-
plicity 3.

.B2/ Twice, and exc.�/ D Œ2; 5; 3�. There is one .�1/-curve touching the .�5/-curve
with multiplicity 2, and there is another .�1/-curve intersecting the .�5/-curve
and the .�3/-curve at one point.

.B3/ Twice, and exc.�/ D Œ6; 2; 2�. There are two disjoint .�1/-curves intersecting the
.�6/-curve with multiplicity 2 each.

.B4/ Three times, and exc.�/ D Œ2; 6; 2; 3�. There is a .�1/-curve intersecting the first
.�2/-curve and the .�6/-curve at one point each, and there is a .�1/-curve inter-
secting the .�6/-curve and the .�3/-curve at one point each.

.B5/ Three times, and exc.�/ D Œ3; 5; 3; 2�. There is a .�1/-curve intersecting the first
.�3/-curve and the .�5/-curve at one point each, and there is a .�1/-curve inter-
secting the .�5/-curve and the .�2/-curve at one point each.

.B6/ Four times, and exc.�/ D Œ2; 2; 3; 5; 4�. There is a .�1/-curve intersecting the
first .�2/-curve and the .�5/-curve at one point each, and there is a .�1/-curve
intersecting the .�4/-curve with multiplicity 2.

.B7/ Four times, and exc.�/ D Œ2; 2; 6; 2; 4�. There is a .�1/-curve intersecting the
first .�2/-curve and the .�6/-curve at one point each, and there is a .�1/-curve
intersecting the .�4/-curve with multiplicity 2.

Moreover, all cases do exist, except possibly (A2) and (A5).

Figure 1. Options for � D 1.
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Figure 2. Options for � D 0.

Proof. First, by Proposition 2.2 in [24] and our hypothesis (K2
W D 1 andW non-rational),

we have that X is the blow-up of either an elliptic surface with q D 0 or an Enriques
surface. Note that pg.W / D 0 as well, because W is a Q-Gorenstein degeneration of a
Z=2-Godeaux surface Z.

Say that �.X/ D 1.
Let � WX ! S be the blow-down to a minimal surface S . Hence, in our situation, S

has an elliptic fibration S ! P 1.
As in the proof of Proposition 6.1 in [23], we have that

�ét
1 .Z/! �ét

1 .W /

is surjective, �ét
1 .W / ' �ét

1 .X/, and �1.X/ is residually finite, and so �1.X/ could be
trivial or Z=2. As the fundamental group is finite and �.S/ D 1, by the Corollary on
p. 146 of [11], we have that the elliptic surface S must have two multiple fibres and so it is
aDn;m. Since �1.X/ could be trivial or Z=2, we have that gcd.n;m/D 1 or 2 respectively.
The canonical class formula gives KS � �F C .n � 1/Fn C .m � 1/Fm, where F is a
general fibre, and the divisors Fn and Fm are reduced fibres so that F � nFn � mFm.

On the other hand, by Theorem 2.15 in [24], we have that the exceptional divisors inX
could be Œ4�, Œ5; 2�, Œ6; 2; 2�, Œ2; 5; 3�. We now check case by case.

Case Œ4�. Then X D S . Let C be the .�4/-curve. Then KS � C D 2 gives restrictions
on gcd.n;m/. The only possible pairs .n;m/ are .2; 3/, .2; 4/ and .2; 6/.

Case Œ5; 2�. Then X ! S is the blow-up at one point. The .�1/-curve cannot touch
the .�2/-curve, and so it must touch the .�5/-curve with multiplicity 2. (It cannot just
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intersect it at one point since KW is ample, and for multiplicity > 2 it would be trivial
or negative for KS .) So in S the .�5/-curve becomes a curve � such that � � KS D 1.
Then we use the canonical class formula and gcd.n; m/ D 1 or 2 to get that .n; m/ D
.2; 4/ or .2; 3/ only. In the case of .2; 3/, we have a simply connected surface. Then by
Corollary 1.2.4 in [14] and since the index of Œ5; 2� is 3, we obtain an exact sequence
Z=3! Z=2! 0, which is a contradiction. Therefore the only possible case is .2; 4/.

Case Œ6;2;2�. ThenX!S is the composition of two blow-ups. According to Corollar-
ies 2.12 and 2.13, and Theorem 2.15 in [24], this case can only happen with a .�1/-curve
which forms a long diagram of type I or II (see [24] for the definition). But then there is a
.�1/-curve intersecting one of the .�2/-curves transversally at only one point, and this is
a contradiction with the number of blow-ups from S .

Case Œ2; 5; 3�. Similarly, according to Corollaries 2.12 and 2.13, and Theorem 2.15
in [24], this can only happen as X ! S blow-up twice, where there is a .�1/-curve in X
intersecting once the .�2/-curve and once the .�5/-curve, disjoint from the .�3/-curve.
But then the .�3/-curve in S DDn;m intersects a nodal rational curve at one point. Then,
by using adjunction, we obtain that the only possible pair is .n; m/ D .2; 4/, where the
multiplicity 4 fiber is the I1 image under X ! S of the .�5/-curve.2

Say now that �.X/ D 0.
Let � W X ! S be the blow-down to an Enriques surface S . By Corollaries 2.12

and 2.13, and Theorem 2.15 in [24], we have that the exceptional divisor in X could
have at most five P 1’s. The case of five P 1’s was classified in Theorem 3.1 of [24], and it
gives precisely the cases (B6) and (B7) in the list above. Thus we now check case by case
when we have at most four P 1’s:

Case Œ4�. This case is impossible since X D S and KS � 0.
Case Œ5; 2�. We have that X ! S is the blow-up at one point. The .�1/-curve cannot

touch the .�2/-curve. The only possibility then is that it touches the .�5/-curve with
multiplicity 3.

Case Œ6; 2; 2�. Here X ! S contracts two .�1/-curves. One checks that a .�1/-curve
must be disjoint from the .�2/-curves. Since KS � 0, the only possible situation is to
have two disjoint .�1/-curves intersecting the .�6/-curve at two points each.

Case Œ2; 5; 3�. In this case, X ! S is blow-up twice. The .�1/-curve cannot touch the
.�2/-curve. Since we have a .�3/-curve in X , we need a .�1/-curve touching it once.
SinceKW is ample, it must intersect the .�5/-curve. It can only be at one point, and there
must exist another .�1/-curve intersecting the .�5/-curve with multiplicity 2.

For the next cases, it can only be the situation of a long diagram of type I or II. The
map X ! S is a blow-up three times.

Case Œ7; 2; 2; 2�. It is not possible, since we would have four blow-downs.
Case Œ2; 6; 2; 3�. There is a .�1/-curve intersecting the first .�2/-curve and the .�6/-

curve at one point each. After contracting it and the new .�1/-curve from the .�2/-curve,
we obtain a nodal rational curve with self-intersection �1. We still have a .�3/-curve, and
so a new .�1/-curve is needed intersecting it at one point, and also the nodal .�1/-curve.

2This was not considered in Theorem 3.2 of [24], but it is in the arXiv corrected version [25].
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Case Œ2; 2; 5; 4�. Long diagrams of type I or II here are not possible, just using that
KS � 0.

Case Œ3; 5; 3; 2�. Here the long diagram gives a .�1/-curve intersecting the .�2/-curve
and the .�5/-curve at one point each. After that, one can check that there must be a .�1/-
curve intersecting the first .�3/-curve with the .�5/-curve.

The existence of such surfaces will be proved in the next subsection.

Remark 2.2. For simply-connected Godeaux surfaces, the analogue non-rational list con-
tains only two possible surfaces: either a D2;3 with exc.�/ D Œ4�, or the blow-up at one
point of a D2;3 with exc.�/ D Œ5; 2� and a .�1/-curve intersecting the .�5/-curve with
multiplicity 2. Both are realizable (see e.g. Table in p. 666 of [29]), and give divisors in
the KSBA compactification of the moduli space.

Remark 2.3. It is not clear how to optimally bound Wahl singularities in rational sur-
faces. As far as we know, there is no written example of a rational degeneration W of
Z=2-Godeaux surfaces in the literature. (We believe they exist in the Coughlan family
of Z=2-Godeaux surfaces, but the computations involved in order to describe them are
terribly slow.) However, for simply-connected Godeaux surfaces there are many examples
(see e.g. Table in p. 666 of [29], where there are 30 examples). We note that in this rational
case, the index of the Wahl singularity for a Z=2-Godeaux degeneration must be even
because of Corollary 1.2.4 in [14].

2.2. Enriques double planes

The following construction of an Enriques surface as the smooth minimal model of a
double plane is well known, see e.g. [6], §IV.9.

Consider lines L1;L2 � P 2 meeting at a point p0; and take points p1 2 L1; p2 2 L2;

p1; p2 6D p0: Let B be a sextic plane curve with a node at p0; a tacnode at pi with
branches tangent to the line Li ; for i D 1; 2; and at most other negligible singularities.
Let � WX ! P 2 be the blow-up that resolves the singularities of the curve B C L1 C L2.
For i D 1; 2; let yLi be the strict transform of Li , and let E0; Ei ; E

0
i be the exceptional

curves such that the total transform of Li is E0 C yLi C 2E
0
i CEi (we have E2

i D �2 and
E 02i D �1). Let S 0 ! X be the double cover with branch curve

B WD yB C yL1 C yL2 CE1 CE2;

where yB is the strict transform of B: Let S be the minimal model of S 0; which is obtained
by contracting the four .�1/-curves that are the preimages of yL1 C yL2 C E1 C E2: The
surface S is an Enriques surface.

Consider the three Enriques surfaces corresponding to branch curves B � X as in
Figure 3, where from left to right we blow-up P 2 until we resolve the singularities of the
curve (dotted curves are not in the branch curve). Note that the existence of such curves
is not surprising, because we are imposing at most 20 conditions to a linear system of
dimension 27. We give explicit equations in an ancillary file in the arXiv version [10].

These smooth Enriques surfaces have a configuration of rational curves as in Figure 4,
with the correspondences
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Figure 3. Sextic curves and their resolution.

(i) T1  ! C CD; T2  ! B; T3  ! A;

(ii) T4  ! B; T5  ! A; T6  ! D; T7  ! C;

(iii) T8  ! B; T9  ! A; T10  ! C; T11  ! D:

2.3. Realizations of degenerations

In this section we discuss the realization of the possibilities in Theorem 2.1. We follow the
numeration in that theorem. We do not know about existence for the possibilities (A2) and
(A5). The case (A2) is included in the classification of degenerations of Godeaux surfaces
with one 1

4
.1; 1/ singularity in [16], but there was no construction (see [16], Remark 2.11).

Case (A1).
It can be realized using our equations of Coughlan’s family of surfaces. For the details,

see Section 4.2.
These degenerations are particularly interesting since we have the same Q-Gorenstein

degenerations via simply connected Godeaux surfaces (see e.g. [30], §5).

Case (A3).
This possibility can be realized using Example 1 in [17]. The singular surface W con-

structed for that example has 4 singularities: two Œ2; 3; 2; 4� and two Œ4�. It also has no
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local-to-global obstructions to deform, and it is proved that a Q-Gorenstein smoothing is
a Godeaux surface with �1 ' Z=2. We realize a surface in (A3) as the minimal resolution
of a Q-Gorenstein smoothing of all singularities in W except one Œ4�. To show that it is
indeed a D2;4 with a .�4/-curve inside, we use the explicit MMP in [15] (see also [30]).
We note that it is not a trivial computation since we have three possibilities forDn;m here.
At the end, it is a D2;4 because it comes from a Q-Gorenstein smoothing “over” a mul-
tiplicity 2 fiber for the singularity Œ4�. This example gives a divisor in the KSBA moduli
space, whose general member is a D2;4 with the .�4/-curve contracted.

Also, it can be realized explicitly using our equations of Coughlan’s family of surfaces.
For the details, see Section 4.1.

Case (A4).
Take again the singular surface W in Example 1 of [17], but now we Q-Gorenstein

smooth all singularities in W except one Œ2; 3; 2; 4�. By the explicit MMP in [15], we
obtain that the minimal resolution of Œ2; 3; 2; 4� is the blow-up of a D2;4 at one point,
where the .�1/-curve connects the .�3/-curve with the .�4/-curve. We recall that the
M -resolution of Œ2; 3; 2; 4� is the partial resolution Œ2; 5� � 1 � Œ2; 5� � 1 � Œ2; 5�, which
also has no-local-to-global obstructions. Then, we just keep one Œ2; 5� in a Q-Gorenstein,
smoothing all the rest to obtain the surface we are looking for. Its minimal resolution
corresponds to (A4). As in (A3), this example gives a divisor in the KSBA moduli space.

Figure 4. Key configurations of Enriques type.

Cases (B1) and (B4).
From Section 2.2, there exists an Enriques surface S which has the configuration of

smooth rational curves A; B; C; D shown in Figure 4, part (i). Let � WX ! S be the
blow-up of S five times, so that the configuration A; B; C; D is transformed into the
configuration in Figure 5, where the Ei are the ordered exceptional curves. Hence E2

1 D

E2
3 D �2, and E2

2 D E
2
4 D E

2
5 D �1.

We get Wahl chains ŒE1; B; C;D� D Œ2; 6; 2; 3� and ŒA; E3� D Œ5; 2�. Let � WX ! W

be the contraction of both of them. The normal projective surface W has two Wahl singu-
larities, 1

72 .1; 20/ and 1
32 .1; 2/. The canonical class KW is ample since ��.KW / can be

written Q-effectively using only curves in Figure 5, and so we check ampleness through
the intersections ��.KW /:Ei > 0 for i D 2; 4; 5.3

3We may find ADE configurations disjoint from A;B;C;D in S which would intersectKW trivially. If that
happens, one can always smooth them up so that K for the resulting surface is ample.
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Figure 5. The surface X for cases (B1) and (B4).

We now show that there are no local-to-global obstructions to deformW . For that it is
enough to show thatH 2.S;TS .� log.ACB CC CD///D 0, following the well-known
strategy from [19]. We will use the following lemma (see Section 3.1 in [24]).

Lemma 2.4. Let f WS 0 ! S be the étale double cover induced by the relation 2KS � 0.
Let �1; : : : ; �r be a simple normal crossings divisor in S . Then

f�

�
T NS

�
� log

�X
i

f ��i

���
D TS

�
� log

�X
i

�i

��
˚ TS

�
� log

�X
i

�i

��
.�KS /;

and so

H 0
�
S 0; �1

S 0

�
log

�X
i

f ��i

���
D H 2

�
S; TS

�
� log

�X
i

�i

���
˚H 0

�
S;�1

S

�
log

X
i

�i

��
:

In particular, if the curves ¹f �.�i /º
r
iD1 are numerically independent, then

H 0
�
S 0; �1

S 0

�
log

�X
i

f ��i

���
D 0;

and so H 2.S; TS .� log.
P

i �i /// D 0.

By Lemma 2.4, we only need to check that f �.ACB C C CD/ is a divisor suppor-
ted in numerically independent curves. For that we compute the corresponding intersec-
tion matrix and check that the determinant is not zero. Then we have no local-to-global
obstructions, and we consider a Q-Gorenstein smoothing of W . Since we have E2 ' P 1

connecting the ends of the Wahl chains and the indices of the singularities are coprime,
we obtain that the general fiber has fundamental group isomorphic to Z=2. One also has
K2

W D 1, and pg D q D 0, and so we have Z=2-Godeaux surfaces as general fibers.
To obtain examples of types (B1) and (B4), we consider the minimal resolution of the

partial Q-Gorenstein smoothing of Œ2; 6; 2; 3� or Œ5; 2�, respectively. To check that they
are indeed blow-ups of Enriques surfaces, we run the explicit MMP in [15]. For each of
the singularities, we obtain a divisor in the KSBA compactification of the moduli space of
Z=2-Godeaux surfaces. Both of these examples are new in the literature.
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Cases (B2) and (B5).
From Section 2.2, there exists an Enriques surface S which has the configuration of

smooth rational curves A;B;C;D shown in Figure 4, part (ii).

Figure 6. The surface X for cases (B2) and (B5).

Let � WX ! S be the blow-up of S six times, so that the configuration A; B; C; D
is transformed into the configuration in Figure 6, where the Ei are the ordered excep-
tional curves. Hence E2

3 D �3, E2
1 D E2

4 D �2, and E2
2 D E2

5 D E2
6 D �1. We get

Wahl chains ŒE1; A; B; E3� D Œ2; 3; 5; 3� and ŒE4; D; C � D Œ2; 5; 3�. Let � WX ! W be
the contraction of both of them. The normal projective surface W has two Wahl singu-
larities, 1

82 .1; 23/ and 1
52 .1; 9/. The canonical class KW is ample since ��.KW / can be

written Q-effectively using only curves in Figure 6, and so we check ampleness through
the intersections ��.KW /:Ei > 0 for i D 2; 5; 6. 4

We now show that there are no local-to-global obstructions to deform W . As done
above, for that it is enough to show that H 2.S; TS .� log.AC B C C CD/// D 0. We
use again Lemma 2.4, and so we only need to check that f �.A C B C C C D/ is a
divisor supported in numerically independent curves. For that we compute the corres-
ponding intersection matrix and check that the determinant is not zero. Then we have no
local-to-global obstructions, and we consider a Q-Gorenstein smoothing of W . Since we
have E5 ' P 1 connecting the ends of the Wahl chains and the indices of the singularities
are coprime, we obtain that the general fiber has fundamental group isomorphic to Z=2.
One also hasK2

W D 1, and pg D q D 0, and so we have Z=2-Godeaux surfaces as general
fibers.

To obtain examples of types (B2) and (B5), we consider the minimal resolution of the
partial Q-Gorenstein smoothing of Œ2; 3; 5; 3� or Œ2; 5; 3�, respectively. To check that they
are indeed blow-ups of Enriques surfaces, we run the explicit MMP in [15]. For each of
the singularities, we obtain a divisor in the KSBA compactification of the moduli space of
Z=2-Godeaux surfaces. Both of these examples are new in the literature.

Cases (B3) and (B7).
As in the previous examples, we first construct an Enriques surface S which has the

configuration of smooth rational curves A;B; C;D shown in Figure 4, part (iii), see Sec-
tion 2.2.

Let � WX ! S be the blow-up of S seven times, so that the configuration A;B; C;D
is transformed into the configuration in Figure 7, where theEi are the ordered exceptional
curves. Hence E2

1 D E
2
2 D E

2
4 D E

2
5 D �2, and E2

3 D E
2
6 D E

2
7 D �1. We get Wahl

4Just as in the previous example, zero curves for KW do not matter.
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Figure 7. The surface X for cases (B3) and (B7).

chains ŒE2; E1; A� D Œ2; 2; 6� and ŒE5; E4; B; C;D� D Œ2; 2; 6; 2; 4�. Let � WX ! W be
the contraction of both of them. The normal projective surface W has two Wahl singu-
larities, 1

42 .1; 3/ and 1
102 .1; 29/. The canonical class KW is ample since ��.KW / can be

written Q-effectively using only curves in Figure 6, and so we check ampleness through
the intersections ��.KW /:Ei > 0 for i D 3; 6; 7. The rest of the arguments are analogous
to those given in the last two examples, except for the computation of the obstruction.
Lemma 2.4 is used in a different way. One can prove that on the K3 surface S 0 we have
H 0.S 0; �1

S 0.log.
P

i f
��i /// D 1, but at the same time H 0.S; �1

S .log.
P

i �i /// D 1,
and so H 2.S; TS .� log.

P
i �i /// D 0. (It is the same argument as in case (B) of Sec-

tion 3.1 in [24].
For each of the singularities, we obtain a divisor in the KSBA compactification of the

moduli space of Z=2-Godeaux surfaces. The one for Œ6; 2; 2� is new in the literature, the
other one is in Section 3.1 (B) of [24].

Case (B6).
There is an example of this case in Section 3.1 (C) of [24]. It gives also a boundary

divisor in the KSBA compactification of the moduli space of Z=2-Godeaux surfaces. This
case together with (B7) achieve the optimal upper bound for lengths of Wahl singularities
in stable surfaces (see Theorem 3.1 in [24]).

Remark 2.5. Going beyond Wahl singularities, one can show existence of KSBA surfaces
with one strictly log canonical singularity which produces a divisor in the KSBA bound-
ary of the moduli space of Z=2-Godeaux surfaces. The singularity is the elliptic quotient
singularity Œ4; 2; 4I 3� (see notation in [29]). For the construction, we start with the config-
uration of four curves in Figure 4, part (ii). By blowing-up both intersections between the
curves C and D, and blowing-up twice at one of the intersections between the curves A
and B , we obtain the configurations Œ4� (from C ) and Œ4; 2; 4I3�. As we already have seen,
there are no local-to-global obstructions, and the same strategy we have used works in
this setting (see [29]) to Q-Gorenstein smooth these singularities independently. One can
check that we have ample canonical class for the general such Enriques surface, and that
K2 D 1. Hence the Q-Gorenstein smoothing of Œ4� keeping the singularity Œ4; 2; 4I 3� is a
KSBA surface in the moduli space of Godeaux surfaces. The fundamental group can be
computed following the strategy in [29], it is Z=2.



On degenerations of Z=2-Godeaux surfaces 1411

3. Coughlan’s family

Stephen Coughlan [7] has given the construction of an irreducible family of simply con-
nected surfaces Y with invariants pg D 1, q D 0, K2 D 2 having a free action of Z=2,
thus producing a family of Z=2-Godeaux surfaces Y=.Z=2/. Here we go over his con-
struction and implement it in order to get explicit equations for the family. This task is
computationally demanding and some workarounds are needed in order to succeed.

In Section 3.1, we give an overall resume of the method used in [7]. In Section 3.2, we
follow the method described in [28] to obtain explicit equations for the surfaces Y . The
corresponding computations are implemented with Magma [3], version V2.25-2, and are
available as ancillary files in the arXiv version [10].

As a conclusion of this construction, we find out that one of the 8 parameters of Cough-
lan’s family is redundant, so his model depends on 7 parameters, see Section 3.3.

We show in Section 3.4 that the étale coverings of Coughlan’s surfaces belong to the
16-dimensional component ME described in §5 of [4], thus their topological fundamental
group is Z=2:

3.1. Extending hyperelliptic K3 surfaces

The description of a canonical ring for Y is based on a diagram

W 06;6 � P .1; 23; 32/ W � P .1; 24; 34; 4/
projoo Y � P .1; 23; 34; 4/oo

T 06;6 � P .23; 32/

OO

T � P .24; 34; 4/
projoo

OO

D � P .23; 34; 4/;oo

OO

where the ‘proj’ lines represent projections and the others are inclusions as hyperplane
sections (of the correct degree), and the varieties involved are defined below.

In [27], p. 72, Reid has attempted the description of the canonical ring of Y by extend-
ing the ring of its canonical curve D. Due to computational limitations, this attempt was
unsuccessful. Instead of trying to compute the extension of such a high-codimensional
ideal by a variable of degree 1, Coughlan uses simpler extensions followed by projec-
tions. This makes the varieties manageable as we will describe here.

The curve D � Y is a hyperelliptic canonical curve section in jKY j and its projective
model is explicitly given in [7], §2. It has a simple description as given by the 2� 2minors
of a 4 � 4 matrix.

In [7], §3, it is described a hyperellipticK3 surface T containingD, i.e., aK3 surface
polarised by an ample line bundle L such that the complete linear system jLj contains
the hyperelliptic curve D. In such case, L determines a double cover � W T ! Q � P 3,
where Q is a quadric surface, branched on a curve C 2 j � 2KQj. Identifying Q with
P 1 � P 1, the branch locus C is of bidegree .4; 4/. Assuming that it splits as C1 C C2, of
bidegree .1; 3/ and .3; 1/ respectively, the surface T has 10 nodes.

Blowing up one of the nodes in C1 C C2, P 2Q, we get a double cover zT ! BlP Q,
with an exceptional divisor E Š P 1. Contracting the two .�1/–curves on BlP Q arising
from the rulings of Q, we get a double cover T 0 ! P 2 branched over two nodal cubics.

The procedure above can be seen as a projection from the point P .
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Proposition 3.1 ([7], Proposition 3.3). The projection from the nodeP 2 T �P .24; 34; 4/

gives a complete intersection

T 06;6 � P .23; 32/ D Proj.CŒy1; y2; y3; z1; z2�/

of the type

z2
1 � y1f

2
C .l1f C l2y2 C l3g/y

2
2 C l4fgy2 D 0;

z2
2 � y3g

2
C .m1f Cm2y2 Cm3g/y

2
2 Cm4fgy2 D 0;

where
f D y1 C ˛y3; g D ˇy1 C y3

and ˛; ˇ; li ; mj are constants. The image of the exceptional curve E is the line ¹y2 D 0º.

The involution in T 06;6 is given by

y1 7! y3; y2 7! �y2; y3 7! y1; z1 7! z2; z2 7! z1;

so from here on we will only consider the parameters ¹˛; l1; : : : ; l4º as we set

ˇ D ˛; .m1; m2; m3; m4/ D .l3;�l2; l1;�l4/:

The reverse procedure is an unprojection of type IV (see [28]). To do so one uses a
parametrization

' W P 1.u; v/ ,! ¹y2 D 0º \ T
0
6;6;

whose image is a genus 2 curve which is a double cover of the image of the exceptional
divisor E. The map is defined as

.u; v/ 7! .u2; 0; v2; u.u2
C ˛v2/; v.˛u2

C v2//:

Now we explicitly describe a 3-fold W 06;6, projection of a 3-fold W , by extending the
map ' to a map ˆ WP 2.x; u; v/! P .1; 23; 32/ such that '.u; v/ D ˆ.0; u; v/. We start
by describing this extension in full generality, as done in �4 of [7], i.e., extending ' to a
map ẑ WP 5.x1; x2; x3; x4; u; v/! P .14; 23; 32/ as

ẑ�.xi /D xi ; ẑ�.y1/D u
2
C 2x1v; ẑ�.y2/D x2uC x3v; ẑ�.y3/D v

2
C 2x4u:

Then, to defineˆWP 2.x; u; v/! P .1; 23; 32/ keeping the involution, we get x1 D x4 and
x2 D �x3. Setting x D x1 and x2 D lx for a constant l , the map ˆ can be written as

ˆ�.x/ D x; ˆ�.y1/ D u
2
C 2xv; ˆ�.y2/ D lx.u � v/; ˆ�.y3/ D v

2
C 2xu:

We can remove the parameter l by using the change of variable y2 7! ly2, i.e., we can
consider

ˆ�.y2/ D x.u � v/:

Remark 3.2. It is this change of variable, that was not used by Coughlan, that allows us
to say that the family is at most 7-dimensional. (By computing the equations without that
change of variable, and then taking l D 0, we have checked that the particular case l D 0
gives degenerate surfaces. Thus we can assume l ¤ 0.)
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By Theorem 4.2 in [7],

ˆ�.z1/ D u.f C ˛.1C ˛/x
2/C .1 � ˛2/xuv � ˛.1 � ˛2/x2v;

ˆ�.z2/ D v.g C ˛.1C ˛/x
2/C .1 � ˛2/xuv � ˛.1 � ˛2/x2u:

We have then that CŒx; u; v�=CŒˆ�.x/; ˆ�.yi /; ˆ
�.zj /�, as a module over the ring

CŒˆ�.x/;ˆ�.yi /;ˆ
�.zj /�, is generated by ¹1;u; v; uvº. In the next section we extend the

surface T 06;6 toW 06;6, a Fano 3-fold of index 1, and use unprojection methods to determine
the 3-fold W .

3.2. Type IV unprojection

LetRDCŒx;y1;y2;y3; z1; z2� be the homogeneous coordinate ring of P .1;23; 32/ and let
C.�/ D R=I� , where � is the image of ˆ. By construction, the normalisation of C.�/ is
theR-module CŒx;u;v�. Notice that CŒx;u;v�, asR-module, is generated by ¹1;u;v;uvº.
Furthermore, using the embedding ˆ� to define the multiplication by elements of R, one
can write the relations between these generators. For y2 one has

y2 � 1 D xu � xv;

y2 � u D xu
2
� xuv D x.y1 � 2xv/ � xuv D xy1 � 2x

2v � xuv;

y2 � v D xuv � xv
2
D xuv � x.y3 � 2xu/ D �xy3 C 2x

2v C xuv;

y2 � uv D x.u
2v � uv2/ D x..y1 � 2xv/v � u.y3 � 2xu//

D x..y1v � y3u/ � 2x.v
2
� u2//

D x..y1v � y3u/ � 2x.y3 � 2xu � y1 C 2xv//

D 2x2.y1 � y3/ � .xy3 � 4x
3/uC .xy1 � 4x

3/v:

Doing the same for z1 and z2, one can write the relations in matrix form as

. 1 u v uv /B D 0;

where B is a 4 � 12 matrix with entries in R that can be written as . By2 Bz1 Bz2 /,
where By2 ; Bz1 ; Bz2 are, respectively,0BB@
�y2 xy1 �xy3 2x2.y1 � y3/

x �y2 2x2 �xy3 C 4x
3

�x �2x2 �y2 xy1 � 4x
3

0 �x x �y2

1CCA ;
0BB@

z1 2s3xy3 � y1.f Cs1/ s2y3 C 2s3xy1 2.f C s1/xy3 C 2s2xy1 � s3y1y3

�.f Cs1/ z1 � 4s3x
2 2xs2 � y3s3 2s3xy1 � 4.f Cs1/x

2 � s2y3

�s2 2.f Cs1/x � s3y1 z1 � 4s3x
2 2s3xy3 � 4s2x

2 � .f Cs1/y1

�s3 �s2 �.f Cs1/ z1 � 4s3x
2

1CCA;
0BB@

z2 2s3xy3 � y1s2 2s3xy1 � .gCs1/y3 2.gCs1/xy1 � s3y1y3 C 2s2xy3

�s2 z2 � 4s3x
2 2.gCs1/x � s3y3 2s3y1x � .gCs1/y3 � 4s2x

2

�.gCs1/ 2s2x � s3y1 z2 � 4s3x
2 2s3xy3 � s2y1 � 4.gCs1/x

2

�s3 �.gCs1/ �s2 z2 � 4s3x
2

1CCA ;
and s1 D ˛.1C ˛/x2, s2 D �˛.1 � ˛2/x2, s3 D .1 � ˛2/x.
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The matrix By2 is similar to one appearing in §4 of [7] (being the last column the
only difference). This matrix has the advantage that, by direct computation, these three
matrices commute. One can then write the resolution of CŒx;u;v� as the Koszul resolution
of a complete intersection, i.e.,

CŒx; u; v� P0

p1
 � P1

p2
 � P2

p3
 � P3  0;

where p2 and p3 are given by the matrices0@ 0 Bz2 �Bz1

�Bz2 0 By2

Bz1 �By2 0

1A and

0@ By2

Bz1

Bz2

1A ;
respectively, and

P0 D R˚R.�1/
˚2
˚R.�2/;

P1 D R.�2/˚R.�3/
˚2
˚R.�4/˚

�
R.�3/˚R.�4/˚2

˚R.�5/
�˚2

;

P2 D R.�6/˚R.�7/
˚2
˚R.�8/˚

�
R.�5/˚R.�6/˚2

˚R.�7/
�˚2

;

P3 D R.�8/˚R.�9/
˚2
˚R.�10/:

To determine the image of C.�/ in P .1; 23; 32/, one projects the graph ofˆ contained
in P .u; v; x/ � P .1; 23; 32/ into P .1; 23; 32/. Algebraically, this is just the elimination of
the variables ¹u; vº of the ideal I� generated by

x �ˆ�.x/; yi �ˆ
�.yi / and zj �ˆ

�.zj /:

Computationally, such elimination turned out difficult to execute. We have succeeded only
by using the software Singular with the negative degree reverse lexicographical monomial
ordering (ds). In degree 6 we obtain six generators, C1; C2; Q1; Q2; Q3; Q4, which are
the deformations of the polynomials

zC1 D z
2
1 � y1f

2; zC2 D z
2
2 � y3g

2; zQ1 D fy
2
2 ;
zQ2 D y

3
2 ;
zQ3 D gy

2
2 ;
zQ4 D fgy2:

Although the above ordering is a local one, one can check that those polynomials are still
in the ideal I� .

We note that these 6 polynomials were also determined in Corollary 4.3 of [7]. Our
approach is the one described in [28].

The 3-fold W 06;6 is given by the vanishing of the polynomials

F WD C1 C l1Q1 C l2Q2 C l3Q3 C l4Q4;

G WD C2 C l3Q1 � l2Q2 C l1Q3 � l4Q4:
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To find the unprojection variables, we need the maps between the R resolutions of
C.W 06;6/ and CŒu; v; x�:

C.W 06;6/� _

��

Roo R.�6/˚2oo

��

R.�12/oo 0oo

C.�/� _

��

Roo � _

��

K1
oo

��

� � �oo

CŒu; v; x� P0
oo P1

oo P2
oo P3

oo 0;oo

where the free module K1 contains R.�6/˚6 as a direct summand corresponding to the
six generators of I� , .C1; C2;Q1;Q2;Q3;Q4/. The down arrow R.�6/˚2 ! K1 is a
matrix with the following first columns:�

1 0 l1 l2 l3 l4
0 1 l3 �l2 l1 �l4

�t

:

The second down arrow,K1! L1, expresses the generators ofK1 as linear combinations
of the columns of B . Composing the maps we get the following diagram:

C.W 06;6/ Roo � _

��

R.�6/˚2oo

N1

��

R.�12/oo

N2

��

0oo

CŒu; v; x� P0
oo P1

oo P2
oo P3

p3oo 0:oo

Heavy computations are needed in order to compute the maps N1 and N2; we give the
details in an appendix, available as an ancillary file in the arXiv version [10], containing
also the correspondent Magma computations. The main idea is as follows.

Let p be a matrix and H be a vector, both with entries in a multivariate polynomial
ring. One can use the Magma function ‘Solution’ to compute N such that pN D H: But
in the case we are interested in, this computation finishes only if we fix the parameter ˛:
So we define a Magma function that does it several times by evaluating ˛ at a list pts of
points, then we use these data to recover the coefficients of the computed polynomials as
polynomials on the parameter ˛.

Since we are fixing one of the parameters, it can happen that this value appears in some
denominator of a rational coefficient of the solution. To overcome this, we have included
an input polynomial ‘correction’: after each computation of N for ˛ D ˛0 2 pts; the
solution is multiplied by that polynomial evaluated at ˛0.

Having the matrix N2; one can write the linear equations of the unprojection of �
in W 06;6. The method is similar to the unprojection of type I. As � is a codimension 1
subscheme of W 06;6, using the adjunction formula one has

(3.1) 0 � !�  � Hom OW 06;6

.I� ; !W 06;6
/ � !W 06;6

 � 0:
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As C.�/ ,! CŒu; v� is an isomorphism outside the origin, the dualising module satis-
fies !� D !CŒx;u;v� Š CŒx; u; v�. On the other hand, as a module over OW 06;6

, or over R,
it needs four generators, ¹1; u; v; uvº.

The coordinate ring of the unprojected variety is obtained from C.W 06;6/ by adjoining
rational functions ¹y4; z3; z4; tºwith poles along � . These can be seen as homomorphisms
in Hom OW 06;6

.I� ; !W 06;6
/.

The variable y4 is the rational form that maps to a basis of !�.3/ŠO� DOP2 . Notice
that !W 06;6

Š OW 06;6
.�1/ hence, using sequence (3.1), we get that deg.y4/ D 2. Denoting

by z3, z4 and t the forms that map to u, v and uv, respectively, we get deg.zi / D 3 and
deg.t/ D 4.

The linear relations between y4; z3; z4; t are given as in a type I unprojection. Each of
them corresponds to a generator of P3 and is mapped by p3 to the image of N2, i.e.,

p3

0BB@
t

z4

z3

y4

1CCA D N2:

We have now to determine the quadratic relations between the unprojection variables
¹z3; z4; tº. Notice that the extension C.W 06;6/�C.W / can be seen as the normalisation of
the ring C.W 06;6/Œy4� or, as in some sense z3; z4; t correspond to uy4; vy4; uvy4, respect-
ively, there must be relations of the form

z2
3 � y1y

2
4 C 2xy4 z4; z3 z4 � y4 t; z

2
4 � y3y

2
4 C 2xy4 z3 2 hmon. of degree 6i;

z3 t � y1y4 z4 C 2x z
2
4 ; z4 t � y3y4 z3 C 2x z

2
3 2 hmon. of degree 7i;

t2 � y1y3y
2
4 C 2x .y1y4 z3 C y3y4 z4/ � 4x

2y4 t 2 hmon. of degree 8i;

where the monomials on the right-hand side are linear in the unprojection variables.
We will find these relations as equations f D 0, with xf or y2f contained in the

ideal generated by the linear equations F1; : : : ; F14. The detailed Magma computation
is given in the appendix referred above; the idea is as follows. Let Gi ; Hi be such that
Fi D xGi C Hi : A polynomial

P
ciFi is divisible by x if

P
ciHi D 0: In order to

find such coefficients ci ; it suffices to compute the syzygy matrix of the sequence E WD
ŒE1; : : : ;E14� obtained by evaluating the equationsHi at x D 0: But our computer cannot
finish this, so we replace the parameters ˛; lj appearing in the Ei by some distinct prime
numbers. In this way we can compute the syzygy matrix, obtaining a list of relations of
the type

c1E1 C � � � C c14E14 D 0:

Each ci is a polynomial in the variables y1; y2; y3; z1; z2; z3; z4; t; with coefficients in Q:
We want to recover these coefficients as polynomials in ˛; lj : For that aim, we replace
each coefficient by a new variable, obtaining a linear system (with a lot of variables) that
we can solve (in fact the computations turned out to be simple, except for one of the
polynomials).

Remark 3.3. On the unprojection method, to describe W no new parameters were used,
so they are the parameters describing W 06;6, i.e., ¹˛; l1; l2; l3; l4º.
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Remark 3.4. The bicanonical image of a general surface Y is an octic in P 3, see [4]. We
have computed the family of these octics for Coughlan’s family of surfaces by eliminating
the variables z1; : : : ; z4; t from the equations. This octic polynomial is given in an ancillary
arXiv file in the arXiv version [10].

3.3. Description of Y and parameter counting

Proposition 3.5. The Coughlan family of Godeaux surfaces with �1 D Z=2, where
each X is obtained as a Z=2 quotient of a hyperelliptic surface Y such that K2 D 2,
pg D 1 and q D 0, is determined by 7 parameters.

Proof. We have a hyperelliptic tower D � T � W , and in Section 3.2 we described the
ring

R.W;�KW / D CŒx; y1; y2; y3; y4; z1; z2; z3; z4; t �=I:

Furthermore, we have an involution � WW ! W whose action on P .1; 24; 34; 4/ has the
following eigenspaces:

n H 0.W;�nKW /
C H 0.W;�nKW /

�

1 x

2 y1 C y3 y1 � y3; y2; y4

3 z1 � z2; z3 C z4 z1 C z2; z3 � z4

4 t

A model for the canonical ring of the surfaces Y is then given by

R.Y;KY / D R.W;�KW /=.H
�
2 /;

whereH�2 is a hyperplane of degree 2 that is � -anti-invariant. By construction,W depends
on the parameters ¹˛; l1; : : : ; l4º. As dim

�
P .H 0.W;�2KW /

�/
�
D 2, we get a total of 7

parameters. In this way, there is a redundant parameter in Theorem 1 of [7].

Remark 3.6. The counting could have been done in a different way. In the description
of T 06;6, we get the variables y1; y3 fixed. On the other hand, y2 is only defined as the
variable such that ¹y2 D 0º is the line that goes through the nodes of the two plane cubics,
hence we are free to re-scale y2 at will. With this is mind, one can remove one of the
parameters l1; : : : ; l4 and see that T 06;6 depends on 4 parameters. Doing so, one gets one
parameter for the extension proving that for eachK3we have a set of 3-folds parametrized
by a single parameter.

3.4. Families of universal covers of Z=2-Godeaux surfaces

Let M be the moduli space of simply connected surfaces with pg D 1; q D 0 andK2 D 2,
and let M1 be the subvariety corresponding to surfaces with bicanonical map of degree 4
onto a smooth quadric surface in P 3: Catanese and Debarre [4] have shown that there is a
unique 16-dimensional irreducible component ME �M which contains M1:

Proposition 3.7. Coughlan’s family of surfaces with pg D 1; q D 0 and K2 D 2 is
contained in ME (thus the topological fundamental group of Coughlan’s Z=2-Godeaux
surfaces is indeed Z=2/.
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Proof. The smooth K3 surfaces T are flat deformations of the canonical curve D � Y
by a regular element y4 of degree 2. Furthermore, by construction, these surfaces project
into the hyperplane

¹.y1 C ˛y3/.˛y1 C y3/ � y2y4 D 0º:

With the change of variable y4 D x
2, one gets a component of the flat extensions ofD

by a variable of degree 1, i.e., surfaces with the invariants K2 D 2; pg D 1; q D 0. These
surfaces project into the smooth quadric

¹.y1 C ˛y3/.˛y1 C y3/ � x
2y2 D 0º � P 2.1; 2; 2; 2/:

To see this family, one neglects the extension of the embedding 'W P .u; v/ ! T 06;6

to ẑ WP .x; u; v/! W 06;6. Or, in other words, one sets all the parameters describing such
extension to be zero.

To be more specific, recall that the extension of the embedding (for the non-involution
case) is defined as

ẑ�.xi / D xi ; ẑ
�.y1/ D u

2
C 2x1v; ẑ

�.y2/ D x2uC x3v; ẑ
�.y3/ D v

2
C 2x4u:

Setting each xi D aix, where each ai is a parameter, the Coughlan family is unirational,
and it is parametrized by ¹˛;ˇ; li ;mi ; ai ; ciº, where the ci are the parameters defining the
hyperplane

¹y4 � c0x
2
� c1y1 � c2y2 � c3y3 D 0º:

Then any member of Coughlan’s family can be deformed to a surface in M1 by linearly
mapping ai 7! 0 and .c0; c1; c2; c3/ 7! .1; 0; 0; 0/:

Remark 3.8. There exists an 8-dimensional family M of Z=2-Godeaux surfaces whose
universal covers live in a 16-dimensional family, so that an 8-dimensional subvariety of
this family parametrizes surfaces with a Z=2 free action whose quotients give back M.
To see this, we consider the example W of type B6 constructed in §3.1 (C) of [24]. It has
one Wahl singularity Œ2; 2; 3; 5; 4�, and it has no-local-to-global obstructions to deform.
Q-Gorenstein smoothings of W produce an 8-dimensional family of Godeaux surfaces
with fundamental group Z=2.

To prove unobstructedness, we show (see Lemma 2.4) that the étale double cover W 0

of W induced by the étale double cover of the Enriques surface has also no-local-to-
global obstructions in deformation, and so it produces a 16-dimen-sional family of simply-
connected surfaces of general type with K2D2 and pgD1. Since Pic.W / � Pic.X/,
where X is a Q-Gorenstein smoothing of W , we have a lifting of the étale cover on a
subfamily of Y ’s (Q-Gorenstein smoothings of W 0). This is similar to the procedure used
in [21] for a branched double cover. In this way, we would expect that this 16-dimensional
family of simply connected surfaces is ME , where an 8-dimensional subfamily gives the
moduli space of Z=2-Godeaux surfaces. We leave it as an open question. (Of course, we
could have started with another Q-Gorenstein degeneration.)
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4. Degenerations from Coughlan’s family

The computations below were implemented with Magma [3], version V2.25-2, and are
available as ancillary files in the arXiv version [10].

4.1. D2;4 elliptic surfaces

Denote by Y �P DP .1;2;2;2;3;3;3;3;4/ a surface in Coughlan’s family, whose general
element is the universal covering of a Z=2-Godeaux surface. Our computer experiments
over finite fields say that there are values of the parameters (˛; l1; l2; l3; l4; l5; l6) for
which the corresponding surface Y ,! P 7 (for a general Y this is the embedding by the
3-canonical map) splits as the union of a degree 16 surface Y 0 with two planes, and the
quotient of Y 0 by the “Godeaux” involution is a D2;4 elliptic surface. Those two planes
correspond to two base points of the map P ! P 7, and the coordinates of these points
satisfy x D z1 D z2 D z3 D z4 D t D 0.

Here we use this information to obtain a 6-dimensional family ofD2;4 elliptic surfaces
as quotients of a codimension 1 subset of Coughlan’s family of surfaces.

Step 1.
We load the 20 equations that define Coughlan’s family, evaluated at x D z1 D z2 D

z3 D z4 D t D 0. Then we impose y1 C y3 ¤ 0 and eliminate all variables except the
parameters. We get one single relation f D 0 on the parameters. Our goal is to show that
a random point in this set of parameters corresponds to a surface such that its quotient by
the “Godeaux” involution is a D2;4 elliptic surface with a .�4/-curve.

Step 2.
We take such a random surface, and we want to embed it into P 7 with coordinates

.X0; : : : ; X7/ D .x
3; xy1; xy2; xy3; z1; z2; z3; z4/. To achieve this, we have to eliminate

the variable t , but the computer cannot do it. We have done it “by hand”, obtaining a set of
equations that is not complete: for general values of the parameters we get a surface plus
the component X0 D 0: Removing this component, we get a surface Y 0:

To speed up the computations, we work over a finite field.

Remark 4.1. Working over a field of characteristic zero, we can compute the complement
of the canonical curve of Y 0 in its hyperplane X0 D 0, obtaining the union of two disjoint
rational curves. Moreover, these meet the canonical curve with multiplicity 2, hence are
.�4/-curves, and are identified by the fixed point free “Godeaux” involution. Thus it fol-
lows from Theorem 2.1 that the quotient of Y 0 by the involution is a D2;n elliptic surface.
We will show that nD 4 by computing, over a finite field, the elliptic fibres of multiplicit-
ies 2 and 4. This implies that n D 4 also over the base field C:

Step 3.
In order to compute the singular subscheme of Y 0, we need first to reduce the number

of its defining equations. We wrote an algorithm for that, which basically removes one
equation at a time. Then we verify that Y 0 is smooth.

Step 4.
We check that the “Godeaux” involution acts freely on Y 0.
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Step 5.
The hyperplane X0 D 0 cuts Y 0 at the union of the canonical divisor of Y 0 with two

disjoint .�4/-curves, which are identified by the “Godeaux” involution.

Step 6.
Some Magma functions give the invariants of Y 0.

Step 7.
Studying the equations of the pencil j2K 0Y j, we find elliptic curves D1 and D2 such

thatD1 � 2D2. We see that these two curves are fixed by the (fixed point free) “Godeaux”
involution. This shows that the quotient of Y 0 by the involution is a D2;4 elliptic surface
with one .�4/-curve.

4.2. D2;3 elliptic surfaces

Denote by Y an element of Coughlan’s family of surfaces, whose general surface is the
universal covering of a Z=2-Godeaux surface. Our computer experiments over finite fields
say that there are values of the parameters (˛; l1; l2; l3; l4; l5; l6) for which the surface
Y � P .1; 2; 2; 2; 3; 3; 3; 3; 4/ contains a node, which is the only point that is fixed by the
“Godeaux” involution. Moreover, the smooth minimal model of the quotient of Y by that
involution is a D2;3 elliptic surface. The coordinates of that point satisfy y2 D y3 � y1 D

z2 � z1 D z4 C z3 D 0.
Here we use this information to obtain a 6-dimensional family ofD2;3 elliptic surfaces

as quotients of a codimension 1 subset of Coughlan’s family of surfaces.

Step 1.
We load the 20 equations that define Coughlan’s family, and we impose y2 D 0, y3 D

y1, z2 D z1 z4 D �z3. Then we eliminate all variables except the parameters. (To speed
up computations, we fix the parameter ˛.) We obtain one single relation, which contains
the component l1 C l3 D 0 (which does not depend on ˛).

Step 2.
We pick an arbitrary surface on the family given by l1 C l3 D 0. We aim to show that

the resolution of its quotient by the “Godeaux” involution is indeed aD2;3 elliptic surface
with a .�4/-curve.

Step 3.
We check that the subscheme of Y that satisfies y2D y3 � y1D z2 � z1D z4C z3D 0

is a point, which is a node fixed by the involution. Thus it follows from Theorem 2.1 that
the quotient of Y by the involution is a D2;n elliptic surface. In order to speed up the
computations, from now on we work over a finite field. We will show that n D 3 by
computing the D2;3 surface and its double and triple fibres. This implies that n D 3 also
over the base field C:

Step 4.
We compute the linear system of the curves of degree 5 that contain the above fixed

point and are preserved by the “Godeaux” involution. This linear system defines a map
� WY ! P 10, which resolves the singularity of Y . We will show that it is of degree 2 onto
a D2;3 elliptic surface G with a .�4/-curve that is the image of the node of Y .
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Step 5.
The direct computation of �.Y / seems unattainable, so we compute the image of many

points and then the linear systems L2; L3 of hypersurfaces of degree 2, 3 through these
points. These cut out a surface G in P 10:

Step 6.
In order to show that G is smooth, and to avoid the computation of all 8 � 8 minors of

matrices of partial derivatives, we draw randomly such minors until they define an empty
subscheme of G.

Step 7.
Some Magma functions give the invariants of G.

Step 8.
The system 2KY is given by the pullback of 2KG C C; where C is the .�4/-curve

corresponding to the node of Y . This means that there exists an invariant bicanonical
curve through the node of Y . We show that its quotient in G is H WD F3 C C , where 3F3

is an elliptic fibre and C is a .�4/-curve.

Step 9.
We find the double elliptic fibre 2F2 by computing the unique element in jF3 CKG j.

Step 10.
Finally, we check that CF3 D 4 and that C is the image of the node of Y .
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