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Restriction estimates for hyperbolic paraboloids in higher
dimensions via bilinear estimates

Alex Barron

Abstract. Let H be a .d � 1/-dimensional hyperbolic paraboloid in Rd and let Ef
be the Fourier extension operator associated to H, with f supported in Bd�1.0; 2/.
We prove that kEf kLp.B.0;R// � C"R"kf kLp for all p � 2.d C 2/=d whenever
d=2�mC 1, wherem is the minimum between the number of positive and negative
principal curvatures of H. Bilinear restriction estimates for H proved by S. Lee and
Vargas play an important role in our argument.

1. Introduction

In this paper we study estimates for the operator

Ef .x; t/ D

Z
Rd�1

f .�/ e2�i.x��Ct.�
2
1C���C�

2
d�m�1

��2
d�m
��2

d�mC1
������2

d�1
// d�;

supp.f / � Bd�1.0; 2/:

This is the extension operator associated to the hyperbolic paraboloid

H D ¹� 2 Rd W �d D �
2
1 C �

2
2 C � � � C �

2
d�m�1 � �

2
d�m � � � � � �

2
d�1º:

We let M denote the .d � 1/ � .d � 1/ diagonal matrix with Mi i D 1 if i � d � 1 �m
and Mi i D �1 if i > d � 1 �m. Then the phase of Ef has the form

x � � C t .M� � �/; � 2 Rd�1:

We can assume that m � .d � 1/=2 since otherwise we can replace t by �t . Note that m
is the minimum between the number of positive and negative principal curvatures of H.

We will prove the following.

Theorem 1.1. Fix d � 4. Suppose f is supported in Bd�1.0; 2/ and fix R � 1 and " > 0.
If m � d=2 � 1 and p � 2.d C 2/=d , then

(1.1) kEf kLp.BR/ � C"R
"
kf kLp :
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When d is even, this result follows from work of Bourgain–Guth ([4]), see Remark 4.3.
By Tao’s "-removal argument ([17]), the theorem holds for p > 2.d C 2/=d with no loss
of R":

There is an alternative proof of Theorem 1.1 that can be found in the recent paper [12]
by Hickman and Iliopoulou, which is discussed further below. Indeed, in the cases where
m < d.d � 3/=2e, the estimates in [12], which generalize the polynomial partitioning
method of [10] and [11], are stronger than Theorem 1.1. The main novelty of our approach
will be the use of bilinear estimates of S. Lee and Vargas (see below) and an elementary
orthogonality estimate in place of k-linear restriction estimates [2] and the `2 decoupling
theorem of Bourgain and Demeter [3]. This gives a somewhat more elementary proof
of Theorem 1.1, which matches the best known restriction estimate for the hyperbolic
paraboloid in the case where d is odd and m � .d � 1/=2 � 1, and where d is even
and m D d=2 � 1. Moreover, it was previously unknown if the bilinear estimates we use
implied linear estimates in dimension d � 4. Some of the geometric observations we take
advantage of in our proof may also be useful for future work on restriction estimates for H,
in particular in the signature 0 case where d is odd and m D .d � 1/=2. In this case, the
Stein–Tomas theorem is the best known restriction estimate for H.

Related results in the literature

In the case d D 3, m D 1, Theorem 1.1 was proved independently by Vargas ([19])
and S. Lee ([14]) using a bilinear method. This was later improved by Cho and J. Lee
([6]), who adapted the polynomial partitioning method developed by Guth in [9] to show
that (1.1) holds for p > 3:25. In [15], Stovall proved certain endpoint cases when d D 3
that do not follow from arguments in [14] and [19]. See also the paper [13] by Kim. For
other recent progress on restriction estimates for perturbations of the hyperbolic para-
boloid in dimension 3, see the recent papers of Buschenhenke–Müller–Vargas [5] and
Guo–Oh [8].

When d � 4, the bilinear-to-linear reduction applied by Vargas and S. Lee breaks
down for reasons we discuss further in Section 3.1. Improved restriction estimates also do
not follow immediately from the techniques established by Guth in [10] to study elliptic
paraboloids in higher dimensions. Indeed, the transverse equidistribution estimates that
play a crucial role in Guth’s argument can fail for hyperbolic paraboloids in certain cases
(see Example 8.8 in [11]). For related reasons, the Bourgain–Guth method developed in [4]
also does not easily adapt to hyperbolic paraboloids in the case where d � 5 is odd,
although if d is even then the estimate in Theorem 1.1 follows from their more general
estimates for Hörmander-type operators (see Remark 4.3)

As mentioned above, Hickman and Iliopoulou [12] have recently extended the poly-
nomial partitioning method developed by Guth in [10] and by Guth, Hickman, and Ili-
opoulou in [11] to the hyperbolic case. The key new ingredient is the introduction of
certain weakened transverse equidistribution estimates. These estimates, which describe
the extent to which Ef can concentrate along the neighborhood of a lower-dimensional
variety, get worse as the parameter m increases but are still strong enough to obtain
improved restriction bounds when m is not too large.

Certain sharp fractal estimates for Ef have also been recently obtained by the author,
Erdoğan, and Harris in [1]. These estimates extend the fractal restriction argument of Du
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and Zhang [7] to the hyperbolic case. A weighted version of the bilinear argument in this
paper plays a key role in the proof of some of the sharp results in the main theorem in [1].

Overview of the paper

The main goal for this paper is to prove Theorem 1.1 using the bilinear restriction estim-
ates proved by S. Lee and Vargas, stated precisely in Theorem 3.1 in Section 3 below. It
was previously unknown if these bilinear estimates could be used to prove linear estim-
ates in the range p � 2.d C 2/=d , due to a number of geometric obstructions that arise
when trying to apply the usual bilinear-to-linear method in dimension d � 4. Our argu-
ment will follow a broad-narrow scheme adapted from [4], [7], [10]. This broad-narrow
analysis allows us to use the estimates of S. Lee and Vargas except in certain exceptional
cases which we analyze in Section 3. The main idea is the following: if �1 and �2 are two
caps in the support of f and we do not have a favorable estimate for Ef�1Ef�2 ; then �1
and �2 must be arranged in a neighborhood of a hyperbolic cone Cm. If we can find no
pairs .�1; �2/ for which bilinear estimates apply then the geometry of Cm forces the caps
to in fact be contained in a neighborhood of an m-dimensional plane; we can then treat
this scenario using a ‘narrow’ flat decoupling argument and induction on the scale, at least
when m � d=2 � 1. In the special case where d is odd and m D .d � 1/=2 our method
breaks down since the induction no longer closes. Note however that we always have
m � .d � 1/=2.

We review some basic tools that we will use frequently in Section 2. In Section 3 we
discuss some more history and background surrounding bilinear restriction estimates. The
key lemma describing how bilinear estimates forEf can fail is then proved in Section 3.3.
Finally, in Section 4 we carry out the broad-narrow argument to complete the proof of
Theorem 1.1. Some remarks about the failure of our argument in the case where d is odd
and m D .d � 1/=2 can be found at the end of Section 4.

Notation

We will write A . B if there is some constant c > 0 depending only on the dimension and
various Lebesgue exponents such that A� cB . If A. B and B . A we also write A� B .
Our uniform constants may also vary from line-to-line, which is allowed since they will
remain independent of R. We will also write A / B to signify that for each " > 0 there is
some C."/ such thatA�C."/R"B . Finally, we will writeA�B ifA=B! 0 asR!1.

Let Br be a ball of radius r in Rd and let Br�1 denote a ball centered at the origin
in Rd of radius r�1. We let wBr be a smooth weight adapted to Br in the following sense:
wBr .x; t/ decays rapidly for .x; t/ … Br , and bwBr is supported in a fixed dilate of Br�1 .
Note that we can construct wBr by taking a bump function w adapted to the unit ball such
that

jw.x/j .
1

.1C jxj/1000d

and then applying a suitable affine transformation.
If S is a ball or rectangle in Rd�1, we let fS D f � �S ; where �S is a smooth bump

function supported in a small dilate of S with �S .�/ D 1 when � 2 S . If M is a smooth
manifold and � > 0, we will let N�.M/ denote the �-neighborhood of M.
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2. Basic tools

In this section we review some basic tools we will use throughout the proof of The-
orem 1.1. Below we will always assume that the support of f is contained in Bd�1.0; 2/.

2.1. Wave packet decomposition and parabolic rescaling

We first recall the standard wave packet decomposition for Ef (see for example [6], [10],
[14], or [19]). Fix � 2 .0; 1/ and suppose ¹�º is a collection of finitely-overlapping balls of
radius � that cover the support of f . We will refer to these � as �-caps. Using a partition
of unity we may decompose f D

P
� f� , with f� supported in a small dilate of � . Then

Ef D
P
� Ef� . We let

G.�/ WD
.2�1; : : : ; 2�d�m�1;�2�d�m; : : : ;�2�d�1;�1/

j.2�1; : : : ; 2�d�m�1;�2�d�m; : : : ;�2�d�1;�1/j

when � is the center of � , so G.�/ is the unit normal direction to H above the center of � .
If T� is any tube in Rd of dimensions

��1 � � � � � ��1 � ��2

with long direction G.�/, then Ef� is essentially constant on T� .
We also recall that Ef is invariant under parabolic rescalings in the following way.

Proposition 2.1. Fix R > 1 and let BR D Bd .0; R/. Also fix � 2 .0; 1/ with ��1 < R:
Then for any �-cap � one can find a function g supported in Bd�1.0; 2/ such that

kgkLp D �
�.d�1/=p

kf�kLp

and
kEf�kLp.BR/ � �

.d�1/�.dC1/=p
kEgkLp.B�R/:

To prove the proposition, one can use modulation invariance of Ef� to reduce to the
case where � is centered at the origin, and then rescale .x; t/! .��1 Nx; ��2 Nt /:

The operator Ef has other scaling symmetries that differ from parabolic rescaling,
although we will make no use of these symmetries in our arguments. Note, however, that
the proof of Theorem 1.1 in the case d D 3 due to S. Lee and Vargas ([14], [19]) does
exploit these extra symmetries. The same is also true of the Bourgain–Guth proof of the
case d D 3 (see Remark 4.3 below), along with the improved estimate when d D 3 due
to Cho and J. Lee in [6].

2.2. Flat decoupling and induction on scales

Decoupling allows us to separate the contribution from different wave packets Ef� . This
is useful in the ‘narrow case’ below when we cannot use bilinear restriction estimates.
The strongest possible decoupling result for the hyperbolic paraboloid has been proved by
Bourgain and Demeter ([3]), though we will not need to use their theorem. Instead it will
suffice to use the following more elementary ‘flat decoupling’ result, which follows easily
from orthogonality considerations.
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Proposition 2.2 (Flat decoupling). Suppose that T is a collection of finitely-overlapping
�-caps � with ��1 < R. ThenX

�2T

Ef�


Lp.BR/

� C.#T /1=2�1=p
�X
�2T

kEf�k
2
Lp.wBR /

�1=2
;

where wBR is a smooth weight adapted to BR.

Proof. The case p D 1 is just the Cauchy–Schwarz inequality, and when p D 2 the
proposition follows from Plancharel’s theorem. The remaining cases follow by interpola-
tion.

Finally, we recall that if R is small enough then Theorem 1.1 follows directly from
Hölder’s inequality. We can therefore assume by induction that Theorem 1.1 is true at
scale �R whenever � � 1. For technical reasons related to the decoupling result in Pro-
position 2.2, we also remark that we can assume by induction that the following weighted
estimate holds: for any " > 0,

kEf kLp.wB�R /
� C".�R/

"
kf kLp ;

where wB�R is a smooth weight adapted to B�R:

3. Bilinear restriction estimates for H

In this section we will review some known bilinear estimates and prove a lemma that
characterizes what happens if these bilinear estimates fail. The following estimate was
proved by S. Lee in dimension d � 3 (see [14]), and independently by Vargas in dimen-
sion 3 (see [19]).

Theorem 3.1 ([14], [19]). Suppose f1 and f2 are supported in open sets �1 and �2 of
diameter � 1. If

(3.1) inf
�; N�2�1
�; N�2�2

jM.� � �/ � . N� � N�/j � c > 0;

then

(3.2) kjEf1Ef2j
1=2
kLp.BR/ � C"R

"
kf1k

1=2

L2
kf2k

1=2

L2

whenever p � 2.dC2/=d . If (3.1) fails, then (3.2) can fail as well for all p � 2.dC2/=d .

We will need to use a version of Theorem 3.1 adapted to K�1-caps for a parameter K
such that

1� K � R:

The following is a consequence of Theorem 3.1.
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Theorem 3.2. Suppose f1 and f2 are supported in K�1-caps �1 and �2, respectively,
whose centers are separated by CK�1, with C a sufficiently large but uniform constant.
Let A be a constant. If

(3.3) inf
�; N�2�1
�; N�2�2

jM.� � �/ � . N� � N�/j � AK�1;

then

(3.4) kjEf1Ef2j
1=2
kLp.BR/ � CAK

O.1/
kf1k

1=2

L2
kf2k

1=2

L2

whenever p � 2.dC2/=d . If (3.3) fails, then (3.4) can fail as well for all p � 2.dC2/=d .

We say that two K�1-caps �1; �2 are strongly separated if (3.3) holds.
As it is not immediately obvious from scaling that Theorem 3.1 implies Theorem 3.2,

we will prove the implication below in Section 3.2.

3.1. Some background

Bilinear restriction estimates in the full range given in Theorem 3.1 were first proved by
Wolff in the case of the cone [20]. Wolff’s methods were later adapted by Tao in the
case of the elliptic paraboloid [16], and then by Vargas and S. Lee independently in the
case of hyperbolic paraboloids. In the case of the cone and the elliptic paraboloid, the
transversality condition (3.3) is much simpler.

There is an argument due to Tao, Vargas, and Vega ([18]) that allows one to deduce lin-
ear restriction estimates from bilinear restriction estimates for elliptic surfaces, and indeed
linear restriction estimates are obtained as corollaries of the main results in [16] and [20].
Let Ee denote the extension operator associated to the elliptic paraboloid. The main idea
of the argument from [18] is that any two points will belong to a unique pair of dyadic
cubes that are separated by a distance proportional to their scale; one can then use this
observation to efficiently decompose jEef j2 as a sum of terms to which bilinear estim-
ates apply (after a parabolic rescaling). For hyperbolic paraboloids, this argument requires
different ideas since the stronger transversality condition (3.3) is more complicated.

In the special case d D 3, m D 1 one can apply a simple change variables and instead
consider the extension operator associated to the surface

¹� 2 R3 W �3 D �1�2; j�j � 2º:

Then (3.3) is equivalent to the following two-parameter separation condition:

(3.5) j�1 � �1j ' 1 and j�2 � �2j ' 1 for all � 2 �1; � 2 �2:

Vargas and S. Lee were able to use this observation to almost recover the bilinear-to-linear
reduction from [18], up to certain endpoint cases which were later proved by Stovall [15].
All of these arguments rely on the fact that (3.5) facilitates a two-parameter decomposition
of frequency space analogous to the decomposition used in [18]. When d � 4 this is
no longer the case, and the condition (3.3) is no longer well-adapted to Whitney-type
decompositions. In particular note that if d D 3 then (3.5) can only fail if all the caps
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are arranged in a neighborhood of an axis-parallel line (which becomes a diagonal or
anti-diagonal line if we undo the change of variables and write the phase as �21 � �

2
2 ).

However, when d � 4 the estimate (3.4) can fail if the caps are contained near a subset of
(a translation of) the hyperbolic cone

C D ¹� 2 Rd�1 W �21 C � � � C �
2
d�m�1 D �

2
d�m C � � � C �

2
d�1º:

After we deduce Theorem 3.2, we will analyze what can happen in the exceptional case
where (3.3) fails for all pairs of caps in the support of f . We will see that failure of (3.3)
for every pair of caps forces f to be supported near an affine space of dimension m. We
will then be able to use decoupling and induction to prove Theorem 1.1 in the ‘narrow’
cases where we cannot use Theorem 3.2.

As mentioned in the introduction, our methods do not work when d D 3,mD 1. In this
case, Theorem 1.1 is still true and follows from arguments by S. Lee, Stovall, or Vargas
([14], [15], [19]). Of course, when d D 3, Theorem 1.1 also follows from the stronger
restriction estimate due to Cho and J. Lee [6].

3.2. Proof that Theorem 3.1 implies Theorem 3.2

Let ej denote the standard basis vectors in Rd�1. Let �1 and �2 be two K�1-caps for
which (3.3) holds. After translation we can assume that �2 is centered at the origin. We
may assume that dist.�1; �2/ & K�1=2 since otherwise the desired result follows easily by
rescaling frequency space by K1=2.

Since �2 is centered at the origin, the condition (3.3) is invariant under linear trans-
formations of the form U D U 0 ˚ U 00; where U 0 is a rotation in �1; : : : ; �d�m�1 that fixes
�d�m; : : : ; �d�1; and U 00 is a rotation in �d�m; : : : ; �d�1 that fixes �1; : : : ; �d�m�1. We
can therefore assume that �1 is centered at a point of the form

�� D .�1; 0; : : : ; 0; �d�m; �d�mC1; : : : ; �d�1/

with
j�21 � �

2
d�m � � � � � �

2
d�1j � cK

�1:

Let us first assume that

�21 � �
2
d�m � � � � � �

2
d�1 � cK

�1:

Since we are also assuming j��j2 � cK�1 it follows that

(3.6) �21 � cK
�1:

Now let S be the linear transformation such that

S�� D e1; Sej D ej ; j D 2; : : : ; d � 1:

One checks using (3.6) that

kSk �
1

j�1j
. K1=2:
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In particular, the first column of S is

.1=�1; 0; : : : ; 0;��d�m=�1; : : : ;��d�1=�1/;

while the other columns are e2; : : : ; ed�1. Now suppose �; N� 2 �2. Since we are assuming
that �2 is centered at the origin, we then have

jM.S�� � S�/ � .S�� � S N�/j D jMe1 � e1 CO.K
�1=2/j & 1:(3.7)

Since changing �� to any other � 2 �1 in (3.7) only introduces an error of O.K�1=2/,
it follows that the caps S�1 and S�2 satisfy the condition (3.1), and so (3.4) follows
from (3.2) after rescaling f1 and f2 (which is allowed since we can lose KO.1/ in the
bilinear estimate).

In the case where
��21 C �

2
d�m C � � � C �

2
d�1 � cK

�1;

we apply another transformation U D U 0 ˚ U 00 to map �� to

U�� D .�1; 0; : : : ; 0; Q�d�m; 0; : : : ; 0/:

Then, since U does not change the norm of either .�d�m; �d�mC1; : : : ; �d�1/ or
.�1; 0; : : : ; 0/, it follows that

Q�d�m � �1 � cK
�1;

and so we repeat the previous argument with Q�d�m playing the role of �1.

3.3. Failure of bilinear estimates

We now prove that if the bilinear estimates in Theorem 3.2 fail, then the caps � must
be localized near an m-dimensional plane. We first prove some geometric lemmas that
will lead us in this direction, with the main result of the section being Lemma 3.5 below.
Given � D .�1; : : : ; �d�1/ 2 Rd�1, we will write � 0 D .�1; �2; : : : ; �d�m�1/ and also � 00 D
.�d�m; : : : ; �d�1/: The following lemma can be thought of as an approximate polarization
identity.

Lemma 3.3. Let C denote the surface

C D
®
� 2 Bd�1.0; 2/ W �21 C � � � C �

2
d�m�1 D �

2
d�m C � � � C �

2
d�1; j�j < 2

¯
and let

Cr D ¹� 2 B
d�1.0; 2/ W j� �M�j � rº:

Suppose �; � 2 CcK�1 : Let T� denote the subspace

T� D ¹! 2 Rd�1 W ! �M� D 0º:

If � � � 2 CCK�1 , then � is in an O.K�1/ neighborhood of T� .
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Proof. Since �; � 2 CcK�1 and � � � 2 CCK�1 , we have

d�m�1X
iD1

.�i � �i /
2
D

d�1X
iDd�m

.�i � �i /
2
CO.K�1/

D

d�m�1X
iD1

.�2i C �
2
i / � 2

d�1X
iDd�m

�i�i CO.K
�1/:

After expanding the square on the left side and rearranging, we obtain

� 0 � �0 D

d�1X
iDd�m

�i�i CO.K
�1/ D � 00 � �00 CO.K�1/:

As a consequence,
� �M� D O.K�1/;

which proves the lemma.

Lemma 3.4. Let V be a subspace of Rd�1 and suppose that V \ Bd�1.0; 2/ � CcK�a ;

where a > 0. Then if K is sufficiently large, we must have dimV � m.

Proof. Let ¹v1; : : : ; vkº be an orthonormal basis for V . By hypothesis we know that

vi �Mvi D O.K�a/

for each i . Also note that vi � vj 2 V \Bd�1.0; 2/ and therefore vi � vj 2 CcK�a : Then
from Lemma 3.3 we conclude that

(3.8) vi �Mvj D O.K�a/

for each pair i; j . Of course,

(3.9) vi � vj D 0; i ¤ j;

by hypothesis. Now let P WRd�1 ! Rm denote the orthogonal projection

P! D .!d�m; : : : ; !d�1/ 2 Rm:

From (3.8) and (3.9) we conclude that

(3.10) Pvi � Pvj D O.K�a/ if i ¤ j; P vi � Pvi D
1

2
CO.K�a/:

But ifK is large enough, depending only on a and the implicit constants above, then (3.10)
implies that the set ¹Pv1; : : : ; P vkº is linearly independent. One way to see this is to note
that (3.10) implies that the Gramian matrix G with entries Gij D hPvi ; P vj i is a small
perturbation of 1

2
I whenK is large enough, with I them�m identity matrix. The claimed
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independence follows at once from the characterization of independence in terms of the
Gramian matrix. Alternatively, from (3.10) it follows that there is some ˛ > 0 such that

jAngle.P vi ; P vj / � �=2j � ˛K�a; i ¤ j;

jjPvi j2 � 1=2j � ˛K�a;

which implies the claimed independence if K is large enough (depending on the value
of a and ˛).

Since the elements of ¹Pv1; : : : ;P vkº are all vectors in Rm, we must have k �m and
so dim V � m.

The following lemma is the main result of this section.

Lemma 3.5. Let ¹�º be a collection of finitely-overlapping K�1-caps in Bd�1.0; 2/ with
Ef D

P
� Ef� : If K is sufficiently large, then one of the following must occur.

(i) There exist a uniform ˛ > 0 and an m-dimensional affine space V such that every �
is contained in an O.K�˛/ neighborhood of V .

(ii) There are two K�1-caps � and � 0 for which

inf
�; N�2�
!; N!2� 0

jM.� � !/ � . N� � N!/j � AK�1:

Proof. Suppose that (ii) fails and let �0; �1; : : : ; �k be distinct caps in Bd�1.0; 2/ inter-
secting the support of f . We can assume we can find such caps with k � 2 or else (i) is
trivially true. After modulating Ef , we can also assume that �0 is centered at the origin.

Pick �i 2 �i for i D 1; : : : ; k. Since (ii) fails for each pair of caps .�0; �i / we see that
�i 2 CcK�1 for each i , with the constant c depending only on d;A. Since (ii) also fails for
each pair .�i ; �j / when i ¤ j , we see that �i � �j 2 CcK�1 as well. Then by Lemma 3.3
we conclude that

(3.11) �i �M�j D O.K�1/

for each i; j (including i D j ).
Let � D ¹�1; : : : ; �kº. We now construct the space V via a sequence of spaces

V1 � V2 � � � � � Vk0 D V;

with
Vj D span¹�i1 ; : : : ; �ij º

for some subset of � . We note that V will be a vector space since we have shifted �0 to
the origin. Fix a small parameter a > 0, to be determined below. We pick any �i1 2 � with
j�i1 j �K�a and set V1 D span¹�i1º. If no such �i1 exists then all of the caps are contained
in anO.K�a/ neighborhood of the origin, and (i) follows with V D ¹0º. Now assume, by
induction, that we have constructed

Vj�1 D span¹�i1 ; : : : ; �ij�1º:



Hyperbolic restriction via bilinear estimates 1463

If there are any �ij 2 �n¹�i1 ; : : : ; �ij�1º such that

(3.12) j�ij j � K�a and Angle.�ij ; Vj�1/ � K�a

we pick one and let
Vj D span¹�i1 ; : : : ; �ij º:

If no such �ij exists we stop the procedure and let V D Vj�1. This process continues until
there are no more � 2 � satisfying (3.12). Say this happens at step k0 C 1, in which case
V D Vk0 (note that there are at most d � 1 steps).

After possibly relabeling, we assume that V D span¹�1; �2; : : : ; �k
0

º: We now claim
that k0 � m. This implies (i) since (by construction) the centers of the remaining caps in
Bd�1.0; 2/ make an angle O.K�a/ with V or are contained in a ball of radius O.K�a/
centered at the origin. To prove the claim, first note that if ! 2 V \ Bd�1.0; 2/ with
! D

Pk0

iD1 ai�
i , then we have

(3.13) ! �M! D
X
i;j

aiaj .�
i
�M�j /:

We claim that it suffices to show that

(3.14) jai j . K1=2��

for some small � >0 depending only on d . Indeed, if (3.14) holds then by (3.13) and (3.11)
we have ! �M! D O.K�2� /, and therefore

V \ Bd�1.0; 2/ � CcK�2�

since ! was arbitrary. But then Lemma 3.4 implies that k0 D dim V � m (provided K is
sufficiently large), as desired.

We now prove (3.14). After applying an orthogonal transformation, we may assume
that V is spanned by the standard basis vectors ¹e1; : : : ; ek0º and that the j -th component
of �i is 0 for j > k0. Without loss of generality we may view ! and the �i as elements
of Rk

0

, since only their first k0 components are nonzero. We let B denote the matrix with
columns given by the �i . We also let Bi .x/ denote the matrix obtained by replacing the
i -th column of B by x (that is, replacing �i by x). Then we have the following identity,
which is essentially Cramer’s rule:

(3.15) ! D
1

det.B/

k0X
iD1

det.Bi .!//�i :

Indeed, det.Bi .�j // D 0 if i ¤ j , so this identity follows by expanding det.Bi .!// using
! D

P
j aj�

j and linearity. From (3.15) it follows that ai D det.Bi .!//=det.B/; and
hence, by Hadamard’s inequality,

jai j �
1

j det.B/j
j!j

Y
j¤i

j�j j .
1

j det.B/j
�
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Finally, recall that by construction,

(3.16) Angle.�i ; Vi�1/ � K�a with Vi�1 D span¹�1; : : : ; �i�1º;

and j�i j � K�a. Therefore

j det.B/j D j�1 ^ � � � ^ �k
0

j & K�a.d�1/K�a.d�2/

(using k0 � d � 1). Indeed, the first term comes from rescaling the �i to have length one,
and the second term is a lower bound for the volume of any parallelepiped spanned by
unit vectors satisfying (3.16). It follows that jai j . K2a.d�1/, and so (3.14) follows if we
choose a < 1

4.d�1/
. This completes the proof.

(We remark that the choice of a is far from optimal. For example, taking into account
the lengths of the �i when applying Hadamard’s inequality shows that we can take a to
be larger than 1

4.d�1/
. However, the precise value of a is not relevant for the proof, so we

have chosen to not track it too carefully).

In the next section we will takeK D Rı for some ı D ı."/. We are allowed to assume
that K � C" by induction, and therefore we will always be able to assume K is large
enough that Lemma 3.5 applies.

4. The broad-narrow argument

We now prove Theorem 1.1 using a broad-narrow argument adapted from [4], [10], [7].
Fix " > 0 for the rest of the argument. Let ı > 0 be another parameter with ı < "2 and set

K D Rı and K1 D K
˛;

where ˛ is as in part (i) of Lemma 3.5. We assume that ı is small enough such that

K � K1:

Let T be a collection of finitely-overlapping K�1-caps � covering the support of f and
use a partition of unity to decompose f D

P
� f� with f� supported in (a small dilate of) � .

We also let ¹�º be a collection of finitely-overlappingK�11 -caps covering the support of f .
Then f D

P
� f� as well.

On the spatial side we fix a collection Q of finitely-overlapping K2-cubes that cover
Bd .0; R/. Given Q 2 Q, we define its significant set

�p.Q/ D
®
� 2 T W kEf�kLp.Q/ �

1
100.#T /

kEf kLp.Q/
¯
:

Note that we have  X
�…�p.Q/

Ef�


Lp.Q/

�
1

100
kEf kLp.Q/;

and so we will always be able to absorb these error terms into the left-hand side of our
estimates for kEf kLp.Q/ below.
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Now fix a uniform constant A > 1 to be determined below. We say that a K2-cube Q
is narrow and write Q 2 N if there is an .mC 1/-dimensional subspace W such that

Angle.G.�/;W / � AK�11

for all � 2 �p.Q/, where G.�/ is the unit normal to the surface H above the center of � .
If a cube Q is not narrow then we say it is broad and write Q 2 B. We of course have

kEf k
p

Lp.BR/
�

X
Q2N

kEf k
p

Lp.Q/
C

X
Q2B

kEf k
p

Lp.Q/
;

and so it suffices to consider separately the cases when the broad and narrow terms dom-
inate.

4.1. The broad case

We first consider the broad case. We will need to use the following lemma, which is a
consequence of Theorem 3.2 and the fact that Ef is essentially constant at scale one. We
recall that two caps �1 and �2 are said to be strongly separated if (3.3) holds.

Lemma 4.1. Suppose f is supported in Bd�1.0; 2/. Let �1 and �2 be two strongly separ-
ated K�1-caps. ThenX

Q2B

kEf�1k
p=2

Lp.Q/
kEf�2k

p=2

Lp.Q/
� KO.1/kf k

p

L2

whenever p � 2.d C 2/=d .

The proof of this lemma is contained in the proof of Proposition 3.1 in [7], though for
completeness we include most of the argument.

Proof. We define fi .�/ D eixi ��Cti �.M���/f�i .�/ for some choice of .xi ; ti / 2 Rd . Let �
be a bump function on Rd withb� D 1 in Bd .0; 2/ andb� supported in Bd .0; 3/: Note that
Efi D Efi � � for any choice of .xi ; ti / in the definition of fi .

We first fix a single Q. Decompose Q as a union of lattice cubes LQ of side-length
1=10. Then we may find .xi ; ti / as above and L�Q � Q such that

kEfi � �kL1.Q/ � kEfi � �kL1.L�Q/

for both i D 1; 2. Then

kEf�1k
1=2

Lp.Q/
kEf�2k

1=2

Lp.Q/
� KO.1/kEf1 � �k

1=2

L1.L�Q/
kEf2 � �k

1=2

L1.L�Q/
:

We may pick our bump function � so that � decays rapidly outside Bd .0; 1/ with

sup
w2Bd .z;1/

�.w/ . �.z/ for any z 2 Rd :
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Therefore,

kEf1 � �k
p=2

L1.L�Q/
kEf2 � �k

p=2

L1.L�Q/

.
� Z

L�Q

Z
Rd

Z
Rd

jEf1.z1/j jEf2.z2/j�.z1 � z/�.z2 � z/ dz1dz2dz
�p=2

D C
� Z

Rd

Z
Rd

Z
L�Q

jEf1.z1 � z/j jEf2.z2 � z/j�.z1/�.z2/ dzdz1dz2

�p=2
:

We now sum over Q. By Minkowsi’s and Hölder’s inequalities we haveX
Q2B

kEf1 � �k
p=2

L1.L�Q/
kEf2 � �k

p=2

L1.L�Q/

.
h Z

Rd

Z
Rd

�Z
BR

jEf1.z1�z/j
p=2
jEf2.z2�z/j

p=2�.z1/
p=2�.z2/

p=2dz
�2=p

dz1dz2

ip=2
. sup
z1;z2

Z
BR

jEf1.z1 � z/j
p=2
jEf2.z2 � z/j

p=2 dz

. sup
z1;z2

Z
BR

jE zf1.z/j
p=2
jE zf2.z/j

p=2 dz:

where zfi is a modulation of fi that depends on zi . Note that

k zfikL2 D kf�i kL2 :

Since zfi is still supported in �i and the pair .�1; �2/ is strongly separated, we may apply
Theorem 3.2 to conclude thatX

Q2B

kEf1 � �k
p=2

L1.L�Q/
kEf2 � �k

p=2

L1.L�Q/
� KO.1/ kf k

p

L2
;

which completes the proof.

Let Q be a broad cube and first suppose that there is no strongly separated pair of
caps in �p.Q/. Then by Lemma 3.5 there exists an m-dimensional affine space V such
that � � NcK�11 .V / for all � 2 �p.Q/: But this forces the directions G.�/ to be in an
O.K�11 / neighborhood of the .mC 1/-planeW in Rd given by scalar multiples of vectors
in G0.V /, where

G0.!/ D j.!;�1/jG.!/

(note that the angle between G.!1/ and G.!2/ is proportional to the distance j!1 � !2j
if the centers of the caps are O.K�1/-separated). Therefore Q 2 N , assuming we have
chosen A appropriately depending only on the constant from Lemma 3.5. Since we are
assuming Q 2 B, this cannot happen, and so there must be two strongly separated caps
�1; �2 2 �p.Q/. By the definition of �p.Q/ we then have

kEf kLp.Q/ � K
O.1/
kEf�1k

1=2

Lp.Q/
kEf�2k

1=2

Lp.Q/
:
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The pair .�1; �2/ depends onQ, but we may make this estimate uniform by summing in `p

over all possible strongly separated pairs (note the number of such pairs is O.K2.d�1//).
We then apply Lemma 4.1 to conclude thatX

Q2B

kEf k
p

Lp.Q/
� KO.1/

X
.�1;�2/

strongly sep.

X
Q2B

kEf�1k
p=2

Lp.Q/
kEf�2k

p=2

Lp.Q/

� CR"pkf k
p
Lp

(provided ı D ı."/ is chosen small enough, e.g., ı D "4).

4.2. The narrow case

We now estimate the contribution of the narrow cubes. Suppose Q 2 N and let W be an
.mC 1/-plane in Rd such that

Angle.G.�/;W / � AK�11

for each � 2 �p.Q/. Then there is an m-dimensional affine space V in Rd�1 such that
� � NcK�11

.V / for each � 2 �p.Q/. In particular, we can take

V D ¹! 2 Rd�1 W G0.!/ 2 W º:

We choose a minimal collection‚V of � coveringNcK�11 .V /. Note that‚V contains cKm1
caps � . Applying flat decoupling and then Hölder’s inequality we obtain

kEf kLp.Q/ � CK
m.1=2�1=p/
1

� X
�2‚V

kEf�k
2
Lp.wQ/

�1=2
� CK

m.1�2=p/
1

� X
�2‚V

kEf�k
p

Lp.wQ/

�1=p
� CK

m.1�2=p/
1

�X
�

kEf�k
p

Lp.wQ/

�1=p
:

Since X
Q

wQ . wBR ;

we can sum over Q to conclude that

(4.1)
� X
Q2N

kEf k
p

Lp.Q/

�1=p
� CK

m.1�2=p/
1

�X
�

kEf�k
p

Lp.wBR /

�1=p
:

We will now use induction on scales. By Proposition 2.1, for each � we can find a func-
tion g� supported in Bd�1.0; 2/ such that kf�kLp D K

�.d�1/=p
1 kg�kLp and such that

kEf�kLp.wBR /
� K

�.d�1/C.dC1/=p
1 kEg�kLp.wBR=K1

/:

By induction on scales we then obtain

kEf�kLp.wBR /
� C"R

"K�"1 K
�.d�1/C.dC1/=p
1 K

.d�1/=p
1 kf�kLp :
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After applying this argument for each � , we see from (4.1) that� X
Q2N

kEf k
p

Lp.Q/

�1=p
� C"R

"K�"1 K
m.1�2=p/
1 K

�.d�1/C.dC1/=p
1 K

.d�1/=p
1 kf kLp :

The induction closes provided

(4.2) m
�
1 �

2

p

�
� .d � 1/C

2d

p
� 0;

since we may assume K is large enough that C"K�"1 � 1: Note that (4.2) is equivalent to

p �
2.d �m/

d �m � 1
�

Some algebra shows that
2.d �m/

d �m � 1
�
2.d C 2/

d

if and only if

m �
d

2
� 1:

We have assumed this is true for m, and so the narrow case of Theorem 1.1 follows.

Remark 4.2. In the narrow case above we have used flat decoupling in dimension m.
This has nothing to do with the curvature of H and is true for any extension operator
E 0f when f is supported in a thin neighborhood of an m-plane. If one instead uses the
stronger `2 decoupling result proven by Bourgain and Demeter in [3] there is no gain in
our argument, since this still leads to a loss ofKm.1=2�1=p/1 in the first step. This is related
to the fact that the surface H contains subsets which are affine spaces of dimension m,
even though the curvature of H is nonzero. The `2 decoupling does not distinguish the
difference, since we can imagine that Ef is supported in a small neighborhood of one of
these affine spaces; in this case the Km.1=2�1=p/1 loss is sharp.

We further elaborate on the last claim by considering the special case d D 5;m D 2.
Note in this case m D .d � 1/=2 and so our argument in the narrow case does not apply.
Fix aK2-cubeQ and suppose there is no pair of caps .�1; �2/which are strongly separated
and in �p.Q/. Then by Lemma 3.5 the support of f must be contained in an O.K�11 /-
neighborhood of an m-plane V . If we assume there is at least one significant � 2 �p.Q/

that contains the origin, then from the proof of Lemma 3.5 we see that V \ B4.0; 2/ can
be taken to be a subset of the surface C defined in Section 3. Moreover, V can be assumed
to be a vector space.

Let ¹v; uº be an orthonormal basis for V . Since

v � u 2 V \ B4.0; 2/ � C ;

the argument in Lemma 3.3 implies that Mv � u D 0 and hence Mu � v D 0. We also
know by hypothesis that Mv � v D 0 and Mu � u D 0. Therefore ¹v; u;Mv;Muº is an
orthonormal basis for R4 with V ? D span¹Mv;Muº: Now let A be the orthonormal
matrix with inverse

A�1 D
�
v u Mv Mu

�
;
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so that A maps V to the 2-plane determined by �3 D 0 and �4 D 0. Applying the change
of coordinates determined by A shows that

kEf kLp.Q/ D k zEfAkLp.QA/;

where fA is the natural transform of f and zE is the extension operator with phase

x � �C t .MA� � �/;

where

MA D .A
�1/TMA�1 D

2664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3775 :
In particular, zE is the extension operator associated to the hyperbolic surface

H D ¹� 2 R5 W �5 D �1�3 C �2�4º:

Since f is supported in a K�11 -neighborhood of V it follows that fA is supported in

a K�11 -neighborhood of the 2-plane where �3 D 0; �4 D 0. As a consequence, bzEfA is
supported in a K�11 neighborhood of the 2-plane

VA D ¹� 2 R5 W � D .�1; �2; 0; 0; 0; 0/º:

Note that VA � H and therefore we can choose f so that the loss of K2.1=2�1=p/1 in our
first decoupling step is sharp for general f . This can be seen for example by taking f so

that bzEfA is essentially the indicator function of VA \ B5.0; 2/.
One is tempted to now exploit the non-isotropic scaling symmetry

.�1; �2; �3; �4; �5/! .�1; �2; K1�3; K1�4; K1�5/

associated to H and then argue by induction on scales (since such a transformation will
map the support of fA to a cube of side-length O.1/ but shrink the size of QA). This
gives a favorable result for each individual Q, but remember that V can vary depending
on Q and may not even be a vector space. We have not found a way to effectively deal
with the contribution of different V , mainly because K�11 -neighborhoods of different V
can intersect in complicated ways and naive estimates give a loss in K1 that is much too
large to close the induction. A similar issue arises in higher dimensions when d is odd and
m D .d � 1/=2.

Remark 4.3. The idea of using a broad-narrow analysis to deduce linear restriction the-
orems from multilinear restriction theorems dates back to Bourgain and Guth in [4].
They prove restriction estimates for the (elliptic) paraboloid by using k-linear restric-
tion ([2]) in the broad case and an induction procedure in the narrow case. Their argument
works in a range of p that is larger than what Tao proved in [16] using bilinear restric-
tion theorems. When d D 3, their methods also adapt to the hyperbolic surface H and
prove Theorem 1.1 in this case. If d � 4 is even, their methods also prove Theorem 1.1,
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and indeed in even dimensions the result follows from their more general estimates for
Hörmander-type operators with non-degenerate phases. In this case one can avoid any
type of induction-on-dimension procedure in the range p � 2.d C 2/=d by directly using
the k-linear Bennet–Carbery–Tao estimate with kD d=2C 1, along with a flat decoupling
and induction-on-scales argument. In the narrow case in odd dimensions, this procedure
is not as effective since one needs to use a smaller k.

Recall that the intersection of H with a hyperplane can have zero Gaussian curvature.
This complicates any induction-on-dimension procedure when compared to the elliptic
case, where the intersection of a paraboloid with a hyperplane is a paraboloid of lower
dimension. The case d D 3 for H is special since you can only lose curvature if the
hyperplane is (almost) parallel to the diagonal �1 D �2 or the anti-diagonal �1 D ��2. In
this case, one can instead exploit non-isotropic scaling symmetries of the operator to close
the induction. We have not found a way to carry this argument out in higher dimensions,
except in the localized setting summarized at the end of the previous remark. Note that
when d D 3 there are only two ‘bad’ directions (the diagonal or anti-diagonal), but when
d � 4 there are infinitely many (any direction along the hyperbolic cone C defined above).
This appears to be one of the key differences between the cases d D 3 and d D 5, for
example.

Remark 4.4. In [12], Hickman and Iliopoulou prove restriction estimates for generalized
extension operators with phases which are smooth perturbations of x � � C t .� �M�/. It
is likely that the bilinear method in this paper will extend to smooth perturbations of the
hyperbolic paraboloid H. Indeed, in [14] Lee proves a generalized version of Theorem 3.1
that allows for phases � which are smooth perturbations of � �M�. It is likely that a version
of Lemma 3.5 holds, with the plane V replaced by anm-dimensional manifold determined
by �. Then the rest of the argument would follow as in Section 4, with only minor changes
made. We do not pursue the details here.
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