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A spectral characterization and an approximation scheme
for the Hessian eigenvalue

Nam Q. Le

Abstract. We revisit the k-Hessian eigenvalue problem on a smooth and bounded
.k � 1/-convex domain in Rn. First, we obtain a spectral characterization of the
k-Hessian eigenvalue as the infimum of the first eigenvalues of linear second-order
elliptic operators whose coefficients belong to the dual of the corresponding Gård-
ing cone. Second, we introduce a non-degenerate inverse iterative scheme to solve
the eigenvalue problem for the k-Hessian operator. We show that the scheme con-
verges, with a rate, to the k-Hessian eigenvalue for all k. When 2 � k � n, we also
prove a local L1 convergence of the Hessian of solutions of the scheme. Hyperbolic
polynomials play an important role in our analysis.

1. Introduction and statements of the main results

In this paper, we consider the k-Hessian counterparts of some results on the Monge–
Ampère eigenvalue problem. We begin by recalling these results and the relevant back-
ground.

1.1. The Monge–Ampère eigenvalue problem

The Monge–Ampère eigenvalue problem, on smooth, bounded and uniformly convex
domains� in Rn (n � 2), was first investigated by Lions [17]. He showed that there exist
a unique positive constant � D �.nI�/ and a unique (up to positive multiplicative con-
stants) nonzero convex function u 2 C 1;1.S�/ \ C1.�/ solving the eigenvalue problem
for the Monge–Ampère operator detD2u:

(1.1) detD2u D �njujn in �; u D 0 on @�:

The constant �.nI�/ is called the Monge–Ampère eigenvalue of �. The functions u
solving (1.1) are called the Monge–Ampère eigenfunctions. Lions also found a spec-
tral characterization of the Monge–Ampère eigenvalue via the first eigenvalues of linear
second-order elliptic operators in non-divergence form.
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Let Vn D Vn.�/ be the set of all matrices A D .aij /1�i;j�n, with aij 2 C.�/,

.aij / D .aj i / > 0 in �; det.A/ �
1

nn
:

For A 2 Vn, let �A1 be the first (positive) eigenvalue of the linear second-order operator
�aijDij , with zero Dirichlet boundary condition on @�, i.e., there exist v 2 W 2;n

loc .�/ \

C.S�/, with v 6� 0, such that

�aijDij v D �
A
1 v in �; v D 0 on @�:

The corresponding eigenfunctions v, up to multiplicative constants, are positive in � and
unique. We refer the readers to the Appendix in [17] for more information about the first
eigenvalues for �aijDij , where A 2 Vn. Lions [17] showed that

(1.2) �.nI�/ D min
A2Vn

�A1 :

A variational characterization of �.nI�/ was first discovered by Tso [23]. Denote the
Rayleigh quotient (for the Monge–Ampère operator) of a nonzero convex function u by

Rn.u/ D

R
�
juj detD2udxR
�
jujnC1 dx

:

When u is merely a convex function, detD2u dx is interpreted as the Monge–Ampère
measure associated with u; see Figalli [8] and Gutiérrez [10]. Tso showed that

Œ�.nI�/�n D inf
®
Rn.u/ W u 2 C

0;1.S�/ \ C1.�/;(1.3)
u is convex, nonzero in �; u D 0 on @�

¯
:

Recently, the author [15] studied the Monge–Ampère eigenvalue problem for gen-
eral open bounded convex domains and established the singular counterparts of previous
results by Lions and Tso. Let � be a bounded open convex domain in Rn. Define the
constant � D �ŒnI��, via the infimum of the Rayleigh quotient, by

(1.4) .�ŒnI��/n D inf
®
Rn.u/ W u 2 C.S�/; u is convex, nonzero in �; u D 0 on @�

¯
:

Then, by [15], the infimum in (1.4) is achieved because there exists a nonzero convex
eigenfunction u 2 C.S�/\C1.�/ solving the Monge–Ampère eigenvalue problem (1.1)
with � D �ŒnI��. When � is a smooth, bounded and uniformly convex domain, the class
of competitor functions in the minimization problem (1.4) is larger than that of the mini-
mization problem (1.3); however, it was shown in [15] that �.nI�/ D �ŒnI��:

In [1], Abedin and Kitagawa introduced a numerically appealing inverse iterative
scheme

(1.5) detD2umC1 D Rn.um/jumj
n in �; umC1 D 0 on @�;

to solve the Monge–Ampère eigenvalue problem (1.1) on a bounded convex domain
� � Rn. They proved that the scheme (1.5) converges to the Monge–Ampère eigenvalue
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problem (1.1) for all convex initial data u0 satisfying Rn.u0/ <1, u0 � 0 on @�, and
detD2u0 � 1 in�. Whenm� 1, (1.5) is a degenerate Monge–Ampère equation for umC1
because the right-hand side tends to 0 near the boundary @�.

In this paper, we prove a spectral characterization of the k-Hessian eigenvalue similar
to (1.2) (Theorem 1.1), and study a non-degenerate inverse iterative scheme (1.15), sim-
ilar to (1.5), to solve the k-Hessian eigenvalue problem. We will review this problem in
Section 1.2. The main results concerning the scheme (1.15) include convergence to the k-
Hessian eigenvalue (Theorem 1.2) and local W 2;1 type convergence (Theorem 1.3). The
common thread in our investigation is hyperbolic polynomials to be reviewed in Section 2.
Our approach, which is based on certain integration by parts inequalities, differs from [1]
even in the Monge–Ampère case. As an illustration, for the Monge–Ampère case, our
approach gives a sharp reverse Aleksandrov estimate for the Monge–Ampère equation
and a convergence rate of Rn.um/ to .�.nI�//n in terms of the convergence rate of um
to a nonzero Monge–Ampère eigenfunction u1 (see, Theorem 1.2 (ii), (iii)). This is new
compared to currently known iteration schemes for the p-Laplace equation [2], [3], [13].

1.2. The k-Hessian eigenvalue problem

Let 1� k � n (n� 2). Let� be a bounded open and smooth domain in Rn. For a function
u 2 C 2.�/, let Sk.D2u/ denote the k-th elementary symmetric function of the eigenval-
ues �.D2u/ D .�1.D

2u/; : : : ; �n.D
2u// of the Hessian matrix D2u:

Sk.D
2u/ D �k.�.D

2u// WD
X

1�i1<���<ik�n

�i1.D
2u/ � � ��ik .D

2u/:

For convenience, we denote �0.�/ D 1. A function u 2 C 2.�/ \ C.S�/ is called k-
admissible if �.D2u/ 2 �k , where �k is an open symmetric convex cone in Rn, with
vertex at the origin, given by

(1.6) �k D
®
� D .�1; : : : ; �n/ 2 Rn W �j .�/ > 0 for all j D 1; : : : ; k

¯
:

We also call �k the Gårding cone of the k-Hessian operator. All functions involved in
Sk below are assumed to be k-admissible. If k � 2, we also assume @� to be uniformly
.k � 1/-convex, that is, �k�1.�1; : : : ; �n�1/� c0 >0, where �1; : : : ; �n�1 are principle cur-
vatures of @� relative to the interior normal. Note that n-admissible functions are strictly
convex, and uniformly .n � 1/-convex domains are simply uniformly convex domains.

The eigenvalue problem for the k-Hessian operator Sk.D2u/ on a bounded, open,
smooth and .k � 1/-convex domain � in Rn, that is,

(1.7) Sk.D
2w/ D Œ�.kI�/�kjwjk in �; w D 0 on @�;

was first introduced by Wang in [25] (see also [26]) who extended the results of Lions [17]
and Tso [23] from the case k D n to the general case 1 � k � n. Wang introduced the
constant

(1.8) �1 D sup
®
� > 0 W there is a solution u� 2 C 2.S�/ of (1.9)

¯
;
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where (1.9) is given by

(1.9) Sk.D
2u/ D .1 � �u/k in �; u D 0 on @�:

Wang [25] showed that �1 2 .0;1/, and that, as � ! �1, u�ku�k�1L1.�/ converges in
C1.�/ \ C 1;1.S�/ to a solution w 2 C1.�/ \ C 1;1.S�/ of (1.7), with �.kI�/ D �1
there.

The eigenvalue problem (1.7) has the following uniqueness property: If . N�; Nw/ is a
solution of (1.7), where N� � 0 and Nw 2 C1.�/ \ C 1;1.S�/ is k-admissible with w D 0
on @�, then N�D �.kI�/ and Nw D cw for some positive constant c. The constant �.kI�/
is called the k-Hessian eigenvalue, andw in (1.7) is called a k-Hessian eigenfunction. The
scheme (1.8)–(1.9) to compute the k-Hessian eigenvalue involves solving the k-Hessian
equation (1.9) with right-hand side depending on the solution u itself. This equation
is more difficult to handle, analytically and numerically, than one with right-hand side
depending only on the spatial variables.

Let Rk.u/ denote the Rayleigh quotient for the k-Hessian operator

(1.10) Rk.u/ D

R
�
jujSk.D

2u/ dxR
�
jujkC1 dx

for a C 2 function u. The requirement that kukLkC1.�/ <1 is implicit in definition (1.10).
Wang [25] also proved the following fundamental property for the variational charac-

terization of �.kI�/:

Œ�.kI�/�k D inf
®
Rk.u/ W u 2 C.S�/ \ C

2.�/;(1.11)
u is k-admissible, nonzero in �; u D 0 on @�

¯
:

Using (1.11), Liu, Ma and Xu [18] obtained a Brunn–Minkowski inequality for the 2-
Hessian eigenvalue in three-dimensional convex domains.

1.3. A spectral characterization of the k-Hessian eigenvalue

Let x � y denote the standard inner product for x; y 2 Rn. Following Kuo–Trudinger [14],
let ��

k
be the dual cone of the Gårding cone �k , given by

(1.12) ��k D ¹� 2 Rn W � � � � 0 for all � 2 �kº:

Clearly, ��
k
� ��

l
for k � l: For � 2 ��

k
, denote

��k.�/ D inf
²
� � �

n
W � 2 �k ; Sk.�/ �

�
n

k

�³
:

Observe that ��n DS�n. If �D .�1; : : : ; �n/ 2 ��n , then �i � 0 and ��n.�/D .
Qn
iD1 �i /

1=n.
For a matrix A D .aij /1�i;j�n, we write A 2 ��

k
if �.A/ 2 ��

k
and define

��k.A/ D �
�
k.�.A//:
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Let Vk D Vk.�/ be the following set of positive definite symmetric matrices whose entries
are continuous functions on �:

Vk D

²
A D .aij /1�i;j�n W .aij / D .aj i / > 0 in �;(1.13)

aij 2 C.�/; A 2 �
�
k ; and ��k.A/ �

1

n

�
n

k

�1=k³
:

Note that Vk � VkC1: This follows from the Maclaurin inequalities and the fact that
c.n;k/ > c.n;kC 1/ for all k � n� 1, where c.n;k/ WD 1

n

�
n
k

�
1=k . Indeed, supposeA2 Vk .

If � 2 �kC1, with SkC1.�/ �
�
n
kC1

�
, then from the Maclaurin inequality�

Sk.�/�
n
k

� �1=k
�

�
SkC1.�/�

n
kC1

� �1=.kC1/
;

we find that � 2 �k with Sk.�/ �
�
n
k

�
. Hence, �.A/��

n
� ��

k
.A/ � c.n; k/ > c.n; k C 1/,

and therefore A 2 VkC1. Note that c.n; k/ > c.n; k C 1/ follows from�
c.n; k/

c.n; k C 1/

�k.kC1/
D

�
n

k

���
n

k

��
n

k C 1

��1�k
D

�
n

k

�
.k C 1/k

.n � k/k

D
n.n � 1/ � � � .n � k C 1/

.n � k/k
.k C 1/k

kŠ
> 1:

We now have the following increasing sequence of cones:

V1 � V2 � � � � � Vn�1 � Vn:

Extending Lions’ result (1.2) from k D n to all other values of k, we have the following
theorem.

Theorem 1.1 (A spectral characterization for the Hessian eigenvalue). Assume 1� k � n.
Let � be a bounded, open, smooth, and uniformly convex domain in Rn. Let Vk be as
in (1.13). For A 2 Vk , let �A1 be the first positive eigenvalue of the linear second-order
operator �aijDij with zero Dirichlet boundary condition on @�. Then

(1.14) �.kI�/ D min
A2Vk

�A1 :

The interest in the above theorem is when k � 2. When k D 1, we have

V1 D ¹mIn W m � 1º

where In is the identity n � n matrix and thus the conclusion of Theorem 1.1 is obvious.

1.4. A non-degenerate inverse iterative scheme for the k-Hessian eigenvalue
problem

Inspired by the scheme (1.5), we propose the following non-degenerate inverse iterative
scheme to solve the eigenvalue problem (1.7), starting from a k-admissible function u0 2
C 2.S�/ with u0 � 0 on @�:

(1.15) Sk.D
2umC1/ D Rk.um/jumj

k
C .mC 1/�2 in �; umC1 D 0 on @�:
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We add the positive constant .mC 1/�2, which vanishes in the limitm!1, to make the
right-hand side of (1.15) strictly positive for eachm. Thus, for eachm� 0, (1.15) is a non-
degenerate k-Hessian equation for umC1. See also Remark 1.4. The requirement u0 � 0
on @� is only used to have u0 � 0 in� and thusRk.u0/ju0jk DRk.u0/.�u0/k 2C 2.S�/.

By a classical result of Caffarelli, Nirenberg and Spruck, Theorem 1 of [6] (see also
Theorem 3.4 of [26]), for each m, the scheme (1.15) has a unique k-admissible solution
umC1 2 C

3;˛.S�/ for all 0 < ˛ < 1. Moreover, um < 0 in � for all m � 1. The sequence
.um/ is obtained by repeatedly inverting the k-Hessian operator with Dirichlet boundary
condition.

In the next theorem, we show that R.um/ converges to Œ�.kI�/�k , thus making (1.15)
more appealing for numerically computing the k-Hessian eigenvalue �.kI�/.

Theorem 1.2 (Convergence to the Hessian eigenvalue of the non-degenerate inverse iter-
ative scheme). Let 1 � k � n, where n � 2. Let � be a bounded, open, smooth domain
in Rn. Assume that @� is uniformly .k � 1/-convex if k � 2. Consider the reverse itera-
tive scheme (1.15), where u0 2 C 2.S�/, with u0 � 0 on @�, and um is k-admissible for
all m � 0. Let w 2 C1.�/\ C 1;1.S�/ be a nonzero k-Hessian eigenfunction as in (1.7).
Then the following hold:

(i) Rk.um/ converges to Œ�.kI�/�k :

(1.16) lim
m!1

Rk.um/ D Œ�.kI�/�
k :

(ii) There exists a subsequence umj that converges weakly in W 1;q
loc .�/ for all q <

nk
n�k

to a nonzero function u1 2 W 1;q
loc .�/ \ L

k.�/. Moreover,

(1.17) lim
j!1

Z
�

jumj j
k dx D

Z
�

ju1j
k dx

and, for all m � 1,

R
1=k

k
.um/ � �.kI�/ � �.kI�/

R
�
.jumC1j � jumj/jwj

k dxR
�
ju1jjwjk dx

(1.18)

� �.kI�/

R
�
.ju1j � jumj/jwj

k dxR
�
ju1jjwjk dx

:

(iii) When k D n, ¹umº converges uniformly on S� to a non-zero Monge–Ampère
eigenfunction u1 of �.

(iv) When k D 1, ¹umº converges inW 1;2
0 .�/ to a non-zero first Laplace eigenfunc-

tion u1 of �.

We point out that part (iv) of Theorem 1.2 was included for completeness, as it was
contained in [2], [3] and [13], when there is no term .m C 1/�2 on the right-hand side
of (1.15).

In the convex case when k D n, in view of the work [15], the Monge–Ampère eigen-
value problem (1.1) with u only being convex (so less regular) is now well understood,
and this plays a key role in the proof of Theorem 1.2 (iii). The work [15] relies on the
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regularity theory of weak solutions to the Monge–Ampère equation developed by Caf-
farelli [4], [5]. To the best of the author’s knowledge, for 2 � k � n � 1, the k-Hessian
counterparts of these Monge–Ampère results are still lacking. Thus, showing that u1 in
Theorem 1.2 (ii) is a k-Hessian eigenfunction is still an interesting open problem. One
possible alternate route is to upgrade the convergence of um to u1 in W 1;q

loc .�/ to that in
W 2;p

loc .�/ for some p > k. So far, we can prove a sort of local W 2;1.�/ convergence. It
is in fact a local W 2;1.�/ convergence when k D n (see also Theorem 6.2). We have the
following theorem.

Theorem 1.3 (Local W 2;1 convergence of the non-degenerate inverse iterative scheme).
Assume 2 � k � n. Let � be a bounded, open, smooth, and uniformly .k � 1/ convex
domain in Rn. Let w 2 C1.�/ \ C 1;1.S�/ be a nonzero k-Hessian eigenfunction as
in (1.7). Consider the scheme (1.15), where u0 2 C 2.S�/, with u0 � 0 on @�, and um
is k-admissible for all m � 0. Consider a subsequence of .umj / and its limit u1 as in
Theorem 1.2 (ii). Let �k;i .D2w;D2umC1/ be defined by

Sk.tD
2w CD2umC1/ D Sk.D

2w/

kY
iD1

.t C �k;i .D
2w;D2umC1// for all t 2 R:

When k D n, the �k;i .D2w;D2umC1/ are eigenvalues of D2umC1.D
2w/�1. Then

�k;i .D
2w;D2umjC1/!

ju1j

jwj
locally in L1 when j !1:

Up to a further extraction of a subsequence, we have the following pointwise convergence:

(1.19) D2umjC1.x/!
ju1.x/j

jw.x/j
D2w.x/ for a.e. x 2 �:

Remark 1.4. The conclusions of Theorems 1.2 and 1.3 hold if we replace .m C 1/�2

in the scheme (1.15) by am > 0, where
P1
mD0 am <1. When k D n, we can also take

am D 0, and in this case, (i) and (iii) of Theorem 1.2 were obtained in [1] with a different
proof.

We now say a few words about the proofs of Theorems 1.2 and 1.3. When k < n, the
lack of convexity of k-admissible functions is the main difficulty in the proof of Theo-
rem 1.2. Our approach is based on the following nonlinear integration by parts inequality
for the k-Hessian operator.

Proposition 1.5 (Nonlinear integration by parts inequality for the k-Hessian operator).
Let � be a bounded, open, smooth domain in Rn. Assume that @� is uniformly .k � 1/-
convex if k � 2. Then, for k-admissible functions u;v 2C 1;1.S�/\C 3.�/ with uD vD 0
on @�, one has

(1.20)
Z
�

jvjSk.D
2u/ dx �

Z
�

jujŒSk.D
2u/�.k�1/=k ŒSk.D

2v/�1=k dx:

If k � 2 and the equality holds in (1.20), then there is a positive, continuous function �
such that

D2u.x/ D �.x/D2v.x/ for all x 2 �:
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The Monge–Ampère case of (1.20), that is, when k D n and u and v are convex, was
established in [15] under more relaxed conditions on u; v and �.

We will prove Proposition 1.5 and its extensions, using Gårding’s inequality [9] for
hyperbolic polynomials, of which �k and Sk (viewed as functions of matrices) are
examples.

For the proof of Theorem 1.3, we find that quantitative forms of (1.20) whose defects
measure certain closeness of D2u to D2v guarantee the interior W 2;1 convergence of um
to u1. They are proved using quantitative Gårding’s inequalities for hyperbolic polyno-
mials; see Lemma 2.4.

Remark 1.6. When k D 1, (1.20) becomes an equality and it is an integration by parts
formula. If we just require that �.D2u/; �.D2v/ 2 S�k instead of �.D2u/; �.D2v/ 2 �k ,
then (1.20) still holds. To see this, take a k-admissible function w 2 C 1;1.S�/ \ C 3.�/
with w D 0 on @�. Then we apply the current version of (1.20) to uC "w and v C "w
and then let "! 0.

The rest of the paper is organized as follows. In Section 2, we recall some basics of
hyperbolic polynomials and Gårding’s inequality. In Section 3, we prove Proposition 1.5
and its extensions to other hyperbolic polynomials. In Section 4, we prove Theorem 1.1.
In Section 5, we prove Theorem 1.2. The proof of Theorem 1.3 will be given in Section 6.

2. Hyperbolic polynomials

In this section, we recall some basics of hyperbolic polynomials and Gårding’s inequality.
See also Harvey–Lawson [11] for a simple and self-contained account of Gårding’s theory
of hyperbolic polynomials [9].

Suppose that p is a homogeneous real polynomial of degree k on RN . Given a 2 RN ,
we say that p is a-hyperbolic if p.a/ > 0, and for each x 2RN ; p.taC x/ can be factored
as

p.taC x/ D p.a/

kY
iD1

.t C �i .pI a; x// for all t 2 R;

where �i .pIa;x/ (i D 1; : : : ; k) are real numbers. The functions �i .pIa;x/ are called the
a-eigenvalues of x, and they are well defined up to permutation. In what follows, identities
between �i .pI � ; �/ are understood modulo the permutation group �k of order k.

For the reader’s convenience, we mention here some examples of a-hyperbolic poly-
nomials, mostly taken from [9]. The polynomials Pk in Example 2.5 are most relevant for
the results of this paper.

Example 2.1. The quadratic polynomial

p.x/ D x21 � x
2
2 � � � � � x

2
N ; x D .x1; : : : ; xN / 2 RN ;

is e1-hyperbolic, where e1 D .1; 0; : : : ; 0/. The e1-eigenvalues of x 2 RN are given by®
�1.pI e1; x/; �2.pI e1; x/

¯
D
®
x1 ˙

q
jxj2 � x21

¯
:
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Example 2.2. The polynomial

p.x/ D

NY
iD1

xi ; x D .x1; : : : ; xN / 2 RN ;

is a-hyperbolic for any a 2RN with p.a/ > 0. The a-eigenvalues of x 2RN are given by

¹�i .pI a; x/ W i D 1; : : : ; N º D ¹xi=ai W i D 1; : : : ; N º:

Suppose p is a-hyperbolic. Observe from the definition of a-eigenvalues of x that

(2.1)
p.x/

p.a/
D

kY
iD1

�i .pI a; x/:

Denote

(2.2) p0x.a/ D
d

dt

ˇ̌̌
tD0

p.aC tx/:

Then

(2.3)
p0x.a/

p.a/
D

kX
iD1

�i .pI a; x/:

Note that

(2.4)
�i .pI a; a/ D 1I �i .pI a; tx/ D t�i .pI a; x/ mod �k ;

�i .pI a; taC x/ D t C �i .pI a; x/ mod �k :

If p is be a-hyperbolic, then we denote its edge at a by

Ea.p/ D
®
x 2 RN W �1.pI a; x/ D � � � D �k.pI a; x/ D 0

¯
:

We have

(2.5) �i .pI a; x/ D � for all i , �i .pI a; x � �a/ D 0 for all i , x � �a 2 Ea.p/:

The Gårding cone of p at a is defined to be

�a.p/ D ¹x 2 RN W �i .pI a; x/ > 0 for all i D 1; : : : ; kº:

A fundamental result of Gårding, Theorem 2 of [9], states that if p is a-hyperbolic and
b 2 �a.p/, then p is b-hyperbolic and �b.p/D �a.p/. Therefore, we use �.p/ to denote
�a.p/ whenever p is a-hyperbolic. Another fundamental result of Gårding, Theorem 3
of [9], says that the edge Ea.p/ of a hyperbolic polynomial p at a is equal to the linearity
L.p/ of p, where

L.p/ D
®
x 2 RN W p.tx C y/ D p.y/ for all t 2 R and y 2 RN

¯
:

For later reference, we summarize these results in the following theorem.



N. Q. Le 1482

Theorem 2.3 (Gårding). Let p be hyperbolic at a 2 RN . Then the following hold:
(i) If b 2 �a.p/, then p is b-hyperbolic and �b.p/ D �a.p/.
(ii) Ea.p/ D L.p/:

From (2.1) and (2.3), we obtain the following quantitative Gårding’s inequality.

Lemma 2.4 (Quantitative Gårding’s inequality). Suppose p is a homogeneous real poly-
nomial of degree k on RN and p is a-hyperbolic. If x 2 �.p/, then

(2.6)
1

k

p0x.a/

p.a/
�

�p.x/
p.a/

�1=k
C
1

k

kX
iD1

�p
�i .pI a; x/ �

�p.x/
p.a/

�1=.2k/�2
:

In particular, if k � 2 and x 2 �.p/ with

(2.7)
1

k

p0x.a/

p.a/
D

�p.x/
p.a/

�1=k
;

then there is a positive constant � such that x � �a 2 Ea.p/:

Proof. Without the last nonnegative term, (2.6) is the original Gårding’s inequality whose
proof uses (2.1), (2.3) and the Cauchy inequality for k positive numbers.

For the full version of (2.6), we use (2.1), (2.3) and the following quantitative version
of Cauchy’s inequality: If x1; : : : ; xk are k (k � 2) nonnegative numbers, then

1

k

kX
iD1

xi � .x1 � � � xk/
1=k
�
1

k

kX
iD1

�p
xi � .x1 � � � xk/

1=.2k/
�2(2.8)

D 2.x1 � � � xk/
1=.2k/

�
1

k

kX
iD1

p
xi � .x1 � � � xk/

1=.2k/

�
� 0:

Clearly, (2.6) follows from (2.8) applied to �i .pIa;x/. Moreover, if k � 2 and (2.7) holds,
then we must have �i .pI a; x/ D � � � D �k.pI a; x/ D � for some positive constant �.
Hence, the last assertion follows from (2.5).

Example 2.5. Let N D 1
2
n.nC 1/ and let A be a symmetric n � n matrix A D .aij /. We

can view A as a point in RN . Then P.A/D detA is A-hyperbolic for any positive definite
matrix A. Let In be the identity n � n matrix. Define Pk by

(2.9) det.tIn C A/ D P.tIn C A/ D
nX
kD0

tn�kPk.A/ for all t 2 R:

Then Pk is a homogeneous polynomial of degree k on RN ; moreover, Pk is In-hyperbolic
(see, Example 3 and the discussion at the end of p. 959 in [9]).

From now on, let Pk be as in Example 2.5. From this example, we know that Pk is
In-hyperbolic. Thus, for any symmetric n� nmatrixA, we have from the definition of In-
hyperbolicity that the In-eigenvalues �i .Pk I In; A/ are real numbers for all i D 1; : : : ; k.
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Suppose furthermore that A is a symmetric n � n matrix with �.A/ 2 �k (as defined
in (1.6)). Then, from �i .Pk I In; A/ 2 R,

Pk.tIn C A/ D

kX
iD0

�
n � i

k � i

�
tk�i�i .�.A// D Pk.In/

kY
iD1

.t C �i .Pk I In; A//

and �i .�.A// > 0 for all i , we easily find that �i .Pk IIn;A/ > 0 for all i D 1; : : : ;k. Hence,
A 2 �.Pk/, from which we deduce that Pk is A-hyperbolic by Theorem 2.3. Recall that
we use �.Pk/ to denote the Gårding cone of Pk at In. Vice versa, if A 2 �.Pk/, then
by definition, �i .Pk I In; A/ > 0 for all i D 1; : : : ; k, and therefore �i .�.A// > 0 for all
i D 1; : : : ; k, which show that �.A/ 2 �k . Thus, we have

(2.10) �.Pk/ D ¹A 2 RN W �.A/ 2 �kº:

The following lemma shows the triviality of the edge of Pk when k � 2.

Lemma 2.6. If k � 2, then

(2.11) EA0.Pk/ D ¹0º whenever Pk is A0-hyperbolic:

Proof. In the proof, we use Theorem 2.3 (ii), which implies that the edge Ea.p/ of a
hyperbolic polynomial p at a does not depend on a. We apply this fact to p D Pk and
deduce that if Pk is A0-hyperbolic, then

EA0.Pk/D L.Pk/D EIn.Pk/D
®
A 2 RN W �1.Pk I In; A/D � � � D �k.Pk I In; A/D 0

¯
:

Let A 2 EIn.Pk/. Then �1.Pk I In;A/D � � � D �k.Pk I In;A/D 0, so the above expansion
of Pk.tIn C A/ shows that �i .�.A// D 0 for all i D 1; : : : ; k. In particular, since k � 2,
we find

�1.�.A// D �2.�.A// D 0:

Therefore, the eigenvalues �1.A/; : : : ; �n.A/ of the symmetric matrix A satisfy

nX
iD1

Œ�i .A/�
2
D Œ�1.�.A//�

2
� 2�2.�.A// D 0:

It follows thatA is the 0matrix. This shows thatEA0.Pk/DEIn.Pk/D¹0º, as claimed.

Note that the conclusion of Lemma 2.6 is false for k D 1, since

EA0.Pk/ D L.P1/ D ¹A 2 RN W P1.A/ D trace.A/ D 0º:

We have the following lemma.

Lemma 2.7. Let p be a homogeneous real polynomial of degree k on RN . Suppose that p
is a-hyperbolic with Ea.p/D ¹0º. Assume that ¹b.m/º � RN satisfies �i .pIa; b.m//! 0

when m!1 for all i D 1; : : : ; k. Then b.m/ ! 0 when m!1.

The lemma is perhaps standard; however, we could not locate a precise reference so
we include its proof here. In the proof, we use that �i .pI a; x/, modulo �k , is continuous
in x (see p. 1105 of [11]). This comes from the algebraic fact that roots of a degree k
polynomial depend continuously on its coefficients.
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Proof of Lemma 2.7. We first show that b.m/ is bounded. Suppose that kb.m/kDMm!1.
Consider Qb.m/ D b.m/=Mn. Then k Qb.m/k D 1, while, modulo �k ,

�i .pI a; Qb
.m// D

�i .pI a; b
.m//

Mn

! 0 for all i D 1; : : : ; k:

Up to extracting a subsequence, we have Qb.m/! b with kbk D 1, while �i .pIa; Qb.m//!
�i .pI a; b/ D 0 for all i D 1; : : : ; k. Thus, b 2 Ea.p/, which shows that b D 0, a contra-
diction.

Next, we show that b.m/ converges to 0. We already known that there is M > 0 such
that kb.m/k � M for all m. Suppose there exists ı > 0 such that there is a subsequence,
still denoted b.m/, satisfying M � kb.m/k � ı > 0. We use compactness as above to get
a b with kbk D 1, while �i .pI a; b/ D 0 for all i D 1; : : : ; k, a contradiction.

3. Nonlinear integration by parts inequalities

In this section, we prove Proposition 1.5, which is concerned with Pk and its extensions
to other hyperbolic polynomials.

Proof of Proposition 1.5. Since u;v 2 C 1;1.S�/\C 3.�/ are k-admissible functions with
u D v D 0 on @�, we have u; v � 0 in �. We view Sk as a function on n � n matrices
r D .rij /1�i;j�n, where

Sk.r/ D �k.�.r//:

Let

S
ij

k
.D2u/ D

@

@rij
Sk.D

2u/:

Then, it is well known that (see, for example, [19, 25, 26])

Sk.D
2u/ D

1

k

nX
i;jD1

S
ij

k
.D2u/Diju;

and for each i D 1; : : : ; n, we have the following divergence-free property of the matrix
.S
ij

k
.D2u//:

nX
jD1

DjS
ij

k
.D2u/ D 0:

Therefore, integrating by parts twice, we getZ
�

jvjSk.D
2u/ dx D

1

k

Z
�

nX
i;jD1

.�v/S
ij

k
.D2u/Dijudx(3.1)

D
1

k

Z
�

nX
i;jD1

Dj ŒvS
ij

k
.D2u/�Diudx D

1

k

Z
�

nX
i;jD1

Dj vS
ij

k
.D2u/Diudx

D
1

k

Z
�

.�u/

nX
i;jD1

S
ij

k
.D2u/Dij v dx D

1

k

Z
�

juj

nX
i;jD1

S
ij

k
.D2u/Dij v dx:
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We need to show that

(3.2)
1

k

nX
i;jD1

S
ij

k
.D2u/Dij v � ŒSk.D

2u/�.k�1/=k ŒSk.D
2v/�1=k :

Let Pk be as in (2.9). We use the notation p0x.a/ as defined by (2.2). Note that, for C 2

functions u and v, we have

Sk.D
2u/ D Pk.D

2u/ and .Pk/
0

D2v
.D2u/ D

nX
i;jD1

S
ij

k
.D2u/Dij v:

Since u and v are k-admissible, we have

D2u;D2v 2 �.Pk/:

Thus, by Gårding’s inequality (Lemma 2.4),

1

k

nX
i;jD1

S
ij

k
.D2u/Dij v D

1

k
.Pk/

0

D2v
.D2u/

� Pk.D
2u/

�Pk.D2v/

Pk.D2u/

�1=k
D ŒPk.D

2u/�.k�1/=k ŒPk.D
2v/�1=k :

Therefore, (3.2) holds and we obtain (1.20).
If k � 2 and the equality holds in (1.20), then (3.2) must be an equality for almost all

x 2 �. For those x, using the last assertion of Lemma 2.4, we can find a positive number
�.x/ such that

D2u.x/ � �.x/D2v.x/ 2 ED2u.x/.Pk/ D ¹0º;

where we used (2.11) in the last equality. Since u; v 2 C 3.�/, � is a continuous function
on � and

D2u.x/ D �.x/D2v.x/ for all x 2 �:

The proof of the proposition is complete.

A particular consequence of Proposition 1.5 is the following corollary.

Corollary 3.1. Let � be a bounded, open, smooth, uniformly .k � 1/-convex (if k � 2/
domain in Rn. Letw 2C 1;1.S�/\C1.�/ be a k-Hessian eigenfunction as in (1.7). Then,
for any k-admissible function v 2 C 1;1.S�/ \ C 3.�/, with v D 0 on @�, one has

(3.3) �.kI�/

Z
�

jvjjwjk dx �

Z
�

jwjk ŒSk.D
2v/�1=k dx:

Corollary 3.1 is sharp since equality holds when v is a k-Hessian eigenfunction of �.
When k D n, (3.3) can be viewed as a reverse version of the celebrated Aleksandrov’s
maximum principle for the Monge–Ampère equation (see Theorem 2.8 of [8] and Theo-
rem 1.4.2 of [10]), which states: If u 2 C.S�/ is a convex function on an open, bounded
and convex domain � � Rn, with u D 0 on @�, then

(3.4) ju.x/jn � C.n/.diam�/n�1 dist.x; @�/
Z
�

detD2udx for all x 2 �:
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In fact, the reverse Aleksandrov estimate holds for more relaxed conditions on the
domains and convex functions involved.

Proposition 3.2 (Reverse Aleksandrov estimate). Let� be a bounded open convex domain
in Rn. Let �ŒnI�� be the Monge–Ampère eigenvalue of � and letw be a nonzero Monge–
Ampère eigenfunction of � (see also (1.1)). Assume that u 2 C 5.�/ \ C.S�/ is a strictly
convex function in �, with u D 0 on �, satisfyingZ

�

.detD2u/1=njwjn�1 dx <1:

Then

(3.5) �ŒnI��

Z
�

jujjwjn dx �

Z
�

.detD2u/1=njwjn dx:

Proof of Proposition 3.2. For the proof, we recall the nonlinear integration by parts in-
equality established in Proposition 1.7 of [15] (see also [16]): If u; v 2 C.S�/ \ C 5.�/
are strictly convex functions in �, with u D v D 0 on @�, and ifZ

�

.detD2u/1=n.detD2v/.n�1/=n dx <1 and
Z
�

detD2v dx <1;

then

(3.6)
Z
�

juj detD2v dx �

Z
�

jvj.detD2u/1=n.detD2v/.n�1/=n dx:

We apply (3.6) to u and v D w. Then, using detD2w D .�ŒnI��jwj/n, we get

.�ŒnI��/n
Z
�

jujjwjn D

Z
�

juj detD2w dx �

Z
�

jwj.detD2u/1=n.detD2w/.n�1/=n dx

D .�ŒnI��/n�1
Z
�

.detD2u/1=njwjn dx:

Dividing the first and last expressions in the above estimates by .�ŒnI��/n�1, we obtain
inequality (3.5).

Remark 3.3. The method of proof of Proposition 1.5 relies on the divergence form struc-
ture of the k-Hessian operator Sk.D2u/. If we replace Pk.A/ in the proof of Propo-
sition 1.5 by other homogeneous, hyperbolic polynomials P.A/ of degree K, then the
conclusion still holds as long as the following conditions are satisfied:

(P1) Let

P ij .D2u/ D
@

@rij
P.D2u/:

Then

P.D2u/ D
1

K

nX
i;jD1

P ij .D2u/Diju:
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(P2) For each u 2 C 3.�/ and i D 1; : : : ; n, we have the following divergence-free
property of the matrix .P ij .D2u//:

nX
jD1

DjP
ij .D2u/ D 0:

Due to the homogeneity of P , property (P1) always holds, in view of Euler’s formula.
Properties (P1) and (P2) hold for the following hyperbolic polynomials:

ŒPk.A/�
l ; where l D 1; 2; : : : :

Note that
K D kl and �.Pk/ D �.ŒPk �

l /;

so we obtain the following result.

Proposition 3.4. Let � be a bounded, open, smooth domain in Rn. Assume that @� is
uniformly .k � 1/-convex if k � 2. Let l be a positive integer. Then, for k-admissible
functions u; v 2 C 1;1.S�/ \ C 3.�/, with u D v D 0 on @�, one has

(3.7)
Z
�

jvjŒSk.D
2u/�l dx �

Z
�

jujŒSk.D
2u/�.kl�1/=k ŒSk.D

2v/�1=k dx:

If k � 2 and the equality holds in (3.7), then there is a positive, continuous function �
such that

D2u.x/ D �.x/D2v.x/ for all x 2 �:

Remark 3.5. If k � 2, then the quantity
R
�
jvjSk.D

2u/ dx in Proposition 1.5 is called
the non-commutative inner product of two functions v and u on the cone of k-admissible
functions in [24]. Verbitsky proved in Theorem 3.1 of [24] the following fully nonlinear
Schwarz’s inequality:

(3.8)
Z
�

jvjSk.D
2u/ dx �

� Z
�

jujSk.D
2u/ dx

�k=.kC1/� Z
�

jvjSk.D
2v/ dx

�1=.kC1/
;

which has many applications in the Hessian Sobolev inequalities.
We also note that the proof of (3.8) in [24] also used exactly the properties of P in

Remark 3.3. Thus, for k-admissible functions u; v 2 C 1;1.S�/ \ C 3.�/ with u D v D 0
on @�, we also have

(3.9)
Z
�

jvjŒSk.D
2u/�ldx �

� Z
�

jujŒSk.D
2u/�ldx

� kl
klC1

� Z
�

jvjŒSk.D
2v/�ldx

� 1
klC1

:

To conclude this section, we note that there are homogeneous hyperbolic polynomi-
als P which do not have property (P2) in Remark 3.3. We may call these non-divergence
form hyperbolic polynomials. One example is the Monge–Ampère type operator

(3.10) Mn�1.D
2u/ WD det..�u/In �D2u/;

which appears in many geometric contexts, both real and complex; see for example [12,
20, 21], and the references therein. When n D 3, we have

P.D2u/ WDM2.D
2u/ D det..�u/I3 �D2u/ D S1.D

2u/S2.D
2u/ � S3.D

2u/:
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For u.x/D x31 C x
2
2 C x

2
3 ; one can check, using the divergence-free property of the matri-

ces S ij
k

for k D 1; 2; 3, that

3X
jD1

DjP
1j .D2u/D

3X
jD1

�
S
1j
1 .D

2u/
@

@xj
S2.D

2u/C
@

@xj
S1.D

2u/S
1j
2 .D

2u/
�
D 48¤ 0:

4. A spectral characterization of the k-Hessian eigenvalue via dual
Gårding cone

In this section, we prove Theorem 1.1.
Let �k and ��

k
be as in (1.6) and (1.12), respectively. We recall the following result of

Kuo and Trudinger, Proposition 2.1 of [14].

Proposition 4.1. For matrices B D .bij / 2 �k , A D .aij / 2 ��k , k D 1; : : : ; n, we have

ŒSk.B/�
1=k��k.A/ �

1

n

�
n

k

�1=k
trace.AB/:

Proof of Theorem 1.1. Letw 2C1.�/\C 1;1.S�/ be a nonzero k-Hessian eigenfunction,
so w satisfies (1.7). Then D2w 2 �k . Let A D .aij / 2 Vk . Then

��k.A/ �
1

n

�
n

k

�1=k
:

Applying Proposition 4.1 to D2w and A, we have

(4.1) ŒSk.D
2w/�1=k �

1

��
k
.A/

1

n

�
n

k

�1=k
trace.AD2w/ � aijDijw:

Since ŒSk.D2w/�1=k D �.kI�/jwj D ��.kI�/w, we obtain

aijDijw C �.kI�/w � 0 in �:

By Proposition A.2 (ii) of [17], we find that

�.kI�/ � �A1 :

Hence,
�.kI�/ � inf

A2Vk
�A1 :

Now, we show that the infimum is achieved. Note that, if u is k-admissible, then we have
.S
ij

k
.D2u//i�i;j�n 2 �

�
k

. Moreover, as a consequence of Gårding’s inequality (3.2), we
find

��k.S
ij

k
.D2u// D

k

n
ŒSk.D

2u/�.k�1/=k
�
n

k

�1=k
:
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Observe that

��.kI�/w D ŒSk.D
2w/�1=k D ŒSk.D

2w/��.k�1/=kSk.D
2w/

D
1

k
ŒSk.D

2w/��.k�1/=kS
ij

k
.D2w/Dijw:

Thus, �.kI�/ is the first eigenvalue of �aijDij , where

.aij /1�i;j�j D
� 1
k
ŒSk.D

2w/��.k�1/=kS
ij

k
.D2w/

�
1�i;j�n

2 Vk ;

with ��
k
..aij // D

1
n

�
n
k

�1=k .

Remark 4.2. Let Vk be as in (1.13). Observe from (4.1) that for u k-admissible, we have

ŒSk.D
2u/�1=k D inf

AD.aij /2Vk

aijDiju:

5. Convergence to the k-Hessian eigenvalue

In this section, we prove Theorem 1.2.

Proof of Theorem 1.2. (i) Form � 0, multiplying both sides of (1.15) by jumC1j and then
integrating over �, we find

Rk.umC1/kumC1k
kC1

LkC1.�/
D

Z
�

jumC1jSk.D
2umC1/ dx

D Rk.um/

Z
�

jumj
k
jumC1j dx C

1

.mC 1/2

Z
�

jumC1j dx

� Rk.um/kumk
k
LkC1.�/

kumC1kLkC1.�/

C
j�jk=.kC1/

.mC 1/2
kumC1kLkC1.�/:

It follows that

(5.1) Rk.umC1/kumC1k
k
LkC1.�/

� Rk.um/kumk
k
LkC1.�/

C
j�jk=.kC1/

.mC 1/2
:

Therefore, by iterating, we obtain

Rk.umC1/kumC1k
k
LkC1.�/

� Rk.u0/ku0k
k
LkC1.�/

C j�jk=.kC1/
1X
mD0

1

.mC 1/2

D Rk.u0/ku0k
k
LkC1.�/

C
�2

6
j�jk=.kC1/:

From (1.11), we know that

(5.2) R
1=k

k
.um/ � �.kI�/ for m � 1:

Hence, there exists a constant C1.k; u0; �/ independent of m such that

(5.3) kumC1kLkC1.�/ � C1.k; u0; �/:
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By the uniqueness (up to positive multiplicative constants) of the k-Hessian eigenfunc-
tions, we can assume that w 2 C1.�/\ C 1;1.S�/ is a k-Hessian eigenfunction with L1

norm 1, that is,

(5.4) Sk.D
2w/ D Œ�.kI�/�kjwjk in �; w D 0 on @�; kwkL1.�/ D 1:

Then, we use the nonlinear integration by parts inequality (1.20) to get

(5.5)
Z
�

jumC1jSk.D
2w/ dx �

Z
�

jwjŒSk.D
2w/�.k�1/=k ŒSk.D

2umC1/�
1=k dx:

Therefore, recalling (5.4), we find, after dividing both sides of the above inequality by
Œ�.kI�/�k , thatZ

�

jumC1j jwj
k dx(5.6)

�

Z
�

Œ�.kI�/��1 jwjk
h
Rk.um/ jumj

k
C

1

.mC 1/2

i1=k
dx

>

Z
�

Œ�.kI�/��1 jwjk ŒRk.um/�
1=k
jumj dx

D

Z
�

jumj jwj
k dx C ŒR

1=k

k
.um/ � �.kI�/� Œ�.kI�/�

�1

Z
�

jumj jwj
k dx:

Thus, (5.6), together with (5.2), implies that the sequence ¹
R
�
jumjjwj

k dxº1mD1 is increas-
ing. On the other hand, using (5.3) and (5.4), we find thatZ

�

jumj jwj
k dx �

Z
�

jumj dx � C2.k; u0; �/:

It follows from u1 < 0 in � that
R
�
jumj jwj

k dx converges to a limit

(5.7) lim
m!1

Z
�

jumj jwj
k dx D L 2 .0;1/:

For m � 1, we get from (5.6) that

R
1=k

k
.um/ � �.kI�/ � �.kI�/

R
�
.jumC1j � jumj/jwj

k dxR
�
jumjjwjk dx

� �.kI�/

R
�
.jumC1j � jumj/jwj

k dxR
�
ju1jjwjk dx

:(5.8)

Lettingm!1 in (5.8) and recalling (5.7), we conclude that the whole sequenceRk.um/
converges to Œ�.kI�/�k as asserted in (1.16).

In particular, we have Rk.um/ � C3.k; u0;�/ and hence, using the Hölder inequality
and (5.3),

(5.9)
Z
�

Sk.D
2umC1/ dx D .mC 1/

�2
j�j CRk.um/

Z
�

jumj
k dx � C4.k; u0; �/:
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(ii) From (5.3) and the localW 1;q
loc .�/ estimate for the k-Hessian equation (see, Theo-

rem 5.1 below) for all q < nk
n�k

, we have the uniform bound for um in W 1;q.V / for each
V �� �. Thus, there exists a subsequence .umj / that converges weakly in W 1;q

loc .�/ for
all q < nk

n�k
to a function u1 2 W 1;q

loc .�/. From the compactness of the Sobolev embed-
ding W 1;q to Lk on smooth bounded sets for all q sufficiently close to nk

n�k
, we can also

assume that umj converges strongly to u1 in Lkloc.�/. From the second inequality in (5.9)
and Fatou’s lemma, we have

(5.10) 1 > lim inf
j!1

Z
�

jumj j
k dx �

Z
�

ju1j
k dx:

On the other hand, using (5.3), we find that for each V �� �,Z
�

jumj j
k dx D

Z
�nV

jumj j
k dx C

Z
V

jumj j
k dx

� kumj k
k
LkC1.�nV /

j� n V j1=.kC1/ C

Z
V

jumj j
k dx

� C k1 j� n V j
1=.kC1/

C

Z
V

jumj j
k dx:

Therefore, using the strong convergence of umj to u1 in Lk.V /, we get

lim sup
j!1

Z
�

jumj j
k dx � C k1 j� n V j

1=.kC1/
C

Z
V

ju1j
k dx(5.11)

� C k1 j� n V j
1=.kC1/

C

Z
�

ju1j
k dx:

Combining (5.10) with (5.11), we obtain (1.17) as claimed. Clearly, (1.17) and the increas-
ing property of

R
�
jumjjwj

k dx implies that u1 is nonzero.
Finally, from (5.8), (1.17) and the increasing property of ¹

R
�
jumjjwj

k dxº1mD1, we
obtain (1.18).

(iii) Assume now k D n. We show the convergence of um to a nontrivial Monge–
Ampère eigenfunction u1 of�. A similar result was proved in [1]. However, our scheme
(1.15) and approach are a bit different, so we include the details.

As mentioned in the introduction, we can define the Rayleigh quotient Rn.u/ (for the
Monge–Ampère operator), as in (1.10), of a nonzero merely convex function u, where
detD2u dx is interpreted as the Monge–Ampère measure Mu associated with u. It is
defined by

Mu.E/ D j@u.E/j; where @u.E/ D
[
x2E

@u.x/ for each Borel set E � �;

with
@u.x/ WD

®
p 2 Rn W u.y/ � u.x/C p � .y � x/ for all y 2 �

¯
:

In what follows, when u is merely convex,Rn.u/ and detD2u are understood in the above
sense.
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Applying the Aleksandrov estimate (3.4) to umC1, where m � 0, and invoking (5.9),
we find

kumC1k
n
L1.�/ � C.n;�/

Z
�

detD2umC1 dx � C.n;�/C4.n; u0; �/ � C.n;�; u0/:

Hence, we obtain the uniform L1 bound

kumkL1.�/ � C.n;�; u0/ <1:

Again, the Aleksandrov estimate and the convexity of um give the uniform C 0;1=n.S�/

bound for um:
kumkC 0;1=n.S�/ � C.n;�; u0/ for all m � 1:

Therefore, up to extracting a subsequence, we have the uniform convergence

umj ! u1 6� 0

for a convex function u1 2 C.S�/, with u1 D 0 on @�, while we also have the uniform
convergence

umjC1 ! w1 6� 0

for a convex function w1 2 C.S�/, with w1 D 0 on @�.
Thus, letting j !1 in

detD2umjC1 D Rn.umj /jumj j
n
C .mj C 1/

�2;

using (1.16) and the weak convergence of the Monge–Ampère measure (see Corollary 2.12
of [8] and Lemma 5.3.1 of [10]), we get

(5.12) detD2w1 D .�.nI�/ju1j/
n:

In view of (5.1), we have

(5.13) Rn.umjC1/kumjC1k
n
LnC1.�/

� Rn.umj /kumj k
n
LnC1.�/

C j�jn=.nC1/.mj C 1/
�2:

Letting j !1 in (5.13) and recalling (1.16), we first find that

kw1kLnC1.�/ � ku1kLnC1.�/:

In fact, we have the equality. To see this, we use mjC2 � mj C 2 and iterate (5.1) from
mj C 1 to mjC2 � 1 to get

Rn.umjC2/kumjC2k
n
LnC1.�/

� Rn.umjC1/kumjC1k
n
LnC1.�/

C j�jn=.nC1/
mjC2X

sDmjC2

s�2:

Again, letting j !1 in the above inequality and recalling (1.16), we obtain

ku1kLnC1.�/ � kw1kLnC1.�/:
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In conclusion, we have
kw1kLnC1.�/ D ku1kLnC1.�/:

However, from (5.12),

Rn.w1/kw1k
nC1
LnC1.�/

D

Z
�

jw1j detD2w1 dx

D Œ�.nI�/�n
Z
�

ju1j
n
jw1j dx

� Œ�.nI�/�n ku1k
n
LnC1.�/

kw1kLnC1.�/

D Œ�.nI�/�n kw1k
nC1
LnC1.�/

:

Since, by (1.4),Rn.w1/� .�ŒnI��/nD Œ�.nI�/�n, we must haveRn.w1/D Œ�.nI�/�n,
and the inequality above must be an equality, but this gives u1 D cw1 for some constant
c > 0. Thus, from (5.12), we have

(5.14) detD2w1 D c
n Œ�.nI�/�njw1j

n:

Note that the quantities �.nI�/ in (1.3) and �ŒnI�� in (1.4) are a priori different. In [15],
the bracket notation �ŒnI�� is most relevant for � with corners or flat parts on @�. How-
ever, when � is a smooth, bounded and uniformly convex domain, it was shown in [15]
that �.nI�/ D �ŒnI��:

By the uniqueness of the Monge–Ampère eigenfunctions (Theorem 1 of [17] and The-
orem 1.1 of [15]), it follows from (5.14) that c D 1 and w1 D u1 is a Monge–Ampère
eigenfunction of �. From (5.7), we haveZ

�

ju1j jwj
n dx D lim

m!1

Z
�

jumj jwj
n dx D L:

With this property and the uniqueness, up to positive multiplicative constants, of the
Monge–Ampère eigenfunctions of �, we conclude that the limit u1 does not depend
on the subsequence umj . This shows that the whole sequence um converges to a nonzero
Monge–Ampère eigenfunction u1 of �.

(iv) When k D 1, we prove the full convergence in W 1;2
0 .�/ of um to a first Laplace

eigenfunction u1 of�. We sketch its proof along the lines of (iii). Note that the Rayleigh
quotient for R1.u/ in (1.10) is defined originally for u 2 C 2.�/. If furthermore, u � 0
in � and u D 0 on @�, then an integration by parts gives

R1.u/ D

R
�
jDuj2 dxR
�
juj2 dx

;

which is the usual Rayleigh quotient for the Laplace operator with u 2 W 1;2
0 .�/. In this

proof, all functions involved, including um � 0, belong to W 1;2
0 .�/ so this is the formula

for R1.u/ that we will use.
Recall that the first Laplace eigenvalue of � has the following variational characteri-

zation:
�.1I�/ D inf¹R1.u/ W u 2 W

1;2
0 .�/ n ¹0ºº:
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Since um � 0 in � for all m, we can rewrite (1.15) as

(5.15) ��umC1 D R1.um/um � .mC 1/
�2 in �; um D 0 on @�:

By (5.3), we have, for all m � 1,

kumkL2.�/ � C1.u0; �/:

As observed right before (5.9), we also have R1.um/ � C3.u0; �/ for all m � 1. Hence,Z
�

.jDumj
2
C jumj

2/ dx D ŒR1.um/C 1� kumk
2
L2.�/

� C4.u0; �/:

The sequence ¹umº is uniformly bounded in W 1;2
0 .�/. Therefore, there is a subsequence

umj such that umj converges weakly inW 1;2
0 .�/ and strongly inL2.�/ to u12W 1;2

0 .�/,
where u1 � 0. As noticed in (ii), we have u1 6� 0.

From (5.15), we deduce that umjC1 converges weakly in W 1;2
0 .�/ and strongly in

L2.�/ to w1 2 W 1;2
0 .�/, where w1 � 0 and w1 6� 0.

Now, letting j !1 in

��umjC1 D R1.umj /umj � .mj C 1/
�2 in �; umj D 0 on @�;

we obtain as in (iii), using (1.16), that

(5.16) ��w1 D �.1I�/u1 in �

and
kw1kL2.�/ D ku1kL2.�/:

The equation (5.16) is understood in the sense that for all ' 2 W 1;2
0 .�/, we haveZ

�

Dw1 �D' dx D �.1I�/

Z
�

u1' dx:

In particular, Z
�

jDw1j
2 dx D �.1I�/

Z
�

u1w1 dx:

Applying the Hölder inequality in

R1.w1/kw1k
2
L2.�/

D

Z
�

jDw1j
2 dx D �.1I�/

Z
�

u1w1 dx

� �.1I�/ku1kL2.�/ kw1kL2.�/ D �.1I�/kw1k
2
L2.�/

together R1.w1/ � �.1I�/, we find that the above inequality becomes an equality and
we obtain a constant c > 0 such that u1 D cw1 and

��w1 D c�.1I�/w1 in �:

Since w1 � 0, w1 6� 0, we deduce that c�.1I�/ is the first Laplace eigenvalue. Its
uniqueness then allows us to conclude that c D 1 and u1 D w1 is a first Laplace eigen-
function of �.
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Using (5.7) as in (iii), we find that whole sequence um converges weakly in W 1;2
0 .�/

and strongly in L2.�/ to u1. This convergence is strong in W 1;2
0 .�/. Indeed, by (5.15),

we can write

��.umC1 � u1/ D R1.um/.um � u1/C ŒR1.um/� �.1I�/�u1 � .mC 1/
�2 in �:

Multiplying both sides by umC1 � u1 and integrating by parts, we easily conclude that
kD.umC1 � u1/k

2
L2.�/

! 0.

In the proof of Theorem 1.2 (ii), we use the following estimate due to Trudinger–Wang.

Theorem 5.1 ([22], Theorem 4.1). Let u 2 C 2.�/ be k-admissible satisfying u � 0 in�.
Then for any subdomain V �� � and all q < nk

n�k
, we have the estimateZ

V

jDujq dx � C.V;�; n; k; q/
� Z

�

juj dx
�q
:

Remark 5.2. (a) Let w 2 C1.�/ \ C 1;1.S�/ be a nonzero k-Hessian eigenfunction as
in (1.7). In view of Theorem 1.2 (i), we deduce from (5.5) and (5.6) the following result
for the scheme (1.15):

lim
m!1

h Z
�

jumC1jSk.D
2w/ dx(5.17)

�

Z
�

jwjŒSk.D
2w/�.k�1/=k ŒSk.D

2umC1/�
1=k dx

i
D 0:

Indeed, let bm be the difference in the above bracket. Then bm � 0 by (5.5). As in (5.6),
we have

Œ�.kI�/��kbm

D

Z
�

jumC1jjwj
k dx �

Z
�

Œ�.kI�/��1jwjk
�
Rk.um/jumj

k
C .mC 1/�2

�1=k
dx

<

Z
�

jumC1jjwj
k dx �

Z
�

Œ�.kI�/��1ŒRk.um/�
1=k
jumjjwj

k dx ! 0 when m!1:

In the last convergence, we used (5.7) and Œ�.kI�/��1ŒRk.um/�1=k!1 as given by (1.16).
(b) We can use Lemma 2.2 of [22] to show that the limit function u1 in Theorem 1.2 (ii)

possesses certain convexity properties, called k-convexity in [22].

Remark 5.3. Consider the case 2 � k � n� 1. As remarked after the statement of Theo-
rem 1.2, showing that u1 in Theorem 1.2 (ii) is a k-Hessian eigenfunction is an interesting
open problem. Moreover, we do not know how to prove the full convergence of um to u1
in some suitable sense as in the Monge–Ampère case. In the Monge–Ampère case, the
uniqueness issue of the Monge–Ampère eigenvalue problem (1.1) with u only being con-
vex is now well understood and this plays a key role in the proof of Theorem 1.2 (iii), as
it was used to conclude that c D 1, among other results.

For a k-convex function u, we can define a weak notion of its k-Hessian, still denoted
by Sk.D2u/, (see [22] for example). Consider the following degenerate k-Hessian equa-
tion:

(5.18) Sk.D
2w/ D �jwjk in �; w D 0 on @�;
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for a nonzero k-convex functionw and a positive constant �>0. To the best of the author’s
knowledge, the following questions concerning (5.18) are still open:

(i) Is w smooth in �?
(ii) Is � unique?
(iii) Is w unique up to a positive multiplicative constant?

In the Monge–Ampère case, the answer to all these questions is positive, see [15], which
relies on the regularity theory of weak solutions to the Monge–Ampère equation developed
by Caffarelli [4, 5]. The k-Hessian counterparts of these Monge–Ampère results are still
lacking.

6. W 2;1 convergence for the non-degenerate inverse iterative scheme

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. Recall that we are considering the case 2 � k � n for the scheme
(1.15). Integrating by parts as in (3.1), we have

(6.1)
Z
�

jumC1jSk.D
2w/ dx D

Z
�

1

k
jwjS

ij

k
.D2w/Dij umC1 dx:

Consider the following hyperbolic polynomial as defined in (2.9):

p.A/ D Pk.A/; where �.A/ 2 �k :

Recall the notation �i .Pk IA;X/ in Section 2 and �k as in (1.6). To simplify the notation,
we denote

�k;i .A;X/ D �i .Pk IA;X/:

When k D n, �k;i .A;X/ are all eigenvalues of the matrix XA�1. Let

A D D2w; Xm D D
2umC1:

Then

S
ij

k
.D2w/DijumC1 D p

0
Xm
.A/ D

kX
iD1

�k;i .A;Xm/p.A/;
p.Xm/

p.A/
D

kY
iD1

�k;i .A;Xm/

andhp.Xm/
p.A/

i1=k
p.A/ D Œp.Xm/�

1=k Œp.A/�.k�1/=kD ŒSk.D
2w/�.k�1/=k ŒSk.D

2umC1/�
1=k :

Using (2.6), we find that

1

k
S
ij

k
.D2w/DijumC1 D

1

k

kX
iD1

�k;i .A;Xm/p.A/ D
1

k
p0Xm.A/p.A/(6.2)

� ŒSk.D
2w/�.k�1/=k ŒSk.D

2umC1/�
1=k

C
1

k

kX
iD1

�q
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=.2k/�2
p.A/:
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By combining (6.1), (6.2) and (5.17), we deduce that

(6.3)
Z
�

jwj

kX
iD1

�q
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=.2k/�2
p.A/ dx ! 0 when m!1:

From the uniform L1.�/ bound for um which can be derived from (5.3), and (6.1), we getZ
�

kX
iD1

�k;i .A;Xm/p.A/jwj dx � C.k; u0; �/:

Since jwj � c.V / > 0 for each V �� �, and p.A/ D Sk.D2w/ D Œ�.kI�/�kjwjk , we
obtain that

(6.4)
Z
V

kX
iD1

�k;i .A;Xm/dx � C.V / for each V �� �:

Thus, (6.3) and (6.4) imply the following convergence:

(6.5) �k;i .A;Xm/ �
hp.Xm/
p.A/

i1=k
! 0 locally in L1 when m!1:

To see this, let V �� � be a non-empty open set. Then

Œp.A/�1=k D �.kI�/jwj � �.kI�/c.V / D c5.k;�; V / > 0:

Thus, (6.3) implies that

(6.6)
Z
�

kX
iD1

�q
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=.2k/�2
dx ! 0 when m!1:

By the Hölder inequality and (5.9), we findZ
V

hp.Xm/
p.A/

i1=k
dx �

1

c5.k;�; V /

Z
V

ŒSk.D
2umC1/�

1=k dx

�
jV j.k�1/=k

c5.k;�; V /

� Z
V

Sk.D
2umC1/dx

�1=k
� C6.k; u0; �; V /:(6.7)

Again, by the Hölder inequality, we have�Z
V

ˇ̌̌
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=k ˇ̌̌
dx

�2
�

Z
V

�q
�k;i .A;Xm/�

hp.Xm/
p.A/

i1=.2k/�2
dx

Z
V

�q
�k;i .A;Xm/C

hp.Xm/
p.A/

i1=.2k/�2
dx

� 2

Z
V

�q
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=.2k/�2
dx

Z
V

�
�k;i .A;Xm/C

hp.Xm/
p.A/

i1=k�
dx

� 2.C.V /C C6.k; u0; �; V //

Z
V

�q
�k;i .A;Xm/ �

hp.Xm/
p.A/

i1=.2k/�2
dx:

In the last estimate, we used (6.4) and (6.7). Now, letting m!1 in the above inequality
and recalling (6.6), we obtain (6.5), as claimed.
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Recall from parts (i) and (ii) of Theorem 1.2 that, when j !1,

p.Xmj /

p.A/
D
Sk.D

2umjC1/

Sk.D2w/
D
Rk.umj /jumj j

k C .mj C 1/
�2

Œ�.kI�/�kjwjk
(6.8)

!
Œ�.kI�/�kju1j

k

Œ�.kI�/�kjwjk
D
ju1j

k

jwjk
locally in L1:

In the above local L1 convergence, as in (6.5), we also use that jwj has a positive lower
bound on each compact subset of �.

It follows from (6.5) and (6.8) that

�k;i .D
2w;D2umjC1/ D �k;i .A;Xmj /!

ju1j

jwj
locally in L1 when j !1:

Finally, we prove the pointwise convergence (1.19). The above local L1 convergence
shows that, up to extracting a subsequence, still denoted .umj /, we have

�k;i .A.x/; Xmj .x//!
ju1.x/j

jw.x/j
for a.e. x 2 �; for all i D 1; : : : ; k:

Thus, we deduce from (2.4) that

(6.9) �k;i
�
A.x/;Xmj .x/ �

ju1.x/j

jw.x/j
A.x/

�
! 0 for a.e. x 2 �; for all i D 1; : : : ; k:

Since k � 2, we know from Lemma 2.6 that EA.x/.Pk/ D ¹0º for all x 2 �. It follows
from (6.9) and Lemma 2.7 that

D2umjC1.x/ �
ju1.x/j

jw.x/j
D2w.x/! 0 for a.e. x 2 �:

Therefore, we have (1.19) and the proof of our theorem is complete.

Remark 6.1. The L1 convergence in Theorem 1.3 uses the fact that when k � 2, the
second sum in (2.6) gives nontrivial information. When k D 1, this sum is 0; however,
by Theorem 1.2 (iv), we have u1 D cw for some constant c > 0, and the following full
convergence:

�1;1.A;Xm/ D
�umC1

�w
D
R1.um/um � .mC 1/

�2

�.1I�/w
!

u1

w
D c locally in W 1;2:

Now, consider the scheme (1.15) with k D n. Then �n;1.A; Xm/; : : : ; �n;n.A; Xm/
in Theorem 1.3 are eigenvalues of D2umC1.D

2w/�1. From Theorem 1.2 (iii), we know
that um converges uniformly to a nonzero Monge–Ampère eigenfunction u1, which is
a positive multiple of w. Without loss of generality, we can assume that u1 D w. Thus,
Theorem 1.3 shows that

D2umC1.D
2w/�1 ! In locally in L1.�/

and hence D2umC1 ! D2w locally in L1.�/. Thus, a rigidity form of Proposition 1.5,
that is (2.6) of Lemma 2.4, improves the uniform convergence of um to w to an inte-



Spectral characterization and approximation for the Hessian eigenvalue 1499

rior W 2;1 convergence. Note that this W 2;1 convergence also follows from the general
result in De Philippis–Figalli, Theorem 1.1 of [7], but our proof here is different and it
also works for the k-Hessian eigenvalue problem. We state this convergence in the fol-
lowing theorem.

Theorem 6.2. Let� be a bounded, open, smooth and uniformly convex domain in Rn. Let
kD n and letw be a nonzero Monge–Ampère eigenfunction of � to which the solution um
of (1.15) converges uniformly. Then D2um converges locally in L1 to D2w in �.

Remark 6.3. Hidden in the variational characterizations (1.3) and (1.11) of the Monge–
Ampère and k-Hessian eigenvalues via the Rayleigh quotients defined in (1.10) is the
divergence form of the k-Hessian operators. For k D 1, the frequently used Rayleigh
quotient is

Ra.u/ D

R
�
jDuj2 dxR
�
juj2 dx

:

When u 2 C 2.S�/ with u � 0 in � and u D 0 on @�, Ra.u/ is equal to R1.u/ (defined
in (1.10)) due to a simple integration by parts. Thus, the divergence form of S1.D2u/ D

�u is used here. For non-divergence form operators such as Mn�1.D
2u/ in (3.10), we do

not expect their first eigenvalues (if any) to have a variational characterization as the k-
Hessian eigenvalues. However, we expect the spectral characterizations of the k-Hessian
eigenvalues in Theorem 1.1 to have counterparts in purely non-divergence form operators
generated by hyperbolic polynomials.
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