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Trace estimates of Toeplitz operators on Bergman spaces
and applications to composition operators

Omar El-Fallah and Mohamed El Ibbaoui

Abstract. Let � be a subdomain of C and let � be a positive Borel measure on �.
In this paper, we study the asymptotic behavior of the eigenvalues of compact Toep-
litz operators T� acting on Bergman spaces on �. Let .�n.T�// be the decreasing
sequence of the eigenvalues of T�, and let � be an increasing function such that
�.n/=nA is decreasing for some A > 0. We give an explicit necessary and sufficient
geometric condition on � in order to have �n.T�/ � 1=�.n/. As applications, we
consider composition operators C' , acting on some standard analytic spaces on the
unit disc D. First, we give a general criterion ensuring that the singular values of C'
satisfy sn.C'/� 1=�.n/. Next, we focus our attention on composition operators with
univalent symbols, where we express our general criterion in terms of the harmonic
measure of '.D/. We finally study the case where @'.D/meets the unit circle in one
point and give several concrete examples. Our method is based on upper and lower
estimates of the trace of h.T�/, where h is a suitable concave or convex function.

1. Introduction

Spectral properties of Toeplitz operators associated with positive measures play an import-
ant role in spectral theory of several operators: Hankel operators, composition operators
and integration operators. In this paper, we are interested in the behavior of the eigenval-
ues of compact Toeplitz operators acting on analytic spaces on a subdomain � of C with
applications to composition operators.

Let � be a domain of C. We denote by H.�/ the class of all holomorphic functions
on �. Let !W�! .0;1/ be a continuous weight on �. The weighted Bergman space
associated with ! is given by

A2
! D

°
f 2 H.�/ W kf k! D

� Z
�

jf .z/j2 dA!.z/
�1=2

<1
±
;

where dA!.z/ D !2.z/ dA.z/ and dA is the Lebesgue measure on C.
Clearly, A2

! is a reproducing kernel space. The reproducing kernel of A2
! will be

denoted by K (or K! if necessary).
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In this paper, we call the standard Bergman spaces, denoted by A2
˛ , the Bergman

spaces on D associated with !2.z/ WD ˛C1
�
.1� jzj2/˛ , where ˛ > �1. The standard Fock

spaces F 2
˛ correspond to � D C and !2.z/ D ˛

�
e�˛jzj

2
, where ˛ > 0.

The Toeplitz operator T�, acting on A2
! , induced by a positive Borel measure � on �

is given by

T�.f /.z/ D

Z
�

f .�/K.z; �/ !2.�/ d�.�/:

The boundedness, compactness and membership to Schatten classes of Toeplitz oper-
ators have been studied in several papers (see for instance [3, 11, 14, 23–25, 31, 37]). It
has been proved that, under some regularity conditions on !, T� is bounded (respect-
ively, compact) if and only if �.Rn/=A.Rn/ D O.1/ (respectively, o.1/), where .Rn/ is a
suitable lattice of � with respect to !.

Our goal in this paper is to study the asymptotic behavior of the eigenvalues of com-
pact Toeplitz operators on A2

! . First, we fix some notations. The class of weights on �
considered in this paper, denoted by W.�/, contains all standard weights. Some examples
are listed in Section 2. To each ! 2W.�/, we associate a class of suitable lattices denoted
by L! . The definitions of W and L! are given in Section 2.

Throughout this paper we suppose that T� is compact. The decreasing sequence of
the eigenvalues of T� will be denoted by .�n.T�//. It is proved in [11] that �n.T�/ D
O.1= log .n// for some  > 0 if and only if there exists c > 0 such thatX

n

exp
�
� c

�A.Rn/
�.Rn/

�1=�
<1;

for some .Rn/n 2 L! .
In this paper we are interested in compact Toeplitz operators T� such that 1=�n.T�/D

O.nA/ for some A > 0.
Recall that since T� is compact, we have limn!C1 �.Rn/=A.Rn/ D 0: Let .Rn.�//

be an enumeration of .Rn/ such that the sequence

an.�/ WD
�.Rn.�//

A.Rn.�//

is decreasing. First, we will prove the following result.

Theorem A. Let .Rn/ 2 L! , where ! 2 W . Let � W Œ1;C1/! .0;C1/ be an increas-
ing function such that �.x/=xA is decreasing for some A > 0. Let � be a positive Borel
measure on � such that T� defines a compact operator on A2

! . Then,

(1) �n.T�/ D O.1=�.n// ” an.�/ D O.1=�.n//.

(2) �n.T�/ � 1=�.n/ ” an.�/ � 1=�.n/.

A preliminary version of this theorem, in the case of standard Bergman spaces of the
unit disc, was announced in [6]. Before going on, two remarks on Theorem A are in order.
(i) The growth condition on � is, in some sense, necessary. Indeed, let � be an increasing

function such that �.x/D o.�.2x// when x!C1. One can construct (see Section
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4.5) a Toeplitz operator T� such that for any lattice .Rn/n we have

lim sup
n!1

�n.T�/

an.�/
D C1;

where an.�/ is the decreasing rearrangement of .�.Rn/=A.Rn//.
(ii) In general, the sequence .an.�//n is not sufficient to give asymptotic estimates of

.�n.T�//n. Indeed, one can construct two positive Borel measures � and � on the
unit disc D such that

an.�/ D an.�/ and lim sup
n!1

�n.T�/=�n.T�/ D1:

Next, we analyze the connection between the behavior of the eigenvalues of T� and the
behavior of the Berezin transform of T�. Recall that the Berezin transform of a Toeplitz
operator T� acting on A2

! is given by

(1.1) Q�.z/ D
hT�Kz ; Kzi

kKzk2
; z 2 �:

Let .Rn/n�1 2 L! and let zn be the center of Rn. It is known that T� is compact if and
only if

lim
n!1

Q�.zn/ D 0:

As before, let .zn.�// be an enumeration of .zn/ such that the sequence .bn.�//n, defined
by

(1.2) bn.�/ WD Q�.zn.�//;

is decreasing.
First, we consider Toeplitz operators T� such that 1=�n.T�/ D O.n / for some  2

.0; 1/. We have the following.

Theorem B. Let ! 2 W and let � be a positive Borel measure on � such that T� is
compact. Let �W Œ1;C1/! .0;C1/ be an increasing positive function such that �.x/=x

is decreasing for some  2 .0; 1/. We have

�n.T�/ � 1=�.n/ ” bn.�/ � 1=�.n/:

The case �n.T�/. 1=nA, for someA>1, is rather different. Indeed, to have a descrip-
tion of the behavior of the eigenvalues of such Toeplitz operators in terms of .bn.�// it is
necessary that

(1.3) Cp.A
2
! ; .Rn// WD sup

n�1

X
j�1

Q�pn .zj / <1; .p 2 .0; 1//;

where d�n D dAjRn (see Theorem 5.3).
We will prove the following converse.
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Theorem C. Let ! 2 W ; .Rn/n 2 L! . Let � be a positive Borel measure on � such
that T� is compact. Suppose thatCp.A2

! ; .Rn/n/ <1 for all p 2 .0;1/. Let �W Œ1;C1/!
.0;C1/ be an increasing positive function satisfying �.t/=t is increasing for some  > 1
and �.t/=tˇ is decreasing for some large ˇ. Then we have

�n.T�/ � 1=�.n/ ” bn.�/ � 1=�.n/:

The proofs of these theorems are based on upper and lower estimates of the trace
of h.T�/ for convex and concave functions h.

As application, we consider composition operators on H˛ D ¹f 2H.D/ W f 0 2 A2
˛º,

which was the original motivation of this work. Let ' be an analytic self map of D. The
composition operator on H˛ induced by a symbol ' is defined by

C'.f / D f ı '; .f 2 H˛/:

Using Theorem A and a standard connection between composition operators and
Toeplitz operators, we give estimates of the singular values sn.C' ;H˛/ of general com-
position operators C' , when 1=sn.C' ;H˛/ does not increase faster than all polynomials.
These estimates are given in terms of the mean values of a generalized counting function
associated with '.

We also express these estimates in terms of the harmonic measure of '.D/, when ' is
univalent and '.D/ is a Jordan domain.

Next, we consider composition operators C' induced by univalent symbols ' such that
@'.D/ \ @D is reduced to one point. Namely, we suppose that @'.D/ has, in a neighbor-
hood of C1, a polar equation 1 � r D .j� j/, where  W �0; ��!�0; 1� is a differentiable
increasing function with .0/ D 0, and satisfying the following conditions:

(1.4)
.t/

t
is increasing ;  0.t/ D O..t/=t/ as t ! 0C;

and

(1.5) .t/ D O.t= logˇ .1=t// for some ˇ > 1=2:

Recall that by Tsuji–Warschwski’s theorem, (see [33]), C' is compact if and only ifZ
0

.s/

s2
ds D1:

It is proved in [7] that the composition operator C' on H˛ is in the p-Schatten class
(p > 0) if and only if

(1.6)
Z
0

e�
p˛
2 �.t/

.t/
dt <1;

where

(1.7) �.t/ D
2

�

Z 1

t

.s/

s2
ds:
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We have the following result.

Theorem D. Let ˛ > 0 and let�,  and ' be as before. Suppose that
R
0
.t/

t2
dt D1. We

have:
(1) If limt!0C .t/ log.1=t/=t D1, then

sn.C' ;H˛/ D O.1=n
A/ for all A > 0:

(2) If .t/ log.1=t/=t D O.1/, then

sn.C' ;H˛/ � exp
�
�
˛

2
�.xn/

�
;

where xn is given by
R 2
xn

dt
.t/
D n.

As examples, we obtain:

Corollary 1.1. With the same notations as above, we have:
(1) If .t/ D �t=log.e=t/, with � > 0, then

sn.C' ;H˛/ �
1

n˛�=2�
�

(2) If .t/ D �t=log.e=t/ log log.e2=t/, with � > 0, then

sn.C' ;H˛/ �
1

.logn/˛�=�
�

The article is organized as follows. In Section 2, we recall some classical results on
compact operators and introduce the weighted Bergman spaces considered throughout
this paper. In Section 3, we show how to obtain estimates of the eigenvalues of a compact
operator from trace estimates. Section 4 is devoted to proving the estimates of Tr.h.T�//,
where h satisfies some concave/convex conditions. It is important to note that the proof
presented in this paper, in particular in the concave case, is different from Luecking’s
proof [24] and does not require off-diagonal kernel estimates. This section contains the
proof of Theorem A. In Section 5, we study the behavior of the eigenvalues of T� in terms
of its Berezin transform. In Section 6, we consider composition operators C' with general
symbol ' and give estimates of the singular values of C' in terms of the generalized
Nevanlinna function associated with '. Section 7 is devoted to composition operators
with univalent symbols. We express the asymptotic behavior of the singular values of C'
in terms of the harmonic measure of '.D/ and we give explicit examples. In the last
section we consider examples of composition operators acting on the Hardy space and on
the classical Dirichlet space.

Notations. Throughout this paper, we will use the following notations:
• x . y if there exists a constant C > 0 such that x � Cy,
• x � y if x . y and y . x,
• C.x1; : : : ; xn/ is a constant which depends on x1; : : : ; xn.
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2. Preliminaries

2.1. Compact operators

Let H be a complex Hilbert space and let T be a bounded operator on H . The class of
compact operators on H will be denoted �1 or (�1.H/ if necessary). Let T 2 �1. The
sequence .sn.T //n�1 (or .sn.T;H//n) denotes the non increasing sequence of eigenvalues
of .T �T /1=2. If T is positive, .sn.T //n�1 is the sequence of eigenvalues of T and we write
in this case sn.T / D �n.T /.

By the spectral decomposition of compact operators, every compact operator T on H
can be written as follows:

Tf D
X
n

sn.T /hf; fnign; .f 2 H/;

where .fn/ and .gn/n�1 are orthonormal systems of H .
So, it is easy to see that

sn.T / D inf ¹kT �Rk; dimR.H/ < nº:

In particular, if T and S are two compact operators such that T D XS , where X is a
contraction, then

sn.T / � sn.S/; for all n � 0:

Recall that a compact operator T on H belongs to the p-Schatten class �p (for p > 0) if

kT kp WD
�X
n�1

sn.T /
p
�1=p

<1:

The following result is known as the monotonicity Weyl lemma.

Lemma 2.1. Let T; S be two positive bounded operators on a complex Hilbert space H
such that T � S . If S is compact, then T is compact and �n.T / � �n.S/ for all n � 1.

Let hW Œ0;1/! Œ0;1/ be a continuous function such that h.0/D 0. For each positive
compact operator T D

P
n�0 �nh:; enien, the operator h.T / DW

P
n�0 h.�n/h:; enien is a

positive compact operator and Tr.h.T //D
P
n�0 h.�n/. We will also need the following

general result, see [29].

Lemma 2.2. Let .Tn/n�1 be a sequence of positive compact operators on a Hilbert
space H and let T D

P
n�1 Tn .with norm-operator convergence/. Let hW Œ0;C1/ !

Œ0;C1/ be an increasing function such that h.0/ D 0. Then:
(1) If h is convex, then Tr.h.T // �

P
n Tr.h.Tn//:

(2) If h is concave, then Tr.h.T // �
P
n Tr.h.Tn//:

The following classical result will be used in Section 4.

Lemma 2.3. Let p � 1 and let .an/n�1; .bn/n�1 be two positive decreasing sequences.
Suppose that

nX
kD1

a
1=p

k
�

nX
kD1

b
1=p

k
; for all n � 1:
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Then, for every increasing positive function h such that h.tp/ is convex, we have

(2.1)
nX
kD1

h .an/ �

nX
kD1

h.bn/:

Proof. This is a direct consequence of Corollary 3.3 of Chapter IV in [13].

2.2. Weighted Bergman spaces

In this subsection we recall briefly the definition of the class of weights W introduced
in [11]. Let � be a domain (bounded or not) of C and let @� denote the boundary of �.
Let @1� D @� if � is bounded and @1� D @� [ ¹1º if � is not bounded. Let !
be a positive continuous weight on �. In what follows, we suppose that the reproducing
kernel K of A2

! satisfies the following two conditions:

(2.2) lim
z!@1�

kKzk D 1;

and for every � 2 �,

(2.3) jK.�; z/j D o.kKzk/ as z ! @1�:

Let

(2.4) �.z/.D �!.z// WD
1

!.z/kKzk
; z 2 �:

Definition 2.4. Let ! be a weight such that (2.2) and (2.3) are satisfied. We say that
! 2 W (or W.�/) if there exists constants a; C > 0 such that for z; � 2 � satisfying
jz � �j � a�.z/, we have

kKzkkK�k � C jK.�; z/j;
1

C
�.�/ � �.z/ � C�.�/;(2.5)

and

�.z/ D O.min.1; dist.z; @1�///:(2.6)

Now, we give some examples.

• Standard Bergman spaces on the unit disc D. For ˛ > �1, define

A2
˛ WD

°
f 2 H.D/ : kf k2˛ D

Z
D
jf .z/j2 dA˛.z/ <1

±
;

where dA˛ D ˛C1
�
dA. The reproducing kernel is given by

K˛z .w/ D
1

.1 � zw/2C˛

and
�2˛ .z/ WD �

2.z/ D .1C ˛/.1 � jzj2/2:
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• Weighted Bergman spaces on D. Let D be the class of Oleinik–Perel’man weights
on D (see [3, 11, 25]). It is easy to see from [3, 23], that if ! 2 D , then ! 2 W ,

kK!z k
2
� !�2.z/�.log.1=!.z// and �!.z/

2
�

1

�.log.1=!.z///
�

For a more general situation, see [16].
• Standard Fock spaces. For ˛ > 0, define

(2.7) F 2
˛ WD F 2

˛ .C/ D
°
f 2 H.C/ W kf k2 D

˛

�

Z
C
jf .z/j2e�˛jzj

2

dA.z/ <1
±
:

Then the reproducing kernel is given by K.z;w/ D e˛z Nw and �.z/ � 1.

• Weighted Fock spaces. In this case, A2
! will be denoted by F 2

! . Let !2.z/ D e�‰.jzj
2/

be a positive weight on C. We say that ! 2 R if ‰W Œ0;C1/! .0;C1/ 2 C3 and
satisfies the following conditions:

(2.8) ‰0 > 0; ‰00 � 0; ‰000 � 0;

and

(2.9) ˆ00.x/ D O.x�1=2.ˆ0.x//1C�/ for some � < 1=2;

where ˆ.x/ D x‰0.x/. This class of spaces was considered in [31] by K. Seip and
E. H. Youssfi. One can see that since polynomials are dense in F 2

! , conditions (2.2)
and (2.3) are satisfied. It is proved in [31] that

�!.z/
�2
DW K.z; z/!2.z/ � ˆ0.jzj2/:

Using Lemma 3.2 of [31], it is not hard to prove that ! 2 W .

It is proved in [11] that, if ! 2W , then there exist B! > 1; ı! 2 .0; a=4B!/ such that
for all ı 2 .0; ı!/ there exists .zn/ 2 � such that
• � D [n�1D.zn; ı�!.zn// D [n�1D.zn; B!ı�!.zn//.
• D.zn;

ı
B!
�!.zn// \D.zm;

ı
B!
�!.zm// D ;, for n ¤ m.

• z 2 D.zn; ı�!.zn// implies that D.z; ı�!.z// � D.zn; B!ı�!.zn//.
• There exists an integerN such that everyD.zn;B!ı�!.zn// cuts at mostN sets of the

family .D.zm; B!ı�!.zm///m/. We say that .D.zn; B!ı�!.zn///n is of finite multi-
plicity.
In the sequel, for ! 2 W , the constants B! and ı! will be fixed.

Definition 2.5. We say that .Rn/n 2L! if .Rn/n D .D.zn; ı�!.zn///n satisfies the above
four conditions.

In the following, we will consider ! 2 W and suppose that T� is compact. That is,
�.Rn/=A.Rn/ D o.1/ (see [11]). As mentioned before, .Rn.�// will denote an enumer-
ation of .Rn/n such that

(2.10) an.�/ WD �.Rn.�//=A.Rn.�//;

is decreasing.
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For b > 0, bD.z; r/ will denote the disc D.z; br/.

Lemma 2.6. Let ! 2W and let .Rn/ 2L! . Let � be a positive Borel measure on� such
that T� is compact on A2

! . Denote by b D .1C B!/=2 and by �n the restriction of � to
[k�nRk.�/. Let �n and � be the following measures:

d�n D

nX
jD1

aj .�/ dAjbRj .�/ and d� D
X
j�1

aj .�/ dAjbRj .�/:

Then, there exists a constant C D C.!; .Rn// > 0 such that

(1) T�n � CT�n and T� � CT� .

(2) kT�k � Ca1.�/.
(3) �k.T�n/ � C�k.T�n/, for k � 1.

(4) �k.T�n/ � �k.T�/ � �k.T�n/C CanC1.�/, for k � 1.

Proof. By the subharmonicity inequality applied to the function � ! jf .�/=K.�; w/j2,
we have

jf .�/=K.�; w/j2 .
1

�2.�/

Z
bRn

jf .z/j2

jK.z;w/j2
dA.z/; w; � 2 Rn:

In particular,

jf .�/=K.�; �/j2 .
1

�2.�/

Z
bRn

jf .z/j2

jK.z; �/j2
dA.z/; � 2 Rn:

Note that for z; � 2 bRn, �.�/ � �.z/ D 1
!.z/kKzk

and jK.�; z/ � kK�kkKzk. Then we
obtain

jf .�/j2

kK�k2
.

1

�2.�/

Z
bRn

jf .z/j2

kKzk2
dA.z/ �

Z
bRn

jf .z/j2 !.z/2 dA.z/:

Consequently, there exists a constant C1 > 0, which depends on ! and .Rn/n, such that

(2.11) jf .�/j2!2.�/ �
C1

A.Rn/

Z
bRn

jf .z/j2 !2.z/ dA.z/; .� 2 Rn/:

This gives that

(2.12)
Z
Rn

jf .�/j2 !2.�/ d�.�/ � C1an.�/

Z
bRn

jf .z/j2 !2.z/ dA.z/:

This implies

hT�nf; f i D

Z
�

jf .�/j2 !2.�/ d�n.�/ �

nX
jD1

Z
Rj .�/

jf .�/j2 !2.�/ d�.�/

� C1

nX
jD1

aj .�/

Z
bRj .�/

jf .z/j2 !2.z/ dA.z/ D C1

Z
�

jf .z/j2 !2.z/d�n.z/

D hC1T�nf; f i:

This means that T�n � C1T�n , which proves the part (1) of the lemma.



O. El-Fallah and M. El Ibbaoui 1732

Let N be the multiplicity of .D.zn; B!ı�!.zn///n. From part (1) we have

0 � T� � C1T� � NC1a1.�/ IdA2
!
:

Then kT�k � NC1a1.�/.
Clearly, part (3) is a consequence of part (1) and Lemma 2.1.
Since �n � �, we have T�n � T�. Then by Lemma 2.1, we get �k.T�n/ � �k.T�/.

For the second inequality note that �k.T�/ � �k.T�n/ C kT� � T�nk: Using part (2),
applied to � � �n, we obtain

kT� � T�nk D kT���nk � Ca1.� � �n/ � CanC1.�/:

Combining the two last inequalities, we obtain �k.T�/ � �k.T�n/C CanC1.�/:

3. A general argument

Let ˇ > 0 and let ı > 0. The function hˇ;ı defined on Œ0;1/ is given by

hˇ;ı.t/ D .t
ˇ
� ı/C WD max.tˇ � ı; 0/:

The functions hˇ;ı , will play an important role in our study. First, note that hˇ;ı is convex
for ˇ � 1 and if ˇ 2 .0; 1/, we have hˇ;ı.tp/ and hp

ˇ;ı
are convex if and only if p � 1=ˇ.

The following two lemmas will be used in the sequel to obtain estimates of eigenvalues
of positive compact operator T from upper and lower estimates of the trace of h.T / for
some suitable functions h.

Lemma 3.1. Let ˇ 2 .0; 1� and let .an/n�1 be a decreasing sequence. Let �W Œ1;C1/!
.0;C1/ be an increasing positive function such that �.x/=x is decreasing for some
 2 .0; 1=ˇ/. Suppose that there exists B > 0 such that for every ı 2 .0; 1/, we have

(3.1)
X
n�1

hˇ;ı

� 1

B�.n/

�
�

X
n�1

hˇ;ı.an/ �
X
n�1

hˇ;ı

� B

�.n/

�
:

Then an � 1=�.n/.

Proof. Without loss of generality, we suppose that � is strictly increasing and ˇ D 1. Let
ı > 0 and let hı.t/ D .t � ı/C. By (3.1) we haveX

an�2ı

an � 2
X
an�2ı

.an � ı/ � 2
X
n

hı.an/ � 2
X
n

hı.B=�.n// �
X

�.n/�B=ı

2B

�.n/

and X
�.n/� 1

2Bı

1

B�.n/
� 2

X
n

� 1

B�.n/
� ı

�C
� 2

X
n

.an � ı/
C
� 2

X
an�ı

an:
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These inequalities can be written as follows:

(3.2)
X

�.n/�1=.2Bı/

1

�.n/
.
X
an�ı

an .
X

�.n/�2B=ı

1

�.n/
�

We have X
�.n/�x

1

�.n/
�
��1.x/

x
�

Indeed, obviously we have
��1.x/

x
.

X
�.n/�x

1

�.n/
�

Conversely, using the fact that �.x/=x is decreasing, we haveX
�.n/�x

1

�.n/
D

X
�.n/�x

n

�.n/

1

n
.
.��1.x//

x

X
�.n/�x

1

n
�
��1.x/

x
�

Then X
an�ı

an .
ı

B
��1

�2B
ı

�
:

Let N.ı/ WD Card¹n W an � ıº. Since ıN.ı/ �
P
an�ı

an, we obtain

N.ı/ .
1

B
��1

�2B
ı

�
:

In particular, for ı D an, we get

n .
1

B
��1

�2B
an

�
:

This implies that

(3.3) an .
1

�.n/
�

Let A > 1. Since x1==��1.x/ is decreasing, we have ��1.x=A/ � A�1=��1.x/. ThenX
an�Aı

an .
Aı

B
��1

�2B
Aı

�
.
� 1
A

�.1�/= ı
B
��1

�2B
ı

�
Then, for sufficiently large A, we haveX

an�ı

an �
X

ı�an�Aı

an:

Using the left inequality of (3.2), we get

ı��1.1=2Bı/ .
X

�.n/�1=.2Bı/

1

�.n/
.

X
ı�an�Aı

an . AıN.ı/:
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In particular, for ı D an, we obtain ��1.1=2Ban/ . n. Then

(3.4)
1

�.n/
. an:

Combining (3.3) and (3.4), we obtain an � 1=�.n/.

The following lemma will be used in Section 5.

Lemma 3.2. Let .an/n�1 be a positive decreasing sequence. Let �W Œ1;C1/! .0;C1/

be an increasing positive function. Suppose that there exist ˇ > 1 and  > 1 such that
�.t/=t is increasing and �.t/=tˇ is decreasing.

Let p 2 .0; 1=ˇ/ and suppose that there exists B > 0 such that for every increasing
concave function h satisfying that h.t/=tp is increasing, we have

(3.5)
1

B

X
n�1

h
� 1

�.n/

�
�

X
n�1

h.an/ � B
X
n�1

h
� 1

�.n/

�
:

Then an � 1=�.n/.

Proof. Let ı > 0 and let h be the concave function given by

h.t/ D

²
t; t 2 .0; ı/;

ı1�p tp; t � ı:

Clearly h.t/=tp is increasing. Then (3.5) implies

1

B

� X
�.n/>1=ı

1

�.n/
C ı1�p

X
�.n/�1=ı

1

�.n/p

�
�

X
an<ı

an C ı
1�p

X
an�ı

apn

� B
� X
�.n/>1=ı

1

�.n/
C ı1�p

X
�.n/�1=ı

1

�.n/p

�
:(3.6)

Now we proceed as in the proof of Lemma 3.1. Let N.ı/ D Card¹n W an � ıº. It is clear
that ıN.ı/ � ı1�p

P
an�ı

a
p
n . Then,

ıN.ı/ .
X

�.n/>1=ı

1

�.n/
C ı1�p

X
�.n/�1=ı

1

�.n/p
�

Using the fact that �.n/=n is increasing and �.n/p=npˇ is decreasing with  > 1 and
pˇ 2 .0; 1/, we getX

�.n/�1=ı

1

�.n/
� ı��1.1=ı/ and ı1�p

X
�.n/�1=ı

1

�.n/p
� ı��1.1=ı/:

Then ıN.ı/ . ı��1.1=ı/, which implies that an . 1=�.n/.
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For the reverse inequality, we repeat the argument used in the proof of Lemma 3.1.
Indeed, one can verify thatX

an<ı=K

an C ı
1�p

X
an�Kı

apn � C.K/ı�
�1.1=ı/; with lim

K!1
C.K/ D 0:

So, from (3.6) we obtain

ı1�p

B

X
�.n/�1=ı

1

�.n/p
�

X
an<ı

an C ı
1�p

X
an�ı

apn

�

X
an<ı=K

an C ı
1�p

X
an�Kı

apn C
X

ı=K�an<ı

an C ı
1�p

X
ı�an<Kı

apn

� C.K/ı��1.1=ı/C C.K; p/ıN.ı=K/;

Taking into account that

ı1�p
X

�.n/�1=ı

1

�.n/p
� ı��1.1=ı/;

we get, for large K, that ��1.1=ı/ . N.ı=K/; which implies that 1=�.n/ . an. This
completes the proof.

4. Estimates of the trace of h.T�/

4.1. The convex case

The following result is implicitly proved in [11]. Here we give a direct and short proof.
Recall that the sequence .an.�//n is given by equation (2.10).

Theorem 4.1. Let ! 2 W and let .Rn/ 2 L! . Let � be a positive Borel measure on �
such that T� is compact on A2

! . Let h be a convex increasing function such that h.0/D 0.
We have X

n

h
� 1
B
an.�/

�
�

X
n

h.�n.T�// �
X
n

h.Ban.�//;

where B is a positive constant which depends on ! and .Rn/.

Proof. We will use here the same notations as in Lemma 2.6. Since limn!1 an.�/ D 0,
T� is a compact operator, see [11]. Let .fn/n�1 be an orthonormal basis of eigenfunctions
of T� . We haveX

n�1

h.�n.T�// �
X
n�1

h.C�n.T�// D
X
n�1

h.C hT�fn; fni/

D

X
n�1

h
�
C

Z
�

jfn.z/j
2!2.z/ d�.z/

�
�

X
n�1

h
�X

k

NCak.�/

Z
Rk.�/

jfn.z/j
2 dA!.z/

�
;

where N is the multiplicity of .bRn/n.
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Since h is convex, by Jensen’s inequality, we getX
n�1

h.�n.T�// �
X
n;k

h.N 2C ak.�//
1

N

Z
Rk.�/

jfn.z/j
2 dA!.z/

D

X
k

h.N 2C ak.�//
1

N

Z
Rk.�/

X
n

jfn.z/j
2 dA!.z/

.
X
k

h.N 2C ak.�//

Z
Rk.�/

kKzk
2 dA!.z/ .

X
k

h.N 2C ak.�//:

Conversely, let N�j D �jRj .�/ and put N� D
P
j�1 N�j . We have T N� � NT�. Note also

that since T N� is a positive compact operator, �1.T N�/ D kT N�k. So, by Lemma 2.6 and
Lemma 2.2, we have

Tr.h.T�// � Tr
�
h
� 1
N
T N�

��
�

X
j�1

Tr
�
h
� 1
N
T N�j

��
�

X
j�1

h
� 1
N
�1.T N�j /

�
D

X
j�1

h
� 1
N
kT N�j k

�
�

X
j�1

h
� 1
N

D
T N�j

Kzj

kKzj k
;
Kzj

kKzj k

E�
;

where zj is the center of Rj .�/.
Now, sinceD

T N�j
Kzj

kKzj k
;
Kzj

kKzj k

E
D

Z
Rj .�/

ˇ̌̌Kzj .�/
kKzj k

ˇ̌̌2
!2.z/ d�.z/ � aj .�/;

there exists C > 0 such that

Tr.h.T�// �
X
j�1

h
� 1
N

D
T N�j

Kzj

kKzj k
;
Kzj

kKzj k

E�
�

X
j�1

h
� 1

NC
aj

�
:

This ends the proof.

4.2. The concave case

Theorem A will be obtained from the following result.

Theorem 4.2. Let ! 2 W and let .Rn/ 2 L! . Let � be a positive Borel measure on �
such that T� is compact on A2

! . Let h be a concave increasing function such that h.0/D 0.
We have

1

B

X
n�1

h.an.�// �
X
n�1

h.�n.T�// � B
X
n�1

X
k�0

h.an.�/e
�k/:

In addition, if h.t/=tp is increasing for some p 2 .0; 1/, thenX
n�1

h.�n.T�// �
B

p

X
n�1

h.an.�//;

where B;  > 0 are constants which depend only on ! and .Rn/.
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We will need the following lemma in the proof of Theorem 4.2.

Lemma 4.3. Let ! 2W and let .Rn/ 2L! . Let �n D dAjRn . Then T�n is compact on A2
!

and
�k.T�n/ � Be

�k ;

where B;  > 0 depend on ! and .Rn/.

Proof. Following the same proof of Theorem 3.8 of [23], there exist B > 0 and ı 2 .0; 1/
such that

kT�nk
p
p � B.1 � ı

p/�1 �
C.ı; B/

p
; for p 2 .0; 1=2/:

This implies that k�p
k
.T�n/ � C=p, where C D C.ı; B/. Then, for 1=p D k=.eC /, we

obtain the desired result, with  D 1=.eC /.

Proof of Theorem 4.2. We use the same notations as in Lemma 2.6. Let Q� be the positive
Borel measure given by

d Q� D
X
k

1

NKak.�/
�jRk.�/; where K > 0;

and with the convention

1

NKak.�/
�jRk.�/ D 0 if ak.�/ D 0.

By Lemma 2.6, T Q� is bounded and

kT Q�k � C sup
n

Q�.Rn/

A.Rn/
�

Note that if Rn \Rk ¤ ; then A.Rn/ � A.Rk/. We have

Q�.Rn/

A.Rn/
D

1

NK

X
kW Rk\Rn¤;

�.Rn \Rk/

ak.�/A.Rn/

�
1

NK

X
kW Rk\Rn¤;

�.Rk/

ak.�/A.Rn/

�
1

NK

X
kW Rk\Rn¤;

�.Rk/

ak.�/A.Rk/

.
1

K
�

Then, for large K, we have
kT Q�k � 1:



O. El-Fallah and M. El Ibbaoui 1738

Let .fn/n�1 be an orthonormal basis of A2
! of eigenfunctions of T�. We haveX

n�1

h.�n.T�// D
X
n�1

h.hT�fn; fni/ D
X
n�1

h
� Z

�

jfn.z/j
2!2.z/ d�.z/

�
�

X
n�1

h
� 1
N

X
k

Z
Rk.�/

jfn.z/j
2!2.z/ d�.z/

�
D

X
n�1

h
�X

k

CKak.�/

Z
Rk.�/

jfn.z/j
2!2.z/ d Q�.z/

�
�

X
n�1

X
k

h.CKak.�//

Z
Rk.�/

jfn.z/j
2!2.z/ d Q�.z/

D

X
k

h.CKak.�//
X
n�1

Z
Rk.�/

jfn.z/j
2!2.z/ d Q�.z/

D

X
k

h.CKak.�//

Z
Rk.�/

kKzk
2!2.z/ d Q�.z/ �

X
k

h.ak.�//;

which gives the first inequality.
Let N�j D �jRj .�/. Since � �

P1
jD1 N�j , by Lemma 2.6 and Lemma 2.2 we have

Tr.h.T�// � Tr
�
h
� 1X
jD1

T N�j

��
�

1X
jD1

Tr.h.T N�j //:

By Lemma 2.6, T N�j � CT�j , where d�j D aj .�/dAjbRj .�/. Then by Lemma 4.3, we have

Tr.h.T N�j // � Tr.h.CT�j // .
1X
kD1

h
�
Caj .�/e

�k
�

.
1X
kD1

h
�
aj .�/e

�k
�
:

Then we obtain the second inequality of Theorem 4.2.
Now we prove the last inequality of Theorem 4.2 . Since h.t/=tp is increasing, we

have
h.aj .�/e

�k/ � h.aj .�//e
�pk :

It implies that

1X
jD1

1X
kD1

h
�
aj .�/e

�k
�

.
1X
jD1

1X
kD1

h.aj .�//e
�pk

�
1

p

1X
jD1

h.aj .�//:

Then we get X
n�1

h.�n.T�// D Tr.h.T�// .
1

p

1X
jD1

h.aj .�//;

and the proof is complete.
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4.3. Remarks

(1) It is proved by P. Lin and R. Rochberg in [23] that if ! 2 D then for all p � 1,
T� 2 Sp if and only if .an.�//n 2 `p . They also proved, for p 2 .0; 1/, that if
.an.�//n 2 `

p then T� 2 Sp . Since D � W , it is clear from Theorem 4.2 that the
converse is also true. (See [2] for radial weights).

(2) For ! 2 R, the class of weights introduced by K. Seip and E. H. Youssfi in [31],
Theorem 4.2 completes the characterization of membership to Schatten classes given
in [31].

(3) The factor 1=p in Theorem 4.2 can not be replaced by 1=p1�". Indeed, let � D D
and let ! D 1. Suppose thatX

n�1

�pn .T�/ �
B

p1�"

X
n�1

apn .�/; (for all p > 0/;

for every positive Borel measure � on D. Then if � is of compact support, we have

n�pn .T�/ �
X
j�1

�
p
j .T�/ �

C

p1�"
; (for all p 2 .0; 1//;

for some constant C > 0. This implies that

�n.T�/ � e
�Kn1=.1�"/ :

Now, for d� D dAjD.0;ı/, where ı 2 .0; 1/, we have

�n.T�/ D 2

Z ı

0

r2nC1dr �
1

nC 1
ı2nC2;

which gives a contradiction.

4.4. Proof of Theorem A

The following corollary is somewhat more general than Theorem A.

Corollary 4.4. Let ! 2 W and let .Rn/ 2 L! . Let � be a positive Borel measure on �
such that T� is compact on A2

! . For p 2 .0; 1/ and for all " > 0, we have

p1C"C1

nX
jD1

a
p
j .�/ �

nX
jD1

�
p
j .T�/ �

C2

p

nX
jD1

a
p
j .�/;

where C1 is a positive constant which depends on ", ! and .Rn/, and C2 is a positive
constant which depends on ! and .Rn/.

Proof. Applying Theorem 4.2 to T�n and taking into account the multiplicity of .Rn/,
there exists B1 > 0, which depends only on ! and .Rn/, such that

nX
jD1

�
p
j .T�n/ �

B1

p

nX
jD1

a
p
j .�/:
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By Lemma 2.6,
�j .T�/ � �j .T�n/C CanC1.�/:

We obtain

nX
jD1

�
p
j .T�/ �

B1

p

nX
jD1

.a
p
j .�/C C

pa
p
nC1.�// �

B1C
0

p

nX
jD1

a
p
j .�/:

Conversely, let q 2 .0; 1/. By Theorem 4.2, applied to T�n , we have

1X
jD1

�
pq
j .T�n/ �

B1

pq

nX
jD1

a
pq
j .�/:

Then

�
p
j .T�n/ �

� B1
jpq

nX
kD1

a
pq

k
.�/

�1=q
�

�B1
q

�1=q n1=q�1

p1=qj 1=q

nX
kD1

a
p

k
.�/:

Then, for A > 0 we haveX
j�AnC1

�
p
j .T�n// �

C.B1; q/

p1=qA1=q�1

nX
kD1

a
p

k
.�/:

Once again, by Theorem 4.2, we have

1

B

nX
jD1

a
p
j .�/ �

1X
jD1

�
p
j .T�n/ �

AnX
jD1

�
p
j .T�n/C

1X
jDAnC1

�
p
j .T�n/

� A

nX
jD1

�
p
j .T�n/C

C.B1; q/

p1=qA1=q�1

nX
jD1

a
p
j .�/ � A

nX
jD1

�
p
j .T�/C

C.B1; q/

p1=qA1=q�1

nX
jD1

a
p
j .�/:

For q D 1
1C"

and for A big enough we obtain the result.

Now we can state the following important consequence of Corollary 4.4.

Theorem 4.5. Let ! 2 W and let .Rn/ 2 L! . Let � be a positive Borel measure on �
such that T� is compact on A2

! . Let h be an increasing function on Œ0;C1/ such that
h.0/ D 0 and h.tp/ is convex for some p > 0. We have

nX
jD1

h
� 1
B
aj .�/

�
�

nX
jD1

h.�j .T�// �

nX
jD1

h.Baj .�//; for n � 1;

where B > 0 is a positive constant which depends on !, .Rn/ and p.

Proof. This is a consequence of Lemma 2.3 and Corollary 4.4.
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Proof of Theorem A. We prove (1). Suppose that an.�/DO.1=�.n//. Let p 2 .0; 1/ such
that pA < 1. We have

nX
kD1

1

�p.k/
� n=�p.n/:

By Corollary 4.4, since an.�/ D O.1=�.n//, we obtain

n�pn .T�/ �

nX
kD1

�
p

k
.T�/ .

nX
kD1

a
p

k
.�/ . n=�p.n/:

This implies that �n.T�/ D O.1=�.n//. The reverse implication is obtained in the same
way.

The second assertion comes from Theorem 4.5 and Lemma 3.1.

4.5. Remarks on Theorem A

In this section we provide two examples. The first one shows that the condition �.x/=xA is
decreasing, for some A > 0, is necessary and sharp. And in the second example we show
that the sequence .an.�// is not sufficient, in general, to describe the asymptotic behavior
of the eigenvalues of T�.

(1) The conclusion of Theorem A is not valid if � increases faster than all polynomials.
Namely, suppose that

(4.1) lim
x!C1

�.2x/

�.x/
D C1:

Let

(4.2) d�.reit / D
1

�.1=.1 � r//
r dr dt:

The Toeplitz operator T� defined on the unweighted Bergman space A2.D/ is compact.
Since � is radial, it is easy to see that fn D .nC 1/1=2 zn is an eigenfunction of T� and
for all M > 1 we have

�n.T�/ D 2�

Z 1

0

r2nC1
1

�.1=.1 � r//
dr

� 2�

Z 1�M=n

0

r2nC1
1

�.1=.1 � r//
dr �

C.M/

�.n=M/
�

For p integer, let .Rn;j .p// denote the p-adic decomposition of D: for 0 � j < pnC1,

Rn;j .p/ D
°
z 2 D I 1 �

1

pn
� jzj < 1 �

1

pnC1
and

2j�

pnC1
� arg z <

2.j C 1/�

pnC1

±
:

Let .Rn/n be a lattice of A2.D/. It is clear that for p big enough, then for all n there exists
.k; j / such that Rk;j .p/ � Rn. Note also that we have A.Rk;j .p// � A.Rn/ if Rk;j .p/
is maximal in Rn. Then we obtain

an.�/ . a0n.�/; n � 1;
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where .an.�//n (respectively, a0n.�/) is the decreasing rearrangement of .�.Rn/=A.Rn//n
(respectively, .�.Rn;j .p//=A.Rn;j .p///n). We have

�.Rn;j .p//

A.Rn;j .p//
.

1

�.pn/
�

Then we have
an.�/ . a0n.�/ .

1

�.n=1C p/
; n � 1:

Using (4.1), we obtain

lim
n!1

�.T�/

an.�/
D1:

This proves our assertion.

(2) Now, we construct two positive Borel measures � and � on D such that

an.�/ D an.�/ and lim sup
n!1

�n.T�/=�n.T�/ D1:

To this end, let � be the measure given in (4.2) and let .Rj /j be the dyadic (p D 2)
decomposition of D. Let ı > 0 be small enough and letwj 2Rj be such thatD.wj ; ı�.wj /
� Rj . There exists a subsequence .wjn/n which is an interpolating separated sequence of
A2 D A2

0, see [30]. The sequence .wjn/n satisfiesX cn
Kwn
kKwnk

2 �X jcnj
2:

Let � be the measure given by
� D

X
n�1

cn ıwjn ;

where cn D an.�/A.Rjn/. Let �n D
X
k�n

ckıwjk
, we have

�n.T�/ � kT�nk . an.�/:

This implies that lim infn!1 �n.T�/=�n.T�/ D 0, while an.�/ D an.�/.

5. The Berezin transform

5.1. Preliminaries

The Berezin transform of a bounded operator T acting on A2
! is defined by

QT .z/ D
hTKz ; Kzi

kKzk2
; .z 2 �/:

If T is positive and compact, then

Tr.T / D
Z
�

QT .z/
dA.z/

�2.z/
�

In particular, T 2 �1 if and only if QT 2 L1.�; dA=�2/.
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The following general result is standard and well known (at least for h.t/ D tp , [36]).

Proposition 5.1. Let T be a positive compact operator on A2
! . Let h be an increasing

function such that h.0/ D 0. We have:
(1) If h is convex, then X

n

h.�n.T // �

Z
�

h. QT .z//
dA.z/

�2.z/
�

(2) If h is concave, then X
n

h.�n.T // �

Z
�

h. QT .z//
dA.z/

�2.z/
�

Proof. Let .fn/n�1 be an orthonormal basis of A2
! containing a maximal orthonormal

system of eigenfunctions of T . Set �n D �n.T / and write

hTKz ; Kzi D
X
n

�njhfn; Kzij
2
D

X
n

�njfn.z/j
2:

If h is convex, thenZ
�

h. QT .z//
dA.z/

�2!.z/
D

Z
�

h
�X

n

�n
jfn.z/j

2

kKzk2

� dA.z/
�2!.z/

�

Z
�

X
n

h.�n/
jfn.z/j

2

kKzk2
dA.z/

�2!.z/

D

X
n

h.�n/

Z
�

jfn.z/j
2!2.z/ dA.z/ D

X
n

h.�n/:

The concave case is obtained in the same way.

5.2. Trace estimates and consequences

Let .Rn/ 2L! . In the sequel, zn will denote the center ofRn. For the Toeplitz operator T�
acting on A2

! , the Berezin transform of T� is denoted by Q� and is given by (1.1). In this
section we use the following notation:

O�.zn/ D �.Rn/=A.Rn/:

Recall that .an.�//n is the decreasing rearrangement of . O�.zn//n. Our goal in this section
is to estimate the eigenvalues of T� in terms of Q�.zn/. To this end, by Lemma 3.1 and
Lemma 3.2, it suffices to estimate Tr.h.T�// in terms of .h. Q�.zn///n�1. For the convex
case, we have the following result.

Theorem 5.2. Let ! 2 W . Let � be a positive Borel measure on � and let h be a convex
increasing function such that h.0/ D 0. ThenX

n�1

h
� 1
B
Q�.zn/

�
� Tr.h.T�// �

X
n�1

h.B Q�.zn//;

where B > 0 does not depend on either � or h.
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Proof. By Theorem 4.1, we haveX
n�1

h
� 1
B1
O�.zn/

�
� Tr.h.T�// D

X
n�1

h.�n.T�// �
X
n�1

h.B1 O�.zn//:

Since O�.zn/ . Q�.zn/ (see Lemma 4.2 in [11]), we deduce that

Tr.h.T�// �
X
n�1

h.B Q�.zn//:

On the other hand, by .2.11/ we have

jK.zn; �/j
2!2.zn/ .

1

A.Rn/

Z
bRn

jK.z; �/j2!2.z/ dA.z/; � 2 �:

Since �2.z/ D 1
!2.z/kKzk2

and A.Rn/ � �2.zn/, we get

jK.zn; �/j
2

kKznk
2

.
Z
bRn

jK.z; �/j2

kKzk2
dA.z/

�2!.z/
; � 2 �;

and

Q�.zn/ D

Z
�

jK.zn; �/j
2

kKznk
2

!2.�/ dA.�/

.
Z
�

Z
bRn

jK.z; �/j2

kKzk2
dA.z/

�2!.z/
!2.�/ dA.�/ D

Z
bRn

Q�.z/
dA.z/

�2!.z/
�

Since h is convex, we obtain, for some c > 0,

h.c Q�.zn// �

Z
bRn

h. Q�.z//
dA.z/

�2!.z/
�

Taking into account that .bRn/n is of finite multiplicity and using Theorem 5.1, we deduceX
n

h.c Q�.zn// .
Z
�

h. Q�.z//
dA.z/

�2!.z/
�

X
n�1

h.�n.T�// D Tr.h.T�//:

The proof is complete.

Proof of Theorem B. By Theorem 5.2, we haveX
n�1

h
� 1
B
bn.�/

�
�

X
n�1

h.�n.T�// �
X
n�1

h.Bbn.�//:

So, by Lemma 3.1 we have bn.�/ � 1=�.n/ if and only if �n.T�/ � 1=�.n/:

Now, we turn to the concave case. Let p > 0 and let d�n D dAjRn . Recall that

Cp.A
2
! ; .Rn// D sup

n�1

X
j�1

Q�pn .zj / 2 Œ0;C1/:

For the concave case we have the following result.
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Theorem 5.3. Let ! 2 W , .Rn/n 2 L! and p 2 .0; 1/. The following assertions are
equivalent:

(1) Cp.A2
! ; .Rn/n/ <1.

(2) There exists B > 0 such that for every Borel positive measure � on � and every
increasing concave function h such that h.t/=tp is increasing, we have

1

B

X
n�1

h. Q�.zn// � Tr.h.T�// � B
X
n�1

h. Q�.zn//:

Proof. The same argument as before proves that Tr.h.T�// � C2
P
n�1 h. Q�.zn//.

By Lemma 4.3, there exists B > 0 such that Tr.T p�j / � B=p. So, it is obvious that the
condition C1

P
n�1 h. Q�.zn//� Tr.h.T�//, applied with �D �n and h.t/D tp , gives that

Cp.A
2
! ; .Rn/n/ <1.

Conversely, suppose that Cp.A2
! ; .Rn/n/ <1. A standard computation gives

Q�.z/ .
X
j�1

O�.zj /
� Z

Rj

jK.z; �/j2

kKzk2
!2.�/ dA.�/

�
.
X
j�1

O�.zj / Q�j .z/:

Since h is concave and h.t/=tp is increasing, we have

h. Q�.z// .
X
j�1

h. O�.zj // Q�j .z/
p:

Consequently,X
n�1

h. Q�.zn// .
X
j�1

h. O�.zj //
X
n�1

Q�j .zn/
p:

. Cp.A
2
! ; .Rn/n/

X
j�1

h. O�.zj // . Cp.A
2
! ; .Rn/n/Tr.h.T�//:

The proof is complete.

Theorem C is a direct consequence of the following result.

Theorem 5.4. Let ! 2W and .Rn/n. Let� be a positive Borel measure on� such that T�
is compact. Let p 2 .0; 1/ be such that Cp.A2

! ; .Rn/n// <1. Let �W Œ1;C1/! .0;C1Œ

be an increasing positive function. Suppose that there exist ˇ 2 .0; 1=p/ and  > 1 such
that �.t/=t is increasing and �.t/=tˇ is decreasing. Then

�n.T�/ � 1=�.n/ ” bn.�/ � 1=�.n/:

Proof. By Theorem 5.3, we have

1

B

X
n�1

h.bn.�// �
X
n�1

h.�n.T�/ � B
X
n�1

h.bn.�//:

So, by Lemma 3.2 we have bn.�/ � 1=�.n/ if and only if �n.T�/ � 1=�.n/:
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5.3. Examples

Now, we give some examples.

(1) Standard Fock spaces. Let ˛ > 0. Let F 2
˛ be the standard Fock space given

by (2.7). First, recall that the Berezin transform of T� is given by

Q�.z/ D

Z
C
e�˛jz�� j

2

d�.�/; z 2 C:

For more information on Fock spaces, see [38].
We have Cp.F 2

˛ ; .Rn/n/ <1: for all p 2 .0; 1/. Indeed,X
j�1

Q�pn .zj / �
X
n

� Z
Rn

e�˛jzj�� j
2

dA.�/
�p

�

X
n

� Z
Rn

e�˛j� j
2

dA.�/
�p
D O.1=p/:

(2) Weighted analytic spaces. Let� be a subdomain of C and let ! 2W . LetM > 0.
We say that ! 2 WM if the reproducing kernel of A2

! satisfies

(5.1) jK.z; �/j � C.M/kKzkkK�k
�min.�!.z/; �!.�//

jz � �j

�M
:

We will denote W1 D \M>0WM . Examples of such weights can be found in [3, 16, 31].

Proposition 5.5. Let M > 1 and let ! 2 WM . For every .Rn/ 2 L! , we have

Cp.A
2
! ; .Rn/n/ <1; for all p > 1=M:

In particular, if ! 2 W1, then Cp.A2
! ; .Rn/n/ <1, for all p > 0.

Proof. Let p > 1=M and let zn be the center of Rn. We haveX
j�1

Q�pn .zj / D
X
j�1

� Z
Rn

jKzj .�/j
2

kKzj k
2
dA!.�/

�p
:

Since .B!Rj / is of finite multiplicity,

ƒn WD ¹j W B!Rj \ B!Rn ¤ ;º

is finite. ThenX
j2ƒn

� Z
Rn

jKzj .�/j
2

kKzj k
2
dA!.�/

�p
.
X
j2ƒn

� Z
Rn

kK�k
2 dA!.�/

�p
.
X
j2ƒn

� Z
Rn

1

�2!.�/
dA.�/

�p
D O.1/:
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On the other hand, since Mp > 1, let a > 0 such that .M � a/p D 1. We haveX
j…ƒn

� Z
Rn

jKzj .�/j
2

kKzj k
2
dA!.�/

�p
.
X
j…ƒn

� Z
Rn

kK�k
2
�min.�!.zj /; �!.�//

jzj � �j

�2M
dA!.�/

�p
�

X
j…ƒn

�!.zj /
.2M�2a/p �

2ap
! .zn/

jzj � znj2Mp

.
Z
�nRn

�!.�/
.2M�2a/p�2 �

2ap
! .zn/

j� � znj2Mp
dA.�/

.
Z
�nRn

�
2ap
! .zn/

j� � znj2apC2
dA.�/ D O.1/;

which implies that Cp.A2
! ; .Rn/n/ <1, whenever p > 1=M .

(3) Standard Bergman spaces on D. Let ˛ > �1, let !2˛.z/ D .1C ˛/.1 � jzj
2/˛

and let A2
˛ be the associated standard Bergman spaces. Recall that the kernel of A2

˛ is
given by

K˛z .w/ D
1

.1 � zw/2C˛
�

We have the following.

Proposition 5.6. Let .Rn/n 2 L!˛and let p 2 .0; 1/. We have Cp.A2
˛; .Rn/n// <1 if

and only if p > 1
2C˛

.

Proof. Let .Rn/ 2 L! . We have

Q�n.z/ D

Z
Rn

.1 � jzj2/2C˛

j1 � Nz�j4C2˛
dA˛.�/:

Then X
j�1

Q�pn .zj / D
X
j�1

� Z
Rn

.1 � jzj j
2/2C˛

j1 � Nzj �j4C2˛
dA˛.�/

�p
�

X
j�1

� .1 � jzj j2/2C˛ .1 � jznj2/2C˛
j1 � Nzj znj4C2˛

�p
�

Z
D

� .1 � jwj2/2C˛ .1 � jznj2/2C˛
j1 � Nwznj4C2˛

�p dA.w/

.1 � jwj2/2

�

Z
D

.1 � jznj
2/.2C˛/p

j1 � Nwznj.4C2˛/p
dA.w/

.1 � jwj2/2�.2C˛/p
�

Then, the last integral is uniformly finite if and only if p > 1
2C˛

(see Lemma 2 in [5]).

Proposition 5.6 implies that the Berezin transform is not sufficient to describe the
behavior of the eigenvalues of Toeplitz operators. In what follows, we consider a mod-
ified Berezin transform which is more appropriate to our problem in this case (see for
instance [34] and [26]).
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Let T be a bounded operator on A2
˛ and let s > �1. The modified Berezin transform,

B˛;s.T /, of T is given by

B˛;s.T /.z/ D
hTKsz ; K

s
zi

kKszk
2
˛

�

Let �.z/ D .1 � jzj2/. We have the following general result.

Proposition 5.7. Let ˛ and let s such that s > .˛ � 1/=2. Let T be a positive compact
operator on A2

˛ . We have:

(1) Tr.T / �
Z

D
B˛;s.T /.z/

dA.z/

�2.z/
�

(2) Let h be a concave function such that h.0/ D 0. Then

Tr.h.T // .
Z

D
h .B˛;s.T /.z//

dA.z/

�2.z/
�

(3) Let h be a convex function such that h.0/ D 0. ThenZ
D
h .B˛;s.T /.z//

dA.z/

�2.z/
. Tr.h.T //:

All the implied constants depend on ˛ and s.

Proof. Let f D
P
n�0 anz

n 2 A2
˛ . Write Ksz.�/ D

P
n�0 cn.s/ z

n �n. It is known that

cn.s/ � .1C n/
1Cs :

This implies that

kKs
reit
k
2
˛ D kK

s
rk
2
˛ �

1

.1 � r/2C2s�˛
�

Then we haveZ
D

jhf;Kszij
2

kKszk
2
˛

dA.z/

�2.z/
D

Z 1

0

� Z 2�

0

jhf;Ks
reit
ij
2 dt

2�

� 2rdr

kKsrk
2
˛ �

2.r/

�

Z 1

0

�X
n�0

janj
2 r2n c2n.s/

.1C n/2C2˛

�
.1 � r/2s�˛ rdr

�

X
n�0

janj
2

.1C n/2˛�2s

Z 1

0

r2nC1.1 � r/2s�˛dr � kf k2˛:

Let .fn/n�1 be an orthonormal basis of A2
˛ containing a maximal orthonormal system of

eigenfunctions of T . Write

hTKsz ; K
s
zi D

X
n

�n jhfnK
s
zij

2; .�n.T / D �n/:

Then,Z
D
B˛;s.T /.z/

dA.z/

�2.z/
D

X
n

�n

Z
D

jhfn; K
s
zij

2

kKszk
2
˛

dA.z/

�2.z/
�

X
n

�n D Tr.T /:
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To prove 2), suppose that h is concave. Then,Z
D
h.B˛;s.T /.z//

dA.z/

�2.z/
D

Z
D
h
�X

n

�n
jhfn; K

s
zij

2

kKszk
2
˛

� dA.z/
�2.z/

&
Z

D

X
n

h.�n/
jhfn; K

s
zij

2

kKszk
2
˛

dA.z/

�2.z/

D

X
n

h.�n/

Z
D

jhfn; K
s
zij

2

kKszk
2
˛

dA.z/

�2.z/
�

X
n

h.�n/:

The convex case is obtained in the same way.

Lemma 5.8. Let ˛ > �1, and let .Rn/n 2 L!˛ . Let h be a concave function such that
h.t/=tp is increasing for some p 2 .0; 1/. Let s > 1Cp˛�2p

2p
and let � be a positive Borel

measure on D. Then,
Trh.T�/ �

X
n�1

h.B˛;s.T�/.zn//;

where the implied constants depend on ˛, s, p and .Rn/n.

Proof. By Proposition 5.7 we have

Tr.h.T�// .
Z

D
h
�
B˛;s.T�/.z/

� dA.z/
�2.z/

�

X
n�1

h.B˛;s.T�/.zn//:

Conversely, by Theorem 4.2 we have

Trh.T�/ �
X
n

h.an.�//:

So, it suffices to verify thatZ
D
h.B˛;s.z//

dA.z/

�2.z/
.
X
n

h.an.�//:

Let � D
P
n an.�/ dA˛jbRn . By Lemma 2.6, T� . T� . Then

hT�K
s
z ; K

s
zi . hT�Ksz ; K

s
zi D

X
n

an.�/

Z
bRn

jKsz.w/j
2 dA˛.w/:

Using the concavity of h, we getZ
D
h
�
B˛;s.T�/.z/

� dA.z/
�2.z/

D

Z
D
h
�
hT�K

s
z ; K

s
zi

kKszk
2
˛

� dA.z/
�2.z/

.
Z

D
h
�X

n

an.�/

Z
bRn

jKsz.w/j
2

kKszk
2
dA˛.w/

� dA.z/
�2.z/

.
Z

D

X
n

h
�
an.�/

Z
bRn

jKsz.w/j
2

kKszk
2
dA˛.w/

� dA.z/
�2.z/

�
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On the other hand, we haveZ
bRn

jKsz.�/j
2

kKszk
2
˛

dA˛.�/ �

Z
bRn

.1 � jzj2/2C2s�˛

j1 � z�j4C2s
dA˛.�/

�
.1 � jzj2/2C2s�˛

j1 � zznj4C2s
.1 � jznj

2/2C˛:

Using the assumption h.t/=tp is increasing, we get

h
�
an.�/

Z
bRn

jKsz.�/j
2

kKszk
2
˛

dA˛.w/
�

. h.an.�//
� Z

bRn

jKsz.�/j
2

kKszk
2
˛

dA˛.�/
�p

. h.an.�//
� .1 � jzj2/2C2s�˛.1 � jznj2/2C˛

j1 � zznj4C2s

�p
:

Since s > .1 � 2p C ˛p/=.2p/, the integralZ
D

� .1 � jzj2/2C2s�˛.1 � jznj2/2C˛
j1 � zznj4C2s

�p dA.z/

.1 � jzj2/2

is uniformly finite (see Lemma 2 in [5]). Combining all these inequalities, we obtainZ
D
h
�
B˛;s.T�/.z/

� dAz/
�2.z/

.
X
n

h.an.�//

Z
D

� .1 � jzj2/2C2s�˛.1 � jznj2/2C˛
j1 � zznj4C2s

�p dA.z/

.1 � jzj2/2
.
X
n

h.an.�//:

The proof is complete.

Let .b˛;sn .�//n be the decreasing enumeration of .B˛;s.T�/.zn//n�1. The following
result is an improvement of Theorem C.

Theorem 5.9. Let ! 2W and .Rn/n 2 L! . Let � be a positive Borel measure on D such
that T� is compact on A2

˛ . Let �W Œ1;C1/! .0;C1Œ be an increasing positive function.
Suppose that there exist ˇ > 1 and  > 1 such that �.t/=t is increasing and �.t/=tˇ is
decreasing. Then, for s > ˇ C ˛ � 2, we have

�n.T�/ � 1=�.n/ ” b˛;sn .�/ � 1=�.n/:

Proof. It is a consequence of Theorem 4.2 and Lemma 5.8.

6. Composition operators

We consider composition operators on weighted analytic spaces on the unit disc D. For
! 2W , we will denote H! the space of analytic functions f 2H.D/ such that f 0 2A2

! .
The space H! becomes a Hilbert space if endowed with the norm k:kH!

, given by

kf k2H!
WD jf .0/j2 C

Z
D
jf 0.z/j2 dA!.z/:

For ! D !˛ , the space H!˛ will be denoted by H˛ .
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By the classical Littlewood–Paley identity, we have H1 D H
2, the Hardy space. Note

also that for ˛ 2 Œ0; 1/, H˛ WD D˛ are the weighted Dirichlet spaces, and for ˛ > 1,
H˛ D A2

˛�2 are the weighted standard Bergman spaces. For more information on these
spaces, see [9, 12, 15].

Let ' be a holomorphic self map of D. The composition operator C' with symbol '
acting on H! is defined by

C'f D f ı '; f 2 H! :

Several papers have given some general criteria for boundedness, compactness and
membership to Schatten classes of composition operators (see for instance [10, 17, 19, 24,
32, 34, 35]).

The Nevanlinna counting function, N';! , of ' associated with H! is defined by

N';!.w/ D

² P
z2'�1.w/ !

2.z/ 2 .0;1�; if w 2 '.D/;
0; if w … '.D/:

In what follows, �';! will denote the measure given by

d�';!.w/ D
N';!.w/

!2.w/
dA.w/; w 2 D:

The change of variable formula, see [1], can be written as follows:Z
D
j.f ı '/0.z/j2 dA!.z/ D

Z
D
jf 0.z/j2!2.z/ d�';!.z/:

Using this identity, it is clear that the composition operator C' on H! is closely related to
the Toeplitz operator T�';! on A2

! . Indeed, if we suppose that '.0/D 0, then the subspace
H0
! WD ¹f 2 H! W f .0/ D 0º is reduced by C' . If T WH0

! ! H0
! denotes the restriction

of C' to H0
! , then T �T is unitarily equivalent to T�';! on A2

! . Namely,

T �T D V �T�';!V;

where Vf D f 0 is the derivation operator which defines a unitary operator from H0
!

onto A2
! . As consequence, we have the following.

Proposition 6.1. Let ' be an analytic self map of D such that '.0/ D 0. Then C' is
compact on H! if and only if T�';! is compact on A2

! . In this case, we have

s2n.C' ;H!/ D �n.T�';! ;A
2
!/:

As a direct consequence of Proposition 6.1 and trace estimates for Toeplitz operators,
we obtain the following results.

Theorem 6.2. Let .Rn/ 2L! . Let p � 1 and let hW Œ0;C1/! Œ0;C1/ be an increasing
function such that h.tp/ is convex and h.0/ D 0. Let ' be an analytic self map of D
satisfying '.0/ D 0. We haveX

n

h
� 1
B

��';!.Rn/
A.Rn/

��
�

X
n

h.s2n.C' ;H!// �
X
n

h
�
B
��';!.Rn/
A.Rn/

��
;

where B > 0 depends on ! and p.
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Corollary 6.3. Let ! 2W and let .Rn/ 2L! . Let � W Œ1;C1/! .0;C1/ be an increas-
ing function such that �.x/=xA is decreasing for some A > 0. Let ' be an analytic self
map of D such that '.0/ D 0 and C' is compact on H! . Then

(1) sn.C'/ D O.1=�.n// ” an.�';!/ � O.1=�
2.n//;

(2) sn.C'/ � 1=�.n/ ” an.�';!/ � 1=�
2.n/:

7. Composition operators with univalent symbol on H˛

The goal of this section is to provide some concrete examples. We will focus our attention
on composition operators C' acting on H˛ such that ' is univalent. We will give estimates
of the singular values of C' in terms of the pull-back measure induced by '.

7.1. Composition operators with univalent symbol

Let ' be an analytic self map of D. The pull-back measure associated with ' is the positive
Borel measure on D defined by

m'.B/ D m.¹� 2 T W '.�/ 2 B º/;

wherem is the normalized Lebesgue measure of T and where we still denote ' the bound-
ary values of '.

Let � be a simply connected subdomain of D which contains 0. Let ' be a conformal
map of D onto �. Let � be an automorphism of D. Since C� is an invertible operator
on H˛ , we have sn.C' ;H˛/ � sn.C'ı� ;H˛/ as n!1. So, without loss of generality
we suppose, in the sequel, that '.0/ D 0.

Let n and j be integers such that n � 1 and j 2 ¹0; 2; : : : ; 2n � 1º. The dyadic
square Rn;j is given by

Rn;j D
°
z 2 D I 1 � 2�n � jzj < 1 �

1

2nC1
and

2j�

2n
� arg z <

2.j C 1/�

2n

±
:

By following the same proofs, in all the previous results, one can see that we can replace
.Rn/n 2 L!˛ by .Rn;j /n;j . For our purposes, it is more convenient to consider the Car-
leson boxes Wn;j , which are given by

Wn;j D
°
z 2 D I 1 � 2�n � jzj and

2j�

2n
� arg z <

2.j C 1/�

2n

±
:

The main result of this section is the following theorem.

Theorem 7.1. Let ' be a univalent analytic self map of D. Let hW Œ0;C1/! Œ0;C1/

be an increasing function such that h.0/ D 0. Suppose that there exists p � 1 such that
h.tp/ is convex, and let ˛ > 0. We haveX

n;j

h
� 1
B
.2nm'.Wn;j //

˛
�
�

X
n

h.s2n.C' ;H˛// �
X
n;j

h.B.2nm'.Wn;j //
˛/;

where B > 0 depends on ˛ and p.
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Let .mn.'//n�1 be the decreasing enumeration of .2nm'.Wn;j //n;j . As a conse-
quence of Theorem 7.1, Lemma 3.1 and Lemma 3.2, we obtain the following result.

Corollary 7.2. Let ˛ > 0. Let ' be a univalent analytic self map of D. Let �W Œ1;C1/!
.0;C1/ be an increasing function such that �.x/=xA is decreasing for some A > 0. Then
the following are equivalent:
(1) sn.C' ;H˛/ � 1=�.n/.

(2) mn.'/ � 1=�2=˛.n/.

To prove Theorem 7.1, we need some intermediate results. We begin by the following
elementary lemma.

Lemma 7.3. Let p � 1 and let hW Œ0;C1/! Œ0;C1/ be an increasing function such
that h.0/ D 0 and h.tp/ is convex. We haveX
n�1

2n�1X
jD0

h
�
C
�.Rn;j /

A.Rn;j /

�
�

X
n�1

2n�1X
jD0

h
�
2C

�.Wn;j /

A.Wn;j /

�
� B

X
n�1

2n�1X
jD0

h
�
4C

�.Rn;j /

A.Rn;j /

�
;

where B > 0 depends only on p.

Proof. The first inequality comes from the facts that h is increasing, Rn;j � Wn;j and
A.Wn;j / D 2A.Rn;j /. For the reverse inequality, we follow the argument given in [18].
We have

Wn;j D
[
l�n

[
k2Hl;n;j

Rl;k ;

where

Hl;n;j D
°
k 2 ¹0; 1; : : : ; 2l � 1ºI

j

2n
�
k

2l
<
j C 1

2n

±
:

From the above decomposition and the convexity of h.tp/, we get

1X
nD1

2n�1X
jD0

h
�
2C

�.Wn;j /

A.Wn;j /

�
D

1X
nD1

2n�1X
jD0

h
�X
l�n

X
k2Hl;n;j

22n�2l�14C
�.Rl;k/

A.Rl;k/

�
.
1X
nD1

2n�1X
jD0

h
��X

l�n

X
k2Hl;n;j

2
2n�2l
p

�
4C

�.Rl;k/

A.Rl;k/

�1=p�p�
.
1X
nD1

2n�1X
jD0

�X
l�n

X
k2Hl;n;j

2
2n�2l
p h

�
4C

�.Rl;k/

A.Rl;k/

��

�

1X
lD1

2l�1X
kD0

�X
l�n

X
k2Hl;n;j

2
2n�2lC1

p

�
h
�
4C

�.Rl;k/

A.Rl;k/

�

� B

1X
lD1

2l�1X
kD0

h
�
4C

�.Rl;k/

A.Rl;k/

�
:

This ends the proof.
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In [20], P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza give an explicit rela-
tion between the Nevanlinna counting function of an analytic self map ' of D and its
pull-back measure. Namely:

Theorem 7.4. There exist absolute positive constants c1, c2, C1 and C2 such that for
every analytic self map ' of D, � 2 T and every ı 2 .0; .1 � j'.0/j/=16/, one has

(1) N'.w/ � C1m'.W.�; c1ı//, for every w 2 W.�; ı/.

(2) m'.W.�; ı// � C2
ı2

R
W.�;c2ı/

N'.w/dA.w/.

In particular, we have the following inequalities:

(7.1)
1

C2
m'.W.�; ı=c2// � sup

z2W.�;ı/

N'.z/ � C1m'.W.�; c1ı//;

For a simple proof of these results, see [8].
We also need a consequence of the well-known Hardy–Littlewood inequality.

Lemma 7.5. Let ' be an analytic self map of D, let ˛ > 0 and let � 2 T . There exists an
absolute constant c > 0 such that

m'.W.�; ı//
˛
�
C.˛/

ı2

Z
W.�;�ı/\D

N ˛
' .z/ dA.z/; for 0 < ı < c.1 � j'.0/j/;

where � is an absolute constant and C.˛/ depends only on ˛.

Proof. Let R 2 .1; 2/ and let  D '=R. By the Hardy–Littlewood inequality [27], for
every z 2 D such that 1 � jzj < 1

2
.1 � j .0/j/ and every ı 2 .0; 1 � jzj/, we have

(7.2) N .z/
˛
�
C

ı2

Z
D.z;ı/

N ˛
 .w/ dA.w/:

Let z 2 D and let ı > 0 be such that max.1 � jzj; ı/ < 1
4
.1 � j'.0/j/. Then, for R D

1C 1
2
.1 � j'.0/j/, we have ı < 1 � jzj=R < 1

2
.1 � j .0/j/. By (7.2), we get

N ˛
' .z/ D N

˛
 .z=R/ �

C

ı2

Z
D.z=R;ı/

N ˛
 .w/ dA.w/ �

4C

ı2

Z
D.z;2ı/

N ˛
' .w/ dA.w/:

Now let � 2 T and let ı < c.1� j'.0/j/, where c D c1
4.2Cc1/

and c1 is the constant appear-
ing in (7.1).

For z 2 W.�; ı=c1/, we have D.z; 2ı/ � W.�; .2C 1=c1/ı/. Then

N ˛
' .z/ .

1

ı2

Z
W.�;�ı/

N ˛
' .w/ dA.w/; where � D 2C 1=c1;

and the result comes from (7.1).

In the sequel, we will write �';˛ and N';˛ instead of �';!˛ and N';!˛ .
Let c > 0 and let W D W.�; ı/ be a Carleson box. We will denote W c D W.�; cı/.

Theorem 7.1 is a direct consequence of Theorem 6.2, Lemma 7.3 and the following
inequalities.
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Lemma 7.6. Let ˛ > 0. Let hW Œ0;C1/! Œ0;C1/ be an increasing positive function
such that h.tp/ is convex for some p � 1. Let ' be a univalent analytic self map of D and
let C > 0. We have

X
n�1

2n�1X
jD0

h
�
C1
�';˛.Wn;j /

A.Wn;j /

�
.
X
n�1

2n�1X
jD0

h
�
C.2nm'.Wn;j //

˛
�

.
X
n�1

2n�1X
jD0

h
�
C2
�';˛.Wn;j /

A.Wn;j /

�
;

where the implied constants do not depend on h.

Proof. Since ' is univalent, N';˛ D N ˛
' . Then, by equation (7.1) we have

�';˛.Rn;j /

A.Rn;j /
D

1

A.Rn;j /

Z
Rn;j

N ˛
' .z/

.1 � jzj2/˛
dA.z/ . 2˛n sup

z2Wn;j

N ˛
' .z/ . .2nm'.W

c2
n;j //

˛:

Then

X
n�1

2n�1X
jD0

h
��';˛.Rn;j /
A.Rn;j /

�
.
X
n�1

2n�1X
jD0

h
�
C 01
�
2nm'.W

c2
n;j /

�˛�
.
X
n�1

2n�1X
jD0

h
�
C2.2

nm'.Wn;j //
˛
�
:

Then the left inequality of Lemma 7.6 is obtained from Lemma 7.3.
Conversely, by Lemma 7.5, we have

�
2nm'.Wn;j /

�˛ .
�';˛.W

�
n;j /

A.W �
n;j /

;

which gives the remaining inequality in order to finish the proof.

7.2. Examples

Let � be a subdomain of D such that 0 2 �, @� \ @D D ¹1º and @� has, in a neighbor-
hood of C1, a polar equation 1 � r D .j� j/, where  W Œ0; ��! Œ0; 1� is a differentiable
continuous increasing function such that .0/ D 0 and  0.t/ D O..t/=t/ as t ! 0C.

Let ' be a univalent map from D onto � with '.0/ D 0 and '.1/ D 1. By definition,
the harmonic measure $.:; E; �/ is the harmonic extension of �E on �, where E is
closed subset of @�. By conformal invariance of the harmonic measure, we have

$.0;E;�/ D $.0; '�1.E/;D/ D m.'�1.E// D m'.E/:

So to use Theorem 7.1, we have to estimate the harmonic measure of our domains. To
this end, we use Ahlfors–Warschawski type estimates. The following lemma is proved in
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[7]. In the sequel of this subsection, we suppose that  satisfies conditions (1.4) and (1.5).
Recall that � is given by

�.t/ D
2

�

Z 1

t

.s/

s2
ds:

Lemma 7.7. Let  , � and ' be as above. Then

• $.0;Wn;j \ @�;�/ .
C

2n
exp

h
� �

�
2�.jC1/
2n

� i
; 0 � j < jn WD

2n

2�
�1.2�=2n/:

• There exists � > 0 such that for k satisfying 2kC1 � jn, we have

Card
°
j2¹2k ; : : : ; 2kC1�1º W

�

2n
exp

h
��

�2�.jC1/
2n

�i
. $.0;Wn;j \ @�;�/

±
� 2k :

Now, we are able to prove the following estimates.

Theorem 7.8. Let  , � and ' be as above. Let hW Œ0;C1/! Œ0;C1/ be an increasing
function such that h.0/D 0. Suppose that there exists p � 1 such that h.tp/ is convex and
let ˛ > 0. We have

B

Z 1

0

h.be�˛�.s//

.s/
ds �

X
n

h
�
s2n.C' ;H˛/

�
� A

Z 1

0

h.ae�˛�.s//

.s/
ds;

where A;B; a; b > 0 depend on ˛ and p.

Proof. By Theorem 7.1 and Lemma 7.7, it suffices to prove thatZ 1

0

h.C
A
e�˛�.s//

.s/
ds .

1X
nD1

jnX
jD0

h
�
C exp

h
� ˛�

�2�.j C 1/
2n

�i�
.
Z 1

0

h.ACe�˛�.s//

.s/
ds:

First, observe that

(7.3)
Z 2�.jC1/=2n

2�j=2n

.s/

s2
ds .

Z 2�.jC1/=2n

2�j=2n

1

s
ds D O.1/:

So there exists A > 0 such that

1

A
e�˛�.2�j=2

n/
� e�˛�.s/ � Ae�˛�.2�j=2

n/; for s 2
�2�j
2n

;
2�.j C 1/

2n

�
:

Then

h
�
Ce�˛�.

2�j
2n
/
�

. 2n
Z 2.jC1/�=2n

2j�=2n
h
�
Ce�˛�.s/

�
ds . h

�
ACe�˛�.

2�.jC1/
2n

/
�
;
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and

1X
0

jnX
jD1

h
�
C1e

�˛�..2�j=2n/
�
�

1X
0

jnX
jD1

2n
Z 2�j=2n

2�.j�1/=2n
h
�C1
A
e�˛�.s/

�
ds

�

1X
0

2n
Z �1.2�n/

0

h
�C1
A
e�˛�.s/

�
ds � C

1X
nD0

2n
1X
kDn

Z �1.2�k/

�1.2�k�1/

h
�C1
A
e�˛�.s/

�
ds

�

1X
kD0

2k
Z �1.2�k/

�1.2�k�1/

h
�C1
A
e�˛�.s/

�
ds �

Z 1

0

h
�
C1
A
e�˛�.s/

�
.s/

ds:

This proves the first inequality.
The second inequality can be obtained using similar computations.

Proof of Theorem D. The first assertion is a direct consequence of the characterization of
membership to p-Schatten classes given in [7]. Indeed, suppose that

lim
t!0C

.t/ log.1=t/
t

D1:

Let B > 0 such that Bp˛=2 D 3. For small t > 0 we have

.t/ �
Bt

log.1=t/
�

This implies that �.t/ � B log.log.1=t//. ThenZ
0

e�
p˛
2 �.t/

.t/
dt .

Z
0

.log.1=t//�Bp˛=2

.t/
dt .

Z
0

1

t log2.1=t/
dt <1; for all p > 0:

Then C' 2 \p>0�p.H˛/. This is equivalent to sn.C' ;H˛/ D O.1=n
A/ for all A > 0.

To prove the second assertion, let

�.x/ D exp¹˛�.ƒ�1.x//º; where ƒ.t/ D
Z 2

t

ds

.s/
�

First, we prove that �.x/=xA is decreasing, where A is such that .t/ � �A
4˛

t
log.1=t/ . Since

.t/=t is increasing, we have

ƒ.t/ D

Z 2

t

dt

.t/
�

t

.t/
log.2=t/ �

2t

.t/
log.1=t/ �

�A

2˛

t2

.t/2
; t < 1=2:

This implies that t ! ƒ.t/ exp.� ˛
A
�.t// is decreasing, since its derivative is negative,

and then �.x/=xA is decreasing.
Note also that if h is an increasing positive function, thenZ 1

0

h.Ce�˛�.s//

.t/
dt �

X
n�1

h.Ce�˛�.xn//

Z xn

xnC1

dt

.t/
D

X
n�1

h.Ce�˛�.xn//:

Then, by Theorem 7.8 and Lemma 3.1, we obtain the result.



O. El-Fallah and M. El Ibbaoui 1758

8. Concluding remarks

8.1. Composition operators on the Hardy space

The Hardy space H 2 is equal to H1. The problem of estimating the singular values of
composition operators on H 2 was considered in several papers ([18, 21, 22, 28]). Using
the same arguments as those given in Section 7, one can remove the condition that ' is
univalent in Corollary 7.2. We have the following result.

Theorem 8.1. Let ' be an analytic self map of D. Let �W Œ1;C1/ ! .0;C1Œ be an
increasing function such that �.x/=xA is decreasing for some A > 0. Then

sn.C' ;H
2/ � 1=�.n/ ” mn.'/ � 1=�

2.n/:

Note that our method can also be applied to composition operators with outer symbol.
Such composition operators were considered in [4, 18, 28]. Namely, let ' be the outer
function given by

(8.1) '.z/ D exp
�
�

Z
T

eit � z

eit C z
U.jt j/

dt

2�

�
;

where U W Œ0; ��! Œ0;1/ is an increasing integrable function such that U.0/ D 0. It is
proved in [4,28] that, under some regularity conditions on U , C' is compact if and only ifZ 1

0

U.s/

s2
ds D C1:

It is also proved in [4] that C' 2 Sp.H 2/ if and only ifZ 1

0

dt

U.t/ q
p=2�1
U .t/

<1;

where qU .t/ D
R 1
t
U.s/

s2
ds.

One can extend this result. In accordance with [4], we say that U is admissible if U is
concave or convex and if U.t/ � U.2t/ � tU 0.t/. We have the following.

Theorem 8.2. Let U be an admissible function such that t2 D o.U.t// and

U.t/ D o
�
t

Z �

t

U.s/

s2
ds
�

as t ! 0C:

Let h be an increasing function such that h.0/ D 0. Suppose that there exists p � 1
such that h.tp/ and hp are convex. We have

B

Z 1

0

h
� b

qU .t/

� qU .t/
U.t/

dt �
X
n

h.s2n.C' ;H
2// � A

Z 1

0

h
� a

qU .t/

� qU .t/
U.t/

dt;

where ' is given by (8.1) and A;B; a; b > 0 depend on p.
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In [28], H. Queffélec and K. Seip gave some estimates of the singular values of
such composition operators. They proved that if U is sufficiently regular, and if qU .t/ D
O.log log.1=t// for some  > 0, then

sn.C' ;H
2/ �

1q
qU .e�

p
n/

�

The extremal decreasing case corresponds to qU .t/ D log log.1=t/, for which they ob-
tained that

sn.C' ;H
2/ �

1

log=2 n
�

Using Theorem 8.2 and Lemma 3.1, we extend this result as follows.

Theorem 8.3. Under the same hypothesis of Theorem 8.2, and supposing
R 1
0
U.s/

s2
ds D

C1, we have:

(1) If lim
t!0C

log qU .t/
log log 1=t

D1, then

sn.C' ;H
2/ D O.1=nA/ for all A > 0:

(2) If
log qU .t/

log log 1=t
D O.1/, then

sn.C' ;H
2/ �

1p
qU .xn/

;

where xn is given by Z �

xn

qU .t/

U.t/
dt D n:

8.2. Composition operators on the Dirichlet space

The Dirichlet space, denoted by D , is given by

D.WD H0/ D ¹f 2 H.D/ W f
0
2 L2.D; dA/º:

The Nevanlinna counting function N';0 induced by ' and associated with D is the count-
ing function n' . That is,

N';0.z/ D n'.z/ D Card¹'�1.z/º; z 2 D:

In particular, if ' is univalent then

n' D �� and d�';0 D �'.�/dA; .� D '.D//:

Let �;  and ' be as before. The compactness and membership to Schatten classes
of C' is studied in [7]. Recall that C' is compact on D if and only if

lim
t!0C

.t/

t
D1;
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and C' 2 Sp if and only if Z
0

� t

.t/

�p=2  0.t/
.t/

dt <1:

Using Corollary 6.3 and the discussion above, one can prove easily that if .t/=t D
O.logˇ .1=t// for some ˇ > 0, then

sn.C'/ �
p
en�1.e�n/:
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