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Threshold solutions for the nonlinear
Schrodinger equation

Luccas Campos, Luiz Gustavo Farah and Svetlana Roudenko

Abstract. We study the focusing NLS equation in R¥ in the mass-supercritical
and energy-subcritical (or intercritical) regime, with H! data at the mass-energy
threshold M & (ug) = ME(Q), where Q is the ground state. Previously, Duyckaerts—
Merle studied the behavior of threshold solutions in the H !-critical case, in dimen-
sions N = 3, 4,5, later generalized by Li—Zhang for higher dimensions. In the inter-
critical case, Duyckaerts—Roudenko studied the threshold problem for the 3d cubic
NLS equation.

In this paper, we generalize the results of Duyckaerts—Roudenko for any dimension
and any power of the nonlinearity for the entire intercritical range. We show the exist-
ence of special solutions, 0%, besides the standing wave et 0, which exponentially
approach the standing wave in the positive time direction, but differ in its behavior
for negative time. We classify solutions at the threshold level, showing either blow-
up occurs in finite (positive and negative) time, or scattering in both time directions,
or the solution is equal to one of the three special solutions above, up to symmetries.
Our proof extends to the H !-critical case, thus, giving an alternative proof of the
Li—Zhang result and unifying the critical and intercritical cases.

These results are obtained by studying the linearized equation around the standing
wave and some tailored approximate solutions to the NLS equation. We establish
important decay properties of functions associated to the spectrum of the linearized
Schrodinger operator, which, in combination with modulational stability and coer-
civity for the linearized operator on special subspaces, allows us to use a fixed-point
argument to show the existence of special solutions. Finally, we prove the uniqueness
by studying exponentially decaying solutions to a sequence of linearized equations.
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1. Introduction

We consider the focusing energy-subcritical nonlinear Schrédinger (NLS) equation in
H'RN), N > 1:

(L {i8,u+Au+|u|p_1u=0,

u(x,0) = up(x) € H'(RYN),

1+4/(N—-2), N=3,
+o00, N =1,2.

When N > 3, we also consider the focusing energy-critical nonlinear Schrodinger
equation in H ' (R™) with nonlinearity power p. := (N + 2)/(N —2):

where 1 +4/N < p <2*—1:=

(12) {iatHA“ u|Pe=lu = 0,

u(x,0) = uo(x) € H'(RN).
The equation (1.1) is considered in the inhomogeneous space H ! (R") with the norm
||f||H1 = || fllzz + IV fll2, while (1.2) is studied in the homogeneous Sobolev space

H'(RN) with the norm I/ g =11V flle2-
Note that (1.1) and (1.2) are invariant under scaling. Namely, if u is a solution, then

ug(x, 1) = 82/@=V y(8x, 8%t)

is also a solution to the same equation, for any § > 0. Computing the homogeneous
H*RY) norm yields
s - )| o = 85~ N272P7D) | 0) |

Hence, the scale-invariant norm is H % (]RN ), where

N 2

S¢=—— ——-

2 p-—1

The conditions on p are equivalentto 0 < s, < lin (1.1), and to s, = 11in (1.2).

In addition to scaling invariance, the equations (1.1) and (1.2) exhibit several symmet-
ries, such as, space translation, time translation, phase rotation and time-reversal. Indeed,
if u(x, t) is such a solution, so is

' u(x + xo,t +1t9) or el u(x + xo.t + 1),

with (6g, X9, %) € [0,27) X RY x R.
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All these symmetries leave the H % norm invariant. Another symmetry that does not
have this characteristic is the Galilean boost, given by

eix.?;'o e—it|§0|2u(x — 2501,1‘), EO € RN

Moreover, if ug € H(R¥), then solutions to (1.1) and (1.2) conserve the energy
1 1
EQ@) = [ VuP = — [P = Eo).
2 p+1
and whenever ug belongs to L2(RY), the mass

Mwmrszmszww

and the momentum
Pu(@)) := Im/ﬁ(t)Vu(t) = P(up)

are also conserved.

The Cauchy problem for (1.1) was first studied by Ginibre and Velo [18]. Namely,
for initial data ug € H'(RY), there exists a non-empty maximal interval / and a unique
local-in-time solution u: RY x I — C that belongs to C? H!(RY x J) for every compact
interval J C I. Moreover, the map uo — u is uniformly continuous and u satisfies the
Duhamel formula

t

u(t) = e"*uyg +i/ e Oy 1Py (s) ds
0

for all € I. The solution is also known to be in L. Wi (RN x J) for any Strichartz pair
(g, r) (see Section 2).

In the energy-critical case, the Cauchy problem for (1.2) was first considered by
Cazenave and Weissler [7]. They proved that, for initial data ugy € H?', there exists a
unique solution defined on a maximal non-empty interval /, satisfying the correspond-
ing Duhamel formula and belonging to C2H}(RY x J) N Lf,(xNH)/(N_Z) (RN x J) for
every compact interval J C . Later works, see [10,35,40], proved that the map from the
initial data to the solution is also uniformly continuous.

The impossibility to extend the solution to all times is related to the concept of finite-
time blow-up. We say that a solution to (1.1) blows up in finite positive time 7" > 0 if

lim ||Vu(t)| 2 = +o0.
lim [ Vu(o)],
For the energy-critical case, given that the scale-invariant norm is H'(RN), this cri-

terion is not enough to preclude the possibility of continuing the solution. Rather, we say
that a solution to (1.2) blows up in finite positive time 7" > 0 if

T 2(N+2)
/ /|u(x,t)| N=2 dxdt = +oo.
0

In a similar way, blow-up in finite negative time is defined.
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Solutions to (1.1) and (1.2) can also exhibit a scattering behavior in the energy space.
We say that a solution to (1.1) scatters forward in time if it is defined for any ¢ € [0, +00)
and there exists ¥ € H'(R") such that

lim Ju(r) — e 2y |lg1 =0
t—>—+00

In the energy-critical case, the definition is the same, except that the H'(R") norm is

used instead. Scattering backward in time is defined analogously.

The Li(xN+2)/ (N=25¢) norm also plays an important role in the scattering theory (see,

for instance, Cazenave [6], Chapter 7): solutions to either (1.1) or (1.2) defined on the time
interval [0, +00) scatter forward in time if

Foo 2N +2)
|u(x,t)| ¥=25c dxdt < 4o0.
0

By the time-reversal symmetry, a similar scattering criterion backward in time can be
obtained.

Besides finite-time blow-up and scattering, there is the concept of standing waves.
Consider the elliptic equation

(1.3) AY —(L=so) ¥ + Y|Py =

It is known that, for s, < 1, this equation admits the unique radial, positive solution in
H'(RN), which we call the ground state and denote by Q = Q, n (see Strauss [37],
Berestycki, Lions and Peletier [4], Kwong [29] and also Tao [39], Appendix B, for a
textbook exposition). If Q solves (1.3), then the standing wave

u(x,t) = et =se)t 0(x)

is a solution to (1.1) that neither blows up in finite time, nor scatters, in any time direction.
On the other hand, if s, = 1, since the equation (1.3) is invariant by scaling, the radial
positive solution to (1.3) is not unique. In this case, an explicit solution is given by

1
Qv y(x):= :
N-2> x2 \(N-2)/2
(1+ N(1)\c1—z))

This solution is commonly denoted by W, and we shall often do so.

A simple calculation shows that W € H'(R¥) for any N > 3, and that W € L2(RY)
if and only if N > 5. As its subcritical counterpart, the static solution u(x,?) = W(x)
to (1.2) neither blows up in finite time, nor scatters, in any time direction.

Also, the following Pohozaev identities follow from (1.3):

[ror+ =3 2(”“) D [vor.

, (N 2>(p+1)
/'Q' (= soN(p -

(1.4)

U./WQF if0 < s, < 1.
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Remark 1.1. The choice of the constant (1—s.) in (1.3) is only for convenience. If s, <1,
we can modify Q and replace (1 — s.) by any positive constant by scaling. Similarly,
if s = 1, the choice of Q,n/n—2),8y = W is arbitrary, and we could have used any
rescaled version of W. Since we will state our results up to a constant scaling (among
other symmetries), there is no loss of generality.

The works of Weinstein [42] in the case 0 < 5. < 1 and of Aubin [2] and Talenti [38]
for s, = 1 give the characterization of the ground state as the minimizer of

(1.5) IAI73 < Cup IV £ 15772 1 20072,

with equality if and only if f(x) = /% Q(x + xo), in the case 0 < 5. < 1, or f(x) =
eiao)t(()N_z)/zW(kox + Xo), if s¢ = 1, for some 6 € [0,27), xo € RY and A > 0. Here,
Cy,p is the sharp constant of the inequality (1.5). In the subcritical case, the inequal-
ity (1.5) is known as (one version of) the Gagliardo—Nirenberg inequality, and in the
energy-critical case, it reduces to the classical Sobolev inequality.

The ground state is also associated with the threshold for a dichotomy between finite-
time blow-up and scattering. The behavior of solutions below the ground state level is now
well understood for both the focusing energy-critical and the energy-subcritical nonlinear
Schrodinger equations. Indeed, for the Cauchy problem (1.2), solutions with E(ug) <
E(W) were first considered by Kenig and Merle [27] in the radial setting for N = 3, 4
and 5, introducing the concentration-compactness and rigidity approach for dispersive
models. They showed that if | Vug||2 < [|[VW/| L2, then the corresponding solution exists
globally in time and scatters in both time directions. On the other hand, if |Vug| 2 >
VW | L2, then the corresponding solution blows up in finite positive and negative times
(provided it is radial or of finite variance). Later, by exploiting a double Duhamel trick,
Killip and Visan [28] proved the corresponding result for N > 5, removing the radial
assumption. More recently, Dodson [11] proved the non-radial scattering in dimension
N = 4 using a delicate control on the scaling parameter, given by long time Strichartz
estimates and an interaction Morawetz estimate. It is worth noting that there are important
differences regarding the dimension in the energy-critical problem: for example, in dimen-
sions N > 5, the lack of regularity of the nonlinearity poses technical difficulties, which
are handled using generalizations of classical estimates. However, the faster time decay of
the linear Schrodinger operator helps obtaining extra space-time bounds on the solution.
The linear decay is only double integrable in dimensions N > 5, diverges logarithmically
in dimension N = 4, and diverges polinomially in dimension N = 3. The same situation
occurs for the ground state, which belongs to Li in higher dimensions, but misses it by a
logarithm divergence in dimension N = 4 and by a polynomial divergence in dimension
N = 3. The non-radial scattering below the ground state for the focusing energy-critical
nonlinear Schrédinger equation in dimension N = 3 still remains an open problem.

For the Cauchy problem (1.1), it was first studied by Holmer and Roudenko [23] in
the 3d cubic radial case. In [22], for 0 < s, < 1, they consider the following scale-invariant
quantities:

M (u(1)) 155 B (u(r))

M(Q)(1=s)/se E(Q)

ME()) = = ME (),



L. Campos, L. G. Farah and S. Roudenko 1642

and

1— c c
luoll 5> V)12

l_c c
101857551V Q|2

Based on the concentration-compactness and rigidity approach, in [22] they proved that if
ME (ug) < 1 and MG (ug) < 1, then the corresponding solution exists globally in time and
scatters in both time directions. In [22] they also proved that if M& (ug) < 1, MG (ug) > 1
and either u is radial or |x|ug € L>(R¥), then the corresponding solution blows up in
both finite positive and negative times', establishing the dichotomy result in the 3d cubic
radial case. Later Duyckaerts, Holmer and Roudenko [23] removed the radial assumption
in the scattering result. Fang, Xie and Cazenave [15] and Guevara [20] (see also Guevara
and Carreon [19]) extended this result to all intercritical ranges and dimensions.

This dichotomy does not hold above the ground state mass-energy threshold. In [21],
Holmer, Platte and Roudenko proved blow-up criteria that included solutions above the
mass-energy threshold. In [14], Duyckaerts and Roudenko showed, for 0 < s, < 1, the
existence of asymmetric behavior in time of solutions to the NLS equation that are above
the threshold and that scatter in one time direction and blow-up in finite time in the other
time direction (in fact, they showed that it suffices to multiply the ground state by a quad-
ratic phase to produce such a result). Moreover, they proved a dichotomy-type result above
the mass-energy threshold with some conditions on the variance of the initial data.

At the threshold level, there exists a richer dynamics for the asymptotic behavior of
solutions. Indeed, for the focusing energy-critical NLS equation, this problem was first
considered by Duyckaerts and Merle [12], in the radial case for N = 3, 4 and 5. In
particular, they proved the existence of special solutions that approach W as ¢t — +oo
and either blow-up or scatter as + — —oo. Later, Li and Zhang [30] studied the case
N > 6. For the focusing energy-subcritical nonlinear Schrodinger equation, Duyckaerts
and Roudenko [13] treated the 3d cubic case. The main goal of this paper is to generalize
the results in [13] to the entire intercritical range O < s, < 1. More precisely, we prove the
following.

MG (u(r)) =

Theorem 1.2 (Energy-subcritical case). For N > 1, there exist two radial solutions QJr
and Q~ to (1.1) in HY(RYN) such that

o« M[Q*]=M[Q], E[Q0*] = E[Q], QF is defined at least on [0, +00) and there exist
C, ey > 0 such that
10 (1) — e Qg1 < Ce™"  forallt >0,

. ||VQJ||2 > ||VO|l2, and QF blows-up in finite negative time,

* |VOoll2 < IVOll2, and Q~ is globally defined and scatters backward in time.
Theorem 1.3 (Energy-subcritical case). For N > 1, let u be a solution to (1.1) such that
ME (ug) = 1. Then, the following holds.

o If ME(up) < 1, then u is defined for all times. Moreover, either u scatters in both
time directions, or u = Q~ up to the symmetries of the equation.

'If ug is nonradial and has infinite variance, then there exists a sequence of times {f,} such that
[IVu(tn)llg2 — +o0, as shown by Holmer and Roudenko in [24].
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o If ME§(ug) = 1, thenu = Q up to the symmetries of the equation.

o If ME(ug) > 1 and uy is either radial or |x|ug € L2(RYN), then either u blows up in
finite positive and negative time, or u = Q% up to the symmetries of the equation.

Remark 1.4. In the 3d cubic setting and for M & (1) < 1, the infinite-variance case was
treated by Holmer and Roudenko in [24]. It was shown that, in this case, the H ! norm of
the solution is unbounded, even if the solution exists for all # > 0. That proof works the
same way if one considers any 0 < s, < 1 and M& (ug) < 1.

There are two major difficulties in extending the previous results. The first one is to
deal with low powers of the parameter p. If p < 3, then the nonlinearity |u|?~!u is not a
smooth function of (u, i). Moreover, as the power of the nonlinearity is not an odd integer,
the difference |u|?~'u — |v|?~!v cannot be written as a polynomial. Therefore, we cannot
use the same estimates as in [13], as they rely heavily on H*(R”") estimates, for large val-
ues? of s. Moreover, if p <2, then the nonlinearity is not twice real-differentiable. In order
to perform the necessary estimates, we employ the fractional calculus tools introduced by
Christ and Weinstein [9] and Visan [41].

Another problem arises from the fast decay of the ground state Q. When construct-
ing the solutions Q*, we must deal with some estimates that involve terms of the form
O~ f1lL. Even though (Q~! f)(x) is pointwise defined for any function f, the expo-
nential decay of Q makes it harder to obtain good estimates. Therefore, we have to
carefully study the desired functions f to ensure that they have the necessary decay. We
establish the decay via several bootstrap arguments, and by making use of resolvent con-
volution kernels associated to the corresponding elliptic equations.

It is worth mentioning that, in order to prove the classification in Theorems 1.2 and 1.3,
one has to change the orthogonality conditions that were used in [13], as in the lower
dimensions they would not necessarily ensure coercivity. See Remark 3.4 and the proof of
Lemma 3.5 for details.

Since our proof can be readily applied to the energy-critical case, we also state and
prove similar results for s, = 1 and N > 6. Note that p, < 2 happens exactly when
N > 6, which again implies that the nonlinearity is not twice real-differentiable. We have
the following.

Theorem 1.5 (Energy—critical case). Let N > 6. There exist two radial solutions W+
and W~ to (1.2) in H'(RN) such that

o E[W*|=E[W], W is defined at least in [0, +00) and there exist C, eq >0 such that
[WE@E) = Wlg1 < Ce™®" forallt >0,

. ||VW0+ l2 > VW2, and W blows-up in finite negative time,
o [VWy Il < IVW |2, and W~ is globally defined and scatters backward in time.

Theorem 1.6 (Energy-critical case). For N > 6, let u be a radial solution to (1.2) such
that E(ug) = E(W). Then, the following holds.

2To be precise, at least s > N/2, to make use of the fact that Hs(RN) is an algebra.
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o If uoll g1 < Wl g1, then u is defined for all times. Moreover, either u scatters in
both time directions, or u = W™ up to the symmetries of the equation.

o If lluoll g = IW |l g1, then u = W up to the symmetries of the equation.
o If luoll g > Wl g1 and ug € L2, then either u blows-up in finite positive and neg-

ative time, or u = W™ up to the symmetries of the equation.

The last two theorems were originally proved by Li and Zhang [30], by means of
weighted Sobolev estimates. Since our approach is considerably different from [30], we
include our proofs in this paper.

Remark 1.7. By scaling, the condition M & (u¢) = 1 can be read, without loss of gener-
ality, as

E(uo) = E(Q).

Indeed, considering ug s(x) = §2/(@=1y0(8x), with § = (M (ug)/M(Q))Y/ @5 gives
the above condition for u 5. Similarly, the condition

{M(Mo) = M(Q),

Mﬁ(uo) <1
(resp. “=", “>") can be read as
[Vuoll2 < [VQ|L2
(resp. “=", “>”). Unless stated otherwise, we shall adopt this simplification throughout

the whole paper.

2. Notation and preliminaries

We will need the following tools from harmonic analysis.

Lemma 2.1 (Sobolev inequality, see Stein [36]). If 0 <p—0d <N, 1 <qg < p < o0,
and
1 p—o

1
p q N
then the following estimate holds:

ID%ullLr@ny < CID ullpan)y.-
Lemma 2.2 (Leibniz rule, see Christ and Weinstein [9]). Let s € (0, 1), p;.q; € (1,00),
with1/p =1/p;j +1/q;, j = 1,2. Then
Q1) 1D*(fD)Lr@ny < C (1D fllLr @y llglza @yy+ 1 f L2 @y y 1D gl Loz wvy)-

Lemma 2.3 (Fractional chain rule for Holder continuous functions, see Visan [41]). Let F
be a Holder continuous function of order 0 < a < 1. Then, forevery 0 <s <a, 1 < p < 00,
and s/a < v < 1, we have

_ s/v
2.2) ID° Fa)ll oy < Cllul®™>" [l ewy 1Dy, ®Y’

provided 1/p =1/p1 + 1/q1 and (1 — s/ (va))p; > 1.
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Lemma 2.4 (Kato—Strichartz inequalities, see Cazenave [6], Kato [25], Foschi [16], Keel
and Tao [26]). Let N > 1,1 CRand 1 < gq;,r; <oo,i = 1,2. Assume the pairs (q1,71)
and (qa, rp) satisfy

1 1 1 . 1 1 1 1
—<N(5-=) or @) =(02), i=12 —+—=N(1-—-—),
qi 2 rn 91 92 rn
and
e if N =2, we require that ri,r; < 400,
e if N > 2, we consider two subcases,
— non sharp case:
1 1 N-2 N N-2 N
- + — < ]s S ) S )
q1 q2 ri ) r )
— sharp case:
1 1 N-2 N N-2 N 1 1 1 1
—+—=1, < — <—, —=<— —=—
q1 q2 r 2 r r A q1 r2 q2

Then the following estimate holds:

2.3) )/ I E(5) ds
s>t

+|

[ IR F(s)ds
s<t

Ll Ly <IF ”L?éL;é ’
Definition 2.5. We say that the pair (g, r) is H*-admissible if 2 < q,r <4o00,(q,r,N) #
(2,00,2), and

2 N N

— —_ = — =5

q r 2
If s = 0, we say that the pair (¢, ) is L?-admissible.
We define Strichartz norms for the energy-critical and intercritical cases separately.

Definition 2.6 (Critical case). Let I be a (possibly unbounded) time interval. Given 0 <
e K ﬁ, N > 6, define the spaces

71 _ o0 1&52
S(H'. 1) =L L}
2(N-2) 2N(N=-2)

S(Hl £ 1) = LI LN SHT ﬁL4/«’3LN e ﬂLE(N 1) L(N 2)2+4a

S0 1) = 12 1T
S(L>, 1) ={LYL% | (¢, r) is L*-admissible},
S(LA1)=L3 LJQ%.
Remark 2.7. In particular, we make use of the following spaces in S(L2, I ) L°°L)2€,

4 2N 2(N—2) 2N(N-2) N 2(N4+2) 20V+2)
L LN z Ls(N 4)LN(N 2)— 2s(N )] L2LN - L “N—2 L N2+4 ,an dLs(N 2)L4N s(N 2)
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Remark 2.8. By the Sobolev embedding, if / € S(H', 1) N V-1S(L2, 1),

1 Uscanny + 105 Flsne.sy < IV Fllszn.

and by the Kato—Strichartz estimates, non sharp case,
A (s dsH <\ Fllsrz.n,
[ ®ds|,, , = I1Flsann

|

Remark 2.9. Note that the pair in S(H!',I)is H'-admissible, the pairs in S(H ¢, I) are
H'~*_admissible, the pairs in S(L?, 1) and in the dual space of S’(Lz,' I) are L?-admissi-
ble, and the pair corresponding to the dual space of S"(H =179 I)is H~(~%)_admissible.

£>te (S) s S(HI_E,I) ~ ” ”S(H a 5),1)

Definition 2.10 (Intercritical case). Define the set
Ao = {(g.7)|(g.r) is L*-admissible} .

For s € (0, 1), define +A; as the H*-admissible pairs that satisfy

e <7 = (§%) . N =23,
+

= =r= (%)), N=2

2= <r=< oo, N =1,

and A_g as the H ~S-admissible pairs that satisfy

(Nziés): <r< (—13’_2); N =3,
!

(%) =r=(%)"). N=2

(1—22s)+5r§°° N =1,

where (a1)’ is the number such that

a  at (a+)"

Let / be a (possibly unbounded) time interval. For s € [0, 1), we define the following
Strichartz norms:

lulls@2,n = sup ||M||L§L;» and ||”||S(Hx,1)= sup ||M||L‘IIL;,
(g,r)€o (g.r)€As

and the dual Strichartz norms

u = inf u and ||u v = inf u .
lullsiazny = inf el gy llsigros.iy =, kIl
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Remark 2.11. By the Sobolev embedding, if f € S(H*, I) N (V)~1S(L2, 1),

1 Wscse, ry S WMVE fllsez, S V) f sz, -

and by the Kato—Strichartz estimates, non sharp case,

) / eCIAE () ds H
s>t

/ IR (s) ds|
s>t

SF s ,
saan S I Flls L2, 1y

|

3. The linearized equation

< .
saiveny S Fllsiime, 1y

In order to prove the main theorems of this paper, we need to carefully study (1.1) and (1.2)
around the ground state. We identify the complex number a + bi with the vector (Z’ ) For
a complex-valued function f, we write f = f; + if>. We next introduce the following
definition.

Definition 3.1. For 0 < s, < 1, we define

Ly=(=5)=A=pQ"", L.=(I-s)-A-0"", x:=(0 _L_)v
Ly 0

R(OH =10+ fIP"Q+ f)— QP —pQP7' f1—iQP7' f5,
K(f)=p0? ' fi+i0?7 ' f.

If u is a solution to (1.1), write u = ¢!(1=5)(Q + v). Then v must satisfy
(3.1) ;v + £v =iR(v),
or, writing it as a Schrodinger equation,
(3.2) id;v+ Av— (1 —s5:)v+ K(v) = —R(v).

In the next two sections we recall some properties of the operator £.

3.1. The linearized operator

For 0 < s, < 1, we have, by a direct calculation,
L_(Q)=0 and L4+(0:Q)=0, 1<k<N.

This implies
L(@0xQ)=£iQ)=0, l=<k=N.

Also, defining A f as the scaling generator % f 4+ x-Vf, wehave

Li(AQ) = —2(1—5.)Q, if 0<s. <1, and Lo(AW)=0, if s. = L.
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The above directions are obtained from Q by the symmetries of the NLS equation. Indeed,
defining

. 1 x
— 190
ﬁXOaA'O,eO] ('x) =e Ag/(p_l) f(A’O + xo),

we have

. 8Q[)C() /1() 90]
V 7_/\ ,1 = =l
(VQ,—A0.i0) d(x0, A0, bo)

(x0.40.00)=(0,1,0)
We also define the bilinear form

B(f,9):

1 1

§(L+f1,g1)L2 + E(L—fz,gz)u

1—35 1 _
= c/fl‘g1+§/Vfl'Vgl_§/Qp 'figi

1—s,

1 1 _
+ 5 /fz'g2+§/Vf2'ng—§/Qp L1 82,

and the linearized energy

O(f) = BUf) = 5 (Lt fi. iz + 3 (L fo. fo)oe

1—s.

1 1 _
[ire3 [9re=3 [ et wine +14P).
2 2 2
If 0 < 5. < 1, one can check directly that, for any f, g € S(RV),

B(f,g) = B(g, f), B(L£f.g)=—-B(f £Ly),
(3.3) B(iQ.,f)=0, B(Q.f)=0k=<N,

B(AQ. f) = —(1 - s.) / 0fi. BHy) =) =0.

In the energy-critical case, we have
B(AW, f)=0.
The following result is well known, but for completeness we provide its proof here.

Lemma 3.2 ([8, 12]). Let o(£) be the spectrum of the operator £, defined in L*(R") x
L2(RN) with domain H*(RN)x H*(RYN), and let 0es(£) be its essential spectrum. Then

Oess(£) ={iy: y € R, [y| = 1—sc}, 0 NR ={-e0,0,e0} witheg>O0.

Moreover, eq and —eo are simple eigenvalues of £ with eigenfunctions Y1 and Y_ =
Y €8, respectively. The null space of £ is spanned by iQ and 0, Q, 1 <k < N (and,
in the energy-critical case, also by AW).

Remark 3.3. By Lemma 3.2, if ¥; = Re(¥4) and ¥, = Im(¥), then
L+y1 = € yz and L_yz = —€y y].

Furthermore, the null space of L4 is spanned by the vectors d; Q, 1 < k < N (and by
AW, if s, = 1), and the null space of L_ is spanned by Q.



Threshold solutions for the nonlinear Schrédinger equation 1649

Proof of Lemma 3.2. In this proof, for brevity, we write V = Q7 “Lfor0 < s. < 1. Note
that V defines a compact operator from H! to L2.

Intercritical case. For convenience (for example, as in Holmer—Roudenko [22] or
Weinstein [42]), from now on, we rescale Q in the intercritical case to have unit coef-
ficients in the ground state equation (1.3), i.e.,

(3.4) AQ — 0+ 0P =0.

This rescaling is done in order to keep the exposition more transparent in computa-
tions. The term (1 — s.) is thus replaced by 1 in the standing wave solution ¢’(!=5)* Q and
in the definitions of £, B and ® as well.

The operator &£ is a relatively compact perturbation of i (1 — A), and therefore, has the
same essential spectrum. We now prove the existence of exactly one negative eigenvalue
to £.

From the proof of Lemma 3.5, we see that L_ on L? with domain H? is non-negative.
Since it is also self-adjoint, it has a unique square root L'/2 with domain H'. It is equival-
ent to show that the the self-adjoint operator P := LY/2L LY/? on L? with domain H*
has a unique negative eigenvalue. Indeed, consider the function

(AQ, Q)
7 =AQ - =22
"o
One can check that Z € H2, Z € {Q}J- and, for0 < s, <1,
_ _N@p-1 4 .
3-5) (L+Z.2)12 = —W[P - (1 + N)] / orT <.

Defining h := L=Y2Z € Q=+, one also has
h=LY2L=YL'L)Z = L7'L=V?L_7Z € H3.
For ¢ > 0, choose h, € H* such that h, L Q and ||k — ﬁg||H3 < &. We have

o (PL e (L LY he LY he) o
rens | fl7. T AR

<0,

if ¢ is small enough.

Hence, by the minimax principle, P has a negative eigenvalue —e% and an associated
eigenfunction g. Defining ¥, := Ll_/zg, Y, = %L+ Yi,and Y = Y, +iY,, we have
LY+ = +ep¥Y+. Uniqueness of the eigenfunction corresponding to the negative eigen-
value of P follows from the non-negativity of L on {Q”}L, since

(Pf. )2 = Ly LY2 £ LY2 1) = 0

for f € H* such that (LY/2 f, 0P)= (f, L1/2QP) = 0. The assertions about the kernel
of £ follow from the coercivity given by Lemma 3.5.

It remains to prove that ¥ € S(R¥). It suffices to prove this assertion for ¥; =Re Y.
The differential equation for ¥ is

(3.6) (1= A +ed]¥% = [pV* + V(1 — A)] Y — p(1 — A)[VY].
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Since the Fourier symbol of (1 — A)? + €2 is (1 + [£]*)? + €3 ~ (1 + |£]*)?, and
V,Y, € HZ(RN), we have that ¥; € HS for all s > 0. As in [12], we show that for all
non-negative integers k, s and all ¢ € C® (RN), we have

C(p,s,k)
Rk

(3.7 lo(x/R) Y |lgs < forall R > 1.

Indeed, the inequality (3.7) holds if k = 0, for any s > 0. By induction, we show that
if it holds for (k, s), it also holds for (k + 1, s 4+ 1). Given ¢, consider ¢ € Cc""(RN)
such that ¢ is 1 on the support of ¢, so that we have ¢ 9%¢p = 0%¢ for any multi-index «.
Since Q and its derivatives decay (more than) polynomially, (3.6) gives, for s > 3,

C C
lloCe/ R — A)? + 5] Y1 | s> < Z oG/ R Yl = S 119G/ R) Yl

Using the trivial commutator estimate [|[(1 — A)? + €2, ¢(x/R)]|| gs—3ps < C/R, we
get

C . .
lpGe/R) Yrllgs+r ~ II[(1 = A)? + eg) (p(x/R) Y1) | 53 < Z 1o/ R) Yilas-
By the induction hypothesis, we get [|@(x/R)¥Y, ||gs+1 < C/R¥*1, as desired. The
same argument shows that, if 1 € R\o'(&£), then (A — £)"!S(RY) c S(RV).

Critical case. The range of the operator L_ is no longer closed, but the operator
1 + L_ is invertible on {Q}*. Therefore, for any & > 0, one can take G, € H? such
that
|L-Ge—(1+L_)Z| 2 <e.

Letting
he:=(0+ L) 'LY2G, = LY?(1+ L)' G,
=(I+L)"A+ L) 2LYV20+L)""?2G, € H?,
we have
ILY?he = Z | o = (1 = A)(A + L)' [L-Ge — (1 + L) Z]| .2
<e|[t=V(1—28)""" e

Choosing h, € H* such that h, L Q and ||, —hs| g3 <é, and recalling P = LY/2 L L1/2
and (3.5), we get L
(Phe he)r2 = (L+Z, Z)12 + O(e).

Thus, if € is small enough, the conclusion follows. The regularity and the decay of ¥
follow analogously from the argument for the intercritical case. ]

If 0 < 5. < 1, consider the following orthogonality relations:
(338) [ov=[oou=0. 1=k=n,
(3.9) / 07v, =0,

(310) [ylvz = /3/21)1 =0.
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Denote by G the set of v € H! satisfying (3.8) and (3.9), and G~ the set of v € H'!
satisfying (3.8) and (3.10).

Remark 3.4. Differently from [13], we use the orthogonality condition (3.9) instead of
J AQuvy = 0. We make this choice in order to be able to prove coercivity in all dimensions,
specially in dimension N = 1.

By direct calculations, one sees that

Pspanfv 0,igy = 0

and
G.11) o(Q) = —pT“/ 0P+l <o,

If s, = 1, consider the directions W, i W, AW = % W +x-VWand 0, W, for1 <
k < N, in the Hilbert space H! = H! (RN , C) with real inner product defined in (3.12).
Denote by G := span{W, VW, iW, AW} and by G+ its orthogonal complement in H '
with

(12 (fg)m = /Vﬁ Ve +/sz-ng =Re/Vf-V§.

Let G+ be the set {v € H'; v L span{VW,iW, AW}, B(Y4,v) = B(Y_,v) = 0}.
By direct calculations, one sees that

D\spanfvw,iw,awy = 0

and

2
—_— <
(N -2)Ccf

(3.13) W) =— ,
where Cy is the sharp constant for Sobolev inequality for the embedding H'(RV) —
L¥% (R™). The following lemma shows that ® is coercive in G- U G+,

Lemma 3.5. For 0 <s. <1, there exists a constant ¢ > 0 such that, for any f € G+ U G+,

O(f) = &1 113

This result was proved in a different context in [34], in the energy-critical case, and
in [13] in the 3d cubic case. We give here the proof for all 0 < s, < 1, in any dimension.

Proof of Lemma 3.5, energy-critical case.
Step 1. Coercivity in G+.
We adapt here the proof in [34] to our context. Let IT: SV — R be the “stretched”

stereographic projection of the sphere S onto RY, with respect to the North pole,

defined by
1 Xi

TNV -2 1— a1

Vi 1<i<N.
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If y = ITx and v is a real function is defined on R" , we define a function u on SV by
u(x) = W)

By integration by parts, one can check that

f |Vsyul®do = 2N—2/ (IVv]? = WPev?) dy,
SN RN

and

2N
/ u’do = —/ WPev2dy.
oN NN —2) Jaw

The spectrum of Agwn is well known [5]. Namely, for the first eigenvalues Ay, with multi-

plicity nx and associated eigenfunctions uy o, With o = (ot1,...,0n) € ZIZVO, we have
)L():O, n():l, u0=1,
A1 =N, n=N+1, Ui,j = Xi, 1<j<N+1,

)L2=2(N+1), n2=2N+3.

Therefore, if v L W in H 1 then u is orthogonal to u(, and we have

47
/ (|Vv|2 — W”Cvz) dy > — WPev2dy,
RN N(N — 2) RN

which is equivalent to

4
Vo> = WPev?)dy > /Vzd.
L 0vep=wrtyay = = [ vupay

Similarly, if v L span{W, VW, AW} in Hl, then u is orthogonal to ug, u1,;, 1 <i <
N + 1, and thus

42,
Vo2 = wP?)dy > — 2 | wrey2ay,
ANG vl VI 2 Gy gy Jou WU

which is equivalent to

4
Vol — peWPev?) dy > [Vzd.
L 0voP = pewratyay = s [ vopay

I herefore, we pro Ved that, for ]’l S G 5
N 2 H!:

Step 2. Coerciveness of ® in GL.

We first claim that B(Y4,Y_) #0.1f B(Y4+,Y_) were 0, then ® would be identically O
on span{ VW,iW, AW, ¥, Y_}, asubspace of dimension N + 4. But this cannot happen,
given ® is positive definite on G+, which is of codimension N + 3.
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We now show that ®(h) > 0 on G+\{0}. Assume, by contradiction, that there exists
h € GL\{0} such that ®(h) < 0. Recall that ker £ = span{VW, i W, AW}, and that, by
definition of G~l\{0}, B(Y4,h) = 0. Hence, the vectors 0 W, 1 <k < N,iW,AW, Y,
and & are mutually orthogonal under the symmetric form B. Since

P W) =D(W) = D(AW) = D(Y;) =0,
we get
@yspan(vw,iw, AW, Y ,hy =< 0.
We claim that these vectors are independent. Indeed, if
D kW + BiW + yAW +8Y1 +€h =0,
k

then
SB(Y4+,Y-) =0,

and since B(Y+, ¥Y_) # 0, § = 0. Therefore, the claim is proven, since o W, iW, AW
and h are orthogonal in the real Hilbert space H!.

To prove coercivity, we rely on a compactness argument. Suppose, by contradiction,
that there exists {/,} C G such that

Lim ®(hy,) =0, |hpllg: = 1.

Up to a subsequence, we may assume h, — h* weakly in H'. This implies h* € GL.
Since the operator [ W?<~!| . |2 is compact, we have [ WP?<~!|h,|> > 0 and
®(h*) < liminf ®(h,) = 0.
This contradicts the strict positivity of ® on G+\{0}. |

Proof of Lemma 3.5, intercritical case. Since the explicit formula for Q in the intercrit-
ical case is not available, we cannot proceed as in the energy-critical case. We follow
here [43] and [13].

Step 1. Non-negativity on G*. Define the functional
a
(Jrvur)'( [ )
[ Mz ’

_N(p-1) b_2p+2—N(p—1)‘
N 4 N 4
By the sharp Gagliardo—Nirenberg inequality, one can see that this functional achieves an

J(u) =

where

absolute minimum at Q. Therefore, the minimization condition %J (O +¢h)jg=0 =0
for all functions 4 € H'! gives

o) > —m /Q /AQh /Qh _</Q0h1)]
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Since a and b are positive if 0 < s, < 1, we have that ®(h) > 0 if f QOPhy = 0.
Therefore, ® must be non-negative on Gt.

Step 2. Coercivity on G*+. We now employ compactness to show that, for every real
function & € GL,
(Lth.h)p2 2 |7l 2.

Assuming the above inequality, multiplying the immediate bound
1 2 2
(Lh.h)p2 2 S|Vhllzz — CliAlz.,

by a small constant, and summing both inequalities, the coercivity follows. Suppose that
there is a sequence of real H! functions {/,} in G such that

lim (Ll hn)z = ®(hy) =0 and  |hnlp2 = 1.
n—oo

This implies

1 1 p _
0=5 [1VhP==3+% [0z + o) < 1.

Therefore, ||Vh,| < 1 and, for large n, [ QP~'h2 = 1. Passing to a subsequence, and
recalling that Q decays at infinity, we get that there exists 44 € G such that

hy — hs weaklyin H',  and / o7 'h2 > 0.
In particular, i, # 0. Moreover,
| P . P12 i _
®(h) = 5 timinf s~ 5 tim [ Q77142 = limint ©(h,) = 0.

Recall that (k) > 0 by Step 1. Therefore, ®(h,) = 0 and h, is the solution to the
minimization problem

0= (L+/’l*,]’l*)L2 = jI}’élél(L.i_h, h)Lz,

where E:={he H':||h|z> = |h«|2 and h € G1}.

Thus, there exist Lagrange multipliers A, ..., Ay 41 such that
N

Lyhe =207+ 1;0;0 + Any1ha.
j=1

Since hy € GE\{0} and (L yhy, hi)p2 = 0, we have Ay4; = 0. By testing the last
equation against d; O and using that L (dx Q) = 0, for all k < N, we conclude that

L+I’l* - AO Qp.
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Recalling that L Q = —pT_l QP and ker(L +) = span{V Q}, we conclude that there exist
M1, ..., N such that

21 ul

0

hy = — 1Q+§ i 0; Q.
j=1

Noting that [ Q9;Q = 1 [9;(Q?) = 0, and recalling that 1, € G*, gives j1; = 0 for
all j. Therefore,
2X0

p—1

And, by direct calculation,

210 \2
(Lt ==(=2%)" [ 07+ <o

This contradicts (L4 Ay, hy)r2 > 0 and hy # 0, and proves that
(L+h.h)p2 2 ||| L2

for any real function 4 € G*. The proof for L_ is analogous. In particular, we have strict
positivity of ® on G\{0} and, by compactness, the coercivity follows on G.

Step 3. Coercivity on GL.

We have, as in the critical case, B(¥Y+, Y_) # 0, otherwise, the restriction of ® to the
(N + 3)-dimensional space span{V Q,iQ, ¥+, ¥} would be identically zero, contradict-
ing the coercivity on G, which is of codimension N + 2.

Now, if there exists € GJ-\{O} such that ®(h) < 0, we have ®|span(v,i0.y, 1y < 0.
But if

> el + BiQ + yYy +5h =0,
k

then yB(Y,4, Y_) = 0, which implies y = 0. Therefore, since i € G1\{0}, the subspace
spanned by {VQ,iQ, ¥, h} has dimension N + 3, contradicting the coercivity on G+.
It remains to show that the coercivity follows from the strict positivity.

Indeed, consider a sequence {/,} C G such that ||, || g1 = 1 for all n and such that

®d(hy) >0 asn — +oo.

Up to a subsequence, h, — h* € G+ weakly on H'. But since Q decays at infinity, this
implies ®(h*) < liminf ®(h,) = 0, which contradicts the strict positivity of ®on G+. =

Unlike the energy-critical case, the ground state decays exponentially if s, < 1. In
the next sections, we need sharp bounds on the decay of Q and its derivatives. We start
recalling the following result, proved by Gidas, Ni and Nirenberg [17]. Recall that 2* =
2N/(N =2),if N > 3,and 2* = +o0,if N = 1,2.

Lemma 3.6 (Gidas et al., [17], Theorem 2, p. 370). For 1 + 4/N < p <2* — 1, let
0 e S(RN), Schwartz space, be the unique radial positive solution of the equation (3.4).
Then there exists C > 0 such that

lim |x|V D2 o) = C.

|x|—>+o00
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We next study the decay of solutions to the equation (3.4). The next lemma, as well as
its corollary, might be known in the theory of elliptic equations. However, we could not
find a specific reference, and for convenience provide a proof here.

Lemma 3.7. Let f € S(RY) and A € R. If f solves

e—a\xl

A-—A+X)f =G, with |G(x)|= (1+ |x|(N—1)/2)b’

for0 <a#Re+1+Ai,0<b #1, then

1 . ,
—|x| ymin{a,Re o/ 14+Ai}
S e (¢ eV,

Proof. Letc = Re /1 4+ Ai > 1. We recall the integral form of the resolvent (see [1])
(1-A+21i)'G=K=x*G,

where K € LI(RN) is such that, for [x| > 1,

e—clx\
<
(3.14) K@) S o
and, for |x| < 1,
\x|(1\+1)/2 for N > 2,
(3.15) K(x) < lnl)lc—| for N = 2,
1 for N < 2.

Consider first the case 0 < a < c¢. We estimate

e—alx—yl
KxGx)|< | K d
K460 < [ KO T
—alx| _ y|(N=D)/2 (N—1)/2ymin{b,1}
< € a i [K(y) ealyl (1 + |x yl + |y| )mm dy
~ (1 + |x|(N—l)/2)mm{b,1} (1 + |x _ y|(N—1)/2)b

efalx\

<
~ (1 + |x|(N—1)/2)min{b,l}

/K(y) e“'”(l + |y|(N71)/2)min{b,1}dy‘

By (3.14) and (3.15), the integral in the last inequality is O(1). For a > c, the estimate is

e—clxl

<
|KxG(x)| < (1+|x|(N_1)/2)min{l,b}

/K(y)edyl (1+ |y|(N—l)/Z)mi““ab}e—(a—C)lx—yl dy

e—clx|

< ' [/ef(afcnxfndy n K() e (14 |y |V -1/2 dy].
(1+|x|(N—1)/2)m1n{1,b} lyl<1 ( )

Since the first integral in the last inequality is bounded uniformly in x, the lemma is
proved. ]
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Corollary 3.8. For any multi-index a € 7%, the following estimates hold:
M 07100 < +oo,
() [|O'e"¥192Y ||Le < +00, for some 0 < n K 1,
(i) O Te™X192[(£ — 1)L f]llLe < 400, for every A € R\o(&£) and every f €
S(RNY such that |Q~'e"™19B f|L0 < 400 for some 0 < n < Re(+/1 + Ai)
and any 8 € ZJ_X.

Proof. We first remark that Q is strictly positive, and thus, Q! is well-defined. Recalling
Lemma 3.6, we have, for all x,

o1l
QW) ~ T~ FaNTO=YES
We differentiate (1.3) to obtain

(1-2)VQ = p0o?~lvo.

Since Q € S, by Lemma 3.7 and a bootstrap argument, we conclude (i) for || = 1.
Differentiating (1.3) and repeating the argument, we conclude (i), by induction, for any
multi-index «.

To prove (ii), recall the differential equation for ¥; = Re(Y4):

(1—=A—-p0? H(1-A- 0P 1Y = —5 Y.

By factoring [(1 — A)? + €3] = (1 — A +ieg)(1 — A — ieg) and using item (i), this
equation can be rewritten as

(1—A+ie)(1—A—ieg)¥Y: = Ga2(Y1),

where we define G (f') as a linear function on f and its derivatives up to order k, that
satisfies, for any k > 1,

GL( S Q77 Y [0°f1.

la|<k

Writing g = (1 — A —ieg)¥Y,, we have, for any multi-indices «, S,

(1—A+iep)d*g = Gig+2(Y1)
(1—A—ieg)dPY, = obg.

Therefore, using Lemma 3.7 and bootstrapping, we prove that O ~'e"¥3*¥, e L for
any multi-index «, where 0 < n < Re(+/1 + ieg) — 1. The estimate on ¥, is analogous,
and hence (ii) holds. We now turn to estimate (iii). If g = (£ — 1)~ f, then, for any «,

—0%(1=A - 07N g, —A0%g = 0* fi.
(1 —A—pQP g1 —Ad%g = 3 f>.

We can rewrite this system as

[(1=A) +2%]9%g1 = Gia+2(81) + Hiaj+2(f).
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where we define Hy (f) as a linear function on f and its derivatives up to order k, that
satisfies, for any k > 1,

|He (OIS Y 1% F1-

lee| <k

Bootstrapping similarly to the previous items, and noting that the argument for g, is ana-
logous, completes the proof of Lemma 3.7. ]

3.2. Estimates on the linearized equation

‘We now prove some estimates that will be used in the next sections. We start with estimates
for the energy-critical case.
Lemma 3.9 (Preliminary estimates). Let s, = 1, N > 6 (and then p, — 1 = ﬁ <1,

0<ek ﬁ, and let I be a bounded time interval with |I| < 1. Consider f,g € S(H',I)
such that V f,N g € S(L?, ). The following estimates hold.

Q) IVK) sz S IV f sz
(i) [IV(R(S) — R sz,
IV = DIsaen (V155 5 + 1Vel 5 1)
IS = ey (1Y £ sy + 198 s n)-
If N > 6, then also
(iii) ||D€K(f)||s,(H,(1,E)’I) < |I|8/(N_2) ||D€f||s(1'{lfs,1))
) ID(R(S) = RN gisp-a-o.19
L‘_l c—
<IDE(f — Dlseny IV A 122, + IVeI5E )

Remark 3.10. It is necessary to treat the case N > 6 differently due to the low power of
the nonlinearity. If N < 6, then it is possible to estimate ||[V(R(f) — R(g))lls/(z2,1) at
least linearly in terms of || V(f — g)lls(z2,1)- In higher dimensions, one of the terms must

be in the form |V(f — g) ||§2221 Iy which is not good enough for the fixed-point argument
carried on in the next section. The use of less than one derivative enables us to keep the

desired linearity.
Proof of Lemma 3.9. We start by proving the following claim.

Claim 3.11. Let H be a map such that H(0) = 0 and |H(f) — H(g)| < C|f —g|ﬁ
for all functions f,g:RN — C, N > 6. Then, forall f.g € S(H',I) N V~1S(L2, 1),

ID*(H ()9l

2/5 N+2

<IVAIYE sv_ [1D%¢lls oy + IV Iy ! ||D*’"g||2<N ) aN(W-2) -

e(N—2)*4N—e(N—2) - e*N—¢ N—4) > (N-2)2+4¢

In other words,

ID*(H() s gr-a-0.1) S IIVfIIS(Lz N ”Dsg”S(Hl 1)
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Proof of Claim 3.11. By the Leibniz rule (2.1) and Holder’s inequality, we can write
|1 D (H(f)g)ll 2 B

N

< |ip? H(f)ll 2

et HIIH(f)II v D78l anorn

L (N—2)2+4¢

2/e
LI

IS IID”"H(f)IILg w ||g|| _+ IIH(f)II o e (D78l sy anvvoa -
1 x

Ls(N 4)L(N —2)2+4¢

By the Sobolev inequality,

’

S IIDsgII

I
and since, by the assumption on H, |H(f)| < | f]* @ =2, we have, by Sobolev,

_4 _4
IHOI ., T NS < ||f||i’ w S ||Vf||iv_]§1v
&’ £’ -

L ¢ Lx( e*N—2—¢

el .,

Lx 72+s

It remains to estimate || D® H(f) ||, 2v/@+e . Choosing v such that (N —2)e/4 <v < 1, by
fractional chain rule’ (2.2) and the Sobolev embeddings, we have

£

v &/v e/v
IDEH() R I ( ey IS L5 NIIVfII vl L0
where we choose p, = ¢» = WI(\IIM € (1, 400), and p; and g must satisfy
| < - 1 1 n 1 1 1 1—v
P1,4q1 <0, — =7 T o, T = )
. (gz-9m N @ o N
and
e(N —2)
(1- =2y,
4y

These conditions can be easily satisfied if ¢ is small enough (depending only on the
dimension). The claim is now proved. ]

Estimate (iii) of Lemma 3.9 follows directly from Sobolev’s inequality and Claim 3.11,
by taking H(W) = |W|*/N=2) and from the fact that |VW| € L2NLL,if N > 6.
To prove (iv), note that R(f) = WP J(W ™! f), where
1 -1
JE) =42 A+ 2)—1— p“; st
is C1(C). Its derivatives J, and J; satisfy J,(0) = J5(0) = 0 and, if N > 6, are Holder
continuous of order p. — 1 < 1. Therefore, writing

(3.16) R(f)— R(g)
1 .
= wre /0 LW sf +(1=)9)(f —) + (W (sf +(1—5)g) (T —g) ds.

we can apply Claim 3.11 to estimate each term in (3.16), taking H(f)=W P~ 1], (W1f)
or H(f) = WP=1J; (W~ f). Estimate (iv) then follows directly.

3This is where the hypothesis N > 6 is used, as the fractional chain rule requires 0 < 4/(N —2) < 1.
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To prove (i), we write
IVK() S WP VW f| + WPV f].

Using the fact that |[0* W (x)| < Cq|W(x)| for every multi-index o € Zﬂ\r’ and all x, we
have, by Holder’s inequality,

4/(N-2
IVKCI, g, S [IWI50G2 17 1 awr-2
7 X

N+2
x

4/(N-2
IR 19 £
t x

S Y2 (1 o 2o + 1V f lzger2)-

Ly

Note that we used that W € L)ZCN/ N=2) LiN/ (N_z), which follows from the fact that

W e L2 N LY, if N > 6. The inequality follows from the Sobolev embedding.
We finally turn to estimate (ii). Write

V(R(f)— R(g) = p WP 'VWUIW™ f)—J(W'g)
(@)
+ WL WOV - WP (W) Vg
(b)
+ WP LW OV = WP (W )V
(©)
+ WPRRWL (W™ ) f —WPT2VWI, (W g)g
(d)
+ WP2YWI;(WL ) f —WP2YWI(Wlg)g.
()

To estimate (a), note that

1
(@) < Wt [0 [z (W ™ (s f+(1=)2) (f =)+ Tz (W (sf +(1-5)2))(f —g)|ds
S 1P+ 1glP ) I f — gl
Thus, by the Holder and Sobolev inequalities,

1/2 Pe—1 pe—1
l@llyg 2vieven S 12 (75 aviov-a + 18175 i) I = 8lpgo 2

e—1 e—1
SUIM2 (VA2 + Vg1 ) IV = Do
We now estimate (b). By the triangle inequality,

(O < WL WOV = Vgl + WP (W f) = (W g)| Vgl
< 1f1PHV =@l + 1 f —glP Vgl



Threshold solutions for the nonlinear Schrédinger equation 1661

So that, by the Holder and Sobolev inequalities,

II(b)II - ||f||p”_12N IV(f - g)ll

N

IS =gl e ||Vg||

L°°L -2 L°°L -2 x
SIIVfllif;ZLl)zCIIV(f—g)IlL . +||D L= ||Vg||
L°°L - x

The estimate for (c) is analogous. To estimate (d), we write

()] < WP W OIS —gl+ WP LW f) = (W' g)l gl
<|fIP7f —gl+ 1 f —glP gl

Therefore, by the Holder and Sobolev inequalities,

e—1 c—1
@1, 41, S 11 T Ve I L W et Y
LeLYN- PLN- LeLY- L¥Lx

1 —1 —1
< |I|2||Vf||i?oL2 IV(f = llpeerz + 11121D2(f — )II” 2 IVelLeers-
L°°L —2+2¢

Since the estimate for (e) is analogous, the proof of Lemma 3.9 is complete. ]

The following Strichartz-type continuity argument follows from Lemma 3.9 and will
be useful in proving the main theorems of this paper.

Lemma 3.12. Let h be a solution to (3.2). If, for some ¢ > 0, and all t > 0,
(3.17) 1)1 < e,
then, for all t > 0,
(3.18) IVAlls@2, it,400) S €7
Proof. Differentiating (3.2), we get
i0;(Vh) + A(Vh) + V(K(h) + R(h)) = 0.

By Duhamel’s formula, the Strichartz estimates and items (i) and (ii) of Lemma 3.9, if
0<t<l,

IVAlse, pasey < IRO1 g0+ 72 IV s@2, e + 1VRIZ e
By (3.17), we get, for some K > 0,
(3.19)  IVAlls@a, ey < K (€7 + 12| Vhlls@2, ot + IVAIG L2 s sep))-

This implies, for large ¢,

1
9K?

”Vh”S(LZ, [tt+z0]) < 2Ke ", with T0 =
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Indeed, assume by contradiction that there exists T € (0, To] such that ||| s(z2, 1, 41]) =
2Ke ¢!, for fixed ¢ > 0. Then, by (3.19),

5
2Ke ™ < Ke™® 4+ 2K2¢1/2 7! 4 (2K)Pc Ke ¢Pe! < §Ke—” + (2K)Pc Ke P!

which is a contradiction if 7 is large. Therefore, by decomposing [¢, +00) = U;io [t+ 70,
t + (j + 1)70] and using the triangle inequality, we see that (3.18) holds. ]

The following lemma is the intercritical version of Lemma 3.9, and its proof is ana-
logous.

Lemma 3.13 (Preliminary estimates, subcritical case). Let 0 < s, < 1, and let I be a
bounded time interval such that |I| < 1. Consider f,g € S(L?, I) such that V f,Vg €
S(L?, I). There exists a > 0 such that the following estimates hold.

Forp > 1:

@ VKD s @z, n S HI*IKV) fllsez,

(ii) ||K(f)||s/(1;—sc,1) < |1|a||f||s(ﬁ1sc,1)~
For p > 2:

(i) [(VI(R(f) — R s 2, 1)
SIS = D lsez, nlIKY) flisez, ny + V) gllsz,
+ IV 15 ey + ||(V)g||§(_1‘lz,1)]’
(V) IR(f) = R(®) g (gr-sc . 1)
o

1
S0 =8lsciase, [0 Vscrase, 180 sqise, nH 1D e 181000 )]
Forl < p<2:

© VIR = R@) sz,
SIS =Dl (I 1§ 1y + 180500 1)
1S = &5,y VL Ise, ny + 19)e sz, 1) -
WD R = R@ s, 1y < 1S = &llscase, I Vggee py + 180500 1)

Proof. The estimates are very similar as the ones in the proof of the energy-critical case.
We use the following classical inequalities:

—1
lal?~'blls 12y < IIaIIS(HJC) 161522y < HV)all§ ) 1Dsw2)
and

-1
al?= Bl 1 gr-sey < IIaIIS(HXC) 1615750y < HV)allgir2y IKV)D s (22,

which can be verified using the pairs (4(p+1) P+ 1) € A, (M p+1) €,

N(p-1) 4—-(N-2)(p-1)°
and (%, P+ 1) € A_;,, together with the Sobolev inequality. Let us estimate,
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for example, |[V(R(f) — R(g))lls/(z2,1)- Write

V(R(f) = R(g)) = pOP~'VOU(Q7'f)-J(Q'g)
(a)
+ 07 QT VS - 0PN (07 g) Ve
_(b)
+ 07 QT VS - 077 (079 Ve
(c)
+ QP_ZVQJZ(Q_If)f - QP_ZVQJZ(Q_lg)g
(d
+ QP2VQI:(QT ) f — 0P72VQI: (07 g) g .
()

Making use of |VQ| < Q@ (which follows from Corollary 3.8), we bound (a) as

1 .
l(@)] £ Q”_I/O (O (s f+(1=9))(f =)+ Tz (Q 7 (sf +(1—5)) (f—g)| ds.
Now, since

— 1 p—2 P2y > 2,
|JZ(ZI)_JZ(22)|+|JZ(Z])_JZ(ZZN5{|zl 2l(14|21]P72 4 |2,]P72), p >

|z1—z2|P71, 1<p<2,
we have
(@) < 1 @71+ QP2+ AP+ 1glP DI — gl p 22
AP+ lglPTOIf — gl 1<p<2.

Thus, since Q € S(RY) and |I| < 1,

l@lls 2,
1
(||f||S(Hsc 1)+||g||S(HT 1)+||f||S(HSC 1)+”g”§(mc I =gl =2
(”f”smvc nt ||g||§(Hyc 1))||f glls 2,0 l<p<2.

We also have

IOl srz2.ry + 1 Dllsz2,n)
IV(f = &lswz.n(V) fllswz.n + IV )f”S(Lz n

+I{V)gllsz.n + I{V )g”S(Lz ) p=2,
VIS = &)llse2, 1)(||f||S(HSC nT ||g||S(HSC 1))

+IIf —g||§(,;&.’l) (V) f s, + V) gllis@e, n) . 1<p <2,

~

with the same bounds for (¢) and (e). [
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Remark 3.14. We do not employ the same estimates as in [13], since the nonlinearity
|u|?~1u is not a polynomial in (u, i) if p is not an odd integer. Therefore, instead of
using H* estimates, we rely on S(L?) and S (H*<) estimates, that are more suitable for
generalizing the result to all dimensions and powers of the nonlinearity.

Remark 3.15. We employ a different approach than Li and Zhang [30], that divide all
estimates in regions where | f| > W or | f| < W. Instead, we use fractional derivatives to
avoid some sublinear estimates.

4. Construction of special solutions

In this section, we construct special solutions to the NLS equation (1.2), in the sense that
they are on the same energy level of the ground state, converge to the standing wave in H !
as t — 400, but have kinetic energy different from |V Q|| 2.

4.1. Construction of a family of approximate solutions

We start with a result that was first proved by Duyckaerts and Merle in [12], for s, = 1,
and later in [13] for the 3d cubic case. We extend here those proofs to the intercritical
case. The main difference from the energy-critical case is that O decays exponentially if
0 < 5. < 1, so we need to be careful with its spatial decay, as we make use of the estimates
of the type || Q™! f||L. To this end, we make use of the sharp decay estimate for Q given
by (3.6) and of the control on the spatial decay given by Corollary 3.8.

Proposition 4.1. Let 0 < s, < 1and A € R. There exists a sequence (Z /?)kzl of functions
in S(RN) such that Z2 = AY, and, if k > 1 and VA = Z;-Czl e_jeO’ZJ‘-“, then as t —
400 we have

4.1) 3 VA + £V = iR(VY) + O(e=*FDeoty jp RNV,
where £ and R are given in Definition 3.1.

Proof. We prove this proposition by induction. For simplicity, we often omit the super-
script A.
Define Z; = AY, and V; = e %?Z;. Thus,

V1 + £V, —iR(Vy) = —iR(Vy).
Note now that R(f) = QPJ(Q~! f), where
p+1 p—1._
-7z

2 2

is real-analytic in the disc {z : |z| < 1}, and satisfies J(0) = d,J(0) = 3z J(0) = 0. Write
its Taylor expansion as

4.2) J@) = ) ayz'#;

i+j>2

J@) =1+ 1 +2)~1

this series and all of its derivatives converge uniformly in the compact disc {z : |z| < 1/2}.
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Now, if s = 1, since Z; € §(R") and W decays polynomially, we have |[W ' Z ||z
< 400.For 0 < s, < 1, we make use of Corollary 3.8 (ii), to conclude that | Q™! Z ||z
< +o0. In any case, we can choose #y such that |V;(¢)| < %Q, for any ¢ > t¢. Therefore,
for large ¢, we have

1
RODI = 1217 ( Y laylz7) 107 W12 = Clo™' Wi,
i+j>0

In the same fashion, we can use the Leibniz rule, equation (4.2) and items (i) and (ii)
of Corollary 3.8 to bound all the derivatives of R(V;). Using that V; = e %! Z;, we
conclude that R('V;) = O(e~2¢?) in S(RY). Moreover, by Corollary 3.8 (ii), we have
107 e"13% Z || Lo < +o0.

Now let k > 1 and assume that the V; are defined and satisfy (4.1) for all i < k. For
0 < 5. < 1, assume furthermore that, for all i < k, and all multi-indices «,

4.3) 107 e 9% Z;|| Lo < +o0.
Define
“4.4) €x = 0V + £V —iR(Vy),
and note that .
0 Vi = ) _(—jeo)e ' Zy,
j=1
so that (4.4) can be written as
k
45 elx.n) =) e (—jeoZi(x) + £Zi(x) — iR(Vie(x.1)).
ji=1

Recall that, for all k, Z, € § (IR{N ). If 0 < s, < 1, we also have (4.3). Therefore, for
large ¢, and all x, | Vi (x,1)| < %Q(x). Writing R(Vi) = QP J(Q V) and using again
the expansion (4.2), we get by (4.5) that there exist functions F; € § (R™)) such that for
large ¢,

k+1
Ek(x,[) = Z e—jeotFj(x) + O(E_eO(k+2)t) in S(RN)_
j=1
By (4.1), we conclude that F; = 0 for j < k, which shows
(46) Gk(x,[) = e_(k+1)€()le+l 4 0(6_(k+2)e0t).

Note that (k + 1)eg is not in the spectrum of £, and define
Zit1 = —(L + (k + Deo) " Frqr.
which belongs to § (see Appendix A). Moreover, if 0 < s, < 1, Zy 41 satisfies (4.3) with k
replaced by k + 1. By definition, we have Vi = Vi + e~ k+Deo? 7, | Furthermore,
err1 = ex —e ETVOE L —i(R(Vip1) — R(Vi)).

By (4.6), ¢ — e~ ktDeot [y | = O(e~k+2eot) Writing again R(f) = QPJ(Q7! f),
and using the expansion (4.2), we conclude that R(Viy1) — R(Vi) = O(e~k+2eor)
completing the proof. ]
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4.2. Contraction argument near an approximate solution

We now prove the key result of this section. The propositions for the energy-critical and
for the intercritical cases are stated separately.

4.2.1. Energy-critical case. We only treat here the case N > 6, as in the lower-dimensio-
nal cases this result is proved in [12]. The main difference here from [12] is that 0 < p, —
1 < 1if N > 6, so that the nonlinearity is no longer C?2, and its derivative is only Holder-
continuous of order p. — 1. This introduces difficulties, as the control of the convergence
of VU4 to VW is not enough to close the contraction argument, and we need to ensure
that the higher order terms Dé(U4 — W — V;) converge faster to 0, for small ¢ > 0. The
fractional derivative D°® is needed here to avoid certain end-point Strichartz estimates,
which are not available for any combination of H '-admissible and H ~!-admissible pairs.

Proposition 4.2. Let N > 6. There exists ko > 0 such that for any k > kg, there exist
txr > 0 and a solution U4 to (1.2) such that for t > tx and I(k) = [%k + %1
(where [x] denotes the least integer bigger or equal to x),

< o~ k+ D2 eot

4 4

ID*U* =W = Vig) s, 1,400y =
_ 1

IVUA =W = Vi) sz, 1400y < e T2

and
4.7

Furthermore, U4 is the unique solution to (1.2) satisfying (4.7) for large t. Finally, U4 is
independent of k and satisfies, for large t,

(4.8) [UA@) = W — Ae MY || g1 < e72%",
Proof. Since A € R is fixed in the proof, we omit the superscripts A. Define
A A
h=U"=W ="V,
so that U4 is a solution to (1.2) if and only if & satisfies
id;h + Ah = —K(h) — (R(V[(k) + h) — R(V[(k))) + i€k)s

where €;4) = O (e~ +Deoty jn §(RN) for all k > 0. Therefore, the existence of U4
can be written as the fixed-point problem

h(t) = M(h)(2),

where

+oo
M(h)(t) = —i / IR — K(h) — (RVigy + ) — RViwy)) + i€1xy ] ds.
t
Let first N > 6. We will show that M is a contraction on B defined by
B =B(k.tx):={h € E :|h|g <1},
E =E(k,ty) :={h e S(H", [tx, +00)), D°h € S(H' ™ [t}., +00)),
Vh e S(L?, [tx, +00)) : |h]|g < +o00},

. k4+1yN=2 K+l
Il = sup e+ D Y DBl 11 gy + 500 €DV V150
2k Zlk
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equipped with the metric

p(u,v) = sup e+ )52

(2473

4 eot”D (v —v) ”S(Hl —&, [t,400)).

Let {h,} C Band h € S(H'~¢, ) with p(h,, h) — 0. By reflexivity and uniqueness
between the weak and strong limits, 7 € B. This shows that (B, p) is a complete metric
space. We will show that M(B) C B and that M is a contraction.

By Strichartz estimates, there exists C* > 0 such that

4.9) VMM sz, it +00p < CIVKM) 512,12, +00))
+ IV(RVigy + B) = RVigo) | sr2, 1t 400 + V1) 5722, 11,4000 )
(4.10) ||DEM(h)”s(H1—s,[t,+oo)) =< C*[||D8K(h)||S,(H,(1,£),[t,_'_oo))
+ I D*(R(Vigy +1) = RVige)) Il s1¢r-a-00 1400y T I P €160 L 1 r-1-0) 1. 400y |

and

@11 [ DEM(Q) = MO L1, r 1oeyy < C*IIDTK(E = Ml giggz--0) 1400y
+ 1D (RViky + &) — RViy + h))“s/(]-']—(l—e),[;,_;.oo))]-

To finish the argument, we need the following estimates.
Lemma 4.3. For every n > 0, there exists lg(n) > 0 such that, if k > 12(77), then for any
g, h € B, the following inequalities hold for all t > ty:

@) VKW ls@2, 4oy < ne”EFD g,

() [V(RVigy + 1) = ROVigo) ls(z2, [ 400y < Cre™ K+t wmz)eor,

(i) DKl sr-1-0, 1100y < M~ KT T p(h,0),

(i) 1D (R(Viwe) + &) — Ry + M)llsrcg-a-o, 11, +00)) ,

< Cre (e i+ i z)Z)N“_zeOt,O(g, h)

M Ve ls w2, ir400) + 1 D%€1a0) s (zr-a-0), 1,400y = Cre€” (k1) BZeot,

Indeed, assuming this lemma, choosing first n > 0 small enough, and then a large
enough 7, we see by (4.9) and (4.10) that M(B) C B. Moreover, by (4.11), M is a
contraction on B. Thus, for every k > ko = k(1), there is a unique solution U4 to (1.2)
satisfying (4.7) for t > ;. Note that the uniqueness still holds in the class of solutions
to (1.2) satisfying (4.7) for t > [l/c’ where t,’C > ;. Thus, uniqueness of the solutions to (1.2)
shows that U4 does not depend on k.

It remains to show Lemma 4.3. By Lemma 3.9 (i), if tp > 0 and # > f, then

1/2 1
IVK(R) 522 1]y < C 7o/ > e~ ®F D0 ||| .

Summing up this equation at times t; = ¢ + j 7o, and using the triangle inequality, we get
a geometric series, whose sum is

1/2
To

—(k+3) eot
IVl 400y < € gy e T2 hlle.
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Choosing ¢ and k¢ such that 1'(}/2 =1n/(2C) and e—k+2)e0no < 1/2, we get the estim-
ate (i) of Lemma 4.3. The estimate (iii) follows analogously from Lemma 3.9 (iii).
We now turn to the item (ii). By Lemma 3.9 (ii), we have

IV(R(Vigy + 1) — ROVigo) s L2, 11,6+1)

_4
< () IVRls2, sy + B IDHITE o o

where . .
(A) S IVVio s vy T IVRISE re)
and
B) S IVViw sz, it,041p + IVRls@2, 12,0411
By the explicit form of Vi and the fact that & € B, we get

(A) + (B) < Cre N2t

Therefore,
[(R(Vigy + h) — ROVigo) s w2, 2,641
o4 1 (et la 4
< Cre "2 (VA sz, o417 + ||D8h||g(§1,€’[t’t+1])) < Cre ktatyaeot

Since h € B, the triangle inequality and the sum of the resulting geometric series gives
us (ii). As for the item (iv), it follows analogously from Lemma 3.9 (iv). The estimate (v)
of Lemma 4.3 follows immediately from (4.6) and from the bound

l(k)+lz(k+l)¥-

Finally, given that U T g Vi + h with h € B, we see that, for large k,
IVA@®L2 < €73 [lh]|p < 73,
and recalling the definition of Vi given in Proposition 4.1, we have, for all k,
Vigy = Ae™ 'Y, + 0(e7?*")  in S(RY),

which proves (4.8), and finishes the case N > 6.

For the case N = 6, note that (N — 2)/4 = 1, so that, by the Sobolev embedding,
only the space S(L?2, I) is enough for the contraction argument. Therefore, defining the
space B as

B =B(k.ix) :={h e E: |h|g =1},
E = E(k,tg) :={h € C,H"([tx, +00)) N S(H", [tx, +0)),
Vh e S(L?, [tk.+00)) : ||h|E < 400},

. k+1
IhllE = sup e* T DO VR 512 1 400y
21k
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equipped with the metric

(k+

1
p(u,v) = sup e¥F 2O |V (u — )| 512, 1 400

>ty

we observe that, by Lemma 3.9, the analogous estimates of Lemma 4.3 hold. Hence, the
conclusion of Proposition 4.2 also holds for N = 6, finishing its proof. ]

4.2.2. Intercritical case.

Proposition 4.4. There exists kg > 0 such that for any k > kg, there exist ty > 0 and a
solution U4 to (1.1) such that for t > ty and 1(k) = max{[(k + 1)/(p — 1) — 1], k}, we
have

(*-12) 104 =€ Q =" Vil I s(sive 1, r00p S €2 M0
and
(4.13) I(VIU* =€ Q — e Vil 20t 400y < €~ FFD.

Furthermore, U4 is the unique solution to the NLS equation (1.1) satisfying (4.13) for
large t. Finally, U4 is independent of k and satisfies. for large t,

(4.14) ||UA([) _eitQ _Ae—€0t+ity+”H1 < o2¢0t

In view of Lemma 3.13, the proof of Proposition 4.4 is essentially the same as in the
energy-critical case, and we state Lemma 4.5 below for completeness. Note that (4.12) is
a consequence of (4.13) in the case p > 2, due to the Sobolev inequalities.

Lemma 4.5. For every n > 0, there exists 12(77) > 0 such that, if k > 1€(17), then for any
g, h € B the following inequalities hold for all t > ty.

. _ 1

D IVKW sz, 1400 < ne"* D | g,

.. — min{ p— _ 1

(i) [V(RVig) + 1) — ROVigy) sz, 1,400y < Cremnp=l1eot g=(kt3)eor,
—(k+1) max{ -1

(iii) ”K(h)”S/(H_sC,[l,+OO)) <ne (k+3) max{ ;= ’l}emp(h, 0),

”R(vl(k) +g)— R(vl(k) + h)”S/(HfSc,[z,.,_oo))
< Ck e—min{p—l,l}emef(k+%) max{ﬁ,l}eot p(g’ ]’Z),

(iv)

—(k4+1) me L,l
M Ve llsizz, ooy + l€1tolls s tooyy < Cee” €m0t

5. Modulation

Throughout the rest of the paper, we write, for 0 < s, < 1,

d(f) =1V Sl = IVQllLzl-

If u is a solution to (1.1) or to (1.2) and if there is no risk of ambiguity, we also write

d(t) = d(u(t)).
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5.1. Energy-critical case
The variational characterization of W, see [2,32,38], shows that, if E(f) = E(W), then

inf || fix,a,01 — Wllg < e€d(f))
xeRN

A>0
feR

with € = €(§) such that
lim €(8) = 0.
§—>0t+

The goal of this section is to construct modulation parameters xg, Ao and 6y such that
the quantity d( f) controls linearly || f{x,,10,80] — W Il 1 as well as the parameters and its
derivatives.

By making use of the implicit function theorem, we can construct appropriate modu-
lation parameters. The proof of the next two lemmas is very similar to the ones in [12],
with the introduction of a translation parameter, and will be given in Appendix A.

Lemma 5.1. There exist §o > 0 and a positive function €(d) defined for 0 < d < 8o, with
e(d) — 0asd — 0, such that, for all f € H' satisfying E(f) = E(W) and d(f) < 8o,
there exist (x, A, 0) such that

”f[x,/\,ﬂ] - W”H‘ < e(d(u)) and f[x,,{’g] 1 span{VW, iW, AW}.

The parameters (x, A, 0) are unique in RN x R/277Z x Ry, and the mapping u
(x,A,0)is CL.

Let u be a solution to (1.2) and let I be a time interval such that
d(t) <8y forallt el.

For each t € I, choose the parameters (x(¢), A(?), 8(¢)) according to Lemma 5.1. Write

(5.1 Ulx(),1(1),00]1(F) = (1 +a () W + h(1),

where )
ot —_ W -
(1) = Wis ( Ulx(1),A@),001: W) g
Note that a(¢) is chosen so that 4(¢) € G. By Lemma 5.1 and a standard regularization

argument (see, for instance Lemma 4 in [33] for details in a similar context), the map
t > (x(t), A(t),0(t)) is C'. We are now able to prove estimates on the modulation.

Lemma 5.2. Let u be a solution to (1.2) satisfying E(uog) = E(W). Taking a smaller &,
if necessary, the following estimates hold on I:

(5.2 la ()] ~ IR g1 ~ d(1) < 50,

(53) @]+ 15'0)] +160)] + | -8 0 \ S R2(0)d(0).
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In the next two sections, we mainly consider radial solutions to (1.2). Since the trans-
lation parameter is not needed, we write

. 1 X
__ i,
Jiho80)(X) = €™ A2 f<)t_0)’

In some results regarding compactness, the parameter 6y can also be omitted. In this case,

we write |
X
S (x) = W f(z)

For solutions to (1.1), since the scaling parameter is fixed (see Remark 1.7), we use
the notation

Jixo.81(x) = €'% f(x + xo).
When 6y can be omitted, we write

Sl (¥) = f(x + x0).

5.2. Intercritical case

For 0 < s, < 1, the variational characterization of Q, [31], shows that, if M(f) = M(Q)
and E(f) = E(Q), then

(5.4) inf || fix,01 — Qllar < €(d(f)),
xeRN
feR

with

li 8) = 0.
i, )

As before, the goal here is to construct modulation parameters xo and 6y such that
the quantity d(f) controls linearly || fix,,6) — @llg1, as well as the parameters and its
derivatives. We follow mainly [13] here, and the proofs for the next two lemmas are almost
identical; thus, we omit them.

Lemma 5.3. There exist §9 > 0 and a positive function €(d) defined for 0 < d < &y, with
e(d) — 0asd — 0, such that, for all f € H' satisfying M(f) = M(Q), E(f) = E(Q)
and d(f) < 8o, there exist (x, 0) such that

I fixo1 — Qllat < €(d(f)) and  fixg L span{VQ,iQ}.

The parameters (x, 0) are unique in RN x R /27, and the mapping u — (x,0) is C1.

Let u be a solution to (1.1) and let / be a time interval such that d(¢) := d(u(t)) < §o
forallt € I.Foreacht € I, choose the parameters (x (), 8(¢)) according to Lemma 5.3.
Write

(5.5) e MU0 (t) = (1 +a()Q + h(1),

where

_ Re(e™ [ QPupm,60)) 1

+1
(Yo) g

a(t)
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Note that «(¢) is chosen so that /(t) € G+. Recall that the parameters (x, #) are C'. We
are now able to prove estimates on the modulation.

Lemma 5.4. Let u be a solution to (1.1) satisfying M(ug) = M(Q) and E(uy) = E(Q).
Taking a smaller 8¢, if necessary, the following estimates hold on I :
5.6) @Ol = 1Ol ~ | [ om| =~ da.
(6.7 o' (1) = |x"(1)] = |0'(1)] < d(2).
We finish this section with a lemma that will be useful in later sections.

Lemma 5.5. Let u be a solution to (1.1) such that M(ug) = M(Q) and E(ug) = E(Q).
Assume that u is defined on [0, +00) and that there exists ¢ > 0 such that

+o0
(5.8) ./z d(s)ds <e .
Then there exist (xg, 0y) such that
40,600 — € Ollerr < €7
Proof. Step 1. Convergence of §(t). We claim that
(5.9) lim d(t) = 0.

t—>+o00

To prove this, first note that (5.8) implies that there exists a sequence {t,} with t,, — 400
such that

(5.10) lim d(t,) = 0.
n—+o00

Suppose now, by contradiction, that (5.9) does not hold. In this case, we can find another
sequence {7, } and 0 < €; < &y such that
(5.11) th <ty Vn, dt,)=e€ and d(1) <e; Vi€ [ty,1}).

Since €1 < 8o, the parameter c¢(¢) is well-defined on [#,,7;,). By Lemma 5.4, |a/(¢)] <
d (1), so that fzt,,n le’()|dt < e, by (5.8). Therefore,

lim |a(ty) —a(t,)] = 0.
n—>oo

Since, by Lemma (5.4), |a(t)| & d(t), we get that «(t,,) tends to 0, which contradicts (5.11)

and proves (5.9). Recalling the decomposition (5.5), to conclude the proof of Lemma 5.5,
it is sufficient to prove that there exists (xg, 6p) such that

d(t) + ()] + )| g1 + [x (1) = xo| +|60(1) — Oo| < ™.
By Lemma 5.4, |x(t)| ~ d(t) — 0 ast — +00, and hence,
+00 +o00
@l = [ ldss [ dwds <o,
' t
since |o'(t)| ~ d(t). Again by Lemma 5.4, d(t) ~ ||h(?)|| g1 ~ |a(t)]. and we get the

bounds on d(¢) and ||A(t)|| ;1. To obtain the bounds on x(¢) and 0(¢), it is sufficient to
recall that Lemma 5.4 says that |x'(¢)| + |6(t)| < d(¢) < e . [
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6. Convergence to the standing wave above the ground state

6.1. Energy-critical case

In this and the next sections, we prove that radial solutions to (1.2) on the same energy
level as W that do not blow-up in finite positive time (and have finite mass), and that do
not scatter forward in time, must converge exponentially to W as t — +o00. We follow
closely [12], and give the proofs in Appendix A.

Proposition 6.1. Let u be a solution to (1.2) defined on [0, +00) satisfying
(6.1) E(uo) = E(W) and |uollg:1 > IWlg-

Assume, furthermore, that ug is radial and belongs to L>(R™). Then there exist (Ao, 6o)
and ¢ > 0 such that

(6.2) e — Wing,001ll g1 S e

Moreover, u blows up in finite negative time.

We will work with a truncated variance. Consider a radial function ¢ € C§° (RY) such
that

2 < 2
reorsl and d—¢(r)§2,r20.
dr?

$(r) =0 Vr=o. ¢o)={0 g

Define ¢r(x) = R2¢(x/R) and

Fﬂo=/@mwm?

By virial identities, if E(ug) = E(W), we have

6.3) Fl(t) = 2Im/ Vé - Vuii
64 FA0) = s d) + AR(®).
where

65 Anwo) = | ul? (8~ Adx)

[x|=R

—f > A2,
[x|=R

Recall that, if [|Vugl| g1 > [VW || g1, then, for all ¢ in the interval of definition of u,

[Vu(t)? (49%¢r — 8) +/

|x|=R

d(0) = [IVu@ll g1 = IVWl g2 | = IVu@ll g1 = IVWll .-

In order to prove Proposition 6.1, we need the following lemma, which is also proved in
Appendix A.
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Lemma 6.2. Let u be a radial solution to (1.2) defined on [0, +00) and satisfying (6.1).
Assume, furthermore, that the mass M (ug) is finite. Then, there exists a constant Ry > 0
such that, for all t in the interval of existence of u and all R > Ry,

(6.6) Fgr(r) >0,

and there exists ¢ > 0 such that

+o00
6.7) / d(s)ds <e ¢, Vt=>0.
t

6.2. Intercritical case

Here, we state the corresponding result for the intercritical case. Since the proof is very
similar to the energy-critical case, we mainly sketch it in Appendix A.

Proposition 6.3. Let u be a solution to (1.1) defined on [0, +00) satisfying
(6.8) M(uo) = M(Q), E(uo) = E(Q) and |[Vuollr2 > [[VO|L2.

Assume, furthermore, that either uy is radial or | x|ug € L2(RN) . Then there exist (xg, 6o)
and ¢ > 0 such that

(6.9) 1 — € QLxo 001l a1 < €7

Moreover, u blows up in finite negative time.

7. Convergence to the standing wave below the ground state

7.1. Energy-critical case

In this section, we consider solutions such that
(7.1 E(uo) = E(W) and |uol g <IIWlg-

Definition 7.1. A solution u to (1.2) with lifespan [ is said to be almost periodic modulo
symmetries on J C I if there exist functions x: J — RV, 1: J — R% and C:R} — R
such that for all € I and all n > 0,

Ve dx <7 and f £ 18, D2 dE < 7.

flx—X(t)lzc(n)/l(t) [EI=C(mA@)

Remark 7.2. By the Arzela—Ascoli theorem, almost periodicity modulo symmetries is
equivalent to the set {u[x(;),A(r),0] : ¢ € J} being precompact in H'.

Remark 7.3. If the solution is radial, x(¢) can be chosen to be zero.

Proposition 7.4. Let u be a solution to (1.2) and let I = (T~, T ) be its maximal interval
of existence. If u satisfies (7.1), then I = R.
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Furthermore, if

+oo 2(N+2)
(7.2) / / |u(x,t)| ¥2 dxdt = 4o0,
0 RN

then u is almost periodic modulo symmetries on [0, 4+00).

The proof of Proposition 7.4 is essentially contained in the proof of Proposition 3.1
in [28], which extended the work in [27] to dimensions N > 6.

Remark 7.5. By time-reversal symmetry, the analogous version of (7.2) for the interval
(=00, 0] holds.

The next theorem is the main result proved in [28] (Theorem 1.7).

Theorem 7.6. For N > 5, letu: I x RN — C be a solution to (1.2) satisfying

Ew = sup [u@)ll g1 < W g
tel

Then,
2(N+2)
/[ lu(x,t)| ¥2 dxdt = C(E4) < 4o00.
1 JRN

In particular, by uniqueness of solutions and continuity of the flow of (1.2), we have
the following consequence.

Corollary 7.7. For N > 5, let u be a solution to (1.2) satisfying (7.1) and (7.2). Then
there exists a sequence t, — 400 such that

dim d(u(tn)) = 0.

The main aim of this section is to prove the following proposition.

Proposition 7.8. Let u be a radial solution to (1.2) satisfying (7.1) and (7.2). Then there
exist (Ao, Bp) and ¢ > 0 such that, for all t > 0,

—ct

(7.3) lu — Wirg001ll g1 S e
Moreover, u scatters backward in time.

The proof follows the same lines as in [12], and is given in Appendix A.

7.2. Intercritical case

Here, we consider solutions such that
(7.4) M(uo) = M(Q), E(uo) = E(Q) and [Vuglz2 <[IVQ||L-.

Since the scaling parameter is fixed a priori in the intercritical regime, controlling
scaling is no longer an issue. We can then use the fact that the solution has finite mass,
together with information given by the virial-type and compactness arguments, to control
the translation parameter, allowing us to prove results in the non-radial setting. We start
with a definition.
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Definition 7.9. A solution u to (1.1) with lifespan [ is said to be almost periodic modulo
symmetries on J C I if there exist functions x: J — RY and C: R} — R such that for
allt € J andall n > 0,

/ |Vu(x,t)|2 + |u()c,t)|2 dx <n.
[x=x(@)|=C(n)

Remark 7.10. By the Arzela—Ascoli theorem, almost periodicity modulo symmetries is
equivalent to the set {u[y()] : / € J} being precompact in H!.

Proposition 7.11. Let u be a solution to (1.1) and let I = (T, T™") be its maximal
interval of existence. If u satisfies (7.4), then I = R.
Furthermore, if

(7.5) [l 50,4-00) = +00,
then u is almost periodic modulo symmetries on [0, +00), and we have

t
P(u):Im/ﬁVu:O and lim & =0.

t—oo f

The proof of Proposition 7.11 is now classical, and it is essentially the same as in [13],
Lemma 6.2, Corollary 6.3 and Lemma 6.4.

Remark 7.12. By time-reversal symmetry, the analogous version of (7.5) for the interval
(=00, 0] holds.

Remark 7.13. Asin Lemma 6.2 of [13], the function x(¢) can be chosen to be continuous
on R and the same as the one given in Lemmas 5.3 and 5.4, if d(¢) < §o.

Proposition 7.14. Let u be a solution to (1.1) satisfying (7.4) and (7.5). Then there exist
(x0, 80) and ¢ > 0 such that, for all t > 0,

(7.6) [ — € QLeo001l et < €7

Moreover, u scatters backward in time.

8. Estimates on exponentially decaying solutions

According to the previous sections, we must study the behavior of solutions approach-
ing e'’ Q exponentially fast in time. We start with the energy-critical setting.

8.1. Energy-critical case

In contrast to the previous two sections, the radiality assumption is not needed to prove
the results in this subsection. We consider the linearized approximate equation

8.1) dh+ Eh=¢
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with & and € such that, for ¢ > 0,

c1t

(8.2) 1ROl g S e and el v+ + IVEllsi @z, 1,400y S €,

~

where ¢; > co > 0. The following self-improving estimate was proved for radial data
in [12]. We give the proof without the radial assumption in Appendix A.

Using the notation a~ for a — § with arbitrarily small § > 0, we have the following
lemma.

Lemma 8.1. Under the assumptions (8.2),
() if eo & [co,c1), then
(8.3) IR g1 S e,
(i1) if eg € [co, 1), then there exists A € R such that
(8.4) Ih(t) = Ae™ " Yy |l g1 S e 1"

To further improve the convergence in the case N > 6, we study the linearized equation
around W + 'V,f, for A # 0, which was defined in (4.1). For simplicity, we omit the
superscript A. Defining, for every k,

5 0o A +1 _ 0 1
= (—A o) * (pcz LWt (—1 0)
Im(W + V)2  —Re(W + "Vk)z)

(Pc -1 pe—3
5 W+ Vi —Re(W + V)2 —TIm(W + V)2

- 1 —1 _
Ki(h) = % W + 'Vk|pc—1h + % W + 'Vk|p_3(W + Vk)zh,
and 3
Ri(h) = |W + V[P (W + Vi) J (W + Vi)™,
where

(pc+1) (pe—1) _
— z— z,
2 2
we have that if u = W + Vi + h satisfies (1.2), then / satisfies

Jo)=[14z[P Y1 +2)—1

(8.5) dch + Lxh = i Ri(h) + ek,
or in the form of a Schrodinger equation,
idh + Ah+ Kih = —Ri(h) + i€,

where ¢ are O(e~*+Deoty jn §(RV) . Note that the operator Ly is time-dependent and
that, by the construction of Vi, we have, for all ¢ > 0,

Vi ()] S e W] and |[VVi(t)| < e VW | < e | W]|.

This implies that the estimates in Lemmas 3.9 and 3.12 hold with the same proof if we
replace K by K and R by Rj. Therefore, we have the following results.
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Lemma 8.2. Let N > 6, k > 1 and let I be a bounded time interval. Consider [ €
S(H', I) such thatV f € S(L?,1). The following estimates hold.

0 NVE(O)lsiezny S TIV2IV f sz,
() (VR lszn + 1R ()l avaven S 1+ [1]1?) IV £ 15221y

Lemma 8.3. Let h be a solution to (8.5). If, for some ¢ > 0 and for any t > 0,
IR g1 < e
then
(8.6) IVAllsL2, 1400y S € mnie KHIDeod,
In the spirit of Lemma 8.1, we prove the following estimate.
Lemma 8.4. For N > 6, let h be a solution to
8.7) dh+ Lph =e,
with h and € such that, fort > 0,
8.8) 1RO g2 S e and |e@)|p2nvivr2 + Vel sz, (1,400 S €V,
where (k + 1)eq > c1 > co > eq. Then,
(8.9) A @) g1 < e~
Proof of Lemma 8.4. Since the subscript k will be fixed in this proof, we omit it. By

Lemma 8.3, we have
—cot

VROl sw2, 11,4000 S €
We first note that (8.7) can be written as
dh+Eh=c+ (£ —Lp)h.
Now,if N > 6and h € H',
(& = D)h| < [V(0)|P7 || < em PVt w12t i,
and
IVIE — D)h]| S (WP [ VW | + [VV@)[] [h] + [V(0) [P~ VA
< D (W2 ] + (V]
where we used the fact that V(z) € S(RY), | V(¢)||Le < e and |[VW| < |W|. Thus,
1 = Dhllanivsn + IVIE = D)l s5/(22, frop00y) S €m0 (HIIOHPembeolr,
Therefore, by Lemma 8.1, since co > ey by hypothesis,

||h||H1 S e_t mi“{[CO‘i‘(pc—l)eo],cl}—.

By iterating this argument, we get (8.9). |
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We now improve the convergence given by Propositions 6.1 and 7.8.

Lemma 8.5. For N > 6, if u is a solution to (1.2) satisfying, for all t > 0,

(8.10) lu() = Wiz Se™ and E(uo) = E(W),

~

then there exists a unique A € R such that u = U4,

Proof. Step 1. Linearization around W to improve the decay on time.

If u is a solution to (1.2), write ¥ = h + W. Recall that / is a solution to (3.1). We
first show the bound

(8.11) V(R |22, 11, +00)) + IR || p2njv2) S e7Pe! forall 1 = 0.
Indeed, by Lemmas 3.12 and 3.9 (ii),

[V(R(h)) “S’(LZ, 41D = e CPct

Therefore, the triangle inequality gives

IV(R(M) | s7(22. 11400y S € P

Now, by (3.16), we have
|R(h(1))| < [h(2)]7,

so that, by the Sobolev inequality,

IRl 2wrovsn < N(@)]1750 < e™Per

Therefore, the bound (8.11) is proved.

We are now under the hypotheses of Lemma 8.1, with ¢ = ¢ and ¢; = ¢p, > c. The
conclusion of this lemma gives

Ih(@))l g1 S e + e Pt

If ¢ > eg/pc, we get
ROl g1 < e,

and, by the same argument used to prove (8.11),

IV RGN s/(22 e ooy + IR | 2msavsz) S €707
Thus, (8.4) gives
(8.12) () — Ae 'Y, g1 < e Pceot,

1+2”c ¢ > c instead of c.

If, however, ¢ < eg/ p., then assumption (8.10) holds with
By iteration, we get (8.12).
Step 2. Linearize around W + Vi to improve higher order convergence to U*.

For k > 2 to be chosen later, write h=h— Vi, so that h is a solution to (8.5). Since k
is fixed throughout the proof, it will be omitted. By Lemma 8.2, we have

IVRG)) s (12,1 +00)) + IRGED 25042 S IVRIE 2 1y 400y
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Therefore, by (8.5), -
81]’1 + ikh =1,

with

B.13)  [Valgie, ooy + Inllzamors Sk IVAIZ s 4oy + e &0
By (8.12) and the definition of Vi, we have

(8.14) ||];||H1 < |h - Ae_emy+”1’11 + O(e_ze"’) < e Peeot

By iteration, starting with (8.14), and repeatedly applying Lemmas 8.4 and 8.6, as well as
estimate (8.13), we have, for any k > 2,

”};”Hl <k e~ k+17)eor

Therefore, choosing k = [(kg), where k¢ and [ are defined in Proposition 4.2, we have,
for N >6andt > 0,

1D =W = Vigo) | sgri-2, 1. 400)) S NVW =W = Vi) ls2, 11,400

< o~ kot D2 eor
Hence, by the uniqueness in Proposition 4.2, we get that u = U4. ]
Corollary 8.6. Let N > 6. For any A # 0, there exists T4 € R such that
either UA(t) = WH (@t +Ty), ifA>0, or UAt)=W (1t +Ty), ifA<O.
Proof. Choose Ty such that |A|e=¢T4 = 1. We have, by (4.8),
(8.15) NUAG + Ta) = W F e @'Yy | g1 < e 2,

Note that U4(t + Ty) satisfies the hypotheses of Lemma 8.5. Thus, there exists AeR
such that U4(t 4+ T4) = UA. But (8.15) implies that A = 1,if A > 0, and 4 = —1, if
A < 0, finishing the proof of the corollary. ]

8.2. Intercritical case

For 0 < s, < 1, we study the linearized approximate equation

(8.16) 0ch+ £h=¢

with & and € such that, for ¢ > 0,

(8.17) Az < e and  [{V)ellsz2,f,400p S €

where c¢; > c¢ > 0. We merely state the results in this case, as their proofs are very close to
the energy-critical case (in fact, some proofs are easier, since the L2 norm of the solution
is finite).
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Lemma 8.7. Under the assumptions (8.17),
(i) if eo ¢ [co, 1), then

(8.18) 1R @)l S e 7,
(i) if eo € [co, c1), then there exists A € R such that
(8.19) |h(t) — Ae 'Yy | g1 S e 1l

Omitting A for simplicity and defining, for every k,

gEk:(_(lO_A) 1?) )+(p+ )|Q+"V|”1(01 (1))

w-) Im(Q + V2 —Re(Q + Vi)’
+ |Q + V |p 3 (—RG(Q + vk)z —Im(Q + 'Vk)2)
Rilh) = (”j Yio v v+ L2 10 1 vigr 0 + vk
and ~
Reh) = 10 + VlP™(Q + V) I(Q + V™D
where

P+ _ (=D
— z— zZ,
2 2
we have that if u = ¢*(Q + Vi + h) is a solution to the NLS equation (1.1), then h
satisfies

J)y=[1+zP 11 +2)—1

(8.20) dh + Lxh = i Ri(h) + e,
or in the form of a Schrddinger equation,
id;h+ Ah—h + Kph = —Ri(h) + ieg,
where ¢, are O(ef(kH)eOt) in$ (RN). By the construction of Vi, we have, for all t > 0,
Vi) < e |Q] and [VVe(1)] S e |VO| < e™*|Q].
Therefore, as in the energy-critical case, we have the following results.

Lemma 8.8. Let p > 1, k > 1 and I be a bounded time interval, and consider f €
S(L?,1) such that V f € S(L?,I). There exists a > 0 such that the following estimates
hold.

Forall p > 1:

@ IV Ke(Nsiez,ry < UV f sz, .
For p > 2:

Q) VYR s, 1y S VY D lscee, oy (TN Fllsee, n+HIVY S 15z, 1)
For 1l < p <2

i) (V) Re(Nsizz,ry S A+ T I 2.1
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Lemma 8.9. Let h be a solution to (8.20). If, for some ¢ > 0 and for any t > 0,
1@ < e,

then

(8.21) VYl s(z2, 11 4ocy S €™ mHEEFIDeM,

Lemma 8.10. Let h be a solution to

(8.22) dch + Lih = e,

with h and € such that, fort > 0,

(8.23) IA@) N < e and  |{V)ellsir2 11,100y <€

where (k + 1)eg > c1 > co > eq. Then,

(8.24) IR @l < e~

Lemma 8.11. Ifu is a solution to (1.1) satisfying

(8.25) lu(@) — e Qllgr S e, M(uo) = M(Q), E(uo) = E(Q),

then there exists a unique A € R such thatu = U4,

Corollary 8.12. Let 1 +4/N < p <2* — 1. For any A # 0, there exists T4 € R such
that

either UA(t) = QT (t + Ty), ifA>0, or UA(1t)= 0 (t+Ty), ifA<0O.

9. Closure of the main theorems

Having proved Propositions 6.1 and 7.8, and Lemma 8.5, we can proceed as in [12].

Proof of Theorem 1.5. Recall the notation ¥; = Re ¥+ = Re ¥_. We claim that (W, Y1) ;.
# 0. If not, since W solves the equation AW = —W P¢, we would have

1
BW,Yy) = E/vw-vyl—%/wpcyl - % AWY, =0,

so that W € G+. But, by Lemma 3.5, ® is nonnegative (in fact, it is coercive) on G,
which contradicts (3.13).
Replacing ¥4, if necessary, we may assume

(W, %1) g1 > 0.

Definin
¢ wt.=vU! and W™ :=U"!,

we claim that the conclusions of Theorem 1.5 hold.
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By the strong convergence U4(t) — W in H' and energy conservation, we conclude
E(W#*) = E(W). Moreover, by (4.7),

IUA@IZ, = IWI2,, + 24729 (W, Y1) 41 + O,

which shows that |[U4(¢) | g1 — IIW || g1 has the same sign as A, for large #. By uniqueness
and continuity of the flow, this sign must remain the same for every ¢ in the intervals of
existence of W=*. By Proposition 7.4, W~ is defined on R, and by Proposition 7.8, W~
scatters backward in time.

We now show that U4 has finite mass for N > 5. As in the proof of Proposition 7.4,
let ¢ be a smooth, positive, radial cutoff of the set {|x| < 1}. Define, for R > 0 and large ,

_ A 2 ﬁ)
Fro) = [ 104G o) dx.
Since U4 is a solution to (1.2), by Lemma A.2 and Hardy’s inequality, we have
/ A 1 A2\ 2 A A —eot
FROIS VA=Wl (| T5I04O) 2 104 O-W i 1040 g e
Hence, integrating from a large ¢ to +o00, we get
_ 2,(% < ,—eot
(FR(z) / W qb(R)dx‘ < et
Recalling that W € L2(RV) if N > 5, we can make R — +oo to obtain M(U4) =

M(W) < +4o0. In particular, W* € L2(R¥) and, by Proposition 6.1, W* blows up in
finite negative time. This finishes the proof of Theorem 1.5. ]

Proof of Theorem 1.6. The case |uoll g1 < W] g1 follows immediately from Proposi-

tion 7.8, Lemma 8.5 and Corollary 8.6. The case |[ug|| g1 = ||W || 5.1 is a consequence of
the variational characterization of W. Finally, ||ug|| 51 > ||W| g1 follows from Proposi-
tion 6.1, Lemma 8.5 and Corollary 8.6. ]

Proof of Theorem 1.2. Recall the notation ¥; = Re ¥ = Re ¥Y_. We claim that (Q, Y1) g1
# 0. If not, since Q solves the equation Q — AQ = —Q7?, we would have

1 1 1
B(Q.Ys) = 5/ oY, + 5/vg-vyl —§/ 07y =210, ¥nm =0,

so that Q € Gt But, by Lemma 3.5, ® is nonnegative (in fact, it is coercive) on GJ-,
which contradicts (3.11).
Replacing ¥4, if necessary, we may assume

(Q,Y1)gr > 0.

Defining
Oot:=U! and Q" :=U"",

we claim that the conclusions of Theorem 1.2 hold.
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By the strong convergence e *U4(t) — Q in H' and energy conservation, we con-
clude M(Q*) = M(Q) and E(Q*) = E(Q). Moreover, by (4.13),

WUAONZ: = 115 +24e72°1(Q, Y1)p1 + O(e72Pe ),

which shows that |U4(¢)|| g1 — || Q|| g1 has the same sign as A, for large . By uniqueness
and continuity of the flow, this sign must remain the same for every ¢ in the intervals of
existence of Q*. By Proposition 7.11, Q~ is defined on R, and by Proposition 7.14, O~
scatters backward in time. Finally, by Proposition 6.3, Q" blows up in finite negative
time. This finishes the proof of Theorem 1.2. ]

Proof of Theorem 1.3. The case || Vugl|z2 < ||V Q||r2 follows immediately from Propos-

ition 7.14, Lemma 8.11 and Corollary 8.12. The case |Vug| 2 = ||[VQ||.2 is a con-
sequence of the variational characterization of Q. Finally, |Vug|;2 > [|[VQ]||12 follows
from Proposition 6.3, Lemma 8.11 and Corollary 8.12. ]

A. Appendix

A.1. Proof of modulation results

Proof of Lemma 5.1. The idea of the proof is already well-known (see, for instance, Sec-
tion 7.1 of [13] for the 3d cubic NLS equation, Section 3 of [13] for the energy-critical
NLS equation, in the radial case, for dimensions N = 3, 4 and 5, and Section 2 of [33]
in the context of the Korteweg—de Vries equation), and we extend the proofs here to any
dimension, any 0 < s, < I, not assuming radiality of the solution. The case s, = 1 is
Lemma 5.1, and the case 0 < s, < 1 is Lemma 5.3. We first show Lemma 5.1 when u is
close to W. Define the functional J = (Jo, ..., Jy+1) on RY x R, x R x H! as

Jo: (0, x,A,u) = (fixa.01iW) g,
Jr (0, x,4,u) = (fixn,01 W), 1<k <N,
JN-‘rl . (evx,k’u) = (_f[x,/l,e]aAW)Hl-

By direct calculation, one can check that

det(ﬁ) - (/ |W|2><l:[/ |8kW|2)(—/|AW|2) £0,

and that J(0, 1,0, W) = 0. Hence, by the implicit function theorem, there exist €¢ and 7¢
such that, if f € H' and || f — W| g1 < €o, then there exists a unique n-tuple (x, A, 0)
such that

x| +|A|+ 0 =1 <ny and J(O,x,A, f)=0.

Now, if u is as in the lemma, by the variational characterization of W, if d(u) is small,
then there exists (xo, Ao, B) such that u[yy 1,600 = W + f, with || f| g1 < e(d(f)).
We are thus back to the preceding case. Existence, local uniqueness and regularity follow
again from the implicit function theorem. ]
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Proof of Lemma 5.2. For a fixed ¢, write v = U[x(1),1(1),00)](t) = W = a(t)W + h(t) as
in (5.1). Since h € G+, we have

(A1) 1ol1%, = @I, + k12,
Since i € GL, and W satisfies the equation AW + WPe = 0, we have
1 14
B(W,h) = 3 VW -Vhy + ) AWh; =0.

Therefore, ®(v) = ®(aW + h) = a?D(W) + P(h). Recalling that W is a critical point
for the energy functional E, we have E(W 4+ v) = E(W) + ®(v) + 0(||v||21). Since

E(W 4 v) = E(W), and by the coercivity given by Lemma 3.5, we have ®(h) ~ ||h||i11
Thus, we have

(A2) lo®> ®(W) + ©(h)| = O(||v]%,,)

Since [|v|| g1 is small when d(u) is small, estimates (A.1) and (A.2) give |a| =~ [|A] g1 =~
V|| 1. Finally, since

d@) = [[W +vll5, = W15 ] = [Vl +22IW 3,

we have d(u) = |a|, and (5.2) is proved.
It remains to prove (5.3). Consider the variables y and s given by

X 1
y=—— and dt =——ds.
w(t) w2 (t)

In view of (5.2) and the decomposition (5.1), we can rewrite (1.2) as

A .
(A3)  idsh+ Ah—iagW + 6, W —ixg- VW +i 73 AW = O(e(s)) in H',
where €(s) 1= du(t(s))) (du(t(s))) + |6s| + |xs| + |As/A]). Since h € GL, project-

ing (A.3) in H' onto W, iW, VW and AW and integrating by parts (possible due to
a standard regularization argument) yields

= 0(d + €(s)),
which is enough to conclude (5.3) and to finish the proof of Lemma 5.2. ]
Proof of Lemma 5.3. The proof is analogous to that of Lemma 5.1, and is omitted. ]

Proof of Lemma 5.4. The orthogonality condition (3.9) implies B(Q, &) = 0. Since E(u)
= E(Q), and Q is a critical point for £, we have

@ ®(Q) + @(h) = ®@Q + h) = O(laf® + |IklI3).
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By coercivity, ®(h) & ||h||§_11 and hence, || &~ ||i|| g1 The relation M (u) = M(Q) gives

1
(A% o [ 0+ [ om| =3 [lag+h = 0(a?.
|| &~ ‘/th‘.
Now, using (3.9),

aw = | [ 19l = [1v0P| = (e [ 1vQP = [ 0m) + O(lal?

which, together with (A.4), gives

aw = [2a( [ V0P - [ %) + 0(aP)|

Since, by the Pohozaev identities (1.4), |[VQ]|z2 # [|Q]lz2 for any N and any p in the
intercritical range, we conclude d (1) ~ |«/|, and hence, (5.6) holds. The rest of the proof
goes along the same lines of the proof of Lemma 5.2 (without the need of self-similar
variables), and is omitted. [

and thus,

’

A.2. Convergence to the standing wave above the ground state

Proof of Lemma 6.2 (Critical case).
Step 1. A general bound on AR (recall (6.5)).
By the definition of ¢ g, we have the bounds 49%¢r <8, |A%2¢r| < 1and [A2¢r(r)| <

1/r2. Therefore,

(A5) AR(u(t)) < / uCe, > + %Iu(x,l)l2 dx.

|x|>R
We now recall Strauss’ lemma, [37], and make use of the decay given by radiality in H .

Lemma A.1 ([37]). There is a constant C > 0 such that, for any radial function f in
H'YRYN) and any R > 0,

C 1/2 1/2
I/ g,y < RO—D/2 1A% VAL

We can now bound
2N—2

_4 ( _2 2N—-2
2% N—2 2 \v4 N—2 N—=2
u(x,t dx < ||u(t u < — u(r u
/Iszl ( s )| = ” ()”L?\ox\zR}” 0||L2 = 21{,\/:22 ” ()”Lz ” 0||L2 ’

to obtain

1 1 s
(A.6) Ar(u()) = Co[ﬁ + m(d(l) + IIWIIHI)W],

where Cy depends only on M (ug).
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Step 2. A bound on AR when d(t) is small.

Taking a small §;, write the decomposition (5.1) as u[x(),1(1),0()] = W + v, with
vl g, < d(t), by Lemma 5.2. We first prove

(A7) A= inf{A(t), £ > 0, d(1) <81} > 0.

Indeed, by mass conservation,

2 2 o2
luollze = /|x|§m>'”()' xz(n( WA —ca ).

If d(¢) < &, and §; is small enough, then (A.7) holds. We now give an estimate on Ag
when d(t) is small. Since W is a static solution to (1.2), % [ rIW|*> =0, so that
AR(W) = 0, for all R > 0, by (6.4). If we assume R > 1, by a change of variables,
the Holder, Hardy and Sobolev inequalities, we can write (6.5) as

(AB) [ARu())| = |ARre)(W + V)| = |ARa@)(W + v) — Apary(W)]

* * 1
sc[[ I 9 Vel W ol o+ s OV o]+ o)
[ (x| RAG) (RA(1))? ]
<C|llvl%, + —|| g+ llv || —|| l vl
[+ Gy Raoy T 7 "]
2
= Cl[d () + Wd(f)]
where we used the fact that |[VW|;2 ~ |[W| 2+ ~ 1/rN=2/2 which can be

{lx|= {lx|=r}
verified by explicit computation. Note that the constant C; depends only on A_, which in

turn depends only on M (ug).

Step 3. Bounds on AR prove bounds on d(t).
We now claim the bound

8
A9 AR(t) < d(t).
(A.9) R(t) = 5 d(0)
This follows from the bound (A.8), if d(¢) < §; and R > R;, where R; is a large constant
depending only on M (ug). Now, if d(¢) > 81, consider the function

)1/(N—2)_ 8 S

N -2

By direct computation, we see that ¢%(§) < 0 for any § > 0. We can choose a large
Ry > Ry (depending again only on M (uy)) such that gg,(6;) < 0 and (pRz (61) <0, so
that pg, (§) < 0 for all § > 6;. The bound (A.9) is now proved.

The bound (A.9), together with (6.4), gives, for R > R, and any ¢ > 0,

C Co
Pr(S) = +m(5+”W”H

” 8

Note that we must have F 1/e () > 0, forallt > 0, as (A.10) would otherwise contradict the
positivity of Fg, thus, proving (6.6).
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We now make use of the following claim, in the spirit of Lemma 2.1 in [3] and
Claim 5.4 in [13].

Claim A.2. Let ¢ € CY(RN) and f € H'(RN). Assume that [ |V$|?|f|> < +oo and
E(f)= E(W). Then

N2
(m [ vo-v57) @) [196PIsP
By Claim A.2 and the fact that Fp(¢) > 0 and F"(¢) < 0, we can write
Fr(@)

S —Fr(@).
Vv Fr(@)
so that
+o00
/ d(s)ds < e,
t
which proves (6.7) and finishes the proof of Lemma 6.2. ]

Proof of Claim A.2. Let§(f)= [|VW|?>— [|V f|*and A € R. By Sobolev’s inequality,

vw
19 £y = VWl

IIL2
> (DAES
MWl

Squaring the last inequality and expanding the term ||V (e?*® f)]| .2, we get

2 2 2 ”Lz
A /|V<o| V7] +2Mm/<w Vf)f+/|Vf| ||W||L2* 112 >
The discriminant of this quadratic form must be non-positive, thus,
, VW,
(m [wo-v7) = ( [rvre-! ||W||2z* 171 )( [ 1902 1V12).
Since
/|Vf|2=/|VW|2—8<f),
by E(f) = E(W), we have,
2% % . N
o< [11P = [P = 580,
Therefore,
VW2, w2 ( N w2
ViP-—=£ = [|IVW]P=8(f)——=L ¥
J1os = e = oW P-s0s) ”W”LZ* (Jiwe=55800)
2
- f IVWIZ—S(f)—W(IIWIIiz* IW I X280)+06())) = 06()>),
L

and Claim A.2 is proved.
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Proof of Proposition 6.1. We first prove that
(A.11) lim d(t) =0.

t—>+o00

Indeed, by Lemma 6.2, there exists ¢, — +o0 such that d(#,,) — 0. Assume, by con-
tradiction, that there exists a sequence t,/, > t, such that

(A.12) d(t)) =80 and0 <d(t) <8y Vit € (tn,1),),
where § is given by Lemmas 5.1 and 5.2. Recall the decomposition (5.1):
Up).60]t) = (L+a(@)W + h(t), withh e G*.
By taking subsequences, if necessary, we can assume
limA(t,) = Ao € (0, +00].

We now prove that Ao, < +00. )
If Ao = +00, as U[a(,),0(z,)] cOnverges to W in H!, we have, for any C > 0,

/ lu(tn)|? — 0.
[x|=C

For any € > 0 we have, by Holder’s inequality,

Fr)] < el + [ )P
lx|>Ce
so that
lim Fr(ty) = O.
However, by (6.6), F(t) > 0. This implies Fg(t) < 0 for all # > 0, contradicting the fact
that Fg is positive. Therefore, A(z,) must be bounded.
Now, by Lemma 5.2, we have |A/(¢)/A3(¢)| < d(t). This implies, if ¢ € (tn,1},),

; — 1 < e_CZ”
A2(1)  A(t) 1T '

Therefore, A(t) < 2Ao on U, (1, t,’,), for large ¢. Turning to the bound on ¢’ in Lemma 5.2,
o/ (1)] < A2(1)d(1) S d(1).

This implies |a(t,) — «(z,)| — 0. Moreover, again by Lemma 5.2, |(¢)| & d(t), which
contradicts (A.12) and proves (A.11).

To finish the proof of Proposition 6.1, we must refine the estimate on d(¢). Since
d(t) — 0ast — 400, the decomposition (5.1) is well-defined for all large times. There-
fore, by (A.11) and (A.7), we have

lim A(f) = Aoo € (0, +00), lim «(t) = lim d() =0,
t—>—+o00 t—>+o00 t—+o00

and +oo +o00
AN g1 = le(2)] =/ lo/(1)| ds 5/ A2(s)d(s)ds S e
t t
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Furthermore, the bound |0’ (¢)| < A%(t)d(t) implies that there exists Oy, such that

i [0() = foo] = 0.

Therefore, (6.2) is proven.
It remains to prove the finite-time blow-up. This is a corollary of Lemma 6.2, applied
to the time-reversed solution v(¢) := u(—t). If u is defined on R, by (6.6), we have

Im/Vq&-Vuoﬁo >0, and Im/V¢~Vvof)o > 0,
which clearly contradicts the fact that

Im/ V¢ - Vugug = —Im/ V¢ - Vug vg.
This finishes the proof of Proposition 6.1. ]

Proof of Proposition 6.3 (intercritical case). We divide the proof in two cases: the finite-
variance case, and the radial case. Using the same argument of the finite-time blow-up as in
the energy-critical case, and in view of Lemmas 5.5, A.3 and A.5 in the next subsections,
Proposition 6.3 follows. |

A.2.1. Finite-variance solutions.

Lemma A.3. Let u be a solution to (1.1) defined on [0, +00) and satisfying (6.8) and
llx|uollr2 < +o00. Then, for all t in the interval of existence of u,

(A.13) Im/x -Vu(t)u(t) > 0,
and there exists ¢ > 0 such that
+o00
(A.14) / d(s)ds <e ¢, Vt=>0.
t
Proof. Let F(t) = [ |x|?|u(x,t)|*> dx. Then, by the virial identities, we have, forall 7 > 0,

F'(t) = 4Im/x-Vu(t)ﬁ(l).

Note that, by Cauchy—Schwarz, F'(¢) is well-defined. Furthermore, since E(u) = E(Q),

F'(0) = NG =)= 8I( [ VP = [ 1l7) = NG - 1) - sl

Now, if (A.13) does not hold, there exists #; such that F’(z;) < 0. Since F” < 0, for any
to > 11,
F'(t) < F'(t)) <0, Vt>t.

This implies that F(¢t) < O for large ¢, contradicting the definition of F.
We now claim that

(A.15) [F'(O) < FO)[F" (),

which is a consequence of the following claim, which is proved similarly to Claim A.2.
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Claim A 4. Let ¢ € CY(RY) and let f € H'(RN). Assume that S IV fI? < o0,
M(f) = M(Q) and E(f) = E(Q). Then

(m [ vo-v5 7)< a2 [ 1921112

Taking ¢ (x) = |x|? yields (A.15).
Since F'(t) > 0 and F”(¢) < 0 for all t > 0, equation (A.15) can be rewritten as

F'o) _ .,
A0 < —F"(1).

Integrating from O to ¢ > 0,

VE@) = VF(0) £ —(F'(t) - F'(0)) < F(0).
From (A.15), we deduce
F'(t) S =(VF(0) + F'(0)) F"(t) S —F"(1),

which shows
F'(t) <e .

Finally,
+o00 +00
F'(t) = —/ F'(s)ds = 4/ d(s)ds,
t ¢
producing (A.14), which proves Lemma A.3. ]

A.2.2. Radial solutions. We now work with a truncated variance. Consider a radial func-
tion ¢ € CS°(RY) such that
r2, r<l,

2
0. r>3. and W(r)fz, r>0.

p(r) =0 Vr=0, ¢(r)= {
Define ¢r(x) = R*¢(x/R) and

FR(I‘) = /¢R|u(t)|2

By the virial identities, if M (ug) = M(Q) and E(ug) = E(Q), we have

(A.16) Fp(t) = 21m[V¢R-Vu i,
(A.17) Fr(t) = —[2N(p — 1) —8]d(t) + ARr(?),
where
ARu(r)) = / V()P (402px — 8)
[x|=R
2(p—1)
A.18 A A PYLON — Agr) — 2A%0R.
(A.18) oy | eN g /MZRM or

The following lemma holds.
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Lemma A.5. Let u be radial a solution to (1.1) defined on [0, +00) and satisfying (6.8).
Then, there exists a constant Ry > 0 such that, for all t in the interval of existence of u
and all R > Ry,

(A.19) Fr(t) >0,

and there exists ¢ > 0 such that
+o0
(A.20) / d(s)ds <e ¢, Vt>0.
t

Moreover, ug has finite variance.

Proof. The proof of Lemma A.5 is essentially the same as in the energy-critical case, and
is omitted, except for the finite-variance part.

By hypothesis, there is a sequence t,, — +o00 such that d(¢,) — 0. By (5.4), extracting
a subsequence, if necessary, we have u, — ¢’ Q in H' for some 0, € R. Since Fg is
increasing by (A.19), we have

/¢R|Mo|2 = Fg(0) < /fi)R 02
Thus, we can make R — +o00, which proves the finite variance of uy. [

Proof of Lemma A.4. The proof is analogous to that of Lemma A.2 and, thus, omitted. m

A.3. Convergence to the standing wave below the ground state

As in the proof of Proposition 6.1, we need to show that
d(t) = [IWllgr = lu@®llgr =0 ast — +oo.
We start by stating the following monotonicity results.

Lemma A.6. Consider two real sequences {ty}n and {t)}n, tn <1}, and a sequence {u,},
of radial solutions to (1.2) on [t,, t,] satisfying (7.1). Assume there exists {A,(t)}n C R
such that the set

K = {(un(t))[)tn(z)] :neN,te [fn,f,,,]}

is relatively compact in H'. If
linmd(u,, (tn)) + d(un (t;;)) =0,
then

(A21) lim { sup d(un(t))} — 0.

" relty ]
Lemma A.7. Under the assumptions of Lemma A.6, if n is large enough so that d(u, (1))
<o onlt,, t,] and if Oy, by and ay, are the parameters of the decomposition (5.1), then

su ’ t
(A.22) fim SPrelt gl Ko@)

n infze[t,,,t,’,] Ha (1) B
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Remark A.8. In Lemmas A.6 and A.7, it is sufficient to assume

inf A(f)=1 VneN.

€[ty th]

In fact, if 1, := inf,ep, 1 A(¢), then

1 x t An(t) ty t
ur(x,t) = U —. =), AF() = "=, tFi= -, =
" aN2 ”(An x,%) " WtTR TR

K* = {(u:(t))m(,)] :neN,te [l* l‘/*]}

n’>'n
satisfy the assumptions of Lemma A.6. Moreover, the conclusions of the lemmas are
unchanged under these transformations.

Before proving Lemmas A.6 and A.7, we prove two auxiliary lemmas.

Lemma A.9. Consider two real sequences {t,}, and {t}}n, tn <1}, and a sequence {un }n
of radial solutions to (1.2) on [t,, t,] satisfying (7.1). Assume there exists {An(t)}n C R}
such that the set

K= {(un(t))[;tn(,)] :neN,te [ln,l‘,/l]}

is relatively compact in H'. Assume furthermore that

(A.23) inf A(f)=1 VneN.

t€[tn, 7]

Then, foralln € N,

ty
(A24) [ aw) < dt) + dwe)).
tn
Proof of Lemma A.9. For R > 0, consider the function

Fron(t) = / o ltn (D).

By the Holder and Sobolev inequalities, and recalling that ||u(?)|| 71 < [|[W| g1, we have
Fra(1) S R*.

By Lemma A.2,

(A.25) |FRn (D] S d(un(0) v Fron(6) S R d(un (1)),

By (A.23), A(t) > 1 on [t,, t,]. We claim that, whenever defined, i, is bounded away
from zero. In fact, by the precompactness of K and decomposition (5.1), we have

Un (@)1 = (1 + e O) Wi, @) /i1 T () 2,0/ 10 0]

with (7 (1)), 0/ 100 ] L Wirn 0)/1m (0] @0d 0t (2) < |lupn, )11l 1 + 1. Therefore, the set

(A.26) U Wi simion : 1 € ltn 1], d (1)) < 8o}

n
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must be precompact. Since W does not depend on time, we get
(A.27) An(t) & pun(t) on {t € [ty, 1,], d(un(2)) < o}
(Note that the constant does not depend on n). Thus, we set

M = inf  pu,() 2 1.
1€ltn 1y,
d(un () <o

We will now give a lower bound to FI/?/,n (t). Recalling (A.8), if d(u,(t)) < 8y and

1? > ]//.L_, we ha\/e
‘1R Unp ! ~ d Un t ( M )(N )/ d Up t .

Therefore, there exist §; > 0 and Ry > 0 such that, if d(u,(¢)) < &1, then

8

ARG ()] = 5

d(un(1)).

Now, by almost periodicity modulo symmetries and (A.23), if > 0 and R > C(7), then

[AR(un (1)) < 1.

Thus, we can choose 1; = 11(81) such that, if d(u,(¢)) > §; and R > C(n,), then

8
A )| < 8§ <
[ARGun ()] =+ b1 = ——

d(un(1)).

Finally, since
16
Fra®) = 57— d@n () + AR(un (1),

we get, if R > max{R,C(n1)},

" 8
(A.28) Fr,t) = N_2 d(un(1)).

Integrating (A.28) and using (A.25), we obtain (A.24).

Lemma A.10. Under the assumptions of Lemma A.6 and Remark A.8, if s, € [ty, 1] and

the sequence Ay (sp) is bounded, then

(A.29) lign d(u,(sy)) = 0.

Proof. By Remark A.8, we have A, (s,) & 1, hence, we can assume that the sequence

{un (sy)}n converges to some vy € H!.If (A.29) does not hold, then

(A.30) d(vo) >0 and |vollz1 < Wl g:-

By strong convergence, we have E(vg) = E(W). Let v be the solution to (1.2) with initial

condition vgy. By Proposition 7.4, v(t) is defined for any ¢ € R.
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We claim that, for large n, s, + 1 <1,. Indeed, if ¢, € (sn, s, + 1) for an infinite num-
ber of n, after extracting a subsequence, we have that ¢, — s, converges to some 7 € [0, 1].
By continuity of the flow, u, (7;,) — v(t). But since d (u,(t,,)) — 0, we have d(v(r)) =0,
which implies that v = W, 4,1, for some fixed A¢, 6p. Uniqueness of solutions to (1.2)
then contradicts (A.30). Therefore, for large n, #, <s, <s, + 1 < t,’,. Again by continuity
of the flow,

Sp+1 1
lim/ d(up(t))dt :/ d(v(t))dt > 0.
nJsy 0

However, Lemma A.9 gives

Sn+1 1)
lim / d(un(t)) dt <1lim / d(un(1)) dt < limd(un(tn)) + d(un () = 0,
nJs, nJ, n

completing the proof of Lemma A.10. |
We now prove Lemmas A.6 and A.7.
Proof of Lemma A.6. By Remark A.8, we can choose, for every n, by, € [y, 1] such that
lign An(by) = 1.
This implies, by Lemma A.10, that
li’{n d(un(by)) =0.

Assume, by contradiction, that (A.21) does not hold. Without loss of generality, there
exists §; > O such that

(A.31) sup d(un(t)) > 81, VYneN.

t€[ty,bn)
Choosing ; < min{&y, 81}, by continuity there exists a, € [t, b,) such that
d(u,(t)) <8, onl(ay,by), and d(uy(a,)) =96.

Since §, < 8o, the modulation parameter ,, is well-defined. Recalling that the set defined
by (A.26) is precompact, we must have A, &~ u,, where the constants do not depend on 7.
Thus, up to a subsequence, we can assume

Un(byn) = o € (0,400) asn — +oo.

We will now show that the w,, are uniformly bounded on Uy [a,, b,]. Suppose, by contra-
diction, that there exists ¢, € [a,, by) such that, for large n,

(A.32) MUn(t) <2p0 on(cp,by), and pn(cn) = 2uo.

Since p,(c,) is bounded, so is A, (c,). Therefore, by Lemma A.10, limy,— o0 d(Uy(cy))
= 0. Recalling Lemma 5.2, we have
bn
=/
Cn

1 1
Ha(cn)  pa(bn)

14}, (1) bn
130 < 5 d(uu(t))dt.




L. Campos, L. G. Farah and S. Roudenko 1696

By Lemma A.9, the last integral converges to 0, contradicting (A.32). Therefore,

sup  pn(t) < +oo.
t€lan,bn]
neN
We conclude that p,(a,) must be bounded, and so must be A,(a,). Invoking again
Lemma A.10, we have lim,_,», d(u,(a,)) = 0, contradicting (A.31). Lemma A.6 is
proven. (]

Proof of Lemma A.7. As in the proof of the previous lemma, we have, by Remark A.8
and Lemmas A.9 and A.10, that 1, = 1, where the constant does not depend on n. Let a,,
and b,, be such that

Un(an) :t inf, pn() and  pp(by) = sup pn(l).

Eltn.tn] t€(tn,th]

Let a, = min{ay, b, } and by = max{ay, b, }. Then,

1 1 /’5" ) _ [
— < < d(up(t))dt -0 asn — 4oo.
pian) B2 " Ja, Tnio!1 g, "
Since p,(by,) is bounded, we get (A.22), proving Lemma A.7. |

We now have all the tools to prove Proposition 7.8.

Proof of Proposition 7.8. By Corollary 7.7, there exists a sequence ¢, — +oo such that
limd(u(t,)) = 0.
n

By Lemma (A.6), with u,, = u, A, = A (where A is the frequency scale obtained from
Proposition 7.4) and ¢, = t,11, this implies

(A.33) lim d(t) = 0.
t—>—+o00

Therefore, the modulation parameters «(), p(¢) and 6(t) are defined for large 1. We now
prove that

(A.34) lim () = foo € (0, +00).
t—>+o00

Indeed, if not, then as t — 400, log((¢)) does not satisfy the Cauchy criterion. Therefore,
there must exist sequences {7} and {7, } such that 7,, < 7}, and

)
(A.35) hrIln (T

But d(T) + d(T,,) — 0 by (A.33). By Lemma (A.7), with u, = u, A, = A, t, = T, and
t; = T, we have

#1.

. Superr,, 1) M)
lim ———%———— =11
n - inf,err, 7y (1)

’
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contradicting (A.35). Turning to the proof of (7.3), we claim the following inequality:

+o00
(A.36) / du(s))ds < du()).
t
Suppose by contradiction that (A.36) does not hold. Then there exists a sequence T, —
400 such that
+o0
/ du(s))ds = 2ndu(Ty)).
T,

Moreover, there exists a sequence {Sy }, such that S,, > T, for all n, and
Sn
d(u(s))ds = ndu(T,)).

Tn

By (A.34), for any sequence {T},}, such that 7, > S, for all n, we are under the assump-
tions of Lemma A.9, with u, = u, A, = A, T, = t, and ¢, = T,,, Hence,
T,
ndu(Ty)) = du(s))ds < dw(Ty)) + du(Ty)).

T

Since 7, can be taken arbitrarily large, and the implicit constant is independent of the
choice of a particular {7},}, (given the function u itself does not change), we have a
contradiction.

Note that (A.36) is equivalent to the existence of ¢ > 0 such that

+o0
/ d(u(s))ds <e .
t
By Lemma 5.2, since | (?)| ~ d(u(t)) and u is bounded, there exists 6, such that

la(0)] + 10(1) = Ooo| + [1H (@) | g1 < ™.

Therefore, the bound (7.3) is proven. The assertion about scattering for negative times is
a corollary of Lemma A.9. Indeed, if

[l 50, +00) = lltt]| 5(=00,0) = +00,
by time-reversal and (7.3), we see that the set {u(¢) : ¢ € R} is relatively compact and that
lim d(t) =0.
tﬁlzl:oo ( )

Therefore, by Lemma A.9, with u, = u, A, = 1,1, = —n and t,’l = n, we have

+oo n
/ d(t)dt = lir}: d()dt S d(—n)+d(n)=0.

o —n

Therefore, d(ug) = 0, contradicting (7.1). Proposition 7.8 is proven. |



L. Campos, L. G. Farah and S. Roudenko 1698

For the intercritical case, as in the proof of Proposition 6.3, we need to show that
+oo
(A.37) / d(s)ds <e ¢, Vt=>0.
t

We start with the following lemmas.
Lemma A.11. Let u be a solution to (1.1) satisfying (7.4) and (7.5). Then
1 T
lim —/ d(t)dt =0.
T—+oo T 0

‘We next state a key result to prove Proposition A.37.

Lemma A.12. Let u be a solution to (1.1) satisfying (7.4) and (7.5), and let x(t) be as in
Proposition 7.11 and Remark 7.13. Then, forany 0 <o <,

(A.38) [ ey <1+ s 1xol] @) + dwn).
and, if t > 0 + 1,
(A39) £ - x@) 5 [ ).

o

The proof of (A.38) is similar to the energy-critical setting (it is in fact easier, since
there is no scaling involved). We refer to Lemma 6.7 in [13] for the argument in the 3d
cubic case. The proof of (A.39) follows verbatim the proof of Lemma 6.8 in [13].

Proof of Lemma A.11. Let R > 0 to be chosen later and let ¢ g and Fg be as in the previ-
ous section. Then, by Holder’s inequality,

(A40) |Fp(t)] < R.
Moreover, we have
(A41) Fr(t) = 2N(p —1) — 8]d(1) + Ar(u(?)),

where Ap is given by (A.18).
Fix n > 0. By definition of ¢z and almost periodicity modulo symmetries, if R > C(7),
we have

(A42) |[ARu@))] < / [Vu (e, 0 + Ju(x,0)| 77 + L lu(x,1)|? dx.

lx|>R |x[?

Choose Ty(n) > 0 such that, for any ¢ > Ty,

Ix(0)] < nt.
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For T > Ty, choose R = nT + C(n) + 1. With this choice of R, we have

ARGu(1)] < / Ve O + e 017+ + Ju. 0P dx
[x—x(t)|+|x(@)|=R

< / |Vu(x,t)|2 + |u(x,t)|p+1 + |u(x,t)|2 dx <.
[x=x(@)|=C(n)
By (A.40), (A.41), and (A.42),
T
2N(p—1)— 8]/T d(t)dt < |Fr(T)| + [Fr(To)| + n(T — To)
0

S R+n(T —To) =nT + n(T —To).

Letting T — 400, we deduce

1 (7
lim sup — d)dt <.
T—+o00 T 0
Since 7 is arbitrary, we conclude the proof of Lemma A.11. |

We are now able to prove Proposition 7.14, following the proof in [13].

Proof of Proposition 7.14. We first show that x(¢) is bounded. By Lemma A.11, there
exists a sequence {t,}, such that t,11 > t, + 1 for all n, and d(u(t,)) — 0. Now, by
Lemma A.12, there exists Cop > 0 such that, if n > ng and 1 4 1,, <t < ¢,, then

() = (1) = Co[ 1+ sup |x(5)|[(d(u(tn)) + dutny))).

tho <S=<In
If ng is large enough so that d(u(t,)) + d(u(tn,)) < 1/(2Co), and ¢ is chosen in
[tso + 1, 1,] so that SUPy, +1<s<ty |x(s)| = |x ()], then

1
sup  |x(s)| = Clno) + 5 sup  [x(s)].

lno"l‘lfsftn tn0+155§tn
where C(no) = |x(ts,)| + %suplnossstno+1 |x ()| + 1/2. Therefore, x(¢) is bounded on

[tn, + 1, +00), and hence, by continuity, on [0, +00).
By the boundedness of x(¢) and (A.38), we have

T
| o < doy + dao.
o
For a fixed 0 > 0 and choosing t = #,, we let n — 400 to obtain

/ d(®) < d(u(o)).

By Gronwall’s lemma, we have (A.37) and, using Lemma 5.5, we finish the proof of
Proposition 7.14. u
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A.4. Results for the linearized equation

Proof of Lemma 8.1. By Lemma 3.12, we can assume that

(A.43) 1B s(L2, 1, +00)) < €
We first normalize the eigenfunctions of &£. Define
W W AW
fo= 1= fio = I<k<N. and fyq =

Nars Wl AW | g1

‘We have )
B(fi,h) =0, |filgi, YO<k<N+1 VheH"

Recall that B(¥Y4+, Y_) # 0. Normalize ¥, ¥_ such that B(¥4+,¥Y_) = 1. Next, write
(A.44) h(t) = ar () Y4 +a- (Y- + Y Br() fi +g(), gt) € G*,
k

where, recalling that &£ |span( 7, k<n+1) = 0 and that &(¥ 1) = ®(¥_) =0,

(A45)  ay ()= B(h@?).Y-), a(1)=Bh@).Yy),
(A46)  Br(t) = (1), fi) g —a+ (D, fi) g —oa— (O Y-, fi) g1 Yk=N+1.

Step 1. Differential inequalities on the coefficients. We will show
d d
(A4T) E(ee°’a+(l)) = e B(Y_.¢), E(e_e"’a—(l)) =e ' B(Y+.e),

d
(A.48) E(e‘“’ﬁk(z)) = (kO —Fr. J g BY-.€) = Y-, fi) g BY+. )

— (L& ) g
(A.49) w = 2B(h,¢).
dt
By equation (8.1),
(A.50) o/ (1) = B(3h,Y_) = B(—Lh +€,Y_)

= B(h, £Y_) + B(e,Y_) = —eqas (1) + B(e,Y_).

This yields the first equation in (A.47). The second equation follows similarly.
Now, differentiating (A.46), we obtain

,3]; =(—Lh+e— a;_y.;. -’ Y_, fk)Hl‘
Note that £h = egay Y4+ — ega—Y_ + L£g, by (A.44), which proves (A.48), in view
of (A.47).
Finally, differentiating ®(4(?)),
d
ECD(I) =2B(h,d0;:h) = —2B(h, £h) + 2B(h,€) = 2B(h,¢€),

by the skew-symmetry of £ in (3.3). Equation (A.49) is then proved.
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Step 2. Estimates on oy. We claim that

(A.51) (1) S e™¢,
e—cut if eg < co
< B ’
(A.52) e ()] < { o=t 4 e=Cit if eg > co.

We need the following claim, which is an immediate application of Holder’s inequality.

Claim A.13. If I is a finite time interval, and f € LPL2N/(N=2) g ¢ [oo 2N/(N+2)
are suchthat V f € L%L)ZCN/(N_Z), Vg e L;L)ch/(N+2), then

/IB(f(t),g(t))ldt SIVAL 2 Vel e + I e gl o
I LL L¥L L

N—2 N+2 N—2 N+2
i LZLYH ; oLt

The above claim, (A.43) and (A.47) yield
t+1 t+1
/ le ™ B(Yy, e(s))| ds < e°0! / |B(Y4,e(s))| ds < e Cotevr,
t t
By the triangle inequality, integrating the second equation in (A.47) gives
+o0
a5 e [ 1 B el ds s,
t
which proves (A.51).

To prove (A.52), consider first the case co > eg. Then, by (A.43) and (A.45), we have
that e®’ a4 () vanishes as t — +00. By Claim A.13,

t+1 t+1
/ 16999 B(Y,p. €(s)) | ds < e f B, e(s)] ds < e@0eV".
t t

Integrating the equation on v in (A.47), recalling that ¢; > ¢y, and using triangle inequal-
ity, we get (A.52) if ¢ > ep.
Assume now that co < eg. Integrating (A.47),

t
loey () — e " ay (0)] < e_eo’/ e |B(Y_,e(s))|ds S e 1,
0

and the proof of (A.52) is finished.
Step 3. Bounds on g and Bj. We will prove

(A.53) g g1 + Z |Be(t)| < e~(cotent/2,
k

Again by Claim A.13, ft+1

YTV IB(h(s), €(s))|ds < e~(@FeDi By the triangle inequality,
integrating (A.49), we get

Dh(1)) 5 etV

Therefore,
2oro_B(Yy,Y_) + O(g)| = |®(h)| < e~ Cotenr,
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By Step 2,

e~(cotent 4 o—2et if co > e,
e—(coten)t + e—c’lt(e—eot + e t) if co < ep.

1®(g)] < {

In any case, |®(g)| < e~©+¢D? Using the coercivity of ®, given by Lemma 3.5, the
estimate for g in (A.53) is proven.
Consider now (A.48). By (A.43),

r+1
Bt + 1) — Br(t) S el + / |(fieo £8(5)) 1| ds
t+1
=e—Cif +/ ’Re/éﬁ*(Afk)E(s) ds,

where £* = (_9 %) is the L2-adjoint of £.
One can check explicitly that, forany 0 <k < N + 1, [£*(Afp)| = W There-
fore, £* (A fi) € LN/ (N2 (RN)) 50 that, by the estimate on g in (A.53), we obtain

|Re / L5 (ASOFO| 5 180Dan/v-2 S gl < eCFenrs2,
Step 4. Closure. By the decomposition (A.44), as well as Steps 2 and 3, so far we have

A . e—(cote)t/2 if ¢g > e,
” (t)HHl ~ e—eot +e—(Co+Cl)t/2 if co < ey.

Now, if eg ¢ [co, c1), by iterating the argument, we obtain
1RO g1 S e

which proves (8.3).
Assume now eg € [co, ¢1). Then, the estimate (A.47) on a4 ensures the existence of a
limit A to e®’a (¢) as t — +oo. Integrating (A.47) from ¢ to +00, we get

+o00
|A —ee"toz+| < eeol/ |B(y+,e(s))|ds 5 e(eo—Cl)t.
t

In view of the decomposition (A.44) and estimates (A.51), (A.52) and (A.53), we get
||h(t) — Ae 60!t y+”H1 < e—(co+c])t/2.

Since £Y1 = epY,, we see that l;(t) = h(t) — Ae™®'Y satisfies the differential
equation (8.1) with the same €, and with c¢ replaced by (co + ¢1)/2 > ¢¢ in the con-
dition (8.2). By iterating the argument a finite number of times, we end up under the
condition (8.3), which implies condition (8.4) for the original %, and finishes the proof of
Lemma 8.1. ]
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Proof of Lemma 8.7. We first normalize the eigenfunctions of £. Define

iQ 00
= _—, = I —— ] SkSN
o =00e T aols

We have
B(fx.h) =0, | feli2=1, YO<k<N,VheH.

Recall that B(Y4,Y_) # 0. Normalize Y, ¥_ such that B(Y,Y_) = 1. Next, write

(A.54) h(t) = as (Y4 +a—(OY-+ D Be() fi + g(),  g(t) € G*,
k

where, recalling that &£ sy 7, k<n} = 0 and that ®(¥,) = ®(¥_) = 0, we have
(A55)  ay(t) = B(h(1).¥-), a-(1) = B(h(1),¥+),
(A56)  Bi(t) = (h(1), fi)re —av () Y+, fi)r2 —a () (Y-, fi)r2. Vk < N.

Step 1. Differential inequalities on the coefficients. We show
d d
(A.57) E(ee"towr(t)) = e B(Y_,¢), E(e_e"ta—(l)) =e " B(Yy,€),

d
(A.58) E(e_eotﬂk(l)) = (fo 2 — Y+, fid)r2 BY-.€) = (Y-, fi)r2 BY+.€)
- (igv fk)sz
d®(h(1))

(A.59) — - =2B(h.e).

By equation (8.16),
o/ (1) = B(3h,Y_) = B(—Lh +€,Y_)
(A.60) = B(h,£Y_) + B(e,Y-) = —egay(t) + B(e, Y-).

This yields the first equation in (A.57). The second equation follows similarly.
Now, differentiating (A.56), we obtain

IB,’( = (ih + € _a:’_ y.l,_ —C(/_ y—? fk)Lz‘

Note that £h = egar Y4+ —ega—_Y_ 4+ Lg, by (A.54), which proves (A.58), in view
of (A.57).
Finally, differentiating ®(h(?)),

%cb(t) = 2B(h,d,;h) = —2B(h, £h) + 2B(h.€) = 2B(h. €),

by the skew-symmetry of &£ in (3.3). Equation (A.59) is then proved.
Step 2. Estimates on a4+. We claim that

(A.61) le—(1)] < e™,

—c1t

e if Co S €o,
< —
(A.62) o (1) < { e~ L oIt if ¢ > ep.
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We will need the following inequality, which is an immediate application of Holder’s
inequality:

(A63) /1 BUA@). g0 dt < I9) fllse. p 1{V)gllsi e -

The above inequality, assumption (8.17) and (A.57) yield
+o0 +o0
e B(Y,,e(s))|ds < e ! B(Y4,e(s))|ds < e (eotet,
| + + <
t t
By integrating the second equation in (A.57), we get
+o00
a5 e [ 1T B el ds £ e
t

which proves (A.61).

To prove (A.62), consider first the case ¢; > ¢o > eo. Then, by assumption (8.17)
and (A.55), e®a (¢) vanishes as ¢ — +00. By (A.63), integrating the equation on a4
in (A.57),

—+o00
e ()] < / 1609 B(Y. e(s))| ds < oo,
t

and we get (A.62) if ¢y > ey.
Assume now that ¢y < eg. By (A.57), we have

t

los (1) —e™ 04 (0)] < e_eot/ e’ |B(Y-.e(s))|ds S e™ ',
0

and the proof of (A.62) is finished.
Step 3. Bounds on g and By. We prove

(A.64) lg@lzz + D IBe()] < e~ orent/2,
k

Again by (A.63), [[F°|B(h(s), e(s))|ds < e~ (ot By integrating (A.59), we get

(D)) 5 e,

Therefore,
2040 B(Y4,Y_) + B(g)| = |D(h)| S e~ Cotent,
By Step 2,
—(cotc)t —2¢1t e
e +e if cg > e,
|¢(g)| 5 { e_(CO+C1)t + e—Clt(e—e()l + e—cf[) ifC() S eo.

In any case, |®(g)| < e~@+¢)? Using the coercivity of ®, given by Lemma 3.5, the
estimate for ® in (A.64) is proven.
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Consider now (A.58). By the assumption (8.17),
Br(t + 1) — Bic(t)

1+1 t+1
seo [ Gk tgolds =+ [ |Re [ 20z s,
t t

where £* = (_27 L0+ ) is the L2-adjoint of £.
One can check that, for any 0 < k < N, |£*(fx)| < e *I. Therefore, £*(fi) € L2

so that, by the estimate on g in (A.64),
[Re [ £8Gi00)] 2 I8 lzs = Il 5 e oo

Step 4. Closure. By the decomposition (A.54), as well as Steps 2 and 3, so far we have

—(cot+c1)t/2 if
e I ¢co > ey,
O 5 { o senn oo 2o

Now, if eg ¢ [co, ¢1), by iterating the argument, we obtain
1A @Ol < e,

which proves (8.18).
Assume now eg € [co, ¢1). Then, the estimate (A.57) on a4 ensures the existence of a
limit A to e®’ a4 (1), as t — +oo. Integrating (A.57) from ¢ to 400,

+o00
[A—e®ay| < ee"’/ |B(Yy,e(s))|ds < eoeVt,
t

In view of the decomposition (A.54) and the estimates (A.61), (A.62) and (A.64), we get
||h(l) — Ae*c’oty_i_”Hl < 67(CO+CI)I/2.

Since £Y 4 = epY, we see that h (t) := h(t) — Ae—®" Y satisfies the differential equa-
tion (8.16) with the same €, and with ¢ replaced by (co + ¢1)/2 > c¢ in condition (8.17).
By iterating the argument a finite number of times, we end up under condition (8.18),
which implies condition (8.19) for the original %, and finishes the proof of Lemma 8.7. m
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