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Closed G2-eigenforms and exact G2-structures

Marco Freibert and Simon Salamon

Abstract. A study is made of left-invariant G2-structures with an exact 3-form on
a Lie group G whose Lie algebra g admits a codimension-one nilpotent ideal h. It
is shown that such a Lie group G cannot admit a left-invariant closed G2-eigenform
for the Laplacian and that any compact solvmanifold �nG arising from G does not
admit an (invariant) exact G2-structure. We also classify the seven-dimensional Lie
algebras g with codimension-one ideal equal to the complex Heisenberg Lie algebra
which admit exact G2-structures with or without special torsion. To achieve these
goals, we first determine the six-dimensional nilpotent Lie algebras h admitting an
exact SL.3;C/-structure � or a half-flat SU.3/-structure .!; �/ with exact �, respect-
ively.

1. Introduction

The group G2 is one of the exceptional cases in Berger’s celebrated list [4] of restricted
holonomy groups of non-locally symmetric irreducible Riemannian manifolds and only
occurs in dimension seven. For over 30 years, it was unknown whether such manifolds
exist at all until Bryant found local examples [6], Bryant and the second author found
complete ones [8], and Joyce [25] constructed compact manifolds with G2 holonomy.

The construction of these examples relies on the fact that the metric is encoded in
a certain type of three-form, which we shall refer to as a G2-structure. More exactly, a
G2-structure on a seven-dimensional manifold M is a three-form ' 2 �3M on M with
pointwise stabilizer conjugate to G2 � SO.7/� GL.7;R/. The form ' induces a Rieman-
nian metric g' , an orientation and a Hodge star operator ?' on M . The holonomy group
of g' is contained in G2 if the structure is torsion-free, meaning that ' is parallel for the
Levi-Civita connection, which is the case if and only if ' is closed and coclosed [15].

The G2-structures that are closed but not coclosed constitute a basic intrinsic torsion
class in the Fernández–Gray classification, and play a natural role in the construction of
compact manifolds with holonomy equal to G2. Joyce’s examples were found by first
constructing closed G2-structures on smooth manifolds with sufficiently small intrinsic
torsion and then proving analytically that such closed G2-structures may be deformed to
torsion-free ones.

2020 Mathematics Subject Classification: Primary 53C10; Secondary 53C30, 22E25.
Keywords: Closed G2-eigenforms, exact G2-structures, almost nilpotent Lie algebras.

https://creativecommons.org/licenses/by/4.0/


M. Freibert and S. Salamon 1828

Closed G2-structures are the initial values for the Laplacian flow P't D �'t't for
one-parameter families of closed G2-structures .'t /t2I introduced by Bryant in [7]. The
critical points of this flow are precisely the torsion-free G2-structures [29], and the hope is
to use the Laplacian flow to deform a closed G2-structure (without any smallness assump-
tion on the intrinsic torsion) to a torsion-free one for t !1.

Short-time existence and uniqueness of the Laplacian flow were established in [9], and
other foundational properties were proven in a series of papers by Lotay and Wei [29–31].
However, a lot is still unknown about the long-time behaviour of the flow, and it is import-
ant to characterise finite-time singularities. One expects that, like for the Ricci flow, these
singularities are modeled by self-similar solutions of the Laplacian flow. The initial val-
ues '0 of these self-similar solutions are called Laplacian solitons, and a special class of
them is given by closed G2-eigenforms characterised by

�'0'0 D �'0

for some � 2R n ¹0º. Although this equation looks quite easy, no examples of these struc-
tures are known. Moreover, compact manifolds cannot admit a closed G2-eigenform [29].

Closed G2-eigenforms are also of interest from another point of view: they constitute a
special class of the so-called �-quadratic closed G2-structures, � 2 R, namely those with
� D 0. In general, quadratic closed G2-structures are exactly the closed G2-structures for
which the exterior derivative d� of the associated torsion two-form � depends quadrat-
ically on � . These structures have been studied by Ball [2, 3] and include many other
interesting closed G2-structures. For example, the case � D 1=6 corresponds to the so-
called extremally Ricci-pinched (ERP) closed G2-structures, and the case � D 1=2 is
equivalent to the induced metric being Einstein.

By Lauret’s work [26], homogeneous �-quadratically closed G2-structures on homo-
geneous manifolds can only exist for � 2 ¹0; 1=6; 1=2º. The homogeneous ERP closed
G2-structures were classified in [3] using the classification of left-invariant such struc-
tures on Lie groups in [27]. Moreover, [13] shows that no solvable Lie group can admit
a left-invariant closed Einstein G2-structure. Since the strong Alekseevsky conjecture is
true in dimension seven (i.e., any simply-connected homogeneous 7-Einstein manifold
of negative scalar curvature is isometric to a left-invariant metric on a simply-connected
solvable Lie group) [1], there are no closed homogeneous Einstein G2-structures. So the
homogeneous case is settled for � 2 ¹1=6; 1=2º, leaving open the case � D 0. Concerning
the latter case, almost nothing was before this article, although [33] had shown that there
are no closed G2-eigenforms in a very specific family of closed G2-structures on very
special types of solvable Lie algebras, including a few almost nilpotent ones.

We shall fill this gap as follows. LetG be a 7-dimensional Lie group with Lie algebra g.
We prove that G cannot admit a left-invariant closed G2-eigenform if g is almost nilpo-
tent, i.e., if it admits a codimension-one nilpotent ideal. We are led to focus on ideals of
two types, n9 and n28, with the former of step 4, and the latter of step 2 and isomorphic
to the real Lie algebra underlying the complex Heisenberg group. It is striking that our
non-existence proof is at the limit of, but just within, the realm of computations that can
be checked by hand. This fact has enabled us to complement our conclusions with more
positive ones relating to n28, mentioned below.

We are naturally led to the class of almost nilpotent Lie algebras by the following
facts.
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Lauret and Nicolini [28] showed that any Lie algebra g that possesses a closed G2-
structure has a codimension-one unimodular ideal h. Hence, it is quite natural to start with
those for which h is nilpotent.

Motivation is also provided by the results of Podestà and Raffero [36] on closed G2-
structures on seven-manifolds with a transtive reductive group of symmetries.

Moreover, a closed G2-eigenform ' is always (cohomologically) exact, and the exist-
ence problem of exact G2-structures on a restricted class of almost nilpotent Lie algebras
has been studied in [14]: there are no exact G2-structures on strongly unimodular Lie
algebras g with b2.g/ D b3.g/ D 0. The latter implies that g is almost nilpotent [32],
whereas ‘strongly unimodular’ is a technical condition, necessary for the existence of a
cocompact lattice in the associated simply-connected Lie group G.

We also answer negatively the existence problem for exact G2-structures on strongly
unimodular almost nilpotent Lie algebras, and so on compact almost nilpotent (completely
solvable) solvmanifolds, thereby generalising the result of [14]1. It is not known if there
exists any compact manifold with an exact G2-structure, though it is known that (in con-
trast to other situations) nilmanifolds cannot serve as examples.

We do succeed in classifying all almost nilpotent Lie algebras admitting an exact
G2-structure for which the codimension-one nilpotent ideal is isomorphic to n28. For such
almost nilpotent Lie algebras, we also classify those that admit exact G2-structures with
special torsion of positive or negative type, a notion introduced by Ball in [3].

To prove our results, we split our almost nilpotent Lie algebra g as a vector space into
gD h˚Re7, with h being the codimension-one nilpotent ideal and e7 2 h? of norm one.
Then the equations determining a closed G2-eigenform or an exact G2-structure can be
encoded into conditions on the induced SU.3/-structure .!; �/ on h. In particular, for an
exact G2-structure, the SL.3;C/-structure � has to be exact and for a closed G2-eigenform,
.!; �/ has to be half-flat with � being the exterior derivative of a primitive .1; 1/-form �.
The extra equation � ^ !2 D 0 turns out to be of crucial importance in enabling us to rule
out solutions to the eigenform equations.

We show that exactly five out of 34 six-dimensional nilpotent Lie algebras admit an
exact SL.3;C/-structure and that exactly two of them admit a half-flat SU.3/-structure
.!; �/ with � exact, namely n9 and n28. Both results have independent interest because
special kinds of closed and exact SL.3;C/-structures on six-dimensional nilpotent Lie
algebras have been studied in [19], and the six-dimensional nilpotent Lie algebras admit-
ting a half-flat SU.3/-structure .!; �/ with d! D � were determined in [18]. Moreover,
the result on exact SL.3;C/-structures implies that if an almost nilpotent Lie algebra g
admits an exact G2-structure, then the codimension-one nilpotent ideal h has to be one of
the five Lie algebras. We provide examples of exact G2-structures on almost nilpotent Lie
algebras with codimension-one nilpotent ideal h for all possible nilpotent Lie algebras h
except when h equals the nilpotent Lie algebra called n4.

This leaves open the question to be studied in future work: is there an almost nilpotent
Lie algebra with codimension-one nilpotent ideal isomorphic to n4 that admits an exact
G2-structure?

1After the submission of this paper, A. Fino, L. Martín-Merchán and F. Salvatore generalised our result
further to any compact quotient �nG of a Lie group G by a cocompact lattice � , [17].
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The paper is organised as follows.
In Section 2, we summarise basic facts about SL.3;C/-, SU.3/- and G2-structures that

are relevant to our investigation. In Section 3, we show how one can reduce the existence
problem of a closed G2-eigenform or an exact G2-structure on a seven-dimensional Lie
algebra g to the existence problem of SL.3;C/- or SU.3/-structures satisfying certain
equations on a six-dimensional ideal h in g. Next, in Section 4, we prove our results
on exact SL.3;C/-structures and on half-flat SU.3/-structures .!; �/ with exact �. We
use these results to prove in Section 5 that no strongly unimodular almost nilpotent Lie
algebra, and so also no compact almost nilpotent (completely solvable) solvmanifold, can
admit an exact G2-structure. Finally, in Section 6, we carry out a detailed analysis of the
respective cases n9 and n28 in order to show that no almost nilpotent Lie algebra can
admit a closed G2-eigenform. Moreover, we prove the mentioned classification results of
almost nilpotent Lie algebras with a codimension ideal isomorphic to n28 admitting exact
G2-structures.

2. Preliminaries

2.1. G -structures in six and seven-dimensions

In this subsection, we define three different types of G-structures in six and seven dimen-
sions, and recall some of their basic properties. Proofs of the relevant facts and more
information may be found, for example, in [6, 7, 23].

In all cases, theG-structure is defined by one or two differential forms which are point-
wise isomorphic to one or two ‘model’ forms on Rn, n D 6 or n D 7, whose GL.n;R/-
stabiliser is G. Here, pointwise isomorphic means that for each p 2 M there is a vector
space isomorphism uWTpM !Rn that identifies the differential forms at the point p 2M
with the model forms on Rn.

Definition 2.1. (1) An SL.3;C/-structure on an oriented six-dimensional manifold is a
three-form � 2 �3M which is pointwise isomorphic to

�0 WD e
135
� e146 � e236 � e245 2 ƒ3.R6/�:

(2) An SU.3/-structure on a six-dimensional manifold is a pair .!; �/ of a two-form
! 2 �2M and a three-form � 2 �3M which is pointwise isomorphic to .!0; �0/ with

!0 WD e
12
C e34 C e56 2 ƒ2.R6/�:

(3) A G2-structure on a seven-dimensional manifold M is a three-form ' 2 �3M

which is pointwise isomorphic to

'0 WD !0 ^ e
7
C �0 2 ƒ

3.R7/�:

In all cases, if uW TpM ! Rn is one of the pointwise isomorphisms, then the basis
.u�1.e1/; : : : ; u

�1.en// of TpM is called an adapted basis for theG-structure in question.
Sometimes, we will also call the dual basis of .u�1.e1/; : : : ; u�1.en// an adapted basis
for the G-structure in question.
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Since SL.3;C/ � GL.3;C/ and GL.3;C/-structures are almost complex structures,
an SL.3;C/-structure � has to induce an almost complex structure J�. Explicitly, J� is
obtained as follows.

Definition 2.2. Let � be an SL.3; C/-structure on an oriented six-dimensional mani-
fold M . Then � induces an almost complex structure J D J� on M defined in p 2 M
to be the unique endomorphism Jp of TpM satisfying

Jpf2i�1 D �f2i and Jpf2i D f2i�1

for one, and so for any, adapted oriented basis .f1; : : : ; f6/ of TpM .
Moreover, set O� WD J �� 2 �3M . Then

O�p D f
246
� f 235 � f 145 � f 136;

where .f 1; : : : ; f 6/ is the dual basis of the adapted basis .f1; : : : ; f6/ at p 2M . Further-
more, ‰ WD �C i O� 2 �3.M;C/ is a non-zero .3; 0/-form.

We give now an equivalent characterisation of an SL.3;C/-structure, and for this we
have to introduce a quartic invariant � of a three-form on a vector space.

Definition 2.3. Let V be a six-dimensional vector space. Let �Wƒ5V � ! V ˝ƒ6V � be
the natural GL.V /-equivariant isomorphism, i.e., ��1.v˝ �/D vy�. Next, let � 2ƒ3V �

and define K� 2 End.V /˝ƒ6V � by

K�.v/ D �..vy �/ ^ �/;

and finally set
�.�/ WD 1

6
tr.K2� / 2 .ƒ

6V �/˝2:

It makes sense to say that �.�/ > 0, meaning that �.�/ is the square of some element
in ƒ6V �. Thus, one may also speak of �.�/ < 0. Using this notation, Hitchin [23] gives
the following characterisation of an SL.3;C/-structure.

Lemma 2.4. Let � 2 �3M be a three-form on an oriented six-dimensional manifold M .
Then � is an SL.3;C/-structure if and only if �.�p/ < 0 for all p 2M .

We will also need the following technical statements in the sequel.

Lemma 2.5. Let � 2 �3M be an SL.3;C/-structure on a seven-dimensional manifold.
Let p 2M and v;w 2 TpM , and set J WD J�. Then:

(a) �p.v; w; �/ D 0 if and only if v and w are C-linearly dependent.

(b) If v ¤ 0, then the two-forms !1 WD �p.v; �; �/ 2 ƒ2T �pM and !2 WD �p.Jpv; �; �/ 2
ƒ2T �pM satisfy

ker.!i / D span.v; Jpv/; !i ^ !j D ıij!
2
1 for all i; j D 1; 2.

Proof. (a) First, let v and w be C-linearly dependent. Without loss of generality, we may
assume thatwD cJ v for some c 2R. Since‰ is a .3; 0/-form, we do have‰.v;J v;u/D
�‰.Jv;J 2v;u/D ‰.Jv; v; u/D�‰.v;J v;u/, i.e.,‰.v;J v;u/D 0 for any u 2 TpM .
As � D Re.‰/, this implies �.v;w; �/ D c�.v; J v; �/ D 0.
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Next, assume that v and w are C-linearly independent. Then we may extend v and w
to a C-basis of .TpM;J / by an element u 2 TpM . Then vC WD v � iJ v, wC WD w � iJw

and uC WD u � iJ u form a basis of .TpM/1;0 and so 0 ¤ ‰.vC; wC; uC/, since ‰ is a
.3; 0/-form. This property of ‰ also shows

‰.z � iJ z; �; �/ D ‰.z; �; �/ � i‰.J z; �; �/ D ‰.z; �; �/ � i2‰.z; �; �/ D 2‰.z; �; �/

for any z 2 TpM and so ‰.vC; wC; uC/ D 8‰.v; w; u/. Consequently, ‰.v; w; u/ ¤ 0.
Thus, �.v;w; u/ ¤ 0 or O�.v;w; u/ ¤ 0. In the latter case, we do have

�.v;w; Ju/C i O�.v;w; Ju/ D ‰.v;w; Ju/ D i‰.v;w; u/ D i2 O�.v;w; u/

D � O�.v;w; u/ ¤ 0;

i.e., �.v;w; Ju/ ¤ 0.
(b) Since all equations are invariant under non-zero rescalings, we may assume that v

has norm one. Now SU.3/ acts transitively on the six-sphere S6. Consequently, there is
an adapted basis .f1; : : : ; f6/ of � at p 2M with f1 D v, and so f2 D Jpf1 D Jpv. But
so

!1 D vy �p D f1y .f 135 � f 146 � f 236 � f 245/ D f 35 � f 46;
!2 D .Jpv/y �p D f2y .f 135 � f 146 � f 236 � f 245/ D �f 36 � f 45:

Then a straightforward computation shows that !1 and !2 have the desired properties.

Similarly, one knows that SU.3/ � SO.6/, and therefore an SU.3/-structure induces a
Riemannian metric g as follows:

Definition 2.6. Let .!;�/ be an SU.3/-structure on a six-dimensional manifoldM . Define
g D g.!;�/ to be the Riemannian metric on M for which any adapted basis .f1; : : : ; f6/
at any point p 2M is orthonormal. Now !3 is a volume form on M and so ! induces an
orientation on M . We get an induced almost complex structure J�, which relates g to !
by the equation

g D !.J��; �/:

Hence, .g; J; !/ is an almost Hermitian structure on M . Moreover, ‰ D � C i O� is of
constant length.

Next, we turn to the special class of SU.3/-structures defined in [10].

Definition 2.7. An SU.3/-structure .!; �/ on a six-dimensional manifold M is called
half-flat if d!2 D 0 and d� D 0.

Finally, we turn to G2-structures and use that G2 � SO.7/ � GLC.7;R/.

Definition 2.8. Let ' 2�3M be a G2-structure on a seven-dimensional manifold. Define
g D g' to be the Riemannian metric on M for which any adapted basis .f1; : : : ; f7/ at
any point p 2 M is orthonormal. Similarly, define an orientation on M by requiring that
any adapted basis .f1; : : : ; f7/ at any point p 2M is oriented. We get an induced Hodge
star operator ?' and

.?''/p D f
1234
C f 1256 C f 3456 C f 1367 C f 1457 C f 2357 � f 2467
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for any p 2 M and any adapted basis .f1; : : : ; f7/ at p with dual basis .f 1; : : : ; f 7/.
Moreover, ?'' is pointwise isomorphic to

?'0'0 D
1
2
!20 C e

7
^ O�0 2 ƒ

4.R7/�:

A G2-structure on a seven-dimensional vector space V is simply a constant G2-struc-
ture on the manifold V , or said more directly, a three-form ' 2 ƒ3V � for which there
exists an vector space isomorphism uW V ! R7 with u�'0 D '. So G2-structures ' 2
�3M on seven-dimensional manifolds M are those for which 'p is a G2-structure on the
seven-dimensional vector space TpM for all p 2M .

Similarly, we define an SU.3/-structure on a six-dimensional vector space V and get
the following result.

Lemma 2.9. Let ' 2 ƒ3V � be a G2-structure on a seven-dimensional vector space V .
Moreover, let v 2 V be of norm one with respect to g' and let W WD v?g' . Then there is
a unique SU.3/-structure .!; �/ 2 ƒ2W � �ƒ3W � on W such that

' D ! ^ ˛ C � and ?' ' D
1
2
!2 C ˛ ^ O�;

with ˛ 2 V � uniquely defined by ˛.W / D 0 and ˛.v/ D 1, and W � identified with the
annihilator of v.

Proof. The group G2 acts transitively on the unit sphere in R7. Hence, we may assume
that ' has an adapted basis .f1; : : : ; f7/ with v D f7 and so ˛ D f 7. Since .f1; : : : ; f7/
is an orthonormal basis of V , we have W D span.f1; : : : ; f6/ and the statements follow
from the relations '0 D !0 ^ e7 C �0 and ?'0'0 D

1
2
!20 C e

7 ^ O�0 between the model
forms of a G2- and an SU.3/-structure.

Now note that G2 also acts transitively on the Grassmanian of oriented 2-planes in R7,
which appears again on the next page as the quadric Q5. Since '0.e1; e2; �/ D e7 ¤ 0, we
have the following.

Lemma 2.10. Let ' 2 ƒ3V � be a G2-structure on a seven-dimensional vector space V ,
and let v;w 2 V be linearly independent. Then '.v;w; �/ ¤ 0.

Next, we consider some representation theory of G2. Consider the G2-representation
ƒk.R7/� for k 2 ¹0; : : : ; 7º. We decompose this representation into its irreducible com-
ponents, which are by now well known. Since the Hodge star operator ?'0 is an iso-
morphism of G2-representations between ƒk.R7/� and ƒ7�k.R7/�, it suffices to do this
for k 2 ¹0; : : : ; 3º. Obviously, ƒ0.R7/� is trivial, and ƒ1.R7/� Š R7 is also irreducible.
For k D 2; 3, we have

ƒ2.R7/� D ƒ27 ˚ƒ
2
14 and ƒ3.R7/� D R'0 ˚ƒ

3
7 ˚ƒ

3
27;

with

ƒ27 D ¹vy'0 jv 2 R7º; ƒ214 D ¹� 2 ƒ
2.R7/� j� ^ '0 D � ?'0 �º;

ƒ37 D ¹vy ?'0 '0 jv 2 R7º; ƒ327 D ¹
 2 ƒ
3.R7/� j
 ^ '0 D 0; 
 ^ ?'0'0 D 0º:
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The subscript denotes the dimension of the irreducible representation. For example, ƒ214
is isomorphic to the adjoint representation g2, as can be seen by using the metric g'0
to identify a two-form � 2 ƒ214 with an endomorphism of R7. The decompositions of
ƒk.R7/� into irreducible G2-representations give rise to corresponding decompositions
of�k.M/. In particular,�214.M/D ¹� 2�2.M/j� ^ ' D ?'�º is a C1.M/-submodule
of �2.M/.

2.2. Closed G2-structures

In this subsection, we consider the following situation.

Definition 2.11. A G2-structure ' 2 �3M on a seven-dimensional manifold M is called
closed if d' D 0. If ' is a closed G2-structure, then

d ?' ' D � ^ '

for a unique two-form � 2 �214.M/. The two-form � is called the torsion two-form of '
and encodes the intrinsic torsion of '.

The notion of a closed G2-structure with special torsion of positive or negative type
was introduced by Ball in [3] in an attempt to study so-called quadratic closed G2-struc-
tures, as explained in the next subsection.

To motivate the definition of closed G2-structure with special torsion, let ' 2 �3M
be a closed G2-structure with associated torsion two-form � . Then � pointwise lies in the
adjoint representation g2. The adjoint action of G2 on g2 has three different types of orbits,
distinguished by the conjugacy classes of the G2-stabiliser at some point in the orbit:

There is the ‘generic’ case, where the stabiliser is a maximal torus T 2 inside of G2.
Then there are two exceptional orbits, where the stabiliser is some copy of U.2/, but

the two copies U.2/C and U.2/� are not conjugate to each other. The first orbit G2=U.2/C

is the twistor space of the Wolf space G2=SO.4/, whereas G2=U.2/� can be regarded as a
twistor space of S6ŠG2=SU.3/ and as such is biholomorphic to the complex quadricQ5,
see [5].

We say that ' has special torsion of positive type or negative type, respectively, if the
pointwise stabiliser of � is in each point conjugate to U.2/C or U.2/�, respectively. As
shown in [3], these conditions can be characterised by properties of �3:

Definition 2.12. Let ' 2 �3M be a closed G2-structure on a seven-dimensional mani-
foldM with associated torsion two-form � 2�2M . Then ' has special torsion of positive
type if �3 D 0, and ' has special torsion of negative type if j�3j2' D

2
3
j� j6' .

2.3. Closed G2-eigenforms for the Laplacian

In this subsection, we discuss properties of closed G2-eigenforms (from now on, we shall
omit the words ‘for the Laplacian’), and their relation to other structures. We repeat the
definition.

Definition 2.13. A G2-structure ' on a seven-dimensional manifold M is called a closed
G2-eigenform if d' D 0 and there exists some � 2 R n ¹0º such that

�'' D �':
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Remark 2.14. (1) Any closed G2-structure ' (on a connected manifold) with�'' D f '
for some f 2 C1.M/, f ¤ 0, is a closed G2-eigenform. For, differentiation gives

df ^ ' D d.f '/ D d�'' D d
2ı'' D 0;

and so df D 0 since wedging with ' injects �1M into �4M . Hence, f is constant.
(2) A closed G2-eigenform ' is an exact G2-structure since

' D 1
�
�'' D d

�
ı''

�

�
:

(3) A closed G2-eigenform ' is an example of a Laplacian soliton, i.e., a soliton for
the Laplacian flow .of closed G2-structures) given by

P't D �'t't :

More generally, a Laplacian soliton ' is a closed G2-structure satisfying

�'' D �' CLX'

for some X 2 X.M/, � 2 R.
(4) Lotay and Wei showed in [29] that a compact seven-dimensional manifold cannot

support any Laplacian soliton ' with X D 0 unless ' is torsion-free. In particular, there
do not exist any closed G2-eigenforms on compact manifolds.

(5) In [29] it is also shown that for a closed G2-eigenform ' 2 �3M with�'' D �'
we must have � > 0.

Let ' be a closed G2-eigenform on a seven-dimensional manifold M . By the last
remark, we then have �'' D �' for some � > 0. Hence, by scaling ' by an appropriate
non-zero factor, we may and will assume for the rest of the article (unless stated otherwise)
that � D 1, i.e., that

(2.1) �'' D '

In the last subsection, we introduced the torsion 2-form � 2 �214.M/ uniquely defined by

d ?' ' D � ^ ':

Since � 2 �214.M/, we do have � ^ ' D � ?' � and so

� D ?' ?' � D � ?' .� ^ '/ D � ?' d ?' ' D ı'';

which yields

(2.2) �'' D dı'' D d�

Remark 2.15. Let ' be a closed G2-eigenform. Then d� D �'' D �' for some � > 0,
which we do not assume to be equal to 1 in this remark. Since wedging with ?'' is
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pointwise G2-equivariant from �2.M/ to �6M , and �6M is pointwise isomorphic to
the G2-representation R7, we must have � ^ ?'' D 0. Thus,

7vol' D ' ^ ?'' D 1
�
d� ^ ?'' D �

1
�
� ^ d ?' ' D �

1
�
�2 ^ '

D
1
�
� ^ ?'� D

j� j2'
�

vol' ;

i.e., � D 1
7
j� j2' , and so

d� D 1
7
j� j2' ':

In particular, j� j' is constant. Moreover, closed G2-eigenforms are special kinds of so-
called �-quadratic closed G2-structures, which are closed G2-structures ' 2 �3M ful-
filling

d� D 1
7
j� j2'' C �

�
1
7
j� j2'' C ?'.� ^ �/

�
for � 2 R, namely those for � D 0.

Note that �.1
7
j� j'' C ?'.� ^ �// lies in �327.M/, so the above decomposition can

be seen as one of d� 2 �3M into the three components �31.M/ WD C1.M/ � ', �37.M/

and �327.M/ of �3M , with the �37.M/-component being zero.
More generally, for any closed G2-structure ', the �31.M/-part of d� equals 1

7
j� j2''

and the �37.M/-part of d� vanishes, i.e., we always have d� D 1
7
j� j2'' C 
 for some


 2 �327.M/.
One can show that �-quadratic closed G2-structure are exactly those closed G2-struc-

tures for which 
 2 �327.M/, and so the entire three-form d� depends quadratically on � ,
explaining the naming of these structures.

We restrict now to left-invariant G2-structures on seven-dimensional Lie groups G.
These will from now on be identified with the corresponding structures on the associated
seven-dimensional Lie algebra g.

As stated already, it is well known that a seven-dimensional nilpotent Lie algebra
cannot admit an exact G2-structure, see e.g. [12], and so we have to look for exact G2-
structures on the more general class of solvable Lie algebras. We will give now a new
proof of this fact, and in the process prove a slightly stronger result. Fist, we recall the
following.

Definition 2.16. Let k be a Lie algebra.
The descending central series k0; k1; : : : of k is defined by k0 WD k, k1 WD Œk; k� and

inductively by kk WD Œk; kk�1� for all k 2 N.
The ascending central series k0; k1; : : : of k is defined by k0 WD ¹0º, k1 WD z.k/ and

inductively by kk WD
®
X 2 kjŒX; k� � kk�1

¯
for all k 2 N.

Note that k is nilpotent if and only if kr D ¹0º for some r 2 N or, equivalently, if and
only if ks D k for some s 2 N (and then r D s).

This allows us to prove the following.

Proposition 2.17. Let k be a seven-dimensional Lie algebra. If k admits an exact G2-
structure, then dim.z.k// � 1 and k2 D z.k/. In particular, if k is nilpotent, or, more
generally, if k D a ˚ b is a direct sum of Lie algebras a and b, with b nilpotent and
dim.b/ � 2, then it cannot admit any exact G2-structure.
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Proof. Assume that ' 2 ƒ2k� is an exact G2-structure on k, i.e., that d� D ' for some
� 2 ƒ2k�. Let X; Y 2 z.k/. Then

0 D d�.X; Y;Z/ D '.X; Y;Z/

for anyZ 2 k. Hence, by Lemma 2.10, the vectorsX and Y have to be linearly dependent.
Thus, dim.z.k// � 1.

If dim.z.k// D 0, then trivially k2 D z.k/. So let us assume that dim.z.k// D 1 and
take X 2 z.k/ n ¹0º. If k2 ¤ z.k/, then there exists Y 2 k2 linearly independent of X and
we get ŒY;Z� 2 span.X/ and so

0 D ��.ŒY;Z�;X/ D d�.X; Y;Z/ D '.X; Y;Z/

for any Z 2 k, which contradicts Lemma 2.10. Thus, k2 D z.k/.
So k certainly cannot be nilpotent nor can it be of the form k D a˚ b with b being

nilpotent and dim.b/ � 2.

3. Reduction to six dimensions

In this section, we reduce the existence problem of closed G2-eigenforms or exact G2-
structures on a seven-dimensional Lie algebra g to the existence of SU.3/-structures of a
certain type on a codimension-one ideal h satisfying specific equations. By Proposition 3.2
in [28], such an ideal h always exists:

Proposition 3.1. Let g be a seven-dimensional Lie algebra admitting a closed G2-struc-
ture ' 2 ƒ3g�. Then g admits a unimodular codimension-one ideal h.

To obtain the reduction from seven to six dimensions, we need to recall what a deriv-
ation of a Lie algebra h is and how an endomorphism of h acts on ƒ�h�:

Definition 3.2. Let h be a Lie algebra, let f 2 End.h/ be an (vector space) endomorphism
of h and let ˛ 2 ƒkh� be a k-form on h. Then the k-form f:˛ 2 ƒkh� is defined by

.f:˛/.X1; : : : ; Xk/ WD � .˛.f .X1/; X2; : : : ; Xk/C � � � C ˛.X1; : : : ; Xk�1; f .Xk/// :

A derivation of h is a (vector space) endomorphism f 2 End.h/ of h such that f .ŒX;Y �/D
Œf .X/; Y �C ŒX; f .Y /� for all X; Y 2 h.

Remark 3.3. Let h be a Lie algebra, ˛ 2 ƒkh�, ˇ 2 ƒlh� and f; g 2 End.h/. Then:
• Due to the global minus sign in the definition of f:˛, we have Œf; g�:˛ D f:.g:˛/ �
g:.f:˛/, i.e., End.h/ 3 f 7! f: 2 End.ƒkh�/ is a representation of the Lie algebra
End.h/ on ƒkh�.

• Moreover, we have
f:.˛ ^ ˇ/ D f:˛ ^ ˇ C ˛ ^ f:ˇ

and so f:.˛ ^ ˛/ D 2˛ ^ f:˛ if k is even.
• f is a derivation if and only if f:d
 D d.f:
/ for all one-forms 
 2 h� on h and

then the same formula holds for forms of arbitrary degree on h. Moreover, the vector
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space Der.h/ of all derivations of h is a subalgebra of the Lie algebra End.h/ of all
(vector space) endomorphisms of h and it is the Lie algebra of the Lie group Aut.h/
of all Lie algebra automorphisms of h, i.e., of

Aut.h/ WD ¹F 2 GL.h/jF.ŒX; Y �/ D ŒF .x/; F.Y /� for all X; Y 2 hº � GL.h/:

Let us begin with the reduction to six dimensions.
For this, let ' be a closed G2-eigenform on a seven-dimensional Lie algebra g and

let h be a codimension-one ideal. Choose e7 2 g of norm one in the orthogonal comple-
ment h?g' of h in g. Split now g D h ˚ span.e7/ and, similarly, g� D h� ˚ span.e7/,
where e7 is the unique element in the annihilator of h with e7.e7/D 1 and h� is identified
with the annihilator of e7. Set f WD ad.e7/jh and note that f is a derivation of h. Then

d˛ D dh˛ C e
7
^ f:˛; d.˛ ^ e7/ D dh˛ ^ e

7; de7 D 0

for any ˛ 2 ƒkh�, where dh is the differential of h. Next, decompose ' according to the
splitting, i.e., write

(3.1) ' D ! ^ e7 C �

with ! 2ƒ2h�, � 2ƒ3h�. Then .!; �/ is an SU.3/-structure on h by Lemma 2.9 and one
has

?'' D
1
2
!2 C e7 ^ O�:

We do the same for the torsion-two form � 2 ƒ214g
� of ', i.e., we write

(3.2) � D � C ˛ ^ e7

with � 2 ƒ2h� and ˛ 2 h�. Now the G2-representation ƒ214g
� splits as SU.3/-represen-

tations into ƒ214g
� D h� ^ e7 ˚ Œƒ1;10 h�� as ƒ214g

� is the adjoint representation of G2
and Œƒ1;10 h�� is the adjoint representation of SU.3/. Thus, � 2 Œƒ1;10 h�� and so � ^ � D 0.
Consequently,
1
2
dh.!

2/C e7 ^ .! ^ f:! � dh O�/ D d ?' ' D � ^ ' D .� C ˛ ^ e
7/ ^ .! ^ e7 C �/

D e7 ^ .! ^ � � ˛ ^ �/;

i.e.,
dh.!

2/ D 0; ! ^ f:! � dh O� D ! ^ � � ˛ ^ �:

Moreover,
dh� C e

7
^ .f:� � dh˛/ D d� D ' D ! ^ e

7
C �;

i.e.,
dh� D �; f:� � dh˛ D !;

Hence, dh� D 0 and dh.!
2/ D 0 and so the SU.3/-structure .!; �/ on h is half-flat with

exact �. Moreover, we necessarily have ˛ D 0. For this, note that � 2 �214M D ¹ˇ 2
�2M j ?' ˇ D �ˇ ^ 'º and so

� D ?2'� D � ?' .� ^ '/ D � ?' .e
7
^ .! ^ � � ˛ ^ �// 2 ƒ2h�

since e7 is perpendicular to h� by assumption. Consequently, � D � 2 ƒ3h� and ˛ D 0.
Summarizing, we have arrived at:
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Theorem 3.4. Let g be a seven-dimensional Lie algebra, let ' 2 ƒ3g� be a G2-structure
on g, let h be a codimension-one unimodular ideal in g, let e7 2 h?g' be of norm one,
e7 2 Ann.h/ with e7.e7/D 1, and set f WD ad.e7/jh. Write ' D ! ^ e7 C � with .!; �/ 2
ƒ2h� � ƒ3h�. Then ' is a closed G2-eigenform with �'' D ' if and only if .!; �/ is
half-flat and there exists a primitive .1; 1/-form � 2 Œƒ

1;1
0 h�� on h such that � D dh� and

f:� D !;(3.3)
! ^ f:! � dh O� D ! ^ �:(3.4)

If we only look for exact G2-structures ' 2 ƒ3g�, the same calculations as above
show:

Theorem 3.5. Let g be a seven-dimensional Lie algebra, let ' 2 ƒ3g� be a G2-structure
on g, let h be a codimension-one unimodular ideal in g, let e7 2 h?g' of norm one,
e7 2 Ann.h/ with e7.e7/D 1, and set f WD ad.e7/jh. Write ' D ! ^ e7 C � with .!; �/ 2
ƒ2h� �ƒ3h�. Then ' is an exact G2-structure if and only if there exist a two-form � 2

ƒ2h� on h and a one-form ˛ 2 h� with � D dh� and

(3.5) f:� � dh˛ D !:

4. Results in dimension six

From now on, we restrict to ourselves to a special class of Lie algebras:

Definition 4.1. A Lie algebra g is called almost nilpotent if it admits a codimension-one
nilpotent ideal h. Note that then g Š h Ìf R for a derivation f 2 Der.h/, where h Ìf R
denotes the semi-direct product of R with h and Lie algebra representation � WR!Der.h/
of R on h given by �.t/ D tf for all t 2 R.

In order to investigate the existence of exact G2-structures and closed G2-eigenforms
on seven-dimensional almost nilpotent Lie algebras g, we first have to determine which
six-dimensional nilpotent Lie algebras admit exact SL.3;C/-structures or half-flat SU.3/-
structures .!; �/ for which there exists a primitive .1; 1/-form � with � D d�.

4.1. Exact SL.3;C/-structures on nilpotent Lie algebras

We start by determining the six-dimensional nilpotent Lie algebras h admitting an exact
SL.3;C/-structure � 2 ƒ3h�. To this aim, we rephrase the condition of being exact in the
following way:

Proposition 4.2. Let h be a six-dimensional nilpotent Lie algebra. Then h admits an
exact SL.3;C/-structure � 2 ƒ3h� if and only if there exist linear independent one-forms
˛1; ˛2 2 h� and two-forms !1; !2 2 ƒ2h� with !i ^ !j D ıij!21 for i; j 2 ¹1; 2º such
that ker.!1/ D ker.!2/ is a complement of ker.˛1/ \ ker.˛2/ in h and such that either

(a) dim.z.h// D 1, dim.h2/ D 2, ker.!1/ D ker.!2/ D h2 and there exists a closed
non-zero one-form 
 2 h� n ¹0º with 
.h2/ D ¹0º such that

d˛1 D !1; d˛2 D !2 C 
 ^ ˛1;
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(b) or dim.z.h// D 2, ker.!1/ D ker.!2/ D z.h/ and

d˛1 D !1; d˛2 D !2:

In the first case, h2 is J -invariant, and in the second case z.h/ is J -invariant for the
almost complex structure J induced by �.

Proof. The forward implication. Assume that h admits an exact SL.3;C/-structure �, i.e.,
� D d� for some � 2 ƒ2h�. Let X; Y 2 z.h/. Then

�.X; Y;Z/ D d�.X; Y;Z/ D 0

for any Z 2 h, which implies that X and Y are C-linearly dependent by Lemma 2.5 (a).
So dim.z.h// 2 ¹1; 2º.

If dim.z.h// D 2, z.h/ is J -invariant, so we may choose a basis X; JX of z.h/. By
Lemma 2.5 (b), !1 WD �.X; �; �/ and !2 WD �.JX; �; �/ have two-dimensional common
kernel z.h/ and fulfill !i ^ !j D ıij!21 for i; j 2 ¹1; 2º.

Moreover, setting ˛1 WD ��.X; �/ 2 h� and ˛2 WD ��.JX; �/ 2 h�, we have

d˛1.Y;Z/ D �˛1.ŒY;Z�/ D ��.ŒY;Z�;X/ D d�.X; Y;Z/ D �.X; Y;Z/ D !1.Y;Z/

for all Y;Z 2 h, i.e., d˛1 D !1. In the same way, one obtains d˛2 D !2, which then also
shows that ˛1 and ˛2 are linearly independent. Now choose Y 2 h2 linearly independent
of X and JX . By Lemma 2.5 (a), there exists Z 2 h with �.X; Y;Z/ ¤ 0 and so

0 ¤ �.X; Y;Z/ D �.X; ŒY;Z�/:

Since ŒY; Z� 2 z.h/ D span.X; JX/, this shows ˛1.JX/ D �˛2.X/ D �.X; JX/ ¤ 0.
Thus ker.˛1/ \ ker.˛2/ is complementary to ker.!1/ D ker.!2/ D z.h/.

Next, consider the case dim.z.h//D 1 and choose X 2 z.h/ and Y 2 h2 linearly inde-
pendent. Then we have

�.X; Y;Z/ D d�.X; Y;Z/ D �.X; ŒY;Z�/ D 0

for any Z 2 h, that is, X and Y are C-linearly dependent by Lemma 2.5 (a). Hence
dim.h2/ D 2 and h2 is J -invariant.

Choose a basis X; JX of h2 such that X 2 z.h/ and set again !1 WD �.X; �; �/, !2 WD
�.JX; �; �/, ˛1 WD ��.X; �/ and ˛2 WD ��.JX; �/. As in the case dim.z.h// D 2, we get
ker.!1/D ker.!2/D span.X;JX/D h2, !i ^ !j D ıij!21 for i; j D 1; 2 and d˛1 D !1.

Next, let Y 2 h3 be linearly independent of X and JX . By Lemma 2.5 (a), we again
have someZ 2 h with 0¤ �.X;Y;Z/D �.X; ŒY;Z�/ and from ŒY;Z�2 h2D span.X;JX/
we get again that ˛1.JX/ D �˛2.X/ D �.X; JX/ ¤ 0, i.e., that ker.˛1/ \ ker.˛2/ is
complementary to ker.!1/ D ker.!2/ D z.h/. So we finally have to prove the equation
for d˛2 in this case. Thereto, let 
 2 h� n ¹0º be the one-form uniquely defined by
ŒJX; Y � D �
.Y /X for all Z 2 h. Obviously, 
.X/ D 
.JX/ D 0, i.e., 
.h2/ D ¹0º.
Moreover, d
 D 0 as

d
.Z;W /X D �
.ŒZ;W �/X D ŒJX; ŒZ;W �� D ŒZ; ŒW; JX��C ŒW; ŒJX;Z��

D �
.W /ŒZ;X�C 
.Z/ŒW;X� D 0
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for all Z;W 2 h. Furthermore,

d˛2.Y;Z/ D �˛2.ŒY;Z�/ D ��.ŒY;Z�; JX/

D d�.JX; Y;Z/C �.ŒJX; Y �; Z/ � �.ŒJX;Z�; Y /

D �.JX; Y;Z/ � �.
.Y /X;Z/C �.
.Z/X; Y /

D !2.Y;Z/C 
.Y /˛1.Z/ � 
.Z/˛1.Y /

D !2.Y;Z/C .
 ^ ˛1/.Y;Z/;

as claimed.
The backwards implication. Assume that there exist linear independent one-forms

˛1; ˛2 2 h� and two-forms !1; !2 2 ƒ2h� as in the statement. Note that dim.ker.˛1/ \
ker.˛2//D 4 since ˛1;˛2 are linearly independent. Consequently, we have dim.ker.!1//D
dim.ker.!2//D 2 and so !1;!2 are non-degenerate two-forms on V WD ker.˛1/\ ker.˛2/
satisfying !i ^ !j D ıij!21 for i; j D 1; 2 and !21 ¤ 0. Then it is well known that there is
a basis .v1; : : : ; v4/ such that, with respect to the dual basis .v1; : : : ; v4/, we have

!1 D v
12
C v34; !2 D v

13
� v24;

see, e.g., the proof of Lemma 2.2 in [16]. Consider .v1; : : : ; v4/ as one-forms on h by
identifying V � with the annihilator of ker.!1/ D ker.!2/ and set

� WD ˛2 ^ !1 � ˛1 ^ !2 D �˛
1
^ v13 C ˛1 ^ v24 C ˛2 ^ v12 C ˛2 ^ v34:

The three-form � is an SL.3;C/-structure on h�, since an adapted basis is given by .˛1;˛2;
v3; v2; v1;�v4/. Moreover, � is exact since � WD ˛12 2 ƒ2h� satisfies d� D d˛1 ^ ˛2 �
˛1 ^ d˛2 D ˛2 ^ !1 � ˛1 ^ !2 D � in both cases.

There are 34 (isomorphism classes of) real six-dimensional nilpotent Lie algebras. Of
these, exactly those five that admit an exact SL.3;C/-structures are listed in Table 1. The
notation for these Lie algebras is obtained by numbering the 34 six-dimensional nilpotent
Lie algebras from n1 to n34 in the order in which they occur in Table A.1 in [37].

Corollary 4.3. Let h be a six-dimensional nilpotent Lie algebra. Then h admits an exact
SL.3;C/-structure if and only if h is one of the five Lie algebras listed in Table 1.

g differentials

n1 .0; 0; 12; 13; 14C 23; 34 � 25/

n4 .0; 0; 12; 13; 14C 23; 24C 15/

n9 .0; 0; 0; 12; 14 � 23; 15C 34/

n18 .0; 0; 0; 12; 13C 42; 14C 23/

n28 .0; 0; 0; 0; 13C 42; 14C 23/

Table 1. Six-dimensional nilpotent Lie algebras admitting an exact SL.3;C/-structure.

Proof. By Proposition 4.2, we either have dim.z.h//D2 or dim.z.h//D1 and dim.h2/D2.
Let us first assume that dim.z.h//D 2. By Proposition 4.2, there are closed two-forms

!1; !2 2 ƒ
2h� with common kernel ker.!1/ D ker.!2/ D z.h/ such that !i ^ !j D
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ıij!
2
1 . Moreover, there are linearly independent one-forms ˛1; ˛2 2 h� such that d˛i D

!i for i D 1; 2 and such that ker.˛1/ \ ker.˛2/ is complementary to z.h/. Now h=z.h/
is a four-dimensional nilpotent Lie algebra and !1; !2 descend to closed two-forms on
h=z.h/, again called !1; !2. It is well known, see e.g. [35], that there are exactly three
four-dimensional nilpotent Lie algebras, namely .0; 0; 0; 0/, .0; 0; 12; 0/ and .0; 0; 12; 13/.
One easily checks that only .0; 0; 0; 0/ and .0; 0; 12; 0/ admit closed two-forms !1; !2
with !i ^ !j D ıij!21 .

If h=z.h/ Š .0; 0; 0; 0/, then one may choose (cf. the proof of Proposition 4.2) a basis
e1; : : : ; e4 of the dual space of .0; 0; 0; 0/ such that !1 D e13 � e24 and !2 D e14 C e23.
We may extend this basis to a basis e1; : : : ; e6 of h� by e5 WD ˛1 and e6 WD ˛2 and so
h Š .0; 0; 0; 0; 13C 42; 14C 23/ D n28.

If h=z.h/Š .0; 0; 12; 0/, then !1 is a symplectic form on .0; 0; 12; 0/ and so symplec-
tomorphic to e14 C e23 by [35], i.e., we may assume that !1 D e14 C e23. Then, since
!2 is closed, !1 ^ !2 D 0 and !22 D !

2
1 , one checks that !2 D a.e14 � e23/C b1e13 �

b2e
24 C ce12 for certain a; b1; b2; c 2 R with b1b2 � a2 D 1. But so

f WD

0BB@
1 a

b1
0 0

0 1 0 0

0 0 1 �
a
b1

�
c
b2
�

ac
b1b2

0 1

1CCA
is an automorphism of .0; 0; 12; 0/ with f �!1 D !1 and f �!2 D b1e13 � 1

b1
e24. Next,

g WD diag
�
b
�2=3
1 ; b

1=3
1 ; b

�1=3
1 ; b

2=3
1

�
fulfills g�f �!1D!1 and g�f �!2D e13 � e24. Extending e1; : : : ; e4 to a basis e1; : : : ; e6

by setting e5 WD ˛1 and e6 WD ˛2, we do get h Š .0; 0; 12; 0; 14 C 23; 13 C 42/ Š

.0; 0; 0; 12; 13C 42; 14C 23/ D n18, where the latter isomorphism F is, e.g., given by
the one with F.e1/ D �e2, F.e2/ D e1, F.e3/ D e4, F.e4/ D �e3, F.e5/ D e6 and
F.e6/ D e5.

Next, let dim.z.h// D 1 and dim.h2/ D 2. By Proposition 4.2, there are two-forms
!1; !2 2ƒ

2h� with common kernel ker.!1/D ker.!2/D h2 such that !i ^ !j D ıij!21 .
Moreover, there are linearly independent one-forms ˛1; ˛2 2 h� and 
 2 h� n ¹0º closed
with 
.h2/D¹0º such that d˛1D!1, d˛2D!2C 
 ^ ˛1 and such that ker.˛1/\ ker.˛2/
is complementary to z.h/. Note that then !1 is closed and

d!2 D 
 ^ !1:

Hence, h2y d!2 D 0 and so !1; !2; 
 descend to forms on a WD h=h2 with d!1 D 0

and d!2 D 
 ^ !1. Since d!2 ¤ 0 on a, a cannot be Abelian and we must either have
a Š .0; 0; 12; 0/ or a Š .0; 0; 12; 13/.

Let us first assume that a Š .0; 0; 12; 0/. By the results in [35], all symplectic forms
on a are symplectomorphic to each other. Hence, we may assume that !1 D e13 � e24.
Then !2 D a1e12Ca2e34Cb.e13Ce24/Cc1e14Cc2e23 for certain a1; a2; b; c1; c22R
with a1a2 C c1c2 � b2 D 1. We must have a2 ¤ 0 as otherwise d!2 D 0, a contradiction.
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But so the automorphism 0BBB@
�
1
a2

0 0 0

0 a22 0 0
c1
a22

�ba2 �a2 0

�
b

a22
c2a2 0 1

a22

1CCCA
of .0; 0;12;0/ is well-defined. This automorphism fixes !1 and transforms !2 into�e12 �
e34. Hence, we may assume that !1 D e13 � e24 and that !2 D �e12 � e34. Then d!2 D
�e124 D e1 ^ !1, i.e., 
 D e1. Thus, extending e1; : : : ; e4 to a basis e1; : : : ; e6 of h� by
e5 WD ˛1 and e6 WD ˛2C e3, we have hD .0;0;12;0;13� 24;15� 34/Š .0;0;0;12;14�
23;15C 34/D n9, where the latter isomorphism fixes ei for i … ¹3;4º and interchanges e3

and e4.
Next, let us consider the case a Š .0; 0; 12; 13/. By [35], all symplectic two-forms

on a are symplectomorphic. Thus, we may assume that !1 D e14 C e23. Then !2 D
a1e

12 C a2e
34 C b1e

13 � b2e
24 C c.e14 � e23/ for certain a1; a2; b1; b2; c 2 R with

a1a2 C b1b2 � c
2 D 1.

Let us first assume that a2 ¤ 0. Then0BBBB@
1 0 0 0

�
b2
a2

1 0 0

�
a2cCb

2
2

a22

b2
a2

1 0

a2b1Cb2c

a22
�
c
a2

b2
a2

1

1CCCCA
is an automorphism of .0; 0; 12; 13/ which fixes !1 and maps !2 to 1

a2
e12 C a2e

34, i.e.,
we may assume that ! D 1

a2
e12 C a2e

34. Then d!2 D a2e124 D �a2e2 ^ !1, i.e., 
 D
�a2e

2. Hence, extending e1; : : : ; e4 to a basis e1; : : : ; e6 of h� by e5 WD ˛1 and e6 WD
1
a2
.˛2 �

1
a2
e3/, we have h D .0; 0; 12; 13; 14C 23; 34 � 25/ D n1.

Finally, we consider the case a2 D 0. Then b1b2 � c2 D 1 and so, in particular, b2 ¤ 0.
Thus, 0BBB@

1 0 0 0
c
b2

1 0 0

0 �
c
b2

1 0
�a1b

2
2Cc

b32

c2

b22
�
c
b2

1

1CCCA
is a well-defined automorphism of .0; 0; 12; 13/ which fixes !1 and maps !2 to 1

b2
e13 �

b2e
24. Hence, we may assume that !2 D 1

b2
e13 � b2e

24 and then 
 D �b2e1 as d!2 D
�b2e

123D�b2e
1 ^!1. Thus, extending e1; : : : ; e4 to a basis e1; : : : ; e6 of h� by e5 WD ˛1

and e6 WD � 1
b2
.˛2 �

1
b2
e4/, we have h D .0; 0; 12; 13; 14C 23; 24C 15/ D n4.

Conversely, the existence of forms as in Proposition 4.2 follows from the discussion
above on any of the Lie algebras n1;n4;n9;n18 and n28.

4.2. Half-flat SU.3/-structures .!; �/ with exact �

Here, we determine the six-dimensional nilpotent Lie algebras which admit a half-flat
SU.3/-structure .!; �/ for which � D d� for a primitive .1; 1/-form �. In fact, we will
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determine all nilpotent Lie algebras which admit a half-flat SU.3/-structure .!; �/ with
exact � and show that these are the same for which � D d� with a primitive .1; 1/-form �.

For this, note that by Corollary 4.3, only n1, n4, n9, n18, n28 may admit a half-flat
SU.3/-structure .!; �/ with exact �. Now Conti determined the six-dimensional nilpotent
Lie algebras admitting a half-flat SU.3/-structures in [11] and his results reduce the pos-
sible cases to n4, n9, n28. We will show that n4 cannot admit a half-flat SU.3/-structure
.!; �/ with exact �, and for the proof we use the following obstruction by Schulte-
Hengesbach and the first author [20] adapted to our setting. Note that this obstruction
is a refinement of one used by Conti in [11].

Lemma 4.4. Let h be a six-dimensional Lie algebra and let � 2 ƒ6h� n ¹0º. If there is a
non-zero one-form ˛ 2 h� satisfying

(4.1) ˛ ^ QJ �� ˛ ^ � D 0

for all exact three-forms � 2 ƒ3h� and all closed four-forms � 2 ƒ4h�, where QJ �� ˛ is
defined for X 2 h� by

(4.2) QJ �� ˛.X/ � D ˛ ^ .Xy �/ ^ �;

then g does not admit a half-flat SU.3/-structure .!; �/ 2 ƒ2h� �ƒ3h� with exact �.

This allows us now to prove:

Theorem 4.5. Let h be a six-dimensional nilpotent Lie algebra. Then h admits a half-flat
SU.3/-structure .!; �/ 2 ƒ2h� �ƒ3h� with exact � if and only if h is isomorphic to n9
or n28. In these cases, h also admits a half-flat SU.3/-structure . Q!; Q�/ 2 ƒ2h� �ƒ3h�,
with Q� D d� for some primitive .1; 1/-form � 2 Œƒ

1;1
0 h��.

Proof. As explained above, by the results of [11] and Corollary 4.3, only n4, n9 or n28
may admit a half-flat .!; �/ 2 ƒ2h� �ƒ3h� with exact �

Now a direct computation, efficiently carried out with a computer algebra system like
MAPLE, shows that one may use the obstruction in Lemma 4.4 with, e.g., ˛D e1 or ˛D e2,
to exclude the existence of a half-flat SU.3/-structure .!; �/ 2ƒ2h� �ƒ3h� with exact �
on n4.

For the other two cases, we provide a half-flat SU.3/-structure . Q!; Q�/ 2 ƒ2h� �ƒ3h�

and some � 2 Œƒ1;10 h�� with Q� D d�.
Case n9. Here, we may take the SU.3/-structure defined by the adapted basis .e1; e3;

e2; e4; e5;�e6/, i.e.,

! D e13 C e24 � e56; � D e125 C e146 � e236 � e345:

Then one checks that d.!2/ D 0. Moreover, set � WD e13 C 1
2
e26 C 1

2
e45 C e56. Then

d� D � and � is a .1; 1/-form. Since � ^ !2 D 0, � is primitive as well, i.e., � 2 Œƒ1;10 h��.
Case n28. Take the SU.3/-structure defined by the adapted basis .e1; e2; e3; e4; e6; e5/,

i.e.,
! D e12 C e34 � e56; � D e136 � e145 � e235 � e246:

Then d.!2/ D 0. Setting now � WD e12 C e56, we get d� D � and that � is a .1; 1/-form.
Again � ^ !2 D 0 and so � is primitive, i.e., � 2 Œƒ1;10 h��.
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Remark 4.6. Fino and Raffero determined in [18] all six-dimensional nilpotent Lie algeb-
ras admitting a so-called coupled half-flat SU.3/-structure, i.e., a half-flat SU.3/-structure
.!; �/ 2 ƒ2h� � ƒ3h� with d! D �. Interestingly, the six-dimensional nilpotent Lie
algebras admitting a coupled half-flat SU.3/-structure are also n9 and n28.

Our proof of Theorem 4.5 is independent of the coupled approach, and in some sense
more direct. Fino and Raffero compute with a computer algebra system, for all 24 six-
dimensional nilpotent Lie algebras admitting a half-flat SU.3/-structure, the most general
exact three-form � and check if the quartic invariant � of � can be negative. This way
they obtain that, of the six-dimensional nilpotent Lie algebras admitting a half-flat SU.3/-
structure, those which admit a maybe non half-flat SU.3/-structure with exact three-form
part are precisely n4, n9 and n28. Then they show by different methods that n4 cannot
admit a coupled SU.3/-structure.

5. Exact G2-structures on compact almost nilpotent solvmanifolds

Here, we prove that a compact almost nilpotent solvmanifold cannot admit an invariant
exact G2-structure. For this, note first that Corollary 4.3 implies the following.

Corollary 5.1. Let g be a seven-dimensional almost nilpotent Lie algebra with codimen-
sion-one nilpotent ideal h. If g admits an exact G2-structure, then h is isomorphic to n1,
n4, n9, n18 or n28.

We show now that four of the five cases of a codimension-one nilpotent ideal, namely
n1, n9, n18 and n28, may occur in Corollary 5.1, leaving open if there is an almost nilpo-
tent Lie algebra with codimension one ideal n4 which admits an exact G2-structure.

For this, note that Theorem 6.9 below even classifies all the almost nilpotent Lie
algebra with codimension-one nilpotent ideal isomorphic to n28 which admit an exact G2-
structure. For h 2 ¹n1;n9n18º, we provide now one example of an exact G2-structure on
a seven-dimensional almost nilpotent Lie algebra with codimension-one nilpotent ideal h:

Example 5.2. For the six-dimensional nilpotent Lie algebras h 2 ¹n1;n9;n18º, we give
an SU.3/-structure .!; �/ 2 ƒ2h� �ƒ3h�, a two-form � 2 ƒ2h�, a one-form ˛ 2 h� and
a derivation f 2 Der.h/ such that � D d� and such that (3.5) is valid.

Case n1. Take the SU.3/-structure .!; �/ 2 ƒ2n�1 � ƒ
3n�1 defined by the adapted

basis .�e1 C ae5; e3 C ae6; e2; e4; e5; e6/ with a WD .3C
p
5/=2, i.e.,

! D �e13 � a e16 C e24 � a e35 C .1C a2/e56; � D �e125 C e146 C e236 � e345:

Setting

� WD
�
2 �

2

3
a
�
e15 �

1

2
e16 C

�
2 �

2

3
a
�
e24 �

1

2
e35 C e56;

one gets d� D �. Moreover,

f WD

0BBB@
� a4 0 0 0 0 0

0 � a2 0 0 0 0

0 0 � a
2C1
4 0 0 0

0 0 0 �a 0 0
0 0 0 0 � 54 a 0

�1 0 0 0 0 � 74 a

1CCCA
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is a derivation of n1 and one computes f:� D ! C e13. Hence, choosing ˛ WD e4, we have
d˛ D e13 and so f:� � d˛ D !, i.e., (3.5) is fulfilled.

Case n9. In this case, we choose the SU.3/-structure .!; �/ 2 ƒ2n�9 �ƒ
3n�9 defined

by the adapted basis .e1; e3; e2; e4; e5;�e6/, i.e.,

! D e13 C e24 � e56; � D e125 C e146 � e236 � e345:

Setting

� WD �
2

3
e13 C e24 C

1

2
e26 C

1

2
e45 C e56;

one obtains d� D �. Moreover,

f WD diag
�1
2
;�
3

4
; 1;�

1

4
;
1

4
;
3

4

�
is a derivation of n9 and f:� D e13 C e24 � e56 D !. Thus, for ˛ WD 0, (3.5) is satisfied.

Case n18. Here, we look at the SU.3/-structure .!; �/ 2 ƒ2n�18 �ƒ
3n�18 defined by

the adapted basis .e1; e2; e3; e4; e6; e5/, i.e.,

! D e12 C e34 � e56; � D e136 � e145 � e235 � e246:

Taking

� WD
3

2
e16 �

3

2
e34 C e56;

we get d� D �. Now one checks that

f WD

0BBBB@
1
6 0 0 0 0 0

0 1
6 0 0 0 0

0 0 1
3 0 0 0

0 0 0 1
3 0 0

�1 0 0 0 1
2 0

0 0 0 0 0 1
2

1CCCCA :
is a derivation of n18 and that f:� D e34 � e56. Thus, for ˛ WD �e4, we have d˛ D �e12

and so f:� � d˛ D e12 C e34 � e56 D !, i.e., (3.5) is valid for our choices.

Next, we look at compact almost nilpotent solvmanifolds, i.e., manifolds of the form
�nG, where G is a simply-connected almost nilpotent Lie group and � a cocompact
lattice in G. A necessary condition for the existence of such a lattice is that the associated
Lie algebra g is strongly unimodular, cf. [21].

Definition 5.3. Let g be a solvable Lie algebra, let n be its nilradical, and let n0;n1; : : :
be the descending central series of n. One checks that adX preserves ni for all X 2 g and
all i 2 N. The Lie algebra g is called strongly unimodular if tr.adX jni=niC1/ D 0 for all
i 2 N and all X 2 g.

Remark 5.4. Since the commutator ideal Œg; g� of a solvable Lie algebra g is nilpotent,
the nilradical n contains the commutator ideal Œg; g�. Hence, if g is strongly unimodular,
one has tr.adX / D 0 for all X 2 g, i.e., g is unimodular.

Theorem 5.5. Let g be a seven-dimensional strongly unimodular almost nilpotent Lie
algebra. Then g does not admit an exact G2-structure.
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Proof. Assume the contrary. By Corollary 5.1, the Lie algebra g then admits a codimen-
sion-one nilpotent ideal h which is isomorphic to n1, n4, n9, n18 or n28. Moreover, h is the
nilradical as the entire Lie algebra cannot be nilpotent according to Proposition 2.17. Fur-
thermore, we have an induced SU.3/-structure .!; �/ 2 ƒ2h� �ƒ3h� on h with exact �,
i.e., there is some � 2 ƒ2h� with d� D � which has to fulfill

f:� � dh˛ D !

for some one-form ˛ 2 h� by Theorem 3.5. Now we know that in the cases n1, n4 and n9,
we have dim.z.h//D 1 and dim.h2/D 2, with h2 being J -invariant by Proposition 4.2 for
the almost complex structure J induced by �. Moreover, in all theses cases, one checks
that h2 is the sum of quotient spaces of the form hi=hiC1, i.e., the trace of each adX ,
X 2 g, has to be trace-free on h2. In these cases, we set a WD h2.

In the cases n18 and n28, we have dim.z.h// D 2 and z.h/ is J -invariant by Pro-
position 4.2. Moreover, z.h/ equals in both cases the last non-zero hi , so is of the form
hi=hiC1. Hence, each adX , X 2 g, has to be trace-free when restricted to z.h/. Here, we
set a WD z.h/.

Now coming back to general case, we choose some 0 ¤ X 2 z.h/ � a. Then we get

0 D �tr.f ja/ �.X; JX/ D .f:� � dh˛/.X; JX/ D !.X; JX/ D �kXk
2
¤ 0;

since f has to preserve a D span.X; JX/. This yields the desired contradiction and so g
cannot admit an exact G2-structure.

In general, if G is a simply-connected solvable Lie group which admits a cocompact
lattice � , then any left-invariant differential form ˇ induces a differential form Q̌ on the
compact quotient �nG. We then call Q̌ invariant. By Theorem 3.2.10 in [34], the assign-
ment ˇ 7! Q̌ induces an injection H�.g/! H�

dR
.�nG/.

Hence, Theorem 5.5 implies that no compact almost nilpotent solvmanifold can admit
an invariant exact G2-structure. If G is completely solvable, i.e., if adX has only real
eigenvalues for all X 2 g, then H�.g/! H�

dR
.�nG/ is an isomorphism by [22] and so

one may skip the word ‘invariant’ in the following statement.

Corollary 5.6. Let M D �nG be an almost nilpotent solvmanifold, i.e., G is a simply-
connected almost nilpotent Lie group and � is a cocompact lattice in G. Then M does
not admit an invariant exact G2-structure. If G is completely solvable, then M does not
admit any exact G2-structure at all.

6. Closed G2-eigenforms on almost nilpotent Lie algebras

In this section, we establish:

Theorem 6.1. Let g be a seven-dimensional almost nilpotent Lie algebra. Then g does
not admit a closed G2-eigenform.

To start the proof, note that by Theorem 3.4 and Theorem 4.5, the codimension-one
nilpotent ideal h of an almost nilpotent Lie algebra admitting a closed G2-eigenform has
to be isomorphic to n9 or to n28.
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In Subsection 6.1, we will show in Theorem 6.6 that no almost nilpotent Lie algebra
with codimension-one nilpotent ideal isomorphic to n9 can admit a closed G2-eigenform
and in Subsection 6.2, we will show in Theorem 6.12 that no almost nilpotent Lie algebra
with codimension-one nilpotent ideal isomorphic to n28 can admit a closed G2-eigenform.
This work completes the proof of Theorem 6.1.

In Subsection 6.2, we also give a classification of all almost nilpotent Lie algebras with
codimension-one nilpotent ideal isomorphic to n28 that admit an exact G2-structure, and
we distinguish those with special torsion of positive type or of negative type, respectively.

6.1. The case n9

Note first that the Lie algebra Der.n9/ of all derivations of n9 is given by

Der.n9/ D

8̂̂<̂
:̂
0BB@
f5;5�f4;4 0 0 0 0 0

f4;3 �f5;5C2f4;4 0 0 0 0

0 0 2f5;5�2f4;4 0 0 0

f5;3 f5;4 f4;3 f4;4 0 0

f5;1 f6;4 f5;3 f5;4 f5;5 0

f6;1 f6;2 f6;3 f6;4 f5;4 2f5;5�f4;4

1CCA
ˇ̌̌̌
ˇ̌̌̌ fi;j 2 R

9>>=>>;(6.1)

with respect to the basis .e1; : : : ; e6/ of n9. This can be checked by a lengthy but straight-
forward calculation done efficiently with a computer algebra system like MAPLE. Expo-
nentials of these derivations are then (inner) automorphisms of the Lie algebra n9. Using
these automorphisms, one obtains:

Lemma 6.2. Let .!; �/ 2 ƒ2n�9 �ƒ
3n�9 be an SU.3/-structure on n9 with exact �, i.e.,

there exists some � 2ƒ2n�9 with d� D �. Then !;� and � are given, up to automorphism,
by

(6.2)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

� D ".e125 C e146 � e236 � e345/ DW "�0;

! D a1e
13
C a2e

24
C a3e

56
C a4.e

12
C e34/C a5.e

15
�e36/C a6.e

25
�e46/

C a7.e
26
C e45/;

� D b1e
12
C b2e

13
C b3e

14
C b4.e

15
Ce34/C b5.e

16
Ce35/C b6e

23
C b7e

24

C
"
2
.e26 C e45/C " e56;

for certain "2 ¹1;�1º, a1; : : : ;a7 2R with a1a2>0, a1a3<0 and certain b1; : : : ; b7 2R.
If .!; �/ is half-flat and � is of type .1; 1/, then we may assume that a4 D a5 D 0, b1 D
b4 D 0 and b6 D b3 in (6.2).

Proof. First of all, observe that the most general exact three-form � is given by

� D c1 e
123
Cc2 e

124
Cc3 e

125
Cc4 e

126
Cc5 e

134
Cc6 e

135
Cc4 e

145
Cc7 e

146
Cc8 e

234

� c7 e
236
� c7 e

345

for certain ci 2 R, i D 1; : : : ; 8. The quartic invariant �.�/ of � computes to be equal to

�.�/ D �4c27 .c3 c7 � c
2
4/ .e

1234567/˝2:



Closed G2-eigenforms and exact G2-structures 1849

As �.�/ has to be negative, we surely must have c7 ¤ 0. Now exponentials of matrices as
in (6.1) give automorphisms of n9. We consider first the automorphism F1 WD exp.A1/ for
the matrix A1 as in (6.1) with f4;3 D 0, f4;4 D 0, f5;5 D 0, f6;1 D 0, f6;2 WD 0, f6;3 D 0
and f5;1 D �f5;3 f5;4=2. For notational simplicity, we set a WD f5;3, b WD f5;4, s WD f6;4
and so have

A1 WD

0B@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a b 0 0 0 0

� ab2 s a b 0 0

0 0 0 s b 0

1CA :
The exponential of this matrix is easily computed to be

F1 WD

0@ 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
a b 0 1 0 0
0 S a b 1 0
A B C S b 1

1A
with A D 1

2
as � 1

12
ab2, B D bs C b3

6
, C D ab

2
and S D s C 1

2
b2. Then

.F �1 �/.e1; e2; e6/ D c4Cb c7; .F �1 �/.e1; e3; e5/ D c6Cac7;

.F �1 �/.e2; e3; e4/ D c8�2s c7

So, setting a WD � c6
c7

and b WD � c4
c7

and s WD c8
2c7

, we get

.F �1 �/.e1; e4; e5/ D .F
�
1 �/.e1; e2; e6/ D 0; .F �1 �/.e1; e3; e5/ D 0;

.F �1 �/.e2; e3; e4/ D 0;

i.e., we have

F �1 � D Qc1 e
123
C Qc2 e

124
C Qc3 e

125
C Qc4 e

134
C Qc5 .e

146
� e236 � e345/;

for certain Qci 2 R, i D 1; : : : ; 5, now with Qc5 ¤ 0 (in fact, Qc5 D c7). Next, we consider
the automorphism F2 WD exp.A2/ with the matrix A2 as in (6.1) with f4;3 WD 0, f4;4 D 0,
f5;5 D 0, f5;3 D 0, f5;4 D 0, f5;1 D 0 and f6;4 D 0, i.e., we have

A2 WD

0@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
p q r 0 0 0

1A ;
where we set p WD f6;1, q WD f6;2 and r WD f6;3. With F2 WD exp.A2/ D I6 C A2, we
obtain

.F �2 F
�
1 �/.e1; e2; e3/ D Qc1 � Qc5p; .F �2 F

�
1 �/.e1; e2; e4/ D Qc2 � Qc5q;

.F �2 F
�
1 �/.e1; e3; e4/ D Qc4 � Qc5 r:

Thus, setting p WD Qc1= Qc5, q WD Qc2= Qc5 and r WD Qc4= Qc5, we get that

F �2 F
�
1 � D Ae

125
C B.e146 � e236 � e345/:
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Then �.F �2 F
�
1 �/D �4AB

3, i.e., we must have A �B > 0. It is now fairly easy to see that
the exponential F3 WD exp.A3/ of a diagonal matrix A3 as in (6.1) allows to normalise
A D B 2 ¹�1; 1º, i.e., we have

.F �3 F
�
2 F
�
1 �/ D " .e

125
C e146 � e236 � e345/ D "�0

for some " 2 ¹�1; 1º.
From now on, we will use again � for F �3 F

�
2 F
�
1 �, so that � D "�0. Notice that

".e1; �e3; e2; �e4; e5; e6/ or ".e1; e3; e2; e4; e5; �e6/ is an oriented adapted basis for
�D "�0, depending on the orientation induced by !3. Hence, the induced almost complex
structure J D J� is either given by J0e1 D �e3, J0e2 D �e4 and J0e5 D e6 or by �J0.
A straightforward computation shows that a two-form � 2 ƒ2n�9 with d� D � has to be
as claimed and � is of type .1; 1/ precisely when b1 D b4 D 0 and b6 D b3.

Next, we are interested in bringing ! into a canonical form. To this aim, note first
that ! has to be a .1; 1/-form with respect to J0 and so

! D a1e
13
C a2 e

24
C a3 e

56
C a4 .e

12
C e34/C a5 .e

14
C e23/C a6 .e

15
� e36/

C a7 .e
16
C e35/C a8 .e

25
� e46/C a9 .e

26
C e45/

for certain a1; : : : ; a9 2 R. Observe that a1 D !.e1; e3/ D !.e1;�Je1/ D ˙g.e1; e1/,
a2D!.e2; e4/D˙g.e2; e2/ and a3D!.e5; e6/D�g.e5; e5/, and so a1a2 >0, a1a3 <0
as claimed.

In order to bring ! into a form with less parameters without changing �, we need to
look at those matrices A in (6.1) that are in the Lie algebra a of the stabiliser group of �0.
Such an A has to commute with J0, which is the case if and only if f5;5 D f4;4, f5;3 D 0,
f5;4 D 0, f6;1 D 0, f6;3 D �f5;1, f6;2 D 0, f6;4 D 0. Moreover, the complex˙J0-trace
of A must be equal to zero, which additionally gives us f4;4 D 0. So A is given by

A D

0@ 0 0 0 0 0 0
x 0 0 0 0 0
0 0 0 0 0 0
0 0 x 0 0 0
y 0 0 0 0 0
0 0 �y 0 0 0

1A
for x WD f4;3 and y WD f5;1. Then F WD exp.A/ D I6 C A and

.F �!/.e1; e4/ D a5 C xa2 � ya9; .F �!/.e1; e6/ D a7 C xa9 C ya3:

Now g.e2; e2/D˙ a2, g.e5; e5/D� a3, as we observed above, and g.e2; e5/D!.e2;Je5/
D ˙!.e2; e6/ D ˙a9. Since any minor of g has to be non-zero, we then get that 0 ¤
�.g.e2; e2/g.e5; e5/ � g.e2; e5/

2/ D a2a3 C a
2
9. Thus, setting

x WD �
a3a5 C a7a9

a2a3 C a
2
9

and y WD �
a2a7 � a5a9

a2a3 C a
2
9

yields .F �!/.e2; e3/ D .F �!/.e1; e4/ D 0 and .F �!/.e3; e5/ D .F �!/.e1; e6/ D 0.
Hence, renaming F �! by ! and using again coefficients labeled a1; : : : ; a7, we have

! D a1e
13
C a2 e

24
C a3 e

56
C a4 .e

12
C e34/C a5 .e

15
� e36/

C a6 .e
25
� e46/C a7 .e

26
C e45/:



Closed G2-eigenforms and exact G2-structures 1851

Then

d
�1
2
!2
�
D .a2a5 C a4a7 C .a5a7 � a3a4//e

123435
C .a5a7 � a3a4/e

12356;

i.e., .!; �/ is half-flat if and only if

a2a5 C a4a7 D 0; a5a7 � a3a4 D 0:

The first equation gives us a5 D �a4a7a2
and inserting this into the second equation yields

0 D a5a7 � a3a4 D �
a4a

2
7

a2
�
a2a3a4

a2
D �

a4 .a2a3 C a
2
7/

a2
�

Since a7 plays the role of the former a9, we showed above that a2a3 C a27 ¤ 0. Thus,
a4D 0 and so a5D 0. The equations a2a5C a4a7D 0, a5a7 � a3a4D 0 are now fulfilled,
so this finishes the proof.

For the rest of this subsection, we assume that .!; �; �/ is as in (6.2) with .!; �/
being half-flat and � being a primitive form of type .1; 1/. Moreover, we assume that (3.3)
and (3.4) are valid. We show that these assumptions give rise to a contradiction. First note
the following:

(i) We may assume that !3 2 RC � e123456, i.e., ! induces the orientation in which the
ordered basis .e1; : : : ; e6/ is oriented. This follows from the observation that with
.!; �; �; f / also .�!; �; �;�f / satisfies (3.3) and (3.4).

(ii) Moreover, we may assume that " D 1 as with .!; �; �; f / also .!;��;��;�f /
fulfills (3.3) and (3.4)

Using these simplifications, we obtain:

Lemma 6.3. We have

f5;3 D f6;1 D f6;4 D 0; f6;3 D �f5;1; f6;2 D 2f5;4;

a3 D f4;4 � 3f5;5; a6 D f5;4; a7 D �
f4;4 C f5;5

2

and b3 D b5 D 0 or f5;4 D 0,

Proof. First of all,

0 D .! � f:�/.e3; e6/ D f5;3; 0 D .! � f:�/.e3; e4/ D b5f5;4 �
f5;3
2
;

0 D .! � f:�/.e1; e5/ D b5f5;4 � f6;1 C
f5;3
2
;

i.e., f5;3 D f6;1 D 0 and b5f5;4 D 0. Moreover, we get

0 D .! � f:�/.e3; e5/ D f:� D �f6;3 C
f4;3
2
C b5.3f5;5 � 2f4;4/;

0 D .! � f:�/.e1; e6/ D f:� D f5;1 C
f4;3
2
C b5.3f5;5 � 2f4;4/;
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which yields f6;3 D �f5;1. Furthermore,

0 D .! � f:�/.e2; e6/ D a7 C
f4;4Cf5;5

2
C f6;4;

0 D .! � f:�/.e4; e5/ D a7 C
f4;4Cf5;5

2
� f6;4;

which gives f6;4 D 0 as well as a7 D �.f4;4 C f5;5/=2. Next, we have

0 D .! � f:�/.e2; e5/ D a6 � f6;2 C f5;4; 0 D .! � f:�/.e4; e6/ D �a6 C f5;4;

i.e., f6;2 D 2f5;4 and a6 D f5;4. Moreover, we get

0D .! � f:�/.e5; e6/D a3 � .f4;4 � 3f5;5/; 0D .! � f:�/.e1; e2/D f5;4.b3 C 2b5/;

i.e., a3 D f4;4 � 3f5;5, and, since also b5f5;4 D 0, f5;4 D 0 or b3 D b5 D 0.

Lemma 6.4. In Lemma 6.3, we must have f5;4 D 0.

Proof. Assume that f5;4 ¤ 0. Then b3 D b5 D 0 by Lemma 6.3 and so

0 D .! � f:�/.e1; e5/ D
f4;3
2
C f5;1; 0 D .! � f:�/.e1; e3/ D a1C3b2.f5;5 � f4;4/;

0 D .! � f:�/.e2; e4/ D a2 C b7.3f4;4 � f5;5/;

i.e., a1 D 3b2.f4;4 � f5;5/, a2 D b7.f5;5 � 3f4;4/ and f5;1 D �f4;3=2. Imposing these
identities, we get

0 D .! � f:�/.e1; e4/ D
f4;3.1C4b7/

4
;

and so either f4;3 D 0 or b7 D �1=4 holds.
We show that f4;3 D 0 and argue by contradiction, i.e., we assume that f4;3 ¤ 0 and

so b7 D �1=4. Then (3.4) gives us

0 D .f:! ^ ! � ! ^ � � d O�/.e1; e4; e5; e6/ D �f4;3..f4;4 � f5;5/
2
C f 25;4/;

so that f5;5 D f4;4 and f5;4 D 0 due to f4;3 ¤ 0. But then one checks that !3 D 0, a
contradiction. Hence, we must have f4;3 D 0.

Assuming f4;3 D 0, one computes

0 D .f:! ^ ! � ! ^ � � d O�/.e1; e2; e3; e5/

D �"b2f5;4 .12f
2
4;4 � 36f4;4f5;5 C 24f

2
5;5 � 1/;

0 D .f:! ^ ! � ! ^ � � d O�/.e1; e3; e5; e6/

D 2b2 .3f
2
4;4 � 12f4;4f5;5 C 9f

2
5;5 � 1/.2f4;4 � 3f5;5/:

(6.3)

One checks that b2 D 0 implies !3 D 0, and so we must have b2 ¤ 0. Since f5;4 ¤ 0 by
assumption, (6.3) yields

0 D 12f 24;4 � 36f4;4f5;5 C 24f
2
5;5 � 1;

0 D .3f 24;4 � 12f4;4f5;5 C 9f
2
5;5 � 1/.2f4;4 � 3f5;5/:
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So either 3f 24;4 � 12f4;4f5;5 C 9f
2
5;5 � 1 D 0 or 2f4;4 � 3f5;5 D 0. However, both cases

give us a contradiction.
Namely, if 3f 24;4 � 12f4;4f5;5 C 9f

2
5;5 � 1 D 0, then

3f 24;4 � 12f4;4f5;5 C 9f
2
5;5 D 1 D 12f

2
4;4 � 36f4;4f5;5 C 24f

2
5;5;

and so
0 D 9f 24;4 � 24f4;4f5;5 C 15f

2
5;5 D .3f4;4 � 4f5;5/

2
� f 25;5;

i.e.,
3f4;4 � 4f5;5 D ˙f5;5:

So either f4;4 � f5;5 D 0 or f5;5 D 3
5
f4;4. However, in the first case, one checks that

!3 D 0, a contradiction. Thus, we must have f5;5 D 3
5
f4;4. But then

1 D 3f 24;4 � 12f4;4f5;5 C 9f
2
5;5 D 3f

2
4;4 �

36
5
f 24;4 C

81
25
f 24;4 D �

24
25
f 24;4 � 0;

again a contradiction.
Consider now the case 2f4;4 � 3f5;5 D 0. Then f5;5 D 2

3
f4;4 and so

1 D 12f 24;4 � 36f4;4f5;5 C 24f
2
5;5 D �

4
3
f 24;4 � 0;

which is a also a contradiction.
Thus, we must have f5;4 D 0.

To simplify the notation, we set from now on

x WD f4;4; y WD f5;5; z WD f4;3:

With this new notation, one gets:

Lemma 6.5. We have a2D .y � 3x/b7, f5;1D .2x � 3y/b5 � z
2

, xC y¤ 0, 4b7C 1¤ 0,
b2 ¤ 0 and a1 D b2

2.xCy/
.

Proof. Firstly

0 D .! � f:�/.e2; e4/ D a2 C b7.3x � y/;

0 D .! � f:�/.e3; e5/ D .3y � 2x/b5 C
z
2
C f5;1;

i.e., a2 D .y � 3x/b7, f5;1 D .2x � 3y/b5 � z=2. Next, set

A WD .12b7 � 1/x
2
� .40b7 C 2/xy C .12b7 � 1/y

2:

Then
0 ¤ !3 D 3

2
a1Ae

123456;

which implies a1 ¤ 0 and A ¤ 0. Since

0 D � ^ !2 D
�
Ab2
2
C a1.4b7 C 1/.x C y/

�
e123456;
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we either have b2D 0, and then .4b7C 1/.xCy/D 0 as well, or b2¤ 0, and so xCy¤ 0,
4b7 C 1 ¤ 0, and A D �2a1.4b7C1/.xCy/

b2
. Moreover, we have

(6.4) 0 D .f:! ^ ! � d O� � � ^ !/ .e2; e4; e5; e6/ D
1
2
.x C y/.AC 4b7 C 1/:

Assume now first that b2 D 0. Then we must have x C y D 0, as otherwise 4b7 C 1 D 0
and so .x C y/A D 0, a contradiction to x C y ¤ 0 and A ¤ 0. But then

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e6/ D �1C
a1
2
;

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e3; e5; e6/ D a1.40x
2
� 1/;

from which we obtain a1 D 2 and x D ı
p
1=40 for some ı 2 ¹�1; 1º. But then

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e4/ D
12
5
b7 � 3;

i.e., b7 D 5=4. Hence,

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e4; e5; e6/ D
z
2
� ı

p
10
5
b3;

0 D .f:! ^ ! � d O� � � ^ !/ .e2; e3; e4; e5/ D �
ı
8
.3
p
10b5 � 2ız/;

and so b3 D 5ı

2
p
10
z, b5 D 2ı

3
p
10
z. However,

0 D .! � f:�/.e1; e4/ D
31
24
z2;

i.e., z D 0, and so
0 D .! � f:�/.e1; e3/ D 2;

a contradiction.
Hence, we must have b2 ¤ 0, x C y ¤ 0, 4b7 C 1 ¤ 0 and A D �2a1.4b7C1/.xCy/

b2
.

But then (6.4) gives us A D �.4b7 C 1/. Thus,

2a1.4b7C1/.xCy/
b2

D �A D 4b7 C 1

and so, since 4b7 C 1 ¤ 0,
a1 D

b2
2.xCy/

�

This allows us now to prove:

Theorem 6.6. Let g be a seven-dimensional almost nilpotent Lie algebra with codimen-
sion-one nilpotent ideal isomorphic to n9. Then g does not admit a closed G2-eigenform.

Proof. We assume that the parameters fulfill all the conditions that we derived in all the
previous lemmas. Then we first get

0 D .! � f:�/.e2; e3/ D �
.4x�6y/b5�4yb3�.4b7C1/z

4
;

i.e.,
z D .4x�6y/b5�4yb3

4b7C1
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since 4b7 C 1 ¤ 0 by Lemma 6.5. Then one computes

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e6/ D �
b2.6xyC6y

2�1/C4.xCy/
4.xCy/

;

i.e., b2.6xy C 6y2 � 1/D �4.x C y/. Since x C y ¤ 0, also 6xy C 6y2 � 1¤ 0, and so

b2 D �
4.xCy/

6xyC6y2�1
�

Moreover,

0 D .f:! ^ ! � d O� � � ^ !/ .e2; e4; e5; e6/

D
xCy
2

�
b7.12x

2
� 40xy C 12y2 C 4/C 1 � .x C y/2

�
;

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e3; e5; e6/ D �
b2

2.6xyC6y2�1/
.2x2�14xyC24y2�1/;

that is,

2x2 � 14xy C 24y2 � 1 D 0; b7.12x
2
� 40xy C 12y2 C 4/ D .x C y/2 � 1;

since b2 ¤ 0, x C y ¤ 0 by Lemma 6.5.
We show now that 12x2 � 40xy C 12y2 C 4 ¤ 0.
If this is not the true, then .xC y/2 D 1, i.e., y D ı � x for some ı 2 ¹�1; 1º. But then

0 D 12x2 � 40xy C 12y2 C 4 D 16 .2x � ı/2, i.e., x D ı=2 D y and so 2x2 � 14xy C
24y2 � 1 D 2 ¤ 0, a contradiction.

Thus, 12x2 � 40xy C 12y2 C 4 ¤ 0 and we have

b7 D
.xCy/2�1

12x2�40xyC12y2C4
�

One then computes

0 D .f:! ^ ! � d O� � � ^ !/ .e2; e3; e5; e6/ D
.b5C2b3/.x�4y/

2
�

Hence, b5 D �2b3 or x D 4y. However, x D 4y is impossible since then

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e3; e5; e6/ D
2

30y2�1
;

a contradiction. Thus b5 D �2b3 and one gets

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e4; e6/ D �
2b3.x�y/

2.xC2y/

3x2�10xyC3y2C1

and
0 ¤ !3 D 12.x�y/2

.6xyC6y2�1/�.3x2�10xyC3y2C1/
e123456:

Thus, x � y¤ 0 and so b3.xC 2y/D 0. We show that b3¤ 0 and, consequently, xD�2y.
If b3 D 0, then b5 D 0 as well and we do get

0 D .! � f:�/.e1; e3/ D
12x2�12y2�2

6xyC6y2�1
;

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e3; e5; e6/ D
�4x2C28xy�48y2C2

6xyC6y2�1
�
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One easily checks that all solutions of

�12x2 C 12y2 C 2 D 0; �4x2 C 28xy � 48y2 C 2 D 0

are given by
.x; y/ D ı1

p
30
15

�
3
2
; 1
�
; .x; y/ D ı2

12
.5;�1/

for ı1; ı2 2 ¹�1; 1º. However, in the first case, one computes

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e4/ D �
98
27

and in the second case one obtains

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e4/ D �
365
119
;

and so a contradiction in both cases.
Hence, b3 ¤ 0 and so x D �2y. But then

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e3; e5; e6/ D
120y2�2

6y2C1
;

i.e., y D ı
p
1=60 for some ı 2 ¹�1; 1º and we finally obtain

0 D .f:! ^ ! � d O� � � ^ !/ .e1; e2; e3; e4/ D �
686
209
;

a contradiction.
Hence, g does not admit a closed G2-eigenform.

6.2. The case n28

In this subsection, we are considering exact G2-structures and closed G2-eigenforms on
seven-dimensional almost nilpotent Lie algebras with codimension-one nilpotent ideal
isomorphic to n28. We will determine all such Lie algebras which admit an exact G2-struc-
ture and we will show that no such Lie algebra can admit a closed G2-eigenform.

First of all, note that n28 is a well-known real six-dimensional nilpotent Lie algebra,
namely the one underlying the complex three-dimensional Heisenberg Lie algebra, and the
Iwasawa manifold, see e.g. [24]. Moreover, for this subsection, denote by J0 the almost
complex structure on n28 uniquely defined by J0 e2i�1D e2i for i D 1;2 and J0 e5D�e6.

The Lie algebra of all derivations of n28 is given by

(6.5) Der.n28/ D
°�
A 0

B trCA

� ˇ̌̌
A 2 C2�2; B 2 R2�4

±
;

with respect to the basis .e1; : : : ; e6/, where we consider A 2 C2�2 as a real 4 � 4-matrix
and trCA 2 C as a real 2 � 2-matrix. The Lie group Inn.n28/ of inner automorphism
of n28 is given by the Lie group generated by the exponentials of elements in Der.n28/,
and so equals

(6.6) Inn.n28/ D
°�
C 0

D detC.C /

� ˇ̌̌
C 2 GL.2;C/; D 2 R2�4

±
:
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Now split n28 D V ˚W with V WD span.e1; e2; e3; e4/ andW WD span.e5; e6/ and do the
same for the dual space n�28D V

�˚W �. Let an SU.3/-structure .!;�/2ƒ2n�28 �ƒ
3n�28

with exact � be given, i.e., there exists � 2 ƒ2n�28 with d� D �. Write

! D ae56 C e5 ^ ˛1 C e
6
^ ˛2 C Q!

for a 2 R, ˛1; ˛2 2 V � and Q! 2 ƒ2V � and, similarly,

� D be56 C e5 ^ ˇ1 C e
6
^ ˇ2 C Q�

for b 2 R, ˇ1; ˇ2 2 V � and Q� 2 ƒ2V �. Moreover, let �2 WD de5 and �3 WD de6, and note
that �2; �3 2 ŒŒƒ2;0V ��� with respect to the almost complex structure J0 on V . Set

�0 WD e
6
^ �2 � e

5
^ �3:

Then �0 induces the complex structure J0 (if one chooses the right orientation on n28)
and we have

� D d� D b�0 C �2 ^ ˇ1 C �3 ^ ˇ2:

This shows that b ¤ 0 as otherwise �.e5; �; �/D 0, contradicting Lemma 2.5 (a). Moreover,
�.e5; e6; �/ D 0, i.e., e5 and e6 are J WD J�-linearly dependent by Lemma 2.5 (a). But so

0 ¤ g.e5; e5/ D !.Je5; e5/ D ae
56.Je5; e5/;

implies a ¤ 0 and we may apply an inner automorphism F as in (6.6) with C D I2 and
suitable D 2 R2�4 to get rid of ˛1 and ˛2 in !, i.e., we may assume that ! D ae56 C Q!
with Q! ¤ 0 due to the non-degeneracy of !. Now we must have

0 D ! ^ � D ae56 ^ .�2 ^ ˇ1 C �3 ^ ˇ2/C be
6
^ �2 ^ Q! � be

5
^ �3 ^ Q!

Thus, �2 ^ ˇ1 C �3 ^ ˇ2 D 0, and so � D b�0, and �i ^ Q! D 0 for i D 2; 3. Now �1, �2
span ŒŒƒ2;0V ��� and so the latter identity shows Q! 2 Œƒ1;1V ��. A straightforward compu-
tation shows that �3 ^ ˇ2 D ��2 ^ ˇ1 implies ˇ2 D J �0 ˇ1.

Next, .�1; J0jV /, �1 WD e12 C e34, defines an almost Hermitian structure on V and
SU.2/ preserves �1 and acts as SO.3/ on Œƒ1;10 V ��. Since matrices of the block-diagonal
form diag.A; I2/ with A 2 SU.2/ are in Inn.n28/ and preserve �0, we may thus assume
that Q! D a1e12C a2e34. Moreover, an element of the form diag.b1; b1; b2; b2; b1b2; b1b2/
is in Inn.n28/ and only scales �0, and so we may even assume that ja1j D ja2j D jaj, i.e.,
there are "1; "2 2 ¹�1; 1º such that Q! D "1.a"2e12 C e34/. Since J D ˙J0, we do get

"2a
2
D !.e1; e2/ !.e3; e4/ D !.Je2; e2/ !.Je4; e4/ D g.e2; e2/g.e4; e4/ > 0;

and so "2 D 1, i.e., ! D a"1.e12 C e34/C ae56. Moreover,

"1a
2
D !.e1; e2/ !.e5; e6/ D �!.Je2; e2/ !.Je6; e6/ D �g.e2; e2/g.e6; e6/ < 0;

i.e., "1D�1 and, consequently, !D a.�e12C e34/C e56/DW a!0. Noting that for a > 0,
the ordered basis .e1;�e2; e3;�e4; e5;�e6/ is oriented and so J D J0, and otherwise
J D�J0, the normalisation condition reads jaj3 D b2. Hence, we may write aD "�2 and
b D �3 for some � 2 R n ¹0º and some " 2 ¹�1; 1º.
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Finally, we may use block-diagonal matrices diag.A; I2/ with A 2 SU.2/ to bring Q�
into a canonical form. For this, note that diag.A; I2/ is in Inn.n28/ and preserves .!; �/
and so we may assume that Q� D c1e12Cc2e34Cc3�2Cc4�3 for certain c1; c2; c3; c42R.
Thus,

� D �3e56 C e5 ^ ˇ C e6 ^ J �ˇ C c1e
12
C c2e

34
C c3�2 C c4�3

for ˇ WD ˇ1 2 V �. If � 2 Œƒ1;10 n�28�, then c3 D c4 D 0 and c2 D �3 � c1. Summarizing,
we have arrived at:

Lemma 6.7. Let .!; �/ 2 ƒ2n�28 � ƒ
3n�28 be an SU.3/-structure for which there exists

� 2 ƒ2n�28 with � D d�. Then .!; �; �/, are, up to automorphism, given by

(6.7)

8̂<̂
:
! D "�2!0 D "�

2.�e12 � e34 C e56/;

� D �3�0 D �
3.e136 � e246 � e145 � e235/;

� D �3e56 C e5 ^ ˇ C e6 ^ J �ˇ C c1e
12
C c2e

34
C c3�2 C c4�3;

for certain c1; c2; c3; c4 2 R,� 2 R n ¹0º, " 2 ¹�1; 1º and ˇ 2 V �.
If � 2 Œƒ1;10 n�28�, then, up to an automorphism, .!; �/ take the form as in (6.7) and

(6.8) � D �3e56 C e5 ^ ˇ C e6 ^ J �0 ˇ C ce
12
C .�3 � c/e34

for some c 2 R and ˇ 2 n�28.

Next, we determine those seven-dimensional almost nilpotent Lie algebras g with
codimension-one nilpotent ideal n28 which admit an exact G2-structure. First of all, we
get some restriction on f if g admits an exact G2-structure, i.e., if (3.5) is valid:

Lemma 6.8. Let .!; �/ 2 ƒ2n�28 � ƒ
3n�28 be as in (6.7) and assume that � 2 ƒ2n�28

satisfies d� D �. Then ˛ 2 n�28 and f 2 Der.n28/ fulfill (3.5) if and only if

f:�1;1 D !; f:�2;0 D d˛; Œf; J0� D 0;

where �1;1 is the .1; 1/-part and �2;0 is the .2; 0/C .0; 2/-part of �. If this is the case,
then no eigenvalue of f is purely imaginary.

Proof. We decompose f D f1 C f2 into its J0-invariant part f1 and its J0-anti-invariant
part f2. Then f1 preserves the splittingƒ2n�28 D Œƒ

1;1n�28�˚ ŒŒƒ
2;0n�28��, while f2 inter-

changes the two summands. As d˛ is of type .2; 0/C .0; 2/, (3.5) is equivalent to

f1:�
1;1
C f2:�

2;0
D !; f1:�

2;0
C f2:�

1;1
D d˛:

if we decompose � D �1;1 C �2;0 as in the statement. Note that f2 is a strictly lower
triangular block matrix with respect to the splitting n28 D V ˚W , while f1 is a lower
triangular block matrix with respect to the same splitting. Moreover, �2;0; d˛ 2 ƒ2V �

and �1;1 has a non-trivial ƒ2W �-part. Thus, f1:�2;0 2 ƒ2V � and f2:�1;1 2 W � ^ V � ˚
ƒ2V � with non-trivial W � ^ V �-part if f2 ¤ 0. Hence, f2 D 0, i.e., f D f1, and so
Œf; J0� D 0, and the above equations simplify to

f:�1;1 D !; f:�2;0 D d˛

as stated.
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Finally, assume that there is an eigenvector X 2 n28 n ¹0º of f with purely imaginary
eigenvalue ic, c 2R. Then f .X/D cJ0X , and so f .J0X/D J0f .X/D�cX , and we get

0¤g.X;X/D!.J0X;X/Df:�
1;1.J0X;X/D � �

1;1.f .J0X/;X/ � �
1;1.J0X; f .X//

D c�1;1.X;X/ � c�1;1.J0X; J0X/ D 0

a contradiction. Hence, no eigenvalue of f can be purely imaginary.

We are now in the position to give a classification of those almost nilpotent Lie
algebras with codimension-one nilpotent ideal isomorphic to n28 which admit an exact
G2-structure:

Theorem 6.9. Let g be a seven-dimensional almost nilpotent Lie algebra with codimen-
sion-one nilpotent ideal n28, that is, g Š n28 Ìf R for some f 2 Der.n28/. Then g
admits an exact G2-structure if and only if f has no purely imaginary eigenvalues. Equi-
valently, g admits an exact G2-structure if and only if g Š n28 Ìfa;b1;b2 R for certain
a 2 Œ�1=4;1/ n ¹0º, b1; b2 2 R or g Š n28 Ìhb R for some b 2 R, where

fa;b1;b2 WD

0@ aCib1

�
1
2
�aCib2

�
1
2
Ci.b1Cb2/

1A ; hb WD

0@�14Cib 1

�
1
4
Cib

�
1
2
C2ib

1A :
Proof. We note that the forward implication in the first statement is incorporated in
Lemma 6.8.

So let g Š n28 Ìf R for some f 2 Der.n28/ which has no purely imaginary eigen-
values. By (6.5), we know that

f D

�
A 0

B trCA

�
for some A 2 C2�2 and B 2 R2�4. If we conjugate f with an automorphism F of n28
as in (6.6) with C D I2, we surely get a Lie algebra n28 ÌFfF �1 R which is isomorphic
to g, where

FfF �1 D

�
A 0

B CD.A � .trCA/I2/ trCA

�
:

Thus, FfF �1 is block-diagonal ifA� .trCA/I2 is invertible, i.e., if trCA is not a complex
eigenvalue of the complex matrix A. However, if trCA would be an eigenvalue of the
complex matrix A, then the other complex eigenvalue would have to be zero and so the
real matrix f would have one eigenvalue equal to zero, which is excluded since f has no
purely imaginary eigenvalues.

Thus, calling FfF �1 again f , we may assume that f D diag.A; trCA/. But then we
may use an automorphism of n28 as in (6.6) to bring A into complex Jordan normal form.
Hence, we may assume that either A D diag.w1; w2/ for w1; w2 2 C with Re.w1/ ¤ 0,
Re.w2/ ¤ 0, Re.w1 C w2/ D trCA ¤ 0 or

A D

�
w 1

0 w

�
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for some w 2 C with Re.w/ ¤ 0. We provide now in both cases an example of an SU.3/-
structure .!; �/ 2 ƒ2n�28 �ƒ

3n�28, a two-form � 2 ƒ2n�28, and a one-form ˛ 2 n�28 such
that �D d� and such that (3.5) is fullfilled, where the latter equation is valid by Lemma 6.8
if and only if f:�1;1 D !, f:�2;0 D d˛. We will always choose ˛ D 0 and a .1; 1/-form �,
so that the second equation is automatically fulfilled and we only have to deal with the
first one.

In the first case, one checks by a straightforward computation that

! D �2!0; � D �3�0; � D
�2

2Re.w1/
e12 C

�2

2Re.w2/
e34 C �3e56

with � WD � 1
2Re.w1Cw2/

fulfills all necessary equations, whereas in the second case

! D �2!0; �D �3�0; � D�2�3e12 � .16�5C 2�3/e34 � 4�4 � .e14 � e23/C �3e56

with � WD � 1
4Re.w/ does the job.

The second statement in the assertion follows immediately from the considerations
above by noting that rescaling f by a non-zero scalar gives an isomorphic Lie algebra and
by noting that we may order the real parts of the eigenvalues of A in such a way that the
first one is greater or equal to the second one.

Remark 6.10. Note that fa;b1;b2 and hb in Theorem 6.9 both fix e56 and so one easily sees
that .!; �/ as in Lemma 6.7 with � D 1, i.e., ! D �e12 � e34 C e56, � D e136 � e246 �
e145 � e235, give rise to an exact G2-structure on n28 Ìfa;b1;b2 R and n28 Ìhb R, respect-
ively. This explains the strange ‘normalisation’ of the endomorphisms in Theorem 6.9.

Looking for exact G2-structures of special torsion, we obtain:

Theorem 6.11. Let g be a seven-dimensional almost nilpotent Lie algebra with codimen-
sion-one nilpotent ideal isomorphic to n28 which admits an exact G2-structure. Then

(a) g admits an exact G2-structure with special torsion of negative type,

(b) g admits an exact G2-structure with special torsion of positive type if and only if
g 6Š n28 Ìf�1=4;b;b R for all b 2 R.

Proof. By Theorem 6.9, we may assume that g D n28 Ìf R with either f D fa;b1;b2 for
certain a 2 Œ�1=4;1/, b1; b2 2 R or f D hb for some b 2 R. We divide the proof into
four different parts.

Part (I). We first show that gD n28 Ìfa;b1;b2 R for a;b1; b2 2
�
Œ�1=4;1=2� n ¹0º

�
�R2

with a ¤ �1=4, or b1 ¤ b2 and n28 Ìhb R for b 2 R admits an exact G2-structure with
special torsion of positive type.

For this, note that under the assumptions on a; b1; b2, the Lie algebra n28 Ìfa;b1;b2 R
is isomorphic to n28 Ìg R with

g D ga;b1;b2;c D

0@ aCib1 c

�
1
2
�aCib2

�
1
2
Ci.b1Cb2/

1A
If a D �1=4 and b1 D b2 DW b, then, for any c 2 R n ¹0º, we have n28 Ìg�1=4;b;b;c R Š
n28 Ìhb R.
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So we are looking for exact G2-structures with special torsion of positive type on
n28 Ìg R. For this, note that a ¤ 0 and 2aC 1 ¤ 0 by assumption. Thus,

� D
1

2a
e12 C

2c2 � 4a.b1 � b2/
2 C 1/

a.4.b1 � b2/2 C 1/.2aC 1/
e34 C e56 �

2.b1 � b2/c

a.4.b1 � b2/2 C 1/
.e13Ce24/

C
c

a.4.b1 � b2/2 C 1/
.e14 � e23/ 2 ƒ2n�28

is well-defined and one checks that d� D �0 D e136 � e246 � e145 � e235 and g:� D
!0 D �e

12 � e34 C e56. Thus, the pair .!; �/ gives rise to an exact G2-structure '. As
O� D e135 � e146 � e236 � e245, we get

d ?' ' D d
�
1
2
!2 C e7 ^ O�

�
D e7 ^ g:

�
1
2
!2
�
� e7 ^ dn28 O�

D e7 ^
�
�3e1234 C .2a � 1/e1256 � .2C 2a/e3456 C c.e1456 � e2356/

�
due to d.!2/ D 0. Hence, the torsion two-form � is given by

� D � ?' d ?' ' D .2C 2a/e
12
� .2a � 1/e34 C c.e14 � e23/C 3e56:

Now the exact G2-structure ' has special torsion of positive type if and only if �3 D 0,
which is equivalent to ..2C 2a/e12 � .2a � 1/e34 C c.e14 � e23//2 D 0, and so to

0 D .2C 2a/.2a � 1/C c2 D 4a2 C 2a � 2C c2:

Here, a is fixed and we are searching for a solution of this equation for c, which is possible
if 4a2 C 2a � 2 � 0, i.e., if a 2 Œ�1=4; 1=2�. Note that for a D �1=4, we have c D˙3=2
¤ 0, and so n28 Ìhb R admits an exact G2-structure with special torsion of positive type
for any b 2 R.

Part (II). We show that .!0; �0/ defines also an exact G2-structure on n28 Ìg�1=4;b;b;c
R Š n28 Ìhb R with special torsion of negative type for a suitable chosen c 2 R n ¹0º.

The computations in (I) show that � D 3
2
.e12C e34/C c.e14 � e23/C 3e56. Hence, '

has special torsion of negative type if and only if 2
3
j� j6' D j�

3j2' , which here is equivalent to

2
3

�
27
2
C 2c2

�3
D
�
18
�
9
4
� c2

��2
” c2

�
16
3
c4 � 216c2 C 2187

�
D 0;

i.e., to c D 0 or c D ˙9=2. Thus, for c D 9=2, we get an exact G2-structure with special
torsion of negative type on n28 Ìg�1=4;b;b;9=2 R Š n28 Ìhb R.

Part (III). Next, we show that n28 Ìfa;b1;b2 R admits an exact G2-structure with special
torsion of positive type if .a; b1; b2/ 2 .1=2;1/ � R2 and that it admits an exact G2-
structure with special torsion of negative type for any possible values of .a; b1; b2/, i.e.,
for any .a; b1; b2/ 2 .Œ1=4;1/ n ¹0º/ �R2.

For this, we note that n28 Ìfa;b1;b2 R is isomorphic to n28 Ìh R with

h WD ha;b1;b2;r WD

0BBBBB@
a �b1
b1 a

�
1
2
�a �b2

b2 �
1
2
�a

r �
1
2
�.b1Cb2/

�r b1Cb2 �
1
2

1CCCCCA
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for any r 2 R. The minus sign occurring before one of the rs is due to .e1;�e2; e3;�e4;
e6;�e5/ being a complex basis, i.e., due to the shift in the order of e5 and e6.

We have d� D �0 and h:� D !0 for

� D
1

2a
e12 �

.b1 C 2b2/
2 C .2r2 C aC 1/.aC 1/

.2aC 1/..aC 1/2 C .b1 C 2b2/2/
e34 C e56

C
r.b1 C 2b2/

.aC 1/2 C .b1 C 2b2/2
.e35 � e46/C

r.1C a/

.aC 1/2 C .b1 C 2b2/2
.e36 C e45/:

Hence, the pair .!0; �0/ defines an exact G2-structure ' on n28 Ìh R for any value of
r 2 R. Moreover, we have

d ?' ' D e
7
^
�
h:
�
1
2
!2
�
� dn28 O�

�
D e7 ^

�
�3e1234 C .2a � 1/e1256 � .2C 2a/e3456 C r .e1236 C e1245/

�
and so the torsion two-form � is given by

� D � ?' d ?' ' D .2C 2a/e
12
� .2a � 1/e34 � r .e36 C e45/C 3e56:

Hence,
�3 D �12.1C a/.6a � 3 � r2/e123456

and �3 D 0, i.e., ' has special torsion of positive type, if and only if r2 D 6a � 3. But
we assumed a > 1=2 and so have 6a � 3 > 0 and, consequently, ' has special torsion of
positive type for r D

p
6a � 3 2 R.

Moreover, ' has special torsion of negative type if and only if

2
3
..2C 2a/2 C .2a � 1/2 C 2r2 C 9/3 D j� j6' D j�

3
j
2
' D

�
12.1C a/.6a � 3 � r2/

�2
:

Bringing both terms on one side and factorising gives

16
3
..a � 2/2 C r2/ � .8a2 C 22aC 5 � r2/2 D 0:

So one may find some r 2 R such that ' has special torsion of negative type if .2a C 5/
.4a C 1/ D 8a2 C 22a C 5 � 0. But this is the case if a � �1=4 and so n28 Ìfa;b1;b2 R
admits an exact G2-structure with special torsion of negative type for any possible values
of .a; b1; b2/.

Part (IV). Finally, we need to show that for any b 2 R, the Lie algebra n28 Ìf�1=4;b;b R
does not admit an exact G2-structure with special torsion of positive type.

For this, let .!; �/ be a half-flat SU.3/-structure which determines an exact G2-struc-
ture ' on n28 Ìf�1=4;b;b R and let � 2 ƒ2n�28 and ˛ 2 n28 be such that (3.5) holds. By
Lemma 6.7, we may assume that

! D "�2!0 D "�
2.�e12 � e34 C e56/; � D �3�0 D �

3.e136 � e246 � e145 � e235/

for some � 2 R n ¹0º, up to an automorphism F of n28, i.e., .!; �/ are of this form on
n28 ÌFf�1=4;b;bF �1 R. Now one computes that f WD Ff�1=4;b;bF �1 is of the form

f D

��
�
1
4
C ib

�
I2

B �
1
2
C 2ib

�
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for some B 2 R2�4. By Lemma 6.8, we have Œf; J0� D 0, which amounts to B being of
the form

B D

�
a1 a2 a3 a4
a2 �a1 a4 �a3

�
for certain a1; a2; a3; a4 2 R. Moreover, by Lemma 6.8, we have f:�1;1 D ! and

�1;1 D �3e56 C e5 ^ ˇ C e6 ^ J �ˇ C c1e
12
C c2e

34

for certain ˇ 2 span.e1; e2; e3; e4/ and c1; c2 2 R by Lemma 6.7. Thus,

"�2.�e12 � e34 C e56/ D ! D f:�1;1 D �3e56 C e5 ^ 
 C e6 ^ J �
 C c1
2
e12 C c2

2
e34

for some 
 2 span.e1; e2; e3; e4/, which implies, in particular, � D ", i.e., ! D "!0 and
� D "�0. Since for " D �1, the induced orientation is the opposite of that for " D 1, we
always have O� D e135 � e146 � e236 � e245. Thus, one computes

d ?' ' D e
7
^
�
f:
�
1
2
!2
�
� dn28 O�

�
D e7^

�
� 3e1234 � 3

2
e1256 � 3

2
e3456 C a1.e

2345
C e1346/C a2.e

2346
� e1345/

C a3.e
1245
C e1236/C a4.e

1246
� e1235/

�
independently of ". Hence,

� D � ?' d ?' '

D "
�
3
2
.e12 C e34/C 3e56 � a1.e

16
C e25/C a2.e

15
� e26/ � a3.e

36
C e45/

C a4.e
35
� e46/

�
;

and so
�3 D 9"

�
9
2
C a21 C a

2
2 C a

2
3 C a

2
4

�
e123456 ¤ 0;

i.e., ' does not have special torsion of positive type.

Finally, we show that a Lie algebra of the form g D n28 Ìf R cannot admit a closed
G2-eigenform:

Theorem 6.12. Let g be a seven-dimensional almost nilpotent Lie algebra with codimen-
sion-one nilpotent ideal isomorphic to n28. Then g does not admit a closed G2-eigenform.

Proof. We assume the contrary. Then, by Lemma 6.7, there exist � 2 R n ¹0º, " 2 ¹�1; 1º
such that ! D "�!0, � D �3�0 and � 2 Œƒ1;10 n�28� is as in (6.8), i.e.,

� D ce12 C .�3 � c/e34 C �3e56 C e5 ^ ˇ C e6 ^ J �0 ˇ

for certain c 2 R and ˇ 2 V �. Moreover, we may assume that

f:� D !; ! ^ .f:! � �/ D d O�

for some f 2 Der.n28/. Since then also .�!; �; �;�f / fulfills all necessary equations,
and so defines a closed G2-eigenform, we may assume that " D 1.
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But then one computes

d O� D �3d O�0 D 4�
3 e1234 D �2.�e12 � e34 C e56/ ^ �2�.e12 C e34 C e56/

D ! ^ �2�.e12 C e34 C e56/:

Since wedging with ! is an isomorphism from ƒ2h� to ƒ4h�, the latter equation implies

f:! � � D �2�.e12 C e34 C e56/

By (6.5), we know that

f D

�
A 0

B trCA

�
for someAD .aij /i;j 2C2�2 and some B 2R2�4. Thus, inserting .e1; e2/ into the equal-
ity f:! � � D �2�.e12 C e34 C e56/ yields

2Re.a11/�2 � c D �2Re.a11/ !.e1; e2/ � �.e1; e2/ D .f:! � �/.e1; e2/ D �2�:

Similarly, we obtain

2Re.a22/�2 � .�3 � c/ D .f:! � �/.e3; e4/ D �2�:

by inserting .e3; e4/. Adding these two equations yields

(6.9) 2Re.trCA/�
2
� �3 D �4�:

Moreover, inserting .e5; e6/, we do get

�2Re.trCA/�
2
� �3 D .f:! � �/.e5; e6/ D �2�:

Adding (6.9) to this equation, we obtain �2�3 D �6�, and so, since � ¤ 0, that �2 D 3.
However, we also get

�2Re.trCA/�
3
D �2Re.trCA/�.e5; e6/ D f:�.e5; e6/ D !.e5; e6/ D �

2;

i.e., 2Re.trCA/�
2 D �, which, together with (6.9), yields � � �3 D �4�, i.e., �2 D 5, a

contradiction.
Thus, g does not admit a closed G2-eigenform.

Funding. The first author was supported by a Forschungsstipendium (FR 3473/2-1) from
the Deutsche Forschungsgemeinschaft (DFG).

References

[1] Arroyo, R. M. and Lafuente, R. A.: The Alekseevskii conjecture in low dimensions. Math. Ann.
367 (2017), no. 1-2, 283–309.

[2] Ball, G.: Closed G2-structures with conformally flat metric. Preprint 2020, arXiv: 2002.01634.

http://arxiv.org/abs/2002.01634


Closed G2-eigenforms and exact G2-structures 1865

[3] Ball, G.: Quadratic closed G2-structures. Preprint 2020, arXiv: 2006.14155.

[4] Berger, M.: Sur les groupes d’holonomie des variétés a connexion affine et des variétés rieman-
niennes. Bull. Soc. Math. France 83 (1955), 279–330.

[5] Bryant, R. L.: Submanifolds and special structures on the octonians. J. Differential Geometry
17 (1982), no. 2, 185–232.

[6] Bryant, R. L.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), no. 3,
525–576.

[7] Bryant, R. L.: Some remarks on G2-structures. In Proceedings of Gökova geometry-topology
conference, pp. 75–109. Gökova Geometry/Topology Conference (GGT), Gökova, 2006.

[8] Bryant, R. L. and Salamon, S. M.: On the construction of some complete metrics with excep-
tional holonomy. Duke Math. J. 58 (1989), no. 3, 829–850.

[9] Bryant, R. L. and Xu, F.: Laplacian flow for closed G2-structures: short time behavior. Preprint
2011, arXiv: 1101.2004.

[10] Chiossi, S. and Salamon, S.: The intrinsic torsion of SU(3) and G2 structures. In Differential
geometry (Valencia, 2001), pp. 115–133. World Sci. Publ., River Edge, NJ, 2002.

[11] Conti, D.: Half-flat nilmanifolds. Math. Ann. 350 (2011), no. 1, 155–168.

[12] Conti, D. and Fernández, M.: Nilmanifolds with a calibrated G2-structure. Differential Geom.
Appl. 29 (2011), no. 4, 493–506.

[13] Fernández, M., Fino, A. and Manero, V.: G2-structures on Einstein solvmanifolds. Asian J.
Math. 19 (2015), no. 2, 321–342.

[14] Fernández, M., Fino, A. and Raffero, A.: Exact G2-structures on unimodular Lie algebras.
Monatsh. Math. 193 (2020), no. 1, 47–60.

[15] Fernández, M. and Gray, A.: Riemannian manifolds with structure group G2. Ann. Mat. Pura
Appl. (4) 132 (1982), no. 1, 19–45.

[16] Fine, J. and Yao, C.: Hypersymplectic 4-manifolds, the G2-Laplacian flow, and extension
assuming bounded scalar curvature. Duke Math. J. 167 (2018), no. 18, 3533–3589.

[17] Fino, A., Martín-Merchán, L. and Salvatore, F.: Exact G2-structures on compact quotients of
Lie groups. Preprint 2021, arXiv:2108.11664.

[18] Fino, A. and Raffero, A.: Einstein locally conformal calibrated G2-structures. Math. Z. 280
(2015), no. 3-4, 1093–1106.

[19] Fino, A. and Salvatore, F.: Closed SL.3;C/-structures on nilmanifolds. J. Geom. Phys. 167
(2021), Paper no. 104289, 19 pp.

[20] Freibert, M. and Schulte-Hengesbach, F.: Half-flat structures on decomposable Lie groups.
Transform. Groups 17 (2012), no. 1, 123–141.

[21] Garland, H.: On the cohomology of lattices in solvable Lie groups. Ann. of Math. (2) 84 (1966),
175–196.

[22] Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ.
Tokyo Sect. I 8 (1960), 289–331.

[23] Hitchin, N.: The geometry of three-forms in six dimensions. J. Differential Geom. 55 (2000),
no. 3, 547–576.

[24] Ketsetzis, G. and Salamon, S.: Complex structures on the Iwasawa manifold. Adv. Geom. 4
(2004), no. 2, 165–179.

http://arxiv.org/abs/2006.14155
http://arxiv.org/abs/1101.2004
http://arxiv.org/abs/2108.11664


M. Freibert and S. Salamon 1866

[25] Joyce, D.: Compact Riemannian 7-manifolds with holonomy G2. I, II. J. Differential Geom.
43 (1996), no. 2, 291–375.

[26] Lauret, J.: Laplacian solitons: questions and homogeneous examples. Differential Geom. Appl.
54 (2017), part B, 345–360.

[27] Lauret, J. and Nicolini, M.: The classification of ERP G2-structures on Lie groups. Ann. Mat.
Pura Appl. (4) 199 (2020), no. 6, 2489–2510.

[28] Lauret, J. and Nicolini, M.: Extremally Ricci pinched G2-structures on Lie groups. To appear
in Commun. Anal. Geom.

[29] Lotay, J. and Wei, Y.: Laplacian flow for closed G2 structures: Shi-type estimates, uniqueness
and compactness. Geom. Funct. Anal. 27 (2017), no. 1, 165–233.

[30] Lotay, J. and Wei, Y.: Stability of torsion-free G2-structures along the Laplacian flow. J. Dif-
ferential Geom. 111 (2019), no. 3, 495–526.

[31] Lotay, J. and Wei, Y.: Laplacian flow for closed G2-structures: real analyticity. Comm. Anal.
Geom. 27 (2019), no. 1, 73–109.

[32] Madsen, T. B. and Swann, A.: Multi-moment maps. Adv. Math. 229 (2012), no. 4, 2287–2309.

[33] Nicolini, L.: New examples of shrinking Laplacian solitons. Q. J. Math. 73 (2022), no. 1,
239–259.

[34] Oprea, J. and Tralle, A.: Symplectic manifolds with no Kähler structure. Lecture Notes in
Mathematics 1661, Springer-Verlag, Berlin, 1997.

[35] Ovando, G.: Four dimensional symplectic Lie algebras. Beiträge Algebra Geom. 47 (2006),
no. 2, 419–434.

[36] Podestà, F. and Raffero, A.: Closed G2-structures with a transitive reductive group of auto-
morphisms. Preprint 2019, arXiv:1911.13052.

[37] Salamon, S. M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157
(2001), no. 2-3, 311–333.

Received February 8, 2021. Published online December 4, 2021.

Marco Freibert
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel,
Heinrich-Hecht-Platz 6, 24118 Kiel, Germany;
freibert@math.uni-kiel.de

Simon Salamon
Mathematics Department, King’s College London,
Strand, London, WC2R 2LS, United Kingdom;
simon.salamon@kcl.ac.uk

http://arxiv.org/abs/1911.13052
mailto:freibert@math.uni-kiel.de
mailto:simon.salamon@kcl.ac.uk

	1. Introduction
	2. Preliminaries
	3. Reduction to six dimensions
	4. Results in dimension six
	5. Exact G_2-structures on compact almost nilpotent solvmanifolds
	6. Closed G_2-eigenforms on almost nilpotent Lie algebras
	References

