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On the core of a low dimensional set-valued mapping

Pavel Shvartsman

Abstract. Let MD .M; �/ be a metric space and letX be a Banach space. Let F be
a set-valued mapping from M into the family Km.X/ of all compact convex subsets
of X of dimension at most m. The main result in our recent joint paper with Charles
Fefferman (which is referred to as a “finiteness principle for Lipschitz selections”)
provides efficient conditions for the existence of a Lipschitz selection of F , i.e., a
Lipschitz mapping f WM! X such that f .x/ 2 F.x/ for every x 2M.

We give new alternative proofs of this result in two special cases. When m D 2,
we prove it for X D R2, and when m D 1 we prove it for all choices of X . Both of
these proofs make use of a simple reiteration formula for the “core” of a set-valued
mapping F , i.e., for a mapping GWM! Km.X/ which is Lipschitz with respect to
the Hausdorff distance, and such that G.x/ � F.x/ for all x 2M.

1. Introduction

Let M D .M; �/ be a pseudometric space, i.e., suppose that the “distance function”
�WM �M! Œ0;C1� satisfies �.x; x/ D 0, �.x; y/ D �.y; x/, and �.x; y/ � �.x; z/C
�.z; y/ for all x; y; z 2M.

Note that �.x; y/ D 0 may hold with x ¤ y, and �.x; y/ may beC1.
Let .X; k�k/ be a real Banach space. Given a non-negative integer m, we let Km.X/

denote the family of all non-empty compact convex subsets K � X of dimension at
mostm. (We say that a convex subset ofX has dimension at mostm if it is contained in an
affine subspace ofX of dimension at mostm.) We let K.X/D

S
¹Km.X/ WmD 0;1; : : : º

denote the family of all non-empty compact convex finite-dimensional subsets of X .
By Lip.M; X/ we denote the space of all Lipschitz mappings from M to X equipped

with the Lipschitz seminorm

kf kLip.M;X/ D inf
®
� > 0 W kf .x/ � f .y/k � ��.x; y/ for all x; y 2M

¯
:

In this paper we study the following problem.

Problem 1.1. Suppose that we are given a set-valued mapping F which to each point
x 2 M assigns a set F.x/ 2 Km.X/. A selection of F is a map f WM ! X such that
f .x/ 2 F.x/ for all x 2M.
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We want to know whether there exists a selection f of F in the space Lip.M; X/.
Such an f is called a Lipschitz selection of the set-valued mapping F WM!Km.X/.

If a Lipschitz selection f exists, then we ask how small we can take its Lipschitz
seminorm.

The following result provides efficient conditions for the existence of a Lipschitz selec-
tion of an arbitrary set-valued mapping from a pseudometric space into the family Km.X/.
We refer to it as a “finiteness principle for Lipschitz selections”, or simply as a “finiteness
principle”.

Theorem 1.2 (Fefferman–Shvartsman, [16]). Fix m � 1. Let .M; �/ be a pseudometric
space, and let F WM!Km.X/ for a Banach space X . Let

(1.1) N.m;X/ D 2`.m;X/; where `.m;X/ D min¹mC 1; dimXº:

Suppose that for every subset M0 �M consisting of at most N D N.m; X/ points,
the restriction F jM0 of F to M0 has a Lipschitz selection fM0 with Lipschitz seminorm
kfM0kLip.M0;X/ � 1.

Then F has a Lipschitz selection f with Lipschitz seminorm kf kLip.M;X/ � 
 , where

 D 
.m/ is a positive constant depending only m.

There is an extensive literature devoted to various versions of finiteness principles for
Lipschitz selections and related topics. We refer the reader to the papers [1, 2, 4, 14–16,
19–21, 23–26] and references therein for numerous results in this direction.

We note that the “finiteness number” N.m;X/ in Theorem 1.2 is optimal; see [24].
For the case of the trivial distance function � � 0, Theorem 1.2 agrees with the clas-

sical Helly’s theorem [9], except that the optimal finiteness constant for � � 0 is

n.m;X/ D `.m;X/C 1 D min¹mC 2; dimX C 1º in place of N.m;X/ D 2`.m;X/:

Thus, Theorem 1.2 may be regarded as a generalization of Helly’s theorem.
Our interest in Helly-type criteria for the existence of Lipschitz selections was ini-

tially motivated by some intriguing close connections of this problem with the classical
Whitney extension problem [28], namely, the problem of characterizing those functions
defined on a closed subset, say E � Rn, which are the restrictions to E of Cm-smooth
functions on Rn. We refer the reader to the papers [5–7,10–13,26] and references therein
for numerous results and techniques concerning this topic.

One of the main ingredients of the proof of Theorem 1.2 is the construction of a special
set-valued mapping GWM ! Km.X/ introduced in [16] which we call a “core” of the
set-valued mapping F . In fact, each core is associated with a positive constant. Here are
the relevant definitions.

Definition 1.3. Let 
 be a positive constant, and let F WM ! Km.X/ be a set-valued
mapping. A set-valued mapping GWM!Km.X/ is said to be a 
 -core of F if

(i) G.x/ � F.x/ for all x 2M;
(ii) G is 
 -Lipschitz with respect to Hausdorff distance, i.e.,

dH.G.x/;G.y// � 
�.x; y/ for all x; y 2M:
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We refer to a map G as a core of F if G is a 
 -core of F for some 
 > 0.
Recall that the Hausdorff distance dH.A; B/ between two non-empty bounded sub-

sets A and B of X is defined by

(1.2) dH.A;B/ D inf ¹r > 0 W AC BX .0; r/ � B and B C BX .0; r/ � Aº:

Here and throughout this paper, for each x 2X and r > 0, we use the standard notation
BX .x; r/ for the closed ball in X with center x and radius r . We also let BX D BX .0; 1/
denote the unit ball in X , and we write rBX to denote the ball BX .0; r/.

In Definition 1.3, m can be any non-negative integer not exceeding the dimension of
the Banach space X . It can happen that a core GWM ! Km.X/ of a given set-valued
mapping F WM ! Km.X/ in fact maps M into the smaller collection Km0.X/ for some
integerm0 2 Œ0;m). The next claim shows that the existence of some coreGWM!Km.X/

for F implies the existence of a (possibly different) core which maps M into K0.X/.
Since K0.X/ is identified with X , that core is simply a Lipschitz selection of F .

Claim 1.4 ([16], Section 5). Let 
 be a positive constant, let m be a non-negative integer,
and let GWM!Km.X/ be a 
 -core of a set-valued mapping F WM!Km.X/ for some
Banach space X . Then F has a Lipschitz selection f WM! X with kf kLip.M;X/ � C
 ,
where C D C.m/ is a constant depending only on m.

In [16] we showed that this claim follows from Definition 1.3 and the existence of the
so-called “Steiner-type point” map St WKm.X/! X , [25]. See formula (1.12).

In [16], given a set-valued mapping F WM ! Km.X/ satisfying the hypothesis of
Theorem 1.2, we constructed a 
 -core G of F with a positive constant 
 depending
only on m. We produced the core G using a rather delicate and complicated procedure
whose main ingredients are families of basic convex sets associated with F , metric spaces
with bounded Nagata dimension, ideas and methods of the work [14] related to the case
M D Rn, and Lipschitz selections on finite metric trees. See [16] for more details.

In the present paper we suggest and discuss a different new geometrical method for
producing a core of a set-valued mapping. Its main ingredient is the so-called balanced
refinement of a set-valued mapping, which we define as follows.

Definition 1.5. Let � � 0, let .M; �/ be a pseudometric space, let X be a Banach space,
and let F WM ! Km.X/ be a set-valued mapping for some non-negative integer m. For
each x 2M, we consider the subset of F.x/ defined by

BRŒF W�I ��.x/ D
\
z2M

ŒF .z/C ��.x; z/BX �:

We refer to the mapping BRŒF W�I�� WM!Km.X/[ ¹;º as the �-balanced refine-
ment of the set-valued mapping F .

We note that any Lipschitz selection f of a set-valued mapping F WM!Km.X/with
kf kLip.M;X/ � � is also a Lipschitz selection of the �-balanced refinement of F , i.e.,

f .x/ 2 BRŒF W�I ��.x/ for all x 2M:

Various geometrical parameters of the set BRŒF W�I ��.x/ (such as diameter and
width, etc.) may turn out to be smaller than the same parameters for the set F.x/ which
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contains it. When attempting to find Lipschitz selections of F , it may turn out to be con-
venient for our purposes to search for them in the more “concentrated” setting provided
by the sets BRŒF W�I ��.x/. One can take this approach still further by searching in even
smaller sets which can be obtained from consecutive iterations of balanced refinements
of F , i.e., the sets which we describe in the following definition.

Definition 1.6. Let ` be a positive integer, and let E�D¹�k W 1� k � `º be a finite sequence
of ` non-negative numbers �k . We set F Œ0� D F , and, for every x 2M and integer k 2
Œ0; ` � 1�, we define

(1.3) F ŒkC1�.x/ D BRŒF Œk� W�kC1I ��.x/ D
\
z2M

�
F Œk�.z/C �kC1�.x; z/BX

�
:

We refer to the set-valued mapping F Œk�WM ! Km.X/ [ ¹;º, k 2 Œ1; `�, as the k-th
order .E�; �/-balanced refinement of F .

Clearly,

(1.4) F ŒkC1�.x/ � F Œk�.x/ on M for every k 2 Œ0; ` � 1�:

(Put z D x in the right-hand side of (1.3).)

Remark 1.7. Of course, for each integer k 2 Œ1; `�, the set F Œk�.x/ also depends on the
sequence E�D ¹�k W 1� k � `º, on the pseudometric space MD .M; �/ and on the Banach
space X . However, in all places where we use F Œk�’s, these objects, i.e., E�, M and X , are
clear from the context. Therefore, in these cases, we omit any mention of E�, M and X in
the notation of F Œk�’s.

We formulate the following conjecture.

Conjecture 1.8. Let .M; �/ be a pseudometric space, and letX be a Banach space. Letm
be a fixed positive integer and .as in the formula (1.1) of Theorem 1.2/ letN.m;X/ denote
the “finiteness number” N.m;X/ D 2`, where ` D `.m;X/ D min¹mC 1; dimXº.

There exist a constant 
 � 1 and a sequence E� D ¹�k W 1 � k � `º of ` numbers �k ,
all satisfying �k � 1, such that the following holds.

Let F WM ! Km.X/ be a set-valued mapping such that, for every M0 � M with
#M0 � N.m;X/, the restriction F jM0 of F to M0 has a Lipschitz selection fM0 WM0! X

with Lipschitz seminorm kfM0kLip.M0;X/ � 1.
Then the `-th order balanced refinement of the mapping F , namely the set-valued

mapping F Œ`�WM!Km.X/, is a 
 -core of F .
Here F Œ`� is defined as in Definition 1.6 using the particular sequence E�.

Our main results, Theorem 1.9 and Theorem 1.10 below, state that Conjecture 1.8
holds in two special cases, when either (i) m D 2 and dimX D 2, or (ii) m D 1 and X is
an arbitrary Banach space. Note that in both of these cases the above mentioned finiteness
number N.m;X/ equals 4.

Theorem 1.9. Let MD .M; �/ be a pseudometric space, and letX be a two dimensional
Banach space. Let m D 2 so that the number `.m; X/ D 2. In this case, Conjecture 1.8
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holds for every �1; �2 and 
 such that

(1.5) �1 � e.M; X/; �2 � 3�1; 
 � �2

�3�2 C �1
�2 � �1

�2
:

Here e.M; X/ denotes the Lipschitz extension constant of X with respect to M. .See
Definition 3.1./

Thus, the following statement is true. Let F WM ! K.X/ be a set-valued mapping
from a pseudometric space .M; �/ into the family K.X/ of all non-empty convex compact
subsets of X . Given x 2M, let

(1.6) F Œ1�.x/D
\
z2M

�
F.z/C�1�.x;z/BX

�
; F Œ2�.x/D

\
z2M

�
F Œ1�.z/C�2�.x;z/BX

�
:

Suppose that for every subset M0 �M with #M0 � 4, the restriction F jM0 of F to M0

has a Lipschitz selection with Lipschitz seminorm at most 1.
Then for every �1; �2 and 
 satisfying (1.5), we have

(1.7) F Œ2�.x/ ¤ ; for every x 2M:

Furthermore,

(1.8) dH.F
Œ2�.x/; F Œ2�.y// � 
�.x; y/ for every x; y 2M:

If X is a Euclidean two dimensional space, (1.7) and (1.8) hold when (1.5) is replaced
by the weaker requirements that

(1.9) �1 � e.M; X/; �2 � 3�1; 
 � �2

°
1C

2�2

.�22 � �
2
1/
1=2

±2
:

In particular, in Section 3 we show that the mapping F Œ2� satisfies (1.7) and (1.8)
whenever X is an arbitrary two dimensional Banach space and �1 D 4=3, �2 D 4, and

 D 100. If X is also Euclidean, then one can set �1 D 4=� , �2 D 12=� and 
 D 38.
Furthermore, we prove that if M is a subset of a Euclidean space E, � is the Euclidean
metric in E, and X is a two dimensional Euclidean space, then properties (1.7) and (1.8)
hold for �1 D 1, �2 D 3, and 
 D 25.

In Section 5 we prove Theorem 5.5, which refines the result of Theorem 1.9 for the
space X D `21, i.e., for R2 equipped with the norm kxk D max¹jx1j; jx2jº, x D .x1; x2/.
More specifically, we show that in this case properties (1.7) and (1.8) hold whenever
�1 � 1, �2 � 3�1, and 
 � �2.3�2 C �1/=.�2 � �1/. In particular, these properties hold
for �1 D 1, �2 D 3 and 
 D 15.

Let us now explicitly formulate the above mentioned second main result of the paper.
We prove it in Section 4. It deals with set-valued mappings from a pseudometric space into
the family K1.X/ of all bounded closed line segments of an arbitrary Banach space X .

Theorem 1.10. Let .M; �/ be a pseudometric space. Let m D 1 and let X be a Banach
space with dimX > 1; thus, `.m;X/D 2, see (1.1). In this case, Conjecture 1.8 holds for
every �1; �2 and 
 such that

(1.10) �1 � 1; �2 � 3�1; 
 �
�2.3�2 C �1/

�2 � �1
�
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Thus, the following statement is true. Let F WM ! K1.X/ be a set-valued mapping
such that for every subset M0 �M with #M0 � 4, the restriction F jM0 of F to M0 has a
Lipschitz selection with Lipschitz seminorm at most 1.

Let F Œ2� be the mapping defined by (1.6). Then properties (1.7) and (1.8) hold when-
ever �1, �2 and 
 satisfy (1.10). In particular, one can set �1 D 1, �2 D 3 and 
 D 15.

If X is a Euclidean space, the same statement is also true whenever, instead of (1.10),
�1; �2 and 
 satisfy the weaker condition

(1.11) �1 � 1; �2 � 3�1; 
 � �2 C
2�22

.�22 � �
2
1/
1=2
�

In particular, in this case, (1.7) and (1.8) hold whenever �1 D 1, �2 D 3 and 
 D 10.

In Section 5.1 we note that Conjecture 1.8 also holds for a one dimensional space X
andmD 1. In this case, the statement of the conjecture is true for every �1 � 1 and 
 � 1.
See Proposition 5.1.

Note that Theorem 1.9 tells us that for every set-valued mapping F satisfying the
hypothesis of this theorem, the mapping F Œ2� determined by (1.6) with �1 D 4=3 and
�2 D 4 provides a 
 -core of F with 
 D 100. (See Definition 1.3.) In turn, Theorem 1.10
states that the mapping F Œ2� corresponding to the parameters �1 D 1 and �2 D 3 is a
15-core of any F satisfying the conditions of this theorem.

We note that the proofs of Theorem 1.9 and Theorem 1.10 rely on Helly’s intersection
theorem and a series of auxiliary results about neighborhoods of intersections of convex
sets. See Section 2.

Remark 1.11. Let us compare Conjecture 1.8 (and Theorems 1.9 and 1.10) with the
finiteness principle (FP) formulated in Theorem 1.2. First we note that FP is invariant with
respect to the transition to an equivalent norm onX , while the statement of Conjecture 1.8
is not.

To express this more precisely, let k�k1 and k�k2 be two equivalent norms on X , i.e.,
suppose that for some ˛ � 1 the inequality .1=˛/k�k1 � k�k2 � ˛k�k1 holds. Clearly, if FP
holds for .X; k�k1/, then it immediately holds also for .X; k�k2/ (with the constant ˛2

instead of 
 ). However, the validity of Conjecture 1.8 for the norm k�k1 does not imply
its validity for an equivalent norm k�k2 on X (at least we do not see any obvious way for
obtaining such an implication). For example, the validity of Conjecture 1.8 in `n1 (i.e., Rn

equipped with the uniform norm) does not automatically imply its validity in the space `n2
(i.e., Rn with the Euclidean norm).

We also note the following: in a certain sense, the result of Theorem 1.9 is “stronger”
than Theorem 1.2 (i.e., FP for the case of a two dimensional Banach space X ). Indeed,
in this case, the hypotheses of FP and Theorem 1.9 coincide. Moreover, Theorem 1.9
ensures that the set-valued mapping F Œ2� is a core of F . This property of F Œ2� implies, via
arguments in [16], that the function

(1.12) f .x/ D St.F Œ2�/.x/; x 2M;

is a Lipschitz selection of F . Here St WKm.X/! X is the Steiner-type point map [25].
Thus, FP (in the two dimensional case) follows immediately from Theorem 1.9. How-

ever, it is absolutely unclear how the statement of Theorem 1.9 can be deduced from FP.
I want to thank Charles Fefferman who kindly drew my attention to this interesting fact.
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Let us reformulate Conjecture 1.8 in a way which does not require the use of the notion
of a core of a set-valued mapping. We recall that the mapping F Œ`�WM! Km.X/ which
appears in Conjecture 1.8 is a 
 -core of F if

dH.F
Œ`�.x/; F Œ`�.y// � 
�.x; y/ for all x; y 2M:

See part (ii) of Definition 1.3. Hence, given x 2M,

F Œ`�.x/ � F Œ`�.y/C 
�.x; y/BX for every y 2M:(1.13)

Let

F Œ`C1�.x/ D BRŒF Œ`� W
 I ��.x/ D
\
y2M

�
F Œ`�.y/C 
�.x; y/BX

�
:

Cf. (1.3). This and (1.13) imply the inclusion F Œ`C1�.x/ � F Œ`�.x/, x 2M. On the other
hand, (1.4) tells us that F Œ`C1�.x/ � F Œ`�.x/, proving that F Œ`C1� D F Œ`� on M.

These observations enable us to reformulate Conjecture 1.8 as follows.

Conjecture 1.12. Let .M; �/ be a pseudometric space, and let X be a Banach space.
Let m be a fixed positive integer and let ` D `.m;X/, see (1.1).

There exists a sequence E�D ¹�k W 1 � k � `C 1º of `C 1 numbers �k , all satisfying
�k � 1, such that, for every set-valued mapping F WM!Km.X/ satisfying the hypothesis
of the finiteness principle .Theorem 1.2/, the family ¹F Œk� W k D 1; : : : ; `C 1º of set-valued
mappings constructed by formula (1.3) has the following property:

F Œ`�.x/ ¤ ; and F Œ`C1�.x/ D F Œ`�.x/ for all x 2M:(1.14)

We refer to (1.14) as a stabilization property of balanced refinements.
Thus, Theorem 1.9 and Theorem 1.10 tell us that a stabilization property of balanced

refinements holds whenever dimX D 2 ormD 1 (andX is an arbitrary). More specifically,
Theorem 1.9 shows that if m D 2 and dimX D 2, Conjecture 1.12 holds with ` D 2 and
E� D ¹4=3; 4; 102º.

In other words, in this case, F Œ2�.x/ ¤ ; for each x 2M and F Œ3� D F Œ2� on M. In
turn, Theorem 1.10 states that the same property holds wheneverX is an arbitrary Banach
space, m D 1, and E� D ¹1; 3; 15º.

Readers might find it helpful to also consult a much more detailed version of this paper
posted on the arXiv, [27].

2. Neighborhoods of intersections of convex sets in a Banach space

We first need to fix some notation.
Let .X; k�k/ be a Banach space, and let BX be the unit ball in X . Let A and B be

non-empty subsets of X . We let AC B D ¹aC b W a 2 A; b 2 Bº denote the Minkowski
sum of these sets.

Sometimes, for a given set M, we will be looking simultaneously at two distinct
pseudometrics on M, say � and ı. In this case we will speak of a �-Lipschitz selection
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and �-Lipschitz seminorm, or a ı-Lipschitz selection and ı-Lipschitz seminorm, to make
clear which pseudometric we are using. Furthermore, given a mapping f WM ! X , we
will write kf kLip..MI�/;X/ or kf kLip..MIı/;X/ to denote the Lipschitz seminorm of f with
respect to the pseudometric � or ı, respectively.

For each finite set S , we let #S denote the number of elements of S .
Note two important geometric results that we use in the proof of the main theorems.

Here is the first of them.

Theorem 2.1. Let X be a Banach space, and let C � X be a convex set. Let a 2 X and
let r � 0. Suppose that

(2.1) C \ BX .a; r/ ¤ ;:

Then for every s > 0 and L > 1,

(2.2) ŒC \ BX .a; Lr/�C �.L/sBX � .C C sBX / \ BX .a; Lr C s/;

where

(2.3) �.L/ D .3LC 1/=.L � 1/:

If X is a Euclidean space, then (2.2) holds with �.L/ D 1C 2L=
p
L2 � 1.

For the case of an arbitrary Banach space X , Theorem 2.1 was proved by Przesławski
and Rybinski in [19], p. 279. For the case of a Euclidean space X , see Przesławski–
Yost [21], Theorem 4. See also Section 2 in [27]. For similar results, we refer the reader
to [1], [2], p. 369, and [4], p. 26.

The second of these geometrical results is the classical Helly intersection theorem for
two dimensional Banach spaces. It can be formulated as follows.

Theorem 2.2. Let K be a collection of convex closed subsets of a two dimensional
Banach space X . Suppose that K is finite or at least one member of the family K is
bounded.

If every subfamily of K consisting of at most three elements has a common point, then
there exists a point common to all of the family K .

We conclude this section by stating and proving one more result which will be a third
main tool for proving our main theorems. As we shall see, its proof makes use of the
preceding two theorems.

Proposition 2.3. LetX be a two dimensional Banach space. Let C;C1;C2 �X be convex
subsets, and let r > 0. Suppose that

(2.4) C1 \ C2 \ .C C rBX / ¤ ;:

Then for every L > 1 and every " > 0, the inclusion

Œ¹.C1 \ C2/C LrBXº \ C �C �.L/"BX

� Œ.C1 \ C2/C.LrC"/BX � \ Œ¹.C1CrBX / \ C ºC"BX � \ Œ¹.C2CrBX / \ C ºC"BX �

holds. The function � in the above inclusion is as defined in Theorem 2.1. I.e., for an
arbitrary Banach space X , that inclusion holds for �.L/ D .3LC 1/=.L � 1/, and if X
is Euclidean, it also holds for �.L/ D 1C 2L=

p
L2 � 1.
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Proof. Let

AD Œ.C1 \C2/C.LrC"/BX �\ Œ¹.C1CrBX /\C ºC"BX �\ Œ¹.C2CrBX /\C ºC"BX �

and let a 2 A. Let us prove that

(2.5) a 2 Œ¹.C1 \ C2/C LrBXº \ C �C �.L/"BX :

Let us show that if

(2.6) C1 \ C2 \ .C C rBX / \ BX .a; Lr C "/ ¤ ;;

then (2.5) holds. Indeed, (2.6) provides the existence of a point x 2 X such that

(2.7) x 2 C1 \ C2 \ .C C rBX / \ BX .a; Lr C "/:

In particular, x 2 C C rBX , so that BX .x; r/ \ C ¤ ;, proving that condition (2.1) of
Theorem 2.1 holds. This theorem tells us that

(2.8) ŒBX .x; Lr/ \ C �C �.L/"BX � .C C "BX / \ BX .x; Lr C "/:

Since a 2 A, we have a 2 C C "BX . From (2.7) we learn that and a 2 BX .x;Lr C "/.
Thus, the point a belongs to the set .C C "BX / \ BX .x; Lr C "/. Therefore, by (2.8),

a 2 ŒBX .x; Lr/ \ C �C �.L/"BX D Œ.x C LrBX / \ C �C �.L/"BX :

But x 2 C1 \ C2, see (2.7), and the required inclusion (2.5) follows.
Thus, it remains to prove (2.6). Helly’s Theorem 2.2 tells us that this property holds

provided any three sets in the left-hand side of (2.6) have a common point. Note that,
thanks to (2.4), this is true for C1, C2 and C C rBX . We also note that the point a belongs
to A, so that a 2 ŒC1 \ C2�C .Lr C "/BX , proving that C1 \ C2 \ BX .a;Lr C "/ ¤ ;.

Let us prove that

(2.9) C1 \ .C C rBX / \ BX .a; Lr C "/ ¤ ;:

The point a 2 A is so that a 2 .C1 C rBX / \ C C "BX . Let b be a point nearest to a
on .C1 C rBX / \ C , and let b1 2 C1 be a point nearest to b on C1. Let us prove that

(2.10) b1 2 C1 \ .C C rBX / \ BX .a; Lr C "/:

Indeed, we have ka � bk � " and kb1 � bk � r . Thus,

(2.11) b1 2 C1 (by definition) and b1 2 C C rBX (because b 2 C ):

Furthermore,
ka � b1k � ka � bk C kb � b1k � "C r � "C Lr;

proving that b1 2 BX .a; Lr C "/. Combining this property with (2.11), we obtain (2.10)
and (2.9). In a similar way, we show that C2 \ .C C rBX / \ BX .a; Lr C "/ ¤ ;.

The proof of the proposition is complete.
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3. The main theorem for two dimensional Banach spaces

In this section we prove Theorem 1.9.
First, let us recall the notion of the Lipschitz extension constant e.M; X/ which we

use in the formulation of this theorem.

Definition 3.1. Let M D .M; �/ be a pseudometric space, and let X be a Banach space.
We define the Lipschitz extension constant e.M; X/ of X with respect to M as the
infimum of the constants � > 0 such that for every subset M0 �M, and every Lipschitz
mapping f WM0! X , there exists a Lipschitz extension Qf WM! X of f to all of M such
that k Qf kLip.M;X/ � �kf kLip.M0;X/.

Remark 3.2. Recall several results about Lipschitz extension constants which we use in
this paper. In particular, thanks to the McShane–Whitney extension theorem, e.M;R/D 1
for every pseudometric space M D .M; �/. Hence, e.M; `21/ D 1 as well.

It follows from [22] and [8] that e.M; X/ � 4=3 provided X is an arbitrary two
dimensional Banach space. See also [3]. Furthermore, e.M;X/ � 4=� whenever X is an
arbitrary two dimensional Euclidean space. See [22] and [17]. We also note that, thanks to
Kirszbraun’s theorem [18], e.M; X/ D 1 provided X is a Euclidean space, M is a subset
of a Euclidean space E, and � is the Euclidean metric in E.

Proof of Theorem 1.9. Let M D .M; �/ be a pseudometric space, and let X be a two
dimensional Banach space. Let F WM ! K.X/ be a set-valued mapping satisfying the
hypothesis of Theorem 1.9. We recall that, by this hypothesis, for every subset S �M

with #S � 4, the restriction F jS of F to S has a �-Lipschitz selection fS W S ! X with
kfSkLip..S;�/;X/ � 1.

Let �1 and �2 be positive constants satisfying inequalities (1.5), i.e., �1 � e.M; X/

and �2 � 3�1. We set L D �2=�1. Thus, the inequalities

(3.1) �1 � e.M; X/; L � 3;

hold. Then we introduce a new pseudometric on M defined by

(3.2) d.x; y/ D �1�.x; y/; x; y 2M:

This definition, Definition 3.1, the above hypothesis of Theorem 1.9 and the inequality
�1 � e.M; X/ imply the following claim.

Claim 3.3. Let zS �M be a finite set, and let S � zS be a set with #S � 4. Then there
exists a d-Lipschitz mapping QfS W zS!X with k QfSkLip.. zS;d/;X/ � 1 such that QfS .x/ 2F.x/
for every x 2 S .

We introduce set-valued mappings

F Œ1�.x/ D
\
z2M

ŒF .z/C d.x; z/BX �; x 2M;(3.3)

F Œ2�.x/ D
\
z2M

ŒF Œ1�.z/C L d.x; z/BX �; x 2M:(3.4)
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Thus, F Œ1� and F Œ2� are the first and the second order .¹1;Lº;d/-balanced refinements
of F respectively. See Definition 1.6.

Our aim is to show that, if L and �1 satisfy inequality (3.1), then (i) F Œ2�.x/ ¤ ;
on M, and (ii) the mapping F Œ2� is d-Lipschitz with respect to the Hausdorff distance. We
prove the statements (i) and (ii) in Proposition 3.7 and Proposition 3.9 respectively.

We begin with the property (i). Its proof relies on a series of auxiliary lemmas.

Lemma 3.4. Let X be a two dimensional Banach space, and let K �K.X/ be a collec-
tion of convex compact subsets of X with non-empty intersection.

Given � > 0, let B D �BX . Then

(3.5)
� \
K2K

K
�
C B D

\
K;K02K

¹.K \K 0/C Bº:

Proof. Obviously, the right-hand side of (3.5) contains its left-hand side. Let us prove the
converse statement. Let us fix a point

(3.6) x 2
\

K;K02K

¹.K \K 0/C Bº

and prove that x 2 \¹K W K 2Kº C B . Clearly, it is true provided

(3.7) BX .x; �/
\� \

K2K

K
�
¤ ;:

Let S DK [ ¹BX .x; �/º. Helly’s intersection Theorem 2.2 tells us that property (3.7)
holds provided \¹K WK 2 S 0º ¤ ; for every subfamily S 0 � S consisting of at most three
elements. Clearly, this is true if BX .x; �/ … S 0 because there exists a point common to all
of the sets from K .

Suppose that BX .x; �/ 2 S 0. Then S 0 D ¹BX .x; �/; K; K
0º for some K; K 0 2 K .

Thanks to (3.6), x 2 .K \K 0/C B so that BX .x; �/ \K \K 0 ¤ ;.
Thus, (3.7) holds, and the proof of the lemma is complete.

Lemma 3.5. For each x 2M, the setF Œ1�.x/2K.X/, i.e.,F Œ1�.x/ is a non-empty convex
compact subset of X .

Furthermore, for every x; z 2M, the set zF D F Œ1�.z/C L d.x; z/ has the following
representation:

zF D
\

y0;y002M

®
Œ.F .y0/C d.z; y0/BX / \ .F.y

00/C d.z; y00/BX /�C L d.x; z/BX
¯
:

Proof. Let us prove that F Œ1�.x/ ¤ ; for every x 2M. Indeed, formula (3.3) and Helly’s
Theorem 2.2 tell us that F Œ1�.x/ ¤ ; provided

(3.8) ŒF .z1/C d.x; z1/BX � \ ŒF .z2/C d.x; z2/BX � \ ŒF .z3/C d.x; z3/BX � ¤ ;

for every z1; z2; z3 2M.
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Let S D ¹x;z1; z2; z3º. To prove (3.8), let us apply the hypothesis of Theorem 1.9 to S .
Thanks to this hypothesis, the restriction F jS has a �-Lipschitz selection fS W S!X with
�-Lipschitz seminorm at most 1. Hence,

kfS .x/ � fS .zi /k � �.x; zi / � �1�.x; zi / D d.x; zi / for every i D 1; 2; 3;

proving that fS .x/ belongs to the left-hand side of (3.8). Thus, (3.8) holds for arbitrary
zi 2M, i D 1; 2; 3, so that F Œ1�.x/ ¤ ;.

Clearly, F Œ1�.x/ is a convex bounded subset of X . See (3.3).
Finally, the second statement of the lemma immediately follows from this property,

Lemma 3.4 and formula (3.3). The proof of the lemma is complete.

Lemma 3.6. For every x 2M, the set F Œ2�.x/ admits the following representation:

F Œ2�.x/D
\

u;u0;u002M

®
Œ.F .u0/C d.u0; u/BX /\ .F.u

00/C d.u00; u/BX /�CLd.u; x/BX
¯
:

Proof. The lemma is immediate from (3.4) and Lemma 3.5.

Given x; u; u0; u00 2M, we set

(3.9) Tx.u;u0; u00/D Œ.F .u0/C d.u0; u/BX /\ .F.u
00/C d.u00; u/BX /�CLd.u;x/BX :

In these settings, Lemma 3.6 reformulates as follows:

(3.10) F Œ2�.x/ D
\

u;u0;u002M

Tx.u; u
0; u00/:

Proposition 3.7. For every x 2M, the set F Œ2�.x/ is non-empty.

Proof. Formula (3.10) and Helly’s Theorem 2.2 tell us that F Œ2�.x/ ¤ ; provided for
every choice of elements ui ; u0

i ; u
00
i 2M, i D 1; 2; 3, we have

(3.11) Tx.u1; u
0
1; u

00
1/ \ Tx.u2; u

0
2; u

00
2/ \ Tx.u3; u

0
3; u

00
3/ ¤ ;:

We set ri D d.x;ui /, i D 1;2;3; we may assume that r1� r2� r3. For each i2¹1;2;3º,
we also set

(3.12) G.u0
i / D F.u

0
i /C d.u0

i ; ui /BX and G.u00
i / D F.u

00
i /C d.u00

i ; ui /BX :

We will prove that there exist points yi 2 X , i D 1; 2; 3, such that

yi 2 G.u
0
i / \G.u

00
i / for every i D 1; 2; 3; and(3.13)

ky1 � y2k � r1 C r2 and ky1 � y3k � r1 C 2r2 C r3:(3.14)

Let us see that the existence of the points yi with these properties implies (3.11).
Indeed, since ky1 � y3k � r1 C 2r2 C r3, there exists a point z 2 Œy1; y3� such that
kz � y1k � r1 and kz � y3k � 2r2 C r3. Hence,

ky2 � zk � ky2 � y1k C ky1 � zk � r1 C r2 C r1 D 2r1 C r2:
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Recall that ri D d.x; ui / and r1 � r2 � r3. From this and the above inequalities, we
have

(3.15) kz � yik � 3ri D 3 d.x; ui /; i D 1; 2; 3:

Let us prove that z 2 Tx.ui ; u0
i ; u

00
i / for each i 2 ¹1; 2; 3º. In fact, we know that L � 3,

see (3.1). Furthermore, by (3.13), yi 2 G.u0
i / \ G.u

00
i /, so that, thanks to (3.12), (3.15)

and the definition in (3.9),

z 2 ŒG.u0
i /\G.u

00
i /�C 3d.x;ui /BX � ŒG.u0

i /\G.u
00
i /�CLd.x;ui /BX DTx.ui ;u0

i ;u
00
i /

proving (3.11).
Thus, our aim is to prove the existence of points yi satisfying (3.13) and (3.14). We

will do this in three steps.
Step 1. We introduce sets Wi � X , i D 1; : : : ; 4, defined by

(3.16)
W1 D G.u

0
1/; W2 D G.u

00
1/; W3 D ŒG.u

0
2/ \G.u

00
2/�C .r1 C r2/BX ;

W4 D ŒG.u
0
3/ \G.u

00
3/�C .r1 C 2r2 C r3/BX :

Obviously, there exist the points yi satisfying (3.13) and (3.14) whenever

W1 \W2 \W3 \W4 ¤ ;:

By Helly’s Theorem 2.2, this property holds provided any three members of the family
of sets ¹W1; W2; W3; W4º have a common point.

Step 2. We prove that W1 \W3 \W4 ¤ ;. To see this, we set

(3.17)
V1 D G.u

0
1/C .r1 C r2/BX ; V2 D G.u

0
2/; V3 D G.u

00
2/;

V4 D ŒG.u
0
3/ \G.u

00
3/�C .r2 C r3/BX :

Let us show that if

(3.18) V1 \ V2 \ V3 \ V4 ¤ ;;

then W1 \W3 \W4 is non-empty as well.
Indeed, this property and the definitions in (3.17) imply the existence of points

z1 2 G.u
0
1/; z2 2 G.u

0
2/ \G.u

00
2/; z3 2 G.u

0
3/ \G.u

00
3/

such that kz1 � z2k � r1 C r2 and kz2 � z3k � r2 C r3. Hence,

kz1 � z3k � kz1 � z2k C kz2 � z3k � .r1 C r2/C .r2 C r3/ D r1 C 2r2 C r3:

Thus, thanks to (3.16), the point z1 belongs to W1 \W3 \W4, proving that this set is
non-empty.

Let us prove (3.18). Helly’s Theorem 2.2 tells us that (3.18) holds whenever every
three members of the family V D ¹V1; V2; V3; V4º have a common point.
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Let us prove this property. First, let us show that

(3.19) V1 \ V2 \ V4 ¤ ;:

Let S D ¹u0
1; u

0
2; u

0
3; u

00
3º and let zS D ¹u0

1; u2; u
0
2; u3; u

0
3; u

00
3º. Thanks to Claim 3.3,

there exists a d-Lipschitz mapping QfS W zS ! X with k QfSkLip.. zS;d/;X/ � 1 such that

QfS .u
0
1/ 2 F.u

0
1/;

QfS .u
0
2/ 2 F.u

0
2/;

QfS .u
0
3/ 2 F.u

0
3/ and QfS .u

00
3/ 2 F.u

00
3/:

Let us prove that

(3.20) QfS .u2/ 2 V1 \ V2 \ V4:

Indeed, QfS .u0
2/ 2 F.u

0
2/ and k QfS .u0

2/ �
QfS .u2/k � d.u0

2; u2/, so that

QfS .u2/ 2 F.u
0
2/C d.u0

2; u2/BX D G.u
0
2/ D V2:

In the same way, we prove that QfS .u1/ 2 G.u0
1/.

Note that k QfS .u1/ � QfS .u2/k � d.u1; u2/ so that QfS .u2/ 2 G.u0
1/C d.u1; u2/BX .

By the triangle inequality,

d.u1; u2/ � d.u1; x/C d.x; u2/ D r1 C r2;

proving that QfS .u2/ 2 G.u0
1/C .r1 C r2/BX D V1.

It remains to show that QfS .u2/ belongs to V4. Indeed, we know that QfS .u0
3/ 2 F.u

0
3/,

QfS .u
00
3/ 2 F.u

00
3/,

k QfS .u3/ � QfS .u
0
3/k � d.u3; u0

3/ and k QfS .u3/ � QfS .u
00
3/k � d.u3; u00

3/:

Hence,

QfS .u3/ 2 ŒF .u
0
3/C d.u0

3; u3/BX � \ ŒF .u
00
3/C d.u00

3; u3/BX � D G.u
0
3/ \G.u

00
3/:

Furthermore, k QfS .u2/� QfS .u3/k� d.u2;u3/. These properties of QfS .u3/ and the triangle
inequality d.u2; u3/ � d.u2; x/C d.x; u3/ D r2 C r3 imply the following:

QfS .u2/ 2 ŒG.u
0
3/ \G.u

00
3/�C d.u2; u3/BX � ŒG.u0

3/ \G.u
00
3/�C .r2 C r3/BX D V4:

Thus, QfS .u2/ 2 V1 \ V2 \ V4, proving (3.19).
In the same fashion, we show that V1 \ V3 \ V4 ¤ ;.
Next, we prove that

(3.21) V2 \ V3 \ V4 D G.u
0
2/ \G.u

00
2/ \ ¹ŒG.u

0
3/ \G.u

00
3/�C .r2 C r3/BXº ¤ ;:

Following the scheme of the proof of (3.19), we set

S D ¹u0
2; u

00
2; u

0
3; u

00
3º and zS D ¹u2; u

0
2; u

00
2; u3; u

0
3; u

00
3º:

Claim 3.3 tells us that there exists a d-Lipschitz mapping QfS W zS ! X with Lipschitz
seminorm k QfSkLip.. zS;d/;X/ � 1 such that QfS .u0

i / 2 F.u
0
i / and QfS .u00

i / 2 F.u
00
i /, i D 2; 3.

Then, following the scheme of the proof of (3.20), we show that QfS .u2/ belongs to
V2 \ V3 \ V4, proving the required property (3.21).
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Finally, following the same approach, we prove that

(3.22) V1 \ V2 \ V3 D ŒG.u
0
1/C .r1 C r2/BX � \G.u

0
2/ \G.u

00
2/ ¤ ;:

More specifically, we set S D ¹u0
1; u2; u

0
2; u

00
2º. Then, thanks to the hypothesis of The-

orem 1.9, there exists a d-Lipschitz mapping QfS W S ! X with k QfSkLip..S;d/;X/ � 1 such
that QfS .u0

1/2F.u
0
1/, QfS .u

0
2/2F.u

0
2/ and QfS .u00

2/2F.u
00
2/. Following the proof of (3.20),

we show that QfS .u2/ 2 V1 \ V2 \ V3 completing the proof of (3.22).
Thus, (3.18) is proven, so that W1 \W3 \W4 ¤ ;.
Step 3. First, using a similar approach, we show that W2 \W3 \W4 ¤ ;.
Next, we prove that

W1 \W2 \W4 D G.u
0
1/ \G.u

00
1/ \

®
ŒG.u0

3/ \G.u
00
3/�C .r1 C 2r2 C r3/BX

¯
¤ ;:

To see this, we set S D ¹u0
1; u

00
1; u

0
3; u

00
3º and zS D ¹u1; u0

1; u
00
1; u3; u

0
3; u

00
3º. Claim 3.3

tells us that there exists a d-Lipschitz mapping QfS W zS ! X with k QfSkLip.. zS;d/;X/ � 1 such

that QfS .u0
i / 2 F.u

0
i / and QfS .u00

i / 2 F.u
00
i /, i D 1;3. The reader can easily see that the point

QfS .u1/ belongs to W1 \W2 \W4, proving the required property W1 \W2 \W4 ¤ ;.
In a similar way, we prove that

(3.23) W1 \W2 \W3 D G.u
0
1/ \G.u

00
1/ \

®
ŒG.u0

2/ \G.u
00
2/�C .r1 C r2/BX

¯
¤ ;:

More specifically, we set S D ¹u0
1; u

00
1; u

0
2; u

00
2º, zS D ¹u1; u

0
1; u

00
1; u2; u

0
2; u

00
2º, and apply

Claim 3.3 to S and zS . Thanks to this claim, there exists a d-Lipschitz mapping QfS W zS!X

with k QfSkLip.. zS;d/;X/ � 1 such that QfS .u0
i / 2 F.u

0
i / and QfS .u00

i / 2 F.u
00
i /, i D 1; 2. One

can readily see that the point QfS .u1/ 2 W1 \W2 \W3 so that (3.23) holds.
The proof of the proposition is complete.

We turn to the proof of inequality (1.8).
Note that, thanks to formula (3.10), for every x; y 2M we have

(3.24) F Œ2�.x/ D
\

u;u0;u002M

Tx.u; u
0; u00/ and F Œ2�.y/ D

\
u;u0;u002M

Ty.u; u
0; u00/:

Lemma 3.8. For every � > 0 and every x 2M, the representation

(3.25) F Œ2�.x/C �BX D
\®

ŒTx.u; u
0; u00/ \ Tx.v; v

0; v00/�C �BX
¯

holds. Here the first intersection in the right-hand side of (3.25) is taken over all elements
u; u0; u00; v; v0; v00 2M.

Proof. The lemma is immediate from (3.24), Lemma 3.4 and Proposition 3.7.

Proposition 3.9. For every x; y 2M, the inequality

(3.26) dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/

holds. Here 
0.L/ D L�.L/2 where �.L/ is the constant from Theorem 2.1.
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Proof. Let x; y 2M and let � D 
0.L/ d.x; y/. Let us prove that

(3.27) F Œ2�.x/C 
0.L/ d.x; y/BX D F Œ2�.x/C �BX � F Œ2�.y/:

Lemma 3.8 tells us that this inclusion holds provided

(3.28) A D ŒTx.u; u
0; u00/ \ Tx.v; v

0; v00/�C �BX � F
Œ2�.y/

for arbitrary u; u0; u00; v; v0; v00 2M.
To prove this inclusion, we introduce the following sets:

(3.29) C1 D F.u0/C d.u0; u/BX ; C2 D F.u
00/C d.u00; u/BX ; C D Tx.v; v

0; v00/:

Let

(3.30) " D L�.L/ d.x; y/ and r D d.x; u/:

Then � D 
0.L/ d.x; y/ D �.L/", and

A D ŒTx.u; u
0; u00/ \ Tx.v; v

0; v00/�C �BX D Œ.C1 \ C2/C LrBX � \ C C �.L/"BX :

We want to apply Proposition 2.3 to the set A. To do this, we have to verify condi-
tion (2.4) of this proposition, i.e., to show that

(3.31) C1 \ C2 \ .C C rBX / ¤ ;:

Let S D ¹u0;u00; v0; v00º and let zS D ¹x;u;u0;u00; v; v0; v00º. Claim 3.3 tells us that there
exists a d-Lipschitz mapping QfS W zS !X with d-Lipschitz seminorm k QfSkLip.. zS;d/;X/ � 1

such that QfS .u0/ 2 F.u0/, QfS .u00/ 2 F.u00/, QfS .v0/ 2 F.v0/ and QfS .v00/ 2 F.v00/.
Let us prove that QfS .u/ belongs to the left-hand side of (3.31). Indeed, thanks to the

inequality k QfSkLip.. zS;d/;X/ � 1, we have k QfS .u0/ � QfS .u/k � d.u0; u/,

k QfS .u
00/ � QfS .u/k � d.u00; u/ and k QfS .x/ � QfS .u/k � d.x; u/ D r:

and k QfS .x/ � QfS .u/k � d.x; u/ D r . Thanks to these properties and (3.29), QfS .u/ 2
C1 \ C2.

In a similar way, we show that QfS .x/ 2 Tx.v; v0; v00/D C , see (3.29) and (3.9). Hence,
we have QfS .u/ 2 C C rBX . Thus, C1 \ C2 \ .C C rBX / 3 QfS .u/ proving (3.31).

We see now that property (2.4) of Proposition 2.3 holds. This proposition tells us that

A D Œ.C1 \ C2/C LrBX � \ C C �.L/"BX

� Œ.C1 \ C2/C .LrC"/BX �\¹Œ.C1CrBX / \ C �C"BXº\¹Œ.C2 C rBX / \ C �C"BXº

D A1 \ A2 \ A3:

Let us prove that

(3.32) Ai � F
Œ2�.y/ for every i D 1; 2; 3:

We begin with the set A1 D ŒC1 \ C2�C .Lr C "/BX . Thus,

A1D Œ.F .u
0/Cd.u0;u/BX /\ .F.u

00/Cd.u00;u/BX /�C.Ld.u;x/CL�.L/d.x;y//BX :
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See (3.29). By the triangle inequality,

d.u; x/C �.L/ d.x; y/ � d.u; x/C d.x; y/ � d.u; y/:

Hence,

A1 � Œ.F .u
0/C d.u0; u/BX /\ .F.u

00/C d.u00; u/BX /�CL d.u; y/BX D Ty.u; u0; u00/:

But Ty.u; u0; u00/ � F Œ2�.y/, see (3.24), so that A1 � F Œ2�.y/.
We turn to the proof of the inclusion A2 � F Œ2�.y/. Note that A2 is defined by

(3.33) A2 D Œ.C1 C rBX / \ C �C "BX :

By the triangle inequality,

(3.34) C1 C rBX D F.u
0/C d.u0; u/BX C d.u; x/BX � F.u0/C d.u0; x/BX :

Let

(3.35) zCDF.u0/Cd.u0; x/BX ; zC1DF.v
0/Cd.v0; v/BX ; zC2DF.v

00/Cd.v00; v/BX ;

and let

(3.36) Qr D d.v; x/:

In these settings, C D Tx.v; v0; v00/ D Œ zC1 \ zC2�C L QrBX .
Let

(3.37) zA D ¹Œ. zC1 \ zC2/C L QrBX � \ zC º C "BX :

Then, thanks to (3.33) and (3.34),

(3.38) A2� Œ.F .u0/C d.u0;x/BX /\C �C "BX D¹Œ. zC1 \ zC2/CL QrBX �\ zC ºC "BX :

Let us prove that the set

zA D ¹Œ. zC1 \ zC2/C L QrBX � \ zC º C "BX � F
Œ2�.y/:

We will do this by applying Proposition 2.3 to the set zA. But first we must check the
hypothesis of this proposition, i.e., we must show that

(3.39) zC1 \ zC2 \ . zC C QrBX / ¤ ;:

To establish this property, we set S D ¹u0; v0; v00º and zS D ¹x; u0; v; v0; v00º. Claim 3.3
tells us that there exists a d-Lipschitz mapping QfS W zS ! X , with d-Lipschitz seminorm
k QfSkLip.. zS;d/;X/ � 1, such that

QfS .u
0/ 2 F.u0/; QfS .v

0/ 2 F.v0/ and QfS .v
00/ 2 F.v00/:

Combining these properties of QfS with the definitions in (3.35) and (3.36), we con-
clude that zC1 \ zC2 \ . zC C QrBX / 3 QfS .v/, proving (3.39).

We recall that " D L�.L/ d.x; y/, see (3.30), so that

zA D Œ¹. zC1 \ zC2/C L QrBXº \ zC �C L�.L/ d.x; y/BX (see (3.37)).
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We apply Proposition 2.3 to zA and obtain the following:

zA � ¹. zC1 \ zC2/C .L Qr C L d.x; y//BXº

\ ¹Œ. zC1 C QrBX / \ zC �C L d.x; y/BXº \ ¹Œ. zC2 C QrBX / \ zC �C L d.x; y/BXº

D zA1 \ zA2 \ zA3:

We prove that zAi � F Œ2�.y/ for every i D 1; 2; 3. First, let us show that

zA1 D . zC1 \ zC2/C .L Qr C L d.x; y//BX � F Œ2�.y/:(3.40)

By (3.36) and the triangle inequality, Qr C d.x; y/ D d.v; x/C d.x; y/ � d.v; y/, so that

zA1 � . zC1 \ zC2/C L d.v; y/BX
D Œ.F .v0/C d.v0; v/BX / \ .F.v

00/C d.v00; v/BX /�C L d.v; y/BX
D Ty.v; v

0; v00/:

See (3.35) and (3.9). This inclusion and (3.24) imply (3.40).
Next, let us show that

zA2 D Œ. zC1 C QrBX / \ zC �C L d.x; y/BX � F Œ2�.y//:(3.41)

Thanks to (3.35), (3.36) and the triangle inequality,

zC1 C QrBX D F.v
0/C d.v0; v/BX C d.v; x/BX � F.v0/C d.v0; x/BX

so that

zA2 � Œ.F .v
0/C d.v0; x/BX / \ .F.u

0/C d.u0; x/BX /�C L d.x; y/BX D Ty.x; u0; v0/:

See (3.9). From this and (3.24), we have zA2 � Ty.x; u0; v0/ � F Œ2�.y/, proving (3.41).
In the same way, we can show that

zA3 D Œ. zC2 C QrBX / \ zC �C L d.x; y/BX � Ty.x; u0; v00/ � F Œ2�.y/:

Combining this with (3.40) and (3.41), we obtain the required inclusion zAi � F Œ2�.y/
for every i D 1; 2; 3. In turn, this proves that

zA � F Œ2�.y/ because zA � zA1 \ zA2 \ zA3 � F
Œ2�.y/:

We know that A2 � zA, see (3.38), so that A2 � F Œ2�.y/. In the same fashion, we show
that

A3 D Œ.C2 C rBX / \ C �C L"BX � F
Œ2�.y/

proving (3.32). Hence, A � A1 \ A2 \ A3 � F Œ2�.y/, so that (3.28) holds.
Thus, (3.27) is proved. By interchanging the roles of elements x and y in this inclu-

sion, we obtain the inclusion F Œ2�.y/C 
0.L/d.x;y/BX �F Œ2�.x/. These two inclusions
imply inequality (3.26), proving the proposition.



On the core of a low dimensional set-valued mapping 1885

We are in a position to complete the proof of Theorem 1.9.
Recall that �1 and �2 are parameters satisfying (1.5), and LD �2=�1. Thus, L and �1

satisfy (3.1). We also recall that d D �1�, see (3.2). Let 
 be a parameter satisfying (1.5).
In these settings, the mappings F Œ1� and F Œ2� defined by formulae (3.3) and (3.4) are

the first and the second order .¹�1; �2º; �/-balanced refinements of F respectively. See
Definition 1.6.

Proposition 3.7 tells us that, under these conditions, F Œ2�.x/ ¤ ; on M. In turn, Pro-
position 3.9 states that

dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/ for all x; y 2M:

Recall that 
0.L/DL � �.L/2, where � D �.L/D .3LC 1/=.L� 1/, see (2.3). Hence,
�.L/ D .3�2 C �1/=.�2 � �1/, so that

dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/ � L � �.L/2 d.x; y// D �2

.3�2 C �1/
2

.�2 � �1/2
�.x; y/:

Combining this inequality with the third inequality in (1.5), we obtain (1.8), proving
Theorem 1.9 for the parameters �1; �2 and 
 satisfying (1.5).

In particular, one can set �1 D 4=3, �2 D 4, and 
 D 100. Indeed, in this case, we
have e.M; X/ � �1 D 4=3, see Remark 3.2, so that �1; �2 and 
 satisfy (1.5).

Next, letX be a two dimensional Euclidean space, and let �1;�2 and 
 satisfy (1.9). In
this case, we prove (1.7) and (1.8) by replacing in the proof of Theorem 1.9 the function
� D �.L/ defined by (2.3) with the function �.L/ D 1 C 2L=

p
L2 � 1. We leave the

details to the interested reader. See also Section 3 in [27].
In particular, we can set �1 D 4=� , �2 D 12=� , and 
 D 38. Indeed, in this case, we

have e.M;X/ � 4=� , see Remark 3.2, which implies (1.9) for these values of parameters
�1, �2 and 
 .

Finally, suppose that X is a Euclidean space, M is a subset of a Euclidean space E,
and � is the Euclidean metric in E. In this case e.M;X/D 1, see Remark 3.2, so that one
can set �1 D 1, �2 D 3 and 
 D 25. Clearly, in this case inequalities (1.9) hold.

The proof of Theorem 1.9 is complete.

4. Balanced refinements of line segments in a Banach space

In this section, we prove Theorem 1.10. Let .M; �/ be a pseudometric space, and
let .X; k�k/ be a Banach space. We assume that dimX > 1. Let us recall that K1.X/ is
the family of all non-empty convex compacts in X of dimension at most 1 (i.e., the family
of all points and all bounded closed line segments in X ).

We need the following version of one dimensional Helly’s theorem.

Theorem 4.1. Let K be a collection of closed convex subsets of X containing a setK0 2
K1.X/. If K0 has a common point with any two members of K , then there exists a point
common to all of the collection K .

Proof. We introduce a family zK D ¹K \K0 W K 2 Kº, and apply to zK the one dimen-
sional Helly theorem. (See part (a) of Lemma 5.2.)



P. Shvartsman 1886

We also need the following variant of Proposition 2.3 for the family K1.X/.

Proposition 4.2. Let X be a Banach space, and let r � 0. Let C;C1; C2 � X be convex
closed subsets, and let C1 2K1.X/. Suppose that

C1 \ C2 \ .C C rBX / ¤ ;:(4.1)

Then for every L > 1 and every " > 0, the inclusion

Œ¹.C1 \ C2/C LrBXº \ C �C �.L/"BX

� Œ.C1 \ C2/C .Lr C "/BX � \ Œ¹.C1 C rBX / \ C º C "BX �

holds. Here �.L/ is the same as in Theorem 2.1, i.e., �.L/ D .3LC 1/=.L � 1/ for an
arbitrary X , and �.L/ D 1C 2L=

p
L2 � 1 whenever X is a Euclidean space.

Proof. For the detailed proof of the proposition we refer the reader to Proposition 4.2
in [27]. This proof is a slight modification of the proof of Proposition 2.3, in which we
use Theorem 4.1 (i.e., the one dimensional version of the Helly theorem) rather than The-
orem 2.2 (i.e., the two dimensional Helly theorem).

We recall that dimX >1, so that the finiteness numberN.1;X/Dmin¹22;2dimXºD 4.
Let F WM!K1.X/ be a set-valued mapping. We suppose that F satisfies the hypothesis
of Theorem 1.10, i.e., that the following statement is true.

Claim 4.3. For every subset M0 �M with #M0 � 4, the restriction F jM0 of F to M0 has
a Lipschitz selection fM0 WM0 ! X with kf kLip.M0;X/ � 1.

Let E�D¹�1;�2º, and letF Œ1� andF Œ2� be the first and the second order .E�;�/-balanced
refinements of F . See Definition 1.6. Our aim is to show that if

(4.2) �1 � 1; �2 � 3�1; 
 � �2.3�2 C �1/=.�2 � �1/;

then the set-valued mapping F Œ2� is a 
 -core of F (with respect to �), i.e., F Œ2�.x/ ¤ ;
for every x 2M and

dH.F
Œ2�.x/; F Œ2�.y// � 
�.x; y/ for all x; y 2M:

To prove this, we set L D �2=�1 and introduce a new pseudometric on M defined by

d.x; y/ D �1�.x; y/; x; y 2M:

Note that, thanks to (4.2),

(4.3) L � 3 and � � d on M:

We also note that in these settings, for every x 2M,

(4.4) F Œ1�.x/ D
\
z2M

ŒF .z/C d.x; z/BX �; F Œ2�.x/ D
\
z2M

ŒF Œ1�.z/C L d.x; z/BX �:

Next, we need the following analog of Lemma 3.4.
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Lemma 4.4. Let K be a family of convex closed subsets of X containing a set K0 2
K1.X/. Suppose that \¹K W K 2Kº ¤ ;. Then for every r � 0, we have� \

K2K

K
�
C rBX D

\
K2K

¹ŒK \K0�C rBXº:

Proof. Let zK D ¹K \K0 W K 2Kº. Clearly, zK �K1.X/. It is also clear that the state-
ment of the lemma is equivalent to the equality� \

zK2 zK

zK
�
C rBX D

\
zK2 zK

¹ zK C rBXº

provided \¹ zK W zK 2 Kº ¤ ;. We prove this equality by a slight modification of the
proof of Lemma 3.4. More specifically, we obtain the result by using in that proof Helly’s
Theorem 4.1 instead of Theorem 2.2. We leave the details to the interested reader.

Lemma 4.5. For every x 2M, the set F Œ1�.x/ belongs to the family K1.X/. Moreover,
for every x; z 2M, we have

(4.5) F Œ1�.z/C L d.x; z/BX D
\
v2M

®
Œ.F .v/C d.z; v/BX / \ F.z/�C L d.x; z/BX

¯
:

Proof. Let K D ¹F.z/C d.z; x/BX W z 2Mº. Clearly, K is a family of bounded closed
convex subsets of X containing the set F.x/ 2 K1.X/. Theorem 4.1 tells us that the set
F Œ1�.x/ D \¹K W K 2Kº is non-empty whenever, for every z0; z00 2M, the set

(4.6) E.x; z0; z00/ D F.x/ \ ŒF .z0/C d.z0; x/BX � \ ŒF .z
00/C d.z00; x/BX � ¤ ;:

Fix z0; z00 2 M and set M0 D ¹x; z0; z00º. Thanks to Claim 4.3, there exists a func-
tion fM0 WM0! X satisfying the following conditions: fM0.x/ 2 F.x/, fM0.z0/ 2 F.z0/,
fM0.z00/ 2 F.z00/, kfM0.z0/ � fM0.x/k � �.z0; x/ � d.z0; x/, and

kfM0.z00/ � fM0.x/k � �.z00; x/ � d.z00; x/:

See (4.3). Then fM0.x/ 2 E.x; z0; z00/, so that (4.6) holds. Hence, F Œ1�.x/ ¤ ;, proving
that F Œ1�.x/ 2K1.X/.

It remains to note that equality (4.5) is immediate from (4.4) and Lemma 4.4.
The proof of the lemma is complete.

Lemma 4.6. For every x 2M, the equality

F Œ2�.x/ D
\

u;u02M

®
Œ.F .u0/C d.u0; u/BX / \ F.u/�C L d.u; x/BX

¯
holds.

Proof. The statement of the lemma is immediate from (4.4) and Lemma 4.5.
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Given x; u; u0 2M we put

zTx.u; u
0/ D Œ.F .u0/C d.u0; u/BX / \ F.u/�C L d.u; x/BX :(4.7)

Now, Lemma 4.6 reformulates as follows:

(4.8) F Œ2�.x/ D
\

u;u02M

zTx.u; u
0/:

Proposition 4.7. For every x 2M, the set F Œ2�.x/ is non-empty.

Proof. Recall that F.x/ 2 K1.X/. Furthermore, by (4.7), F.x/ D zTx.x; x/. Therefore,
by (4.8) and Helly’s Theorem 4.1, the set F Œ2�.x/ ¤ ; whenever for every ui ; u0

i 2M,
i D 1; 2, we have

(4.9) F.x/ \ zTx.u1; u
0
1/ \

zTx.u2; u
0
2/ ¤ ;:

Thanks to (4.7),

(4.10) zTx.ui ; u
0
i / D Œ.F .u

0
i /C d.u0

i ; ui /BX / \ F.ui /�C L d.ui ; x/BX ; i D 1; 2:

Let us fix elements u1; u0
1; u2; u

0
2 2M and prove that property (4.9) holds.

First we note that, without loss of generality, one may assume that �.u1;x/� �.u2;x/.
Next, we introduce the following sets:

(4.11)
G1 D F.u2/; G2 D F.u

0
2/C �.u2; u

0
2/BX ; G3 D F.x/C �.u2; x/BX ;

G4 D Œ.F .u
0
1/C �.u

0
1; u1/BX / \ F.u1/�C �.u1; u2; /BX :

We prove now that if G1 \G2 \G3 \G4 ¤ ;, then (4.9) holds.
Indeed, let zM D ¹u0

1; u1; x; u2; u
0
2º. This property and the definitions in (4.11) imply

the existence of a mapping gW zM! X with the following properties: g.v/ 2 F.v/ on zM,

kg.u1/ � g.u
0
1/k � �.u1; u

0
1/; kg.u1/ � g.u2/k � �.u1; u2/;(4.12)

and

kg.u2/ � g.u
0
2/k � �.u2; u

0
2/; kg.u2/ � g.x/k � �.u2; x/:(4.13)

We establish (4.9) by showing that

g.x/ 2 F.x/ \ zTx.u1; u
0
1/ \

zTx.u2; u
0
2/:(4.14)

In fact, from the above properties of g, it follows that g.x/ 2 F.x/. We also know that
g.u2/ 2 F.u2/, g.u0

2/ 2 F.u
0
2/. Thanks to (4.12), (4.13) and (4.3),

kg.u2/ � g.u
0
2/k � �.u2; u

0
2/ � d.u2; u0

2/; and
kg.u2/ � g.x/k � �.u2; x/ � L d.u2; x/:

From these properties of g and (4.10), we have

g.x/ 2 Œ.F .u0
2/C d.u0

2; u2/BX / \ F.u2/�C L d.u2; x/BX D zTx.u2; u0
2/:
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It remains to show that g.x/ 2 zTx.u1; u0
1/. As we know,

(4.15) g.x/ 2 F.x/; g.u1/ 2 F.u1/; and g.u0
1/ 2 F.u

0
1/:

Furthermore, thanks to (4.12) and (4.3),

(4.16) kg.u1/ � g.u
0
1/k � �.u1; u

0
1/ � d.u1; u0

1/:

Let us estimate kg.u1/ � g.x/k. From (4.12), (4.13) and the triangle inequality, we
have

kg.u1/ � g.x/k � kg.u1/ � g.u2/k C kg.u2/ � g.x/k � �.u1; u2/C �.u2; x/

� �.u1; x/C �.x; u2/C �.u2; x/ D �.u1; x/C 2�.x; u2/:

Recall that �.u1; x/ � �.u2; x/. This and (4.3) yield

kg.u1/ � g.x/k � 3�.u1; x/ � L d.u1; x/:

This inequality, (4.15), (4.16) and (4.10) imply the required property g.x/2 zTx.u1;u0
1/

proving (4.14).
Thus, to complete the proof of the proposition, we have to prove that the sets G1,

G2, G3 and G4 have a common point. Note that G1 D F.u2/ 2 K1.X/ so that, by The-
orem 4.1, this property holds provided

(4.17) G1 \Gi \Gj ¤ ; for every 2 � i; j � 4; i ¤ j:

Let us first prove thatG1 \G2 \G3 ¤ ;. Let M1 D ¹u
0
2; u2; xº. Thanks to Claim 4.3,

there exists a mapping f1WM1!X with the following properties: f1.x/2F.x/, f1.u2/2
F.u2/, f1.u0

2/ 2 F.u
0
2/,

kf1.u2/ � f1.x/k � �.u2; x/ and kf1.u2/ � f1.u
0
2/k � �.u2; u

0
2/:

These properties of f1 and the definitions in (4.11) tell us that f1.u2/ 2 G1 \ G2 \ G3,
proving that the sets G1, G2 and G3 have a common point.

Let us prove that G1 \G2 \G4 ¤ ;.
Let M2D¹u

0
1;u1;u

0
2;u2º. Using Claim 4.3, we produce a mapping f2 WM2!X such

that f2.ui / 2 F.ui /, f2.u0
i / 2 F.u

0
i / for every i D 1; 2, kf2.u1/� f2.u0

1/k � �.u1; u
0
1/,

kf2.u1/ � f2.u2/k � �.u1; u2/ and kf2.u2/ � f2.u
0
2/k � �.u2; u

0
2/:

These properties of f2 and (4.11) yield f2.u2/ 2 G1 \G2 \G4, proving that the setsG1,
G2 and G4 have a common point.

In the same way, we show that G1 \ G3 \ G4 ¤ ;. (We set M3 D ¹u
0
1; u1; x; u2º,

produce a corresponding function f3WM3 ! X and show that f3.u2/ 2 G1 \G3 \G4.)
Thus, (4.17) holds, proving that the sets Gi have a common point.
The proof of the proposition is complete.

In this section, we set 
0 D 
0.L/ D L�.L/.
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Proposition 4.8. For every x; y 2M, the inequality

dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/

holds.

Proof. Let x; y 2M. Thanks to (4.8),

(4.18) F Œ2�.x/ D
\

u;u02M

zTx.u; u
0/ and F Œ2�.y/ D

\
u;u02M

zTy.u; u
0/:

Recall that

(4.19) zTx.u; u
0/ D Œ.F .u0/C d.u0; u/BX / \ F.u/�C L d.u; x/BX :

We know that F Œ2�.x/¤;, see Proposition 4.7, and zTx.x;x/DF.x/2K1.X/. These
properties, (4.18) and Lemma 4.4 tell us that

(4.20) F Œ2�.x/C 
0.L/ d.x; y/BX D
\

u;u02M

®
Œ zTx.u; u

0/\ F.x/�C 
0.L/ d.x; y/BX
¯
:

We fix u; u0 2M and introduce a set

zA D Œ zTx.u; u
0/ \ F.x/�C 
0.L/ d.x; y/BX :

We also introduce sets

(4.21) C1 D F.u/; C2 D F.u
0/C d.u0; u/BX ; and C D F.x/:

Let

(4.22) " D L d.x; y/ and r D d.x; u/:

In these settings, 
0.L/ d.x; y/ D �.L/" and

zAD Œ zTx.u; u
0/\ F.x/�C 
0.L/d.x; y/BX D Œ¹.C1 \C2/CLrBXº \C �C �.L/"BX :

Let us apply Proposition 4.2 to the set zA. To do this, we have to verify condition (4.1),
i.e., to show that

(4.23) C1 \ C2 \ .C C rBX / ¤ ;:

Let zM D ¹x; u; u0º. Thanks to Claim 4.3, there exists a �-Lipschitz selection f zM
of

the restriction F j zM
with kf zM

kLip.. zMI�/;X/
� 1. Thus, f zM

.u0/ 2 F.u0/, f zM
.u/ 2 F.u/,

f zM
.x/ 2 F.x/,

kf zM
.u0/ � f zM

.u/k � �.u0; u/ and kf zM
.x/ � f zM

.u/k � �.x; u/:

Let us prove that

(4.24) f zM
.u/ 2 C1 \ C2 \ .C C rBX /:
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Indeed, f zM
.u/ 2 F.u/ D C1, see (4.21). Furthermore, f zM

.u0/ 2 F.u0/ and, thanks
to (4.3), � � d on M. Hence,

kf zM
.u0/ � f zM

.u/k � �.u0; u/ � d.u0; u/

proving that f zM
.u/ 2 C2, see (4.21). Finally, by (4.21) and (4.22), f zM

.x/ 2 F.x/ D C

and

kf zM
.x/ � f zM

.u/k � �.x; u/ � d.x; u/ D r; so that f zM
.u/ 2 C C rBX :

Thus, (4.24) is true so that property (4.23) holds. Furthermore, C1 D F.u/ 2K1.X/,
so that all conditions of the hypothesis of Proposition 4.2 are satisfied. By this proposition,

zA D Œ¹.C1 \ C2/C LrBXº \ C �C �.L/"BX

� Œ.C1 \ C2/C .Lr C "/BX � \ Œ¹.C1 C rBX / \ C º C "BX �

D zA1 \ zA2:

Let us prove that zAi � F Œ2�.y/ for every i D 1; 2.
We begin with the set

zA1 D C1 \ C2 C .Lr C "/BX :

Thanks to (4.21) and (4.22),

zA1 D Œ¹F.u
0/C d.u0; u/BXº \ F.u/�C .L d.u; x/C L d.x; y//BX :

By the triangle inequality, d.u; x/C d.x; y/ � d.u; y/, so that

zA1 � Œ¹F.u
0/C d.u0; u/BXº \ F.u/�C L d.u; y/BX D zTy.u; u0/; see (4.19):

But, by (4.18), zTy.u; u0/ � F Œ2�.y/, which implies the required inclusion zA1 � F Œ2�.y/.
We turn to the set zA2 D Œ.C1 C rBX / \ C �C "BX . By (4.7), (4.21) and (4.22),

zA2 D Œ.F .u/C d.u; x/BX / \ F.x/�C L d.x; y/BX D Ty.x; u/:

Thanks to (4.18), zTy.u; x/ � F Œ2�.y/, proving that zA2 � F Œ2�.y/.
Thus,

zAD Œ zTx.u;u
0/\F.x/�C 
0.L/d.x;y/BX � zA1 \ zA2 � F Œ2�.y/ for every u;u0

2M:

From this and the representation (4.20), we have F Œ2�.x/C 
0.L/ d.x; y/BX � F Œ2�.y/.
By interchanging the roles of x and y, we obtain also

F Œ2�.y/C 
0.L/ d.x; y/BX � F Œ2�.x/:

These two inclusions and (1.2) imply the statement of the proposition.

We complete the proof of Theorem 1.10 as follows: we fix �1, �2 and 
 satisfying
inequalities (1.10). Then, by Proposition 4.7, the set F Œ2�.x/ ¤ ; for every x 2M.
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In turn, Proposition 4.8 tells us that dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/ on M. We

recall that LD �2=�1, d D �1�, 
0.L/D L�.L/ and �.L/D .3LC 1/=.L� 1/. Hence,

dH.F
Œ2�.x/; F Œ2�.y// � 
0.L/ d.x; y/ D L

�3LC 1
L � 1

�
d.x; y/ D

�2.3�2 C �1/

�2 � �1
�.x; y/:

This inequality and (1.10) imply (1.8).
Thus, (1.7) and (1.8) hold provided �1, �2 and 
 satisfy inequalities (1.10). In partic-

ular, we can set �1 D 1, �2 D 3 and 
 D �2.3�2 C �1/=.�2 � �1/ D 15.
Let now X be a Euclidean space, and let �1, �2 and 
 be the parameters satisfying

inequalities (1.11). In this case, we replace in the above calculations the constant �.L/ D
.3LC 1/=.L � 1/ with �.L/ D 1C 2L=

p
L2 � 1. This leads us to the required estimate

dH.F
Œ2�.x/; F Œ2�.y// �

�
�2 C

2�22
.�22 � �

2
1/
1=2

�
�.x; y/ � 
�.x; y/

proving that (1.7) and (1.8) hold for �1, �2 and 
 satisfying (1.11).
The proof of Theorem 1.10 is complete.

5. The main theorem in `2
1

5.1. The case X D R

Proposition 5.1. Let .M; �/ be a pseudometric space. Let m D 1 and let X D R; thus,
`D `.m;X/D 1, see (1.1). In this case, Conjecture 1.8 holds for every �1 � 1 and 
 � 1.

Thus, the following statement is true. Let F be a set-valued mapping from M into the
family K.R/ of all closed bounded intervals in R. Suppose that for every x; y 2M there
exist points g.x/ 2 F.x/ and g.y/ 2 F.y/ such that jg.x/ � g.y/j � �.x; y/.

Let F Œ1�.x/, x 2M, be the �1-balanced refinement of the mapping F , i.e., the set

F Œ1�.x/ D
\
z2M

ŒF .z/C �1�.x; z/I0�; where I0 D Œ�1; 1�:

Then F Œ1�.x/ ¤ ; for every x 2M, and

dH.F
Œ1�.x/; F Œ1�.y// � 
�.x; y/ for all x; y 2M:

For a detailed proof of the proposition, we refer the reader to Section 5 in [27].
Here we only note that Proposition 5.1 easily follows from the one dimensional Helly

theorem and a formula for a neighborhood of the intersection of intervals in R. We for-
mulate these statements in the following result.

Lemma 5.2. Let K �K.R/ be a collection of closed bounded intervals in R.

(a) .Helly’s theorem in R/. If the intersection of every two intervals from K is non-
empty, then there exists a point in R common to all of the family K .

(b) Suppose that \¹K W K 2Kº ¤ ;. Then for every r � 0 we have� \
K2K

K
�
C rI0 D

\
K2K

¹K C rI0º:
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Proof. In Lemma 3.4 we proved an analog of property (b) of Lemma 5.2 for R2. We prove
part (b) by replacing in that proof the Helly Theorem 2.2 with the one dimensional Helly
theorem formulated in part (a) of the present lemma. We leave the details to the interested
reader.

5.2. Rectangular hulls of plane convex sets

Let us fix some additional notation. We let R.R2/ denote the family of all bounded
closed rectangles in R2 with sides parallel to the coordinate axes Ox1 and Ox2.

Let Q0 D BX be the unit ball of the Banach space X D `21, i.e., the square Q0 D
Œ�1; 1�2. Given a 2 R2 and r � 0, we set rQ0 D Œ�r; r�2 and Q.a; r/ D rQ0 C a.

Definition 5.3. Let S be a non-empty bounded convex closed subset in R2. We set

H ŒS� D \¹… W … 2 R.R2/;… � Sº;

and refer to H ŒS� as the “rectangular hull“ of the set S .

Note the following useful representation of the rectangular hull, which easily follows
from Definition 5.3:

(5.1) H ŒS� D .S COx1/ \ .S COx2/:

In the next section we will need the following auxiliary result.

Lemma 5.4. Let K1; K2 2 K.R2/ be two convex compacts in R2 with non-empty inter-
section. Let � � 0 and let Q D Œ��; ��2. Then

(5.2) .K1 \K2/CQ D .K1 CQ/ \ .K2 CQ/ \H Œ.K1 \K2/CQ�:

Proof. Obviously, the right-hand side of (5.2) contains its left-hand side.
Let us prove the converse statement. Fix a point

(5.3) a 2 .K1 CQ/ \ .K2 CQ/ \H ŒK1 \K2 CQ�:

Our aim is to prove that a 2 .K1 \K2/CQ. Clearly, this property holds if and only
if Q.a; �/ \K1 \K2 ¤ ;. It is also clear that

Q.a; �/ D …1.a/ \…2.a/ where …i .a/ D Q.a; �/COxi ; i D 1; 2:

Thus,

a 2 .K1 \K2/CQ provided K1 \K2 \…1.a/ \…2.a/ ¤ ;:

Thanks to Theorem 2.2, the family of sets ¹K1; K2; …1.a/; …2.a/º has a common
point provided any three members of this family have a non-empty intersection.

Let us prove that it is true for a satisfying (5.3). Indeed, a 2 Ki CQ, so that Ki \
Q.a; �/ ¤ ;, i D 1; 2. Hence,

Ki \…1.a/ \…2.a/ D Ki \Q.a; �/ ¤ ;; i D 1; 2:

Next, thanks to (5.1) and (5.3), for every i D 1; 2,

a 2 H Œ.K1 \K2/CQ� � .K1 \K2/CQCOxi :

Hence, K1 \K2 \…i .x/ ¤ ;, i D 1; 2, and the proof of the lemma is complete.
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5.3. Balanced refinements of set-valued mappings in `2
1

In this section we refine the result of Theorem 1.9 for the space X D `21.

Theorem 5.5. In the settings of Theorem 1.9, properties (1.7) and (1.8) hold provided
X D `21,

(5.4) �1 � 1; �2 � 3�1 and 
 � �2.3�2 C �1/=.�2 � �1/:

In particular, (1.7) and (1.8) hold whenever �1 D 1, �2 D 3 and 
 D 15.

Proof. We mainly follow the scheme of the proof of Theorem 1.9 given in Section 3.
LetF WM!K.R2/ be a set-valued mapping satisfying the hypothesis of Theorem 5.5.

Thus, the next statement is true.

Claim 5.6. For every M0 � M, #M0 � 4, the restriction F jM0 of F to M0 has a �-
Lipschitz selection fM0 WM0 ! `21 with �-Lipschitz seminorm kfM0kLip..M0;�/;`21/

� 1.

Let �1 and �2 be positive constants satisfying inequalities (5.4). We set L D �2=�1;
thus, L � 3. Then we introduce a pseudometric on M defined by d.x; y/ D �1�.x; y/,
x; y 2M.

We let F Œ1� and F Œ2� denote the first and the second order .¹1;Lº; d/-balanced refine-
ments of F respectively. See Definition 1.6. Thus, for every x 2M,

F Œ1�.x/ D
\
z2M

ŒF .z/C d.x; z/Q0� and F Œ2�.x/ D
\
z2M

ŒF Œ1�.z/C L d.x; z/Q0�:

We also recall that e.M; `21/ D 1. In this case, Lemma 3.5 and Proposition 3.7 tell us
that F Œ1�.x/ ¤ ; and F Œ2�.x/ ¤ ; for every x 2M.

Let
Q
.L/ D L�.L/; where �.L/ D .3LC 1/=.L � 1/:

Let us prove that

(5.5) dH.F
Œ2�.x/; F Œ2�.y// � Q
.L/ d.x; y/ for every x; y 2M:

We recall that, thanks to formula (3.10), F Œ2�.x/ D \¹Tx.u; u0; u00/ W u; u0; u00 2Mº

where, given u; u0; u00 2M,

(5.6) Tx.u; u0; u00/ D ¹ŒF .u0/C d.u0; u/Q0�\ ŒF .u
00/C d.u00; u/Q0�º CL d.u; x/Q0:

In particular, Tx.u; u0; u00/ ¤ ; for all u; u0; u00 2M (because F Œ2�.x/ ¤ ;).
The next lemma is a refinement of the formula (3.25) for the special case of X D `21.

Lemma 5.7. Let � > 0 and let Q D �Q0 D Œ��; ��2. Then, for every x 2M, we have

(5.7) F Œ2�.x/CQ D
\

v;u;u0;u002M

®
ŒTx.u; u

0; u00/ \ .F.v/C d.x; v/Q0/�CQ
¯
:
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Proof. Lemma 3.8 tells us that

(5.8) F Œ2�.x/CQ D
\®

ŒTx.u1; u
0
1; u

00
1/ \ Tx.u2; u

0
2; u

00
2/�CQ

¯
;

where the intersection is taken over all ui ; u0
i ; u

00
i 2M, i D 1; 2. Note also that, by (5.6),

F.v/C d.x; v/Q0 D Tx.x; v; v/:

From this and (5.8) it follows that the right-hand side of (5.7) contains its left-hand side.
We prove the converse statement. Let us fix a point

(5.9) a 2
\

v;u;u0;u002M

®
ŒTx.u; u

0; u00/ \
�
F.v/C d.x; v/Q0

�
�CQ

¯
and show that a 2 F Œ2�.x/CQ. In view of formula (5.8), it suffice to prove that for every
u1; u

0
1; u

00
1; u2; u

0
2; u

00
2 2M, the point a belongs to the set A defined by

(5.10) A D ŒTx.u1; u
0
1; u

00
1/ \ Tx.u2; u

0
2; u

00
2/�CQ:

To see this, given i 2 ¹1; 2º, we introduce the following sets: Qi D L d.ui ; x/Q0,

(5.11) K 0
i D F.u

0
i /C d.ui ; u0

i /Q0 and K 00
i D F.u

00
i /C d.ui ; u00

i /Q0:

In these settings, Tx.ui ; u0
i ; u

00
i / D K

0
i \K

00
i CQi , i D 1; 2. See (5.6).

Note thatK 0
i \K

00
i ¤ ; because Tx.ui ; u0

i ; u
00
i /¤ ;. Therefore, thanks to Lemma 5.4,

(5.12) Tx.ui ; u
0
i ; u

00
i / D .K

0
i CQi / \ .K

00
i CQi / \H ŒTx.ui ; u

0
i ; u

00
i /�; i D 1; 2:

Now, let us introduce the following families of sets:

KC
D ¹K 0

i CQi ; K
00
i CQi W i D 1; 2º; KCC

D ¹H ŒTx.ui ; u
0
i ; u

00
i /� W i D 1; 2º;

K DKC
[KCC:

Then, thanks to (5.10) and (5.12), A D Œ\¹K W K 2Kº�CQ.
We recall that, thanks to Proposition 3.7, the set F Œ2�.x/ ¤ ;, so that the left-hand

side of (5.8) is non-empty as well. From this and (5.10) it follows that A¤ ;, proving that
\¹K W K 2Kº ¤ ;. Therefore, thanks to Lemma 3.4,

A D \¹ŒK \K 0�CQ W K;K 0
2Kº:

Thus, to prove that a 2A, it suffices to show that a 2K \K 0CQ for everyK;K 02K .
To do this, first let us note that, thanks to (5.11),

K 0
i CQi D F.u

0
i /C d.ui ; u0

i /Q0 C L d.ui ; x/Q0 � F.u0
i /C .d.ui ; u

0
i /C d.ui ; x//Q0

for every i D 1; 2. Therefore, thanks to the triangle inequality,

(5.13) K 0
i CQi � F.u

0
i /C d.u0

i ; x/Q0:
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In the same way, we prove that

(5.14) K 00
i CQi � F.u

00
i /C d.u00

i ; x/Q0; i D 1; 2:

Furthermore, we know that

(5.15) H ŒTx.ui ; u
0
i ; u

00
i /� � Tx.ui ; u

0
i ; u

00
i /; i D 1; 2:

On the other hand, property (5.9) tells us that

(5.16) a 2 Tx.u; u
0; u00/ \ ŒF .v/C d.x; v/Q0/�CQ for every u; u0; u00; v 2M:

Combining this property with (5.13), (5.14) and (5.15), we conclude that

a 2 K \K 0
CQ whenever either K 2KC; K 0

2KCC or K;K 0
2KC:

It remains to prove that

(5.17) a 2 H1 \H2 CQ; where Hi D H ŒTx.ui ; u
0
i ; u

00
i /�; i D 1; 2:

It is immediate from Lemma 5.2, part (b), that

H1 \H2 CQ D .H1 CQ/ \ .H2 CQ/;

so that

H1 \H2 CQ D ¹H ŒTx.u1; u
0
1; u

00
1/�CQº \ ¹H ŒTx.u2; u

0
2; u

00
2/�CQº:

From this and (5.15), we have

(5.18) H1 \H2 CQ � ¹Tx.u1; u
0
1; u

00
1/CQº \ ¹Tx.u2; u

0
2; u

00
2/CQº:

But, thanks to (5.16), a 2 Tx.ui ; u0
i ; u

00
i / C Q, i D 1; 2. Combining this property

with (5.18), we obtain the required property (5.17), completing the proof of the lemma.

We are in a position to prove inequality (5.5). Our proof will follow the scheme of the
proof of Proposition 3.9.

Let x; y 2M, and let � D Q
.L/ d.x; y/. (Recall that Q
.L/ D L�.L/ and d D �1�.)
Lemma 5.7 tells us that

(5.19) F Œ2�.x/C �Q0 D
\

v;u;u0;u002M

®
ŒTx.u; u

0; u00/ \ .F.v/C d.x; v/Q0/�C �Q0
¯
:

Let us fix elements u; u0; u00; v 2M and a set

(5.20) zA D ŒTx.u; u
0; u00/ \ .F.v/C d.x; v/Q0/�C �Q0:

Let us prove that zA � F Œ2�.y/. Let

(5.21) C1DF.u0/C d.u0; u/Q0; C2DF.u
00/C d.u00; u/Q0; CDF.v/C d.x; v/Q0;
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and let " D L d.x; y/ and r D d.u; x/. Then

� D Q
.L/ d.x; y/ D L�.L/ d.x; y/ D �.L/":

In these settings, Tx.u; u0; u00/ D .C1 \ C2/C LrQ0, see (5.6), and

zA D Œ¹.C1 \ C2/C LrQ0º \ C �C �.L/"Q0; see (5.20).

Let us apply Proposition 2.3 to the sets C1; C2 and C defined by (5.21). To do this, we
have to verify condition (2.4) of that proposition, i.e., to prove that

(5.22) C1 \ C2 \ .C C rQ0/ ¤ ;:

Let M0 D ¹u; u0; vº. Then, thanks to Claim 5.6, there exists a �-Lipschitz selection
fM0 WM0 ! `21 of the restriction F jM0 with kfM0kLip..M0;�/;`21/

� 1.
Because e.M; `21/D 1 and dD �1�� �, the mapping fM0 WM0! `21 can be extended

to a d-Lipschitz mapping Qf WM! `21 defined on all of M with d-Lipschitz seminorm

k Qf kLip..M;d/;`21/ � kfM0kLip..M0;�/;`21/
� 1:

Thus, Qf .u0/D fM0.u0/ 2 F.u0/, Qf .u00/D fM0.u00/ 2 F.u00/, Qf .v/D fM0.v/ 2 F.v/,

k Qf .u0/ � Qf .u/k � d.u0; u/; k Qf .u00/ � Qf .u/k � d.u00; u/

and
k Qf .x/ � Qf .u/k � d.u; x/ D r; k Qf .x/ � Qf .v/k � d.v; x/:

Hence, Qf .u/ 2 C1 \ C2 and Qf .x/ 2 C , so that C1 \ C2 \ .C C rQ0/ 3 Qf .u/, prov-
ing (5.22).

This enables us to apply Proposition 2.3 to the sets C1, C2 and C . By this proposition,

zA D Œ¹.C1 \ C2/C LrQ0º \ C �C �.L/"Q0

� Œ.C1\C2/C.LrC"/Q0� \ Œ¹.C1CrQ0/\C ºC"Q0� \ Œ¹.C2CrQ0/\C ºC"Q0�

D S1 \ S2 \ S3:

Let us prove that Si � F Œ2�.y/ for every i D 1; 2; 3. We begin with the set

S1 D .C1 \ C2/C .Lr C "/Q0

D Œ¹F.u0/C d.u0; u/Q0º \ ¹F.u
00/C d.u00; u/Q0º�C .L d.u; x/C L d.x; y//Q0:

See (5.21). By the triangle inequality, d.u; x/C d.x; y/ � d.u; y/, so that

S1 �
�
¹F.u0/C d.u0; u/Q0º \ ¹F.u

00/C d.u00; u/Q0º
�
CL d.u; y/Q0 D Ty.u; u

0; u00/:

See (5.6). But, thanks to (3.10), Ty.u; u0; u00/ � F Œ2�.y/, proving the required inclusion
S1 � F

Œ2�.y/.
Let is prove that S2 � F Œ2�.y/. We have

S2 D Œ.C1 C rQ0/ \ C �C "Q0

D
�
¹.F.u0/C d.u0; u/Q0/C d.x; u/Q0º \ ¹F.v/C d.x; v/Q0º

�
C L d.x; y/Q0:
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Therefore, thanks to the triangle inequality, (5.6) and (3.10),

S2 � Œ.F .u
0/C d.u0; x/Q0/ \ .F.v/C d.x; v/Q0/�C L d.x; y/Q0

D Ty.x; u
0; v/ � F Œ2�.y/:

In the same way, we show that S3 � F Œ2�.y/. Hence, zA � S1 \ S2 \ S3 � F Œ2�.y/.
Combining this inclusion with the definition (5.20) and the representation (5.19), we

conclude that
F Œ2�.x/C �Q0 � F

Œ2�.y/:

By interchanging the roles of x and y, we obtain also the inclusion

F Œ2�.y/C �Q0 � F
Œ2�.x/:

These two inclusions imply the inequality

dH.F
Œ2�.x/; F Œ2�.y// � � D Q
.L/ d.x; y/ D �1 Q
.L/�.x; y/;

proving (1.8) with 
 D �1L.3LC 1/=.L� 1/. We recall that LD �2=�1, so that inequal-
ity (1.8) holds for any 
 � �2.3�2 C �1/=.�2 � �1/.

The proof of Theorem 5.5 is complete.
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