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On digits of Mersenne numbers

Bryce Kerr, László Mérai and Igor E. Shparlinski

Abstract. Motivated by recently developed interest to the distribution of q-ary digits
of Mersenne numbers Mp D 2p � 1, where p is prime, we estimate rational expo-
nential sums with Mp , p ⩽ X , modulo a large power of a fixed odd prime q. In
turn this immediately implies the normality of strings of q-ary digits amongst about
.logX/3=2Co.1/ rightmost digits ofMp , p ⩽ X . Previous results imply this only for
about .logX/1Co.1/ rightmost digits.

1. Introduction

1.1. Overview

Recently, Cai, Faust, Hildebrand, Li and Zhang [4] have considered various questions on
the patterns in leading q-ary digits of Mersenne numbersMp D 2p � 1, where p is prime,
see also [5, 10] for some other related questions. In particular, one can find in [4] some
numerical results which suggest the leftmost q-ary digits of Mersenne numbers obey the
so-called Benford law. It has also been mentioned in [4], see Remark 4.4 and Section 7,
that the bounds of exponential sums with fractions Mp=m for a large integer m such as
in [1, 2] can be used to extract some nontrivial information about the distribution of the
rightmost digits of Mp . This conclusion in [4] is based on bounds of exponential sums
with an arbitrary modulus m. However, for the case q-ary digits only moduli of the form
mD q
 with an integer 
 are of interest. Here we show that indeed for such moduli, using
some ideas of Korobov [12], one can obtain much stronger results. To emphasise the ideas,
we consider the case when q is prime, although there is no doubt that the method extends
to any q without too much loss in its power.

For example, our bounds of exponential sums immediately imply the following equi-
distribution results for q-ary digits of Mp . For any fixed real " > 0 and for any positive
integers s⩽ r ⩽ .logX/3=2�", on rightmost q-ary positions r; : : : ; r � sC 1 ofMp , p⩽X ,
any block of q-ary digits of length s appears asymptotically the same number of times,
that is, .q�s C o.1//�.X/, where, as usual, �.X/ denotes the number of primes p ⩽ X ,
see Theorem 1.3.

The generic results of [1,2] imply this only for positions which are much closer to the
right end, namely, only for r ⩽ c logX for some absolute constant c > 0.
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Let m be an arbitrary natural number, and let a and g be integers that are coprime
to m. In this paper, we study exponential sums of the form

(1.1) Sm.aIX/ D
X
n⩽X

ƒ.n/ em.agn/;

where em is the additive character modulo m defined by

em.t/ D exp.2�it=m/ .t 2 R/;

and ƒ is the von Mangoldt function:

ƒ.n/ D

´
logp if n is a power of the prime p,
0 otherwise.

The sums (1.1) are introduced in Banks et al. [1], where it is shown that

max
.a;m/D1

jSm.aIX/j ⩽
�
X��11=32m5=16 CX5=6 �5=48m7=24

�
Xo.1/;

as X !1, where � D ordm g denotes the multiplicative order of g modulo m, that is,
the smallest natural number k such that gk � 1 mod m.

Using an idea of Garaev [9] to handle double sums over certain hyperbolic regions,
the stronger bound

max
.a;m/D1

jSm.aIX/j ⩽
�
X��11=32m5=16 CX4=5 �1=8m7=20

�
Xo.1/

is established in Banks et al. [2]. Note that, for either of the above bounds to be nontrivial,
one must have � ⩾ m10=11Xo.1/ (to control the first term), hence also

m ⩽ X22=51Co.1/

(to control the second term), as X !1. For shorter sums, new ideas are needed.
In the present paper, we study the exponential sums Sm.aIX/ in the special case that

mD q
 for some fixed prime q. Our aim is to establish nontrivial bounds for short sums in
which X is smaller than the modulus m. Our approach relies on an idea of Korobov [12],
coupled with the use of Vinogradov’s mean value theorem in the explicit form given by
Ford [8].

1.2. Statement of results

Since our main motivation comes from applications to Mersenne numbers, we always
assume that q ⩾ 3, which simplifies the formulas in Section 2.3 (and can easily be avoided
at the cost of some small typographical changes).

Theorem 1.1. Fix a prime q ⩾ 3 and an integer g ⩾ 2 not divisible by q. Let 
 be a
positive integer and let A > 0 be an arbitrary constant. Suppose that X satisfies

(1.2) 2 ⩽ X ⩽ qA
 :
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Then, for all integers a with gcd.a; q/ D 1, we haveˇ̌
Sq
 .aIX/

ˇ̌
⩽ c.g; q; A/

�
X1�ı.A/�

2

logX CXq�ı.A/

�
;

where ı.A/ > 0 is a constant depending only on A,

(1.3) � D
logX
log q


;

and c.g; q; A/ depends only on g, q and A.

We remark that Theorem 1.1 is nontrivial in the range

qA
 ⩾ X ⩾ q

2=3C"

;

for an arbitrary small " > 0, provided that X is large enough, and with g D 2 yields
(via partial summation) a nontrivial bound on exponential sums with Mersenne numbers
Mp D 2

p � 1, p prime.

Corollary 1.2. For a prime q ⩾ 3 and a real X satisfying (1.2), we have

max
.a;q/D1

ˇ̌̌̌ X
p⩽X
p prime

eq
 .aMp/
ˇ̌̌̌
⩽ c.q; A/

�
X1�ı0.A/�

2

CXq�ı0.A/

�
;

where ı0.A/ > 0 is a constant depending only on A, � is as in (1.3) and c.q; A/ depends
only on q and A.

We are now able to address the question of distribution of rightmost digits of Mersenne
numbers. Given a string � of s digits to base q,

(1.4) � D .as�1; : : : ; a0/ 2 ¹0; : : : ; q � 1º
s;

we denote by Ar .X; �/ the number of primes p ⩽ X such thatMp written in base q has �
as the string on s consecutive digits on positions r; : : : ; r � s C 1, counting from the right
to the left, where the numbering starts with zero.

We recall that by the prime number theorem (in a very crude form) we have �.X/ D
.1C o.1//X= logX as X !1.

Theorem 1.3. For a fixed prime q ⩾ 3, a real " > 0 and a string � of length s of the
form (1.4), uniformly over " logX ⩽ r ⩽ .logX/3=2�" and strings � of length s of the
form (1.4) we have

Ar .X; �/ D .q
�s
C o.1// �.X/

as X !1.

We remark that the lower bound on r can be relaxed, but a condition of this kind is
necessary. For example, if 2 is not a primitive root modulo q, the distribution of digits on
the rightmost positions cannot be uniform.
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2. Preliminaries

2.1. Notation

Throughout the paper, N is the set of positive integers. The letters k, m and n (with or
without subscripts) are always used to denote positive integers; the letter q (with or without
subscripts) is always used to denote a prime.

Given a prime q, let �q denote the standard q-adic valuation. In particular, for every
n 2Z n ¹0º one has �q.n/D k, where k is the largest nonnegative integer for which qk j n.

Given a sequence of complex weights


 D .
h/h2H

supported on a finite set H and # ⩾ 1, we define norms of 
 in the usual way:

k
k1 D max
h2H
j
hj and k
k# D

� X
h2H

j
hj
#
�1=#

:

For given functions F and G, the notations F � G, G � F and F D O.G/ are all
equivalent to the statement that the inequality jF j⩽ cjGj holds with some constant c > 0.
Throughout the paper, any implied constants in symbols O ,� and� may depend on the
parameters q and A, and are absolute unless specified otherwise.

We write F � G to indicate that F � G and G � F both hold.
Finally, we use #� to denote the cardinality of a finite set � .

2.2. Sums over primes

It is convenient to use a form of Vaughan’s identity given by the equation (6) in Chapter 24
of [6].

Lemma 2.1. For any complex-valued function f .n/with jf .n/j⩽ 1 and any real numbers
1 < U; V ⩽ X with UV ⩽ X , we haveX

n⩽X

ƒ.n/f .n/� U C†1 logX C†1=22 X1=2.logX/3;

where

†1 D
X
t⩽UV

max
w⩽X=t

ˇ̌̌ X
w⩽m⩽X=t

f .mt/
ˇ̌̌
;

†2 D max
U⩽w⩽X=V

max
V⩽j⩽X=w

X
V<m⩽X=w

ˇ̌̌̌
ˇ X
w<n⩽2w
n⩽X=m
n⩽X=j

f .jn/f .mn/

ˇ̌̌̌
ˇ:

2.3. Multiplicative order of integers

Fix a prime q ⩾ 3 and an integer g ¤ ˙1 with gcd.g; q/ D 1. For every n 2 N, let
�n D ordqn g denote the order of g modulo qn. We write

(2.1) g�n D 1C hnq
nCgn .n 2 N/;
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with some uniquely determined integers hn and gn ⩾ 0 such that gcd.hn; q/D 1. We also
put

(2.2) � D �1 and G D g1 C 1 D �q.g
�
� 1/:

A simple argument shows

(2.3) gn D

´
G � n if n ⩽ G;

0 if n ⩾ G;
and �n D

´
� if n ⩽ G;

qn�G � if n ⩾ G:

The following two statements are easy consequences of (2.3).

Lemma 2.2. For r ⩾ s ⩾ G, we have

gn1�s � gn2�s mod qr ” qr�s j .n1 � n2/:

Lemma 2.3. Form 2 N and nonnegative integers x and y with x ¤ y, either q �j gmx �
gmy , or

�q.g
mx
� gmy/ D �q.x � y/C �q.m/CG:

Proof. Put �0 D 1. For any integer n ⩾ 0, we have that qn j gmx � gmy if and only if
mx � my mod �n. Consequently,

�q.g
mx
� gmy/ D max¹n ⩾ 0 W �n j m.x � y/º;

and the result follows from (2.3) as gcd.�; q/ D 1.

2.4. Explicit form of the Vinogradov mean value theorem

Let Nr;k.P / be the number of integral solutions to the system of equations

n
j
1 C � � � C n

j
r D m

j
1 C � � � Cm

j
r .1 ⩽ j ⩽ k; 1 ⩽ n`; m` ⩽ P /:

Our application of Lemma 2.5 below requires a precise form of the Vinogradov mean
value theorem. For this purpose, we use a fully explicit version due to Ford (Theorem 3
in [8]), which is presented here in a weakened and simplified form.

Lemma 2.4. For any integer k⩾129, there is an integer r 2 Œ2k2;4k2� such that forP >0,

Nr;k.P / ⩽ k3k
3

P 2r�k.kC1/=2Ck
2=1000:

We note that the condition r ⩾ 2k2 is not explicit in Theorem 3 of [8], but we can
always impose this in view of the well-known (and essentially trivial) monotonicity prop-
erty

NrC1;k.P /P
�2.rC1/ ⩽ Nr;k.P /P

�2r :

We also observe that the recent striking advances in the Vinogradov mean value the-
orem due to Bourgain, Demeter and Guth [3] and Wooley [14] are not suitable for our
purposes here, as they contain implicit constants that depend on r and k, whereas in our
approach r and k grow together with P . On the other hand, a result of Steiner [13] may
perhaps be used to improve numerical constants in our estimates in some ranges of para-
meters.
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2.5. Double exponential sums with polynomials

Our main tool to bound the exponential sum Sm.a;X/ is the following variation of a result
of Korobov (Lemma 3 in [12]); examining the proof of that lemma, one can easily see that
one can add complex weights ˛.x/ and ˇ.y/ without any changes in the proof.

It is convenient to denote

e.t/ D exp.2�it/ .t 2 R/:

Lemma 2.5. Let �j 2 R , for j D 1; : : : ; k, and suppose that each �j has a rational
approximation such thatˇ̌̌

�j �
bj

qj

ˇ̌̌
⩽

1

q2j
with bj 2 Z, qj 2 N, and .bj ; qj / D 1:

Then, for any natural number r and sequences of complex numbers ˛.x/; ˇ.y/ satisfying

j˛.x/j; jˇ.y/j ⩽ 1;

the sum

S D

PX
x;yD1

˛.x/ˇ.y/ e.�1xy C � � � C �k xkyk/

admits the upper bound

jS j2r
2

⩽
�
64r2 log.3Q/

�k=2
P 4r

2�2rNr;k.P /

kY
jD1

min
®
P j ; P j q

�1=2
j C q

1=2
j

¯
;

where
Q D max

1⩽j⩽k
¹qj º:

The following result follows from the standard completing technique, see Section 12.2
of [11].

Lemma 2.6. For an arbitrary function f WR! R, an interval I of length N , and inte-
gers U and V satisfying

UV ⩽ N=2;

there exists some ˛ 2 R such thatX
x2I

e.f .x//�
logN
UV

X
x2J

X
u⩽U

ˇ̌̌ X
v⩽V

e.f .x C uv/C ˛v/
ˇ̌̌
;

where J is some interval of length 2N .

Proof. It is enough to writeX
x2I

e.f .x// D
X
x2J

xCuv2I

e.f .x C uv//

and the use of the completing technique from Section 12.2 of [11] to encode the condition
x C uv 2 I into linear exponential sums, and the use of the bound (8.6) in [11].
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2.6. Bilinear forms with exponential functions

Fix a prime q and an integer g ¤ ˙1 with gcd.q; g/ D 1. We denote by �n the order of g
modulo qn, and recall how G is defined in (2.2).

The following result is the main ingredient for Theorem 1.1. It uses some ideas of
Korobov [12], Theorem 4.

Proposition 2.7. Let 
 2 N with 
 > 16G. Given integers K;L ⩾ 0 and M;N ⩾ 1 with

M ⩽ q2
=65;

two sequences of complex weights

˛ D .˛m/
KCM
mDKC1 and ˇ D .ˇn/

LCN
nDLC1

and an integer z not divisible by q, for the sum

S D

KCMX
mDKC1

LCNX
nDLC1

˛mˇn eq
 .zgmn/;

we have

S � k˛k2 kˇk1
�
M 1=2�10�10�2N logM CM 1=2N 1=2

�
C k˛k1 kˇk1N q

8G ;

where
� D

logM
log q


�

Proof. To simplify the notation, we write

M D ¹K C 1; : : : ; K CM º and N D ¹LC 1; : : : ; LCN º:

First note we may assume

(2.4) M ⩾ .log q
 /32;

as otherwise
M �2

� 1;

and hence for the first term in the bound for S ,

k˛k2 kˇk1M
1=2�10�10�2N logM � k˛k2 kˇk1M 1=2N logM;

which is worse than trivial. If
M ⩽ q8G ;

then we have

S ⩽
KCMX
mDKC1

LCNX
nDLC1

j˛mj jˇnj ⩽ k˛k1 kˇk1Nq
8G :

Hence we may assume
M ⩾ q8G :
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By the Cauchy–Schwarz inequality,

jS j2 ⩽ k˛k22
X
m2M

ˇ̌̌ X
n2N

ˇn eq
 .zgmn/
ˇ̌̌2

⩽ k˛k22
X

n1;n22N

jˇn1 j jˇn2 j jS.n1; n2/j(2.5)

⩽ k˛k22 kˇk
2
1

X
n1;n22N

jS.n1; n2/j;

where
S.n1; n2/ D

X
m2M

eq
 .z.gn1m � gn2m//:

Recall we are assuming

(2.6) � ⩽
2

65
�

Define s by

(2.7) s D
j�

8

k
D

j1
8

logM
log q

k
⩾ G;

so that from (2.3), we have

(2.8) �s ⩽ qs ⩽M 1=8;

and

(2.9) qs >
M 1=8

q
�M 1=8;

with implied constant depending on q. To establish the desired result, we bound S.n1; n2/
in different ways as the pair .n1; n2/ varies over N �N .

We denote

A1 D ¹.n1; n2/ 2 N �N W �q.n1/ > s or �q.n2/ > sº;

A2 D ¹.n1; n2/ 2 N �N W gn1�s � gn2�s mod q2sº;
A3 D .N �N / n .A1 [A2/:

Clearly,
#A1 ⩽ 2N 2=qs;

and Lemma 2.2 implies that
#A2 ⩽ N 2=qs CN:

Thus using the trivial bound jS.n1; n2/j ⩽M along with (2.9), we get that

(2.10)
X
jD1;2

X
.n1;n2/2Aj

jS.n1; n2/j �
�MN 2

qs
CMN

�
� .N 2M 7=8

CMN/:
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For the final set A3, we need a nontrivial bound on S.n1; n2/. Let .n1; n2/ 2 A3 be
fixed. Since jS.n1; n2/j D jS.n2; n1/j, without loss of generality we can assume

(2.11) �q.n1/ D a; �q.n2/ D b; a ⩽ b ⩽ s:

With a and b fixed for the moment, it is convenient to define

(2.12) k D
j 


s C a

k
and P D qsCa:

Using the definition of s along with (2.6) and (2.8), we see that

(2.13) k ⩾ 129 and P ⩽ q2s ⩽M 1=4:

Now put � D gn1 and � D gn2 , so that

S.n1; n2/ D
X
m2M

eq
 .z.�m � �m//:

Using (2.1), (2.7) and (2.11), it is easy to see that the relations

(2.14) ��s D 1C uqsCa and ��s D 1C vqsCb

hold with some integers u;v coprime to q. Partitioning the summation overm into distinct
residue classes modulo �s leads to the estimate

(2.15) S.n1; n2/ D S0.n1; n2/CO.�s/ D S0.n1; n2/CO.M
1=8/

by (2.8), where

S0.n1; n2/ D

�sX
xD1

X
y2Y

eq
 .z.�xC�sy � �xC�sy//;

and
Y D .K=�s; .K CM/=�s� \ Z:

By (2.14) we have

�xC�sy � �xC�sy D �x.1C uqsCa/y � �x.1C vqsCb/y

D �x
yX
iD0

�y
i

�
uiq.sCa/i � �x

yX
iD0

�y
i

�
viq.sCb/i

� �x � �x C

kX
iD1

q.sCa/i .�xui � �xviq�i /
�y
i

�
mod q
 ;

where we have put � D b � a (note that (2.12) is used in the last step); therefore,

jS0.n1; n2/j ⩽
�sX
xD1

ˇ̌̌X
y2Y

eq

� kX
iD1

q.sCa/i .�xui � �xviq�i /
�y
i

��ˇ̌̌
:
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We apply Lemma 2.6 with the function

f .y/ D

kX
iD1

q.sCa/i .�xui � �xviq�i /
�y
i

�
and parameters

U D V D P; I D Y;

and note that, by (2.8) and (2.13),

P 2 ⩽M 1=2 ⩽M 7=8 ⩽
M

�s
⩽ #Y C 1:

It follows that

S0.n1; n2/�
logM
P 2

�sX
xD1

X
y2Z

PX
z1D1

ˇ̌̌ PX
z2D1

e.˛xz2/ eq
 .f .y C z1z2//
ˇ̌̌

(2.16)

�
logM
P 2

�sX
xD1

X
y2Z

ˇ̌̌ PX
z1D1

PX
z2D1

e.˛xz2/ ˇx;y.z1/ eq
 .f .y C z1z2//
ˇ̌̌
;

where Z is an interval of length O.M=�s/ and ˛x may depend on the variable x and ˇx;y
may depend on the variables x and y and satisfies

jˇx;y.z1/j D 1:

With the intention of applying Lemmas 2.4 and 2.5 to the right side of (2.16), we fix y for
the moment and write

kŠf .y CZ/ D

kX
jD0

ajZ
j .aj 2 Z/;

and for each i D 1; : : : ; k,

(2.17) kŠ q.sCa/i .�xui � �xviq�i /
�y CZ

i

�
D

iX
jD1

ai;j Z
j

with some ai;j 2 Z. Clearly,

aj D

kX
iDj

ai;j ;

and thus

(2.18) �q.aj / ⩾ min¹�q.ai;j / W i D j; : : : ; kº:

Moreover, equality holds in (2.18) whenever

(2.19) �q.aj;j / < �q.ai;j / .i > j /:
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Denote
� D min

®
�q.�

xuj � �xvj q�j / W j D 1; : : : ; k
¯
;

and let j be an index for which

(2.20) �q.�
xuj � �xvj q�j / D �:

From (2.17) it is clear that

aj ;j D
kŠ

j Š
q.sCa/j .�xuj � �xvj q�j /;

and therefore

(2.21) �q.aj ;j / D �q.kŠ/ � �q.j Š/C .s C a/j C �:

On the other hand, (2.17) implies

(2.22) �q.ai;j / ⩾ �q.kŠ/ � �q.i Š/C .s C a/i C � .i > j /:

Before we proceed, we note that the estimate j < i ⩽ k < qsCa holds since by (2.4), (2.7)
and (2.12) we have

(2.23) k ⩽



s
⩽

2


s C 1
<
16

�
D
16 log q


logM
⩽M 1=32 < qs ⩽ qsCa:

This implies the inequality

.s C a/.i � j / > �q.i.i � 1/ � � � .j C 1// D �q.i Š/ � �q.j Š/;

which together with (2.21) and (2.22) verifies the condition (2.19) for any j satisfy-
ing (2.20). Hence, (2.18) holds with equality, and thus we have

(2.24) �q.aj / D �q.kŠ/ � �q.j Š/C .s C a/j C �

for any j satisfying (2.20).
If � > 0, then clearly

�q.�
xuj � �xvj q�j / D 0 .j ⩾ 1/:

For � D 0 (that is, a D b), we claim that for any two consecutive indices j and j C 1,

(2.25) �q.�
xuj � �xvj / D � or �q.�

xujC1 � �xvjC1/ D �:

To prove the claim, suppose on the contrary that

�xuj � �xvj mod q�C1 and �xujC1 � �xvjC1 mod q�C1

for some j . Then, dividing the second congruence by the first one, we get u� v mod q�C1

and thus
�xuj � �xvj mod q�C1 for all j;

which contradicts the definition of �.
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Now let

J D
®
.k C 1/=2 ⩽ j ⩽ k W �q.�

xuj � �xvj q�/ D �
¯
:

In view of (2.25), this implies that #J ⩾ bk=4c. Since �x � �x D gn1x � gn2x and
n1 ¤ n2 (in fact, �q.n1 � n2/ < s by Lemma 2.2 since .n1; n2/ 62 A2), by Lemma 2.3
and inequalities (2.7) and (2.8) we have

�q.�
x
� �x/ D 0 or �q.�

x
� �x/ D �q.n1 � n2/C �q.x/CG ⩽ 3sI

this implies that � ⩽ 3s. Thus, for every j 2 J we have by (2.24),

.s C a/j ⩽ �q.aj / ⩽ �q.kŠ/C .s C a/j C 3s;

and so (recalling that P D qsCa) we can write

(2.26)
aj

kŠ q

D
bj

qj

with

(2.27) gcd.bj ; qj / D 1 and P�j q
�3s ⩽ qj ⩽ kŠP�j q
 :

We also define qj by (2.26) for j 62 J.
We are now in a position to apply Lemmas 2.4 and 2.5 in order to bound the double

sum over z1 and z2 in (2.16). Writing

T D

PX
z1;z2D1

ˇx;y.z1/ ˛x.z2/ eq
 .f .y C z1z2//

D

PX
z1;z2D1

ˇx;y.z1/ ˛x.z2/ e
� kX
jD1

bj

qj
.z1z2/

j
�
;

Lemma 2.5 shows that for any natural number r , the bound

jT j2r
2

⩽
�
64r2 log.3Q/

�k=2
P 4r

2�2rNr;k.P /

kY
jD1

min¹P j ; P j q�1=2j C q
1=2
j º

holds with Q D max1⩽j⩽k qj . Note that (2.23) and (2.27) imply that

log.3Q/ ⩽ log.3kŠq
 / ⩽ 
 log.kq/ ⩽ 
 k log q

since for 129 ⩽ k ⩽ 
 we have 3kŠ ⩽ kk ⩽ k
 . Moreover, since k ⩾ 129 (see (2.13)),
Lemma 2.4 shows that we can choose the integer r 2 Œ2k2; 4k2� so that

Nr;k.P / ⩽ k3k
3

P 2r�k.kC1/=2Ck
2=1000:

Hence we find that

(2.28) jT j2r
2

⩽
�
1024
 k5 log q

�k=2
k3k

3C3kP 4r
2�k.kC1/=2Ck2=1000R;
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where

R D

kY
jD1

min
®
P j ; P j q

�1=2
j C q

1=2
j

¯
D P k.kC1/=2

kY
jD1

min
®
1; q
�1=2
j C P�j q

1=2
j

¯
:

For any j 2 J we have j ⩾ .k C 1/=2. Recalling (2.12), we have

P�j ⩽ P j q�
 I

thus, using (2.27) we see that

q
�1=2
j C P�j q

1=2
j ⩽ P j=2q�
=2C3s=2 C .kŠ/1=2P j=2q�
=2 ⩽ kkP j=2q�
=2C3s=2:

For j 62 J, we use the trivial bound

min
®
1; q
�1=2
j C P�j q

1=2
j

¯
⩽ 1:

Therefore, recalling that #J ⩾ bk=4c, and using the bounds

0:24k < bk=4c ⩽ k=4 and
kX

jDk�bk=4cC1

j=2 < 0:11k2;

which hold for k ⩾ 129, we see that

R ⩽ P k.kC1/=2
Y
j2J

�
kkP j=2q�
=2C3s=2

�
⩽ kk

2

P k.kC1/=2
kY

jDk�bk=4cC1

�
P j=2q�
=2C3s=2

�
⩽ kk

2

P k.kC1/=2C0:11k
2

q�0:12
kC3sk=8:

Combining this bound with (2.28), we deduce that

(2.29) jT j ⩽ .ABC/1=2r
2

P 2;

where

A D 25k k3k
3Ck2C11k=2; B D .
 log q/k=2 and C D P 0:111k

2

q�0:12
kC3sk=8:

Since r ⩾ 2k2, it is clear that

(2.30) A1=2r
2

� 1:

Next, since k � 
=s � ��1, we have


 log q D ��1 logM � k logM;

hence

(2.31) B1=2r
2

� .k logM/1=8k
4

� logM:
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Recalling (2.7) and (2.12), we have




s C a
� 1 < k ⩽




s C a
and




s
⩾
8

�
;

and using (2.7), we get that

logC
log q

D 0:111.s C a/k2 � 0:12
 k C 3sk=8 ⩽ �
0:009
2

s C a
C 0:12
 C

3s


8.s C a/

⩽ �
0:009
2

s
C 0:12
 C

3


8
⩽ �

0:036


�
C 0:495
 ⩽ �

0:02


�
;

where we have used the inequality � ⩽ 2=65 in the last step; thus,

(2.32) C ⩽M�0:02=�
2

:

Since
r ⩽ 4k2;

we have

(2.33)
0:02

2r2�2
⩾

1

1600�2k4
;

and from (2.7) and (2.12),

(2.34) k ⩽



s C a
⩽




�
=8 � 1
�

Since
�
 D

logM
log q

;

and we allow the implied constant in the statement of Proposition 2.7 to depend on q, we
may assume that M ⩾ q16 and thus

�
 ⩾ 16;

which combined with (2.34) implies

k ⩽
16

�
;

and hence by (2.33),

0:02

2r2�2
⩾

1

1600k4�2
⩾

1

25 � 222
�2 ⩾ 10�9�2:

Substituted in (2.32), this gives

C 1=2r
2

⩽M�10
�9�2 :

Combining the above with (2.29), (2.30) and (2.31) we get

T � P 2M�10
�9�2 logM:
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Inserting the previous bound into (2.16) and using (2.13), we have

S0.n1; n2/� �s #YM�10
�9�2.logM/2 �M 1�10�9�2.logM/2;

since
�s #Y �M:

Combining with (2.15) implies that

(2.35) S.n1; n2/�M 1�10�9�2.logM/2:

Now (2.5), (2.10) and (2.35) together yield the bound

S � k˛k2 kˇk1NM
1=2�10�10�2 logM C k˛k2 kˇk1

�
M 7=16N CM 1=2N 1=2

�
;

and sinceM 7=16N never dominates the termNM 1=2�10�10�2 logM , we obtain the desired
result.

We can remove the condition M ⩽ q2
=65 in Proposition 2.7 by partitioning the sum-
mation over M into short intervals. This is necessary for applications to Theorem 1.3,
where we need to consider both long and short ranges of the parameter M .

Corollary 2.8. Let 
 2 N with 
 > 16G and let A > 0 be arbitrary. Given integers
K;L ⩾ 0 and M;N ⩾ 1 with

(2.36) M ⩽ qA
 ;

two sequences of complex weights

˛ D .˛m/
KCM
mDKC1 and ˇ D .ˇn/

LCN
nDLC1

and an integer z not divisible by q, for the sum

S D

KCMX
mDKC1

LCNX
nDLC1

˛mˇn eq
 .zgmn/;

we have

S�k˛k2 kˇk1
�
M 1=2�c�2N logM CM 1=2N 1=2

�
C

�
1C

M

q2
=65

�
k˛k1 kˇk1Nq

8G ;

where
� D

logM
log q


and c > 0 is a constant depending on A.

Proof. By Proposition 2.7, we may assume M ⩾ q2
=65, and by modifying the coeffi-
cients ˛ (appending them with at most bq2
=65c zeros), we may assume

(2.37) M D JM0; with M0 D bq
2
=65
c
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for some integer J ⩾ 1. Subdividing S into J sums,

Sj D

KCM0.jC1/X
mDKC1CM0j

LCNX
nDLC1

˛mˇn eq
 .zgmn/;

by the the Cauchy–Schwarz inequality and Proposition 2.7 (applied for each 0 ⩽ j ⩽
J � 1), and denoting

(2.38) �0 D
logM0

log q

;

we obtain

jS j2 ⩽ J

J�1X
jD0

jSj j
2

� J kˇk21

J�1X
jD0

KCM0.jC1/X
mDKC1CM0j

j˛mj
2
�
M
1�2�10�10�20
0 N 2 log2M C q2
=65N

�
C J 2 k˛k21 kˇk

2
1N

2q16G

� k˛k22 kˇk
2
1

�
J q2
.1�2�10

�10�20/=65N 2 log2M C Jq2
=65N
�

C J 2 k˛k21 kˇk
2
1N

2q16G

� k˛k22 kˇk
2
1

�
Mq�2�10

�10
�20=65N 2 log2MCMN
�
Ck˛k21 kˇk

2
1N

2 q
16GM 2

q4
=65
�

By (2.36), (2.37) and (2.38), we have

q10
10
�20 ⩾M c�2 ;

for some constant c depending on A. Hence

jS j � k˛k2 kˇk1
�
M 1=2�c�2N log2M CM 1=2N 1=2

�
C k˛k1 kˇk1N

q8GM

q2
=65
;

which completes the proof.

We now estimate double sums with variables limits of summation for one variable.

Lemma 2.9. Let 
 2N with 
 > 16G and letA>0 be arbitrary. Given integersM;N ⩾ 1
and L ⩾ 0 with

M ⩽ qA
 ;

two sequences
.Km/

M
mD1 and .Nm/

M
mD1

of nonnegative integers such that Km < Nm ⩽ N for each m, two sequences of complex
weights

˛ D .˛m/
M
mD1 and ˇ D .ˇn/

N
nD1
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with
k˛k1; kˇk1 � 1

and an integer z not divisible by q, for the sum

zS D

LCMX
mDLC1

X
Km⩽n⩽Nm

˛mˇn eq
 .zgmn/

we have

zS �
�
NM 1�c�2

CN 1=2M
�

logM logN C
�
1C

M

q2
=65

�
Nq8G logN;

where
� D

logM
log q


and c > 0 is a constant depending on A.

Proof. Using the standard completing technique, see, for example, Section 12.2 in [11]
and the bound (8.6) in [11], it follows that

zS D
X

�N=2<r⩽N=2

1

jr j C 1

LCMX
mDLC1

NX
nD1

z̨m;r
ž
n;r eq
 .zgmn/;

where
z̨m;r D ˛m�m;r and ž

n;r D ˇn eN .rn/;

for some complex number �m;r � 1: Applying Corollary 2.8 and noting thatX
�N=2<r⩽N=2

1

jr j C 1
� logN;

we derive

zS �
�
NM 1�c�2

CN 1=2M
�

logM logN C
�
1C

M

q2
=65

�
Nq8G logN;

which completes the proof.

2.7. Bounds on double exponential sums over hyperbolic domains

One of our main technical tool is the following result, which gives a bound on double
exponential sums over certain “hyperbolic” regions of summation.

We recall the definition of G, given in (2.2).

Lemma 2.10. Let 
 2N with 
 > 16G and A > 0. Given real numbers X;Y;Z ⩾ 1 with

Z < Y ⩽ qA
 ;
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and a sequence ˇ D .ˇn/n⩽X=Z of complex numbers with

kˇk1 ⩽ 1;

any sequences
.Km/

M
mD1 and .Nm/

M
mD1

of nonnegative integers such thatKm <Nm⩽X=m for eachm, and any integer z coprime
to q, we haveX

Z<m⩽Y

ˇ̌̌ X
Km⩽n⩽Nm

ˇn eq
 .zgmn/
ˇ̌̌

�
�
XZ�c�

2

C .YX/1=2
�
.logX/2 C

� 1
Z
C

1

q2
=65

�
Xq8G logX;

where

� D
logZ
log q


(2.39)

and c > 0 is a constant depending only A.

Proof. Clearly there are complex numbers ˛m such that j˛mj D 1 for Z < m ⩽ Y and
˛m D 0 otherwise, such thatX

Z<m⩽Y

ˇ̌̌ X
Km⩽n⩽Nm

ˇn eq
 .zgmn/
ˇ̌̌
D

X
Z<m⩽Y

˛m
X

Km⩽n⩽Nm

ˇn eq
 .zgmn/:

Furthermore,X
Z<m⩽Y

˛m
X

Km⩽n⩽Nm

ˇn eq
 .zgmn/

D

X
logZ�1⩽j⩽logY

X
ej<m⩽ejC1

X
Km⩽n⩽Nm

˛mˇn eq
 .zgmn/

and we have set ˛m D 0 if m ⩽ Z or m ⩾ Y . We observe that for each j within the
summation range, we have

log.ejC1 � ej /
log q


⩾
log.Z � 1/

log q

⩾
�

2
;

where � is given by (2.39). HenceX
ej<m⩽ejC1

X
Km⩽n⩽Nm

˛mˇn eq
 .zgmn/

�

�X
ej
ej.1�c�

2=4/
C ej

�X
ej

�1=2�
.logX/2 C

�
1C

2j

q2
=65

� X
2j
q8G logN

by Lemma 2.9, and the result follows after renaming c, summing the above over j satis-
fying logZ � 1 ⩽ j ⩽ logY , and using the estimatesX

logZ⩽j⩽logY

e� j̨
� Z�˛ and

X
logZ⩽j⩽logY

ej˛ � Y ˛:

provided ˛ > 0 is bounded away from 0.
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2.8. Bounds on single exponential sums

We observe that combining Proposition 2.7 with Lemma 2.6 allows us to estimate sums
over an interval which has previously been considered by Korobov [12], Theorem 4. We
present a proof for completeness.

Lemma 2.11. With notation as in (2.2) and Proposition 2.7, suppose M satisfies

M ⩽ q2
=65:

Then we have

KCMX
mDKC1

eq
 .zgm/�M 1�10�11�2.logM/2 CM 10�10�2q8G.logM/2;

where
� D

logM
log q


�

Proof. Let

S D

KCMX
mDKC1

eq
 .zgm/;

and apply Lemma 2.6 with

U DM 1�10�10�2 and V D 0:5M 10�10�2

to get

S �
logN
M

KCMX
mDKC1

X
u⩽U

ˇ̌̌ X
v⩽V

e.˛v/ eq
 .zgmguv/
ˇ̌̌
:

Taking a maximum over m in the above, we get

S � logM
X
u⩽U

X
v⩽V

˛.u/ˇ.v/ eq
 .z0guv/;

for some gcd.z0; p/ D 1 and complex numbers ˛; ˇ satisfying

j˛.u/j; jˇ.v/j ⩽ 1:

With
�0 D

logU
log q


;

we have
�0 D �.1 � 10

�10�2/;

hence by Proposition 2.7,

S � .logM/2
�
V.U 1�10

�10�20 C q8G/C UV 1=2
�

� .logM/2M
�
M�10

�10�2.1�10�10�2/2
CM�

1
210

�10�2
�
CM 10�10�2q8G.logM/2:
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Note the assumption
M ⩽ q2
=65

implies that

� ⩽
2

65
;

and hence
.1 � 10�10�2/2 ⩾

�
1 � 10�10

� 2
65

�2�2
⩾

1

10
;

which completes the proof.

Partitioning the summation into small intervals as in the proof of Corollary 2.8 allows
us again to remove the restriction M ⩽ q2
=65 in Lemma 2.11.

Corollary 2.12. With notation as in (2.2) and Proposition 2.7, suppose M satisfies

M ⩽ qA
 :

Then we have
KCMX
mDKC1

eq
 .zgm/�M 1�c�2 logM CM 1�cq8G ;

where
� D

logM
log q


and c > 0 is a constant depending only A.

Proof. Arguing as in the proof of Corollary 2.8, we may partition the summation over m
into intervals of length at most q2
=65 and apply Lemma 2.11 to each of these intervals.
This produces a bound of the form

(2.40)
KCMX
mDKC1

eq
 .zgm/�M 1�c�2.logM/2 CM 1�cq8G logM;

for a constant c depending on A. Unless we have M c�2 ⩾ .logM/2 the estimate (2.40) is
trivial. Under this condition we have

M�c�
2

.logM/2 ⩽
q
M�c�

2
.logM/2;

which allows us to replace .logM/2 with logM after changing the constant c > 0. Redu-
cing c if necessary, we can also discard logM in the second term.
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3. Proofs of main results

3.1. Proof of Theorem 1.1

We apply Lemma 2.1 with

(3.1) U D X1=4 and V D X1=4

to get

(3.2) Sq
 .aIX/� X1=4 C†1.logX/C†1=22 X1=2.logX/3;

where
†1 D

X
t⩽UV

max
w⩽X=t

ˇ̌̌ X
w⩽m⩽X=t

eq
 .agtm/
ˇ̌̌
;

and

†2 D max
U⩽w⩽X=V

max
V⩽j⩽X=w

X
V<m⩽X=w

ˇ̌̌̌ X
w<n⩽2w
n⩽X=m
n⩽X=j

˛n eq
 .agmn/
ˇ̌̌̌
;

for some j˛nj ⩽ 1. Considering †1, for each fixed t ⩽ UV D X1=2, define

Gt D �q.g
t ordq.g t / � 1/

and

�t D
log .X=t/

log q

�

By (3.1) and t ⩽ UV D X1=2 we have

(3.3) �t ⩾
�

2
�

We claim that the following inequality holds:

(3.4) max
w⩽X=t

ˇ̌̌ X
w⩽m⩽X=t

eq
 .agtm/
ˇ̌̌
�

�X
t

�1�c�2t
logX C

�X
t

�1�c
q8Gt :

Indeed, if 
 > 16Gt , this follows from Corollary 2.12.
If 
 ⩽ 16Gt , then �X

t

�1�c
q8Gt ⩾

�X
t

�1�c
q
=2 ⩾

�X
t

�
;

so (3.4) is trivially true as well since

(3.5) max
w⩽X=t

ˇ̌̌ X
w⩽m⩽X=t

eq
 .agtm/
ˇ̌̌
�

X

t
;

which proves (3.4).



B. Kerr, L. Mérai and I. E. Shparlinski 1922

Summing (3.4) over t ⩽ UV and using (3.4), (3.3) and (3.5) gives

(3.6) †1 �
X

t⩽X1=2

�X
t

�1�c�2t
logX C z†1;

where
z†1 D

X
t⩽X1=2

min
°X
t
;
�X
t

�1�c
q8Gt

±
:

For t ⩽ X1=2 we have .X=t/1�c�
2
t =4 ⩽ X1�c�

2=8t�1, thusX
t⩽X1=2

�X
t

�1�c�2t
⩽

X
t⩽X1=2

�X
t

�1�c�2=4
� X1�c�

2=8 logX:

This, together with (3.6), implies

(3.7) †1 � X1�c�
2=8 logX C z†1:

Considering z†1, we partition summation over t into dyadic intervals to obtain

z†1 �
X

k⩽ logX
2 log2

X
2k⩽t<2kC1

min
°X
t
;
�X
t

�1�c
q8Gt

±
�

X
k⩽ logX

2 log2

X
2k⩽t<2kC1

min
°X
2k
;
�X
2k

�1�c
q8Gt

±
:

Let k0 be an index with k0 ⩽ .logX/=.2 log 2/ such that the maximum of the inner sums
over t is attained, and write

Z D
X

2k0
�

Then
X1=2 ⩽ Z ⩽ X;

and
z†1 � .logX/

X
X=Z⩽t⩽2X=Z

min
®
Z; Z1�cq8Gt

¯
:

Recalling the definition of G, given by (2.2), we see that

ordq.gt / D
�

gcd.�; t/
;

and by Lemma 2.3, used with m D 1, x D � t= gcd.�; t/ and y D 0,

Gt D �q
�
g� t= gcd.�;t/

� 1
�
D G C �q.t/:

As g and q are fixed, G D O.1/, and hence

z†1 � logX
X

X=Z⩽t⩽2X=Z

min
®
Z;Z1�cq8�q.t/

¯
:
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For O.XZ�1�c=9/ values of t ⩽ 2X=Z with q�q.t/ > Zc=9, we use

min
®
Z;Z1�cq8�q.t/

¯
⩽ Z:

Their total contribution is O.XZ�c=9/. For the remaining values of t , we use

min
®
Z;Z1�cq8�q.t/

¯
⩽ Z1�cC8c=9 D Z1�c=9;

which gives the same total contribution O.XZ�c=9/. Hence, recalling Z ⩾ X1=2, we
obtain

z†1 � XZ�c=9 logX ⩽ X1�c=18 logX:

Using the above in (3.7) gives

(3.8) †1 � X1�c�
2=8 logX CX1�c=18 logX � X1�ı.A/�

2

.logX/2;

for some constant ı.A/ > 0 that depends only on A.
To estimate †2, we apply Lemma 2.10 to get

†2 �
�
X1�ı.A/�

2

CX7=8 C
X

q2
=65

�
.logX/2;

for a suitably reduced ı.A/ if necessary. By the above bounds (3.2) and (3.8),

Sq
 .aIX/� X1�ı.A/�
2

.logX/3 C
X

q2
=65
.logX/4:

Now, using the same argument as in the proof of Corollary 2.12, and reducing ı.A/ if
necessary, we see that we can replace .logX/3 with logX (or any other power of logX )
in the first term, and also discard completely .logX/4 in the second term.

3.2. Proof of Theorem 1.3

We observe that the property of having � on positions r; : : : ; r � sC 1 ofMp is equivalent
to the property of the fractional part ofMp=qrC1 falling in a prescribed half-open interval
of length 1=qs , namely, to

(3.9)
° Mp
qrC1

±
2

h �
qs
;
� C 1

qs

�
;

(we recall that the numbering starts from zero), where

� D

s�1X
iD0

ai q
i ;

is the integer which q-ary digits are given by � . We now combine the bound of Corol-
lary 1.2 with the Erdős–Turán inequality (see Theorem 1.21 in [7]), which gives a bound of
the discrepancy via exponential sums, and conclude that for any integer parameterH ⩾ 1,

Ar .X; �/ � q
�s�.X/� �.X/H�1 C

HX
hD1

1

h

ˇ̌̌̌ X
p⩽X
p prime

eqrC1.hMp/
ˇ̌̌̌
:
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We now set
H D bX"=2c:

Below we use very crude bounds, many of them can be done in a more refined way;
however, this does not improve the final result.

Namely, for any positive integer h ⩽ H , writing

q
 D
qrC1

gcd.h; qrC1/
;

since r ⩾ " logX , we see that

(3.10) q
 ⩾ qrC1=H ⩾ er=H ⩾ X"=2:

We now use Corollary 1.2 with A D 2=" and note by (3.10) that the condition (1.2) is
satisfied. This implies that (3.9) happens for

(3.11) Ar .X; �/ D q
�s�.X/CO

�
X1�"=2 CX1�c%

2

logX CXq�c
 logX
�

primes p ⩽ X , where

% D
logX

log qrC1
⩽

logX
log q


;

and c > 0 is some constant that depends on " and q.
Using that r ⩽ .logX/3=2�", we obtain % ⩾ .logX/�1=2C"=2. Thus,

X1�c%
2

logX ⩽ X exp .�c.logX/"/ logX:

We also have by (3.10),
Xq�c
 ⩽ X1�c"=2;

and then (3.11) implies

Ar .X; �/ D q
�s�.X/CO .X exp .�0:5c.logX/"// ;

which concludes the proof.
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