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On digits of Mersenne numbers

Bryce Kerr, Laszl6 Mérai and Igor E. Shparlinski

Abstract. Motivated by recently developed interest to the distribution of g-ary digits
of Mersenne numbers M, = 2P — 1, where p is prime, we estimate rational expo-
nential sums with My, p < X, modulo a large power of a fixed odd prime ¢. In
turn this immediately implies the normality of strings of g-ary digits amongst about
(log X)3/2+”(1) rightmost digits of Mp, p < X. Previous results imply this only for
about (log X)!t°() rightmost digits.

1. Introduction

1.1. Overview

Recently, Cai, Faust, Hildebrand, Li and Zhang [4] have considered various questions on
the patterns in leading g-ary digits of Mersenne numbers M, = 2” — 1, where p is prime,
see also [5, 10] for some other related questions. In particular, one can find in [4] some
numerical results which suggest the leftmost g-ary digits of Mersenne numbers obey the
so-called Benford law. It has also been mentioned in [4], see Remark 4.4 and Section 7,
that the bounds of exponential sums with fractions M, /m for a large integer m such as
in [1, 2] can be used to extract some nontrivial information about the distribution of the
rightmost digits of M. This conclusion in [4] is based on bounds of exponential sums
with an arbitrary modulus m. However, for the case g-ary digits only moduli of the form
m = ¢ with an integer y are of interest. Here we show that indeed for such moduli, using
some ideas of Korobov [12], one can obtain much stronger results. To emphasise the ideas,
we consider the case when ¢ is prime, although there is no doubt that the method extends
to any ¢ without too much loss in its power.

For example, our bounds of exponential sums immediately imply the following equi-
distribution results for g-ary digits of M),. For any fixed real £ > 0 and for any positive
integers s < r < (log X)3/27¢, on rightmost g-ary positions 7,...,r —s + 1 of M,,, p < X,
any block of g-ary digits of length s appears asymptotically the same number of times,
that is, (¢—* + o(1))7(X), where, as usual, 7(X) denotes the number of primes p < X,
see Theorem 1.3.

The generic results of [1,2] imply this only for positions which are much closer to the
right end, namely, only for » < ¢ log X for some absolute constant ¢ > 0.
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Let m be an arbitrary natural number, and let @ and g be integers that are coprime
to m. In this paper, we study exponential sums of the form

(1.1) Sm(a:X) =" A(n) em(ag").
n<X
where e, is the additive character modulo m defined by

en(t) =expnit/m) (t € R),

and A is the von Mangoldt function:

A(n) log p if nis a power of the prime p,
n) =
0 otherwise.

The sums (1.1) are introduced in Banks et al. [1], where it is shown that

max |Sm(6l,X)| < (Xt_11/32m5/16 4 X5/6‘[5/48m7/24) Xo(l),
(a,m)=1

as X — oo, where 7 = ord,, g denotes the multiplicative order of g modulo m, that is,
the smallest natural number k such that g€ = 1 mod m.

Using an idea of Garaev [9] to handle double sums over certain hyperbolic regions,
the stronger bound

max |Sm(a,X)| < (Xt_11/32m5/16 + X4/511/8m7/20) Xo(l)
(a,m)=1

is established in Banks et al. [2]. Note that, for either of the above bounds to be nontrivial,
one must have 7 > m10/11 xo(1) (to control the first term), hence also

m < X22/51+o()

(to control the second term), as X — oo. For shorter sums, new ideas are needed.

In the present paper, we study the exponential sums Sy, (a; X) in the special case that
m = qY for some fixed prime ¢. Our aim is to establish nontrivial bounds for short sums in
which X is smaller than the modulus 7. Our approach relies on an idea of Korobov [12],
coupled with the use of Vinogradov’s mean value theorem in the explicit form given by
Ford [8].

1.2. Statement of results

Since our main motivation comes from applications to Mersenne numbers, we always
assume that ¢ > 3, which simplifies the formulas in Section 2.3 (and can easily be avoided
at the cost of some small typographical changes).

Theorem 1.1. Fix a prime q > 3 and an integer g > 2 not divisible by q. Let y be a
positive integer and let A > 0 be an arbitrary constant. Suppose that X satisfies

(1.2) 2< X <q.
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Then, for all integers a with gcd(a, q) = 1, we have
|Sgr(@; X)| < cg,q, 4) (X175 log X + X g757),
where §(A) > 0 is a constant depending only on A,

log X
(1.3) P = toaa?’
0gq

and c(g,q, A) depends only on g, q and A.
We remark that Theorem 1.1 is nontrivial in the range

2/3+¢
V=X =g,

for an arbitrary small ¢ > 0, provided that X is large enough, and with g = 2 yields
(via partial summation) a nontrivial bound on exponential sums with Mersenne numbers
M, =27 — 1, p prime.

Corollary 1.2. For a prime q > 3 and a real X satisfying (1.2), we have

3 e (@My)| < clg, A)(X D0 4 x gho@r)

<X
D prime

max
(a,q)=1

where §o(A) > 0 is a constant depending only on A, p is as in (1.3) and c¢(q, A) depends
only on q and A.

‘We are now able to address the question of distribution of rightmost digits of Mersenne
numbers. Given a string o of s digits to base ¢,

(1.4) o = (ay—1,...,a9) €140,...,q —1}%,

we denote by A, (X, o) the number of primes p < X such that M), written in base g has o
as the string on s consecutive digits on positions 7, ..., r — s + 1, counting from the right
to the left, where the numbering starts with zero.

We recall that by the prime number theorem (in a very crude form) we have 7(X) =
(14+0(1))X/log X as X — oo.

Theorem 1.3. For a fixed prime q > 3, a real ¢ > 0 and a string o of length s of the
form (1.4), uniformly over elog X < r < (log X)3%~¢ and strings o of length s of the
form (1.4) we have

Ar(X,0) = (g7 +o(1) 7(X)

as X — oo.

We remark that the lower bound on r can be relaxed, but a condition of this kind is
necessary. For example, if 2 is not a primitive root modulo ¢, the distribution of digits on
the rightmost positions cannot be uniform.
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2. Preliminaries

2.1. Notation

Throughout the paper, N is the set of positive integers. The letters k, m and n (with or
without subscripts) are always used to denote positive integers; the letter g (with or without
subscripts) is always used to denote a prime.
Given a prime ¢, let v, denote the standard g-adic valuation. In particular, for every
n € Z \ {0} one has v, (n) = k, where k is the largest nonnegative integer for which q* | n.
Given a sequence of complex weights

Y = (Ynhese

supported on a finite set # and ¥ > 1, we define norms of y in the usual way:

1/9
= max and =( 0) .
7o = pagil-and iyl = (3 v

For given functions F and G, the notations F < G, G > F and F = O(G) are all
equivalent to the statement that the inequality | F'| < ¢|G| holds with some constant ¢ > 0.
Throughout the paper, any implied constants in symbols O, < and >> may depend on the
parameters g and A4, and are absolute unless specified otherwise.

We write F < G to indicate that F <« G and G < F both hold.

Finally, we use #3 to denote the cardinality of a finite set .

2.2. Sums over primes

It is convenient to use a form of Vaughan’s identity given by the equation (6) in Chapter 24
of [6].

Lemma 2.1. For any complex-valued function f(n) with | f(n)| < 1 and any real numbers
1< UV < XwithUV < X, we have

3" A f(n) < U + Silog X + 2,7 X2 (log X)?,
n<X

where

3= max

x| > fomn)

t<UvV w<m<X/t

)

Y, = max max Z
U<w<X/VV<j<X

> fGn) fmn)|.
w<n<2w
n<X/m
n<X/j

2.3. Multiplicative order of integers

Fix a prime ¢ > 3 and an integer g # +1 with gcd(g, ¢) = 1. For every n € N, let
7, = ordg» g denote the order of g modulo g”. We write

2.1 g =1+h,q"™® (neN),



On digits of Mersenne numbers 1905

with some uniquely determined integers /4, and g, > 0 such that gcd(h,,q) = 1. We also
put

(2.2) t=1 and G =g;+1=v4(g"—1).
A simple argument shows

G—n ifn <G, ifn <G,
2.3) n = o and = .

0 ifn > G, q" %t ifn>G.

The following two statements are easy consequences of (2.3).

Lemma 2.2. Forr > s > G, we have
gt =g""modq" << q¢"77|(n1—ny).

Lemma 2.3. For m € N and nonnegative integers x and y with x # y, either q t g™* —
g™, or
vg (8™ —g™) = vg(x = y) + vq(m) + G.

Proof. Put 7y = 1. For any integer n > 0, we have that g" | g™* — g” if and only if
mx = my mod t,. Consequently,

vy (" —g™) =max{n > 0: 1, [ m(x — y)},

and the result follows from (2.3) as ged(z,q) = 1. |

2.4. Explicit form of the Vinogradov mean value theorem

Let N,k (P) be the number of integral solutions to the system of equations
nj+dtnl =m) 4 +ml (1<) <k 1<ngmg<P).

Our application of Lemma 2.5 below requires a precise form of the Vinogradov mean
value theorem. For this purpose, we use a fully explicit version due to Ford (Theorem 3
in [8]), which is presented here in a weakened and simplified form.

Lemma 2.4. For any integer k > 129, there is an integer r € [2k2, 4k2] such that for P >0,

Nk (P) < 3k p2r—k(k+1)/2+k>/1000

We note that the condition r > 2k2 is not explicit in Theorem 3 of [8], but we can
always impose this in view of the well-known (and essentially trivial) monotonicity prop-
erty

Nri1 g (PY P20 N, (P P2

We also observe that the recent striking advances in the Vinogradov mean value the-
orem due to Bourgain, Demeter and Guth [3] and Wooley [14] are not suitable for our
purposes here, as they contain implicit constants that depend on r and k, whereas in our
approach r and k grow together with P. On the other hand, a result of Steiner [13] may
perhaps be used to improve numerical constants in our estimates in some ranges of para-
meters.
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2.5. Double exponential sums with polynomials

Our main tool to bound the exponential sum Sy, (a, X) is the following variation of a result
of Korobov (Lemma 3 in [12]); examining the proof of that lemma, one can easily see that
one can add complex weights (x) and B(y) without any changes in the proof.

It is convenient to denote

e(t) = exp(2mit) (¢t € R).

Lemma 2.5. Let §; € R, for j = 1,...,k, and suppose that each §; has a rational
approximation such that
b; 1
’gj——] <—2 Wil‘/’lbj e, qj e N, and(bj,qj)ZI.
qj q;j

Then, for any natural number r and sequences of complex numbers a(x), B(y) satisfying

le ()], B <1,

the sum
P

S= " a@B)eE xy + -+ & xFyk)
x,y=1
admits the upper bound

k
ISP < (64r%10g(30)) /> P42 N,y (P) [ min { P7. PI g /% + g2,
j=1

where

= max {g;}.
0 1<j<k{q]}

The following result follows from the standard completing technique, see Section 12.2
of [11].

Lemma 2.6. For an arbitrary function f:R — R, an interval 4 of length N, and inte-
gers U and V satisfying
UV < N/2,

there exists some a € R such that

e/ () < eS| Y e+ uw) + e

xed xegu<U vV

where & is some interval of length 2N .

Proof. 1t is enough to write

dYoe(fx) = Y e(f(x +uv)
xed xeg
x+uved

and the use of the completing technique from Section 12.2 of [11] to encode the condition
x + uv € J into linear exponential sums, and the use of the bound (8.6) in [11]. ]
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2.6. Bilinear forms with exponential functions

Fix a prime ¢g and an integer g # +1 with gcd(gq, g) = 1. We denote by 7, the order of g
modulo ¢”, and recall how G is defined in (2.2).

The following result is the main ingredient for Theorem 1.1. It uses some ideas of
Korobov [12], Theorem 4.

Proposition 2.7. Let y € N with y > 16G. Given integers K, L > 0 and M, N > 1 with
M g q2)//65’
two sequences of complex weights
o= (a’”)rlrfi%+l and B = (ﬂn)ﬁiivﬂ
and an integer z not divisible by q, for the sum

K+M L+N

S = Z Z O P €gr (zg™").

m=K+1n=L+1

we have
—10—10,2
S < llell2 1Blloo (MY21077P N log M + MY2NY2) + oo [|Bllso N 45

where
_logM

p= log g7

Proof. To simplify the notation, we write

M={K+1,....,K+M)} and N ={L+1,....,L+N}.
First note we may assume
(2.4) M > (logq?)*?,

as otherwise '
M « 1,

and hence for the first term in the bound for S,
— —10 2
leell2 1Bl M /27172 N log M > |tz [|Blloc M />N log M,

which is worse than trivial. If
M < q8G7

then we have
K+M L+N

S< Y > lamllBal < lletlloo 1Bl NgB€.

m=K+1n=L+1

Hence we may assume
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By the Cauchy—Schwarz inequality,

@35 ISP< a3 Y | D Buepr(ze™)

meM neN ni,n2€N
<lel3 1812 Y 1S(,n2)l,
ny,naeN
where
Snina) = ) egr(z(g"™ —g"™)).
meM
Recall we are assuming
(2.6) < 2
' P65
Define s by
1logM
= |2 s
8 8 logg
so that from (2.3), we have
(2.8) T, < g < M3,
and
M1/8
(2.9) q° > > M3,

2
<lel3 D 1Buil1Busl[S(r1.12)]

with implied constant depending on ¢. To establish the desired result, we bound S(71,752)

in different ways as the pair (n1, ny) varies over N X N.
We denote

A1 ={(n1,n2) € N x N 1v4(n1) > sorvg(nz) > s},
AZ = {(nlvn2) ENXN: gnlrS = gnZIs mod qZS},

Az = (N x N) \ (A1 U k).

Clearly,
’ #A1 <2N?/q°,

and Lemma 2.2 implies that
#A4, < N%/q* + N.

Thus using the trivial bound |S(n1,72)| < M along with (2.9), we get that

MN? 20,7/8
el Y Y |S(n1,n2)|<<(q—S+MN)<<(NM + MN).

J=L12(n1,n2)€A;
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For the final set +43, we need a nontrivial bound on S(n1,n,). Let (n1,n,) € #3 be

fixed. Since |S(n1,nz)| = |S(n2,n1)|, without loss of generality we can assume
2.11) vg(m1) =a, vg(my) =>b, a<b<s.

With a and b fixed for the moment, it is convenient to define

2.12) k = L J and P = g5+

s +a
Using the definition of s along with (2.6) and (2.8), we see that

(2.13) k>129 and P <g* <MYV

Now put A = g"! and u = g"2, so that

Sinz) = ) epr(z(" — ™).

meM

Using (2.1), (2.7) and (2.11), it is easy to see that the relations

(2.14) A% =14ug®™® and u® =1+ vg*+?

hold with some integers u, v coprime to ¢. Partitioning the summation over m into distinct

residue classes modulo 7, leads to the estimate
2.15) S(n1,n2) = So(n1,n2) + O(z5) = So(n1,n2) + O(M'/®)
by (2.8), where
Ts
SO("L”Z) = Z Zqu(Z()termy _ Mx+m)’))’
x=1ye¥Y

and
= (K/Ts»(K+M)/fs] NZ

By (2.14) we have

Ax+tsy _ Mx+rsy — Ax(l + uqs+a)y _ Mx(l + vqs+b)y

_ Xy:( ) it _ Z( ) i (s+b)i

i=0

= )% _Mx + Zq(s+a)i()txui —/,vaiin)().)) mod qy’
l
i=1

where we have put A = b — a (note that (2.12) is used in the last step); therefore,

|So(n1,n2)| <

( Zq(5+a)l(/'\x i Mxviin)(;}))"

x=1 ye¥Y
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We apply Lemma 2.6 with the function

k
fy) = Zq(s+a)i (lxui . ,beviin) (i})

i=1

and parameters
U=V=P J=Y,

and note that, by (2.8) and (2.13),

M
P2<MY2 < M8 <= <#Y + 1.
Ts

It follows that

(2.16) So(n1,nm2) € —o OgM Z > Z ’ Z e(@xz2) e (f(y +zlzz))(

x=1yeZz1=1 z;=1

log M i roz
<MY Y e

x=1yeZ z1=12z3=1

where Z is an interval of length O(M/t,) and «, may depend on the variable x and B,
may depend on the variables x and y and satisfies

|Bx,y(z0)] = 1.

With the intention of applying Lemmas 2.4 and 2.5 to the right side of (2.16), we fix y for
the moment and write

k
Kf(y+2)=) a;Z’ (aj €1),
j=0

and foreachi = 1,...,k,
. . Z
(2.17) k1 g@Fai vyt — p*ot qA’)(y + ) Za, i z/

with some q; ; € Z. Clearly,
k
aj =) ai;.
i=j
and thus

(2.18) vg(aj) > min{vg(a; ;) : i = j,..., k}.

Moreover, equality holds in (2.18) whenever

(2.19) vq(aj,j) < vq(ai,j) (i > j)
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Denote _ o
v :min{vq()kxu] —/,vaJqA’): Jj = 1,...,k},

and let j be an index for which
(2.20) Vg Wul — ,uxquAF) = .

From (2.17) it is clear that

KU
ajj = 7;Q“+“”(kxu’-—u”quA’L

and therefore

(2.21) vg(as7) = vg(k) —vs(jH + (s +a)j + 7.
On the other hand, (2.17) implies

(2.22) vg(a;7) = vg (k) —vg () + (s +a)i +0 (> )).

Before we proceed, we note that the estimate j < i < k < ¢*+¢ holds since by (2.4), (2.7)
and (2.12) we have
Y
2y 16  16logg <

(2.23) k < Y < < — =21 < pml/32 ¢ < gt
s s+1 o log M

This implies the inequality

(s +a)(i =) >vg(i(i =) (G + 1) = vg(i) —vg(j),

which together with (2.21) and (2.22) verifies the condition (2.19) for any j satisfy-
ing (2.20). Hence, (2.18) holds with equality, and thus we have

(2.24) vg(az) = vg(k)) —vg(GD + (s +a)j + 7

for any J satisfying (2.20).
If A > 0, then clearly

vg (WUl — gty =0 (j = 1).
For A = 0 (that is, a = b), we claim that for any two consecutive indices j and j + 1,
(2.25) vgAWul — iy =9 or v,(Wul T — Tl =5,
To prove the claim, suppose on the contrary that
Aul = pFv/ mod ¢"T! and  A%uw/t = v/t mod ¢P !
for some j . Then, dividing the second congruence by the first one, we get u = v mod g’ !

and thus

Au/ = v/ mod ¢" T forall J,

which contradicts the definition of v.
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Now let
g={k+1)/2<j<k: vy ul —p*vigh) =}

In view of (2.25), this implies that #4 > |k/4]. Since A* — u* = g™"* — g"2* and
ny # ny (in fact, vy (n; —ny) < s by Lemma 2.2 since (1, n3) ¢ +4,), by Lemma 2.3
and inequalities (2.7) and (2.8) we have

V(A =) =0 or vy(A* —pu¥) =vy(n1 —n2) +ve(x) + G < 3s;
this implies that v < 3s. Thus, for every j € § we have by (2.24),
(s +a)j <vgla;) S vg(k!) + (s +a)j + 3s,

and so (recalling that P = ¢*+%) we can write

a; b;
2.26 -
(2:20) klqr g
with
(2.27) ged(bj,qj) =1 and P 7q"™ <gq; <k!P/q".

We also define g; by (2.26) for j & 4.
We are now in a position to apply Lemmas 2.4 and 2.5 in order to bound the double
sum over z; and z, in (2.16). Writing

P
D BryE)ax(z2) e (f(y +2122))

T =
Z1,22=1
P k . '
= Y BuEae( Y 2 @n)),
Z1,22=1 j=1 49i

Lemma 2.5 shows that for any natural number r, the bound

k
P4r272rNr’k(P) l_[ mln{P], P/q/—l/Z + q/l/Z}
Jj=1

T2 < (64r210g(30))""

holds with QO = max;¢; <k ¢;. Note that (2.23) and (2.27) imply that
log(3Q) < log(3k!q”) < ylog(kq) < yklogq

since for 129 < k < y we have 3k! < k* < k”. Moreover, since k > 129 (see (2.13)),
Lemma 2.4 shows that we can choose the integer r € [2k?2, 4k?] so that

Nr,k(P) < k3k3Pzr—k(k+1)/2+kz/1000'

Hence we find that

(2.28) |T|2r2 < (1024yk5 logq)k/2 J3k3+3k P4r2—k(k+1)/2+k2/1000R’
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where

k k
. i pj —1/2 1/2 . -1/2 —j 172
R = l_[m1n{Pf,P"qj / +qj/ } = pkEFD/2 l_[mm{l,qj 24p qu/ ).
j=1 j=1
For any j € 4 we have j > (k + 1)/2. Recalling (2.12), we have
P/ < ij_y;
thus, using (2.27) we see that
q;I/z + P—jq}/Z < Pj/zq—y/2+3s/2 + (k!)l/ZPj/2q—y/2 < kkPj/zq—y/2+3s/2_
For j & &, we use the trivial bound
min{l,qi_l/2 + P_jq;/z} <1

Therefore, recalling that #4 > |k /4], and using the bounds

k
0.24k < |k/4] <k/4 and > j/2<011k2,
j=k—|k/4]+1
which hold for k£ > 129, we see that
k
) > .
R < Pk(k+1)/2 1—[ (kkP]/zq—y/2+3s/2) < kk Pk(k+1)/2 1—[ (Pj/Zq—y/2+3S/2)
jed j=k—lk/4]+1
< kk2Pk(k+1)/2+o,11k2q—0.12yk+3sk/8_

Combining this bound with (2.28), we deduce that
(2.29) IT| < (ABC)Y/?" p2,

where

3 2 2
A = 25Kk 3P HR+11k/2. k/2 .04 C = pOllik g 0.12yk+3sk/8

B = (ylogq)
Since r > 2k?2, it is clear that

(2.30) AV .

1. we have

Next, since k < y/s < p~
ylogg = p 'logM « klogM,
hence

(2.31) BY? « (klog M)"/3" « log M.
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Recalling (2.7) and (2.12), we have
8
Yy _ 1 <k < 4 and Y > -
s+a s+a s 1]
and using (2.7), we get that
log C 0.009y2
=0.111(s + a)k* = 0.12yk + 35k /8 < — +0.12y + ———
logg (s +a) v sk/ s+a v 8(s +a)
0.009y2 3y 0.036y
<—+0.12y + 3 <—— 40495y <
s o

where we have used the inequality p < 2/65 in the last step; thus,

(2.32) C < M™0-02/07,
Since
r < 4k?,
we have
0.02 1
(2.33)

and from (2.7) and (2.12),

2 b
2r2p2 7 1600 p2 k4

4 14
2.34 < < .
(2.34) s+a ~ py/8—1
Since
_ logM
~ logg

and we allow the implied constant in the statement of Proposition 2.7 to depend on ¢, we

may assume that M > ¢'® and thus

py = 16,
which combined with (2.34) implies
16
k X >
P
and hence by (2.33),
0.02 1

1

> > > >
2202 ~ 1600k%p2 ~ 25.222F

Substituted in (2.32), this gives

C1/2r2 < M—10

—9 p2

Combining the above with (2.29), (2.30) and (2.31) we get

T < P2M~1977 log M.

10~

9 2
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Inserting the previous bound into (2.16) and using (2.13), we have

So(n1,n2) < s #Y M1 (log M)? < M'71077 (1og M )2,
g g

since

L HY <K M.
Combining with (2.15) implies that
(2.35) S(n1.n2) < M1 (log M)2.

Now (2.5), (2.10) and (2.35) together yield the bound

—10~-10,2
S < llecll2 1Blloc N M2 log M+ ]2 [|Blloo (M7/**N + MYZN12),

and since M 7/16 N never dominates the term N M 1/2-1071%0* log M, we obtain the desired
result. ]
We can remove the condition M < ¢2¥/5 in Proposition 2.7 by partitioning the sum-
mation over M into short intervals. This is necessary for applications to Theorem 1.3,

where we need to consider both long and short ranges of the parameter M.

Corollary 2.8. Let y € N with y > 16G and let A > 0 be arbitrary. Given integers
K,L>0and M,N > 1 with

(2.36) M < g,
two sequences of complex weights

K+M L+N
o = (am)miK_H and B = (,Bn)n:L_H
and an integer z not divisible by q, for the sum

K+M L+N

S = Z Z amﬂneq”(ngn)v

m=K+1n=L+1

we have
—ep? M
S < lll2[|Blloo(M /2~ Nlog M + M'/>NV?) 4 <1+W) letlloo l1Bllo N g*.

where
_logM
P= log g7
and ¢ > 0 is a constant depending on A.

Proof. By Proposition 2.7, we may assume M > ¢2¥/%% and by modifying the coeffi-

cients & (appending them with at most |¢2¥/®% | zeros), we may assume

(2.37) M = JM,, with M= |g?/%]
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for some integer J > 1. Subdividing S into J sums,

K+Mo(j+1) L+N

S= )Y anbuenCe™

m=K+1+Mpj n=L+1

by the the Cauchy—Schwarz inequality and Proposition 2.7 (applied for each 0 < j <
J — 1), and denoting
_ log My

2.38 =
(2.38) Po Togq”

’

we obtain

J—1
ISP<TY IS
j=0

J—1 K+Mo(j+1) |210-10,2
< JIBIZ Y Do loml(M, PINZ10g? M + ¢*/%°N)
Jj=0 m=K+14+Myj

+ 7 el 18112, N2g"6C
< lel3 1812 (4 g2r(=21071000)/65 N2 1002 pp Jg?/55N)

+J2 lel% 1813, N2q'¢
16G pq2

—9.10-10152 q
< Nleell3 18112, (Mg~ y”°/65N210g2M+MN)+IIOtII§OIIﬂllioNzw-

By (2.36), (2.37) and (2.38), we have
g0 res > M,

for some constant ¢ depending on A. Hence

qSG

1S] < [lecll2 I Blloo (MI/Z_CPZN log? M + M'2N2) 4 &)l |Bllec N PR

which completes the proof. ]

We now estimate double sums with variables limits of summation for one variable.

Lemma2.9. Lety € N withy > 16G and let A > 0 be arbitrary. Given integers M, N > 1
and L > 0 with

M < g™,
two sequences

(Km)M_, and (Nao)M_,

of nonnegative integers such that K, < Ny, < N for each m, two sequences of complex
weights

o= (am)_y and B=(Bn)_,
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with
leelloo, IBlloc <1

and an integer z not divisible by q, for the sum

L+M

§= Y Y anbuepize™

m=L+1 K;,<n<Np

we have
S < (NM'=" £ NY2M)log M log N + (1 + )NqSG log N,
q y/65
where
_logM
p= log g”

and ¢ > 0 is a constant depending on A.

Proof. Using the standard completing technique, see, for example, Section 12.2 in [11]
and the bound (8.6) in [11], it follows that

~ | LiM N _
§= 2 Do D GmrBurerr (g™,
L 8 ot

—N/2<r<N/2

where B
6Zm,r = 0y Nm,r and ﬂn,r = Bren(rn),

for some complex number 7,, , < 1. Applying Corollary 2.8 and noting that

<L log N,
. 2 gy s
—N/2<r<N/2
we derive
§ < (NM'=" + N'2M)log M log N + (1 + ) Ng*Clog N,
q2v/65
which completes the proof. ]

2.7. Bounds on double exponential sums over hyperbolic domains

One of our main technical tool is the following result, which gives a bound on double
exponential sums over certain “hyperbolic” regions of summation.
We recall the definition of G, given in (2.2).

Lemma 2.10. Let y € N withy > 16G and A > 0. Given real numbers X,Y, Z > 1 with

Z <Y <q",
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and a sequence B = (By)n<x/z of complex numbers with

Bl < 1,

any sequences
(Km)%=1 and (Nm)%=1

of nonnegative integers such that K, < Ny, < X /m for each m, and any integer z coprime
to g, we have

S| Y Buewze™

Z<m<Y Ku<n<Np

—ct2 1/2 2 1 8G
< (XZ7F 4+ (YX)"/?) (log X) +<7+W> X ¢%6 log X,
where
log Z
(2.39) ¢ = 28
log g”

and ¢ > 0 is a constant depending only A.

Proof. Clearly there are complex numbers ¢, such that |o,,| = 1 for Z <m < Y and

o, = 0 otherwise, such that
= Z U Z Bnegr(zg™").

S Y Buewze™

Z<m<Y Kp<n<Np Z<m<Y Kn<n<Np

Furthermore,

Z o Z Bnegr(zg™")

Z<m<Y Km<n<Npy
mn
= E E E O B egr (zg™")
log Z—1<j<logY e/<m<e/ ! K <n<Np

and we have set a;, = 0if m < Z or m > Y. We observe that for each j within the
summation range, we have

log(e/*1 —e/) . log(Z — 1) . g
log g7 log ¥ 2

where { is given by (2.39). Hence

Z Z U B qu(ngn)

e/ <m<el T Kin<n<Npm
X X \1/2 27\ X
2 pJ1=ct?/4) N 2 _Z V2 486G
< (ej ¢ te (ej) ) tog X2+ (1+ qzy/es) 57 4 logN
by Lemma 2.9, and the result follows after renaming ¢, summing the above over j satis-
fyinglog Z — 1 < j < logY, and using the estimates
Z e «Z7% and Z e/t LY,
logZ<j<logY logZ<j<logY

provided « > 0 is bounded away from 0. ]
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2.8. Bounds on single exponential sums

We observe that combining Proposition 2.7 with Lemma 2.6 allows us to estimate sums
over an interval which has previously been considered by Korobov [12], Theorem 4. We
present a proof for completeness.

Lemma 2.11. With notation as in (2.2) and Proposition 2.7, suppose M satisfies

M < q2y/65.
Then we have
K+M
—_10-11,2 —10 2
D egr(zg™) < MNP (log M) + MO gB9 (log M2,
m=K+1
where
_logM
P= log g”
Proof. Let
K+M
S = Z egr(zg™),
m=K+1
and apply Lemma 2.6 with
U=M"19"" and vV =05M"0""

to get

log N KM [
S <K ” Z Z ) Ze((xv)eqy(zg g“v)|.

m=K+1 uU vV
Taking a maximum over m in the above, we get
S <logM > > a(u)B(v) egr(z08™).
uU vV

for some ged(zg, p) = 1 and complex numbers «, § satisfying

la@)]. |B(v)] < 1.

With
logU
Po = @,
we have
po = p(1—10719p%),

hence by Proposition 2.7,

S < (log M)2 (V(Ul_loilop% + qSG) + le/Z)
& (log M)> M (M~1071 P2 (=1071002)2 | p=310710%%) 4 p1070%2 48G (150 pp)2.
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Note the assumption

M < g7/
implies that
< 2
P X 65

and hence 5212 |

1-1071052)2 > (1 _ 10—10(_) ) >

( o) 65 10
which completes the proof. ]

Partitioning the summation into small intervals as in the proof of Corollary 2.8 allows
us again to remove the restriction M < ¢%¥/%% in Lemma 2.11.

Corollary 2.12. With notation as in (2.2) and Proposition 2.7, suppose M satisfies

M < qu.
Then we have
K+M
2
Z eqy(ng) < Ml—cp IOgM _{_Ml—chG,
m=K+1
where
_ logM
p= log g7

and ¢ > 0 is a constant depending only A.

Proof. Arguing as in the proof of Corollary 2.8, we may partition the summation over m
into intervals of length at most ¢2”/% and apply Lemma 2.11 to each of these intervals.
This produces a bound of the form

K+M
(2.40) Z e (zg™) K MI—er? (log M)? + M'=¢%C% log M,
m=K+1

for a constant ¢ depending on A. Unless we have M > (log M)? the estimate (2.40) is
trivial. Under this condition we have

M~ (log M)? < / M—¢#* (log M )2,

which allows us to replace (log M )? with log M after changing the constant ¢ > 0. Redu-
cing c if necessary, we can also discard log M in the second term. |



On digits of Mersenne numbers 1921

3. Proofs of main results

3.1. Proof of Theorem 1.1
We apply Lemma 2.1 with

(3.1) U=x"Y* and Vv =x4
to get
(3.2) Syr(a: X) < XV* 4+ =1 (log X) + 222X (log X)?,
where t
=T t<UV wSX/r wgg)(/zeqy @™
and

Yp = max max E
U<w<X/VVi<X/w
V<m<X/w

mn
E Un €qv (ag™")
w<n2w
n<X/m
n<X/j

’

for some |a,| < 1. Considering X1, for each fixed t < UV = X /2, define

G, = Vq(gtordq(gt) -1

and
_ log (X/1)
- log g7
By (3.1)andt < UV = X'/? we have
(3.3) pr > g

We claim that the following inequality holds:

X\ 1-co? X\1-¢
Z eqy(ag””)’ < (7) IOgX + (T) qSG’.

w<m<X/t

34 max
w<X/t

Indeed, if y > 16Gy, this follows from Corollary 2.12.

If y < 16Gy, then
X 1—c SGt (X ) 1—c X
= > (%) 2= (%)
(7) = (7) 7=
so (3.4) is trivially true as well since

(3.5 max

X
tm
e, v (a <L —,
w<X/t Z qy( g )‘ t

w<m<X/t

which proves (3.4).
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Summing (3.4) over t < UV and using (3.4), (3.3) and (3.5) gives

X\ 1-co} ~
3.6 > (—) ,
(3.6) 1< D0 (5 log X + £
t<X1/2
where N
= (X X —c 8G,}
El—Zmln{l,(Z> q .
t<X1/2

Fort < X!/2 we have (X/t)lf"p%/4 < X1-¢0?/8;4=1 thys
X\ 1-co? X\ 1—cp?/4
(5 <X (%) & X' /8 1og X,
t t
t<X1/2 t<X1/2
This, together with (3.6), implies
(3.7) < XU B log X + 54,
Considering S, we partition summation over ¢ into dyadic intervals to obtain
= X X \l-¢
5 < (. (5) 1)
<)) (7)o

logX ok <p<nk+1
k<210g2 2se<2

Z Z X (XN k6
< mln{z—k, (2—k) q t}.
k< log X 2k<t<2k+1
X 2log2

Let ko be an index with k¢ < (log X)/(21og2) such that the maximum of the inner sums
over ¢ 1is attained, and write

7 - X
2ko
Then
X2 <7z <X,
and

¥ < (log X) Z min {Z, ZI_CqSG’}.
X/Z<t<2X/Z
Recalling the definition of G, given by (2.2), we see that

T
dg(g") = ———,
ordy(g") 2cd(z,1)

and by Lemma 2.3, used withm = 1, x = 7¢/ ged(z,¢) and y = 0,
G =y (g”/ng(t”) —1) =G +v,(2).
As g and q are fixed, G = O(1), and hence

S < log X Z min {Z, Z17¢¢®®}.
X/Z<1<2X/Z



On digits of Mersenne numbers 1923

For O(XZ~'7¢/%) values of t < 2X/Z with ¢"1® > Z¢/° we use
min {Z, Z'~¢¢%®} < Z.
Their total contribution is O(XZ —c/ 9). For the remaining values of 7, we use
min {Z, Zl—cqqu(t)} < Zl—C+8C/9 — ZI—C/9,

which gives the same total contribution O(XZ~¢/%). Hence, recalling Z > X'/2, we
obtain 5
T K XZ7log X < X'/ 181og X.

Using the above in (3.7) gives
(3.8) T € X Blog X 4+ X1 8100 X « X5 (10g X)2,

for some constant §(A) > 0 that depends only on A.
To estimate X,, we apply Lemma 2.10 to get

1—8(A)p? 7/8 X 2
< (X + X784 qzms) (log X)2,
for a suitably reduced §(A) if necessary. By the above bounds (3.2) and (3.8),

X
Sgr(@: X) < X730 (1og X)3 + T (log X)*.

Now, using the same argument as in the proof of Corollary 2.12, and reducing §(A) if
necessary, we see that we can replace (log X )3 with log X (or any other power of log X)
in the first term, and also discard completely (log X )* in the second term.

3.2. Proof of Theorem 1.3

‘We observe that the property of having o on positions 7, ...,r —s 4+ 1 of M}, is equivalent
to the property of the fractional part of M, /q"+! falling in a prescribed half-open interval
of length 1/¢*, namely, to

(3.9) {qjyfl} = [j—s 6; 1),

(we recall that the numbering starts from zero), where
s—1
i=0
is the integer which g-ary digits are given by 0. We now combine the bound of Corol-

lary 1.2 with the Erdds—Turdn inequality (see Theorem 1.21 in [7]), which gives a bound of
the discrepancy via exponential sums, and conclude that for any integer parameter H > 1,

H

1
A (X, 0)—q 7 n(X X)H! -
(X,0) —q 7 n(X) € 7(X) +h§=1h

> egrei(hMy)

p<X
P prime
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‘We now set
H = |X*?].

Below we use very crude bounds, many of them can be done in a more refined way;
however, this does not improve the final result.
Namely, for any positive integer 1 < H, writing

r+1
Y — 4
ged(h, g™ +1)’

since r > e¢log X, we see that

(3.10) ' >q"VVH > e"/H > X°/2.

We now use Corollary 1.2 with A = 2 /¢ and note by (3.10) that the condition (1.2) is
satisfied. This implies that (3.9) happens for

(3.11) A-(X,0) = ¢ m(X) + O(X'7/2 4 X'~ log X + Xq~" log X)
primes p < X, where

_ logX < log X
° 7 logg 1 S logg?

and ¢ > 0 is some constant that depends on ¢ and q.
Using that » < (log X)3/27¢, we obtain o > (log X)~/2%¢/2_ Thus,

X 1-ee? log X < X exp (—c(log X)) log X.
We also have by (3.10),
Xq—cy < Xl—ce/Z’
and then (3.11) implies

A (X,0) =q 7 n(X) + O (X exp (—0.5¢(log X)?)) ,
which concludes the proof.
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