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Asymptotic convergence of evolving hypersurfaces

Carlo Mantegazza and Marco Pozzetta

Abstract. If  WMn ! RnC1 is a smooth immersed closed hypersurface, we con-
sider the functional

Fm. / D

Z
M
1C jrm�j2 d�;

where � is a local unit normal vector along  , r is the Levi-Civita connection of
the Riemannian manifold .M;g/, with g the pull-back metric induced by the immer-
sion and � the associated volume measure. We prove that if m > bn=2c then the
unique globally defined smooth solution to the L2-gradient flow of Fm, for every
initial hypersurface, smoothly converges asymptotically to a critical point of Fm, up
to diffeomorphisms. The proof is based on the application of a Łojasiewicz–Simon
gradient inequality for the functional Fm.

1. Introduction

We consider a closed connected differentiable manifold M n of dimension n � 1 and
 WM n ! RnC1, a smooth immersion of M n in the Euclidean space RnC1. We shall
usually omit the superscript n denoting the dimension of M . For such an immersion, we
always assume thatM is endowed with the metric tensor g D  �h�; �iRnC1 , induced by the
immersion  that we also sometimes simply denote as h�; �i. The Levi-Civita connection
of the Riemannian manifold .M; g/ is denoted by r, and the associated volume measure
by �. Then, for m 2 N with m � 1, we consider the functional

Fm. / WD

Z
M

1C jrm�j2 d�

on the smooth immersions  WM n ! RnC1, where � is a (locally defined) unit normal
vector field along  . Let us specify that in the above definition, if � D �˛e˛ and e˛
is the standard basis in RnC1, we mean jrm�j2 WD

PnC1
˛D1 jr

m�˛j2. Notice that Fm is
independent of the local choice of the unit normal � and that it is well-defined without
further hypotheses on M . However, by the discussion below in Remark 1.2, we shall
always assume without loss of generality that M is orientable and that a global choice of
unit normal field � is understood.
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In the case n D m D 1, we recognize the well-known elastic energy of closed curves
 W S1 ! R2, i.e., F1. / D

R
S1 1 C jkj

2ds, where k is the curvature of  . If instead
n D 2 and m D 1, then one has jr�j2 D jAj2, where A is the second fundamental form
(see (1.1)), and then F1 yields the sum of the area and of (an equivalent form of) the Will-
more energy of an immersed surface  WM 2 ! R3. Let us also notice that if n D m D 2,
then F2. /D

R
M
1C jrAj2C p0.A;A;A;A/d� for any given immersion WM 2!R3,

where p0 is some polynomial as in (1.2) below.
By the formula for the first variation of Fm (see Theorem 2.1), one can prove that the

associated L2-gradient flow is defined by an evolution equation

@'

@t
.p; t/ D �Em.'t /.p/ �t .p/

for a smooth map 'WM � Œ0; T / ! RnC1 (where 't D '.�; t / WM ! RnC1 describes
the moving hypersurface and �t is its unit normal vector field), which turns out to be a
(quasilinear and degenerate) parabolic system of PDEs.

If m > bn=2c, the study carried out in [17] shows that for every initial smooth im-
mersed hypersurface '0 WM !RnC1, there exists a unique smooth solution 't with initial
datum '0, defined for all positive times; moreover, 't sub-converges to a critical point
'1WM ! RnC1 of the functional Fm, that is, such that Em.'1/ D 0 (see Theorem 4.3).
By sub-convergence we mean that for some sequence of times tj !C1, the sequence 'tj
smoothly converges to '1, up to diffeomorphisms and translations in RnC1. More pre-
cisely, there exist a sequence of smooth diffeomorphisms �j WM !M and a sequence of
points pj 2 RnC1 such that the sequence of immersions 'tj ı �j � pj converge to '1 in
C k.M/, for any k 2 N. From such a sub-convergence result it is not possible to imme-
diately deduce that the flow fully converges, i.e., that there exists the full limit of 't as
t ! C1 in C k.M/ for any k (up to diffeomorphisms). Actually, the sub-convergence
of the flow does not even guarantee that the limits of the flow along different diverging
sequences of times coincide. Moreover, as the evolution equations involved here are of
order greater or equal than four with respect to the parametrization, it is not even pos-
sible to conclude that the flow stays in a compact set of RnC1 for all times by means of
comparison arguments, as maximum principles are not applicable.

In this work we address this issue, that is, we prove that the gradient flow of Fm does
actually converge, for any initial hypersurface. Our main result is the following theorem.

Theorem 1.1. Let '0 WM n! RnC1 be a smooth immersion of a closed hypersurface and
letm> bn=2c. Then the unique smooth solution 'WM � Œ0;C1/!RnC1 to the evolution
problem ´

@'
@t
D �Em.'t /�t ;

'.0; �/ D '0;

converges in C k.M/ to a smooth critical point '1WM ! RnC1 of Fm as t ! C1, for
every k 2 N up to diffeomorphisms of M ; more precisely, there exists a one-parameter
family of diffeomorphisms �t WM !M such that the flow 't ı �t converges in C k.M/ to
a smooth critical point '1 of Fm as t !C1, for every k 2 N.

In particular, there exists a compact set K � RnC1 such that Mt D 't .M/ � K for
any t � 0.
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We remark that the assumption m > bn=2c is sharp; in fact, if m � bn=2c, then one
gets flows that may develop singularities in finite time.

A relevant motivation for the study of the gradient flow of the functionals Fm goes
back to Ennio De Giorgi. In one of his last papers, he conjectured that any compact
n-dimensional hypersurface in RnC1, evolving by the gradient flow of certain functionals
depending on sufficiently high derivatives of the curvature, does not develop singularities
during the flow (see [10] and Conjecture 2 in Section 5 of [11] for an English translation;
see also [17], Section 9). This result was central in his program to approximate singular
geometric flows, as the mean curvature flow, with sequences of smooth ones (see Section 9
in [17] and [2] for a result in this direction). The functionals Fm are strictly related to the
ones proposed by De Giorgi since, roughly speaking, the derivative of the normal field
yields the curvature of M (see (1.1)). Though not exactly the same, the energies Fm can
then play the same role in the approximation process he suggested, and the analysis of the
asymptotic behavior of their gradient flow is another step in understanding such process.

The main tool in the proof of Theorem 1.1 is a Łojasiewicz–Simon gradient inequality
for the functional Fm (see Corollary 4.2). Such an estimate bounds a less-than-1=2 power
of the difference in “energy” (the value of the functional) between a critical point and a
point sufficiently close to it in terms of a suitable norm of the first variation of the func-
tional. The use of this kind of inequalities in the study of the convergence of parabolic
equations of gradient-type goes back to Łojasiewicz [15, 16] and to the seminal paper of
Simon [23]. More recently, useful sufficient hypotheses implying a Łojasiewicz–Simon
gradient inequality have been derived in [4] (see also [13] for several recent generaliz-
ations). Building on the abstract tools developed in [4], a first recent application of the
inequality to get convergence of an extrinsic geometric flow is contained in [5], where the
authors investigate the Willmore flow of surfaces in neighborhoods of critical points. In
the last years and in the context of higher order geometric gradient flows, the Łojasiewicz–
Simon inequality has appeared as a tool for “promoting” the sub-convergence of a flow to
its full convergence. As applications of this method we mention [9], in which it is proved
the full convergence of the elastic flow of open clamped curves, and [20], in which the sub-
convergence of the p-elastic flow of closed curves on Riemannian manifolds is shown to
imply the full convergence. The analysis in [20] led to a further simplification and deeper
understanding of the method, which is exposed in [19]. In this work we essentially gener-
alize the strategy employed in [19] to the gradient flows of the functionals Fm. Moreover,
we tried to keep most of the arguments as general as possible, in order that the method
could be possibly applied also to other geometric gradient flows, also in the context of
extrinsic geometric flows in higher codimension possibly in Riemannian manifolds.

In the broad framework of geometric flows, the Łojasiewicz–Simon gradient inequalit-
ies found many other notable applications. For example, the study of singularities of mean
curvature flow can be reconducted to the study of the smooth convergence of a suitable
extrinsic geometric flow. Smooth convergence of such flow has been proved exploiting
the Łojasiewicz–Simon inequalities in some relevant particular cases in [6, 8, 22]. Let
us also mention [7], where a classification of ancient solutions to a family of geometric
flows in Riemannian manifolds is derived. The Łojasiewicz–Simon inequalities have been
employed also in the context of intrinsic geometric flows. We refer, for instance, to the
study of the rate of convergence of Yamabe flows in [3], or to the deep investigation on
the Yang–Mills flow contained in [12] (see also references therein).
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Notation and geometry of submanifolds

Let M be closed, connected, and orientable. Let  WM ! RnC1 be a smooth immersion
of M , and let � be the global unit normal field on M along  .

Remark 1.2. In case M is not orientable, given an initial immersion '0 WM ! RnC1,
we can consider the canonical two-fold cover � W zM !M , where zM is orientable and the
initial immersion z'0 D '0 ı � . By uniqueness of the flow 't starting at '0 (Theorem 4.3),
it follows that the flow z't starting at z'0 is just z't D 't ı � . Therefore, if we prove that z't
smoothly converges, then the same holds for the flow 't . Hence, also in this case The-
orem 1.1 holds.

As the metric g is obtained pulling it back with  , in local coordinates ¹xiº onM , we
have

gij .x/ D
D@ .x/
@xi

;
@ .x/

@xj

E
and the canonical volume measure induced by the metric g is given in local coordinates by

� D

q
det.gij / Ln;

where Ln is the standard Lebesgue measure on Rn.
The induced covariant derivative on .M; g/ of a tangent vector field X is given by

rjX
i
D

@

@xj
X i C � ijkX

k

(in the whole paper we will adopt the Einstein convention of summation over repeated
indices), where the Christoffel symbols � i

jk
are expressed by the formula

� ijk D
1

2
gil
� @

@xj
gkl C

@

@xk
gjl �

@

@xl
gjk

�
:

We will write @i for the coordinates derivatives, opposite to the covariant ones ri .
With rkT we will mean the kth iterated covariant derivative of a tensor T . If f is a
smooth function on a smooth immersed hypersurface, the symbol rf denotes its gradient
and r2f its Hessian, whose trace is the Laplacian �f .

The second fundamental form A of the immersion  is the bilinear symmetric form
acting on any pair of vector fields X; Y tangent to M as

A.X; Y / D �hrRnC1

X Y; �i;

given a (global, since we assumed M orientable) choice of the unit normal vector � (we
will usually identify TM with d .TM/ � RnC1 and in this formula the field Y is exten-
ded locally around  .M/ in RnC1). Hence A is defined up to a sign, that is, up to the
choice of �, while A� is independent of the choice of �. In local coordinates, the compon-
ents hij of A are given by

hij .x/ D �
D
�.x/;

@2 .x/

@xi@xj

E
:
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We recall that the following Gauss–Weingarten relations hold:

(1.1) @2ij D �
k
ij @k � hij �; @i� D hijg

jk@k :

The mean curvature H of  is the trace of A, that is,

H.x/ D gij .x/hij .x/:

By means of the Gauss equation, the Riemann tensor can be expressed via the second
fundamental form, in local coordinates, as follows:

Rijkl D hik hjl � hil hjk :

Hence, the formulae for the interchange of covariant derivatives become

rirjX
s
� rjriX

s
D Rijkl gksX l D RsijlX

l
D .hik hjl � hil hjk/ g

ksX l ;

rirj !k � rjri !k D Rijkl gls!s D Rsijk!s D .hik hjl � hil hjk/ g
ls!s ;

where we recall that by rirjX s we mean the sth component of the field .r2X/.@i ; @j /.
Abusing a little the notation, if T1; : : : ; TN is a finite family of tensors, we denote by

⊛NkD1Tk WD T1 � � � � � TN

a generic contraction of some indices of the tensors T1; : : : ; TN using the coefficients gij
or gij . We will also denote

(1.2) ps.T1; : : : ; TN / WD
X

i1C���CiNDs

Ci1;:::;iN r
i1T1 � � � � � r

iN TN ;

for some constants Ci1;:::;iN 2 R. Notice that in every additive term of ps.T1; : : : ; TN /,
each tensor appears exactly once (there are no repetitions).

We will use instead the symbol qs.T1; : : : ; TN / for “polynomials” of the form

qs.T1; : : : ; TN / WD
X�

⊛M1

i1D1
r
i1T1 : : : ⊛

MN

iND1
r
iN TN

�
;

with Mj � 1 for any j D 1; : : : ; N and with

s D

M1X
i1D1

.i1 C 1/C � � � C

MNX
iND1

.iN C 1/:

Hence, repetitions are allowed in qs , and in every additive term there must be present
every argument of qs .

We notice that, by the above relations, the Riemann tensor of the hypersurface can be
written as R D A � A, exploiting the above notation.
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2. Preliminary computations

Let us recall the first variation formula for the functional Fm.

Theorem 2.1 (Theorem 3.7 in [17]). Let 't WM n ! RnC1 be a smooth family of immer-
sions smoothly depending on t 2 .�"; "/ and let Xt D @t't . Then, for every t 2 .�"; "/,
there holds

d

dt
Fm.'t / D

Z
M

Em.'t /h�;Xt i d�t ;

with
Em.'t / D 2.�1/m�mHC q2mC1.r�;A/C H;

where all the quantities are relative to the hypersurface 't .

The next lemma states the evolution formulae for the geometric quantities that we
need in the computation of the second variation of the functional Fm.

Lemma 2.2. Let 't WM n! RnC1 be a smooth family of immersions smoothly depending
on t 2 .�"; "/ and let ' D '0. Let X D @t't jtD0, and assume that X is a normal vector
field along '. Then, we have

@tgij jtD0 D 2h�;Xihij ;

@tg
ij
jtD0 D �2h�;Xig

ik gjl hkl ;

@t�jtD0 D �rh�;Xi ;

@t�
k
ij

ˇ̌
tD0
D rA � h�;Xi C A � rh�;Xi ;

@thij jtD0 D �r
2
ij h�;Xi C h�;Xih

2
ij ;(2.1)

@tHjtD0 D ��h�;Xi � h�;XijAj2 ;(2.2)
@t�

mf jtD0 ��
m@tf jtD0 D p2m.f0;A; h�;Xi/ ;(2.3)

for any smooth function f 2C1.M � .�";"// andm2N withm� 1, where f0D f .�; 0/
and

(2.4) @tq
2mC1.r�;A/jtD0 D q2mC3.h�;Xi;r�;A/C h�;Xiq2mC2.r�;A/ :

Proof. The first four formulae are computed explicitly at page 150 of [17].
By means of the Gauss–Weingarten relations (1.1), settingX D ˇ�, hence h�;Xi D ˇ,

we compute

@thij jtD0 D �@t h�; @
2
ij't ijtD0 D �h�; @

2
ij .ˇ�/i C hrˇ; @

2
ij'i

D �@2ijˇ � ˇh�; @i .hjl g
lk @k'/i C h@lˇg

ls @s'; �
k
ij @k' � hij �i

D �@2ijˇ � ˇh�; hjl g
lk @2ik'i C @kˇ�

k
ij D �r

2
ijˇ C ˇhik g

kl hlj ;

that is, @thij jtD0 D �r2ij h�;Xi C h�;Xih
2
ij . Hence it follows

@tHjtD0 D @t .gij hij /jtD0 D �2h�;XijAj2 ��h�;Xi C h�;XijAj2

D ��h�;Xi � h�;XijAj2:
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We now deal with equation (2.3) arguing by induction on m � 1. Using the previous
evolution formulae, for m D 1 we compute

@t�f jtD0 D @t .g
ij .@2ijf � �

k
ij @kf //jtD0

D �2h�;Xigik gjl hkl r
2
ijf0 C�@t jtD0f � g

ij .rA � h�;Xi C A � rh�;Xi/@kf0;

and the claim follows. Now for mC 1 � 1, by induction we get

@t�
mC1f jtD0 D �.@t�

mf /jtD0 C p2.�
mf0;A; h�;Xi/

D �.�m@tf jtD0 C p2m.f0;A; h�;Xi//C p2mC2.f0;A; h�;Xi/:

Finally, in order to show equation (2.4), we need to differentiate a generic term of the
form

⊛NkD1r
ikr� ⊛MlD1 r

jlA;

with
PN
kD1.ik C 1/C

PM
lD1.jl C 1/ D 2mC 1.

For any component �˛ of �, we can apply Proposition 3.6 in [17] in order to get

@t .r
ikr�˛/jtD0 D �r

ikC1r
˛
h�;Xi C pik .h�;Xi;r�;A/;

where r˛h�; Xi denotes the ˛th component in RnC1 of the gradient rh�; Xi. Also, by
Lemma 3.5 in [17] and formula (2.1), we have

@t .r
jlA/jtD0 D rjl .�r2h�;Xi C h�;XiA � A/C pjl .A;A; h�;Xi/

D �r
jlC2h�;Xi C pjl .A;A; h�;Xi/:

Therefore, using these formulae and the ones above for the derivatives of the metric gij
and its inverse gij , formula (2.4) follows.

We can now compute the second variation of Fm.

Theorem 2.3. Let 't WM n!RnC1 be a smooth family of immersions smoothly depending
on t 2 .�";"/. Denote 'D '0 and assume that ' is a critical point for Fm, i.e., Em.'/D 0.
Let X D @t't jtD0 and assume that X is normal along '. Then

d2

dt2
Fm.'t /

ˇ̌̌
tD0
D

Z
M

�
2.�1/mC1�mC1h�;Xi C�.h�;Xi/

�
h�;Xi d�;

where �.h�;Xi/ is linear in h�;Xi and depends on its covariant derivatives of order 2m
at most.

Proof. By Theorem 2.1 we have

d2

dt2
Fm.'t /

ˇ̌̌
tD0
D

d

dt

Z
M

Em.'t /h�; @t't i d�t
ˇ̌̌
tD0
D

Z
M

h @
@t

Em.'t /
iˇ̌̌
tD0
h�;Xi d�;

as Em.'/ D 0.
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Using the explicit expression for Em.'t / (Theorem 2.1), applying formula (2.3) with
f D H and equations (2.2), (2.4), we get

d

dt
Em.'t /

ˇ̌̌
tD0
D 2.�1/mC1�m.�h�;Xi C h�;XijAj2/C p2m.H;A; h�;Xi/

Cq2mC3.h�;Xi;r�;A/Ch�;Xiq2mC2.r�;A/�.�h�;XiCh�;XijAj2/

D 2.�1/mC1�mC1h�;Xi C 2.�1/mC1�m.h�;XijAj2/

Cq2mC3.h�;Xi;r�;A/Ch�;Xiq2mC2.r�;A/�.�h�;XiCh�;XijAj2/:

Hence, the thesis follows by observing that a generic monomial in q2mC3.h�;Xi;r�;A/
is of the form

⊛NkD1r
ik h�;Xi⊛MlD1 r

jlr� ⊛PsD1 r
rsA;

with
NX
kD1

.ik C 1/C

MX
lD1

.jl C 1/C

PX
sD1

.rs C 1/ D 2mC 3;

and N;M;P � 1, and then ik � 2m for any k.

It follows that, by polarization, we can define the bilinear form

.ı2Fm/'.f1; f2/ WD
d

ds

d

dt
Fm.' C sf1� C tf2�/

ˇ̌̌
tD0

ˇ̌̌
sD0

D

Z
M

�
2.�1/mC1�mC1f1 C�.f1/

�
f2 d� ;

(2.5)

for any pair of smooth functions f1; f2WM ! R and � is as in Theorem 2.3.

3. Analysis of the second variation

Suppose that 'WM !RnC1 is a smooth critical point of Fm, i.e., Em.'/D 0. The formula
for the second variation given above shows that .ı2Fm/'.f1; f2/ is well-defined for f1 2
W 2mC2;2.M; g/ and f2 2 L2.�/. This means that

.ı2Fm/'.f; �/ 2 L
2.�/?;

for any f 2 W 2mC2;2.M; g/ and that the map

W 2mC2;2.M; g/ 3 f 7! .ı2Fm/'.f; �/ 2 L
2.�/?

is well-defined. We are going to exploit the theory of Fredholm operators between Banach
spaces. For definitions and results on the subject we refer the reader to [14], Section 19.1.
We recall that if T WV1 ! V2 is a Fredholm operator between Banach spaces, its index is
defined to be the integer number

indexT WD dim kerT � dim cokerT;

where dim denotes the dimension of a finite dimensional vector space.
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Proposition 3.1. Let 'WM ! RnC1 be a smooth critical point of Fm, i.e., Em.'/ D 0.
Then the second variation functional

.ı2Fm/' W W
2mC2;2.M; g/! L2.�/?

is a Fredholm operator of index zero.

In order to prove Proposition 3.1, we need the following commutation rule.

Lemma 3.2. Let 'WM n ! RnC1 be a smooth immersion and let T be a tensor defined
on M . Assume M is endowed with the pull-back metric g induced by '. Then

r�lT ��lrT D p2l�1.A;A; T /;

for any l 2 N with l � 1.

Proof. As we need to prove a pointwise identity, we can take a local coordinate frame
E1; : : : ; En which is orthonormal at a given point p (that is, hEi ; Ej i D ıij ), and is such
that riEj D 0 at p. In this way we can compute

.�rT /.Ek/ D .r
2.rT /.Ei ; Ei //.Ek/ D .ri .rirT / � rriEirT /.Ek/

D .ri .rirT //.Ek/ D ri ..rirT /.Ek// � .rirT /.riEk/

D ri .r
2T .Ei ; Ek// � r

2T .Ei ;riEk/ D ri .r
2T .Ei ; Ek//:

at the point p. On the other hand, using that for any tensor S we have the commutation
rule

.r2S/.Ej ; El / D .r
2S/.El ; Ej /C R � S

for any j and l , we obtain

.r�T /.Ek/ D rk.tracer2T / D tracerkr2T D .rk.r2T //.Ei ; Ei /

D .r3T /.Ek ; Ei ; Ei / D .r
3T /.Ei ; Ek ; Ei /C R � rT

D .ri .r
2T //.Ek ; Ei /C R � rT

D ri .r
2T .Ek ; Ei // � .r

2T /.riEk ; Ei / � .r
2T /.Ek ;riEi /C R � rT

D ri .r
2T .Ei ; Ek/C R � T /C R � rT

D .�rT /.Ek/Cr.R � T /C R � rT D .�rT /.Ek/C p1.A;A; T /;

where we have used that R D A � A, by the Gauss equations. Hence, the thesis is proved
for l D 1. Letting now l C 1 � 1, by induction we obtain

r��lT D �r�lT Cp1.A;A;�lT / D �.�lrT Cp2l�1.A;A; T //Cp2lC1.A;A; T /;

and the thesis follows.

We are now ready to prove Proposition 3.1. A relevant property about Fredholm oper-
ators that we are going to use is the following. If T W V1 ! V2 is a Fredholm operator
between Banach spaces and KWV1 ! V2 is a compact operator, then T CK is Fredholm
and index.T CK/ D indexT (see Corollary 19.1.8 in [14]).
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Proof of Proposition 3.1. For f12W 2mC2;2.M;g/, the functional .ı2Fm/'.f1; �/ is given
by

.ı2Fm/'.f1; f2/ D hL.f1/; f2iL2.�/;

where LWW 2mC2;2.M; g/! L2.�/ is

L.f / D 2.�1/mC1�mC1f C�.f /;

and � is as in Theorem 2.3, hence � is a compact operator. Therefore

.ı2Fm/' W W
2mC2;2.M; g/! L2.�/?

is Fredholm of index zero if and only if the same holds for LWW 2mC2;2.M;g/! L2.�/.
We then claim that the operator

C idC 2.�1/mC1�mC1 W W 2mC2;2.M; g/! L2.�/

is invertible for C > 0 sufficiently large, thus it is Fredholm of index zero. As the inclu-
sion idWW 2mC2;2.M; g/! L2.�/ is compact, this eventually implies that the operator
2.�1/mC1�mC1WW 2mC2;2.M; g/! L2.�/ is Fredholm of index zero.

The injectivity of the above operator immediately follows. Suppose indeed that we
have Cf C 2.�1/mC1�mC1f D 0. If m D 2k C 1, multiplying by f and integrating we
get

C

Z
M

f 2 d� D �2

Z
M

f�2.kC1/f d� D �2

Z
M

.�kC1f /2 d�;

and then f D 0. If instead m D 2k, multiplying by f and integrating we get

C

Z
M

f 2 d� D 2

Z
M

f�2kC1f d� D �2

Z
M

jr�kf j2 d�;

so f D 0 as well.
About the surjectivity, given h 2 L2.�/, we aim at finding f 2 W 2mC2;2.M; g/ such

that Cf C 2.�1/mC1�mC1f D h. We shall minimize the functional

Am W W
mC1;2.M; g/! R

defined by

Am.f / WD

8̂̂<̂
:̂
Z
M

hC
2
f 2 C .�kC1f /2 � f h

i
d� if m D 2k C 1;Z

M

hC
2
f 2 C jr�kf j2 � f h

i
d� if m D 2k:

We can prove that Am is coercive on W mC1;2.M; g/, up to choosing C > 0 sufficiently
large (depending on m and the geometry of .M; g/).

First consider the casemD2kC1. Integrating by parts in the integral
R
M
.�kC1f /2d�,

that is, using the divergence theorem and applying the commutation rule of Lemma 3.2,
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we getZ
M

.�kC1f /2 d� D

Z
M

�hr�kf;r�kC1f i d�

D

Z
M

�
� h�krf;�kC1rf i C r�kf � p2.kC1/�1.A;A; f /

Cr�kC1f � p2k�1.A;A; f /
�
d�

D

Z
M

�
� h�krf;�kC1rf i C p4kC2.A;A; f; f /

�
d�

D

Z
M

�
.�1/kC1hrkC1f;�kC1rkC1f i C p4kC2.A;A; f; f /

�
d�

D

Z
M

�
jr
2kC2f j2 C p4kC2.A;A; f; f /

�
d�

D

Z
M

�
jr
mC1f j2 C p2m.A;A; f; f /

�
d�:

Moreover, by the definition of ps , we can apply the divergence theorem on the integralR
M

p2m.A;A; f; f / d� in the above expression so that in the polynomial there appear
derivatives of f of order m at most.

We recall that for any covariant tensor T there holds the general inequality (see [1],
Chapter 3, Section 7.6)

kr
lT kL2.�/ � Cl;m kr

mC1T k
l

mC1

L2.�/
kT k

mC1�l
mC1

L2.�/

� "krmC1T kL2.�/ C Cl;m."/kT kL2.�/;(3.1)

for any l � m and " > 0. Therefore we can estimateZ
M

jp2m.A;A; f; f /j d� � Cm.kAk21/
XZ

M

jr
l1f j jrl2f j d�;

where l1; l2 � m and thenZ
M

jp2m.A;A; f; f /j d� � "Cm .kAk21/kr
mC1f k2

L2.�/
C Cm.kAk21; "/kf k

2
L2.�/

:

Therefore, taking "Cm.kAk21/ < 1=2 and C D C.m;kAk21/ sufficiently large, we estim-
ate

Am.f / � C

Z
M

�
f 2 C jrmC1f j2 � h2

�
d�;

that by inequality (3.1) implies that Am is coercive on W mC1;2.M; g/. Analogously, one
can prove the coercivity of Am also in the case m D 2k.

It follows that there exists a function F 2 W mC1;2.M; g/ solvingZ
M

�
CFf C 2�kC1F�kC1f

�
d� D

Z
M

f h d�; 8f 2 W mC1;2.M; g/;
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if m D 2k C 1, orZ
M

�
CFf C 2hr�kF;r�kf i

�
d� D

Z
M

f h d�; 8f 2 W mC1;2.M; g/;

if m D 2k. In any case, F is a weak solution to an elliptic equation with constant coef-
ficients and datum h 2 L2.�/ (in the sense of [1], Point (d), page 85). Therefore, the
standard regularity theory for distributional solutions applies (see Theorem on page 85
of [1]), hence F belongs to W 2mC2;2.M; g/. Integrating by parts, we then get that F
solves CF C 2.�1/mC1�mC1F D h, as required.

4. Convergence

Suppose that 'WM ! RnC1 is a smooth critical point of Fm, that is, Em.'/D 0. Then for
�0 > 0 suitably small, the functional EmWB�0.0/ � W

2mC2;2.M; g/! R given by

Em.f / WD Fm.' C f �/

is well-defined. The advantage of the above definition is that the functional Em is now
defined on an open set of a Banach space, and we can then look at first and second variation
functionals in the classical sense of functional analysis. More precisely, by Theorem 2.1
we have

.ıEm/f1.f2/ WD
d

dt
Em.f1 C tf2/

ˇ̌̌
tD0
D

Z
M

Em.' C f1�/h�1; �if2 d�1;

where � (respectively �1) is a unit normal vector along ' (respectively ' C f1�), and �1
is the volume measure induced by ' C f1�. In this way we see that

ıEm W B�0.0/ � W
2mC2;2.M; g/! L2.�/?:

Analogously, by Theorem 2.3 and formula (2.5), the second variation of Em evaluated at
0 2 B�0.0/ is given by

.ı2Em/0.f1; f2/ D

Z
M

�
2.�1/mC1�mC1f1 C�.f1/

�
f2 d�;

for � as in Theorem 2.3, so that

.ı2Em/0 W W
2mC2;2.M; g/! L2.�/?;

and it is a Fredholm operator of index zero by Proposition 3.1.

In this setting, we can apply the following abstract result stating sufficient conditions
implying a Łojasiewicz–Simon gradient inequality.

Proposition 4.1 (Corollary 2.6 in [20]). Let EWB�0.0/ � V ! R be an analytic map,
where V is a Banach space. Suppose that 0 is a critical point for E, i.e., ıE0 D 0. Assume
that there exists a Banach spaceZ such that V ,!Z, the first variation ıEWB�0.0/!Z?
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is Z?-valued and analytic, and the second variation ı2E0W V ! Z? evaluated at 0 is
Z?-valued and Fredholm of index zero.

Then there exist constants C; � > 0 and ˛ 2 .0; 1=2� such that

jE.f / �E.0/j1�˛ � CkıEf kZ? ;

for every f 2 B� .0/ � V .

The above functional analytic result is a corollary of the useful theory developed in [4],
and it has been also proved in [21] independently.

Applying Proposition 4.1 to the functional Em, we obtain the following corollary.

Corollary 4.2. Let 'WM ! RnC1 be a smooth critical point of Fm, i.e., Em.'/ D 0. Let
�0 > 0 be such that EmWB�0.0/ � W

2mC2;2.M; g/! R is well-defined.
Then, there exist constants C > 0; � 2 .0; �0� and ˛ 2 .0; 1=2� such that

jFm.' C f �/ � Fm.'/j
1�˛
� Ck.ıEm/f kL2.�/? ;

for every f 2 B� .0/ � W 2mC2;2.M; g/.

Proof. We want to apply Proposition 4.1 with V D W 2mC2;2.M; g/ and Z D L2.�/. By
Proposition 3.1 and the discussion at the beginning of the section, we just need to check
that Em and ıEm are analytic as maps between Banach spaces.

We can rewrite

Em.f / D

Z
M

h
1C

nC1X
˛D1

hr
m�˛f ;r

m�˛f i
i
d�f

where �f is a unit normal along ' C f �, and �f is the volume measure induced by
' C f �. If  WM ! RnC1 is any immersion, we have that a unit normal along  is
given by � D ?

@1 ^���^@n 
j@1 ^���^@n j

, where ? denotes the Euclidean Hodge star operator. As  
is an immersion, we see that  7! � is analytic. It follows that f 7! �f is analytic
as well. As the metric tensor induced by an immersion  WM ! RnC1 has components
gij D h@i ;@j i, we get that the metric tensor of ' C f � depends analytically on f , and
then the dependence of �f and of the Christoffel symbols (and thus of the connection)
on f is analytic. Then the integrand in the definition of Em is just a sum of compositions
and multiplications of functions which are analytic in f . Finally, as integration is linear on
L1.�/, we deduce that f 7! Em.f / 2 R is analytic for f 2 B�0.0/ � W

2mC2;2.M; g/.
By the very same arguments, one can check that also f 7! .ıEm/f is analytic. Hence,

all the hypotheses of Proposition 4.1 are satisfied and the thesis follows.

The starting point for proving the smooth convergence of the gradient flow of Fm is
the following sub-convergence theorem.

Theorem 4.3 (Theorems 7.8 and 8.2 in [17]). Let '0 WM n ! RnC1 be a smooth immer-
sion and let m > bn=2c. Then there exists a unique smooth solution 'WM � Œ0;C1/!
RnC1 to the evolution equation ´

@t' D �Em.'t /�t ;
'.�; 0/ D '0;
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where �t denotes a unit normal vector field along 't WD '.�; t /. Moreover, the solution
satisfies the estimates

(4.1) kr
kAtkL1.M;gt / � C.k; n; '0/;

for any t 2 Œ0;C1/, where At and gt are, respectively, the second fundamental form
and the metric of 't , and there exist a smooth critical point '1WM ! RnC1 of Fm, a
sequence of times tj !C1 and a sequence of points pj 2 RnC1 such that

k'tj ı �j � pj � '1kC k.M/ �����!
j!C1

0;

for any k 2 N, where �j is a sequence of diffeomorphisms of M .

We need a preliminary lemma.

Lemma 4.4. Let '0, 't , '1, �j , tj and pj be as in Theorem 4.3. Then, for any " > 0

there is j" 2 N such that, for any j � j", there exists ıj > 0 such that the immersion
't � pj coincides with '1 C ft�1 up to diffeomorphism, where �1 is a unit normal
vector along '1, for some “height” functions ft 2 C1.M/ smoothly depending on t 2
Œtj ; tj C ıj /. Moreover,

kftkW 2mC2;2.M;g1/ � ";

for any t 2 Œtj ; tj C ıj /.

Proof. Fixed � > 0 and k > 2mC 2, by Theorem 4.3 there is j� such that for any j � j�
we have

(4.2) k't ı �j � pj � '1kC k.M/ < �;

for every t 2 Œtj ; tj C ıj /, for some ıj > 0.
Let us assume that '1 is an embedding. The general statement analogously follows

by recalling that immersions are local embeddings. So for j� large enough, 't is an
embedding as well for every t 2 Œtj ; tj C ıj /. Moreover, there exists U � RnC1 open
set containing N WD '1.M/ such that the projection map � WU ! N is well-defined as

�.p/ D p �
1

2
r

RnC1

d2N .p/;

where dN is the distance function from N . The vector 1
2
rRnC1

d2N .p/ is orthogonal to N
at �.p/, � is smooth on U , and for j� sufficiently large we have that .'t ı �j .M/ � pj /

� U for every t 2 Œtj ; tj C ıj / (for a proof of these facts, see Proposition 4.2 in [18]).
Hence, for x 2M , the “height” function ft .x/ is uniquely determined by the identity

't ı �j .x/ � pj D �.'t ı �j .x/ � pj /C ft .x/�1.'
�1
1 ı � ı .'t ı �j .x/ � pj //;

that is,

(4.3) ft .x/D h't ı �j .x/� pj � �.'t ı �j .x/� pj /; �1.'�11 ı � ı .'t ı �j .x/� pj //i:

Then, the map .x; t/ 7! ft .x/ is smooth onM � Œtj ; tj C ıj / and kftkW 2mC2;2.M;g1/! 0

as � ! 0, by inequality (4.2) and the fact that k > 2mC 2.
Hence, for the chosen " > 0, taking a suitable � > 0 we have the estimate in the

statement of the lemma.
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We are now ready for proving our main result. The proof of Theorem 1.1 is essentially
a generalization of the strategy employed in [19] to show the smooth convergence of the
elastic flow of closed curves in Rn.

Proof of Theorem 1.1. Let '0, 't , '1, �j , tj and pj be as in Theorem 4.3. Fixed k >
2mC 2 and chosen " > 0 smaller than the constant � given by Corollary 4.2, relative to
the critical point '1, by Theorem 4.3 and Lemma 4.4, there exists j" 2 N such that for
every j � j" we have

k't ı �j � pj � '1kC k.M/ < ";

for every t 2 Œtj ; tj C ıj / with some ıj > 0. Moreover, 't ı �j � pj coincides with '1 C
ft�1, up to diffeomorphism, for the functions ft given by Lemma 4.4 (we recall that
ft 2 C

1.M/ depends on j ) satisfying

(4.4) kftkW 2mC2;2.M;g1/ < " < �;

for every t 2 Œtj ; tj C ıj /.
We claim that it is possible to choose " > 0 small enough such that for any fixed

j � j", the hypersurfaces 't ı �j � pj coincide with '1C ft�1 (up to diffeomorphism)
for some smooth functions ft with kftkW 2mC2;2.M;g1/ < � for any t 2 Œtj ;C1/.

We define
H.t/ WD jFm.'t / � Fm.'1/j

˛;

where ˛ 2 .0; 1=2� is as in Corollary 4.2 applied to the critical point '1 and, without loss
of generality, we can clearly assume that H.t/ > 0 for any t . As Fm.'t / D Fm.'1 C

ft�1/, by Corollary 4.2 we have

H.t/.1�˛/=˛ � Ck.ıEm/ft kL2.�1/?

D C
�Z
M

jEm.'1 C ft�1/h�t ; �1ij2 detgt d�1
�1=2

� C.'1; �/
�Z
M

jEm.'1 C ft�1/j2 d�t
�1=2

D C.'1; �/ kEm.'t /kL2.�/;

where �t , gt and �t D det gt d�1 are, respectively, the unit normal, the metric tensor
and the volume measure on '1 C ft�1, and we estimated

p
detgt � C.'1; �/, for any

t � tj such that
kftkW 2mC2;2.M;g1/ < �:

Differentiating H and using the above inequality, we obtain

@tH.t/ D ˛H
.˛�1/=˛@tFm.'t / D ˛H

.˛�1/=˛

Z
M

hEm.'t /; @?t 't i d�

D�˛H .˛�1/=

Z̨
M

jEm.'t /jj@?t 't j d�D�˛H
.˛�1/=˛

kEm.'t /kL2.�/k@
?
t 'tkL2.�/

� �˛ C.'1; �/ k@
?
t 'tkL2.�/;
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for any t � tj such that kftkW 2mC2;2.M;g1/ < � . For such times, possibly choosing a
smaller ", we can assume that j�t � �1j < 1=2. Letting z't WD '1 C ft�1, we thus get

j@?t z't j D jh@t z't ; �t i�t j D jh@t z't ; �1i�t C h@t z't ; �t � �1i�t j

� jh@t z't ; �1ij �
1

2
j@t z't j D

1

2
j@t z't j;

and the above estimate becomes

@tH.t/ � �˛C.'1; �/ k@
?
t 'tkL2.�/ D �˛C.'1; �/ k@

?
t z'tkL2.�t /

� �˛C.'1; �/ k@t z'tkL2.�t /

for any t � tj such that kftkW 2mC2;2.M;g1/ < � . Integrating the above differential inequal-
ity and estimating

p
detgt � C.'1; �/ > 0, we obtain

kz'�2 � z'�1kL2.�1/ D
 Z �2

�1

@t z't dt

L2.�1/

� C.'1; �/

Z �2

�1

k@t z'tkL2.�t / dt

� C.˛; '1; �/.H.�1/ �H.�2// � C.˛; '1; �/.Fm.'�1/ � Fm.'1//
˛:

Then, since possibly choosing a larger j" we can assume that Fm.'tj" /�Fm.'1/� "
1=˛ ,

we see that

(4.5) kz'�2 � z'�1kL2.�1/ � C.˛; '1; �/"

for any �2 � �1 � tj such that kftkW 2mC2;2.M;g1/ < � on t 2 Œtj ; �2�. Finally, since
kftkL2.�1/ D kz't � '1kL2.�1/, we get

(4.6) kftkL2.�1/ � kz't �e'tj kL2.�1/ C kz'tj � '1kL2.�1/ � C.˛; '1; �/"
for any t � tj such that kftkW 2mC2;2.M;g1/ < � .

Since m > bn=2c, estimate (4.4) implies that the hypersurfaces z't are represented
as graphs on '1 by means of functions ft with uniformly equibounded gradients (such
bound clearly depends on " and goes to zero with it). Also, the inequalities (4.1) clearly
hold also for the second fundamental form of the hypersurfaces 't ı �j and z't , since
they coincide with 't up to diffeomorphism (and translation). These facts imply uniform
estimates on the “height” functions ft in W r;1.M; g1/; namely, for any r 2 N we have

(4.7) kftkW r;1.M;g1/ � C.r; n; '0; '1/;

for any t 2 Œtj ; tj C ıj / (a tedious but straightforward way to see this is to differentiate
formula (4.3) and use the Gauss–Weingarten relations (1.1), taking into account that the
closeness in W 2mC2;2.M; g1/ implies that the metric tensor and the Christoffel symbols
of the covariant derivative of z't are mutually “comparable” with the ones relative to '1).
Hence, if r > 2mC 2 and " > 0 is small enough, combining estimates (4.6) and (4.7), the
interpolation inequalities (3.1) imply that

kftkW 2mC2;2.M;g1/ < �;
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for any t 2 Œtj ; tj C ıj /. By a maximality argument, it clearly follows that we can take
ıj D C1, for every j � j". Hence, the estimate (4.5), which then holds for any t � tj ,
implies that the flow z't satisfies the Cauchy criterion for convergence in L2.�1/, and
hence z't converges in L2.�1/, as t !C1. Interpolating as before by means of inequal-
ities (4.7), the same holds for z't in W r;2.M; g1/, for any r 2 N and, by Sobolev embed-
dings, we thus deduce that there exists the limit limt!C1 z't in C r .M/ for any r 2 N.
Therefore, the same conclusion holds for the original flow 't , up to diffeomorphism.
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