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Asymptotic convergence of evolving hypersurfaces

Carlo Mantegazza and Marco Pozzetta

Abstract. If ¥: M" — R"T1 is a smooth immersed closed hypersurface, we con-
sider the functional

Fn(Y) =/ L4+ V7P i,
M

where v is a local unit normal vector along v, V is the Levi-Civita connection of
the Riemannian manifold (M, g), with g the pull-back metric induced by the immer-
sion and p the associated volume measure. We prove that if m > |n/2] then the
unique globally defined smooth solution to the LZ-gradient flow of F,, for every
initial hypersurface, smoothly converges asymptotically to a critical point of 5, up
to diffeomorphisms. The proof is based on the application of a Lojasiewicz—Simon
gradient inequality for the functional 7.

1. Introduction

We consider a closed connected differentiable manifold M" of dimension n > 1 and
Y: M™ — R a smooth immersion of M" in the Euclidean space R"*!. We shall
usually omit the superscript n denoting the dimension of M. For such an immersion, we
always assume that M is endowed with the metric tensor g = ¥ * (-, -)gn+1, induced by the
immersion i that we also sometimes simply denote as (-, -). The Levi-Civita connection
of the Riemannian manifold (M, g) is denoted by V, and the associated volume measure
by w. Then, for m € N with m > 1, we consider the functional

Fn(W) :=/ 1+ V™ du
M

on the smooth immersions ¥: M" — R**1 where v is a (locally defined) unit normal
vector field along 1. Let us specify that in the above definition, if v = v%e, and ey
is the standard basis in R”*!, we mean |[V"v|? := Y211 |V™1® |2 Notice that %, is
independent of the local choice of the unit normal v and that it is well-defined without
further hypotheses on M. However, by the discussion below in Remark 1.2, we shall
always assume without loss of generality that M is orientable and that a global choice of
unit normal field v is understood.
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In the case n = m = 1, we recognize the well-known elastic energy of closed curves
v:S! - R2 ie., F1(¥) = Joi 1+ |k|?ds, where k is the curvature of . If instead
n =2 and m = 1, then one has |Vv|? = |A|?, where A is the second fundamental form
(see (1.1)), and then F7 yields the sum of the area and of (an equivalent form of) the Will-
more energy of an immersed surface : M? — R3. Let us also notice thatif n = m = 2,
then %2 (¥) = [3, 1 + [VA|* + po(A, A, A, A) dp for any given immersion : M? — R?,
where py is some polynomial as in (1.2) below.

By the formula for the first variation of ¥,, (see Theorem 2.1), one can prove that the
associated L2-gradient flow is defined by an evolution equation

9
a—f(p, 1) = —En(@:)(p) v:(p)

for a smooth map ¢: M x [0, T) — R"*! (where ¢, = ¢(-,1): M — R"*! describes
the moving hypersurface and v; is its unit normal vector field), which turns out to be a
(quasilinear and degenerate) parabolic system of PDEs.

If m > |n/2], the study carried out in [17] shows that for every initial smooth im-
mersed hypersurface ¢o: M — R"*!, there exists a unique smooth solution ¢, with initial
datum ¢y, defined for all positive times; moreover, ¢; sub-converges to a critical point
@oo: M — R™1 of the functional %,,, that is, such that B, (¢s) = 0 (see Theorem 4.3).
By sub-convergence we mean that for some sequence of times ¢#; — +00, the sequence ¢,
smoothly converges to @0, up to diffeomorphisms and translations in R”*!. More pre-
cisely, there exist a sequence of smooth diffeomorphisms o;: M — M and a sequence of
points p; € R"*! such that the sequence of immersions %1; © 0j — pj converge to Qoo in
Ck(M), for any k € N. From such a sub-convergence result it is not possible to imme-
diately deduce that the flow fully converges, i.e., that there exists the full limit of ¢; as
t — +oo in C¥(M) for any k (up to diffeomorphisms). Actually, the sub-convergence
of the flow does not even guarantee that the limits of the flow along different diverging
sequences of times coincide. Moreover, as the evolution equations involved here are of
order greater or equal than four with respect to the parametrization, it is not even pos-
sible to conclude that the flow stays in a compact set of R”*! for all times by means of
comparison arguments, as maximum principles are not applicable.

In this work we address this issue, that is, we prove that the gradient flow of ¥, does
actually converge, for any initial hypersurface. Our main result is the following theorem.

Theorem 1.1. Let ¢o: M™ — R™ 1 be a smooth immersion of a closed hypersurface and
letm > |n/2|. Then the unique smooth solution ¢: M x [0, +00) — R™**! to the evolution
problem

%_(to = _Em((pt)vh
®(0,-) = go,

converges in CK (M) to a smooth critical point poo: M — R"1 of F;, ast — +o0, for
every k € N up to diffeomorphisms of M ; more precisely, there exists a one-parameter
family of diffeomorphisms o: M — M such that the flow ¢; o o; converges in C¥ (M) to
a smooth critical point 9o of Fy ast — +o0, for every k € N.

In particular, there exists a compact set K € R"*! such that M, = ¢;(M) C K for
anyt > 0.
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We remark that the assumption m > |n/2] is sharp; in fact, if m < [n/2], then one
gets flows that may develop singularities in finite time.

A relevant motivation for the study of the gradient flow of the functionals ¥, goes
back to Ennio De Giorgi. In one of his last papers, he conjectured that any compact
n-dimensional hypersurface in R”*!, evolving by the gradient flow of certain functionals
depending on sufficiently high derivatives of the curvature, does not develop singularities
during the flow (see [10] and Conjecture 2 in Section 5 of [11] for an English translation;
see also [17], Section 9). This result was central in his program to approximate singular
geometric flows, as the mean curvature flow, with sequences of smooth ones (see Section 9
in [17] and [2] for a result in this direction). The functionals %, are strictly related to the
ones proposed by De Giorgi since, roughly speaking, the derivative of the normal field
yields the curvature of M (see (1.1)). Though not exactly the same, the energies ¥, can
then play the same role in the approximation process he suggested, and the analysis of the
asymptotic behavior of their gradient flow is another step in understanding such process.

The main tool in the proof of Theorem 1.1 is a Lojasiewicz—Simon gradient inequality
for the functional %7, (see Corollary 4.2). Such an estimate bounds a less-than-1/2 power
of the difference in “energy” (the value of the functional) between a critical point and a
point sufficiently close to it in terms of a suitable norm of the first variation of the func-
tional. The use of this kind of inequalities in the study of the convergence of parabolic
equations of gradient-type goes back to Lojasiewicz [15, 16] and to the seminal paper of
Simon [23]. More recently, useful sufficient hypotheses implying a Lojasiewicz—Simon
gradient inequality have been derived in [4] (see also [13] for several recent generaliz-
ations). Building on the abstract tools developed in [4], a first recent application of the
inequality to get convergence of an extrinsic geometric flow is contained in [5], where the
authors investigate the Willmore flow of surfaces in neighborhoods of critical points. In
the last years and in the context of higher order geometric gradient flows, the Lojasiewicz—
Simon inequality has appeared as a tool for “promoting” the sub-convergence of a flow to
its full convergence. As applications of this method we mention [9], in which it is proved
the full convergence of the elastic flow of open clamped curves, and [20], in which the sub-
convergence of the p-elastic flow of closed curves on Riemannian manifolds is shown to
imply the full convergence. The analysis in [20] led to a further simplification and deeper
understanding of the method, which is exposed in [19]. In this work we essentially gener-
alize the strategy employed in [19] to the gradient flows of the functionals ¥,,. Moreover,
we tried to keep most of the arguments as general as possible, in order that the method
could be possibly applied also to other geometric gradient flows, also in the context of
extrinsic geometric flows in higher codimension possibly in Riemannian manifolds.

In the broad framework of geometric flows, the Lojasiewicz—Simon gradient inequalit-
ies found many other notable applications. For example, the study of singularities of mean
curvature flow can be reconducted to the study of the smooth convergence of a suitable
extrinsic geometric flow. Smooth convergence of such flow has been proved exploiting
the Lojasiewicz—Simon inequalities in some relevant particular cases in [6, 8, 22]. Let
us also mention [7], where a classification of ancient solutions to a family of geometric
flows in Riemannian manifolds is derived. The Lojasiewicz—Simon inequalities have been
employed also in the context of intrinsic geometric flows. We refer, for instance, to the
study of the rate of convergence of Yamabe flows in [3], or to the deep investigation on
the Yang—Mills flow contained in [12] (see also references therein).
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Notation and geometry of submanifolds

Let M be closed, connected, and orientable. Let ¥: M — R”*! be a smooth immersion
of M, and let v be the global unit normal field on M along .

Remark 1.2. In case M is not orientable, given an initial immersion ¢o: M — R+,

we can consider the canonical two-fold cover 7: M — M, where M is orientable and the
initial immersion @y = ¢ o 7. By uniqueness of the flow ¢; starting at ¢g (Theorem 4.3),
it follows that the flow @; starting at @g is just ¢; = ¢; o 7. Therefore, if we prove that @,
smoothly converges, then the same holds for the flow ;. Hence, also in this case The-
orem 1.1 holds.

As the metric g is obtained pulling it back with v, in local coordinates {x; } on M, we

have
Y (x) 31/f(X)>

ax,’ ’ ax]'

gij(x) = <

and the canonical volume measure induced by the metric g is given in local coordinates by

= fdet(gy) 2",

where £" is the standard Lebesgue measure on R”.
The induced covariant derivative on (M, g) of a tangent vector field X is given by

. d p
V]Xl = WXZ + F/lkX

(in the whole paper we will adopt the Einstein convention of summation over repeated
indices), where the Christoffel symbols F]’. « are expressed by the formula

Fi_li,<8 +3 '_3 )
jk—2g ox; 8kl axkg]l 8xlg]k .

We will write 0; for the coordinates derivatives, opposite to the covariant ones V;.
With VAT we will mean the kth iterated covariant derivative of a tensor 7. If f is a
smooth function on a smooth immersed hypersurface, the symbol V f denotes its gradient
and V2 f its Hessian, whose trace is the Laplacian A f .

The second fundamental form A of the immersion  is the bilinear symmetric form
acting on any pair of vector fields X, Y tangent to M as

AX.Y) =—(VEy,v),

given a (global, since we assumed M orientable) choice of the unit normal vector v (we
will usually identify TM with dy(TM) € R"*! and in this formula the field Y is exten-
ded locally around (M) in R”*1). Hence A is defined up to a sign, that is, up to the
choice of v, while Av is independent of the choice of v. In local coordinates, the compon-
ents &;; of A are given by

821/f(X)>

hij(x) = < () 5o
J
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We recall that the following Gauss—Weingarten relations hold:
(1.1) Oy =Ty —hijv, v = hijg/*ory.
The mean curvature H of ¢ is the trace of A, that is,

H(x) = g% (x) hyj (x).

By means of the Gauss equation, the Riemann tensor can be expressed via the second
fundamental form, in local coordinates, as follows:

Rijikt = hikhjr — highji .
Hence, the formulae for the interchange of covariant derivatives become

ViV;X* —V;V;X* = Rji gox! = RfﬂXl = (hikhj1 — hirhji) g xl,

ViV or — V;Viog = Riji g7 o5 = RS o5 = (highji — highji) g oy

where we recall that by V; V; X* we mean the sth component of the field (V2X)(9;, ;).
Abusing a little the notation, if 77, ..., T is a finite family of tensors, we denote by

®]1€V=1Tk =T1%---xTy

a generic contraction of some indices of the tensors 77, ..., Ty using the coefficients g;;
or g¥. We will also denote

(1.2) ps(Ti.... . Ty) == Y Ciy iy V' Tikox VIN Ty,

for some constants C;,, . ;, € R. Notice that in every additive term of ps(T4, ..., Ty),
each tensor appears exactly once (there are no repetitions).
We will use instead the symbol ¢* (77, ..., Ty) for “polynomials” of the form

O (Th.....Tw) = Y_[@)L, Vi1 . @l VINTy],

with M; > 1 forany j = 1,..., N and with

M, My
s=Y G4+ ) (n+1),

i1=1 in=1

Hence, repetitions are allowed in g°, and in every additive term there must be present
every argument of g*.

We notice that, by the above relations, the Riemann tensor of the hypersurface can be
written as R = A x A, exploiting the above notation.



C. Mantegazza and M. Pozzetta 1932

2. Preliminary computations

Let us recall the first variation formula for the functional %,,,.

Theorem 2.1 (Theorem 3.7 in [17]). Let ¢;: M™ — R™ T be a smooth family of immer-
sions smoothly depending ont € (—¢, €) and let X; = 0;¢;. Then, for every t € (—¢,¢),
there holds

d
o Tl = / B (00) (v, X0 djis.
! M

with
En(p:) = 2(=1)"A"H + ¢*""'(Vv,A) + H,
where all the quantities are relative to the hypersurface ¢;.

The next lemma states the evolution formulae for the geometric quantities that we
need in the computation of the second variation of the functional %,,.

Lemma 2.2. Let ¢;: M™ — R" V! be a smooth family of immersions smoothly depending
ont € (—e,¢€) and let ¢ = @o. Let X = 0;¢;|;=0, and assume that X is a normal vector
field along ¢. Then, we have
atgij|t=0 = 2(v, X)hij s
0:8 li=0 = —2(v. X)g™ g' hyr
8tv|t:0 = —V(V, X) s

TE|,_y=VA* (1. X)+AxV(v, X),
@.1) dihijli=o = =V (0. X) + (v. X) ;.
2.2) 9:H|i=0 = —A(v, X) — (v, X)|A]?,
(2.3) ;A" fli=o — A™0; fli=0 = P2m(fo. A, (v, X)),

for any smooth function f € C®°(M x (—¢,¢)) and m € N withm > 1, where fo = f(-,0)
and

Q4 g (Vv A)|=0 = ¢ (1. X), Vv, A) + (1, X)g>"T2(Vv, A).

Proof. The first four formulae are computed explicitly at page 150 of [17].
By means of the Gauss—Weingarten relations (1.1), setting X = v, hence (v, X) = ,
we compute

chijlimo = —0: (v, 0%@:)|i=o = —(v,0%,(BV)) + (VB. 3% 0)
= —07,8 — B(v. 0i(hj1 g% 0)) + (9B 8" 050, T, Op — hijv)
= =078 — B(v.hj1g"* 9% 0) + BTN ==V B + Bhirg* hy;.
that is, 3:h;j|i1=0 = =V (v, X) + (v, X)h7;. Hence it follows

d;Hlr=0 = 3:(g" hij)li=0 = =2{v, X)|A® = A(v, X) + (v, X)|A]?
= —A(v, X) = (v, X)|A]%.



Asymptotic convergence of evolving hypersurfaces 1933

We now deal with equation (2.3) arguing by induction on m > 1. Using the previous
evolution formulae, for m = 1 we compute

3 Af im0 = d; (g”(a f = TE 0k f)i=o
= —2(v, X)g* g/ hit VZ fo + Adili=o f — 87 (VA * (v, X) + A V{1, X))d fo.

and the claim follows. Now for m + 1 > 1, by induction we get

0 A" im0 = A A" f)li=0 + P2(A™ fo. A, (v, X))
= A (Amalf|t=0 + p2m(f09 Av (V, X))) + p2m+2(f05 Av (Va X))
Finally, in order to show equation (2.4), we need to differentiate a generic term of the

form A .
®Y_ \ViEVy @M VIA,

with Y3 Gk + 1) + /L, G+ D =2m + 1.
For any component v* of v, we can apply Proposition 3.6 in [17] in order to get

3 (VEVV)|,—g = —=VETIVE (0, X) + p;, (v, X), Vv, A),

where V% (v, X) denotes the ath component in R”*! of the gradient V(v, X). Also, by
Lemma 3.5 in [17] and formula (2.1), we have
8: (VI A) o = V' (=V2(1, X) + (v, X)A  A) + pj, (A, A, (v. X))
—VIt2(0 X)) + pj, (A, A, (v, X)).

Therefore, using these formulae and the ones above for the derivatives of the metric g;;
and its inverse g%, formula (2.4) follows. ]

We can now compute the second variation of F,,.

Theorem 2.3. Let ¢;: M — R be a smooth family of immersions smoothly depending
ont € (—¢,¢&). Denote ¢ = g and assume that ¢ is a critical point for ¥, i.e., Ep(¢) =0
Let X = 0;¢¢|;=0 and assume that X is normal along ¢. Then

2

d
5 Fulp)

(=0 /M D™ AT W X) + Q((v, X)) (v, X) dp,

where Q({v, X)) is linear in (v, X) and depends on its covariant derivatives of order 2m
at most.

Proof. By Theorem 2.1 we have

2

7$m(¢t)

p E (@) (v, 0r ) dpus

=0 dt 0=/I\4[%Em(¢t)]‘t=0<v,)()du,

as E,,(p) = 0.
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Using the explicit expression for E,, (¢;) (Theorem 2.1), applying formula (2.3) with
f = H and equations (2.2), (2.4), we get

d
TEn(e0)| = 21" (AW X) + (0. X)|AP) + pan(H.A, (1, X))

+q2m+3((‘)’ X),Vl), A)+<U, X)q2m+2(v‘)» A)—(A(l), X)+(V, X)|A|2)

= 2(=1)" LA, X) + 2= )" LA™ (v, X) | A

£a2m 3 (v, X), Vo, A)+ (1, X)a2" T2 (V,A) — (A (v, X))+ (v, X)|A]?).
Hence, the thesis follows by observing that a generic monomial in g>”*3((v, X), Vv, A)

is of the form . .
®p_, Vi, Xy @M VIV ®F_ | VA,

with
N M P
Sl +D+Y G+ D+ D s +1) =2m+3,
k=1 I=1 s=1
and N, M, P > 1, and then iy < 2m for any k. [

It follows that, by polarization, we can define the bilinear form

d d

ds dt

= [ CenmraT o) fdu.
M

(25) (8237”1 W(fl’ fz) = j'-m((p + Sf]V + th‘))‘l:()‘

5s=0

for any pair of smooth functions fi, f: M — R and Q is as in Theorem 2.3.

3. Analysis of the second variation

Suppose that : M — R™*! is a smooth critical point of 7, i.e., Ep, (¢) = 0. The formula
for the second variation given above shows that (8% %), (f1, f2) is well-defined for f; €
W?2m+2.2(M, g) and f> € L?(i1). This means that

(8% Fm)p(f.) € L2 ()",
for any f € W2m+2:2(M, g) and that the map
W2H22(M, g) 5 f > (82 Fn)e(f.)) € L*(W)*

is well-defined. We are going to exploit the theory of Fredholm operators between Banach
spaces. For definitions and results on the subject we refer the reader to [14], Section 19.1.
We recall that if 7: V1 — V> is a Fredholm operator between Banach spaces, its index is
defined to be the integer number

index T := dimker T — dim coker T,

where dim denotes the dimension of a finite dimensional vector space.
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Proposition 3.1. Let o: M — R"* be a smooth critical point of Fp, i.e., By (@) = 0.
Then the second variation functional

(82 Fm)p : W2H22(M. g) — L2 ()"
is a Fredholm operator of index zero.
In order to prove Proposition 3.1, we need the following commutation rule.
Lemma 3.2. Let o: M" — R"T! be a smooth immersion and let T be a tensor defined
on M. Assume M is endowed with the pull-back metric g induced by ¢. Then
VA'T — A'VT = py_1 (A, A, T),
foranyl € N withl > 1.

Proof. As we need to prove a pointwise identity, we can take a local coordinate frame
Ey, ..., E, which is orthonormal at a given point p (thatis, (E;, E;) = §;;), and is such
that V; E; = 0 at p. In this way we can compute
(AVT)(Ex) = (VA(VT)(Ei, ED)(Ex) = (Vi(ViVT) = Vv, 5, VT)(Ex)
= (Vi(ViVT))(Ex) = Vi((ViVT)(Eg)) — (ViVT)(Vi Ex)
= Vi(V?T(E;, Ex)) — V2T(E;, Vi Ex) = Vi(V?T(E;, Ey)).
at the point p. On the other hand, using that for any tensor S we have the commutation

rule
(V2S)(Ej, Er) = (V2S)(E; Ej) + R S

for any j and /, we obtain

(VAT)(Ey) = Vi (trace VZT) = trace VkVZT = (Vk(VzT))(E,-, E;)
= (V3T)(Ex.E;, E;) = (V’T)(E;, Ex,E;) + R+ VT
= (Vi(V’T))(Ek. E;) + R+ VT
= Vi(V2T (Ex. E;)) — (V2T)(Vi Ex. Ei) — (V2T)(Ex. Vi Ei) + R« VT
=V;(V*T(E;,Ex) + R« T)+R* VT
= (AVT)(Ex) + VR« T) + R« VT = (AVT)(Ex) + p1(A, A, T),

where we have used that R = A x A, by the Gauss equations. Hence, the thesis is proved
for / = 1. Letting now / + 1 > 1, by induction we obtain

VAA'T = AVA'T +p1 (A, A A'T) = AA'VT + 0211 (A. A T)) +p2r1 (A AL T),
and the thesis follows. [ ]

We are now ready to prove Proposition 3.1. A relevant property about Fredholm oper-
ators that we are going to use is the following. If T:V; — V5 is a Fredholm operator
between Banach spaces and K: V; — V; is a compact operator, then 7" + K is Fredholm
and index (7 + K) = index T (see Corollary 19.1.8 in [14]).
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Proof of Proposition 3.1. For f; € W2Mm+t22(M, g), the functional (82 F7,),( f1,-) is given
by
(& Fm)o(f1. 2) = (L), [2)1200)-

where £: W2M+2:2(M, g) — L2(u) is
L(f) =2=D"TA" 1 Q(f),

and €2 is as in Theorem 2.3, hence 2 is a compact operator. Therefore
(82 Fm)p : WHH22(M. g) — L2 ()"

is Fredholm of index zero if and only if the same holds for £: W2"1t2:2(M, g) — L?(u).
We then claim that the operator

Cld+ 2(—1)m+1Am+1 . W2m+2’2(M, g) — LZ(M)

is invertible for C > 0 sufficiently large, thus it is Fredholm of index zero. As the inclu-
sion id: W2m+2.2(M, g) — L?(u) is compact, this eventually implies that the operator
2(=1)mHIAmTL W2m+2.2(€M o) — L%(u) is Fredholm of index zero.

The injectivity of the above operator immediately follows. Suppose indeed that we
have Cf + 2(—=1)"FLAM+L £ — 0. If m = 2k + 1, multiplying by f and integrating we
get

2 5 20k+1) _ _ k+1 g2
C/Mf dy = Z/MfA fdu Z/Mm £ du.

and then f = 0. If instead m = 2k, multiplying by f and integrating we get

C/ fzdu=2/ fA2k+1fdu=—2/ VK P dp,
M M M

so f = 0 as well.
About the surjectivity, given & € L?(u), we aim at finding f € W2™+2:2(M, g) such
that Cf + 2(—1)"*t1Am+1 £ — b We shall minimize the functional

Ap : WTL2(M, g) - R

defined by

/M [%fZJF(Aka)Z—fh]du N

m f =
s /M [%f2+|VAkf|2—fh]du if m = 2k.

We can prove that A,, is coercive on W +t1:2(M, g), up to choosing C > 0 sufficiently
large (depending on m and the geometry of (M, g)).

First consider the case m =2k +1. Integrating by parts in the integral [, (AR )24,
that is, using the divergence theorem and applying the commutation rule of Lemma 3.2,
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we get
/ (AR £Y2 gy = / (VAR £ VAR )y dy
M M

[ (ARV L ARV Y + VAR £ 5 pogesn)—1 (AL A, f)

I
s

+ VAR w o (ALA, £)]dp

[ (A VLAV ) + paa(AA, £ )] dp

[(—DF VAL £ ARFIVETL £) 4 paeia(AVA, f, £)]dp

!
ST

[|V2k+2f|2 + pak+2(AL A, f, f)] du
[V f12 + pam(ALA, £, )] dp.

Moreover, by the definition of pg, we can apply the divergence theorem on the integral
/; u P2m(A A, f, f)dp in the above expression so that in the polynomial there appear
derivatives of f of order m at most.

We recall that for any covariant tensor 7' there holds the general inequality (see [1],
Chapter 3, Section 7.6)

1 m+1-1

IV T2y < Com IV TIG IT IS

(3.1) <ellV" ' T2y + Crm @ 1T |22

for any / < m and ¢ > 0. Therefore we can estimate

/M|p2m<A,A,ﬁf>|duscm(uAn?,o)ZL|V’1f||V’2f|du,

where /1,5, < m and then

[M p2m (AL A, £ ) dpt < £Con AV £ 2 + Cn(1AIZe 1L 1220

Therefore, taking ¢ C,y (| A||%,) < 1/2 and C = C(m, ||A||2,) sufficiently large, we estim-
ate

An(f) = 6/ [/2 4+ (V" 72— 2] du,
M
that by inequality (3.1) implies that A,, is coercive on W™ +1:2(M, g). Analogously, one

can prove the coercivity of A, also in the case m = 2k.
It follows that there exists a function F € W™T1:2(M, g) solving

[ [CFf + 20T FARTY flap = / fhdu, VfeWntb2(M, g),
M M
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ifm=2k +1,or
| [cEs +2vA E VA Adp= [ fhdu vE e w0,
M M

if m = 2k. In any case, F is a weak solution to an elliptic equation with constant coef-
ficients and datum s € L?(u) (in the sense of [1], Point (d), page 85). Therefore, the
standard regularity theory for distributional solutions applies (see Theorem on page 85
of [1]), hence F belongs to W?2™*2:2(M, g). Integrating by parts, we then get that F
solves CF + 2(=1)"T1 A+ F =} as required. n

4. Convergence

Suppose that ¢: M — R"*! is a smooth critical point of %,,, that is, E,; (¢) = 0. Then for
po > 0 suitably small, the functional &,,: B,,(0) € W?™*+22(M, g) — R given by

Em(f) = Fm(p + fv)

is well-defined. The advantage of the above definition is that the functional &, is now
defined on an open set of a Banach space, and we can then look at first and second variation
functionals in the classical sense of functional analysis. More precisely, by Theorem 2.1
we have

d
) (f) = 3 EnChi+1£)|,_ = [ Enlot findor) fodia,

where v (respectively vy) is a unit normal vector along ¢ (respectively ¢ + fiv), and u,
is the volume measure induced by ¢ + fjv. In this way we see that

8Em : Bpy(0) C WMT22(M, g) — L*(n)*.
Analogously, by Theorem 2.3 and formula (2.5), the second variation of &,, evaluated at

0 € B,,(0) is given by

$2Emo(fi. fo) = /M QD™ A A L Q(R)) frdp.

for  as in Theorem 2.3, so that
(8%&m)o : W 22(M, g) - L*(w)*,

and it is a Fredholm operator of index zero by Proposition 3.1.
In this setting, we can apply the following abstract result stating sufficient conditions
implying a Lojasiewicz—Simon gradient inequality.

Proposition 4.1 (Corollary 2.6 in [20]). Let E: By, (0) £ V — R be an analytic map,
where V' is a Banach space. Suppose that 0 is a critical point for E, i.e., SEy = 0. Assume
that there exists a Banach space Z such that V — Z, the first variation §E: B,,(0) — Z*
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is Z*-valued and analytic, and the second variation 82Ey:V — Z* evaluated at 0 is
Z*-valued and Fredholm of index zero.
Then there exist constants C,0 > 0 and a € (0, 1/2] such that

|E(f) = E©)|'™ < C||8Ef ||z,
forevery f € Bg(0) C V.

The above functional analytic result is a corollary of the useful theory developed in [4],
and it has been also proved in [21] independently.
Applying Proposition 4.1 to the functional &,,, we obtain the following corollary.

Corollary 4.2. Let o: M — R™"* be a smooth critical point of Fp, i.e., Ep(@) = 0. Let
po > 0 be such that &y: By, (0) € W2MT2:2(M, g) — R is well-defined.
Then, there exist constants C > 0,0 € (0, po] and o € (0, 1/2] such that

|Fm(@ + f) = Fm(@)|'™ < Cll(SEm) s IL20)+
forevery f € Bg(0) C W2m+22(M, g).

Proof. We want to apply Proposition 4.1 with V = W?2?™*t2.2(M, g) and Z = L?(u). By
Proposition 3.1 and the discussion at the beginning of the section, we just need to check
that &,, and §&,, are analytic as maps between Banach spaces.

We can rewrite

n+1

8m(f):/M [1+Z<vmu;‘,vmu;f)]duf
a=1

where vy is a unit normal along ¢ + fv, and uy is the volume measure induced by
@+ fv. If y: M — R"*! is any immersion, we have that a unit normal along ¥ is
%, where » denotes the Euclidean Hodge star operator. As
is an immersion, we see that ¥/ > vy is analytic. It follows that f +— vy is analytic
as well. As the metric tensor induced by an immersion ¥: M — R”*! has components
8ij = (0;¥, ), we get that the metric tensor of ¢ + fv depends analytically on f, and
then the dependence of s and of the Christoffel symbols (and thus of the connection)
on f is analytic. Then the integrand in the definition of &,, is just a sum of compositions
and multiplications of functions which are analytic in f. Finally, as integration is linear on
L'(w), we deduce that f +— &,,(f) € R is analytic for f € B,,(0) € W2"+t2:2(M, g).

By the very same arguments, one can check that also f* > (§&,,)y is analytic. Hence,
all the hypotheses of Proposition 4.1 are satisfied and the thesis follows. ]

given by vy = x

The starting point for proving the smooth convergence of the gradient flow of %, is
the following sub-convergence theorem.

Theorem 4.3 (Theorems 7.8 and 8.2 in [17]). Let go: M"™ — R™**1 be a smooth immer-
sion and let m > |n/2|. Then there exists a unique smooth solution ¢: M x [0, +00) —
R**1 1o the evolution equation

0:r¢ = —Em(@s)vs,
@(-,0) = go,
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where v; denotes a unit normal vector field along ¢; = ¢(-,t). Moreover, the solution
satisfies the estimates

(4.1) IV¥A/llLooat.g0) < Clk.n. o).

for any t € [0, +00), where A; and g, are, respectively, the second fundamental form
and the metric of ;, and there exist a smooth critical point goo: M — R™ 1 of %7, a
sequence of times t; — +00 and a sequence of points p; € R+ such that

gz ©0j — pj — Poollckary ——— 0,
Jj—>+oo

forany k € N, where o} is a sequence of diffeomorphisms of M.
We need a preliminary lemma.

Lemma 4.4. Let @o, ¢, @0, 0, tj and p; be as in Theorem 4.3. Then, for any ¢ > 0
there is jo € N such that, for any j > j,, there exists § i > 0 such that the immersion
@ — pj coincides with ¢oo + fiVeo up to diffeomorphism, where v is a unit normal
vector along Yoo, for some “height” functions f; € C° (M) smoothly depending ont €
[tj.tj + &;). Moreover,

| fellwam+22(pm,g00) < &
foranyt € [t;,t; + 6;).

Proof. Fixed 8 > 0 and k > 2m + 2, by Theorem 4.3 there is jg such that for any j > jg
we have

4.2) lgr 00 — pj — voollckary < 0,

forevery t € [tj,t; + §;), for some §; > 0.

Let us assume that ¢, is an embedding. The general statement analogously follows
by recalling that immersions are local embeddings. So for jy large enough, ¢; is an
embedding as well for every ¢ € [tj,¢; + §;). Moreover, there exists U C R2+1 open
set containing N := oo (M) such that the projection map 7: U — N is well-defined as

1 e
n(p) = p— V¥ A} (p).

where dy is the distance function from N. The vector %VRHI d 1%, (p) is orthogonal to N

at 7(p),  is smooth on U, and for jg sufficiently large we have that (¢; o 0; (M) — p;)

C U forevery t € [tj,t; + §;) (for a proof of these facts, see Proposition 4.2 in [18]).
Hence, for x € M, the “height” function f;(x) is uniquely determined by the identity

@1 00j(x) — pj = (@ 00 (x) = pj) + [1(X)Voo (@5 0 7 0 (91 © 0 (x) — pj)).
that is,

(43) fi(x) = (g1 007(x) = pj — 7(p1 00 (x) = pj), Voo (9 07 © (91 00} (x) = p))))-
Then, the map (x,7) — f;(x) is smoothon M X [t;,1; + &;) and || f; | wam+22(p,6.) — O
as 8 — 0, by inequality (4.2) and the fact that k > 2m + 2.

Hence, for the chosen & > 0, taking a suitable 6 > 0 we have the estimate in the
statement of the lemma. [
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We are now ready for proving our main result. The proof of Theorem 1.1 is essentially
a generalization of the strategy employed in [19] to show the smooth convergence of the
elastic flow of closed curves in R”.

Proof of Theorem 1.1. Let @g, ¢¢, ¢oo, 0j, t; and p; be as in Theorem 4.3. Fixed k >
2m + 2 and chosen ¢ > 0 smaller than the constant 6 given by Corollary 4.2, relative to
the critical point ¢, by Theorem 4.3 and Lemma 4.4, there exists j. € N such that for
every j > j. we have

lp: 0 0j — pj — Yoollckary < &

forevery ¢ € [tj,t; + §;) with some §; > 0. Moreover, ¢; o 0; — p; coincides with @o, +
ftVoo, up to diffeomorphism, for the functions f; given by Lemma 4.4 (we recall that
fr € C°°(M) depends on ) satisfying

(4.4) I fellwom+22(p,g00) < € <0,

forevery t € [tj,t; + §;).

We claim that it is possible to choose ¢ > 0 small enough such that for any fixed
J = Je. the hypersurfaces ¢; o 6; — p; coincide with ¢ + f; Voo (up to diffeomorphism)
for some smooth functions f; with || f;[[w2m+2.2(p1,¢.,) < 0 forany ¢ € [t;, +00).

We define

H(t) == |Fm(@:) — Fn(@oo)|*.

where o € (0, 1/2] is as in Corollary 4.2 applied to the critical point ¢, and, without loss
of generality, we can clearly assume that H(z) > 0 for any ¢. As F,(¢;) = Fin (oo +
ftVoo), by Corollary 4.2 we have

H(@) ™% < Cl1(88m)f, |2 (uoy)*

5 1/2
= ([ 1Bngos + frveo)or.vec) P det g o)
M

5 1/2
< C(¢oo, 0) (/ |Eim (@0 + f1Voo)] dﬂt)
M
= C(¢oo, 0) [|[Em (@) L2

where vy, g; and u, = det g, dju are, respectively, the unit normal, the metric tensor
and the volume measure on ¢ + f;Veo, and we estimated /det g; < C(¢oo, 0), for any
t > t; such that

||ﬁ||W2m+2‘2(M,goo) < 6.

Differentiating H and using the above inequality, we obtain
0 H(t) = aH @™V, 0 (py) = aH @ D/® / (Em(@0). 9 1) dp
M

= _aH(““)/”‘/M |Em (@107 @2 | dpe=—cH ™D/ [ B (00) | L2y 107 1 |20y

<~ C(¢oo, 0) 1079t |22
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for any ¢ > t; such that || f||w2m+2.2(p1,g,,) < 0. For such times, possibly choosing a
smaller ¢, we can assume that |v; — veo| < 1/2. Letting @; '= ¢oo + ftVoo, We thus get

|8§'<Zt| = |(3t¢z7 V)| = |(at¢zs Voo) Vs + (3t§75t, Vi — Voo ) V¢ |
_ 1 . - 1. -
> [{0:@1, voo) | — §|3t¢t| = §|3t€0t|,
and the above estimate becomes

3 H(t) < —aC(9o0, 0) 10101 12y = — C(goo, 0) 195 @1 L2 ()
= _O‘C((pom 9) ||81(Zt ”Lz(Mt)

forany ¢ > t; such that || f; || wam+2.2(p1,g.,) < 0. Integrating the above differential inequal-
ity and estimating +/det g; > C(¢oo, 0) > 0, we obtain

2 2
1o~ Flizguy = | [ 0t [, = Clomat) [ 100ulinguy di
1 L2 (o) 1

< C(a, g0, O)(H (11) — H(12)) = C(et, o0, ) (Fm(9r,) — Fin(po0))™.

Then, since possibly choosing a larger j. we can assume that 5, (¢r;, ) — Fm (Poo) < gl/e,
we see that

4.5) ”arz - arl ”Lz(uoo) = C(O" Poos 9)8

for any 7o > 71 > ¢; such that || f;||w2m+22(p1,4,) < 0 On t € [t;, T2]. Finally, since
I f2 2200y = 181 — PoollL2(une)» WE gEL

(4.6) 1ftllL2 o) = 182 = @ | L2(ue) + 181 — PoollL2(ue) = C(@ @00, O)e

for any ¢ > ¢; such that || f; [l wam+22(a1,6.) < 0.

Since m > |n/2], estimate (4.4) implies that the hypersurfaces ¢, are represented
as graphs on ¢ by means of functions f; with uniformly equibounded gradients (such
bound clearly depends on ¢ and goes to zero with it). Also, the inequalities (4.1) clearly
hold also for the second fundamental form of the hypersurfaces ¢; o o; and @;, since
they coincide with ¢; up to diffeomorphism (and translation). These facts imply uniform
estimates on the “height” functions f; in W (M, g,); namely, for any r € N we have

@7 I fellwroor,go) < C(r 1, 90, Poo),

for any ¢ € [t;,t; 4+ §;) (a tedious but straightforward way to see this is to differentiate
formula (4.3) and use the Gauss—Weingarten relations (1.1), taking into account that the
closeness in W?2™%2:2(M, g.) implies that the metric tensor and the Christoffel symbols
of the covariant derivative of ¢; are mutually “comparable” with the ones relative to @o).
Hence, if r > 2m + 2 and ¢ > 0 is small enough, combining estimates (4.6) and (4.7), the
interpolation inequalities (3.1) imply that

I fellw2mi22(m,650) < 6,
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for any ¢ € [t;,t; + J;). By a maximality argument, it clearly follows that we can take
8; = +o0, for every j > j.. Hence, the estimate (4.5), which then holds for any ¢ > ¢;,
implies that the flow @, satisfies the Cauchy criterion for convergence in L?(oo), and
hence @, converges in L? (i), as ¢ — +o0. Interpolating as before by means of inequal-
ities (4.7), the same holds for @; in W"2(M, go), for any r € N and, by Sobolev embed-
dings, we thus deduce that there exists the limit lim;—, 4o @; in C"(M) for any r € N.
Therefore, the same conclusion holds for the original flow ¢;, up to diffeomorphism. m

References

[1] Aubin, T.: Some nonlinear problems in Riemannian geometry. Springer Monographs in Math-
ematics, Springer-Verlag, Berlin, 1998.

[2] Bellettini, G., Mantegazza, C. and Novaga, M.: Singular perturbations of mean curvature flow.
J. Differential Geom. 75 (2007), no. 3, 403-431.

[3] Carlotto, A., Chodosh, O. and Rubinstein, Y.: Slowly converging Yamabe flows. Geom. Topol.
19 (2015), no. 3, 1523-1568.

[4] Chill, R.: On the Lojasiewicz—Simon gradient inequality. J. Funct. Anal. 201 (2003), no. 2,
572-601.

[5] Chill, R., FaSangova, E. and Schitzle, R.: Willmore blowups are never compact. Duke Math. J.
147 (2009), no. 2, 345-376.

[6] Chodosh, O. and Schulze, F.: Uniqueness of asymptotically conical tangent flows. Duke
Math. J. 170 (2021), no. 16, 3601-3657.

[7] Choi, K. and Mantoulidis, C.: Ancient gradient flows of elliptic functionals and Morse index.
Amer. J. Math. 144 (2022), no. 2, 541-573.

[8] Colding, T.H. and Minicozzi II, W. P.: Uniqueness of blowups and Lojasiewicz inequalities.
Ann. of Math. (2) 182 (2015), no. 1, 221-285.

[9] Dall’Acqua, A., Pozzi, P. and Spener, A.: The Lojasiewicz—Simon gradient inequality for open
elastic curves. J. Differential Equations 261 (2016), no. 3, 2168-22009.

[10] De Giorgi, E.: Congetture riguardanti alcuni problemi di evoluzione. A celebration of John F.
Nash, Jr. Duke Math. J. 81 (1996), no. 2, 255-268.

[11] De Giorgi, E.: Congetture riguardanti alcuni problemi di evoluzione. A celebration of
John F. Nash, Jr. (English translation), 1996. Available at CvGmt Preprint Server-Scuola Nor-
male Superiore di Pisa, https://cvgmt.sns.it/paper/1139/.

[12] Feehan, P.M.N.: Global existence and convergence of solutions to gradient systems and
applications to Yang—Mills gradient flow. Preprint 2016, arXiv: 1409.1525.

[13] Feehan, P. M. N. and Maridakis, M.: Lojasiewicz—Simon gradient inequalities for analytic and
Morse—Bott functions on Banach spaces. J. Reine Angew. Math. 765 (2020), 35-67.

[14] Hormander, L.: The analysis of linear partial differential operators. I1l. Classics in Mathem-
atics, Springer, Berlin, 2007.

[15] Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In Les équa-
tions aux dérivées partielles (Paris, 1962), pp. 87-89. Editions du Centre National de la
Recherche Scientifique, Paris, 1963.


https://cvgmt.sns.it/paper/1139/
https://arxiv.org/abs/1409.1525

C. Mantegazza and M. Pozzetta 1944

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

Lojasiewicz, S.: Sur les trajectoires du gradient d’une fonction analytique. In Seminari di Geo-
metria (Bologna, 1982/83), pp. 115-117. Univ. Stud. Bologna, Bologna, 1984.

Mantegazza, C.: Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal. 12
(2002), no. 1, 138-182.

Mantegazza, C. and Mennucci, A. C.: Hamilton—Jacobi equations and distance functions on
Riemannian manifolds. Appl. Math. Opt. 47 (2003), no. 1, 1-25.

Mantegazza, C. and Pozzetta, M.: The Lojasiewicz—Simon inequality for the elastic flow. Calc.
Var. Partial Differential Equations 60 (2021), no. 1, Paper no. 56, 17 pp.

Pozzetta, M.: Convergence of elastic flows of curves into manifolds. Nonlinear Anal. 214
(2022), Paper no. 112581, 53 pp.

Rupp, F.: On the Lojasiewicz—Simon gradient inequality on submanifolds. J. Funct. Anal. 279
(2020), no. 8, 1-32.

Schulze, F.: Uniqueness of compact tangent flows in mean curvature flow. J. Reine Angew.
Math. 690 (2014), 163-172.

Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geo-
metric problems. Ann. of Math. (2) 118 (1983), no. 3, 525-571.

Received February 20, 2021; revised September 27, 2021. Published online December 4, 2021.

Carlo Mantegazza

Dipartimento di Matematica e Applicazioni, Universita di Napoli Federico II,
Via Cintia, Monte S. Angelo, 80126 Napoli, Italy;

c.mantegazza@sns.it

Marco Pozzetta

Dipartimento di Matematica e Applicazioni, Universita di Napoli Federico II,
Via Cintia, Monte S. Angelo, 80126 Napoli, Italy;

marco.pozzetta@unina.it


mailto:c.mantegazza@sns.it
mailto:marco.pozzetta@unina.it

	1. Introduction
	2. Preliminary computations
	3. Analysis of the second variation
	4. Convergence
	References

