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Growth in Chevalley groups relatively to parabolic
subgroups and some applications

Ilya D. Shkredov

Abstract. Given a Chevalley group G.q/ and a parabolic subgroup P � G.q/, we
prove that for any set A there is a certain growth of A relatively to P , namely, either
AP or PA is much larger than A. Also, we study a question about the intersection
of An with parabolic subgroups P for large n. We apply our method to obtain some
results on a modular form of Zaremba’s conjecture from the theory of continued
fractions, and make the first step towards Hensley’s conjecture about some Cantor
sets with Hausdorff dimension greater than 1=2.

1. Introduction

In this paper we study some aspects of growth in Chevalley (i.e., untwisted, generated by
its root subgroups and having trivial center) groups. Developing the ideas from [22], it
was proved in [10,42] that any finite simple group of Lie type has growth in the following
sense.

Theorem 1.1. Let G be a finite simple group of Lie type with rank r , and let A be a
generating subset of G. Then either A3 D G or

jA3j > jAj1Cc ;

where c > 0 depends only on r .
In particular, there is n� .log jGj= log jAj/C.r/ such that An D G.

The theorem above gives an affirmative answer to the well-known Babai conjecture [4]
for finite simple groups G of bounded rank. Modern questions on growth in groups are
discussed in the excellent survey [23]. In our paper we consider two variants of Babai’s
problem for Chevalley groups G.q/ defined over the field Fq . The motivation for both
of our problems goes back to a question from number theory, see [38] and Section 6.
Let us describe the first problem. Let P � G.q/ be any parabolic subgroup of G.q/.
First of all, what can we say about the size of the product of an arbitrary set A � G.q/
by P ? Of course, A can be a union of cosets of P , say, x1P; : : : ; xkP , and thus AP
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does not grow. Similarly, if A D
F
j Pyj , then PA D A. Nevertheless, we show that A

must grow either after left multiplication or after right multiplication. It reminds the sum-
product phenomenon, see, e.g., [50], Sections 8.3–8.5, and indeed our new application to
continued fractions (see Section 6 below) is connected with this area, see the discussion
of the main results in [37] (e.g., Remark 11 in [37]).

Let us formulate our first theorem in a simplified form (actually, the restriction A \
P D ; can be relaxed hugely, see Theorem 5.1 from Section 5). Our regime throughout
this paper: q tends to infinity and the rank is fixed.

Theorem 1.2. Let G.q/ be a Chevalley group and let P �G.q/ be a parabolic subgroup.
Then for any set A � G.q/ with A \ P D ;, one has

(1.1) max¹jAP j; jPAjº �

p
jAj jP jq

2
�

For example, if jAj � jP j, then max¹jAP j; jPAjº� jAj
p
q, and this is larger than jAj.

Theorem 1.2 above helps us to study the second problem. Let A be an arbitrary subset
of a group G and � be a subgroup of G. Can we guarantee that for a certain reasonable n
(say, n depends on log jGj= log jAj only) one has An \ � ¤ ;? The representation the-
ory (see Theorems 3.3, 5.6 in [14]) allows to show that any set A � G.q/ of size at least
jG.q/jq�rCı , where r is rank of G.q/ and ı > 0 is an arbitrary real number, effectively
generates the whole group G.q/, i.e., there is n �r ı

�1 such that An D G.q/. In par-
ticular, An \ � ¤ ; for n�r ı

�1 (see, e.g., Theorem 5.3 of Section 5) and this bound
is essentially sharp. We show that if one wants to find a non-trivial intersection with any
parabolic subgroup of G.q/, then it is possible to break this barrier.

Theorem 1.3. Let q be an odd non-square, let G.q/ be a Chevalley group, let P � G.q/
be a parabolic subgroup, and let P� be a proper parabolic subgroup of maximal size.
Suppose that A�G.q/ is a set with jAj � jP�jq�1Cı , where ı > 0 is a real number. Then
there is n, n�r ı

�1, such that An \ P ¤ ;.

Roughly speaking, in Theorem 1.3 the usual assumption jAj � jG.q/jq�rCı is re-
placed by jAj � jG.q/jq�r�1Cı , and this improvement is crucial for us. Indeed, it turns
out that the method of proof of Theorems 1.2 and 1.3 has some applications to the theory
of continued fractions, namely, to Zaremba’s conjecture. Roughly speaking, in a variant
of this problem one should intersect small powers of a certain set A � SL2.Fp/ with an
arbitrary Borel subgroup and in fact, this circle of problems motivated us to study the
questions appearing in Theorems 1.2 and 1.3 above.

Let us recall the formulation of Zaremba’s conjecture. Let a and q be two positive
coprime integers, 0 < a < q. By the Euclidean algorithm, a rational a=q can be uniquely
represented as a regular continued fraction

(1.2)
a

q
D Œ0I b1; : : : ; bs� D

1

b1 C
1

b2 C
1

b3 C � � � C
1

bs

; bs � 2:
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Zaremba’s famous conjecture [52] posits that there is an absolute constant k with the
following property: for any positive integer q, there exists a coprime to q such that in the
continued fraction expansion (1.2) all partial quotients are bounded:

bj .a/ � k; 1 � j � s D s.a/:

In fact, Zaremba conjectured that k D 5. For large prime q, even k D 2 should be enough,
as conjectured by Hensley [20, 21]. Over the past years, this theme has become rather
popular, see for instance [8, 19, 29], or the short surveys about this area in [37, 38]. We
just mention a result of Korobov [30], who proved that one can always take growing k,
namely, k D O.log q/ for prime q (such result is also true for composite q, see [44]).

In [38], we have proved a “modular” version of Zaremba’s conjecture.

Theorem 1.4. There is an absolute constant k such that for any prime number p there
exists some positive integer q D O.p30/, q � 0 .mod p/, and there exists a < q, with a
coprime to q, such that a=q has partial quotients bounded by k.

The first theorem in this direction was proved by Hensley in [20], and after that in
[34, 35]. Now using results similar to Theorems 1.2 and 1.3 above and, of course, growth
results in SL2.Fp/ of Helfgott [22], we improve Theorem 1.4.

Theorem 1.5. Let " 2 .0; 1� be any real number. There is a constant k D k."/ such that
for any prime number p there exist some positive integers q DO.p1C"/, q � 0 .mod p/,
and a < q, a coprime to q, such that a=q has partial quotients bounded by k.

Clearly, Theorem 1.5 is best possible up to " and it is the limit of our method.
Another result on continued fractions (see Theorem 6.5 from Section 6) is even more

interesting than Theorem 1.5 because its generality and because it is the first (weak) con-
firmation of Hensley’s hypothesis (see Conjecture 3 in [21]). Namely, let now the partial
quotients bj belong to a finite set A�N, jAj � 2, and suppose that the Hausdorff dimen-
sion of the correspondent Cantor set is strictly greater than 1=2 (all the definitions are
contained in Section 6). Then we show that a full analogue of Theorem 1.5 holds (with
other constants, of course).

It is possible for a reader who is interested in Zaremba’s conjecture but who does
not want to deal with general Chevalley groups to skip Lemma 4.1 and all material of
Section 4 before this result, as well as the third part of Theorem 5.5 from Section 5, in
a first reading. The remaining information would be enough to understand the proof of
Theorem 1.5.

We finish the introduction posing a weak version of Babai’s conjecture. Even for suffi-
ciently large subgroups � , the answer to our question is non-obvious (clearly, the difficulty
increases when the size of � decreases).

Problem. Let G be a finite simple non-abelian group, � � G a subgroup, and A � G an
arbitrary (generating) set. Is it true that An \ � ¤ ; with n� .log jGj= log jAj/C , where
C > 0 is an absolute constant?

If A D A�1, then the set AA D AA�1 obviously contains the unit element and hence
the answer to the problem is trivially affirmative (moreover, if jAjj�j > jGj, then the
Dirichlet principle shows that jAA�1 \�j> 1 and hence we can find a non-trivial element
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in AA�1). Thus we cannot assume that A D A�1 and, actually, this restriction is very
important for some applications as for our modular version of Zaremba’s conjecture.

2. Definitions

Let G be a finite group with the identity 1. Given two sets A;B � G, define the product
set of A and B as

AB WD ¹ab W a 2 A; b 2 Bº :

In a similar way we define higher product sets, e.g.,A3 isAAA. LetA�1 WD ¹a�1 W a 2Aº.
As usual, given two subsets A;B of a group G, we denote by

E.A;B/ D j¹.a; a1; b; b1/ 2 A
2
� B2 W a�1b D a�11 b1ºj

the common energy of A and B . Clearly, E.A; B/ D E.B; A/ � jAjjBj, E.A/ D E.A�1/
and by the Cauchy–Schwarz inequality,

(2.1) E.A;B/ jA�1Bj � jAj2jBj2

as well as

(2.2) E2.A;B/ � E.A;A/E.B;B/:

We use representation function notations like rAB.x/ or rAB�1.x/, which count the num-
ber of ways x 2 G can be expressed as a product ab or ab�1 with a 2 A, b 2 B , respect-
ively. In a similar way, rABC .x/ counts the number of ways x 2 G can be expressed
as a product abc, where a 2 A, b 2 B , c 2 C , etc. For example, jAj D rAA�1.1/ and
E.A;B/ D rAA�1BB�1.1/ D

P
x r

2
A�1B

.x/. For any sets X; Y;Z, put

�X .Y;Z/ WD
X
x2X

rYZ.x/:

In this paper, we use the same letter to denote a set A � G and its characteristic function
AWG! ¹0; 1º. We write F�q for Fq n ¹0º, where q D ps and p is a prime number, and
we denote by .a1; : : : ; al / the greatest common divisor of some given positive integers
a1; : : : ; al . If m divides n, then we write mjn.

Let g 2 G and let A � G be any set. Then we write Ag D gAg�1 and, similarly, we
let xg WD gxg�1, where x 2 G. We write N.A/ for the normalizer of a set A, that is,
N.A/ D ¹g 2 G W Ag D Aº. If H � G is a subgroup, then we use the notation H � G.

In the paper we consider the group SL2.Fq/ of matrices

g D

�
a b

c d

�
D .abjcd/; a; b; c; d 2 Fq ; ad � bc D 1;

as well as other classical groups as PSLn.q/, SUn.q/, Spn.q/,�
"
n.q/ and so on. Also, we

use the usual Lie notation An.q/, Bn.q/ and so on.
The signs � and � are the usual Vinogradov symbols. When the constants in the

signs depend on a parameter M , we write�M and�M . We write x � y if x � y and
x � y. Similarly, for a parameter M , we use the symbol x �M y if and only if x �M y

and x �M y. All logarithms are to base 2.
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3. Simple facts from the representation theory

First of all, we recall some notions and simple facts from the representation theory, see,
e.g., [41] or [46]. For a finite group G, let yG be the set of all irreducible unitary rep-
resentations of G. It is well known that the size of yG coincides with the number of
conjugacy classes of G. For � 2 yG, denote by d� the dimension of this representation.
By dmin.G/ we denote the quantity min�¤1 d�. We write h�; �iHS for the correspond-
ing Hilbert–Schmidt scalar product hA; BiHS WD tr.AB�/, where A; B are two matrices
of the same size. Put kAk D

p
hA;AiHS. Clearly, h�.g/A; �.g/BiHS D hA; BiHS and

hAX; Y iHS D hX;A
�Y iHS. Also, we have

P
�2yG d

2
� D jGj.

For any function f WG! C and � 2 yG, we define the matrix yf .�/, which is called the
Fourier transform of f at �, by the formula

(3.1) yf .�/ D
X
g2G

f .g/�.g/:

Then the inverse formula reads

(3.2) f .g/ D
1

jGj

X
�2yG

d�h yf .�/; �.g/iHS ;

and the Parseval identity is

(3.3)
X
g2G

jf .g/j2 D
1

jGj

X
�2yG

d�k yf .�/k
2 :

The main property of the Fourier transform is the convolution formula

(3.4) 1f � g.�/ D yf .�/ yg.�/;

where the convolution of two functions f; gWG! C is defined as

.f � g/.x/ D
X
y2G

f .y/g.y�1x/:

Finally, it is easy to check that for any matrices A; B one has kABk � kAkokBk and
kAko � kAk, where the operator norm kAko is just the maximal singular value of A (or,
equivalently, the operator l2-norm of A). In particular, this shows that k � k is indeed a
matrix norm.

For any function f WG! C, consider the Wiener norm of f defined as

(3.5) kf kW WD
1

jGj

X
�2yG

d�k yf .�/k :

Lemma 3.1. Let � � G. Then k�kW � 1.
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Proof. Since � is a subgroup, we have for any x 2 G that �.x/ D j�j�1.� � �/.x/ D
j�j�1r��.x/. Hence using the last equality, formula (3.4), the submultiplicativity of the
norm k � k and the Parseval identity (3.3), we obtain

k�kW WD
1

jGj

X
�2yG

d�kb�.�/k D 1

j�jjGj

X
�2yG

d�kb�2.�/k � 1

j�jjGj

X
�2yG

d�kb�.�/k2 D 1;
as required.

Lemma 3.1 implies a result on growth in the affine group relatively to some subgroups.
Namely, the following Corollary 3.2 can be considered as a “baby”-version of our main
results on intersections of An with parabolic subgroups (see Theorem 5.5 below). For
simplicity suppose that q is an odd number. Clearly, there is a group homomorphism ' of
the standard Borel subgroup B D ¹.�u j0��1/ W � 2 F�q ; u 2 Fqº of the upper-triangular
matrices onto an index two subgroup of Aff.Fq/, namely, '..�uj0��1// D .�2 �uj01/

and Ker' D ˙I . The representation theory of B is similar to the representation theory
of Aff.Fq/ (there are q C 3 conjugacy classes, further, there exists q � 1 one-dimensional
representations and four representations of dimension .q � 1/=2). Hence we can apply
Corollary 3.2 (as in the first part of Theorem 5.5) in our study of the growth in SL2.Fq/.

Corollary 3.2. Let A � Aff.Fq/ be a set, and let � � Aff.Fq/ be a subgroup such that
for every non-trivial multiplicative character �, the restriction of � to � is non-trivial.
Also, let z 2 Aff.Fq/ be an arbitrary element, let n � 1 be a positive integer, and let
jAjnj�j2 > qnC2.q � 1/2. Then An \ z� ¤ ; and An \ �z ¤ ;.

Proof. The representation theory of Aff.Fq/ is well known, see, e.g., [12]. Namely, there
are .q � 1/ one-dimensional representations ��, which are given by multiplicative char-
acters �, where ��..abj01// WD �.a/, and a certain .q � 1/-dimensional representation � .
Using formula (3.3) with f D A, we have

(3.6) k yA.�/ko � k yA.�/k <
�
jAj jAff.Fq/j

q � 1

�1=2
D .jAjq/1=2 :

Further, by the assumption, for any non-trivial multiplicative character � there is 
 D
.a;b/2� such that �.a/¤ 1. This means that for any such � one has ��.�/D 0. Applying
the bound (3.6), Lemma 3.1 and using formula (3.3) again, we obtain

rAn�z�1.1/ D
jAjnj�j

jAff.Fq/j
C

q � 1

jAff.Fq/j
h yAn.�/;cz�.�/iHS(3.7)

�
jAjnj�j

jAff.Fq/j
� k yA.�/kno kz�kW �

jAjnj�j

jAff.Fq/j
� .jAjq/n=2 > 0;

provided jAjnj�j2 > qnC2.q � 1/2. This completes the proof.

The condition jAjnj�j2 > qnC2.q � 1/2 effectively works if, roughly, jAj � q1C",
where " > 0 is a certain number. Further, an example of subgroup � from Corollary 3.2
is a torus .�0j01/, where � runs over F�q . Finally, notice that some assumptions on the
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restriction of linear characters to � is needed. For instance, consider the unipotent sub-
group U of Aff.Fq/. All linear characters of Aff.Fq/ restrict trivially to U , and one can
easily construct a set A, jAj � q2=n, such that An \ U D ;.

We shall use the arguments of the proof of Corollary 3.2 several times in this paper.
For the convenience of the reader, we formulate a general lemma which we will apply
later.

Lemma 3.3. Let G be a finite group, let � � G, and let z 2 G be an arbitrary element.
Suppose that n is a positive integer such that jAjnj�j2dnmin > jGj

nC2. Then An \ z� ¤ ;
and An \ �z ¤ ;.

Proof. Let d D dmin. Using formula (3.3) with f D A, we have for any non-trivial rep-
resentation � that

(3.8) k yA.�/ko � k yA.�/k <
�
jAj jGj
d

�1=2
:

Applying bound (3.8), Lemma 3.1 and using formula (3.3) again, we obtain

rAn�z�1.1/ D
jAjnj�j

jGj
C

1

jGj

X
�¤1

d�h yA
n.�/;cz�.�/iHS

�
jAjnj�j

jGj
� kz�kW �max

�¤1
k yA.�/kno �

jAjnj�j

jGj
�

�
jAj jGj
d

�n=2
> 0;

provided jAjnj�j2dn > jGjnC2. This completes the proof.

4. Some facts about Chevalley groups

We recall briefly some properties of (untwisted, generated by its root subgroups and hav-
ing trivial center) Chevalley groups. The detailed description of such groups can be found
in many books and papers, see, e.g., the classical book [48] and the paper [11]. Much of
the notation that we use in this section will be freely used in the rest of the paper.

Let p be a prime number, let q D ps , and let Fq be the finite field of size q. Also, letˆ
be a root system, … a fundamental subsystem, … � ˆC, ˆ D ˆC

F
.�ˆC/. Everything

below depends on the root system ˆ but we do not put emphasis on this. Let B be a
Borel subgroup of G D G.q/, U D Op.B/ (the unique largest normal p-subgroup of B),
B D UH (the product is semidirect and U is normal in B), N D N.H/ with H an
abelian p0-group (Cartan subgroup). The unipotent subgroup U is the product of sub-
groups

Q
r2ˆC Ur and each Ur is isomorphic to the field Fq . The Weyl group W D N=H

is a group generated by fundamental reflections wr1 ; : : : ; wrl , l D j…j, and W acts on
the root system ˆ. When there is no problem with coset representatives, we will con-
sider s 2 W as an element of G.q/. For w 2 W , let l.w/ be the length of w, that is,
the minimal n such that w D wr1 : : : wrn with rj 2 …. Another description of l.w/ is
l.w/ D jˆC \ w�1.�ˆC/j and it is clear that l.w/ D 0 if and only if w D 1 (and if and
only if w.…/ D …, and if and only if w.ˆC/ D ˆC). For any J � …, let WJ be the
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subgroup of W generated by wr , where r 2 J . It is well known that for any Chevalley
group the Bruhat decomposition holds, namely,

(4.1) G.q/ D
G
w2W

BwB ;

where the union in (4.1) is disjoint. This decomposition follows from the fact that, for any
fundamental root r and an arbitrary w 2 W , one has

(4.2) wrBw � BwB [ BwrwB :

Decomposition (4.1) can be refined further. For w 2 W , put

U 0w D h¹Ur W r 2 ˆ
C ; w.r/ 2 ˆCºi and U 00w D h¹Ur W r 2 ˆ

C ; w.r/ 2 �ˆCºi :

Then, clearly, U D U 0wU
00
w , B D HU 0wU

00
w and wU 0ww

�1 � U . Thus (4.1) can be rewrit-
ten as

(4.3) G.q/ D
G
w2W

BwU 00w ;

and it turns out that every element of G.q/ can be written in the form (4.3) uniquely. In
particular,

(4.4) jG.q/j D jBj
X
w2W

jU 00w j D jH j jU j
X
w2W

jU 00w j D jH jq
jˆCj

X
w2W

ql.w/

and jH j D .q � 1/j…j=d , where d D .�.G.q//; q � 1/ if G.q/ has no type Dl , and d D
.4; 4l � 1/ otherwise (it is known that the quantity �.G.q// does not depend on q, see,
e.g., Section 10 in [11]). From the Bruhat decomposition and the properties of Chevalley
groups, it follows that all subgroups containing B are 2l subgroups of the form PJ WD

BWJB and any conjugate of the subgroups PJ is called a parabolic subgroup. It is known
that N.PJ / D PJ , and (see, e.g., Lemma 3 in [11])

(4.5) PJ D hB; ¹wj ºj2J i D
D
B;

JY
jD1

wj

E
D

D
B;
� JY
jD1

wj

�
B
� JY
jD1

wj

��1E
:

PutW J D ¹w 2W Ww.r/ 2ˆC for all r 2 J º. One can check (see, e.g., Proposition 2.4.4
in [5]) that any w 2W can be decomposed uniquely as w D wJwJ , where wJ 2W J and
wJ 2WJ and, moreover, l.w/D l.wJ /C l.wJ /. AnyWJ (andW in particular) contains
the unique longest element (that is, an element of maximal length) and this element is an
involution. Formula (4.4) says, basically, that the length of the longest element of G.q/
determines the size of G.q/ and, similarly, writing

(4.6) jPJ j D jBj
X
w2WJ

jU 00w j D jH jq
jˆCj

X
w2WJ

ql.w/;

we see that the length of the longest element of PJ determines its size up to o.jPJ j/
(for j…j fixed and q !1).
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In the paper [31], it was proved that Chevalley groups are quasi-random in the sense
of Gowers [14] (also, see the first paper [45] where this concept was used). Namely, we
have, by [31],

(4.7) dmin.G.q//�r q
r ;

where the rank r is the dimension of its maximal tori of G.q/ or, in other words, j…j (in
the case of a semisimple Chevalley group).

Let P1.G.q// � P2.G.q// � � � � be the sizes of maximal proper parabolic subgroups
of G.q/. Consider the quantity

P .G.q// WD min¹t W 8� � G.q/; j�j > t H) � is parabolicº :

In other words, P .G.q// coincides with the size of the largest (by cardinality) non-
parabolic subgroup. The quantity depends on the concrete Chevalley group G.q/ (e.g.,
P�C8 .q/ contains the largest (by cardinality) parabolic subgroupP and also two large non-
parabolic subgroups �7.q/, Sp6.q/, depending on the parity of q, j�7.q/j � jSp6.q/j �
q�1jP1.P�C8 .q//j, see Table 7 and Proposition 4.3.4 in [1]). Nevertheless, we give a
simple upper bound for P .G.q// in terms of P1.G.q//, see Lemma 4.1 below. Initially,
our proof is hugely based on the books [27] and [51] (which in turn use the famous
Aschbacher classification theorem, [2], see the good survey [26] and also the paper [1]).
We thank the reviewer for pointing us the papers [32] and [33], where all maximal (by
size) proper subgroups of the finite classical/exceptional groups were found; this allows
to obtain a shorter proof of Lemma 4.1. Our result is applicable for a slightly wider class
of groups than our untwisted Chevalley groups, and we formulate a slightly more general
statement because it does not increase the length of the proof significantly. Finally, due
to the existence of isomorphisms between low-dimensional classical groups (see Proposi-
tion 2.9.1 in [27], for example), we may assume without loss of generality that n satisfies
the stated lower bounds of Lemma 4.1, i.e., we can consider n � 2 for PSL2.q/, further
n � 3 for SUn.q/, n � 4 for PSpn.q/, and n � 7 for �"n.q/, where " D ˙ to cover all
possible cases.

Lemma 4.1. Let q be a sufficiently large odd non-square and let G.q/ be a Chevalley
group. Then we have P .PSL2.q// � 2.q C 1/, P .PSL3.q// � q3, and for n � 4, the
following holds: P .PSLn.q// � qn.nC1/=2.

Further, we consider n � 3 for SUn.q/, n � 4 for PSpn.q/, n � 7 for �"n.q/, where
" D ˙. In all cases above and for all simple exceptional groups, one has

(4.8) qP .G.q//� P1.G.q// D max¹j�j W � � G.q/; � ¤ G.q/º :

Proof. The case PSLn.q/ for small n is simple and follows from the classification of sub-
groups of PSL2.q/ (see, e.g., [49], we use the assumption that q is a non-square to avoid
the subgroup PGL2.

p
q/ � PSL2.q/, say), further for PSL3.q/ (we apply the assump-

tion that q is a non-square to avoid the subgroup PSU3.q/, say), see [36], for PSU3.q/,
PSp4.q/ with odd q, again, see [36] and, finally, for PSL4.q/ with even q, see [40] (here
we appeal to the fact that that PSL4.q/ contains PSp4.q/ having size less than q4.4C1/=2).

Now let n � 4 and let us consider the general case. Put d D .n; q � 1/, ˛ D .2; q � 1/.
We prove the inequality and the equality in (4.8) simultaneously. It is enough to check the
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equality for all irreducible subgroups which are contained in Theorems 5.1–5.6 of [32] and
in [33], or in [51] for exceptional groups. Let us, for example, consider the case PSLn.q/.
It is known that the only subgroups belonging to the first Aschbacher class are maximal
parabolic subgroups Pm.PSLn.q// with

jPm.PSLn.q//j D d�1qm.n�m/.q � 1/ jSLm.q/j jSLn�m.q/j(4.9)

� qn
2�nmCm2�1

� q3n
2=4�1 > qn.nC1/=2 ;

and by Theorem 5.1 of [32], the only irreducible subgroup � of minimal index has soc.�/
D �n.q/ or PSpn.q/ (recall that by our assumption q is a sufficiently large odd non-
square) and hence these subgroups are too small. Also, using (4.9) one can check that
the equality in (4.8) holds for all reducible subgroup (it is known that in the case of
classical groups all reducible subgroups belong to the first Aschbacher class), as well
as for both irreducible subgroups, and thus (4.8) holds for PSLn.q/. Similarly, for the
remaining groups of Lie type we have analogous of formula (4.9), namely (see Proposi-
tions 4.1.18–4.1.20 in [27])

jPm.SUn.q//j � q2nm�3m
2C2
jLm.q2/j jUn�2m.q/j � qn

2�2nmC3m2�1 ;(4.10)

jPm.PSpn.q//j D q
nmCm=2�3m2=2.q � 1/ jPGLm.q/j jPSpn�2m.q/j(4.11)

� q.n
2�2nmCnC3m2�m/=2 ;

and for m � n=2 (we do not consider smaller parabolic subgroups), one has

(4.12) jPm.�"n.q//j � q
nm�m=2�3m2=2

jGLm.q/jj�"n�2m.q/j � q
.n2�2nm�nC3m2Cm/=2 :

Again, we apply Theorems 5.2–5.6 of [32] and see that there are just irreducible subgroups
of minimal index:

• PSpm.q
2/ � 2, GUm.q/ � 2=Z and PSL2.q2/ � 2 (for PSp2m.q/, m > 2 and m D 2,

correspondingly),
• PSpn.q/ and soc.�/ D �n.q/ (for PSUn.q/),
• GLm.q/ � 2=Z, GUm.q/ � 2=Z and PO7.q/ (for PSOC2m.q/,m � 6 andmD 4, corres-

pondingly, and in a similar way for P�C2m.q/),
• P��m.q

2/ and GUm.q/ � a=Z, where a D 1; 2 (for P��2m.q/),
• �.2mC 1; q0/, q D qc0 , where c is a prime and .Oa.q/ o Sb/ \�.2mC 1; q/, where
ab D 2mC 1 (for �2mC1.q/).
It is easy to check that in all such cases the equality in (4.8) takes place and moreover

the inequality also holds true.
It remains to consider the exceptional groups. We should consider untwisted groups

only, but formula (4.8) holds in a slightly more general context. In the case of the excep-
tional groups, we use Theorem 5 and Table 2 in [1] (an alternative way is to apply the
results from [33], which say that any maximal subgroup � of G.q/ of size j�j � jG.q/j1=3
is either a maximal parabolic subgroup or belongs to a certain list, see [1], Table 2 (again
it is easy to check that the condition q�1P1.G.q// � jG.q/j1=3 holds). Analysing this
table, one can see that the sizes of all non-parabolic subgroups of the exceptional groups
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do not exceed jBj with four exceptions: F4.q/ (the largest subgroups are B4.q/, C4.q/),
further, E"6.q/ (the largest subgroup is F4.q/), E7.q/ (the largest subgroup is .q � "/E"6.q/)
and, finally, E8.q/with the largest subgroup A1.q/E7.q/. For F4.q/, consult Section 4.5.9
in [51] to see that there is a parabolic subgroup � � F4.q/ such that

�j D q15.q � 1/jSp6.q/j � q
37
� q jB4.q/j � q jC4.q/j :

Further, for E"6.q/ see Section 4.6.4 in [51] and [28], where it was proved that there exists
a parabolic subgroup of size q25.q � 1/jL2.q/jjL5.q/j � q53 � qjF4.q/j. Finally, if we
consider E8.q/, then by [51], Section 4.7.2, this group contains a subgroup of size �
q58jE7.q/j and this is much larger than qjA1.q/jjE7.q/j. If we take E7.q/, then, similarly,
by [51], Section 4.7.3, we see that q2jE"6.q/j is small. One can use another way to prove
that the maximal (by size) parabolic subgroup is large: just analyse the Dynkin diagrams
for F4.q/, E"6.q/, E7.q/ and E8.q/. This completes the proof.

We need a simple general lemma (a similar result can be found in [16]).

Lemma 4.2. Let G be a finite group and let �1; �2 � G. Then for x; y 2 G, x�1 \ �2y
is either empty or a translate of �x1 \ �2, �y

�1

2 \ �1. In particular,

max
x;y2G

jx�1 \ �2yj D max
x2G
jx�1 \ �2xj :

Also, we have j�1 \ �2j � j�1jj�2j=jGj.

Proof. If the intersection x�1 \ �2y is empty, then there is nothing to prove. Otherwise,
for any c 2 x�1 \ �2y one has

x�1 \ �2y D ..x�1x
�1/ \ �2/c D c..y

�1�2y/ \ �1/

as required.
Now from the Dirichlet principle there is x 2 G such that A WD x�1 \ �2 has size

at least j�1jj�2j=jGj. But A � �2 and hence A�1A � �1 \ �2. It remains to notice that
jA�1Aj � jAj � j�1jj�2j=jGj. An alternative way of the proof is just using the formula
j�1 \ �2j D j�1jj�2j=j�1�2j � j�1jj�2j=jGj. This completes the proof.

Now we are ready to prove a result on an upper bound for jP \ P g j for parabolic
subgroups P of G.q/.

Lemma 4.3. Let G.q/ be a Chevalley group and let P � G.q/ be a parabolic subgroup.
Then for any g … P one has

(4.13) rPgP .x/ �
2jP j

q
for all x 2 G.q/:

Proof. In view of Lemma 4.2, it is enough to estimate jP \ P g j. Let P D PJ . From the
Bruhat decomposition (4.1), we can assume that g 2W and moreover we can assume that
g 2 W J , g … WJ .

First of all, let us obtain (4.13) for the Borel subgroup B (in this case g must belong
to W ). The equation Bg D gB can be rewritten as Bg D gHU 0gU

00
g D HU

0
ggU

00
g (here

we have used the definitions of the sets U 0g , U 00g ) and hence by (4.3) it has jHU 0g j D
jBj=jU 00g j D jBjq

�l.g/ solutions. Clearly, l.g/ � 1, and the result follows (in this case we
do not even need the constant 2 in inequality (4.13)).
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Now let P D PJ be an arbitrary parabolic subgroup. Using the Bruhat decomposition
and the arguments as in the case of the Borel subgroup, we obtain

jP \ P g j D
X

v1;v22WJ

jgBv1U
00
v1
\ Bv2U

00
v2
gj

�

X
v1;v22WJ ; l.v2/�l.v1/

jgBv1U
00
v1
\ Bv2U

00
v2
gj C

X
v1;v22WJ ; l.v1/�l.v2/

jgBv1U
00
v1
\ Bv2U

00
v2
gj

D S1 C S2 :

Below we consider the first sum S1; the second sum can be estimated similarly. We have
(4.14)
S1D jBj

�2
X

v1;v22WJ ; l.v2/�l.v1/

ql.v1/Cl.v2/ � j¹.b1; b2; b3; b4/2B
4
W gb1v1b2D b3v2b4gºj:

To obtain (4.14), we use that gBv1U 00v1 \ Bv2U
00
v2
g D gBv1B \ Bv2Bg and that the

last set is not a direct product but contains any element of the set gBv1U 00v1 \ Bv2U
00
v2
g

with multiplicity jBj2q�l.v1/�l.v2/. Now applying the inclusions (4.2), we see that for any
v 2 WJ one has gBv � BvB [ BgvB . Since g … P , we get gBv � BgvB and hence
any element gbvj , b 2 B , j D 1; 2, can be written as b1gvj b2, b1; b2 2 B . The same is
true for vBg, of course. Whence recalling (4.14), we get

S1 �
X

v1;v22WJ ; l.v2/�l.v1/

ql.v1/Cl.v2/ jgv1B \ Bv2gj :

Again, applying the Bruhat decomposition and transforming gv1B as HU 0gv1gv1U
00
gv1

,
we derive

S1 � jBj
X

v1;v22WJ ; l.v2/�l.v1/; gv1Dv2g

ql.v1/Cl.v2/�l.gv1/

� jBj
X

v1;v22WJ ; l.v2/�l.v1/; gv1Dv2g

q2l.v1/�l.gv1/ :

But g 2 W J and hence l.gv1/ D l.g/C l.v1/. Clearly, l.g/ � 1, because otherwise g 2
WJ . In view of (4.4), this gives us

S1 � jBjq
�1

X
v1;v22WJ ; l.v2/�l.v1/; gv1Dv2g

ql.v1/ � jBjq�1
X
v2WJ

ql.v/ D jP jq�1

as required.

The argument given in the first part of the proof shows that the bound is tight for Borel
subgroups (and we do not even need the factor 2).

We finish this section with a lemma in the spirit of the well-known result of Frobe-
nius [13] on the representation of SLn.Fq/. We thank the reviewer, who showed us a more
simple way to obtain the result.

Lemma 4.4. Let G.q/ be a Chevalley group and let P � G.q/ be a parabolic sub-
group. Suppose that � is an arbitrary non-trivial irreducible representation of P such
that yH.�/ ¤ 0. Then d� � .q � 1/=2.



Growth in Chevalley groups 1957

Proof. Suppose that �.u/ ¤ 1 on the unipotent radical of B , in other words, U acts
non-trivially. Then there is r 2 ˆC such that �.Ur / ¤ 1. Since there is a canonical homo-
morphism from SL2.Fq/ onto hUr ; U�ri, where r 2 ˆ is arbitrary and�

� 0

0 ��1

��
1 t

0 1

��
��1 0

0 �

�
D

�
1 �2t

0 1

�
;

we see that, say, g WD .11j01/ is conjugated with gm, where m runs over all quadratic
residues of F�q . In other words, the operation x! xm permutes all eigenvalues of �.g/ and
hence the dimension d� is at least .q � 1/=2 (strictly speaking, the arguments above hold
for Fp but it is easy to show that for Fq a similar method works, see, e.g., Proposition 8.10
in [9]).

Now assume, for a contradiction, that U acts trivially. By (4.5) we know that PJ D
hB; ¹wj ºj2J i D hB;

QJ
jD1wj i D hB; .

QJ
jD1wj /B.

QJ
jD1wj /

�1i. Our assumptions on �
and the last formulae imply that the restriction of � to B is non-trivial and irreducible.
Since B=U Š H , it follows that � is one-dimensional. The condition yH.�/ ¤ 0 and the
fact that � is one-dimensional give us that the restriction of � to B is trivial, and this is a
contradiction.

5. Growth relatively to parabolic subgroups

Now let us obtain a result on growth of subsets from G.q/ under left/right multiplications
by parabolic subgroups.

Bounds in Theorem 5.1 below depend on the quantities �P .A�1; A/, �P .A; A�1/,
where A is an arbitrary subset of G.q/ and P is a parabolic subgroup. The sense of
these expressions is rather obvious, namely, �P .A�1; A/ and �P .A;A�1/ are small if the
intersection of A with left/right cosets of P is small in average.

Theorem 5.1. Let G.q/ be a Chevalley group and let P �G.q/ be a parabolic subgroup.
Then for any set A � G.q/ one has either

jAP j jA \ P j �
jAj2

2
or

(5.1) jAP j jPAj �
jAj jP jq

4
�

In particular,

(5.2) max¹jAP j; jPAjº �
1

2
min¹jAj2jA \ P j�1; .jAjjP jq/1=2º :

Similarly,

(5.3) jAPAj �
jP j

4
�min¹q; jAj4��1P .A�1; A/��1P .A;A�1/º ;

and if A is not contained in P , then

(5.4) jBAP j � qjP j :
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Proof. Let g … P and put Ag D A \ gP . Also, let ı D maxg…P jAg j. We have

E.A�1; P / D
X
x

r2AP .x/ D
X
x2P

r2AP .x/C
X
x…P

r2AP .x/ � jP j
X
x2P

rAP .x/C ıjP j jAj

D jP j2jA \ P j C ıjP j jAj :(5.5)

In view of (2.1), we get

(5.6) jAP j �
1

2
min¹jAj jP j��1; jAj2jA \ P j�1º :

On the other hand, using Lemma 4.3, we derive

(5.7) E.P;Ag/ D
X
x

r2PAg .x/ �
X
x

rPAg .x/ rPgP .x/ � 2jP j
2
jAg jq

�1 ;

and hence by the Cauchy–Schwarz inequality (2.1), we get

(5.8) jPAj � jPAg j �
jP j2jAg j

2

E.P;Ag/
�
qjAg j

2
D
q�

2
;

where we choose g such that jAg j D �. Combining (5.6) and (5.8), we arrive to (5.1)
and (5.2) follows immediately.

Similarly, let us obtain (5.3). In view of Lemma 4.2 and Lemma 4.3, we have

� WD
X
x

r2APA.x/ D
X
z;z0

rA�1A.z/rAA�1.z
0/ jzP \ Pz0j

D

X
z;z02P

rA�1A.z/rAA�1.z
0/jzP \ Pz0j C

X
z;z0…P

rA�1A.z/rAA�1.z
0/jzP \ Pz0j

� jP j�P .A
�1; A/�P .A;A

�1/C 2jP jq�1jAj4 :(5.9)

By the Cauchy–Schwarz inequality, we know that � jAPAj � jAj4jP j2 and combining
this with (5.9), we obtain the required result.

It remains to obtain (5.4). Since A is not contained in P D PJ , it follows that there
are wJ 2WJ , 1¤ wJ 2W J , b1; b2 2 B , such that the product b1wJwJ b2 is an element
from A. This follows easily from the Bruhat decomposition. Then BwJwJP � BAP
and wJP D P . Thus we see that BAP contains disjoint sets BwJ vB for any v 2WJ and
hence, by (4.4),

jBAP j �
X
v2WJ

jBwJ vBj D jBj
X
v2WJ

ql.w
J v/
D jBjql.w

J /
X
v2WJ

ql.v/

� qjBj
X
v2WJ

ql.v/ D qjPJ j :

This completes the proof.

Remark 5.2. It is easy to see that the bound (5.2) is tight. Indeed, let P D B be a Borel
subgroup and let A D B

F
BwrB , where wr is a fundamental reflection. In particular,

l.wr / D 1 and A is a parabolic subgroup. Then AB D BA D A, but by (4.6), we have
jAj � qjBj �

p
jAjjBjq.
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Now we are ready to obtain a result on intersections of powers of A with parabolic
subgroups. We use the quasi-random technique from [14, 45].

Theorem 5.3. Let G.q/ be a Chevalley group and let P �G.q/ be a parabolic subgroup.
Also, let n � 1 be a positive integer and let X; Y1; : : : ; Yn � G.q/ be nonempty sets such
that X \ P D ; and

(5.10) q jX j jP j3dnC2min �

nY
jD1

jYj j � 4jGjnC4 :

Then XY1 : : : YnX \ P ¤ ;.

Proof. First of all, let us obtain a general upper bound for kA.�/ko, where A is any subset
of G D G.q/ and � is an arbitrary non-trivial representation of G. Using formula (3.3)
with f D A, we have

(5.11) k yA.�/ko <
�
jAj jGj
dmin

�1=2
:

Now if XY1 : : : YnX \ P D ;, then .PX/Y1 : : : Yn.XP / \ P D ;. In terms of the rep-
resentation theory, this can be rewritten as

0D
jPX jjY1j : : : jYnjjXP jjP j

jGj
C

1

jGj

X
�2yG; �¤1

d�hbPX.�/bY 1.�/ : : :bY n.�/bXP.�/;bP .�/iHS:

Since X \ P D ;, by estimate (5.1) of Theorem 5.1 we have jPX jjXP j � 2�2jX jjP jq.
Using this fact and applying Lemma 3.1, combining with the bound (5.11) for the sets Yj ,
we obtain

jPX jjY1j : : : jYnjjXP jjP j

jGj
< kP kW

�
jPX j jGj
dmin

�1=2� jXP j jGj
dmin

�1=2 nY
jD1

�
jYj j jGj
dmin

�1=2
�

�
jGj
dmin

�.nC2/=2�
jPX j jXP j

nY
jD1

jYj j
�1=2

or, in other words,

q jX j jP j3dnC2min �

nY
jD1

jYj j < 4jGjnC4 :

This completes the proof.

Let P be a parabolic subgroup of size close to jG.q/j=dmin and let A \ P D ;. Such
parabolic subgroups exist, say, take G.q/ D PSLn.q/ (for precise results on dmin, con-
sult [31], page 419, or Table 4 in [15]). Then Theorem 5.3 says us that AnC2 \ P ¤ ;,
provided

(5.12) jAj �
C jG.q/j
dmin

�

�d2min

q

�1=.nC1/
;

where C > 0 is an absolute constant.
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The bound (5.12) is a natural barrier because any parabolic subgroup P of size jP j �
jG.q/j=dmin (recall that we just consider such subgroups) clearly does not generate the
whole group (see also Example 5.6 below). Nevertheless, we do not want to generate the
whole group but just to have a non-empty intersection of An with P for small n. In this
case we will show that it is possible to relax the last condition (approximately by q). To do
this, we consider the subgroup � generated by A. Then clearly ; ¤ � \ P DW Z < G.q/,
but moreover, using Theorem 5.4 (for PSL2.Fp/), Lemma 4.1, Theorem 5.3 and other
tools, we show that An \ Z ¤ ; for a certain n and hence An intersects P . Indeed, one
can show that the structure of � is simple, namely, for large A it must be another parabolic
subgroup of G.q/. Then Z contains a torus T and hence considering the representation
theory of � (but not the whole group G.q/) we derive that the orbit of A intersects T .
Now if � D G.q/, i.e., if A generates our group G.q/, then one can apply some results on
growth (e.g., Theorem 1.1) and this situation is even simpler.

In the particular case of SL2.Fq/, we need a result which provides us some concrete
bounds for the growth exponent, see Theorem 13 in [38] (which in turn develops the ideas
of [22, 43]). In the general case, we apply Lemma 4.1.

Theorem 5.4. Let q � 5, let A � SL2.Fq/ or A � PSL2.Fq/ be a generating set, with
q2�" � jAj � q72=35, 0 < " < 2=25. Then jAAAj � jAj25=24.

More precisely, in Theorem 13 of [38] it was proved that, for any set A with q2�" �
jAj � q72=35, 0< "<2=25 andK WDjA3j=jAj, one hasK�min¹jAj1=24;p3=11jAj�1=11º.
Thanks to our assumption jAj � q72=35, we obtain that in any case K � jAj1=24, as
required.

Now we are ready to prove a result, which breaks the limit from (5.12). The absolute
constants in (2) and (3) can be easily computed, but we do not specify them.

Theorem 5.5. Let q be a sufficiently large odd non-square, let B be a Borel subgroup of
PSL2.Fq/, and let A � PSL2.Fq/ be an arbitrary set. Then the following holds.

(1) If jAj � q2�c , c < 2=25, then there is n � d24.1Cc/
2�25c

e such that A3nC2 \ B ¤ ;.

(2) If jAj � q1Cı , then there is n� 1=ı with An \ B ¤ ;.

(3) In general, let G.q/ be a Chevalley group and let P � G.q/ be a parabolic sub-
group. Suppose that jAj � P1.G.q//q�1Cı . Then there exists n, n �r ı

�1, such
that An \ P ¤ ;.

Proof. Let us start with (1). We can assume that A \ B D ; because otherwise there is
nothing to prove. Let U WD ¹.1uj01/ W u 2 Fqº. If A generates PSL2.Fq/, then by The-
orem 5.4 either jAj � q72=35 or jAAAj � jAj25=24 > q2C.2�25c/=24. In the last case,
applying Theorem 5.3 with P D B , X D A, Yj D AAA and dmin D .q � 1/=2, we see
that A3nC2 \ B ¤ ; provided n � d24.1Cc/

2�25c
e. If jAj � q72=35, then Theorem 5.3 with

P D B , X D A, Yj D A gives us even better upper bound for n.
Now suppose that A does not generate PSL2.Fq/. By the well-known structure of the

subgroups of PSL2.Fq/ see, e.g., Theorems 6.17 and 6.25 in [49], we have that A is a
subset of a Borel subgroup and, by conjugating, we can assume that A is a subset of the
standard Borel subgroupB� of the upper-triangular matrices. Also, we have B D g�1B�g
for a certain g 2 PSL2.Fq/. We can assume that g … B� because otherwise B� D B and
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hence A D B� \ A D B \ A ¤ ;. One can carefully use inequalities (5.3), (5.4) of The-
orem 5.1 and prove that A�1BA�1 has size at least jPSL2.Fq/j � .1C o.1//jBj. This is
not enough for our purposes, and we consider An directly. We need the fact that the inter-
section of two Borel subgroups is a torus isomorphic to F�q ; in the case PSL2.Fq/, this
can be demonstrated rather easily. Indeed, by the Bruhat decomposition, the element g
can be written as bwu, where b 2 B , u 2 U and w D .01j.�1/0/. Then any element of
B D g�1B�g has the form�

1 �v

0 1

��
� 0

Qu ��1

��
1 v

0 1

�
D

�
� � v Qu v.� � Quv/ � v��1

Qu Quv C ��1

�
;

where the variables �, Qu run over F�q , Fq , respectively, and v is a fixed element. Since
An � B�, it follows that it is enough to find an element .� .v�� v��1/j0��1/ 2 B� \ B
in An. The intersection T WD B� \ B is, clearly, a subgroup of size q � 1 (and T is,
actually, a torus). Applying Corollary 3.2 (here we use the representation theory for B not
Aff.Fq/), we obtain that A3 \ T ¤ ;, provided jAj � q5=3.

Now let us prove that the condition jAj � q1Cı implies that there is n� 1=ı such that
An \ B ¤ ;; in other words, let us obtain (2). Again, if A generates PSL2.Fq/, then we
consequently apply Theorem 1.1 (or just Theorem 5.4) and derive that A3

nC1
D PSL2.Fq/

provided .1C c�/n.1C ı/ > 3, where c� > 0 is an absolute constant. Hence n D O.1/
and in particular, A3

nC1
\ B ¤ ;. Now if A does not generate PSL2.Fq/, then by the

structure of the subgroups of PSL2.Fq/, we see that A is a subset of a Borel subgroup B1.
Put T D B \ B1. Then, as above, T is a torus, having size q � 1. Applying Corollary 3.2
again, we obtain An \ T ¤ ; provided jAj > q1C2=n. Thus the restriction n > 2=ı is
enough in this case.

It remains to prove the third part of our theorem. Again we can assume that A � � �
G.q/, � ¤ G.q/, because otherwise we consequently apply Theorem 1.1 to generate the
whole G.q/. By our assumption and Lemma 4.1, we have for sufficiently large q,

j�j � jAj � P1.G.q//q�1Cı � P .G.q//;

and hence our subgroup � is a parabolic subgroup,

j�j � P1.G.q//:

Recall that the intersection of two Borel subgroups contains a maximal torus of G.q/.
Indeed, by the Bruhat decomposition we have B WD gB�g

�1 D uwB�w
�1u�1, where

u 2 U , w 2 W and hence uHu�1 � B� \B because w�1Hw D H � B�. In particular,
the subgroup P \ � contains a torus T . Applying Lemma 3.3 for the group � , as well as
Lemma 4.4, we see that An \ T ¤ ; if, for a sufficiently large constant C ,

(5.13) jAj �
CP1.G.q//

q
�

�P1.G.q//
jT j

�2=n
:

To see this, one can use (3.7) replacing j�j by jT j and jAjq by 2jAjP1.G.q//=.q � 1/
thanks to the first inequality from (3.6). Substituting, we get (5.13). Finally, by assump-
tion, jAj � P1.G.q//q�1Cı , and hence it is enough to choose n � C.r/ı�1 for a suffi-
ciently large constant C.r/. This completes the proof.
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Example 5.6. Let BC; B� be the standard Borel subgroups of the upper/lower-triangular
matrices from PSL2.Fp/ and let p � �1 .mod 4/. Also, let A be the set of all matrices
� BC n B� in which all entries are quadratic residues. It is easy to check that jAj � p2.
Further, one can see that A \ B� and A2 \ B� are empty. It means that in Theorem 5.5
we need at least three multiplications even for sets A with jAj � p2.

Remark 5.7. As the reviewer pointed out, the problem of finding n such thatAn\P ¤ ;,
with P being a parabolic subgroup (of maximal size, say) can be treated as follows. Con-
sider the permutation character � of the canonical permutation representation � WG !
G=P and the canonical action on the right cosets of P . Our task is to find x 2 An such
that �.x/¤ 0. One can use the representation theory in the spirit of [3], Lemmas 3 and 4, to
calculateL2-norm of the character; but unfortunately, this way one can not gain the saving
of size q, see Theorem 5.5. Nevertheless, it is an interesting new insight to the problem.

6. Two applications to Zaremba’s conjecture

Using inequality (5.1) of Theorem 5.1, combining with Theorem 5.3, and applying the
method from [38], one can decrease the constant 30 in Theorem 1.4 to 24. We go fur-
ther, using the specifics of our problem and obtain Theorem 1.5 from the introduction.
The results of this section can be considered as an “effective” form of strong approxim-
ation (see the definition in [7]). Namely, we answer in a particular case to the following
question: given a semigroup from SL2.Z// having strong approximation, how far (in the
Archimedean norm) does one need to go in the semigroup to find a particular element
modulo p?

Let M be a positive integer. Denote by FM .Q/ the set of all rational numbers u=v,
.u; v/D 1, from Œ0; 1� with all partial quotients in (1.2) not exceedingM and with v �Q:

FM .Q/ D
°u
v
D Œ0I b1; : : : ; bs� W .u; v/ D 1; 0 � u � v � Q; b1; : : : ; bs �M

±
:

In other words, all partial quotients of u=v 2 FM .Q/ are bounded by the parameter M .
At the end of our proof we will chooseM to be a large but fixed number (in particular,M
does not depend on all other parameters of this section). Further, by FM we denote the
set of all irrational numbers from Œ0; 1� with partial quotients less than or equal to M .
From [19], Section 7, equation (7.11), we know that the Hausdorff dimension wM WD
HD.FM / of the set FM satisfies

wM D 1 �
6

�2
1

M
�
72

�4
logM
M 2

CO
� 1

M 2

�
; M !1 :

Here it will be enough the simpler result from Theorem 1 in [18] (or see previous results
in [17]), which states that

(6.1) 1 � wM � 1=M

with some absolute constants in the sign �. Explicit estimates for dimensions of FM for
certain values of M can be found in [24, 25] and in other papers. For example (see p. 15
or Table on p. 16 in [25]),

(6.2) w2 D 0:5312805062772051416244686 � � � > 1=2
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In Theorem 3 of [18], Hensley gives the bound

(6.3) jFM .Q/j �M Q2wM :

More generally (see [21]), let A � N be a finite set with at least two points and let FA

be the set of all irrational numbers such that bj 2 A (previously, A D ¹1; : : : ;M º). Then
it is known that for the corresponding finite set FA.Q/, formula (6.3) holds with wM
replaced by wA WD HD.FA/ (the constants there depend on A of course). The Hausdorff
dimension wA of the set FA is known to exist and satisfies 0 < wA < 1.

Let us make the first steps towards the proof of Theorem 1.5. Foremost, we associate
a set of matrices from G D PSL2.Fp/ with the continued fractions. Here and below, p is
a sufficiently large prime number (in particular, p is an odd integer). We begin with the
set of the following products:

(6.4)
�
0 1

1 b1

�
� � �

�
0 1

1 bs

�
D

�
ps�1 ps
qs�1 qs

�
;

where ps=qs D Œ0Ib1; : : : ; bs� and ps�1=qs�1 D Œ0Ib1; : : : ; bs�1�. Clearly, the determinant
of any matrix from (6.4) is ps�1qs � psqs�1 D .�1/s . Let Q D p � 1, Q1 � Q and
consider the set FM .Q1/ with a fixed integerM � 2. Any u=v 2 FM .Q1/ corresponds to
a matrix from GL2.Z// of the form (6.4) with bj � M by the rule u=v D ps=qs . By the
uniqueness of the representation of a number as a continued fraction this correspondence
is one-to-one. The setFM .Q1/ splits into ratios with even s and with odd s; in other words,
FM .Q1/ D F

even
M .Q1/

F
F odd
M .Q1/. Let A.Q1/ be the set of all matrices from (6.4) with

even s. Since s is even, we have A.Q1/ � PSL2.Z//, and because Q1 � p � 1, we can
think of A.Q1/ as about a subset of G. It is easy to see from (6.3) that jA.Q1/j �M

Q
2wM
1 . Indeed, it is obvious if jF even

M .Q1=.M C 1//j � jFM .Q1/j=2�M Q
2wM
1 , but if

not, then jF odd
M .Q1=.M C 1//j � jFM .Q1/j=2�M Q

2wM
1 and multiplying by .01j1b/,

1 � b �M , we derive jF even
M .Q1/j �M jF

odd
M .Q1=.M C 1//j �M Q

2wM
1 . Thus anyway

jA.Q1/j D jF
even
M .Q1/j �M Q

2wM
1 and A.Q1/ 2 G. Denote A.Q/ by A.

Now let B be the standard Borel subgroup of G, i.e., the set of all upper-triangular
matrices. It is easy to check that if for a certain n one has An \B ¤ ; (the multiplication
is considered modulo p), then any g WD .ps�1psjqs�1qs/ 2An \B has the form (6.4) and
qs�1 D qs�1.g/ equals zero modulo p. In other words, there is u=v 2 FM ..2p/n/ such
that v � 0 .mod p/. Actually, if we find any number from ps; qs; ps�1; qs�1 that equals
zero modulo p, then we can do the same, see [20] (but we do not need this fact). Briefly,
we consider An as a matrix of PSL2.Z// and after that taking a projection modulo p, we
want to say something about the components of the projection. This is the spirit of the
affine linear sieve, see [7].

The strategy of the proof of Theorem 1.5 is the following. Our task is to find the
smallest n such that An \ B ¤ ;. In Lemmas 6.1 and 6.3, as well as in other steps of the
proof from Subsection 6.1, we will show that the set A is uniformly distributed in several
senses, and the strongest sense is that for all non-trivial unitary representations �, one has
k yAko � jAj

1�c , where c > 0 is an absolute constant. After that it is possible to use the
methods of the previous sections (e.g., Theorem 5.5) to show that indeed An \ B ¤ ;.
This question about the intersection the orbit of A with the standard Borel subgroup B
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motivates us to study growth of sets relatively to parabolic subgroups. Lemma 6.1 is rather
general and it shows that A does not correlate with all Borel subgroups. Combining this
lemma and some further combinatorial tools, we obtain Theorem 1.5 with constant 3.
Lemma 6.3 uses the specifics of the set A more intensively, and it allows us to decrease
the constant to 1C ".

Lemma 6.1. We have

�B.A;A
�1/ � pjAj and �B.A

�1; A/ �MpjAj :

Moreover,

max
g2G
¹jA \ gBj; jA \ Bgjº �Mp;(6.5)

max
g;h2G

jA \ gBhj �M jAj � p
.1�2wM /=4Co.1/ :(6.6)

Proof. Let us begin with the estimation of �B.A;A�1/. We see that the product�
ps�1 ps
qs�1 qs

��
q0t �p0t
�q0t�1 p0t�1

�
2 B

if and only if q0t qs�1�qs q
0
t�1 .mod p/. It is well known that qs=qs�1D ŒbsIbs�1; : : : ;b1�

and hence the number of pairs .qs�1; qs/ is at most jAj. Further, fixing q0t�1 (at most p
choices), as well as a pair .qs�1; qs/ (jAj choices), we find q0t uniquely modulo p and
hence we find q0t because q0t � p. Thus �B.A; A�1/ � pjAj. The argument showing
that �B.A�1; A/ � MpjAj is even simpler because in this case we have the equation
p0t�1qs�1 � ps�1q

0
t�1 .mod p/ and any triple .ps�1; qs�1; q0t�1/ determines p0t�1. It

remains to notice that we can reconstruct .ps; qs/ from .ps�1; qs�1/ in at most M ways.
The bound (6.5) can be obtained exactly in the same way.

Finally, to get (6.6) we see that the inclusion

(6.7)
�
˛ ˇ


 ı

��
ps�1 ps
qs�1 qs

��
a b

c d

�
2 B

gives us

(6.8) a.
ps�1 C ıqs�1/ � �c.
ps C ıqs/ .mod p/:

We can assume that a; c ¤ 0 because this case was considered above, and the same situ-
ation for 
 D 0. If ı D 0, then aps�1 � �cps .mod p/ and fixing ps we find ps�1
uniquely. But ps=ps�1 D ŒbsI bs�1; : : : ; b2� and we determine the whole matrix, choos-
ing b1 in at most M ways. Thus suppose that all coefficients in (6.8) do not vanish.
Dividing by �c
 , writing ! D a=c and redefining ı D �ı=
 , we obtain

(6.9) ı.qs C !qs�1/ � ps C !ps�1 .mod p/:

Equation (6.9) can be interpreted easily: any Borel subgroup fixes a point (the standard
Borel subgroup fixes 1) and hence the inclusion (6.7) says that our set A transfers !
to ı. In other terms, the identity (6.9) says that the tuples .qs; qs�1; ps; ps�1/ belong to
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a hyperspace with normal vector .ı; ı!;�1;�!/, and hence for some other solutions
.q0s; q

0
s�1; p

0
s; p
0
s�1/, .q

00
s ; q
00
s�1; p

00
s ; p

00
s�1/, .q

000
s ; q

000
s�1; p

000
s ; p

000
s�1/ of (6.9), we get

(6.10)

ˇ̌̌̌
ˇ̌̌̌ qs qs�1 ps ps�1
q0s q0s�1 p0s p0s�1
q00s q00s�1 p00s p00s�1
q000s q000s�1 p000s p000s�1

ˇ̌̌̌
ˇ̌̌̌ � 0 .mod p/:

Now consider the set QA � A, which is constructed exactly as A but with a smaller Q,
which equals 2�5Q1=k (in the proof of Lemma 6.1, we will take k D 4). In other words,
let QA D A.2�5Q1=k/. Our first task is to prove that, for any k � 4,

(6.11) max
g;h2G

j QA \ gBhj �M p1=kCo.1/ :

Clearly, j QAj � jAj1=k � p2wM =k , and hence (6.11) would give us an almost square-root
saving asM tends to1. If we solve equation (6.10) with elements from QA, then we arrive
to an equation

(6.12) Xqs C Yqs�1 CZps CWps�1 � 0 .mod p/;

where jX j; jY j; jZj; jW j < 2�2p3=k which is, actually, an equation in Z. We can assume
that not all integer coefficients X; Y; Z; W (these coefficients are some determinants of
matrix from (6.10)) vanish because otherwise we obtain a similar equation with a smaller
number of variables. Without loss of generality, assume that X ¤ 0, and using (6.12) as
well as the identity qsps�1 � ps qs�1 D .�1/s D 1, we derive

qs�1psX D �ps�1.Yqs�1 CZps CWps�1/ �X

or, in other words,

(6.13) .Xqs�1 CZps�1/.Xps C Yps�1/ D YZp
2
s�1 �X.Wp

2
s�1 C 1/ WD f .ps�1/ :

Fix ps�1 < 2�5p1=k and suppose that f .ps�1/ ¤ 0. Then the number of the solutions
to equation (6.13) can be estimated in terms of the divisor function as po.1/. Further, if
we know .qs�1; ps; ps�1/, then we determine qs via (6.12) and hence the whole matrix
from A. Now in the case f .ps�1/D 0, we see that there are at most two choices for ps�1,
and fixing qs � 2�5p1=k , we find the remaining variables using formulae (6.12), (6.13).
Thus we have obtained (6.11).

To derive (6.6) from (6.11), notice that A � QAX , where X is A.25.M C 1/Q1�1=k/.
Then, using (6.11), we get for any g; h 2 G that

jA \ gBhj �
X
x2X

j QAx \ gBhj �M p1=kCo.1/jX j �M p2wMC
1
k
.1�2wM /Co.1/

� jAj � p.1�2wM /=4Co.1/ :

This completes the proof of the lemma.

Assume that jAj � p2wM � p3=2. Using formula (5.3) of Theorem 5.1, as well as
Lemma 6.1, we obtain an optimal lower bound for jA�1BA�1j.

Corollary 6.2. Let wM > 3=4. Then

jABAj; jA�1BA�1j �M p3 :
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6.1. Proof of Theorem 1.5

Now we are ready to prove Theorem 1.5. First of all we obtain the result with the con-
stant equal to 5, that is, q D O.p5C"/, and with the exact bounds (on M , say), and then
subsequently refine the constant, using some additional arguments (which give worse
dependence on M ). The method of obtaining the constant 5 is more general and can be
generalized further, see Theorem 6.5 below and the remarks after it. Once more, decreas-
ing C in the condition q D O.pC / of Theorem 1.5, we increase the constant M/. Let us
say that Theorem 1.5 holds “with constant C ” if it holds for q D O.pCC"/ for any " > 0.

Proof with C D 5. Take n � 1 and consider the equation ay1 : : : yna0 D b, where yj 2 Y ,
a; a0 2 A, b 2 B and we will choose the set Y later. If this equation has no solutions,
then the equation sy1 : : : yns0 D b, s 2 BA WD S , s0 2 AB WD S 0 has no solutions either.
Applying the second part of Lemma 6.1 (see formula (6.5)), we can estimate the energies
E.A�1; B/, E.B;A/ as O.M jBjjAjp/. But then formula (2.1) gives us

(6.14) jS j; jS 0j �M jAjp :

By arguments as those in the proof of Theorem 5.3, we obtain (recall that dmin.PSL2.Fp//
� .p � 1/=2/)

jY jnjS j jS 0j jBj � jGj
�
jGjjS j
p

�1=2� jGjjS 0j
p

�1=2� jGjjY j
p

�n=2
which implies

(6.15) jY jn jAj2 � p2nC4 :

It remains to choose Y . Let K D jAAAj=jAj and QK D jAAj=jAj. If QK � C�p6=jAj3 for
a large constant C�, then jAAj � C�p6=jAj2 and this is a contradiction with inequal-
ity (6.15) for Y D AA, n D 1 and sufficiently large C�. Suppose that QK � p6=jAj3.
In [38], inequality (31), using the Helfgott method [22, 43], it was proved that

(6.16) jAj2p�1 �M K QKjAj �K2=3jAj1=3 ;

provided

(6.17) jAj � p3=2K5=2

(the proof is standard: one should sum the Helfgott orbit-stabilizer inequality over the set
of all possible traces tr.A/ and use the trivial observation that jtr.A/j � jAj2=p, see details
in [38]). Combining (6.16) with QK � p6=jAj3, we get

K �M

jAj11=5

p21=5
�

It is easy to check that if (6.17) does not hold, then we obtain even better lower bound
forK. Applying inequality (6.15) with Y D AAA and n D 1 we arrive to a contradiction,
provided

jAj � C�p
2wM � p51=26 ;
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where C� > 0 is a sufficiently large constant. In view of (6.1), the last condition can be
satisfied taking M sufficiently large but fixed (not depending on p). Thus A5 \ B ¤ ;
and one can calculate the required M by formula (6.1).

Proof with C D 3. Let us obtain a non-trivial upper bound for the energy of A of the
form E.A; A/ � jAj3�c . In particular, in view of (2.1), the bound on the energy gives
us jAAj � jAj1Cc (indeed, by (2.2) one has E.A�1; A/ � E.A; A/). Suppose that, for a
certain T � 1, E.A; A/ D jAj3=T . By the non-commutative Balog–Szemerédi–Gowers
theorem, see Theorem 32 in [39] or Proposition 2.43 and Corollary 2.46 in [50], there
is a 2 A and A� � a�1A, jA�j �T jAj, such that jA3�j �T jA�j. Here the signs �T

and�T mean that all dependences on T are polynomial. In view of the Helfgott growth
result or Theorem 5.4, it is enough to show that A� does not belong to a coset of a Borel
subgroup. But this follows easily from the bound (6.6) of Lemma 6.1 (here we assume
that wM > 1=2) and from the lower bound for the size of A (and hence size of A�). The
Parseval identity (3.3) and formula (3.4) give us

E.A;A/ D
1

jGj

X
�2yG

d�k yA.�/
bA�1.�/k2 D 1

jGj

X
�2yG

d�k yA.�/ yA.�/
�
k
2 ;

and hence by Lemma 4.4, we obtain

(6.18) max
�¤1
k yA.�/k4o �

X
�

k yA.�/k4o � E.A;A/ � jGj=p � jAj3�cp2 :

Here c > 0 is an absolute constant and M is taken to be large enough. Hence we find a
solution to the equation sas0 D b provided

(6.19)
jS jjS 0jjAjjBj

jGj
>
�
jS jjGj
p

�1=2� jS 0jjGj
p

�1=2
k yAko :

Using (6.14) and the inequality

max
�¤1
k yA.�/ko � .jAj3�cp2/1=4;

which follows from the inequality in (6.18), we see that we are done provided jAj �
C�p

10=.5Cc/, where C� is a sufficiently large constant. In view of (6.1), the last condition
is satisfied taking sufficiently large M DM.c/.

Finally, we shall decrease the constant C to 2 and further to 1. To do this. we introduce
a very important new set ƒ (from the point of view of Diophantine approximations, this
set corresponds to all approximations with denominator at most

p
p. Such approximations

play a crucial role in Zaremba’s conjecture, see, e.g., Lemma 17 in [37]). Let ƒ � A be
ƒ D A.

p
Q=2/. Clearly, jƒj � pwM �

p
jAj and ƒ2 � A.

Lemma 6.3. Let X � B be an arbitrary set. We have

E.ƒ;X/ D jƒj jX j and E.ƒ�1; X/ �M 4
jƒj jX j:

In particular,
jBƒj D jBj jƒj and jƒBj � jBj jƒj=M 4:
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Proof. As in the proof of Lemma 6.1, we see thatƒƒ�1 \B ¤ ; if and only if q0t qs�1 �
qs q
0
t�1 .mod p/ (we use the notation from the lemma). Since ƒ D A.

p
Q=2/, it follows

that q0t qs�1 D qs q
0
t�1. Obviously, .qs�1; qs/D .q0t�1; q

0
t /D 1 and hence qs D q0t , qs�1 D

q0t�1. After that we reconstruct both matrices and obtain E.ƒ;X/ D jƒjjX j.
Similarly,ƒ�1ƒ\B ¤ ; if and only if p0t�1qs�1 � ps�1q

0
t�1 .mod p/ and whence

p0t�1qs�1 D ps�1q
0
t�1. Again, .qs�1; ps�1/D .q0t�1; p

0
t�1/D 1 and hence ps�1 D p0t�1,

qs�1 D q
0
t�1. After that we reconstruct both matrices in at most M 2 ways. Whence we

obtain E.ƒ;X/ �M 4jƒjjX j. This completes the proof of the lemma.

Proof with C D 2. We redefine S and S 0 asBƒ,ƒB , respectively, and use the calculations
from (6.19). This gives a solution to the equation sas0 D b provided

(6.20)
jS j jS 0j jAj jBj

jGj
>
�
jS j jGj
p

�1=2� jS 0j jGj
p

�1=2
k yAko ;

and using kAko � .jAj3�cp2/1=4 as well as jS j; jS 0j � jBjjƒj=M 4, we see that we are
done provided

jAj � C�M
8=.3Cc/p6=.3Cc/;

whereC� is a sufficiently large constant. In view of (6.1), the last condition can be satisfied
taking sufficiently large M . Thus we have obtained the integer constant 2, but it is easy
to see that this quantity is, actually, 2 � Qc, where the absolute constant Qc depends on c.
Indeed, just replace

p
p � 1 in the definition of the setƒ to p.1�"/=2 for sufficiently small

" D ".c/ > 0 and repeat the calculations above.

Proof with C D 1. In this last step we take an integer parameter k � 1=", k � 4, and
consider ƒk � A, ƒk D A.2�kQ1=k/. Letting QA D ƒk

k
� A, we have j QAj �k jAj (more

precisely, jAj � j QAj � �kjAj, where �< 1 is an absolute constant). In other words,A and QA
have comparable sizes. We will show later that there is a power saving for the operator
norm of yƒk.�/ of the form

kyƒkko �k jƒkj
1�c�.k/; for a certain c�.k/ > 0.

Calculations in (6.20) for the equation s�ks0 D b, �k 2 ƒk , give us a solution provided

jS j jS 0j jƒkj jBj

jGj
>
�
jS j jGj
p

�1=2� jS 0j jGj
p

�1=2
kyƒkko :

Since kyƒkko �k jƒkj
1�c�.k/, and jS j; jS 0j � jBjjƒj=M 4, the last equation is satisfied

provided
jAj jƒkj

2c�.k/ � exp.C�k/M 4p2 ;

where C� > 0 is a sufficiently large constant. In view of (6.3), it is enough to have

(6.21) pwMC2c�.k/wM =k � exp.C 0�k/M
2p ;

where C� > 0 is another sufficiently large constant. Taking M DM."/, M � QCk=c�.k/
for sufficiently large constant QC , and using (6.3) again, we get (6.21).
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To demonstrate the required power saving for the operator norm of yƒk.�/, we first
recall that the inequality (6.11) of Lemma 6.1 holds for any k � 4. An analogue of
Lemma 6.1 for the set ƒk holds. Hence we have the uniform bound jƒk \ gBhj �M

p1=kCo.1/ for all g; h 2 G. By Theorems 6.17 and 6.25 in [49], all other maximal sub-
groups of PSL2.Fp/ are dihedral subgroups � . We consider the intersection ofƒk with � ,
namely, with the set

� D �" WD
°�

u "v

v u

�
W u; v 2 Fp; u

2
� "v2 D 1

±
;

where " is a primitive root. Our task is to show that for k � 4 one has

jƒk \ g�hj � p1=k for all g; h 2 G.

Actually, this was done in Lemma 21 of [37] with even a stronger bound for the intersec-
tion (actually, the size of intersection is O.1/), but we briefly repeat the main steps of the
argument. Writing g D .xyjzw/ and h D .XY jZW /�1, we want to estimate the number
of the solutions in u; v; ps�1; qs�1; ps; qs to the equation�

xuC yv "xv C yu

zuC wv "zv C wu

�
D

�
x y

z w

��
u "v

v u

�
D

�
ps�1 ps
qs�1 qs

��
X Y

Z W

�
D

�
ps�1X C psZ ps�1Y C psW

qs�1X C qsZ qs�1Y C qsW

�
with xw � yz D XW � YZ D 1: It follows that

X D qs.xuC yv/ � ps.zuC wv/ D .qs x � ps z/uC .qs y � psw/v D AuC Bv

and

Y D qs."xvCyu/� ps."zvCwu/ D .qsy � psw/uC .qs "x � ps "z/v D CuCDv:

From xw � yz D 1, one has .A;B/¤ .0; 0/ and .C;D/¤ .0; 0/. For concreteness, let us
assume that A ¤ 0, C ¤ 0. Using the last equations as well as the identity u2 � "v2 D 1
and multiplying it by A2 ¤ 0 and C 2 ¤ 0, correspondingly, we get

(6.22) ˛v2 C ˇv C 
 WD .B2 � "A2/v2 � 2BXv CX2 � A2 D 0;

and similarly,

(6.23) ˛�v
2
C ˇ�v C 
� WD .D

2
� "C 2/v2 � 2DYv C Y 2 � C 2 D 0:

Since " is a primitive root and hence, in particular, " is not a square, it follows that the
quadratic equations are non-trivial. In other words, ˛ ¤ 0 and ˛� ¤ 0 for any .ps; qs/.
We can assume that v ¤ 0 because it gives at most two points in our intersection. Now
if v ¤ 0, then excluding v from (6.22), (6.23), we arrive to a relation between ps and qs ,
namely,

.˛
� � ˛�
/
2
D .ˇ
� � ˇ�
/.˛ˇ� � ˇ˛�/ :
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One can check that this relation is non-trivial. Indeed, the homogeneous part of degree 8
of the last equation is ..BC/2 � .DA/2/2 and hence it is zero if and only if

".qsx � psz/
2
D �.qsy � psw/

2:

It follows that
y2 C "x2 D w2 C "z2 D 0 and � "xz D yw

(otherwise, we have a non-trivial equation in qs;ps). It is easy to check using xy � zwD 1
that this is impossible because " is not a square. Hence the number of our solutions is
at most 2�kQ1=k , as required. It remains to use the Bourgain–Gamburd machine [6],
which we formulate here in a convenient form, referring to the survey [47], Section 6, see
Theorem 49 and Corollary 50.

Theorem 6.4. Let G be a group such that there is an absolute constant c� > 0 with the
property that for any generating set X � G one has

jX3j � min¹jGj; jX j1Cc�º :

Also, let A � G be a set such that

max
g2G; �<G

jA \ g�j � jAj=K :

Suppose that min¹dmin.G/; Kº � jGjı for a certain ı > 0. Then there is ".ı/ > 0 such
that, for any unitary representation � ¤ 1, one has

kbA.�/ko � jAj1�".ı/ :
Applying Theorem 6.4 for G D PSL2.Fp/ and our set A, we obtain Theorem 1.5.
Using the second part of Theorem 5.5 and the arguments of the proof of the result

above (avoid using of Lemma 6.1 and Lemma 6.3 which appeal to the specific structure
of the set A), we obtain the following.

Theorem 6.5. Let A � N be a finite set, jAj � 2, such that HD.FA/ > 1=2C ı, where
ı > 0. There is an integer constant CA.ı/ such that for any prime number p there exist
some positive integers q and a, with q D OA.p

CA.ı//, q � 0 .mod p/, and .a; q/ D 1,
such that a=q has partial quotients belonging to A.

Sketch of the proof. LetQD p � 1. We use the notation from the beginning of this section
and recall that for wA WD HD.FA/ one has FA.Q/ �A Q2wA . As usual, the uniqueness
of the continued fraction expansion implies that any ratio u=v 2 FA.Q/ corresponds to
a matrix from GL2.Z// of the form (6.4) with bj 2 A by the rule u=v D ps=qs , and
this correspondence is one-to-one. As above, we consider matrices of the form (6.4) with
bj 2 A and qs < p. As we have seen, the set of matrices A from (6.4) belonging to
PSL2.Z// has size �.FA.Q// and hence jAj �A p2wA �A p1C2ı . We know that the
theorem is proved if one finds an integer n, depending on ı and A, such that An \B ¤ ;.
But this follows from the second part of Theorem 5.5.

It is interesting to note (see Section 1 in [8]) that the original Hensley conjecture
fails for general alphabet because of some local (modular) obstructions. Nevertheless, our
modular Theorem 6.5 holds.
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Thanks to (6.2), we see, in particular, that Theorem 6.5 holds for A D ¹1; 2º. This
fact was previously obtained in [38] by a different approach (although one can check that
now our new constant CA.ı/ is better). As the reader can see from the proof, our method
is rather general and we do not even need, actually, restrictions of the form bj 2 A, and
it is possible to consider other (say, Markov-type) conditions for the partial quotients (of
course, we still need that the Hausdorff dimension of the corresponding Cantor set is
greater than 1=2).
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