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Poincaré series of multiplier and test ideals

Josep Alvarez Montaner and Luis Nifiez-Betancourt

Abstract. We prove the rationality of the Poincaré series of multiplier ideals in any
dimension thus extending the main results for surfaces of Galindo and Monserrat and
Alberich-Carramifiana et al. Our results also hold for Poincaré series of test ideals.
In order to do so, we introduce a theory of Hilbert functions indexed over R which
gives a unified treatment of both cases.

1. Introduction

Let A be a commutative Noetherian ring containing a field K. Assume that A is either local
with maximal ideal m such that the residue field is isomorphic to K or a graded ring with
Ao = K and maximal homogeneous ideal . Let a be an m-primary ideal. Depending on
the characteristic of the base field we may find two parallel sets of invariants associated to
the pair (A, a®) where c is a real parameter. In characteristic zero we have the theory of
multiplier ideals which play a prominent role in birational geometry and are defined using
resolution of singularities (see [22] for more insight). In positive characteristic we may
find the so-called fest ideals which originated from the theory of tight closure [17, 18] and
are defined using the Frobenius endomorphism [5, 6,27]. Despite their different origins,
it is known that under some conditions on A, the reduction mod p of a multiplier ideal
is the corresponding test ideal [9, 10, 15, 17,23,30,31] (see also [4,28]). Moreover, both
theories share a lot of common properties which we summarize as saying that, under some
assumptions on A, they form a filtration of m-primary ideals

§: A28 2802 280 2,

and the indices where there is an strict inequality form a discrete set of rational num-
bers, see [0, 8,9, 20,22, 26, 29, 32]. The multiplicity of ¢ € R~ is defined as m(c) =
dimg (Fe—e/Fc) , for € > 0 small enough [13]. In order to gather the information given
by these ideals and its multiplicities, we consider the Poincaré series of &,

Py(T) = ) dimg (fe—c/de) T°.

C€R>0
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The natural question is whether this is a rational function, in the sense that it belongs to
the field of fractional functions Q(z) where the indeterminate z corresponds to a fractional
power T''/¢ for a suitable e € N~ .

Galindo and Monserrat [14] proved that this rationality property holds for multiplier
ideals associated to simple mi-primary ideals in a complex smooth surface and provided
an explicit formula. These results were extended later on by Alberich-Carramifiana et
al. [1] (see also [2]) to the case of multiplier ideals associated to any m-primary ideal in a
complex surface with rational singularities. The techniques used in both cases rely on the
theory of singularities in dimension two and, in particular, the fact that the data coming
from the log-resolution of any ideal can be encoded in a combinatorial object such as the
dual graph. In the case of simple ideals, the divisors corresponding to the star vertices of
the graph measure the difference between a multiplier ideal and its preceding. In general
one needs the notion of maximal jumping divisor [1] to account for this difference. The
formula obtained for the Poincaré series is then described in terms of the excesses of
these maximal jumping divisors. During the preparation of this manuscript, we learned
that Pande [24] has extended these results to the case of smooth varieties in arbitrary
dimension.

In this work, we show the rationality of the Poincaré series of multiplier ideals of
m-primary ideals in any normal variety in arbitrary dimension (see Theorem 3.2 and
Corollary 4.8 for the Cohen—Macaulay case). Furthermore, we also prove the rationality of
the Poincaré series for test ideals of m-primary ideals in F'-finite rings (see Theorem 3.7
and Corollary 4.10 for the Cohen—Macaulay case). As a particular case, we obtain the
rationality of Pg(T') for ideals in normal surfaces in prime characteristic.

Our approach is completely algebraic, and it provides a unified proof of the ration-
ality of the Poincaré series for both the multiplier and the test ideals in any dimension
as long as we have discreteness of the jumping numbers and Skoda’s theorem. We point
out that our main results do not require the rationality of the jumping numbers. Examples
of non-rational jumping numbers of multiplier ideals exist by work of Urbinati [33]. The
rationality of the Poincaré series in this case means that it belongs to the field of fractional
functions Q(T*, ..., T%), where a1, ..., a5 € R is a finite set of jumping numbers.

To such purpose we develop a theory of Hilbert functions indexed over R that should
be of independent interest. More precisely, in Section 2 we develop the notion of R-
good a-filtrations associated to a finitely generated A-module which is an extension of
the well-known theory of good a-filtrations. In this general framework we can define the
multiplicity of any module in the filtration and the corresponding Poincaré series. The
main result is Theorem 2.6 where we prove the rationality of such a series. In Section 3
we specialize our main result to the case of multiplier ideals and test ideals. We also
extend to arbitrary dimension the notion of maximal jumping divisor (see Definition 3.3)
and give a formula for the multiplicity (see Proposition 3.5). In Section 4 we provide a
different approach to the theory of R-good a-filtrations in the case of Cohen—Macaulay
rings that gives a simpler formula for the Poincaré series (see Theorem 4.5). By comparing
our results with the ones previously obtained by geometric methods, we yield an algebraic
formula for the excess associated to the maximal jumping divisor (see Proposition 4.13).
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2. R-good filtrations

Let A be a commutative Noetherian ring. Assume that A is either local or graded with
maximal ideal m and let a be an mi-primary ideal. The theory of good a-filtrations gives
an approach to the study of Hilbert functions that covers most of the classical results
in a unified way. We start recalling briefly this notion but we refer to Rossi and Valla’s
monograph [25] and the references therein for more insight.
Let M be a finitely generated A-module. A good a-filtration on M is a decreasing
filtration
M MZM()QM]Q

by A-submodules of M such that aM; € M;; for j > 0and aM; = M; 4 for j > 0
large enough. Under these premises, we may consider the Hilbert and the Hilbert—Samuel
function of M with respect to the filtration M, defined as

Hy(j) = A(Mj/Mjy1) and Hj}(j) = A(M/M;)

respectively, where A(-) denotes the length as A-module. Moreover, we consider the Hil-
bert and the Hilbert—Samuel series

HS(T) := Y A(M;/M;j11)T/ and HS}(T):= ) A(M/M;)T.

jz0 j=0

Notice that we have HS ¢ (T) = (1 —-T) HS}M (T). As a consequence of the Hilbert—Serre
theorem, we can express them as rational functions:

hu(T)

HS4(T) = (1 —=T)HS}(T) = (1-T) et

where hy(T) € Z[T] satisfies h (1) 5% 0 and d is the Krull dimension of M. The poly-
nomial 4 4 (T) is the h-polynomial of M.

The aim of this section is to extend the notion of good a-filtrations by allowing fil-
trations indexed over R and thus mimicking properties satisfied by filtrations given by
multiplier and test ideals.

Definition 2.1. Let M be a finitely generated A-module and let a be an m-primary
ideal. An R-good a-filtration is a decreasing filtration M := {My}4>0 of submodules
of My = M, indexed by positive real numbers such that

e aMy € My, forall j > 0;
e aMy = My4, forall o > j with j > 0 large enough;
¢ Va, 3¢ > 0 such that M, = M, forc € [, + ¢&).
We call it a Q-good a-filtration when the set of indices is contained in Q.

Remark 2.2. For a fixed n € N, we note that a” M C M, for every o < n and thus we
have A (M/M,) < oco. In particular, #{M, | o <n } <A (M/a"M) < oo.

From Remark 2.2, we may think of M as a filtration of submodules M, indexed over R
for which there exists an increasing sequence of real numbers 0 < o; < @y < --- such that
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Mai = M, 2 M,
submodules

., forany ¢ € [o;, @j41). In particular, we have a discrete filtration of

M: MMy 2My, 22 My, 2---

and we say that the «; are the jumping numbers of M. A crucial observation is that, once
we fix an index ¢ € R, the filtration

Mete: Mc2Mep1 2 Mo 2+

is a good a-filtration.

Definition 2.3. Let M := {M_}.>0 be an R-good a-filtration. We define the multiplicity
of c € R as

m(c) = A (Mc—e/Mc)
for ¢ > 0 small enough. With this definition, it is clear that ¢ is a jumping number if and
only if m(c) > 0.

Definition 2.4. Let M := {M,}.>0 be an R-good a-filtration. We define the Poincaré
series of M as

Py(T)= > m(c)T*.

CG]R>()

The question that we want to address is whether the Poincaré series is rational in
the sense that it belongs to the field of fractional functions Q(7*, ..., T%), where
o1,...,0s € R is a finite set of jumping numbers. In the case of Q-good a-filtrations,
the rationality of the Poincaré series means that it belongs to the field of fractional func-
tions Q(7T''/¢), where e € N~ is the least common multiple of the denominators of all
the jumping numbers.

Proposition 2.5. Let M := {M_}.>0 be an R-good a-filtration. Given ¢ € Rsg, we have
that .

Z m(c+ j)T’

Jj=0
is a rational function in Q(T).

Proof. Recall that the Hilbert series HSjwc_s(T) and HSi%c (T') associated to the good
a-filtrations M._, and M, are rational functions. From the short exact sequence

0—— MC/Mc+j I c—e/Mc+j - c—a/Mc —0

we get

> AMe—e/Mcy ) TV = HS)y (T) + m(c)
Jj=0

1-T
Analogously, from the short exact sequence

0—— Mc—s+j/Mc+j I Mc—s/Mc+j I Mc—s/Mc—s+j —0
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we get

Y mle+ )T) =3 MMe—e/Meyj) TV —HSY, (T)

Jj=0 Jj=0
1
= m(c) 7 HS}, (T)—HS}, _(T)
. m(C) hM¢+.(T) - h(M(cfg)+.(T)
1-T (1—T)d+1 '

and thus it is a rational function. Here, iy, (T) and h,_,,,,(T') are the h-polynomials
of the good a-filtrations M e and Mg+, respectively. |

Theorem 2.6. Let M := {M_}c>0 be an R-good a-filtration. Then, the Poincaré series
Py (T) is rational. Moreover, we have

m(C) hMCJr- (T) B hM(67€)+. (T)> Tc,

Py(T) = Z 1—-T (l—T)d'H

ce(0,1]

where hy,, (T) and hy,_,,,,(T) are the h-polynomials of the good a-filtrations Mc+e
and Mc—g)+e respectively.

Proof. From Remark 2.2, we note that the set of real numbers such that m(c) # 0 is a
discrete set. In particular, there are only finitely many ¢ € (0, 1] such that m(c) # 0. Since
m(c + 1) # 0 implies m(c) # 0, we have that the nonzero contributors in the series have
the form m(c + j) for some ¢ € (0, 1].

Then we have

Pu(Ty=Y m@T = Y (3 mlc+HT7)T°,
ceR~o ce(0,1] j€Zxo

and thus the result follows from Proposition 2.5. ]

3. Poincaré series of multiplier and test ideals

Let A be a commutative Noetherian ring containing a field K. Throughout this section, we
assume that A is either local or graded with maximal ideal 1t such that the residue field is
isomorphic to K and a is an m-primary ideal. Now we turn our attention to the case where
the R-good a-filtration that we consider is given by a filtration of ideals

§: A28 2802 280 2
In this setting, the multiplicity of ¢ € R~¢ is m(c) = dimg (Fc—e/Fc), for € > 0 small
enough, and the Poincaré series of ¢ is
Py(T) = Z dimg (fe—e/e) TC.
C€R>Q

Our aim is to specialize the results we obtained in the previous section to the case of
multiplier ideals and test ideals.
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3.1. Multiplier ideals

Let (A, m) be a normal local ring essentially of finite type over an algebraically closed
field K of characteristic zero and let a € A be an ideal. Under these general assumptions,
we ensure the existence of canonical divisors Ky on X = Spec A which are not necessarily
Q-Cartier. Then we may find some effective boundary divisor A such that Ky + A is
Q-Cartier with index m large enough. Now, given a log-resolution w: X' — X of the
triple (X, A, a), we pick a canonical divisor K+ in X’ such that 7+ Kx» = Kx and let F
be an effective divisor such that a - Oy = Ox/(—F).

The multiplier ideal associated to the triple (X, A, a¢) for some real number ¢ € R+
is defined as

4(X, A, a¢) = n*OX/qKX/ - nlqn*(m(KX +A)) - CF—D

This construction allowed de Fernex and Hacon, see [12], to define the multiplier
ideal J(a€) associated to a and ¢ as the unique maximal element of the set of multiplier
ideals (X, A, a), where A varies among all the effective divisors such that Ky + A is
Q-Cartier. The key point in their proof is the existence of such a divisor A that realizes
the multiplier ideal as £ (a®) = $(X, A, a®). In this general framework, we have that the
local vanishing theorem still holds, see Theorem 4.1.19 in [11]. Namely, for any ¢ € R~
we have

Rln*wx,({KX, - %n*(m(KX +A)) —cF]) - 0.

Remark 3.1. If A is Q-Gorenstein, the canonical module Ky is Q-Cartier, so no bound-
ary A is required in the definition of multiplier ideal. Namely, we have

1
d(a) = N*QX/(’VKX/ — —a*(mKy) — cF-D
m
From its construction, we have that the multiplier ideals form a filtration

A2 4@ 24(@?) 2 240@) 2,

and the «; where we have a strict inclusion of ideals are the jumping numbers of the
ideal a.

Assume in addition that a is an m-primary ideal and thus F is a divisor with excep-
tional support. Then any multiplier ideal ¢ (a‘) is m-primary as well. To ensure that
§ = {4 (a)}c>0 is an R-good a-filtration, we notice the following:

* Skoda’s theorem ([12], Corollary 5.7): We have a - (a¢™!) C ¢ (a®) for every ¢ > 0,
and equality holds for ¢ > dim 4.

 Discreteness: If a is m-primary, the number of multiplier ideals in any interval [c1, ¢3]
is smaller or equal than dimg (g (a“!)/ & (ac?)).

There are cases where the jumping numbers are not rational, as shown by Urbinati
in [33]. Known cases where the jumping numbers form a discrete set of rational numbers
and thus the filtration § = {$(a)}¢>0 is a Q-good a-filtration are:
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¢ X is Q-Gorenstein.

* The symbolic Rees algebra R(—(Kx + A)) := P50 Ox (—n(Kx + A)) is finitely
generated ([9], Remark 2.26).

Theorem 3.2. Let (A, m) be a normal local ring of dimension d essentially of finite
type over an algebraically closed field K of characteristic zero, let a C A be an m-
primary ideal and let § := {$(a)}c>0 be the filtration given by multiplier ideals. For any
given ¢ > 0, we have a good a- filtration

Fere: F@)24@TH24@ )2

Then, the Poincaré series Pg(T) is rational. Indeed, we have

m(C) hr(r’c-%—o(T) —hg c—¢& +0(T) c
Pa(T) = ;]<I—T+ (l—T)d(+1) )T’
ce€(0,1

where hg, . (T) and hy_,,, (T) are the h-polynomials of §c+e and $(c—e)+e, respec-
tively.

Proof. The result follows from Theorem 2.6. ]

When A4 is the local ring at a rational singularity of a surface, Alberich-Carramifiana
et al. ([1], Theorem 4.1) gave a precise formula for the multiplicity m(c) of any given
¢ € R+, and consequently an explicit description of the Poincaré series. We may follow
the same approach to get a partial extension of their formula.

Definition 3.3. Let (X, A, a‘) be a triple. The maximal jumping divisor associated to
ceR.pis

He = [Kx — 7" (n(Kx + &) — (e~ ) F | = [ Ky — " (n(Kx + &) —cF |,

where ¢ is small enough.

Remark 3.4. Denote

1
Ky ——a*(n(Ky + 8) =} kiE; and F =3 ey,
i 1

where the E;’s are the exceptional components of 7. Then H. can be defined as the
reduced divisor whose components are the E; such that k; — ce; € Z. In particular, we
have H, = H 4 forall ¢ € R.y.

Proposition 3.5. Let (X, A, a) be a triple. Then, the multiplicity of ¢ € Rs¢ is
1
m(c) = h"(HC, 9n. ((KX, — —2*(m(Kx + A)) — cﬂ n H))
m
Proof. To avoid heavy notation, let

1
K, = Ky — %T[*(m(KX + A)).
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Consider the short exact sequence
0— Ox/([Kx —cF|) — Ox/(|[Ky —cF|+ H;) — Ou.(|[ Ky —cF|+ H;) — 0.

Pushing it forward to X and applying local vanishing for multiplier ideals, we get the short
exact sequence

0 — 1.O0x' ([Ky — cF]) — m:0x ([Kx — cF] + H,)
—> H°(H.,Oy, ([Kx —cF]+ H.)) Ko —> 0,

or equivalently,
0 — §(a®) — §(a“™) — H® (He. O, ([Kx = cF] + He)) ® Ko —> 0.
Therefore the multiplicity of ¢ is just m(c) = h® (H., O, ([Kz — cF] + H.)). ]

Question 3.6. The key ingredient for the explicit formula of the Poincaré series of mul-
tiplier ideals in dimension 2 given by Alberich-Carramifiana et al. [1] is that the multipli-
cities satisfty m (¢ + k) — m(c) = kp., where p. := —F - H, are the excesses associated
to the maximal jumping divisor H.. Pande [24] proved that m(c + j) is a polynomial
function in j of degree less than d in the case of smooth varieties in arbitrary dimen-
sion d. These results motivate the following question regarding multiplicities for m-
primary ideals in normal rings. Is there a polynomial expression in terms of j for

m(c + j)—m(c)
= ho(Hm (DH,;(l—Kn - CF-' + H:. + jF)) _ho(Hc»(ch((Kn _CF-| + H.))?

3.2. Test ideals

Let A be a commutative Noetherian ring containing a field K of characteristic p > 0.
The theory of test ideals has its origins in the work of Hochster and Huneke on tight
closure [18]. In the case of A being a regular ring, Hara and Yoshida [17] extended the
notion of test ideals to pairs (A4, a®), where a C A is an ideal. Their construction has been
generalized in subsequent works [5-8,27,32] using the theory of Cartier operators.

Assume that A is F-finite. Then, the test ideal t(a) associated to a and some real
number ¢ € R is the smallest nonzero ideal which is compatible with any Cartier oper-
ator ¢ € @P,., Homy(FfA, A) - FgaleP’l, where F¢ is the Frobenius functor. In this
situation we also have a filtration

A2t(@*) 2t@?) 22 1(a*) .-

and the «; where we have a strict inclusion of ideals are called the F-jumping numbers of
the ideal a.

Even though the test ideals of an m-primary ideal may not be m-primary, we still have
that 7 = {t(a®)}¢>0 is an R-good a-filtration because of Skoda’s theorem and Remark 2.2.

o Skoda’s theorem [5,16,29]: We have a - t(a~!) C 7(a®) for every ¢ > 0, and equality
holds for ¢ > dim A.
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e Discreteness: If a is m-primary, the number of test ideals in any interval [cq, c2] is
smaller or equal than dimg (z(a!)/t(a‘?)).

Known cases where the F-jumping numbers form a discrete set of rational numbers
and thus the filtration T = {t(a)}.>0 is a Q-good a-filtration are:

¢ (A, m) is an F-finite, normal Q-Gorenstein local domain [6, 8,20,26,29, 32].

e Ais an F-finite ring which is a direct summand of a regular ring [3].

Theorem 3.7. Let (A, m) be an F -finite local ring of dimension d containing a field K of
characteristic p > 0 and let a be an w-primary ideal. Let T = {t(a)}¢>0 be the filtration
given by test ideals and, for any given ¢ > 0, consider the good a-filtration

Tee (@) 2 7@ 22(@*?) 2

Then, the Poincaré series Pg(T) is rational. Indeed, we have

m(c)  hepo(T) = he_y (TN .
P(T) = Z 1—T (1_T)z(1+1) )T’
c€(0,1]

where h,, (T) and hy_,, ,(T) are the h-polynomials of tc+e and t(c—g)+e, respectively.

Proof. Under these assumptions on A, we have that 7 = {r(a®)}.>0 is a R-good a-filtra-
tion. The result follows from Theorem 2.6. ]

Motivated by the case of multiplier ideals for smooth varieties [14,24] and varieties
with rational singularities [1], we would like to have a precise description of the multipli-
cities of F-jumping numbers since it would yield a more explicit formula for the Poincaré
series. More precisely, we ask the following.

Question 3.8. Is the multiplicity of test ideals of m-primary ideals in a strongly F-regular
ring, m(c + j), a polynomial function in j of degree less than d ?

4. Poincaré series in Cohen—Macaulay rings

Let (A, m) be a Cohen—Macaulay local ring of dimension d. Let a be an wu-primary ideal
generated by a regular sequence f1,..., fg.Let § = {J,}c>0 be an R-good a-filtration of
m-primary ideals satisfying Skoda’s theorem, so §, = a §.—1 for all ¢ > d. The Poincaré
series of & is

PyTy= Y m@T =Y (Zm(c +j)Tf) T°,
ceR~o ce(0,1] j=0
and zooming in the summands we have
Zm(c+j)Tj =m(c) + m(c + l)T—}—---+m(c—i—d—Z)Td_2
Jj=0

+ T M Feva1-e/& Fera—1) T
Jj=0
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The aim of this section is to work towards finding a more explicit formula for the
Poincaré series in Cohen—Macaulay rings, especially in the case that ¢ is a filtration of
multiplier or test ideals where we require that the residue field is infinite. Namely, let
(A, m) be a local Noetherian ring with infinite residue field and let a be any m-primary
ideal. Every minimal reduction of a can be generated by a superficial sequence of length
equal to the analytical spread of a [19], Theorem 8.6.3. Since a is m-primary, the analyt-
ical spread is £(a) = dim(A). If A is Cohen—Macaulay, this superficial sequence is indeed
a regular sequence. Therefore we have @ = (f1,..., f4), where (-) denotes the integral
closure. Multiplier ideals and test ideal are invariant up to integral closure, so we may
assume that a is generated by a regular sequence.

Setup 4.1. Let (A4, m) be a Cohen—Macaulay local ring of dimension d. Let J C A be an
m-primary ideal and let a = (f1, ..., fz) be a parameter ideal. Consider a free resolution

4.1) AP2 AP A Ajal 0,
where B; = (j +d(i1_1)) is the number of generators of a’. After tensoring with A/J, we
get

¢} o] ‘
42) - ——=(A) )P —= A/ )P = (4)]) —=A/(a) +]) —0,
The morphisms ¢; and ¢/ play a role in what follows. If the ideal J is clear from the
context, we simply denote ¢; and ¢;. Notice also that ¢; = 0 for j = 0.

Lemma 4.1. Let (A, m) be a Cohen—Macaulay local ring of dimension d. Let J C A
be an w-primary ideal and let a« = (f1, ..., f4) be a parameter ideal. Then, for every
Jj € Zs¢ we have

A /0l T) = A(A[al) = A(Im¢;) + (B1 — D) A(A/J),

where B = (j+d(il_l)).

Proof. From the short exact sequence, 0 - J — A — A/J — 0, we have the induced
long exact sequence

0 — Torf(A/al, A)J) = J/a'J — AJal — A/(a) +J) = 0.

Following Notation 4.1, we have Tor‘l‘i(A/a-/,A/J) = kerg;/Im¢; and A/(a/ + J) =
(A/J)/Img;. Then,
AT/l T) = AM(A)a?) + M(Tord(4/a’, A)T)) = A(A/(a’ + T))
= A(4/al) + [A(kerg;) — A(Im ¢;)] — [A(4/J) — A(Im ;)]
= MA/a’) = A(Im¢;) — A(A/J) + [A(ker ;) + A(Im g;)]
= MA/a?) = A(Im ;) — A(A/J) + A((4/])P1)
= MA/al) = A(Im¢;) — A(A/T) + B1A(A/T)
= MA/a) = 2(Im¢;) + (B1 — DA(A/J). =
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Lemma4.2. Let (A, m) be a Cohen—Macaulay local ring of dimensiond. Let ] C K C A
be wi-primary ideals and let a = (f1, ..., fq) be a parameter ideal. Then,

MK/ T)

Y M K/d T = =17

J=0

+ ) [Admef) — A(mg¢))] T/

Jj=1
Proof. From the short exact sequences
0—>a’K/a/J > K/a/J > K/a/K -0, 0—J/a/J —>K/alJ - K/J —0,
we get ' ' ' .
AMa’K/a? J)y=MK/J)+A(J/al J) — A(K/a’ K).
Thus, applying Lemma 4.1 to the ideals J and K, we get

Mo/ K/al J) = MK /) + [MA/a)) = 2(Am¢]) + (B1 — D) A(A/])]
—[AA4/a)) = X(Amf) + (B1 — ) A(A/K)]
= MK/J) + (B1 — D(A(A/T) = M(A/K)) + [A(Im ¢;) — A(Im ¢ )]
= B1A(K/J) + [A(Im¢) — A(Im ¢ )],

where 8, = (j +d(i1_1))' Then the result follows since ) ;- (] +Hd- 1)) T/ = [

d—1 a- T)d

In order to get some control on A(Im¢;), we use the following result of Kodiyalam,
see Theorem 2 in [21], in the form that we need in the present work.

Proposition 4.3. Let (A, m) be a Cohen—Macaulay local ring of dimension d, and let a
and J be w-primary ideals. Then, for all i > 0, the function )L(Torf(A/af yA/J)) isa
polynomial of degree d — 1 for j > 0 large enough.

Using the additivity of the function A and the fact that Tor modules are the homology
modules of the complex (4.2), we get the following.

Corollary 4.4. Under Setup 4.1, the function A(Im ¢IJ) is a polynomial of degree d — 1
for j > 0 large enough. '

The main result of this section is the following.

Theorem 4.5. Let (A, m) be a Cohen—Macaulay local ring of dimension d containing an
infinite field K isomorphic to its residue field. Let a = (f1, ..., fa) be a parameter ideal
and let § ={Jc}c>0 be an R-good a-filtration of m-primary ideals satisfying $. = agc—1
forall ¢ > d. Then, there exist ay,...,aq € Z and p(T) € Z[T] such that

m(c+d—1)T41
(1-T)4

+Td((1f—dT)d+---+( =5 +p(T)))

Py(T)= ) (m(0)+---+m(c+d—2)Td_2+
ce(0,1]
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Proof. We have
Zm(c+j)Tj =m(c)+mic+ DT +-+m(c+d—2)T*2
Jj=0

+ Ty dimg (@ Jeya—1-e/a’ Fera) T,
Jj=0

so applying Lemma 4.2 with K = J.44-1—- and J = J.4q4-1 We get

m(c+d—1)T¢!
(1-T)4

Pg(T) = Z (m(c)+---+m(c +d-2)T2 +
ce(0,1]

+ 797137 [dimig (Im ¢+41-%) — dimgc (Im ¢ 7+4) | 77) T°.

Jj=1
Using Corollary 4.4, we have that for j > 0 large enough,
dimg (Im quiﬂ”d_l_g) — dimg (Im ¢jig"+d‘1)

is a polynomial of degree d — 1 that can be written as

i—1)+d—1 i —1)+2
oed((] d)—+1 )~I—---—|—ot3((] 2)+ )+a2j+a1.

Therefore, there exists k € Z ¢ such that

Td—l Z [A(Im(pjgwd—l—s) _ A(Im(ﬁ]zwrd—l)] Tj

Jjz1
_ Td(q(T) n Z[ad((j —il)_—kld — 1) N
Jj=k
+063((j _;) +2) +azj +061:|Tj_1)
=740 + (=7 — D)+ + (o~ D)),

where ¢(T'),qq(T),...,q1(T) € Z(T) have degree < k — 2 and the result follows after
taking p(T) = ¢(T) — qa(T) —--- — q1(T). u

The following result is a direct consequence of Theorem 4.5.

Corollary 4.6. Let (A, m) be a Cohen—Macaulay local ring of dimension d containing an
infinite field K isomorphic to its residue field. Let a = (f1,..., fa) be a parameter ideal
andlet § ={Jc}c>0 be an R-good a-filtration of wi-primary ideals satisfying $. = aJc—1
for all ¢ > d. Then, the function m(c + j) is a polynomial function on j of degree less
than d for j > 0 large enough.

Remark 4.7. In the case of multiplier ideals in a smooth variety, Pande proved that this
result holds for all j, see Theorem 3.2 in [24].
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Now we also specialize Theorem 4.5 to the case of multiplier and test ideals.

Corollary 4.8. Suppose (A, m) is a normal Cohen—Macaulay local ring of dimension d
essentially of finite type over an algebraically closed field of characteristic zero, a C A
is any wi-primary ideal, and § := {$(a)}¢>0 is the filtration given by multiplier ideals.
Then,

m(c+d—1)T¢!
(1-T)4

Py(T)= Y (m(c)+-~+m(c+d—2)rd—2+
ce(0,1]

(07 (03]

T (et + (1)) T°.
(1=T) a-n

Proof. For every m-primary ideal a, there exist a parameter ideal with the same integ-

ral closure. Since the multiplier ideals are the same for an ideal and its integral closure

(see Variation 9.6.39 in [22]; see also Corollary 5.7 in [12]), the result follows from The-

orem 4.5. ]

For test ideals, we have to be careful because they might not be m-primary. A sufficient
condition for this to happen is the following.

Lemma 4.9. Let (A, m) be a local F -finite Noetherian ring containing a field K of char-
acteristic p > 0 and let a« C A be an w-primary ideal. Assume that Ay is a strongly
F-regular ring for all prime ideals p # w. Then, the test ideals t(a®) are w-primary
or A.

Proof. Since test ideals localize, see Proposition 3.2 in [5], we have that 7(a“), = t(ay) =
t(A4y) = ©(A4p) = Ay for all prime ideals p # m, because A, is strongly F-regular.
Therefore we have rad(z(a)) 2 m. [

Corollary 4.10. Suppose that (A, wm) is an F-finite Cohen—Macaulay local domain of
dimension d containing an infinite field K of characteristic p > 0 isomorphic to its residue
field, Ay is a strongly F-regular ring for all prime ideals p # m, a is any m-primary ideal
and © = {t(a)}¢>0 is the filtration given by test ideals. Then,

m(c+d—1)T41
(1-T)4

PT(T)Z Z (m(c)+...+m(c+d_2)Td72+
ce(0,1]

(0%} [¢3]

+ T (et +p(T))) T".
(1-T7) a-n

Proof. For every m-primary ideal a, there exist a parameter ideal with the same integral

closure, because K is infinite. Since the test ideals are the same for an ideal and its integral

closure (see the proof of Theorem 4.1 in [16]; see also Lemma 2.27 in [6]), the result

follows from Theorem 4.5. [ ]

Remark 4.11. Let (4, m) be an F-finite normal local ring of dimension 2. Then the con-
dition of being strongly F-regular in the punctured spectrum and being Cohen—Macaulay
is automatically satisfied.
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4.1. The case of multiplier ideals in dimension two revisited

Let (A, m) be a Cohen—Macaulay local ring of dimension 2 essentially of finite type over
an algebraically closed field K. Let a = (f1, f2) be a parameter ideal and § = {$c}c>0
an R-good a-filtration of m-primary ideals satisfying . = af.—; for all ¢ > 2. Using
Theorem 4.5, we get the Poincaré series

m(c+ 1T
(1-T)?

+T2( %2 = +p(T)))TC-

43) Py(T)= ) (’”(C) + —72 (-1

ce(0,1]

We see that, at least for the case of multiplier ideals in a complex surface with a rational
singularity, this formula is much simpler. To do so we compare our formula with the one
obtained in that case.

Theorem 4.12 (Theorem 6.1 in [1]). Let (A, m) be the local ring of a complex surface
with a rational singularity, let a C A be an m-primary ideal, and let § := {$(a)}¢>0 be
the filtration given by multiplier ideals. Then

m(c) pcT ¢
Pg(T)=C€%:1](1_T + (I_T)Z)T :

where p. := —F - H, is the excess associated to the maximal jumping divisor H,.

If we compare both formulas, we observe that

Z m(c) + (m(c + 1) = 2m(c))T + m(c)T?

Py(T) = o =T
+ TZ((1 sz)z *a OfT) +p(1))) T
2
=2 1m—(c; + (1TTT)2 T —TT)2
c€(0,1]
x (m(e) + @z + a1 (1= T) + p(T)(1 = T)?)) T,
and we conclude that m(c) = —a3, @y = 0and p(T) = 0. If we take a closer look to these

conditions, we obtain a reformulation of Proposition 4.5 in [1] which, in particular, gives
an algebraic formula for the excesses.

Proposition 4.13. Let (A, m) be the local ring of a complex surface with a rational sin-
gularity, let a C A be an wi-primary ideal, and let § := {$(a®)}c>0 be the filtration given
by multiplier ideals. Then,

pe = ,l (M(Tors' (A/a’ , A/g(a“T1))) — A(Torg (A/a’, A/ (@ F'7))))

for every j > 1, where p. is the excess associated to the maximal jumping divisor H.. In
particular,

m(c+j)—m(c) = )&(TOI“;(A/C(/', A/d(@ty)) — )&(Torf(A/aj, A/ (act17eYy))
forevery j > 1.
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Proof. First recall that the morphisms ¢ jJ in Setup 4.1 for an m-primary ideal J C A are

J J

. ¢j . @ .
0 —— (4/1) —(4/])/*! (A/7) A/@ +J) —=0,
and thus
AIme]) = A((4/7)7) = Alker¢;) = jA(4/T) = A(Tory (Ao’ 4/ T)).

For simplicity, we denote /XJC.H and when we refer to A(Im ¢>jJ ) with J being

the multiplier ideals ¢ (a®*!) and ¢ (at!7¢) respectively. Then, as in the proof of The-
orem 4.5, we have

YoBH —AT = (1) 4 (2 42 ) +
Jjz1

c+1l—¢
AJ’

“ = (D),

(1-T)

where, for some k > 0,
q(T) = (A€+l—€ _)Lc1‘+l) + (A§+l—a _A;+1)T 4t (Aiti_s _ Af_—i)Tk_zv
q2(T) = az(1 42T 4 -+ + (k — )T*72),
@(T) =a (1 +T +---+ T+2).
Since a1 = 0, @y = —m(c) and
0=p(T) = AT =25 L m(e) + AST T = AT 4 2m(e) T
o AT AT+ (k= Dm(e) TF2,
wegetforj=1,...,k—1,
jm(e) = At —agti=e
= jA(A/ @) = A(Torg (A/a’, A/ g (a“1)))
— JAA/ @ T7)) + A(Torg (A/a’, A/ g (a“T'7%)))
= jm(c + 1) + A(Tory (A/a’ , A/ §(a°+'7%))) — A(Torg (A/a’ , A/ §(a°*1))).
Therefore,
Jpe = M(Torg (A/a’, A/ g (a“1))) — A(Torg (A/a”, A/ g (a“T'7%))).
The same formula also holds for j > k since we have

ASHIZE 2 =@y = —m(c) ). "
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