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An example concerning Fourier analytic criteria
for translational tiling

Nir Lev

Abstract. It is well known that the functions f 2 L1.Rd / whose translates along
a lattice ƒ form a tiling, can be completely characterized in terms of the zero set of
their Fourier transform. We construct an example of a discrete set ƒ � R (a small
perturbation of the integers) for which no characterization of this kind is possible:
there are two functions f; g 2 L1.R/ whose Fourier transforms have the same set of
zeros, but such that f Cƒ is a tiling while g Cƒ is not.

1. Introduction

1.1. Let f be a function in L1.R/ and let ƒ � R be a discrete set. We say that f tiles R
at level w with the translation set ƒ, or that f Cƒ is a tiling of R at level w (where w is
a constant), if

(1.1)
X
�2ƒ

f .x � �/ D w a.e.

and the series in (1.1) converges absolutely a.e.
In the same way, one can define tiling of Rd by translates of a function f 2 L1.Rd /.
For example, if f D 1� is the indicator function of a set �, and f Cƒ is a tiling at

level 1, then this means that the translated copies � C �, � 2 ƒ, fill the whole space
without overlaps up to measure zero. To the contrary, for tiling by a general real or
complex-valued function f , the translated copies may have overlapping supports.

Tilings by translates of a function have been studied by several authors, see, in partic-
ular, [9–14].

1.2. It is well known that in the study of translational tilings, the set

Z. yf / WD ¹t W yf .t/ D 0º

of the zeros of the Fourier transform

yf .t/ D

Z
f .x/ exp.�2�itx/ dx
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plays an important role. For example, letƒ be a lattice in Rd ; then f Cƒ is a tiling if and
only if the set Z. yf / contains ƒ� n ¹0º, where ƒ� is the dual lattice. This means that the
functions f that tile by a lattice ƒ can be completely characterized in terms of the zero
set Z. yf /. (One can show that the tiling level is given by w D yf .0/ det.ƒ/�1.)

The necessity of the condition for tiling in the last example can be generalized as
follows. For a discrete set ƒ � R, we consider the measure

ıƒ WD
X
�2ƒ

ı�:

We will assume that ƒ has bounded density, which means that

(1.2) sup
x2R

#.ƒ \ Œx; x C 1// < C1:

In particular, (1.2) implies that the measure ıƒ is a temperate distribution on R, so it has
a well-defined Fourier transform yıƒ in the distributional sense.

Theorem 1.1 ([11]). Let f 2 L1.R/, and letƒ � R be a discrete set of bounded density.
If f Cƒ is a tiling at some level w, then

(1.3) supp.yıƒ/ n ¹0º � Z. yf /:

A similar result is true also in Rd . In earlier works, [7, 8, 10], this result was proved
under various extra assumptions.

If ƒ is a lattice, then yıƒ D det.ƒ/�1 � ıƒ� , by the Poisson summation formula. This
implies that supp.yıƒ/Dƒ�. Hence, in this case, the condition (1.3) is not only necessary,
but also sufficient, for f Cƒ to be a tiling at some level w.

However, for a general discrete setƒ of bounded density, the sufficiency of the condi-
tion (1.3) for tiling has remained an open problem. In this paper, we settle this problem in
the negative. Our main result is the following.

Theorem 1.2. There is a discrete set ƒ � R of bounded density .a small perturbation
of the integers/ with the following property: given any real scalar w, there are two real-
valued functions f; g 2 L1.R/ whose Fourier transforms have the same set of zeros, but
such that f Cƒ is a tiling at level w, while g Cƒ is not a tiling at any level.

Moreover, we will show that if the given scalar w is positive, then the functions f
and g can be chosen positive as well.

It follows that the necessary condition (1.3) is generally not sufficient for tiling:

Corollary 1.3. There exist a set ƒ � R of bounded density and a positive function f 2
L1.R/ such that (1.3) is satisfied, but f Cƒ is not a tiling at any level.

But even stronger, Theorem 1.2 shows that also no other condition can be given in
terms of the Fourier zero set Z. yf / that would characterize the functions f 2 L1.R/ such
that f Cƒ is a tiling, even under the extra assumption that f is positive.

Our approach is based on the relation of the problem to Malliavin’s non-spectral syn-
thesis example [17]. The proof involves the implicit function method due to Kargaev [5],
who proved the existence of a set� � R of finite measure such that the Fourier transform
of its indicator function vanishes on some interval.
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2. Preliminaries and notation

In this section we recall some preliminary background and fix notation that will be used
later on. For further details, we refer the reader to [3].

The closed support of a Schwartz distribution S , or a function �, on the real line R or
on the circle T D R=Z, is denoted by supp.S/ or supp.�/, respectively.

If S is a Schwartz distribution on T , its Fourier coefficients yS.n/ are defined by

yS.n/ D hS; e�2�int i; n 2 Z:

The action of S on a function � 2 C1.T / is denoted by hS; �i. We have

(2.1) hS; �i D
X
n2Z

yS.n/ y�.�n/:

Let A.T / be the Wiener space of continuous functions � on T whose Fourier series
converges absolutely. It is a Banach space endowed with the norm

k�kA.T/ D
X
n2Z

j y�.n/j:

A distribution S on T is called a pseudomeasure if S can be extended to a continuous
linear functional on A.T /. This is the case if and only if the Fourier coefficients yS.n/ are
bounded. The space PM.T / of all pseudomeasures is a Banach space with the norm

kSkPM.T/ D sup
n2Z
j yS.n/j:

The duality between the spaces A.T / and PM.T / is given by

(2.2) hS; �i D
X
n2Z

yS.n/ y�.�n/; S 2 PM.T /; � 2 A.T /;

which is consistent with (2.1).
In a similar way, we will denote by A.R/ the space of Fourier transforms of functions

in L1.R/, that is, � 2 A.R/ if and only if

�.t/ D

Z
R

y�.x/e2�itx dx; y� 2 L1.R/; k�kA.R/ D ky�kL1.R/:

The Banach space dual to A.R/ is then the space PM.R/ of temperate distributions S
on R whose Fourier transform yS is in L1.R/. The space PM.R/ is normed as

kSkPM.R/ D k ySkL1.R/;

and the duality between the spaces A.R/ and PM.R/ is given by

(2.3) hS; �i D

Z
R

yS.x/ y�.�x/ dx; S 2 PM.R/; � 2 A.R/:

The elements of the space PM.R/ are called pseudomeasures on R.
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The product � of two functions �; 2 A (on either T or R) is also in A, and

k� kA 6 k�kA k kA:

If S 2 PM and � 2 A, then the product S� is a pseudomeasure defined by

hS�; i D hS; � i;  2 A;

and we have
kS�kPM 6 kSkPM k�kA:

If S 2 PM , � 2 A and if � vanishes in a neighborhood of supp.S/, then S� D 0. This
is obvious from the definition of supp.S/ if � is a smooth function of compact support,
while for a general � 2 A, this follows by approximation.

If S is a Schwartz distribution on R supported on a compact interval I D Œa; b�, then
its Fourier transform yS is an infinitely smooth function on R given by

yS.x/ D hS; e�2�ixt i; x 2 R:

(In fact, yS is the restriction to R of an entire function of exponential type).
If S is a distribution on R supported on an interval I of length jI j < 1, then S may be

considered also as a distribution on T , and in this case we have S 2 PM.T / if and only if
S 2 PM.R/. If, in addition, � is a function on R such that supp.�/� I , then � 2 A.T / if
and only if � 2 A.R/, and the action hS; �i then has the same value with respect to either
definition (2.2) or (2.3).

3. Malliavin’s non-spectral synthesis phenomenon

3.1. The spectral synthesis problem, posed by Beurling, asks the following: let V be a
closed, linear subspace of the space `1.Z/ endowed with the weak* topology (as the
dual of `1). We say that V is translation-invariant if whenever a sequence ¹c.n/º belongs
to V , then so do all of the translates of ¹c.n/º. Define the spectrum �.V / of a translation-
invariant subspace V to be the (closed) set of points t 2 T such that the sequence et WD
¹exp.2�int/º is in V . Is it true that V is generated by the exponentials et , t 2 �.V /?; i.e.,
is V the weak* closure of the linear span of these exponentials?

There are also other equivalent formulations of the spectral synthesis problem, see [4],
Chapter IX. One of them is the following: let S 2 PM.T /, � 2 A.T /, and assume that �
vanishes on supp.S/. Does it follow that hS; �i D 0?

The answer to the last question is affirmative if � is smooth, or, more generally, if
� 2 A.T / \ Lip.1=2/. This result is due to Beurling and Pollard, see e.g. Section 5 in
Chapter V of [3]. However, it was proved by Malliavin that in the general case, the ques-
tion admits a negative answer:

Theorem 3.1 (Malliavin [15,16]). There exist a pseudomeasure S 2 PM.T / and a func-
tion � 2 A.T / such that � vanishes on supp.S/, but hS; �i ¤ 0.

The spectral synthesis problem can be posed more generally in any locally compact
abelian group G (where the case discussed above corresponds to the group G D Z). For



An example concerning Fourier analytic criteria for translational tiling 1979

compact groups, the problem admits a positive answer; while Malliavin showed [17] that
the answer is negative for all non-compact groups G.

For more details on the subject, we refer the reader to Chapter IX of [4], Chapter V
of [3], Chapter 7 of [18], [1], and Chapter 3 of [2].

3.2. Let S 2 PM.T / and let � 2 A.T / be given by Malliavin’s theorem (Theorem 3.1),
that is, � vanishes on supp.S/ while hS; �i ¤ 0. Since � does not vanish everywhere on
the circle T , there is an open interval I of length jI j< 1 such that supp.S/� I . Hence we
may regard S also as a distribution on R, and we have S 2 PM.R/. By multiplying � on
a smooth function supported on I and which is equal to 1 in a neighborhood of supp.S/,
we may assume that supp.�/ � I as well, and consequently � 2 A.R/.

Furthermore, by applying a linear change of variable to S and �, we may actually
suppose that I is an arbitrary open interval on R. We shall take I D .a; b/, where a and b
are any two numbers satisfying 0 < a < b < 1=2.

For each r > 0, we now define a distribution Tr 2 PM.R/ by

(3.1) Tr WD ı0 C r.S C zS/;

where zS.t/ WD S.�t /.1 We will prove the following result.

Theorem 3.2. Given any " > 0, there exists a real sequence ƒ D ¹�nº, n 2 Z, satisfying
j�n � nj 6 " for all n, such that for some r > 0 we have yıƒ D Tr in the interval .�b; b/.

The proof of this theorem will be given in the next section. Our goal in the present
section is to complete the proof of Theorem 1.2 based on this result. We will show that ƒ
has the property from the statement of the theorem: given any real scalar w, there are two
real-valued functions f; g 2 L1.R/ whose Fourier transforms have the same set of zeros,
but such that f Cƒ is a tiling at levelw while gCƒ is not a tiling at any level. Moreover,
if the given scalar w is positive, then the functions f and g can be chosen positive as well.

3.3. Since the set ƒ has bounded density, for any h 2 L1.R/ the convolution h � ıƒ is a
locally integrable function satisfying

sup
x2R

Z xC1

x

j.h � ıƒ/.y/j dy < C1;

see Lemma 2.2 in [10]. This implies that h � ıƒ is a temperate distribution on R.

Lemma 3.3. Let h be a function in L1.R/ such that supp.yh/ � .�b; b/. Then the Fourier
transform of h � ıƒ is the pseudomeasure Tr � yh.

Proof. The assertion means that for any Schwartz function ˇ we have

(3.2)
Z

R
.h � ıƒ/.x/ y̌.x/ dx D hTr ; yh � ˇi:

Let � be a Schwartz function whose Fourier transform y� is nonnegative, has compact
support, and

R
y�.t/dt D 1, and for each " > 0, let �".x/ WD �."x/. Let q" WD .yh � ˇ/ � y�".

1The distribution zS can be more formally defined by h zS; i WD hS; z i, where z .t/ WD  .�t /.
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Then q" is an infinitely smooth function with compact support. As "! 0, the function q"
remains supported on a certain closed interval J contained in .�b; b/, and q" converges
to yh � ˇ in the space A.R/. The assumption that yıƒ D Tr in .�b; b/ thus implies that

(3.3) lim
"!0
hyıƒ; q"i D lim

"!0
hTr ; q"i D hTr ; yh � ˇi:

The function ˇ is the Fourier transform of some function ˛ in the Schwartz class. Let
p" WD .h � ˛/ � �". Then p" is a smooth function in L1.R/ and we have yp" D q". Since q"
belongs to the Schwartz space, the same is true for p", and it follows that

hyıƒ; q"i D hıƒ; yq"i D
X
�2ƒ

p".��/ D
X
�2ƒ

.h � ˛/.��/ �".��/

D

X
�2ƒ

�".��/

Z
R
˛.�x/h.x � �/ dx:(3.4)

Now we need the following:

Claim. We have X
�2ƒ

Z
R
j˛.�x/j � jh.x � �/j dx < C1:

We observe that j�".��/j 6 1 and �".��/! 1 as "! 0 for each �. Hence the claim
allows us to apply the dominated convergence theorem to the sum (3.4), which yields

(3.5) lim
"!0
hyıƒ; q"i D

X
�2ƒ

Z
R
˛.�x/h.x � �/ dx:

The claim also allows us to exchange the sum and integral in (3.5), and it follows that

(3.6) lim
"!0
hyıƒ; q"i D

Z
R
˛.�x/

X
�2ƒ

h.x � �/ dx D

Z
R
.h � ıƒ/.x/ y̌.x/ dx:

Comparing (3.3) and (3.6), we see that (3.2) holds.
It remains to prove the claim. Indeed, we have

(3.7)
X
�2ƒ

Z
R
j˛.�x/j � jh.x � �/j dx D

Z
R
jh.�x/j

X
�2ƒ

j˛.x � �/j dx:

The inner sum on the right-hand side of (3.7) is a bounded function of x, since ˛ is a
Schwartz function and ƒ has bounded density, while h is a function in L1.R/. Hence the
integral in (3.7) converges, and this completes the proof of the lemma.

3.4. Recall that S 2 PM.R/, supp.S/ � .a; b/ where 0 < a < b < 1=2, � 2 A.R/ is a
function with supp.�/� .a;b/, � vanishes on supp.S/, and hS;�i ¤ 0. Let be a smooth
function whose zero setZ. / is the same asZ.�/. In particular, we have supp. /� .a;b/
and  vanishes on supp.S/ as well. Let also � be a smooth function satisfying �.�t / D
�.t/, supp.�/ � .�a; a/, and �.0/ D 1.
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Given a real scalar w, we define two functions f; g 2 L1.R/ by the conditions

yf .t/ D w � �.t/C  .t/C  .�t /;(3.8)

yg.t/ D w � �.t/C �.t/C �.�t /:(3.9)

Then f and g are real-valued and their Fourier transforms have the same set of zeros.
By Lemma 3.3, the Fourier transform of f � ıƒ is the pseudomeasure

yf � Tr D wı0 C r.S C .eS // D wı0;
where the first equality is due to (3.1) and (3.8), while the second equality is true since  
is smooth and vanishes on supp.S/, hence S D 0. We conclude that f � ıƒ D w a.e.,
which means that f Cƒ is a tiling at level w.

In the same way, Lemma 3.3 implies that the Fourier transform of g � ıƒ is

yg � Tr D wı0 C r.S� C .fS�//:
However, in this case S� is not the zero distribution, since hS�; 1i D hS; �i ¤ 0. This
shows that the Fourier transform of g � ıƒ is not a scalar multiple of ı0, and it follows
that g Cƒ is not a tiling at any level.

3.5. The above construction yields real-valued functions f and g, but these two functions
need not be positive. We will now show that if the given scalar w is positive, then the
construction can be modified so as to yield everywhere positive functions f and g.

In what follows, � and  continue to denote the same two functions as above.
Step 1. We show that there is a nonnegative sequence ¹c.k/º 2 `1.Z/, such that

(3.10) j y�.x/j 6 c.k/; k 2 Z; jx � kj 6 1=2:

Indeed, we have � 2 A.R/ and supp.�/ � .a; b/. Considered as a function in A.T /,
� may be expressed on .a; b/ as the sum of an absolutely convergent Fourier series. Hence
there is a finite (complex) measure � supported on Z such that �.t/ D y�.�t /, t 2 .a; b/.
Let ˆ be an infinitely smooth function such that ˆ.t/ D 1 if t 2 supp.�/, while ˆ.t/ D 0
for t 2 R n .a; b/. Then �.t/ D y�.�t /ˆ.t/ for every t 2 R, which implies that

y�.x/ D .� � ŷ /.x/ D
X
n2Z

�.n/ ŷ .x � n/; x 2 R:

Since the Fourier transform ŷ has fast decay, there is a sequence ¹
.k/º 2 `1.Z/ such that
j ŷ .x/j 6 j
.k/j whenever jx � kj 6 1=2. It follows that

j y�.x/j 6 c.k/ WD
X
n2Z

j�.n/j � j
.k � n/j; jx � kj 6 1=2;

which establishes (3.10).
Step 2. We may assume that the same sequence ¹c.k/º also satisfies

(3.11) j y .x/j 6 c.k/; k 2 Z; jx � kj 6 1=2:

Indeed, we may apply the same procedure from Step 1 also to the function  , and then
define ¹c.k/º to be the maximum of the two sequences obtained from both steps.
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Step 3. Let ¹d.k/º be any positive sequence in `1.Z/ such that

(3.12) d.k/ > c.k/; k 2 Z:

We show that there is � 2 A.R/ such that supp.�/ � .�a; a/ and

(3.13) y�.x/ > d.k/; k 2 Z; jx � kj 6 1=2:

Let � be an infinitely smooth function, supp.�/ � .�a; a/, whose Fourier transform y�
is nonnegative and satisfies y�.x/ > 1 on the interval Œ�1=2; 1=2�. Let �.t/ WD y�.�t /�.t/,
where � is a positive, finite measure supported on Z defined by � WD

P
n d.n/ın. Then

the function y� D � � y� is in L1.R/, so that we have � 2 A.R/, and

y�.x/ D
X
n2Z

d.n/ y�.x � n/ > d.k/ y�.x � k/ > d.k/; jx � kj 6 1=2;

which gives (3.13).
Step 4. Now suppose that we are given a positive scalar w. We then define the two

functions f and g by the conditions

yf .t/ D w � �.0/�1 �
h
�.t/C

 .t/C  .�t /

2

i
;

yg.t/ D w � �.0/�1 �
h
�.t/C

�.t/C �.�t /

2

i
:

We observe that by the definition of the function � we have

�.0/ D y�.0/�.0/ D
� Z

d�
� � Z

y�.x/ dx
�
> 0;

and in particular �.0/ is nonzero. Then f and g are in L1.R/, their Fourier transforms
have the same set of zeros, and by the same argument as before, one can verify that f Cƒ
is a tiling at level w, while g Cƒ is not a tiling at any level.

Finally, we check that f and g are everywhere positive functions. Indeed, we have

f .x/ D w � �.0/�1 �
�
y�.�x/C Re. y .�x//

�
;

g.x/ D w � �.0/�1 �
�
y�.�x/C Re.y�.�x//

�
;

and by (3.10), (3.11), (3.12) and (3.13), it follows that f .x/; g.x/ > 0 for every x 2 R.
This completes the proof of Theorem 1.2 based on Theorem 3.2.

It remains to prove Theorem 3.2. This will be done in the next section.

4. Kargaev’s implicit function method

4.1. In [19], Sapogov posed the following question: does there exist a set� � R of posit-
ive and finite measure, such that the Fourier transform of its indicator function 1� vanishes
on some open interval .a; b/?

The question was answered in the affirmative by Kargaev [5]. The solution was based
on an innovative application of the infinite-dimensional implicit function theorem, which
established the existence of a set of the form � D

S
n2ZŒn C ˛n; n C ˇn�, where ¹˛nº

and ¹ˇnº are two real sequences in `1, that has the above mentioned property.
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The approach was later used in [11] in order to prove the existence of non-periodic
tilings of R by translates of a function f . In that paper, a self-contained presentation of
the method was given in a simplified form, that does not invoke the infinite-dimensional
implicit function theorem.

In this section, we use an adapted version of Kargaev’s method in order to prove The-
orem 3.2 (and more, in fact). The presentation below generally follows the lines of [11],
Sections 2 and 3, but the proof also requires some additional arguments.

4.2. Let ¹˛nº, n 2 Z, be a bounded sequence of real numbers. To such a sequence we
associate a function F on the real line, defined by

(4.1) F.x/ D
X
n2Z

Fn.x/; x 2 R;

where Fn is the function 1Œn;nC˛n� if ˛n > 0, or �1ŒnC˛n;n� if ˛n < 0.
Since the sequence ¹˛nº is bounded, the series (4.1) is easily seen to converge in

the space of temperate distributions to a bounded function F on R. In particular, F is a
temperate distribution.

Theorem 4.1. Given two numbers b 2 .0;1=2/ and " > 0, there is ı > 0 with the following
property. Let S be a Schwartz distribution on R satisfying

(4.2) S.�t / D S.t/; supp.S/ � .�b; b/; sup
k2Z
j yS.k/j 6 ı:

Then there is a bounded, real sequence ˛ D ¹˛nº, n 2 Z, such that k˛k1 6 " and

yF D S in .�b; b/,

where F is the function defined by (4.1).

The proof of Theorem 4.1 is given below. It is divided into a series of lemmas.

4.3. Given a number b 2 .0; 1=2/, we choose l D l.b/ such that b < l < 1=2. We also
choose an infinitely smooth function ˆ satisfying the conditions ˆ.�t / D ˆ.t/ for all
t 2 R, ˆ.t/ D 1 for t 2 Œ�b; b�, and ˆ.t/ D 0 for t 2 R n .�l; l/.

Let I WD Œ�1=2; 1=2�. Denote by y .k/ the kth Fourier coefficient of a function  
on I :

y .k/ D

Z
I

 .t/e�2�iktdt; k 2 Z:

The following lemma is inspired by Lemma 2.2 in [6].

Lemma 4.2. Let ' 2 C1.R/, with '.0/ D 0, and denote  s.t/ WD '.st/ˆ.t/. Then

(4.3) j y s.k/j 6
C jsj

1C jkjm

for every s 2 Œ�1; 1� and k 2 Z, where C D C.ˆ; ';m/ > 0 is a constant which does not
depend on s or k.
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Proof. First suppose that k D 0. We have j'.t/j 6 C jt j for t 2 I , hence

j y s.0/j 6 C jsj

Z
I

jtˆ.t/j dt D C jsj:

Next we assume that k ¤ 0. We integrate by parts m times and use the fact that the
function  s vanishes in a neighborhood of the points˙1=2. This yields

(4.4) y s.k/ D
1

.2�ik/m

Z
I

 .m/s .t/e�2�ikt dt:

By the product rule for the mth derivative we have

(4.5)  .m/s .t/ D

mX
jD0

�
m

j

�
sj'.j /.st/ˆ.m�j /.t/:

Combining (4.4) and (4.5) yields the estimate

j y s.k/j 6
1

.2�jkj/m

mX
jD0

�
m

j

�
jsjj

Z
I

j'.j /.st/ˆ.m�j /.t/j dt:

Since the derivatives '0; '00; : : : ; '.m/ are bounded on I , each one of the terms in the sum
corresponding to j D 1; 2; : : : ; m is bounded by C jsj, while the term corresponding to
j D 0 can be estimated using j'.t/j 6 C jt j, t 2 I , which again yields C jsj.

Lemma 4.3. Let ' 2 C1.R/, with '0.0/ D 0, and denote

 u;v.t/ WD
'.vt/ � '.ut/

t
�ˆ.t/:

Then

(4.6) j y u;v.k/j 6 max¹juj; jvjº �
C jv � uj

1C jkjm

for every u; v 2 Œ�1; 1� and k 2 Z, where C D C.ˆ; ';m/ > 0 is a constant which does
not depend on u, v or k.

Proof. We may suppose that u < v. We observe that

 u;v.t/ D

Z v

u

'0.st/ˆ.t/ ds D

Z v

u

 s.t/ ds;

where we define  s.t/ WD '0.st/ˆ.t/. Hence

y u;v.k/ D

Z v

u

y s.k/ ds; k 2 Z:

By Lemma 4.2, the estimate (4.3) is valid for every s 2 Œu; v�, where C D C.ˆ;';m/ > 0
is a constant which does not depend on s or k. Hence

j y u;v.k/j 6
C

1C jkjm

Z v

u

jsj ds;

from which (4.6) follows.
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4.4. If T is a Schwartz distribution supported on Œ�l; l �, then yT .k/ denotes the kth Fourier
coefficients of T :

yT .k/ D hT; e�2�ikt i; k 2 Z:

Lemma 4.4. Let T be a distribution supported on Œ�l; l �. Then the series

(4.7)
X
n2Z

yT .n/e2�int

converges unconditionally in the distributional sense to T in the open interval .�1=2;1=2/.

This follows from the unconditional convergence of the series (4.7) to T , considered
as a distribution on the circle T .

4.5. Let X be the space of all bounded sequences of real numbers ˛ D ¹˛nº, n 2 Z,
endowed with the norm

k˛kX WD sup
n2Z
j˛nj

that makes X into a real Banach space.
Let Y be the space of distributions T supported on Œ�l; l � whose Fourier coefficients

yT .k/, k 2 Z, are real and bounded. If we endow Y with the norm

kT kY WD sup
k2Z
j yT .k/j

then also Y is a real Banach space, which can be viewed as a closed subspace of PM.T /.
We observe that a distribution T supported on Œ�l; l � has real Fourier coefficients (that

is, yT .k/ 2 R for every k 2 Z) if and only if T .�t / D T .t/.

Lemma 4.5. Let ¹Tnº, n 2 Z, be a sequence of elements of Y . Assume that there is a
sequence 
 2 X such that

(4.8) j yTn.k/j 6
j
nj

1C jk � nj2

for every n and k in Z. Then the series

(4.9) T D
X
n2Z

Tn

converges unconditionally in the distributional sense to an element T 2 Y satisfying

(4.10) kT kY 6 Kk
kX ;

where K is an absolute constant.

Proof. Indeed, the condition (4.8) implies that for any � 2 A.T / we have

jhTn; �ij D
ˇ̌̌X
k2Z

yTn.k/ y�.�k/
ˇ̌̌

6 j
nj
X
k2Z

j y�.�k/j

1C jk � nj2
;
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and hence X
n2Z

jhTn; �ij 6 K k
kX k�kA.T/; K WD
X
n2Z

1

1C jnj2
�

This shows that the series (4.9) converges unconditionally in the weak* topology of the
space PM.T / (the dual of A.T // to an element T 2 Y satisfying (4.10).

4.6. Let ˛ D ¹˛nº, n 2 Z, be a sequence in X such that k˛kX 6 1. Define

(4.11) .R˛/.t/ WD
X
n2Z

e2�int �
e2�i˛nt � 1 � 2�i˛nt

2�it
�ˆ.t/:

Let Tn be the nth term of the series (4.11). We observe that Tn2Y . If we apply Lemma 4.2
to the function

'.t/ WD
e2�it � 1 � 2�it

2�it
;

with s D ˛n and m D 2, then it follows from the lemma that condition (4.8) is satisfied
with 
n WD C˛2n, where C > 0 does not depend on ˛, k or n. Hence by Lemma 4.5, the
series (4.11) converges in the distributional sense to an element of the space Y , and we
have

(4.12) kR˛kY 6 Ck˛k2X ; ˛ 2 X; k˛kX 6 1;

where the constant C does not depend on ˛.
We note that the mapping R defined by (4.11) is nonlinear.

4.7. For each r > 0, let Ur denote the closed ball of radius r around the origin in X :

Ur WD ¹˛ 2 X W k˛kX 6 rº:

Lemma 4.6. Given any � > 0, there is 0 < r < 1 such that

(4.13) kRˇ �R˛kY 6 �kˇ � ˛kX ; ˛; ˇ 2 Ur :

In particular, if r is small enough, then R is a contractive .nonlinear/ mapping on Ur .

Proof. Let ˛; ˇ 2 Ur .0 < r < 1/. Then using (4.11) we have

(4.14) .Rˇ �R˛/.t/ D
X
n2Z

e2�int �
.e2�iˇnt � 2�iˇnt / � .e

2�i˛nt � 2�i˛nt /

2�it
�ˆ.t/:

Let Tn be the nth element of the series (4.14). We apply Lemma 4.3 to the function '.t/ WD
.e2�it � 2�it/=.2�i/ with u D ˛n, v D ˇn and m D 2. The lemma implies that the
condition (4.8) is satisfied with 
n WD Cr � .ˇn � ˛n/, where the constant C does not
depend on r , ˛, ˇ, k or n. It therefore follows from Lemma 4.5 that we have the estimate
kRˇ � R˛kY 6 Crkˇ � ˛kX , where C is a constant not depending on r , ˛ or ˇ. Hence
it suffices to choose r small enough so that Cr 6 �.
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4.8. For each element T 2 Y we denote by F .T / the sequence of Fourier coefficients
of T , namely, the sequence ¹ yT .k/º, k 2 Z. This defines a linear mapping F W Y ! X

satisfying kF .T /kX D kT kY .

Lemma 4.7. Given any " > 0, there is ı > 0 with the following property. Let S 2 Y ,
kSkY 6 ı. Then one can find an element T 2 Y , kT � SkY 6 "kSkY , which solves the
equation T CR.F .T // D S .

Proof. Fix S 2 Y such that kSkY 6 ı, and let

B D B.S; "/ WD ¹T 2 Y W kT � SkY 6 "kSkY º:

We observe that if T 2 B then kT kY 6 .1C "/kSkY . Define a map H WB ! Y by

H.T / WD S �R.F .T //; T 2 B;

and notice that an element T 2 B is a solution to the equation T CR.F .T // D S if and
only if T is a fixed point of the map H .

Let us show that, if ı is small enough, then H.B/ � B . Indeed, if T 2 B , then
using (4.12) we have

kH.T / � SkY D kR.F .T //kY 6 CkF .T /k2X D CkT k
2
Y 6 C.1C "/2kSk2Y :

Hence if we choose ı such that C.1C "/2ı 6 ", then we obtain

kH.T / � SkY 6 "kSkY ;

and it follows that H.B/ � B .
It also follows from Lemma 4.6 that if ı is small enough, then H is a contractive

mapping from the closed set B into itself. Indeed, let T1; T2 2 B . Then we have

kH.T2/ �H.T1/kY D kR.F .T2// �R.F .T1//kY 6 �kF .T2/ � F .T1/kX

D �kT2 � T1kY ;

where 0 < � < 1. Then the Banach fixed point theorem implies thatH has a (unique) fixed
point T 2 B , which yields the desired solution.

4.9. Proof of Theorem 4.1. Let S be a Schwartz distribution satisfying (4.2). Then S 2 Y
and kSkY 6 ı. Define S1.t/ WD S.�t /. Then also S1 is a distribution in Y and we have
kS1kY D kSkY . By Lemma 4.7, if ı is small enough, then there is an element T 2 Y ,
kT � S1kY 6 "kS1kY , which solves the equation T CR.F .T // D S1.

Let ˛ 2 X be the sequence defined by ˛n D yT .n/, n 2 Z. Then k˛kX 6 " provided
that ı is small enough. Let F be the function given by (4.1) that is associated to this
sequence ˛ D ¹˛nº. We have

yF .�t / D lim
N!1

X
jnj6N

yFn.�t /

in the sense of distributions, and

yFn.�t / D e
2�int

�
e2�i˛nt � 1

2�it
�
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Hence

yF .�t / D lim
N!1

h X
jnj6N

˛n e
2�int

C

X
jnj6N

e2�int �
e2�i˛nt � 1 � 2�i˛n t

2�it

i
:

The first sum converges to T in .�b; b/ according to Lemma 4.4; while the second sum
converges to R˛ in .�b; b/, due to (4.11) and the fact that ˆ.t/ D 1 on .�b; b/. We
conclude that

yF .�t / D .T CR˛/.t/ D S1.t/ in .�b; b/.

This means that yF D S in .�b; b/, and thus Theorem 4.1 is proved.

4.10. The theorem just proved will now be used to deduce the following one:

Theorem 4.8. Given two numbers a and b such that 0 < a < b < 1=2, and given " > 0,
there is ı > 0 with the following property. Let S be a distribution on R satisfying

(4.15) S.�t / D S.t/; supp.S/ � .�b;�a/ [ .a; b/; sup
k2Z
j yS.k/j 6 ı:

Then there is a real sequence ƒ D ¹�nº, n 2 Z, such that j�n � nj 6 " for all n, and

yıƒ D ı0 C S in .�b; b/.

Proof. We choose an infinitely smooth function ‰ such that ‰.�t / D ‰.t/ for all t 2 R,
‰.t/ D �1=.2�it/ in .�b;�a/ [ .a; b/, and ‰.t/ D 0 for t 2 R n .�l; l/.

Let S be a distribution satisfying (4.15). Then S 2 Y and kSkY 6 ı. Define a new
distribution S1 WD S �‰; then also S1 2 Y . We have

kS1kY 6 MkSkY ; where M WD k‰kA.T/:

By Theorem 4.1, if ı is small enough, then there is a sequence ˛ 2 X , k˛kX 6 ", such
that the function F defined by (4.1) satisfies yF D S1 in .�b; b/. It follows that the distri-
butional derivative F 0 of the function F satisfies

(4.16) yF 0.t/ D 2�it yF .t/ D 2�it S1.t/ D 2�it ‰.t/S.t/ D �S.t/ in .�b; b/;

which is true since 2�it ‰.t/ D �1 in a neighborhood of supp.S/.
Let ƒ D ¹�nº, n 2 Z, be defined by �n WD nC ˛n. Then we have j�n � nj 6 " for

all n. It follows from the definition (4.1) of F that

F 0 D
X
n2Z

.ın � ı�n/ D ıZ � ıƒ;

that is, ıƒ D ıZ � F
0. By Poisson’s summation formula, yıZ D ıZ, hence we have

yıƒ D ıZ � yF 0 D ı0 C S in .�b; b/

due to (4.16). The proof of Theorem 4.8 is thus concluded.
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4.11. Finally, we observe that Theorem 3.2 follows from Theorem 4.8. Indeed, if S is a
pseudomeasure on R such that supp.S/ � .a; b/, then the distribution r.S C zS/ satisfies
the conditions (4.15) if r > 0 is sufficiently small. Hence Theorem 4.8 yields a sequence
ƒ D ¹�nº with the properties as in the statement of Theorem 3.2.

5. Addendum: A problem of Kolountzakis

The following question was posed to us by Kolountzakis: does there exist a real sequence
ƒ D ¹�nº, n 2 Z, satisfying

(5.1) A 6 �nC1 � �n 6 B; n 2 Z;

where A;B > 0 are constants, such that f Cƒ is a tiling for some nonzero f 2 L1.R/,
but there is no nonnegative f with this property?

The answer turns out to depend on the level of the tiling. Suppose first that there
is a tiling f C ƒ at some nonzero level w. Then f must have nonzero integral, see
Lemma 2.3(i) in [10]. In turn this implies (see Section 4 in [11]) that yıƒ D c � ı0 in some
neighborhood .��; �/ of the origin, where c is a nonzero, positive scalar. It follows that
f Cƒ is a tiling whenever f is a Schwartz function with supp. yf /� .��;�/. In particular,
there exist tilings f Cƒ at level one with f nonnegative.

To the contrary, we will construct an example showing that the same is not true ifƒ is
only assumed to admit a tiling at level zero. We will prove the following result.

Theorem 5.1. There is a real sequenceƒ D ¹�nº, n 2 Z, satisfying (5.1) for which there
exist tilings f Cƒ with nonzero f 2 L1.R/, but any such a tiling is necessarily a tiling
at level zero. In particular, ƒ cannot tile with any nonnegative .nonzero/ f .

Proof. Let a and b be two numbers such that 0 < a < b < 1=2. Let  be a smooth even
function,  .t/ > 0 on .�a; a/, and  .t/ D 0 outside .�a; a/. By Theorem 4.1, given
any " > 0, there is a real sequence ˛ D ¹˛nº, n 2 Z, satisfying j˛nj 6 " for all n, and such
that yF .t/ D r .t/ in .�b; b/ for some r > 0, where F is the function defined by (4.1).

Let the sequence ƒ D ¹�nº, n 2 Z, be defined by �n WD nC ˛n. Then

(5.2) yıƒ D ı0 � 2�irt .t/ in .�b; b/.

This can be shown in the same way as done in the proof of Theorem 4.8 above.
In particular, we have yıƒ D 0 in the open set G WD .�b;�a/ [ .a; b/, so there exist

nonzero real-valued Schwartz functions f such that f C ƒ is a tiling (at level zero). It
suffices to choose f such that supp. yf / is contained in G.

On the other hand, suppose that there is f 2L1.R/ such that f Cƒ is a tiling at some
nonzero level w. Then, as before, this implies that yıƒ D c � ı0 in some interval .��; �/,
where c is a nonzero (positive) scalar. This contradicts (5.2), hence no such f exists. In
particular, if f is nonnegative and f C ƒ is a tiling, then the tiling level must be zero
and f vanishes a.e.
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6. Remarks

6.1. Let ƒ � R be a discrete set of bounded density. If the temperate distribution yıƒ is a
measure on R, then condition (1.3) is not only necessary, but also sufficient, for a function
f 2 L1.R/ to tile at some level w with the translation set ƒ. In this case, the tiling level
is given by w D c.ƒ/ yf .0/, where c.ƒ/ is the mass that the measure yıƒ assigns to the
origin (see Theorem 2.2 in [12]).

For example, if ƒ is a periodic set, then yıƒ is a (pure point) measure, and f Cƒ is
a tiling if and only if (1.3) holds. It follows that the set ƒ in Theorem 1.2 is not periodic,
nor can it be represented as a finite union of periodic sets.

6.2. If f has fast decay, e.g., jf .x/j D o.jxj�N / as jxj ! C1 for every N , then yf is
a smooth function and again condition (1.3) is both necessary and sufficient for f C ƒ
to be a tiling at some level w. It follows that the function f in Corollary 1.3 cannot be
chosen to have fast decay.

6.3. Theorem 1.2 also holds in Rd for every d > 1. This can be easily deduced from
the one-dimensional result by taking cartesian products. For example, in R2 one may
take F.x; y/ D f .x/h.y/, G.x; y/ D g.x/h.y/, where f , g are the functions from The-
orem 1.2 and where h 2 L1.R/ is such that hC Z is a tiling at level one. Then yF and yG
have the same set of zeros, but F tiles with the translation set ƒ � Z while g does not.
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