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Convex bodies and graded families of monomial ideals

Yairon Cid-Ruiz and Jonathan Montaño

Abstract. We show that the mixed volumes of arbitrary convex bodies are equal to
mixed multiplicities of graded families of monomial ideals, and to normalized lim-
its of mixed multiplicities of monomial ideals. This result evinces the close relation
between the theories of mixed volumes from convex geometry and mixed multipli-
cities from commutative algebra.

1. Introduction

The connection between volumes of convex bodies and algebraic-geometric invariants
has long been explored by researchers and it has led to numerous applications in various
fields of mathematics. To highlight some of these, we have the Bernstein–Koushnirenko–
Khovanskii theorem [1, 19, 20], Huh’s proof of the log-concavity of characteristic poly-
nomials of matroids [14], and the theory of Newton–Okounkov bodies [17, 21] and its
applications to limits in commutative algebra [6].

The goal of this paper is to expand on this fruitful research line by showing that the
mixed volumes of arbitrary convex bodies are equal to mixed multiplicities of graded
families of monomial ideals, and also equal to normalized limits of mixed multiplicities
of monomial ideals (Theorem C). This is an extension of the main result in [24], where
the case of lattice polytopes is treated. Our proof is based on two intermediate results of
interest in their own right (Theorems A and B).

Let R be a d -dimensional standard graded polynomial ring over a field k and let
m D ŒR�C be its graded irrelevant ideal. For homogeneous ideals J1; : : : ; Jr and for an
m-primary homogeneous ideal I , there exist integers e.d0;d/.I jJ1; : : : ; Jr / � 0 for every
d0 2 N, d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d � 1, called the mixed multiplicities of
J1; : : : ; Jr with respect to I , such that

lim
m!1

dimk

�
J
mn1
1 ���J

mnr
r

In0mJ
mn1
1 ���J

mnr
r

�
md

D

X
d0CjdjDd�1

e.d0;d/.I jJ1; : : : ; Jr /

.d0 C 1/Šd1Š � � � dr Š
n
d0C1
0 n

d1
1 � � �n

dr
r ;

for every n0; n1; : : : ; nr � 0 (see [25] for a survey).

2020 Mathematics Subject Classification: Primary 52A39; Secondary 13H15, 05E40, 11H06.
Keywords: Convex bodies, graded families, mixed volume, mixed multiplicity.

https://creativecommons.org/licenses/by/4.0/


Y. Cid-Ruiz and J. Montaño 2034

On the other hand, by Minkowski’s theorem, for a sequence K1; : : : ; Kr of convex
bodies in Rd , the mixed volumes MVd .K�1 ; : : : ; K�d / of sequences .K�1 ; : : : ; K�d / of
convex bodies with 1 � �1; : : : ; �d � r satisfy the following equation:

Vold .�1K1 C � � � C �rKr / D
X

dD.d1;:::;dr /2Nr

d1C���CdrDd

1

d1Š � � � dr Š
MVd .K

d1
1 ; : : : ; K

dr
r / �

d1
1 � � ��

dr
r

for every �1; : : : ; �r � 0 (see Theorem 3.3 on p. 116 of [10]); here Kdii denotes di copies
of Ki . The relation between these two sets of invariants is established in [24], where the
authors show that mixed volumes of lattice polytopes coincide with the mixed multiplicit-
ies of certain monomial ideals. However, this relation does not extend to arbitrary convex
bodies as the associated sequences of ideals are no longer powers of ideals but rather (not
necessarily Noetherian) graded families of ideals.

A sequence of ideals I D ¹Inºn2N is a graded family if I0 D R and IiIj � IiCj
for every i; j 2 N. The family is Noetherian if the corresponding Rees algebra R.I/ D
˚n2NInt

n �RŒt� is Noetherian. The study of mixed multiplicities of graded families was
pioneered by Cutkosky–Sarkar–Srinivasan [8] for the case of m-primary filtrations (in
more general rings), that is, when each In is m-primary and InC1 � In for every n 2 N.
Their strategy is to first show the existence of these multiplicities for Noetherian filtrations,
and then pass to arbitrary filtrations using the theory of Newton–Okounkov bodies [17]
(see also [6] and [21]). In our first result, we prove the existence of mixed multiplicities
for arbitrary graded families of monomial ideals under a mild assumption. Our approach
differs from the one of [8] in that we exploit Minkowski’s theorem to show the existence
of the polynomial leading to the definition of mixed multiplicities.

In order to present our first result, we need to introduce some prior notation. Let
I D ¹Inºn2N be a (not necessarily Noetherian) graded family of m-primary monomial
ideals and let J.1/ D ¹J.1/nºn2N ; : : : ; J.r/ D ¹J.r/nºn2N be (not necessarily Noeth-
erian) graded families of monomial ideals in R. We further assume that the degrees of the
generators of J.i/n are bounded by a linear function on n for each 1 � i � r . We note
that the latter condition is similar to others that have been considered in previous works
regarding limits of graded families of ideals (see, e.g., Theorem 6.1 in [6]).

Theorem A (Theorem 3.13, Lemma 3.14). Under the notations and assumptions above,
the function

F.n0; n1; : : : ; nr / D lim
m!1

dimk

�
J.1/mn1 � � �J.r/mnr = Imn0J.1/mn1 � � �J.r/mnr

�
md

is equal to a homogeneous polynomialG.n0;n/DG.n0;n1; : : : ;nr / of total degree d with
non-negative real coefficients for all n0 2 N and n D .n1; : : : ; nr / 2 Nr . Additionally,
G.n0;n/ has no term of the form ˛nd D ˛n

d1
1 � � �n

dr
r with 0¤ ˛ 2 R, dD .d1; : : : ; dr / 2

Nr and jdj D d .
Furthermore, the coefficients of the polynomial G.n0; n/ can be explicitly described

in terms of mixed volumes of certain Newton–Okounkov bodies.
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We note that Theorem A is new even when the graded families are all m-primary. In
this case, our theorem is an extension of that of [8] for monomial ideals (also, see [18]).
For this reason, we isolate the m-primary case in Theorem 3.5.

The polynomial G.n0;n/ from Theorem A can be written as

G.n0;n/ D
X

.d0;d/2NrC1

d0CjdjDd�1

1

.d0 C 1/ŠdŠ
e.d0;d/.IjJ.1/; : : : ; J.r// n

d0C1
0 nd

I

here, if d D .d1; : : : ; dr /, then dŠ D d1Š � � �dr Š. For each .d0;d/ 2 NrC1 with d0 C jdj D
d � 1, we define the real numbers e.d0;d/.I jJ.1/; : : : ;J.r// � 0 to be the mixed multipli-
cities of J.1/; : : : ; J.r/ with respect to I (see Definition 3.15).

The volume and multiplicity of a graded family B D ¹Bnºn2N of zero dimensional
ideals in a Noetherian local ring S of dimension s are defined, respectively, as

volS .B/ D lim sup
n!1

�.S=Bn/

ns=sŠ
and eS .B/ D lim

p!1

eS .Bp/

ps
;

where �.N / denotes length of an S -module N and eS .J / denotes the Hilbert–Samuel
multiplicity of an ideal J . Several works prove the equality of these two invariants under
certain assumptions (see [5, 6, 9, 21, 22]). The general version of the so called volume =
multiplicity formula is due to Cutkosky, and it is shown on any S for which the limit in
the definition of volume exists [7]. In our next result we show the existence of a “volume
= multiplicity formula” for mixed multiplicities of graded families of monomial ideals.

Theorem B (Theorem 4.7). With the above assumptions and notations, for each d0 2 N
and d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d � 1, we have the equality

e.d0;d/.I jJ.1/; : : : ; J.r// D lim
p!1

e.d0;d/.Ip jJ.1/p; : : : ; J.r/p/

pd
�

With the previous results in hand, we are ready to present the main result of this paper.
Here we express mixed volumes of arbitrary convex bodies as mixed multiplicities of
graded families of monomial ideals and as normalized limits of mixed-multiplicities of
ideals.

In a subsequent work [4], we extended the results of Theorems A and B to more
general settings. We showed the existence of mixed multiplicities and a “volume = mul-
tiplicity formula” for arbitrary graded families of ideals on Noetherian local rings under
mild assumptions.

We now fix the following slightly different notation. Let .K1; : : : ;Kr / be a sequence of
convex bodies in Rd�0 and letK0 �Rd be the convex hull of the points 0;e1; : : : ;ed 2Rd ,
where 0D .0; : : : ;0/2Rd and ei D .0; : : : ;1; : : : ;0/ denotes the i -th elementary basis vec-
tor for 1� i � d . Denote by K the sequence of convex bodies KD .K0;K1; : : : ;Kr /. For
each .d0;d/D .d0; : : : ; dr /2NrC1, let K.d0;d/ be the multiset K.d0;d/ D

Sr
iD0

Sdi
jD1¹Kiº

of di copies ofKi for each 0� i � r . Here letR be a .d C 1/-dimensional standard graded
polynomial ring over a field k, and let m D ŒR�C be its graded irrelevant ideal. We let M
be the graded family M D ¹mnºn2N .
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Theorem C (Theorem 5.5). Under the notations and the assumptions above, there exist
graded families of monomial ideals J.1/ : : : ;J.r/ inR such that, for each .d0;d/ 2NrC1

with d0 C jdj D d , we have the equalities

MVd .K.d0;d// D e.d0;d/.M j J.1/; : : : ; J.r// D lim
p!1

e.d0;d/.m
p jJ.1/p; : : : ; J.r/p/

pdC1

D lim
p!1

e.d0;d/.m jJ.1/p; : : : ; J.r/p/

pjdj
:

In particular, when r D d , we obtain the equalities

MVd .K1; : : : ; Kd / D e.0;1;:::;1/.M j J.1/; : : : ; J.d//

D lim
p!1

e.0;1;:::;1/.m
p jJ.1/p; : : : ; J.d/p/

pdC1

D lim
p!1

e.0;1;:::;1/.m jJ.1/p; : : : ; J.d/p/

pd
�

Finally, we briefly describe the content of the paper. In Section 2 we set up the notation
and include some preliminary results that are used in the rest of the paper. In Section 3 we
include the proof of Theorem A, and in Section 4 the one of Theorem B. Lastly, Section 5
includes the proof of our main result Theorem C.

2. Notation and preliminaries

In this section, we set up the notation that is used throughout the article. We also include
some preliminary information needed for our results.

For a vector n D .n1; : : : ; nr / 2 Nr , we denote by jnj the sum of its entries. We also
denote by 0 the vector .0; : : : ; 0/ 2Nr . For nD .n1 : : : ; nr / and mD .m1; : : : ;mr / in Nr ,
we write n � m if ni � mi for every 1 � i � r . Moreover, we write n� 0 if ni � 0 for
every 1 � i � r . We also use the abbreviations nm D n

m1
1 � � �n

mr
r and nŠ D n1Š � � �nr Š.

Below we recall the definitions of graded families of ideals and filtrations of ideals.

Definition 2.1. A graded family of ideals ¹Iiºi2N in a ringR is a family of ideals indexed
by the natural numbers such that I0 D R and IiIj � IiCj for all i; j 2 N.
(i) If .R;m/ is a local ring (or a positively graded ring with m D ŒR�C) and Ii is

m-primary for i > 0, then we say that ¹Iiºi2N is a graded family of m-primary
ideals.

(ii) If we have the inclusion Ii � IiC1 for all i 2 N, then we say that ¹Iiºi2N is a
filtration of ideals in R.

(iii) We say that ¹Iiºi2N is Noetherian when the corresponding Rees algebra
L
i2N Ii t

i

� RŒt� is Noetherian.
(iv) When R D kŒx1; : : : ; xd � is a standard graded polynomial ring over a field k and

each Ii is a monomial ideal, we say that ¹Iiºi2N is a graded family of monomial
ideals.
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2.1. Mixed volumes of convex bodies

Let K D .K1; : : : ; Kr / be a sequence of convex bodies in Rd . For any sequence � D
.�1; : : : ; �r / 2 Nr of non-negative integers, we denote by �K the Minkowski sum �K WD
�1K1 C � � � C �rKr , and by K� the multiset K� WD

Sr
iD1

S�i
jD1¹Kiº of �i copies of Ki

for each 1 � i � r .
For any convex bodyK �Rd , we denote by Vold .K/ the d -dimensional volume. The

following important and classical theorem says that the volume Vold .�K/ of the convex
body �K is a polynomial of degree d in � (see Theorem 3.2 on p. 116 of [10]). For more
details regarding the topic of mixed volumes the reader is referred to [10], Chapter IV.

Theorem 2.2 (Minkowski). Vold .�K/ is a homogeneous polynomial of degree d that
satisfies

Vold .�1K1 C � � � C �rKr / D
rX

�1D1;:::;�dD1

V.K�1 ; : : : ; K�d / ��1 ; : : : ; ��d ;

for certain coefficients V.K�1 ; : : : ; K�d /, where the summation is carried out independ-
ently over the �i for 1 � i � d .

Theorem 2.2 leads to the following definition (see Theorem 3.3 on p. 116 of [10]).

Definition 2.3. The mixed volume of d convex bodies K1; : : : ; Kd � Rd is defined by

MVd .K1; : : : ; Kd / WD dŠ V .K1; : : : ; Kd /:

Note that under the current notations, we have the following equation:

(2.1) Vold .�K/ D
X

d2Nr

jdjDd

1

dŠ
MVd .Kd/ �

d:

2.2. Semigroups, Newton–Okounkov bodies, and limits of lengths

In this subsection, we describe the notions and methods of Newton–Okounkov bodies and
recall some important results from [17].

Here we use a slightly simpler setting. Suppose that S � ZdC1 is a semigroup in
ZdC1. Fix a linear map � WRdC1 ! R with integral coefficients, that is, �.ZdC1/ � Z.

Let L D L.S/ be the linear subspace of RdC1 which is generated by S . Let M D
M.S/ be the rational half-space M.S/ WD L.S/ \ ��1.R�0/, and let @MZ D @M \

ZdC1. Let Con.S/ � L.S/ be the closed convex cone which is the closure of the set
of all linear combinations

P
i �isi with si 2 S and �i � 0. LetG.S/� L.S/ be the group

generated by S .
We say that the pair .S;M/ is admissible if S �M ; additionally, if Con.S/ is strictly

convex and intersects the space @M only at the origin, then .S;M/ is called a strongly
admissible pair (see Definition 1.9 in [17]).

Following [17], when .S;M/ is an admissible pair we fix the following notation:
• ŒS�k WD S \ �

�1.k/.
• m D ind.S;M/ WD ŒZ W �.G.S//�.
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• ind.S; @M/ WD Œ@MZ W G.S/ \ @M�.
• �.S;M/ WD Con.S/ \ ��1.m/ (the Newton–Okounkov body of .S;M/).
• q D dim.@M/.
• Volq.�.S;M// is the integral volume of �.M; S/ (see Definition 1.13 in [17]); this

volume is computed using the translation of the integral measure on @M .
The following result is of fundamental importance in our approach.

Theorem 2.4 (Kaveh–Khovanskii, Corollary 1.16 in [17]). Suppose that the pair .S;M/

is strongly admissible. Then

lim
k!1

#ŒS�km
kq

D
Volq.�.S;M//

ind.S; @M/
�

Remark 2.5. Whenever the rational half-space M is implicit from the context, we write
�.S/ instead of �.S;M/.

3. Mixed multiplicities of graded families of monomial ideals

Throughout the present section we use the data below.

Setup 3.1. Let k be a field, let R D kŒx1; : : : ; xd � be the standard graded polynomial
ring, and let m � R be the graded irrelevant ideal m D .x1; : : : ; xd /. Following the
notation in Section 2.2, we fix the linear map � WRdC1 ! R given by the projection
.˛1; : : : ; ˛d ; ˛dC1/ 2 RdC1 7! ˛dC1 2 R. Let �1WRdC1 ! Rd be the projection given
by .˛1; : : : ; ˛d ; ˛dC1/ 2 RdC1 7! .˛1; : : : ; ˛d / 2 Rd . Let M be the rational half-space
M D ��1.R�0/ D Rd �R�0.

For a semigroup S � NdC1 and m 2 N, we denote by ŒS�m the level set

ŒS�m D S \ �
�1.m/ D S \ .Nd

� ¹mº/:

3.1. Mixed multiplicities of m-primary graded families of monomial ideals

In this subsection, we prove the existence of mixed multiplicities of graded families of
monomial m-primary ideals in a polynomial ring. This extends the main result from [8] in
the setting of monomial ideals. Here our proof depends directly on the Minkowski theorem
(Theorem 2.2).

We begin by introducing the following setup.

Setup 3.2. Adopt Setup 3.1. Let J.1/ D ¹J.1/nºn2N , : : :, J.r/ D ¹J.r/nºn2N be (not
necessarily Noetherian) graded families of m-primary monomial ideals in R. Let c 2 N
be a positive integer such that

(3.1) J.i/1 � mc�1 for all 1 � i � r:

and c � 2. Thus, it follows that

(3.2) J.i/n � mcn for all 1 � i � r and n 2 N:



Convex bodies and graded families of monomial ideals 2039

For a vector n D .n1; : : : ; nr / in Nr , we shall abbreviate Jn D J.1/n1 � � � J.r/nr .
We identify each monomial xm D x

m1
1 � � � x

md
d
2 R with the corresponding vector m D

.m1; : : : ; md / 2 Nd . We now connect our setting with the information in Subsection 2.2.
Let n D .n1; : : : ; nr / 2 Nr be an r-tuple of non-negative integers. Thus, for each m � 1,
equation (3.2) yields the following:

(3.3) dimk.R=Jmn/ D dimk.R=m
cmjnjC1/ � dimk.Jmn=m

cmjnjC1/:

Motivated by the last term in (3.3), we define the following set:

�n WD
®
.m; m/ D .m1; : : : ; md ; m/ 2 NdC1

j xm
2 Jmn and jmj � cmjnj

¯
:

The next lemma provides some basic properties of �n.

Lemma 3.3. The following statements hold:
(i) �n is a subsemigroup of the semigroup NdC1.

(ii) G.�n/ D ZdC1, and so L.�n/ D RdC1.

(iii) The pair .�n; M/ is strongly admissible, with dim.@M/ D d and ind.�n; M/ D

ind.�n; @M/ D 1.

(iv) For any n 2 N and 1 � i � r , we have

�.�nei / D .n�1 .� .�ei // ; 1/ :

Proof. (i) Suppose that .m; m/; .m0; m0/ 2 �n, that is, xm 2 Jmn, xm0 2 Jm0n, m � cmjnj
and m0 � cm0jnj. As J.1/; : : : ;J.r/ are graded families of ideals, it follows that xmCm0 2

J.mCm0/n. Thus, the inequality jmCm0j D jmj C jm0j � cmjnj C cm0jnj D c.mCm0/jnj
yields the result.

(ii) By (3.1), we can choose m D .m1; : : : ; md / 2 Nd such that xm 2 Jn and jmj D
cjnj � 1. Since xmCei 2 Jn and jmC ei j D cjnj for all 1� i � d , it follows that ¹e1; : : : ;ed º
2 G.�n/ (here ei denotes the i -th elementary basis vector in NdC1). The equation

edC1 D .m; 1/ �m1 e1 � � � � �md ed

implies that edC1 2 G.�n/, and so the result follows.
(iii) The fact that .�n; M/ is strongly admissible follows from the way that �n was

defined. The other claims are obtained directly from part (ii).
(iv) By definition, for all m � 0 we have �1 .Œ�nei �m/ D �1 .Œ�ei �nm/ : Hence, one

obtains

�1.�.�nei // D �1.Con.�nei / \ �
�1.1// D �1.Con.�ei / \ �

�1.n// D n�1.�.�ei //;

and so the result follows.

Let AD
S
m�0.Am;m/ and B D

S
m�0.Bm;m/ be two subsets of NdC1 DNd �N.

Following §1.6 in [17], we define the levelwise addition of A and B as the set A˚t B �
NdC1 such that .A ˚t B/m D Am C Bm for every m 2 N. The following proposition
decomposes �n as a levelwise sum of simpler semigroups. This basic result can be seen
as the main step in our proof.
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Proposition 3.4. Assume Setup 3.2. We have the equality �n D �n1e1 ˚t � � � ˚t �nr er :

Proof. The result is obtained from Proposition 3.11 (ii) and the fact that ˇ.J.i/n/ � cn
for all 1 � i � r and n 2 N (see the assumptions and notations in Setup 3.8).

From (3.3), and the fact that J.1/; : : : ; J.r/ are graded families of monomial ideals,
we obtain that

dimk.R=Jmn/ D dimk.R=m
cmjnjC1/ � dimk.Jmn=m

cmjnjC1/

D

�cmjnj C d
d

�
� #Œ�n�m:

(3.4)

After the previous preparatory results, we are ready for the main result of this sub-
section. The following theorem shows the existence of a homogeneous polynomial that
can be used to define the mixed multiplicities of the graded families J.1/; : : : ; J.r/. As
a consequence of the proof, we describe the coefficients of the polynomial explicitly in
terms of the mixed volumes of certain Newton–Okounkov bodies.

Theorem 3.5. Assume Setup 3.2. The function

F.n1; : : : ; nr / D lim
m!1

dimk

�
R=J.1/mn1 � � �J.r/mnr /

�
md

is equal to a homogeneous polynomial G.n/ D G.n1; : : : ; nr / of total degree d with real
coefficients for all n D .n1; : : : ; nr / 2 Nr . Explicitly, the polynomial G.n/ is given by

G.n/ D
X
jdjDd

1

dŠ
.cd �MVd .�.�/d//nd;

where �.�/ denotes the sequence �.�/ D .�.�e1/; : : : ; �.�er // of Newton–Okounkov
bodies.

Proof. Let n D .n1; : : : ; nr / 2 Nr . By using Theorem 2.4, Lemma 3.3 (iii) and (3.4), we
obtain the equation

(3.5) F.n/ D lim
m!1

�
cmjnjCd

d

�
md

� lim
m!1

#Œ�n�m

md
D
cd jnjd

dŠ
� Vold .�.�n//:

Due to Proposition 3.4, Lemma 3.3 (iv) and Proposition 1.32 in [17], we get the equality

�1.�.�n// D �1.�.�n1e1//C � � � C �1.�.�nr er //

D n1�1.�.�e1//C � � � C nr�1.�.�er //:

Thus, (2.1) implies that

Vold .�.�n// D Vold .�1.�.�n///

D

X
jdjDd

1

dŠ
MVd .�1.�.�//d/nd

D

X
jdjDd

1

dŠ
MVd .�.�/d/nd;

(3.6)

where �1.�.�// denotes the sequence �1.�.�// D .�1.�.�e1//; : : : ; �1.�.�er /// of
convex bodies. Finally, the result follows by combining (3.5) and (3.6).
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Proposition 3.6. Assume Setup 3.2 and use the same notation of Theorem 3.5. Let d D
.d1; : : : ; dr / 2 Nr with jdj D d . Then, one has that cd �MVd .�.�/d/ � 0.

Proof. Let† � Rd be the polytope given as the convex hull of the points 0; ce1; : : : ; c ed
� Rd . Consider the polytope � D † � ¹1º � RdC1, and notice that by construction we
have � � �.�ei / for all 1 � i � r . Since Vold .�/ D cd=dŠ and MVd .�; : : : ; �/ D
dŠVold .�/, the inequality

cd �MVd .�.�/.d1;:::;dr // D MVd .�; : : : ; �/ �MVd .�.�/.d1;:::;dr // � 0

follows from the monotonicity of mixed volumes (see, e.g., equation 5.25 in [23]).

With Theorem 3.5 in hand, we are ready to define the mixed multiplicities of graded
families of m-primary monomial ideals. Due to Proposition 3.6, the mixed multiplicities
defined below are always non-negative.

Definition 3.7. Assume Setup 3.2 and let G.n/ be as in Theorem 3.5. Write

G.n/ D
X
jdjDd

1

dŠ
ed.J.1/; : : : ; J.r//nd:

For each d D .d1; : : : ; dr / 2 Nr with jdj D d , we define the non-negative real number

ed.J.1/; : : : ; J.r// � 0

to be the mixed multiplicities of type d of J.1/ D ¹J.1/nºn2N ; : : : ; J.r/ D ¹J.r/nºn2N .

3.2. Mixed multiplicities of arbitrary graded families of monomial ideals

In this subsection, we introduce the notion of mixed multiplicities for arbitrary graded
families of monomial ideals under mild conditions. We begin with the following setup
that is used in our results.

Setup 3.8. Adopt Setup 3.1. Let I D ¹Inºn2N be a (not necessarily Noetherian) graded
family of m-primary monomial ideals. Let J.1/ D ¹J.1/nºn2N , : : :, J.r/ D ¹J.r/nºn2N

be (not necessarily Noetherian) graded families of monomial ideals in R.
For a homogeneous ideal J , we denote ˇ.J / D max¹j j ŒJ ˝R k�j ¤ 0º, that is, the

maximum degree of a minimal set of homogeneous generators of J . We assume that there
exists ˇ 2 N satisfying

ˇ.J.i/n/ � ˇn

for all 1 � i � r and n 2 N; similar assumptions have been considered in previous works
regarding limits of graded families of ideals (see [6], Theorem 6.1). Let c0 2 N be a
positive integer such that I1 �mc0 ; in particular, In0 �mn0c

0

. We set c Dmax¹ˇC 1; c0º.

We have the following simple observation that plays an important role in our approach.

Lemma 3.9. We have that

mc.n0Cjnj/ \ Jn D mc.n0Cjnj/ \ In0 Jn

for all n0 2 N and n D .n1; : : : ; nr / 2 Nr .
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Proof. Since ˇ.Jn/ � ˇjnj, we obtain the following inclusion:

mc.n0Cjnj/ \ In0 Jn � mc.n0Cjnj/ \mcn0 Jn D mc.n0Cjnj/ \ Jn:

The result follows.

Let n0 2 N and n D .n1; : : : ; nr / 2 Nr . We define the sets

(3.7) �n0;n WD
®
.m;m/D .m1; : : : ;md ;m/2NdC1

j xm
2 Jmn and jmj � cm.n0C jnj/

¯
and
(3.8)
y�n0;n WD

®
.m;m/D .m1; : : : ;md ;m/ 2NdC1

j xm
2 Imn0Jmn and jmj � cm.n0C jnj/

¯
:

The lemma below is equivalent to Lemma 3.3, and its proof follows verbatim.

Lemma 3.10. Let S � NdC1 be equal to either �n0;n or y�n0;n. The following statements
hold:
(i) S is a subsemigroup of the semigroup NdC1.

(ii) G.S/ D ZdC1, and so L.S/ D RdC1.

(iii) The pair .S; M/ is strongly admissible, with dim.@M/ D d and ind.S; M/ D

ind.S; @M/ D 1.

(iv) For any n 2 N and 1 � i � r , we have

�.�0;nei / D .n�1.�.�0;ei
�
/; 1/ and �.y�0;nei / D .n�1.�.

y�0;ei //; 1/:

(v) For any n 2 N, �.�n;0/ D .n�1.�.�1;0//; 1/ and �.y�n;0/ D .n�1.�.y�1;0//; 1/.

The next proposition decomposes �n0;n and y�n0;n as the levelwise sum of simpler
semigroups (this result plays the same role that Proposition 3.4 played in the previous
subsection).

Proposition 3.11. Assume Setup 3.8. We have the following equalities:
(i) �n0;n D �n0;0 ˚t �0;n1e1 ˚t � � � ˚t �0;nr er :

(ii) y�n0;n D y�n0;0 ˚t y�0;n1e1 ˚t � � � ˚t
y�0;nr er :

Proof. (ii) For each m � 0, we need to show that

�1.Œ y�n0;n�m/ D �1.Œ
y�n0;0�m/C �1.Œ

y�0;n1e1 �m/C � � � C �1.Œ
y�0;nr er �m/:

Fix m 2 Z>0.
First, we concentrate on the inclusion “�”. Let w0 2 Œ y�n0;0�m and, for each 1 � i � r ,

let wi 2 Œ y�0;ni ei �m. Note that, for each 1 � i � r , there exists xmi 2 J.i/mni such that
wi D .mi ;m/2NdC1. Similarly, there exists xm0 2 Imn0 such thatw0D .m0;m/2NdC1.
Since jmi j � cmni for 0 � i � r , it is clear that xm0 � � � xmr 2 Imn0Jmn and jm0 C � � � C

mr j D jm0j C � � � C jmr j � cm.n0 C jnj/: Therefore, it follows that y�n0;n � y�n0;0 ˚t
y�0;n1e1 ˚t � � � ˚t

y�0;nr er .
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Next, we focus on the inclusion “�”. Let w 2 Œ y�n0;n�m. Since I; J.1/; : : : ; J.r/ are
graded families of monomial ideals, there exist xm0 2 Imn0 and xmi 2 J.i/mni such that
w D .m0 C � � � Cmr ; m/ 2 NdC1.

By assumption, we have that
Pr
iD0jmi j � cm.n0 C jnj/. For ease of notation, we set

J.0/n D In for all n 2 N.
Let l.m0; : : : ;mr / WD

Pr
iD0 max¹jmi j � cmni ; 0º. If l.m0; : : : ;mr / D 0, it then

follows that jmi j � cmni for 0 � i � r , and so we obtain that �1.w/ D �1.w0/C � � � C
�1.wr /, where w0 D .m0; m/ 2 Œ y�n0;0�m and wi D .mi ; m/ 2 Œ y�0;ni ei �m for 1 � i � r .
On the other hand, suppose that l.m0; : : : ;mr / > 0. Thus, there exist 0 � j1; j2 � r such
that jmj1 j> cmnj1 and jmj2 j< cmnj2 . From the fact that ˇ.J.j1/mnj1 /� cmnj1 , we can
choose 1 � k � d such that xmj1�ek 2 J.j1/mnj1 . For 0 � i � r , we now set

xm0i 2 J.i/mni by m0i D

8̂<̂
:

mj1 � ek if i D j1;
mj2 C ek if i D j2;
mi otherwise.

Notice that �1.w/Dm00C � � � Cm0r and l.m00; : : : ;m
0
r /D l.m0; : : : ;mr /� 1. Therefore,

by inducting on l.m1; : : : ;mr /, we obtain the other inclusion y�n0;n � y�n0;0˚t y�0;n1e1 ˚t

� � � ˚t y�0;nr er .
(i) This part follows similarly, for example by following the arguments of part (ii) with

In D R for all n 2 N.

From Lemma 3.9 and the fact that I; J.1/; : : : ; J.r/ are graded families of monomial
ideals, we obtain the following equalities:

dimk .Jmn=Imn0 Jmn/ D dimk

�
Jmn=.m

cm.n0Cjnj/C1 \ Jmn/
�

� dimk

�
Imn0 Jmn=.m

cm.n0Cjnj/C1 \ Imn0 Jmn/
�

D #Œ�n0;n�m � #Œ y�n0;n�m:(3.9)

We are now ready for the main result of this section. We show the existence of a
homogeneous polynomial that allows us to define the mixed multiplicities of the graded
families I; J.1/; : : : ; J.r/. Additionally, we explicitly describe this polynomial in terms
of the mixed volume of certain Newton–Okounkov bodies.

Remark 3.12. We briefly describe the basic idea behind the proof of the following the-
orem. By utilizing the semigroups �n0;n and y�n0;n and Theorem 2.4, we can study the
asymptotic growth of the graded families J.1/; : : : ;J.r/ with respect to I (see (3.9)). Due
to Proposition 3.11, we can decompose the Newton–Okounkov body of �n0;n in terms of
the Newton–Okounkov bodies of semigroups that depend on each individual filtration (a
similar statement holds for the y�n0;n). Then the existence of a polynomial that coincides
with the asymptotic function is a direct consequence of Minkowski’s theorem (2.1).

Theorem 3.13. Assume Setup 3.8. The function

F.n0; n1; : : : ; nr / D lim
m!1

dimk.J.1/mn1 � � �J.r/mnr = Imn0J.1/mn1 � � �J.r/mnr /

md
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is equal to a homogeneous polynomial G.n0; n/ D G.n0; n1; : : : ; nr / of total degree d
with real coefficients for all n0 2N and nD .n1; : : : ; nr / 2Nr . Explicitly, the polynomial
G.n0;n/ is given by

G.n0;n/ D
X

d0CjdjDd

1

d0ŠdŠ
�
MVd .�.�/.d0;d// �MVd .�.y�/.d0;d//

�
n
d0
0 nd;

where �.�/ and �.y�/ denote the sequences of Newton–Okounkov bodies

�.�/ D .�.�1;0/;�.�0;e1/; : : : ; �.�0;er // and

�.y�/ D .�.y�1;0/;�.y�0;e1/; : : : ; �.
y�0;er //;

respectively.

Proof. The proof follows along the same lines of Theorem 3.5. Let n0 2 N and n D
.n1; : : : ; nr / 2 Nr . By using Theorem 2.4, Lemma 3.10 (iii) and (3.9), we obtain the
equation

F.n0;n/ D lim
m!1

#Œ�n0;n�m
md

� lim
m!1

#Œ y�n0;n�m
md

D Vold .�.�n0;n// � Vold .�.y�n0;n//:(3.10)

From Proposition 3.11, Lemma 3.10 (iv), (v), Proposition 1.32 in [17] and (2.1), we obtain
that

Vold .�.�n0;n// D
X

d0CjdjDd

1

d0ŠdŠ
MVd .�.�/.d0;d// n

d0
0 nd

and
Vold .�.y�n0;n// D

X
d0CjdjDd

1

d0ŠdŠ
MVd .�.y�/.d0;d// n

d0
0 nd:

So, the result follows.

Lemma 3.14. Assume Setup 3.8 and use the same notation of Theorem 3.13. Let d0 2 N
and d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d . Then:
(i) MVd .�.�/.d0;d// �MVd .�.y�/.d0;d// � 0.

(ii) MVd .�.�/.d0;d// �MVd .�.y�/.d0;d// D 0 when d0 D 0.

Proof. Notice that�.�1;0/��.y�1;0/ and that�.�0;ei /D�.y�0;ei / for all 1 � i � r . The
result follows from the monotonicity of mixed volumes (see, e.g., equation 5.25 in [23]).

After proving Theorem 3.13, we can define the mixed multiplicities of graded families
of monomial ideals. As a consequence of Lemma 3.14, these mixed multiplicities are
always non-negative and we can restrict ourselves to the terms of the form n

d0C1
0 nd in the

definition below.
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Definition 3.15. Assume Setup 3.8 and let G.n0;n/ be as in Theorem 3.13. Write

G.n0;n/ D
X

d0CjdjDd�1

1

.d0 C 1/ŠdŠ
e.d0;d/ .IjJ.1/; : : : ; J.r// n

d0C1
0 nd:

For each d0 2 N and d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d � 1, we define the non-
negative real number

e.d0;d/.IjJ.1/; : : : ; J.r// � 0

to be the mixed multiplicity of type .d0;d/ of J.1/D¹J.1/nºn2N ; : : : ;J.r/D¹J.r/nºn2N

with respect to I D ¹Inºn2N .

The following remark shows that Definitions 3.7 and 3.15 agree in the m-primary
case.

Remark 3.16. Assume Setup 3.8 and suppose that J.1/; : : : ;J.r/ are also graded families
of m-primary monomial ideals. For all m; n0 2 N and n D .n1; : : : ; nr / 2 Nr , we have
the short exact sequence

0! Jmn=Imn0 Jmn ! R=Imn0 Jmn ! R=Jmn ! 0:

So, for each d0 2 N and d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d , we can deduce the
following:
(i) If d0 D 0, then e.d0;d/.I; J.1/; : : : ; J.r// D ed.J.1/; : : : ; J.r//.
(ii) If d0 > 0, then e.d0;d/.I; J.1/; : : : ; J.r// D e.d0�1;d/.I j J.1/; : : : ; J.r//.

4. A “volume = multiplicity formula” for mixed multiplicities

In this section, we focus on proving Theorem B (see Theorem 4.7) which gives a “volume
= multiplicity formula” for mixed multiplicities. This can be seen as an extension of the
usual “volume = multiplicity formula” for graded families of ideals (see, e.g., Theorem 6.5
in [6]). Before that, we need to briefly recall the notion of mixed multiplicities for the case
of ideals (for more details, see, e.g., [24]).

Throughout this subsection, we adopt Setup 3.8 and the following extra piece of nota-
tion.

Notation 4.1. Assume Setup 3.8. For every p 2 N and n D .n1; : : : ; nr / 2 Nr , let J.p/n
denote the ideal J.1/n1p � � �J.r/

nr
p .

Let I �R be a homogeneous m-primary ideal and let J1; : : : ;Jr �R be homogeneous
ideals. Since I is m-primary, we have that

(4.1) T D T .I jJ1; : : : ; Jr / WD
M

n0�0;n1�0:::;nr�0

I n0J
n1
1 � � �J

nr
r

ı
I n0C1J

n1
1 � � �J

nr
r

is a finitely generated standard NrC1-graded algebra over the Artinian local ring R=I .
From Theorem 1.2 (a) in [24], one has a polynomialPT .n0;n1; : : : ;nr /2QŒn0;n1; : : : ;nr �
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of degree d � 1 D dim.R/ � 1 such that PT .�/ D dimk .ŒT ��/ for all � 2 NrC1 with
� � 0. Furthermore, if we write
(4.2)

PT .n0; n1; : : : ; nr / D
X

d0;d1;:::;dr�0

e.d0; d1; : : : ; dr /
�n0Cd0

d0

��n1Cd1
d1

�
� � �

�nrCdr
dr

�
;

then 0 � e.d0; d1; : : : ; dr / 2 Z for all d0 C d1 C � � � C dr D d � 1. For each d0 2 N and
d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d � 1, we say that

(4.3) e.d0;d/.I jJ1; : : : ; Jr / WD e.d0; d1; : : : ; dr /

is the mixed multiplicity of type .d0; d/ of J1; : : : ; Jr with respect to I . The following
lemma shows that the definition given in (4.3) agrees with the one given in Definition 3.15.

Lemma 4.2. Let I � R be a monomial m-primary ideal and let J1; : : : ; Jr � R be
monomial ideals. Consider the monomial filtrations ¹I nºn2N ; ¹J

n
1 ºn2N ; : : : ; ¹J

n
r ºn2N

given by the powers of I; J1; : : : ; Jr . Then, we have the equality

e.d0;d/
�
¹I nºn2N j ¹J

n
1 ºn2N ; : : : ; ¹J

n
r ºn2N

�
D e.d0;d/.I jJ1; : : : ; Jr /

for each d0 2 N and d D .d1; : : : ; dr / 2 Nr with d0 C jdj D d � 1.

Proof. Let F.n0; n/ be the function F.n0; n/ D limm!1 dimk.Jmn = Imn0Jmn/=md ,
where n D .n1; : : : ; nr / and Jmn denotes the ideal Jmn D J

mn1
1 � � �J

mnr
r � R.

For each n0 2 N and n 2 Nr , we have the following equality:

dimk.Jn = I n0Jn/ D

n0�1X
kD0

dimk.I
kJn = I kC1Jn/ D

n0�1X
kD0

dimk.ŒT �.k;n//

(where T is the algebra introduced in (4.1)). Let � D .�0; : : : ; �r / 2 NrC1 be such that
PT .n0;n/ D dimk

�
ŒT �.n0;n/

�
for all .n0;n/ � �. Thus, for all .n0;n/ � �, we can write

(4.4) dimk.Jn = I n0Jn/ D

�0�1X
kD0

dimk.ŒT �.k;n//C

n0�1X
kD�1

PT .k;n/:

For any k 2N, one has that ŒT �.k;�;:::;�/ D
L

n�0 I
kJnıI kC1Jn is a finitely generated

Nr -graded module over the finitely generated standard Nr -graded algebra ŒT �.0;�;:::;�/ DL
n�0 JnıIJn. From Theorem 4.1 in [12] (also, see Theorem 3.4 in [3]), for all n� 0,

we obtain that

dimk.ŒT �.k;n// D PŒT �.k;�;:::;�/.n/ for some polynomial PŒT �.k;�;:::;�/.n/

with degree bounded by dim.MultiProj.ŒT �.0;�;:::;�/// (see §1 of [16], and Definition 2.2
in [2]). Since I is an m-primary ideal, we have the equality

dim.MultiProj.ŒT �.0;�;:::;�/// D dim.MultiProj.F .J1; : : : ; Jr ///;
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where F .J1; : : : ; Jr / denotes the special fiber ring F .J1; : : : ; Jr / D R.J1; : : : ; Jr /˝R
R=m. By using the Segre embedding, we get the isomorphism

MultiProj.R.J1; : : : ; Jr /˝R R=m/ Š Proj.R.J1 � � �Jr /˝R R=m/:

Therefore, for all n� 0, we obtain that dimk.ŒT �.k;n// D PŒT �.k;�;:::;�/.n/ and

(4.5) deg.PŒT �.k;�;:::;�/.n//� dim.Proj.R.J1 � � �Jr /˝RR=m//D `.J1 � � �Jr /�1� d�1;

where `.J1 � � � Jr / denotes the analytic spread of J1 � � � Jr and the last inequality follows
from Proposition 5.1.6 in [15].

By combining (4.4) and (4.5), we obtain the following equality:

F.n0;n/ D lim
m!1

dimk.Jmn = Imn0Jmn/

md

D lim
m!1

P�0�1
kD0

dimk.ŒT �.k;mn//C
Pmn0�1
kD�1

PT .k;mn/
md

D lim
m!1

Pmn0�1
kD�1

PT .k;mn/
md

�

Since deg.PT .n0;n// D d � 1, we can write

F.n0;n/ D lim
m!1

Pmn0�1
kD0

PT .k;mn/
md

�

Notice that
mn0�1X
kD0

PT .k;mn/

D

X
d0;:::;dr�0

e.d0;d/.I jJ1; : : : ; Jr /
�mn0 C d0
d0 C 1

��mn1 C d1
d1

�
� � �

�mnr C dr
dr

�
:

Therefore, we obtain that F.n0;n/ coincides with the following polynomial:

F.n0;n/ D
X

d0CjdjDd�1

1

.d0 C 1/ŠdŠ
e.d0;d/.I jJ1; : : : ; Jr / n

d0C1
0 nd;

and so the result follows.

Let c be as in Setup 3.8. For ease of notation, we define the following functions (recall
Notation 4.1):

(4.6) Hp.n0;n/ WD lim
m!1

dimk.J.p/mn=.mcmp.n0Cjnj/C1 \ J.p/mn//

mdpd

and

(4.7) bHp.n0;n/ WD lim
m!1

dimk.I
mn0
p J.p/mn=.mcmp.n0Cjnj/C1 \ I

mn0
p J.p/mn//

mdpd
�

We note that the existence of these limits follow as in (3.10).
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The following technical proposition is needed to treat the Noetherian case of the for-
mula.

Proposition 4.3. Assume Setup 3.8. In addition, suppose that I;J.1/; : : : ;J.r/ are Noeth-
erian graded families. Then, for fixed n0 2 N, n 2 Nr and " 2 R>0, there exists p0 2 N
such that if p � p0 then

Vold .�.�n0;n// � Hp.n0;n/ � Vold .�.�n0;n// � "

and
Vold

�
�.y�n0;n/

�
� bHp.n0;n/ � Vold

�
�.y�n0;n/

�
� ":

Proof. Similarly to (3.7) and (3.8), we now define

�n0;n.p/ WD
®
.m; mp/ 2 NdC1

j xm
2 J.p/mn and jmj � cmp.n0 C jnj/

¯
and

y�n0;n.p/ WD
®
.m; mp/ 2 NdC1

j xm
2 Imn0p J.p/mn and jmj � cmp.n0 C jnj/

¯
:

For each .n0;n/ 2NdC1, we consider the graded families of monomial ideals ¹J.p/nºp2N

D ¹J.1/
n1
p � � �J.r/

nr
p ºp2N and ¹I n0p J.p/nºp2N D ¹I

n0
p J.1/

n1
p � � �J.r/

nr
p ºp2N : From these

graded families, we define the semigroups

An0;n WD
®
.m; p/ 2 NdC1

j xm
2 J.p/n and jmj � cp.n0 C jnj/

¯
and

Bn0;n WD
®
.m; p/ 2 NdC1

j xm
2 I n0p J.p/n and jmj � cp.n0 C jnj/

¯
:

By construction, for all p;m � 1 we have the inclusions

m ? ŒAn0;n�p � Œ�n0;n.p/�mp � ŒAn0;n�mp

and
m ? ŒBn0;n�p � Œ

y�n0;n.p/�mp � ŒBn0;n�mp:

As a consequence of Proposition 3.1 in [21] (see also Theorem 3.3 in [6]) and The-
orem 2.4, for a fixed " 2 R>0, there exists p0 2 N such that if p � p0 then

Vold .�.An0;n// � lim
m!1

#
�
Œ�n0;n.p/�mp

�
mdpd

� lim
m!1

#
�
m ? ŒAn0;n�p

�
mdpd

� Vold .�.An0;n// � "

and

Vold .�.Bn0;n// � lim
m!1

#
�
Œ y�n0;n.p/�mp

�
mdpd

� lim
m!1

#
�
m ? ŒBn0;n�p

�
mdpd

� Vold .�.Bn0;n// � ":
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Therefore, using the notation of (4.6) and (4.7), we obtain the inequalities Vold .�.An0;n//
�Hp.n0;n/�Vold .�.An0;n//� " and Vold .�.Bn0;n//�

bHp.n0;n/�Vold .�.Bn0;n//

�" for all p � p0.
To conclude the proof, we only need to show that the equalities Vold .�.An0;n// D

Vold .�.�n0;n// and Vold .�.Bn0;n// D Vold .�.y�n0;n// hold.
By the Noetherian assumption, there exists q > 0 such that

(4.8) J.i/nq D J.i/nq and I nq D Inq for every n � 0; 1 � i � r

(see, e.g., Lemma 13.10 in [11] and Theorem 2.1 in [13]). Hence J.mq/n D Jmqn and
I
n0
mq J.mq/nD Imqn0 Jmqn for allm� 0, and so Theorem 2.4 yields the required equalities

Vold .�.�n0;n// D lim
m!1

#Œ�n0;n�mq
mdqd

D lim
m!1

#ŒAn0;n�mq
mdqd

D Vold .�.An0;n//

and

Vold .�.y�n0;n// D lim
m!1

#Œ y�n0;n�mq
mdqd

D lim
m!1

#ŒBn0;n�mq

mdqd
D Vold .�.Bn0;n//:

Therefore, the proof of the proposition is now complete.

We now focus on approximating the graded families I; J.1/; : : : ; J.r/ by using suc-
cessive truncations of them. For that, we need to introduce some additional notation.

Notation 4.4. Let a > 0 be a positive integer. Let Ia D ¹Ia;nºn2N be the Noetherian
graded family generated by I1; : : : ; Ia, that is, for n > a one has Ia;n D

Pn�1
iD1 Ia;iIa;n�i .

Likewise, define J.i/a D ¹J.i/a;nºn2N for all 1 � i � r .

For a vector n D .n1; : : : ; nr / 2 Nr , we abbreviate Ja;n D J.1/a;n1 � � � J.r/a;nr . As
in (3.7) and (3.8), we now define

�a;n0;n WD
®
.m; m/ D .m1; : : : ; md ; m/ 2 NdC1

j xm
2 Ja;mn and jmj � cm.n0 C jnj/

¯
and

y�a;n0;n WD
®
.m;m/D .m1; : : : ;md ;m/2NdC1

j xm
2Ia;mn0Ja;mn and jmj� cm.n0Cjnj/ :̄

For every p 2 N and every n D .n1; : : : ; nr / 2 Nr , let J.a; p/n denote the ideal
J.1/

n1
a;p � � �J.r/

nr
a;p . Additionally, we have the following functions:

Ha;p.n0;n/ WD lim
m!1

dimk

�
J.a; p/mn=.mcmp.n0Cjnj/C1 \ J.a; p/mn/

�
mdpd

and

bH a;p.n0;n/ WD lim
m!1

dimk

�
I
mn0
a;p J.a; p/mn=.mcmp.n0Cjnj/C1 \ I

mn0
a;p J.a; p/mn/

�
mdpd

�

The next technical proposition is used in the proof of Theorem 4.7. For its proof we
use an argument quite similar to the one used in Proposition 4.3 of [8].
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Proposition 4.5. Assume Setup 3.8. Then, for fixed n0 2 N, n 2 Nr and " 2 R>0, there
exists a0 2 N such that if a � a0, then

Vold .�.�n0;n// � Vold .�.�a;n0;n// � Vold .�.�n0;n// � "

and
Vold .�.y�n0;n// � Vold .�.y�a;n0;n// � Vold .�.y�n0;n// � ":

Proof. For a positive integer a > 0, since In D Ia;n and J.i/ D J.i/a;n for all n � a, for
all m � 1 we obtain the following inclusions:

m? Œ�n0;n�a � Œ�a;n0;n�ma � Œ�n0;n�ma and m? Œ y�n0;n�a � Œ
y�a;n0;n�ma � Œ

y�n0;n�ma:

Then, by Proposition 3.1 in [21] (see also Theorem 3.3 in [6]) and Theorem 2.4, for a
fixed " 2 R>0, there exists a0 2 N such that if a � a0, then

Vold .�.�n0;n// � Vold .�.�a;n0;n// � lim
m!1

#.m ? Œ�n0;n�a/
mdad

� Vold .�.�n0;n// � "

and

Vold .�.y�n0;n// � Vold .�.y�a;n0;n// � lim
m!1

#.m ? Œ y�n0;n�a/
mdad

� Vold .�.y�n0;n// � ":

So, the result follows.

Finally, we are ready for our analog of the “volume = multiplicity formula” in the
case of mixed multiplicities. The following theorem expresses the mixed multiplicities of
graded families as normalized limits of mixed multiplicities of ideals.

Remark 4.6. We first provide a couple of general words regarding the proof of The-
orem 4.7. Despite a number of technical steps in the proof, the idea behind is quite simple:
we perform a double approximation process. First, we approximate the graded famil-
ies with successive truncations, which are Noetherian graded families. Then, under this
Noetherian hypothesis, we can choose suitable Veronese subalgebras of the Rees algeb-
ras corresponding to these truncations that are standard graded (see, e.g., Lemma 13.10
in [11], Theorem 2.1 in [13]). This means that these Veronese subalgebras are simply Rees
algebras of ideals. Finally, by certain technical steps, we can complete the proof.

We further extended this double approximation technique in [4], where we managed to
show the existence of mixed multiplicities of arbitrary graded families of ideals on Noeth-
erian local rings whose completion is reduced at minimal primes of maximal dimension
(in particular, it holds for analytically unramified local rings).

Theorem 4.7. Assume Setup 3.8. Then, for each d0 2 N and dD .d1; : : : ; dr / 2 Nr with
d0 C jdj D d � 1, we have the equality

e.d0;d/.I j J.1/; : : : ; J.r// D lim
p!1

e.d0;d/.Ip jJ.1/p; : : : ; J.r/p/

pd
�
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Proof. Let p � 1, and consider the filtrations

I.p/ D ¹I np ºn2N ; J.1/.p/ D ¹J.1/npºn2N ; : : : ; J.r/.p/ D ¹J.r/
n
pºn2N :

By applying Theorem 3.13 to the filtrations

I.p/ D ¹I np ºn2N ; J.1/.p/ D ¹J.1/npºn2N ; : : : ; J.r/.p/ D ¹J.r/npºn2N ;

let Fp.n0;n/ be the function

(4.9) Fp.n0;n/ D lim
m!1

dimk.J.p/mn=I
mn0
p J.p/mn/

md

and let Gp.n0;n/ be the polynomial of total degree d that coincides with Fp.n0;n/. From
Lemma 4.2, we can write

(4.10) Gp.n0;n/ D
X

d0CjdjDd�1

1

.d0 C 1/ŠdŠ
e.d0;d/.Ip jJ.1/p; : : : ; J.r/p/ n

d0C1
0 nd:

Notice that we have the equation

(4.11)
1

pd
Fp.n0;n/ D Hp.n0;n/ � bHp.n0;n/I

see (4.6) and (4.7).
Fix a positive real number " > 0. By using Proposition 4.5, choose a� 0 such that

(4.12) Vold .�.�n0;n// � Vold .�.�a;n0;n// � Vold .�.�n0;n// � "=2

and

(4.13) Vold .�.y�n0;n// � Vold .�.y�a;n0;n// � Vold .�.y�a;n0;n// � "=2:

From Proposition 4.3, applied to the Noetherian graded families Ia; J.1/a; : : : ; J.r/a,
choose p � 0 such that

(4.14) Vold .�.�a;n0;n// � Ha;p.n0;n/ � Vold .�.�a;n0;n// � "=2

and

(4.15) Vold .�.y�a;n0;n// � bH a;p.n0;n/ � Vold .�.y�a;n0;n// � "=2:

Since Ia;n � In and J.i/a;n � J.i/n for all n 2 N, one hasHp.n0;n/ �Ha;p.n0;n/ andbHp.n0;n/ � bH a;p.n0;n/, and so from (4.12), (4.13), (4.14) and (4.15) one obtains

(4.16) Vold .�.�n0;n// � Hp.n0;n/ � Ha;p.n0;n/ � Vold .�.�n0;n// � "

and

(4.17) Vold .�.y�n0;n// � bHp.n0;n/ � bH a;p.n0;n/ � Vold .�.y�n0;n// � ":
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Therefore, by combining (3.10), (4.11), (4.16) and (4.17), we obtain the equalities

F.n0;n/ D Vold .�.�n0;n// � Vold .�.y�n0;n//

D lim
p!1

.Hp.n0;n/ � bHp.n0;n// D lim
p!1

1

pd
Fp.n0;n/

for all n0 and n 2 Nr . Accordingly, it necessarily follows that the coefficients of the
polynomials 1

pd
Gp.n0; n/ converge to the ones of the polynomial G.n0; n/ (see, e.g.,

Lemma 3.2 in [8]). Therefore, by Definition 3.15 and (4.10), we obtain

e.d0;d/.IjJ.1/; : : : ; J.r// D lim
p!1

e.d0;d/.IpjJ.1/p; : : : ; J.r/p/

pd
;

and so the result follows.

5. Mixed volumes of convex bodies as mixed multiplicities

This section includes the proof Theorem C, which is the main result of this paper (see
Theorem 5.5). In this result, we describe the mixed volumes of (arbitrary) convex bodies as
the mixed multiplicities of certain (not necessarily Noetherian) graded families of ideals,
and as the normalized limits of the mixed multiplicities of certain monomial ideals.

Throughout this section we fix the following setup.

Setup 5.1. Let k be a field, let R D kŒx1; : : : ; xdC1� be the standard graded polynomial
ring, and let m � R be the graded irrelevant ideal m D .x1; : : : ; xdC1/. Let

�1 W R
dC1
! Rd ; .˛1; : : : ; ˛d ; ˛dC1/ 7! .˛1; : : : ; ˛d /;

be the projection into the first d factors. Let � WRdC1 ! R be the linear map given by
.˛1; : : : ; ˛d ; ˛dC1/ 7! ˛1 C � � � C ˛d C ˛dC1: Let .K1; : : : ;Kr / be a sequence of convex
bodies in Rd�0.

The notation below introduces a process that we call the homogenization of a convex
body.

Notation 5.2. LetK � Rd�0 be a convex body in Rd�0. Choose hK 2 N a positive integer
such that jxj � hK for all x 2 K. We call hK a suitable degree of homogenization of K.
The corresponding homogenization of K (with respect to hK) is defined as the convex
body

zK D .K �R/ \ ��1.hK/ � RdC1�0 :

Let CK be the corresponding cone CK WD Cone. zK/. Consider the semigroup SK �NdC1

given by

SK WD CK \NdC1
\

� 1[
kD1

��1.khK/
�
:

For each 1 � i � r , let hKi be a suitable degree of homogenization forKi , and let SKi
be the corresponding semigroup in NdC1 determined by the homogenization zKi�RdC1�0 .
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For each 1 � i � r , we consider the (not necessarily Noetherian) graded family of mono-
mial ideals

(5.1) J.i/ D ¹J.i/nºn2N ; where J.i/n D .xm
j m 2 SKi and jmj D nhKi / � R:

Let K0 � Rd be the convex hull of the points 0; e1; : : : ; ed 2 Rd and let zK0 be its homo-
genization zK0 D ¹x 2 RdC1�0 j jxj D 1º � RdC1; notice that hK0 D 1 is a suitable degree
of homogenization for K0. We let M be the graded family M D ¹mnºn2N . Denote by K
the sequence of convex bodies K D .K0; K1; : : : ; Kr /.

Let p > 0 be a positive integer. For each 1 � i � r , let Ki .p/ be the lattice polytope
given by

Ki .p/ WD �1
�
conv.¹m 2 NdC1

j xm
2 ŒJ.i/p�phKi º/

�
;

where conv.�/ denotes the convex hull of a finite set of points; the polytope defined
above corresponds with the generators of the ideal J.i/p . Denote by K.p/ the sequence
of lattice polytopes K.p/ WD .K0; K1.p/; : : : ; Kr .p//. The next lemma shows that the
mixed volumes of K can be approximated with the ones of K.p/.

Lemma 5.3. For each .d0;d/ 2 NrC1 with d0 C jdj D d , we have the equality

MVd
�
K.d0;d/

�
D lim
p!1

MVd .K.p/.d0;d//
pjdj

�

Proof. By construction, we have that 1
p
Ki .p/ converges to Ki in the Hausdorff metric

(see Definition 2.1 on p. 109 of [10]) when p !1. Thus, Lemma 3.8 on p. 119 of [10]
yields that

MVd
��
K0;

1

p
K1.p/; : : : ;

1

p
Kr .p/

�
.d0;d/

�
converges to MVd .K.d0;d// when p!1. Therefore, the result follows from the linearity
of mixed volumes (see, e.g., Lemma 3.6 on p. 118 of [10]).

Finally, the next theorem expresses the mixed volume of the convex bodiesK1; : : : ;Kr
as a mixed multiplicity of the chosen graded families J.1/; : : : ;J.r/. Additionally, we also
express the mixed volume of the convex bodies K1; : : : ; Kr as two types of normalized
limits of mixed multiplicities of ideals. This result can be seen as an extension of The-
orem 2.4 and Corollary 2.5 in [24].

Remark 5.4. The proof of the following theorem is the combination of three main ingre-
dients. By the result of Trung and Verma (Theorem 2.4 and Corollary 2.5 in [24]), we can
express mixed volumes of lattice polytopes as mixed multiplicities of monomial ideals.
By Lemma 5.3, mixed volumes of arbitrary convex bodies can be written as the nor-
malized limit of the mixed volumes of certain lattice polytopes. These lattice polytopes
induce graded families of monomial ideals in a natural way (see (5.1)). Finally, everything
is glued together by Theorem 4.7, which gives our “volume = multiplicity formula” for
mixed multiplicities.
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Theorem 5.5. Assume Setup 5.1. Let J.1/; : : : ; J.r/ be the graded families of monomial
ideals defined in (5.1). For each .d0;d/ 2NrC1 with d0C jdj D d , we have the equalities

MVd .K.d0;d// D e.d0;d/.M j J.1/; : : : ; J.r//

D lim
p!1

e.d0;d/.m
p jJ.1/p; : : : ; J.r/p/

pdC1

D lim
p!1

e.d0;d/.m jJ.1/p; : : : ; J.r/p/

pjdj
�

In particular, when r D d , we obtain the equalities

MVd .K1; : : : ; Kd / D e.0;1;:::;1/.M j J.1/; : : : ; J.d//

D lim
p!1

e.0;1;:::;1/.m
p jJ.1/p; : : : ; J.d/p/

pdC1

D lim
p!1

e.0;1;:::;1/.m jJ.1/p; : : : ; J.d/p/

pd
�

Proof. By applying Theorem 2.4 and Corollary 2.5 from [24] to the generators of the
monomial ideals J.1/p; : : : ; J.r/p , we readily obtain the identity MVd .K.p/.d0;d// D
e.d0;d/.m jJ.1/p; : : : ; J.r/p/. Thus, Lemma 5.3 yields the equality

MVd .K.d0;d// D lim
p!1

e.d0;d/.m jJ.1/p; : : : ; J.r/p/

pjdj
�

Consider

G1.n0;n/ D lim
m!1

dimk.J.1/
mn1
p � � �J.r/

mnr
p =mmn0J.1/

mn1
p � � �J.r/

mnr
p /

mdC1

and

G2.n0;n/ D lim
m!1

dimk.J.1/
mn1
p � � �J.r/

mnr
p =.mp/mn0J.1/

mn1
p � � �J.r/

mnr
p /

mdC1
�

By Theorem 3.13, the limits in G1 and G2 exist and are polynomials. Due to Lemma 4.2,
we have that

G1.n0;n/ D
X

d0CjdjDd

1

.d0 C 1/ŠdŠ
e.d0;d/.mjJ.1/p; : : : ; J.r/p/ n

d0C1
0 nd:

and

G2.n0;n/ D
X

d0CjdjDd

1

.d0 C 1/ŠdŠ
e.d0;d/

�
mp
jJ.1/p; : : : ; J.r/p

�
n
d0C1
0 nd:

Since G1.pn0; n/ D G2.n0; n/, we obtain, by comparing the coefficients of G1.pn0; n/
and G2.n0; n/, that e.d0;d/.m

pjJ.1/p; : : : ; J.r/p/ D p
d0C1e.d0;d/.mjJ.1/p; : : : ; J.r/p/.

Hence, the equality

lim
p!1

e.d0;d/.m
p jJ.1/p; : : : ; J.r/p/

pdC1
D lim
p!1

e.d0;d/.m jJ.1/p; : : : ; J.r/p/

pjdj

is clear. Finally, the proof is concluded by invoking Theorem 4.7.
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