
Rev. Mat. Iberoam. 38 (2022), no. 6, 2011–2032
DOI 10.4171/RMI/1323

© 2021 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

A non-local inverse problem with boundary response

Tuhin Ghosh

Abstract. The problem of interest in this article is to study the (non-local) inverse
problem of recovering a potential based on the boundary measurement associated
with the fractional Schrödinger equation. Let 0 < a < 1, and let u solve8̂<̂

:
..��/a C q/ u D 0 in �;
suppu � � [W ;
W \� D ;:

We show that, by making an exterior to boundary measurement as
�
ujW ;

u.x/
d.x/a

ˇ̌
†

�
, it

is possible to determine q uniquely in�, where † � @� is a non-empty open subset
and d.x/ D d.x; @�/ denotes the boundary distance function.

We also discuss a local characterization of large a-harmonic functions in a ball or
in the half space and its applications, which include boundary unique continuation
and a local density result.

1. Introduction and main results

In this paper, we address the so-called fractional Calderón problem (see [18]) through
the fractional Schrödinger equation, and study the global identifiability of the potential
based on the boundary response. So far, the fractional Calderón problem has been studied
(see [16–18]) based on the data measured in the exterior of the domain. In [18], it has
been shown that one can recover the potential q from the exterior measurements of the
non-local Cauchy data .vjW ; .��/avj zW /, where W and zW are non-empty open subsets
of the exterior domain �e WD Rn n�, and v solves8̂<̂

:
..��/a C q/ v D 0 in �;
supp v � � [W ;
W \� D ;:

In this paper, we address the inverse problem through introducing the exterior to boundary
response map. Based on that, we look for a new global uniqueness result of recovering the
potential.
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Let � � Rn .n � 2) be a non-empty smooth bounded domain, and let W � �e be
another non-empty smooth domain such that W \� D ;. Let us take q 2 C1c .�/ and
f 2 C1c .W /, which can be extended by 0 outside of W . Let 0 < a < 1 and consider the
following Dirichlet problem: u 2 H a.Rn/ satisfies

(1.1)

´
..��/a C q/ u D 0 in �;
u D f in �e:

We recall that there is a countable set of Dirichlet eigenvalues. We will assume that q is
such that 0 is not an eigenvalue, that is,

(1.2) if u 2 H a.Rn/ solves ..��/a C q/u D 0 in �; uj�e D 0; then u � 0:

This holds, for example, if q � 0. Then there exists a unique solution to (1.1) in H a.Rn/.
Let us define

Ea.�/ D e
Cda.x/C1.�/;

where eC denotes the extension by zero outside �, and d is a C1 function in � which is
positive in � and satisfies d.x/ D dist.x; @�/ near @�.

It follows from Section 6 in [18] and [21] that u 2 Ea.�/. Then u.x/
da.x/

ˇ̌
x2@�

exists as
a function in C1.@�/, see Subsection 2.3.

We define the exterior to boundary response map by

(1.3) Aq W C
1
c .W /! C1.@�/; Aq.f / D

u.x/

da.x/

ˇ̌̌
@�
;

where u 2 Ea.�/ solves (1.1). It is a well-defined map. In Subsection 2.3, we explore
various properties of Aq .

In this article, we would like to examine whether

the map q 7! Aq is injective or not.

This is the inverse problem we want to study here.
Further, we introduce the partial boundary data problem: let † � @� be a non-empty

open set, and let the partial boundary response map be

(1.4) A†
q W C

1
c .W /! C1.†/; A†

q .f / D
u.x/

da.x/

ˇ̌̌
†
:

Here is our main result.

Theorem 1.1. Let†�@� be a non-empty open subset. Suppose that, for q1; q22C1c .�/
satisfying the eigenvalue condition (1.2), we have

(1.5) A†
q1
.f / D A†

q2
.f /; for all f 2 C1c .W /:

Then q1 D q2 in �.
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Theorem 1.1 is a global uniqueness result for the inverse problem of the fractional
Schrödinger equation with both partial exterior (W � �e) and boundary data († � @�).

As an application, we also solve an inverse problem for a Robin boundary value prob-
lem. Let �, W , q 2 C1c .�/ and f 2 C1c .W / be as in Theorem 1.1. Let 0 < a < 1, and
consider the following Robin boundary value problem for the degenerate elliptic equation
in the half space RnC1C D ¹.y; x/ 2 .0;1/ �Rnº:

(1.6)

8̂̂̂̂
<̂
ˆ̂̂:
r �

�
y1�2arU.y; x/

�
D 0 in .0;1/ �Rn;

limy!0 y1�2a@yU.y; x/C q.x/U.0; x/ D 0 on �;

U.0; x/ D

´
f on W;
0 on �e nW :

The above local problem is the Caffarelli–Silvestre extension [7] in the half space RnC1C
of the non-local problem (1.1) on Rn. It has a non-zero solution U 2 H 1.RnC1C ; y1�2a/.
The trace u.x/ D U.0; x/ 2 H a.Rn/ solves (1.1), where U.y; x/ 2 H 1.RnC1C ; y1�2a/

solves the above problem (1.6). Note that the Neumann derivative satisfies, in the sense of
distributions, limy!0 y1�2a@yU.y; x/ D .��/au.x/ in Rn.

Let W; zW � �e be non-empty subsets. We know from [17, 18] that by measuring
the partial Cauchy data

�
U.0; x/jW ; limy!0 y1�2a@yU.y; x/ j zW

�
, one can determine q

uniquely in �. See also the recent article [14] establishing the same result in a more
general setup.

Here we show, as a direct consequence of Theorem 1.1, that it is enough to measure�
U.0; x/jW ;

U.0;x/
da.x/

ˇ̌
†

�
to determine q uniquely in �, where d.x/ D d.x; @�/, x 2 �

denotes the distance function to the boundary, and†� @� is any non-empty open subset.

Corollary 1.2. Let �, W , † and d.x/ be as in Theorem 1.1, and let q1; q2 2 C1c .�/
satisfy the eigenvalue condition (1.2). Further, let U1;U2 2H 1.RnC1C ; y1�2a/ be the solu-
tions of the Robin boundary value problem (1.6) corresponding to the potentials q1; q2
respectively, having the same partial Dirichlet data U1.0; x/jW D U2.0; x/jW D f 2

C1c .W /. If we have the same partial boundary data also,

U1.0; x/

da.x; @�/

ˇ̌̌
†
D

U2.0; x/

da.x; @�/

ˇ̌̌
†

for all f 2 C1c .W /;

then q1 D q2 in �.

The important observation here is that we are measuring on W � †, where W is an
n-dimensional domain and † is an .n � 1/-dimensional domain, to recover the poten-
tial q uniquely in �, a n-dimensional domain. Whereas, in the previous case, we were
measuring on W � zW , where both W and zW are n-dimensional domains, to recover the
potential q uniquely in �. So our new result has the merit to obtain the same conclusion,
but using one-dimensional less information.

Literature

These type of inverse problems are often addressed as generalized Calderón type inverse
problems. In the original Calderón problem [8], the objective was to know about the
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internal conductivity of an object from the static voltage and current measurements at the
boundary. The study of the inverse boundary value problems has a long history, in partic-
ular, in the context of electrical impedance tomography, on seismic and medical imaging,
inverse scattering problems and so on. We refer to [40] and the references therein for a
survey on this topic.

The study of fractional and non-local operators and its related inverse problems is a
very active field in recent years. These non-local equations appear in modelling various
problems from diffusion process [3], finance [39], image processing [19], biology [33]
etc. See [6, 14, 25, 34] for further references. The mathematical study of inverse prob-
lems for fractional equations (one dimensional time-space) goes back to [11]; while the
multidimensional space-fractional equations, in particular the fractional Calderón prob-
lem, begins with the article [18]. Subsequent developments in this particular area include
results for low regularity and stability [36, 37], matrix coefficients [16], variable coeffi-
cient [13], semilinear equations [27, 31], reconstruction from single measurement [17],
shape detection [24], local and non-local lower order perturbation [4,9,12,30], other time
dependent equations [28, 38], etc.

Qualitative results on large a-harmonic functions in balls

After discussing the inverse problem, we analyse large a-harmonic functions in balls or
in the half space. By providing its local characterization, we actually come up with some
qualitative results which include some boundary unique continuation, a local density result
to say. For instance, we show the following.

Theorem 1.3 (Boundary unique continuation). For 0 < a < 1, let u 2 Ea�1.B.0; 1// be
a solution of

(1.7)

´
.��/au D 0 in B.0; 1/;
suppu � B.0; 1/:

Suppose � � @B.0; 1/ is some non-empty connected open subset such that

u.x/

.1 � jxj2/a�1

ˇ̌̌
�
D

u.x/

.1 � jxj2/a

ˇ̌̌
�
D 0:

Then u � 0.

Note that the above result also holds for harmonic functions, i.e., for a D 1. Let us
mention a density result which is known for harmonic functions.

Theorem 1.4 (Density result). Let n � 2 and let uk 2 Ea�1.B.0; 1// solve (1.7), for
k D 1; 2. Then the set ¹u1u2º is dense in L1loc.B.0; 1//.

Though the above two results are stated for the ball, the author conjectures that they
hold for any bounded domain as well. Since our proof explicitly uses the fact that the given
domain is a ball, the case of general domains remains open; this could be an interesting
question to look at. Let us formalize those questions here.
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Conjectures

(a) Let � � Rn be a bounded open set with smooth boundary, let 0 < a < 1, and let
u 2 Ea�1.�/ be a solution of

(1.8)

´
.��/au D 0 in �;
suppu � �:

If � � @� is some non-empty connected open subset such that

u

da�1

ˇ̌̌
�
D

u

da

ˇ̌̌
�
D 0;

then u � 0.
(b) Let n � 2 and let uk 2 Ea�1.�/ solve (1.8), for k D 1; 2. The set ¹u1u2º is dense

in L1loc.�/.

This paper is organized as follows. In Section 2, we review the exterior value problem
of the fractional Schrödinger equation, and discuss the well-definedness of the exterior to
boundary map Aq . Following that, we introduce and discuss the large a-harmonic func-
tions and the local boundary value problem for the fractional Schrödinger equation. In
Section 3, we complete the proof of Theorem 1.1, the solution of the inverse problem.
Finally, in Section 4, we discuss the local characterization of large a-harmonic functions
in balls and in the half space, and complete the proofs of Theorems 1.3 and 1.4.

2. Preliminaries: Direct problem

We begin with recalling some preliminary results.

2.1. Fractional Laplacian and fractional Sobolev space

Let 0 < a < 1. The fractional Laplacian operator .��/a is defined over the space of
Schwartz class functions S .Rn/ as

(2.1) 8x 2 Rn; .��/au.x/ D F�1¹j�j2a yu.�/º; u 2 S .Rn/

where y� and F�1 denote the Fourier transform and its inverse, respectively.
There are a number of equivalent definitions of the fractional Laplacian (see [26]). For

instance, it can be given by the Cauchy principal value as (0 < a < 1)

.��/au.x/ D Cn;a p:v:
Z

Rn

u.x/ � u.y/

jx � yjnC2a
dy;

where Cn;a D
4a�.n=2Ca/

�n=2�.�a/
. Throughout the paper, � stands for the usual Gamma function.

The fractional Laplacian extends as a bounded map

.��/a W H s.Rn/ 7! H s�2a.Rn/
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for s 2 R and a 2 .0; 1/. Here,

H s.Rn/ WD ¹u 2 � 0.Rn/ j h�is yu 2 L2.Rn/º

is the fractional Sobolev space, with h�i D .1C j�j2/1=2, and where � 0.Rn/ is the space
of tempered distributions in Rn, equipped with the norm

kukH s.Rn/ D kh�i
s
yukL2.Rn/:

Let � be an open subset of Rn which is either bounded with smooth boundary or
equal to the half space RnC. We introduce the notations rC for restriction to � and eC

for extension by zero outside �; r� and e� are the analogous notations for �e . Then we
define the following Sobolev spaces:

H s.�/ WD rCH s.Rn/ and PH s.�/ WD ¹u 2 H s.Rn/ j suppu � �º;

equipped with the norm

kukH s.�/ D inf
v2H s.Rn/; vj�Du

kvkH s.Rn/:

We recall the spaces

L2.RnC1C ; y1�2a/ D
®
U W RnC1C 7! R measurable, y.1�2a/=2U 2 L2.RnC1C /

¯
;

H 1.RnC1C ; y1�2a/ D
®
U 2 L2.RnC1C ; y1�2a/; rU 2 L2.RnC1C ; y1�2a/

¯
;

and the trace space of H 1.RnC1C ; y1�2a/ at y D 0 as H a.Rn/, see [32], Paragraph 5.

2.2. Exterior value problem

Probabilistically, the fractional Laplacian operator .��/a represents the infinitesimal gen-
erator of a symmetric 2a-stable Lévy process in the entire space. Here we are interested
in the restriction of .��/a to a bounded domain �. For example, one can think of the
homogeneous Dirichlet exterior value problem for the fractional Laplacian operator (e.g.,
.��/av D in �, and v D 0 in �e) which represents the infinitesimal generator of a sym-
metric 2a-stable Lévy process for which particles are killed upon leaving the domain �
(see [2]).

Existence, uniqueness and stability

Let q 2 L1.�/. Then, for a given h 2 zH a.�/� and f 2 H a.Rn/, there exists a (weak)
solution u 2 H a.Rn/ solving (see [18])

(2.2)

´
..��/a C q/u D h in �;
u D f in �e:
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Eigenvalue condition

Let q 2 L1.�/ be such that

(2.3) the problem ..��/a C q/wD 0 in �; wD 0 in �e has a unique solution w D 0:

This implies the problem (2.2) has a unique solution. In addition, we have the follow-
ing H a stability estimate

(2.4) kukHa.Rn/ � Cn;s
�
khk zHa.�/� C kf kHa.Rn/

�
;

for some constant Cn;a > 0, independent of h and f .

Regularity

We write E�.�/ for eCd�C1.�/, with R.�/ >�1, and where d.x/ is a smooth positive
extension into � of dist.x; @�/ near @�. In general, for � 2 C with R.�/ > �1 one has
E��k.�/ D spanD.k/E�.�/, where D.k/ denotes the smooth differential operator of
order k 2 N.

Let q 2 C1c .�/ and let u 2 PH a.Rn/ solve the homogeneous Dirichlet problem

(2.5)

´
..��/a C q/ u D h in �;
u D 0 in �e:

Then, due to the results in [35] and [21], we have the following:
• h 2 L1.�/ H) u 2 da C ˛.�/ for some ˛ 2 .0; 1/ satisfying

(2.6)
 u.x/
da.x/

ˇ̌̌
@�


C˛.@�/

� Cn;a khkL1.�/:

• h 2 C1.�/” u 2 Ea.�/.

2.3. Well-definedness of the map Aq

Let us now discus the well-definedness of the map Aq , introduced earlier in (1.3):

Aq W C
1
c .W /! C1.@�/; Aq.f / D

u.x/

da.x/

ˇ̌̌
@�
;

where u 2 H a.Rn/ uniquely solves

(2.7)

´
..��/a C q/ u D 0 in �;
u D f in �e:

Here W is a smooth open set in �e satisfying W \� D ;, and f 2 C1c .W /, extended
by 0 outside. Therefore, w D .u � f / 2 PH a.Rn/ is the solution of´

..��/a C q/w D �.��/af in �;
w D 0 in �e:
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Then, for h WD �.��/af 2 C1.�/, it follows that h 2 C1.�/ since, by definition,

h.x/ D Cn;a

Z
W

f .y/

jx � yjnC2a
dy; x 2 �;

has no singularity asW \�D;. Therefore, by the above regularity result,w 2Ea.�/ and
w.x/
da.x/

ˇ̌
@�
2 C1.�/: But since w.x/

da.x/

ˇ̌
�
D

u.x/
da.x/

ˇ̌
�

, we have u 2 Ea.�/ and in particular
u.x/
da.x/

ˇ̌
@�
2 C1.@�/, where u solves (2.7). This shows that the map f 7!Aq.f / is well-

defined from C1c .W / to C1.@�/.

Boundedness of Aq

The estimate (2.6) asserts that Aq can be considered as a bounded map with respect to
L1-norm, i.e.,

kAq.f /kL1.@�/ � Cn;a .dist.�;W //�2a kf kL1.W /;

where we use the following equivalence estimate (see for instance Lemma 2.4 in [10]):
since � \W D ;,

.dist.x;W //�2a �
Z
W

1

jx � yjnC2a
dy; x 2 �:

Range characterization of Aq

Next, let us consider the range of the map Aq ,

(2.8) R@� WD

° u.x/
da.x/

ˇ̌̌
@�
W u solves (2.7); f 2 C1c .W /

±
:

We have the following result, proved in [18], Theorem 1.3.

Proposition 2.1. R@� is dense in C1.@�/.

Remark 2.2. As Aq is a continuous linear map, by the open mapping theorem it is an
open map. But it may not be injective. On the other hand, since its range R@� is dense,
we can assert that the pre-image set is also dense in the domain of the map, i.e.,

Z D ¹0º [ ¹f 2 C1c .W / W Aq.f / ¤ 0º is dense in C1c .W /:

2.4. Boundary value problem

In this subsection, we introduce the local boundary value problem for the fractional Schrö-
dinger operator, which plays a key role to solve our inverse problem.

2.4.1. Examples of large a-harmonic functions (cf. [1]). (1) The function

u� .x/ D

´
cn;a

1
.1�jxj2/�

in B.0; 1/;

cn;aC�
1

.jxj2�1/�
in Rn n B.0; 1/;

� 2 .0; 1 � a/;
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solves
.��/au� D 0 in B.0; 1/:

Clearly, u� blows up over the boundary @B.0; 1/.
(2) The function

(2.9) u1�a.x/ D

´
cn;a

1
.1�jxj2/1�a

in B.0; 1/;

0 in Rn n B.0; 1/;

solves
.��/au1�a D 0 in B.0; 1/:

Over the boundary @B.0; 1/, the limit
u1�a

d.x/a�1

ˇ̌̌
@B.0;1/

D lim
jxj!1

u1�a

.1 � jxj/a�1
D
cn;a

21�a

is a non-zero constant, assuming cn;a ¤ 0.

2.4.2. Fractional Schrödinger equation. Motivated by the above examples, we would
like to study the following general problem:

(2.10)

´
..��/a C q/ u D 0 in �;
suppu � �:

We will specify the boundary condition later. Let us introduce the order-reducing operators
of plus/minus type, see [20–22]. We define

„t˙ WD Op.�t˙/ on Rn; �t˙ D
�
h� 0i ˙ i�n

�t
:

These symbols extend analytically in �n to Im �n 7 0. Hence, by the Paley–Wiener the-
orem, „t

˙
preserve supports in Rn

˙
. Then, for all s 2 R,

„tC W
PH s.RnC/! PH s�t .RnC/; rC„t�e

C
W H s.RnC/! H s�t .RnC/:

In fact,„tC and rC„t�e
C are disjoint. The corresponding inverses are„�tC and rC„�t� e

C,
respectively.

The operator „tC maps Et .RnC/ \ E 0 to eCC1.RnC/, with the property that, for u 2
Et .RnC/ \ E 0, ´

0.„
t
Cu/ D �.t C 1/0.u=x

t
n/; (Dirichlet);

1.„
t
Cu/ D �.t C 2/0 .@xn.u=x

t
n//; (Neumann);

where 0 and 1 are the Dirichlet and Neumann trace operator, respectively.
Following that, we define the a.s/-transmission spaces, which can be thought of as a

generalization of Ea spaces. We define, as in [21],

H a.s/.RnC/ WD „
�a
C H

s�a.RnC/; for s � a > �
1

2
�

Note that generally eCH s�a.RnC/ has a jump at xn D 0; it is mapped by „�aC to a singu-
larity of the type xan . We have the following properties:
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• The inclusion H a.s/.RnC/ � PH
a�1=2.RnC/ is continuous.

• The inclusions PH a�1=2.RnC/ � H
a.s/.RnC/ � H

t
loc.R

n
C/ are continuous, i.e., multi-

plication by any � 2 C1c .R
n
C/ is bounded H a.s/.RnC/ 7! H a.RnC/.

• The set \s�a�1=2>0H a.s/.RnC/ D Ea.RnC/ is dense in H a.s/.RnC/.
Therefore, one has the following characterization:

H a.s/.RnC/

´
D PH s.RnC/ if � 1=2 < s � a < 1=2;
� eCxan H

s�a.RnC/C PH
s.RnC/ if s � a > 1=2;

with PH s.RnC/ replaced by PH s��.RnC/ if s � a � 1=2 2 N [ ¹0º.

Remark 2.3. It is shown in [21] that in the homogeneous Dirichlet problem (2.5), we
actually have h 2 H s�2a.�/” u 2 H a.s/.�/.

Now we study the non-homogeneous boundary value problem.

Dirichlet boundary value problem

Let d.x/ be a smooth positive extension of dist.x; @�/ into�, near the boundary @�. The
trace map

a�1;0 W Ea�1.�/! C1.@�/

u 7! �.a/0

� u

da�1

�
extends to a�1;0WH .a�1/.s/.�/ ! H s�aC1=2.@�/ for s � a C 1=2 > 0. Moreover, it
becomes a bijection as

a�1;0 W H
.a�1/.s/.�/=H a.s/.�/! H s�aC1=2.@�/:

With that in hand, we address the following non-homogeneous Dirichlet problem:

(2.11)

8̂<̂
:
..��/a C q/ u D h in �;
u.x/

d.x/a�1
D f .x/ on @�;

u D 0 in �e;

where h 2 H s�2a.�/ and f 2 H s�aC1=2.@�/. Then we have the following result.

Proposition 2.4 (Non-homogeneous Dirichlet problem, [1, 20]). Let q 2 C1c .�/ and let
s � aC 1=2 > 0. Then

¹rC ..��/a C q/ ; a�1;0º W H
.a�1/.s/.�/! H s�2a.�/ �H s�2aC1=2.@�/

is a Fredholm mapping.

We also have the following regularity result:

.h; f / 2 C1.�/ � C1.@�/ H) u 2 Ea�1.�/:
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Remark 2.5. Under the eigenvalue condition (2.3), the solution of (2.11) turns out to be
unique. Indeed, we can write u D v C w, where v 2 H .a�1/.s/.�/ uniquely (the a-har-
monic function in �) solves 8̂<̂

:
.��/av D 0 in �;
v.x/

d.x/a�1
D f .x/ on @�;

v D 0 in �e;

and w solves ´
..��/a C q/w D h � qv in �;
w D 0 in �e;

for q 2C1c .�/. Due to the eigenvalue condition (2.3),w 2H a.s/.�/ is unique. Therefore,
the solution u D v C w 2 H .a�1/.s/.�/ of (2.11) is also unique.

Neumann boundary value problem

One can also study the following Neumann problem:

(2.12)

8̂<̂
:
..��/a C q/ u D h in �
@�
�
u.x/

d.x/a�1

�
D f .x/ on @�;

u D 0 in �e;

where h 2 H s�2a.�/ and f 2 H s�a�1=2.@�/. Note that the function space for f fol-
lows from the Taylor expansion of u=da�1 over the boundary (normalized with Gamma
coefficients). If we denote´

a�1;0 u D u0 WD �.a/0
�

u
da�1

�
(Dirichlet);

a�1;1 u D u1 WD �.aC 1/0
�
@�
�

u
da�1

��
(Neumann);

then

(2.13) a�1;1u D a;0 u
0; where u0 D u �

1

�.a/
da�1u0:

In particular, when u0 D 0, then a�1;1 u D a;0 u D �.aC 1/ uda .

Proposition 2.6 (Non-homogeneous Neumann problem, [20, 21]). Let q 2 C1c .�/ and
let s � a � 1=2 > 0. Then

¹rC ..��/a C q/ ; a�1;1º W H
.a�1/.s/.�/! H s�2a.�/ �H s�2aC1=2.@�/

is a Fredholm mapping.

We also have a regularity result similar to that of the previous case:

.h; f / 2 C1.�/ � C1.@�/ H) u 2 Ea�1.�/:

Remark 2.7. If u.x/

d.x/a�1
j@� D 0 on @� in Proposition 2.4 or in Proposition 2.6, then the

solutions of the respective Dirichlet or Neumann problem lie in the space H a.s/.�/.
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Integration by parts formula

Let us recall the following result from [23], Theorem 5.1. Let u; v 2 H .a�1/.s/.�/: Then,
for s � a � 1=2 > 0,

(2.14)
Z
�

..��/au v � u .��/av/ dx D �.a/�.aC 1/

Z
@�

.u1 v0 � u0 v1/ dx

with u0 D u
da�1

ˇ̌
@�

, u1 D @�
�

u
da�1

�ˇ̌
@�

, v0 D v
da�1

ˇ̌
@�

, v1 D @�
�

v
da�1

�ˇ̌
@�

.

When u 2 H .a�1/.s/.�/, v 2 H a.s/.�/ are real valued, then (2.14) becomes

(2.15)
Z
�

v .��/au �

Z
�

u .��/av D ��.a/�.aC 1/

Z
@�

u

da�1
v

da
�

This is because v0 D 0 and v1 D v
da
j@�, as v 2 H a.s/.�/.

Observe that the boundary contribution is completely local. This formula (2.15) was
obtained in [1] for the fractional Laplacian operator, and later was generalized for any
classical pseudo-differential operator of order 2a (not necessarily elliptic) in [22].

3. Inverse problem: Uniqueness result

Proof of Theorem 1.1. Let f 2 C1c .W /; we extend it by 0 elsewhere. Let vk
f
D vk 2

H a.Rn/ \ Ea.�/, for k D 1; 2 solve´ �
.��/a C qk

�
vk D 0 in �;

vk D f in �e;

and let † � @� be a non-empty open set. By the hypothesis, we have

(3.1)
v1
f

da

ˇ̌̌
†
D
v2
f

da

ˇ̌̌
†

for all f 2 C1c .W /;

and we want to show that this implies q1 D q2 in �.
Let g 2 C1.@�/ be some non-zero function such that supp g � †, and let uk 2

Ea�1.�/, k D 1; 2, be the non-zero unique solutions of the inhomogeneous Dirichlet
problem

(3.2)

8̂<̂
:
�
.��/a C qk

�
uk D 0 in �;

uk.x/

d.x/a�1
D g on @�;

uk D 0 in �e:

Using the integration by-parts formula (2.15) for uk 2 Ea�1.�/ and wk WD .vk � f / 2
Ea.�/, we have

(3.3)
Z
�

wk .��/auk �

Z
�

uk .��/awk D ��.a/�.aC 1/

Z
@�

uk

da�1
wk

da
�
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Since wk satisfies ´
..��/a C qk/wk D �.��/af in �;
wk

da
j@� D

vk

da
j@�;

together with equation (3.2), we rewrite the identity (3.3) as

(3.4)
Z
�

uk .��/af D ��.a/�.aC 1/

Z
†

g
vk

da
;

since suppg � † � @�. Then we can conclude from our hypothesis (3.1) thatZ
�

.u1 � u2/ .��/af D 0; for all f 2 C1c .W /:

But since the difference .u1 � u2/ 2 H a.Rn/ (cf. Remark 2.7), it follows thatZ
W

f .��/a.u1 � u2/ D 0; for all f 2 C1c .W /;

and hence,
.��/a.u1 � u2/ D 0 in W:

Since .u1 � u2/ D 0 in W as well (cf. (3.2)), by the unique continuation of the fractional
Laplacian (see Theorem 1.2 in [18]), we actually have

u1 D u2 in Rn:

This leads to the following identity from (3.2):

.q1 � q2/u1 D 0 in �:

Moreover, as u1 is non-zero in every open set in �, thanks to the unique continuation of
the fractional Laplacian (see Theorem 1.2 in [18]), and its smoothness in the set containing
the support of q1; q2 2 C1c .�/, we conclude

q1 � q2:

This completes the proof.

4. Local characterization of large a-harmonic functions and
applications

As our proof relies on the class of solutions of the non-local boundary valued problem,
we want to further discuss some new results about them.

Let u 2 Ea�1.�/ be the solution of8̂<̂
:
.��/au D 0 in �;
u.x/

d.x/a�1
D f .x/ on @�;

u D 0 in �e:
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As it turns out, it is possible to give a local characterization of the solution of the above
non-local problem, in terms of the solution of a local boundary value problem, whenever
the domain � is a ball or the half-space RnC. For instance, one has the following.

Proposition 4.1 (Local characterization in a ball). Let n � 1 and let u 2 Ea�1.B.0; 1//

be the solution of the problem

(4.1)

8̂<̂
:
.��/au D 0 in B.0; 1/;

u.x/

.1�jxj2/a�1

ˇ̌
@B.0;1/

D f 2 C1.@B.0; 1//;

u D 0 in Rn n B.0; 1/:

Then u.x/

.1�jxj2/a�1
2 C1.B.0; 1// solves

(4.2)

´
.��/ u.x/

.1�jxj2/a�1
D 0 in B.0; 1/;

u.x/

.1�jxj2/a�1

ˇ̌
@B.0;1/

D f on @B.0; 1//;

and vice-versa.

The work of [5] contains such characterization, see Example 1 there. To be self-
contained, we present the proof later. We also present a similar result in the half space,
appeared in [20]. For that, we need to introduce some related notions.

Dirichlet Green’s kernel

Let us recall the Green kernel associated with the fractional Laplacian operator in a
bounded domain (cf. [1]).

Let � � Rn be a Lipschitz domain. Then the Green kernel Ga�.�; �/ is defined as

Ga�.x; z/ D cn;�a
1

jx � zjn�2a
�H a

�.x; z/; x; z 2 �; x ¤ z;

where H a
� 2 H

a.Rn/ \ C a.Rn/ solves´
.��/aH a

�.x; �/ D 0 in �;

H a
�.x; z/ D cn;�a

1
jx�zjn�2a

in �e:

Then Ga�.x; �/ is known as the Dirichlet Green kernel for the bounded domain �, solving´
.��/axG

a
�.x; �/ D ız.x/ in �;

Ga�.x; z/ D 0 in �e:

Here we mention that Ga�.x; z/D G
a
�.z; x/ for all z; x 2 Rn, and that the following limit

exists (cf. [1], (c) Proposition 2, and Remark 2):

(4.3) 8! 2 @�; x 2 �; DaG�.x; !/ WD lim
�3z!!

Ga�.x; z/

da.z/
�
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Poisson formula

Let n � 1 and let u 2 Ea�1.�/ be the solution of the following problem:

(4.4)

8̂<̂
:
.��/au D 0 in �;
u.x/

.d.x//a�1

ˇ̌
@�
D f 2 C1.@�/;

u D 0 in �e:

Using the integration by parts formula (2.15), the solution of (4.4) can be then expressed as

(4.5) u.x/ D

Z
@�

DaG�.x; !/f .!/ dS.!/:

This formula is also derived in Theorem 1.2 of [1].

� is a ball

In the particular case where�D B.�; r/ is a ball of radius r , centered at � 2 Rn, we have
for n � 2,

(4.6) GaB.�;r/.x; z/ D

´
zcn;a

1
jz�xjn�2a

� R R0.x;z/
0

ta�1

.1Ct/n=2
dt
�
; x; z 2 B.�; r/; x ¤ z;

0 in Rn n B.�; r/;

where

(4.7) R0.x; z/ D
.r2 � jx � � j2/.r2 � jz � � j2/

r2jx � zj2

and zcn;a is some constant depending only on n and a.

Lemma 4.2. In the case of a ball, we have, for all ! 2 Sn�1; x 2 B.0; 1/,

(4.8) lim
B.0;1/3z!!

Ga
B.0;1/

.x; z/

.1 � jzj2/a
D kn

.1 � jxj2/a

jx � !jn
;

where �n D 1
n˛.n/

, and ˛.n/ is the volume of the unit ball.

Proof. Let us recall the expression for Ga
B.0;1/

given in (4.6), where now

R0.x; z/ D
.1 � jxj2/.1 � jzj2/

jx � zj2
�

Note that, for t 2 Œ0; R0�, one has

ta�1

.1CR0/n=2
�

ta�1

.1C t /n=2
� ta�1:

Hence, it follows that

1

.1CR0/n=2
Ra0
a
�

Z R0.x;z/

0

ta�1

.1C t /n=2
dt �

Ra0
a
�



T. Ghosh 2026

Then from the expression of R0.xI z/, we obtain, for all ! 2 Sn�1; x 2 B.0; 1/;

lim
B.0I1/3z!!

Ga
B.0;1/

.x; z/

.1 � jzj2/a
D
zcn;a

a

.1 � jxj2/a

jx � !jn

and �n WD zcn;a=a D 1=.n˛.n//. This proves the lemma.

Now we are in the position to present the proof of Proposition 4.1.

Proof of Proposition 4.1. We use (4.8) for the expression ofDaGB.0;1/.x;!/ to write the
Poisson formula (4.5) as

(4.9) u.x/ D
1

n˛.n/
.1 � jxj2/a

Z
@B.0;1/

f .!/

jx � !jn
dS.!/; x 2 B.0; 1/;

or

u.x/

.1 � jxj2/a�1
D

1

n˛.n/
.1 � jxj2/

Z
@B.0;1/

f .!/

jx � !jn
dS.!/; x 2 B.0; 1/:

The above expression is nothing but the Poisson integral formula of the harmonic function
which solves (4.2),

.��/
u.x/

.1 � jxj2/a�1
D 0 in B.0; 1/;

u.x/

.1 � jxj2/a�1
D f on @B.0; 1/:

Conversely, let us define v 2 C1.B.0; 1// by the Poisson integral as

v.x/ D
1

n˛.n/
.1 � jxj2/

Z
@B.0;1/

f .!/

jx � !jn
dS.!/; x 2 B.0; 1/

which solves
.��/v D 0 in B.0; 1/; v D f 2 C1.@B.0; 1//:

Then the function u defined, for x 2 B.0; 1/, as

u.x/ D .1 � jxj2/a�1v.x/ D
1

n˛.n/
.1 � jxj2/a

Z
@B.0I1/

f .!/

jx � !jn
dS.!/;

solves (4.1), due to (4.9). This completes the proof.

Remark 4.3 (� is the half space). There is a similar connection between null-solutions
for .1 ��/a and .1 ��/ in the case when � D RnC (here we write x D .x0; xn/, x0 D
.x1; : : : ; xn�1/). Let K0 be the Poisson operator with symbol .h� 0i C i�n/�1 (that is,
K0Wf .x

0/ 7! F �1
�!x

Œ.h� 0i C i�n/
�1Fx0!� 0f �). It solves the problem

(4.10)

8̂<̂
:
rC.1 ��/v D 0 in RnC;

0v D f on Rn�1;

v D 0 in Rn�:
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Grubb shows that the operator K 0a�1;0 D x
a�1
n K0 solves the problem

(4.11)

8̂<̂
:
rC.1 ��/au D 0 in RnC;

0
�
u

xa�1n

�
D f on Rn�1;

u D 0 in Rn�:

The operator called Ka�1;0 in Remark 2.10 of [20] equals to

Ka�1;0 D
1

�.a/
K 0a�1;0 D

1

�.a/
xa�1n K0;

normalizing a Gamma-factor (which is denoted as Ka�10 in some later publications). It is
shown in [20], (A.13), Appendix A, that

Ka�1;0 D „
a�1
C K0

which is, by Remark 2.10 in [20],

Ka�1;0 D „
a�1
C K0 D e

Cca�1 x
a�1
n K0;

where ca�1 is some non-zero constant and eCK0 is understood as mapping of functions
in RnC.

The operator K 0a�1;0 maps, for s > �1=2,

K 0a�1;0 W H
s�1=2.Rn�1/ 7! xa�1n eCH s.RnC/ \H

.a�1/.sCa�1/.RnC/

and maps
K 0a�1;0 W C

1
c .R

n�1/ 7! Ea�1.RnC/:

The remarkable fact that this Poisson-like operator for .1��/a is just xa�1n times the
Poisson operator for .1 ��/ allows to reach the conclusion that

u is a solution of (4.11) if and only if v.x/ WD u.x/

xa�1n
solves (4.10).

As mentioned in the mapping properties, if f 2 C1c .R
n�1/, then u is in Ea�1.RnC/

solving (4.11); And if f 2 H s�1=2.Rn�1/ for s > �1=2, then u 2 xa�1n eCH s.RnC/ \

H .a�1/.sCa�1/.RnC/ solving (4.11).

4.1. Applications

Based on the above characterization, we discuss some qualitative results. We present it for
balls only; similar claims can be proved for the half space as well.

Unique continuation principle

We begin with the following boundary unique continuation result.
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Proposition 4.4 (Boundary UCP). Let u 2 Ea�1.B.0; 1// be a solution of

(4.12)

´
.��/au D 0 in B.0; 1/;
suppu � B.0; 1/;

and let � � @B.0; 1/ be some non-empty connected open subset such that

u.x/

.1 � jxj2/a�1

ˇ̌̌
�
D

u.x/

.1 � jxj2/a

ˇ̌̌
�
D 0:

Then u � 0.

Proof. Since u.x/

.1�jxj2/a�1
j� D 0, we have @�

�
u.x/

.1�jxj2/a�1

�ˇ̌
�
D

u.x/

.1�jxj2/a

ˇ̌
�

. The rest follows
from the boundary unique continuation principle for harmonic functions. As we find that
.��/ u.x/

.1�jxj2/a�1
D 0 in B.0; 1/ with u.x/

.1�jxj2/a�1

ˇ̌
�
D @�

�
u.x/

.1�jxj2/a�1

�ˇ̌
�
D 0, this implies

that u.x/

.1�jxj2/a�1
D 0 in B.0; 1/. This completes the proof.

This settles the proof of Theorem 1.3.

Lack of injectivity

Here we would like to state the following result.

Proposition 4.5. Let 0 < a < 1. There exists a non-zero function v 2 Ea.B.0; 1// that
satisfies the four conditions 8̂̂<̂

:̂
.��/av 2 C1c .B.0; 1//;

v D 0 in Rn n B.0; 1/;
v

.1�jxj2/a

ˇ̌
@B.0;1/

D 0;

and

(4.13) vjE ¤ 0

for every measurable set E � B.0; 1/ with jEj > 0.

Remark 4.6. For a D 1, (4.13) does not hold: the function v is zero near @B.0; 1/; this
follows from standard unique continuation results for harmonic functions (cf. [29]).

Proof of Proposition 4.5. We show first that there exists a non-zero g 2 L2.B.0; 1// with
� WD suppg b B.0; 1/ which solves

(4.14)

8̂<̂
:
.��/av D g in B.0; 1/;
v D 0 in Rn n B.0; 1/;

� D suppg b B.0; 1/

satisfying

(4.15)
v.x/

.1 � jxj2/a
D 0 on @B.0; 1/:
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If 0 < a < 1, the function v would be non-zero in every positive measure set, i.e.,

(4.16) vjE ¤ 0 for all E � B.0; 1/; jEj > 0:

Unlike in the a D 1 case, we can not expect v D 0 near @B.0; 1/. In fact, that would
imply v D 0 everywhere, since it means v D .��/av D 0 in � n �, and hence v � 0,
by Theorem 1.2 in [18]. Further, Proposition 5.1 in [17] generalizes this result for any
measurable set E with jEj > 0. It says that, for v 2H a.Rn/, if vjE D .��/avjE D 0 for
some E � Rn with jEj > 0, then v � 0.

Therefore, if g ¤ 0 in (4.14), (4.16) is automatically guaranteed for 0 < a < 1. Now
we need to find g which satisfies (4.15).

Let us multiply equation (4.14) by u 2 Ea�1.B.0; 1// which solves

(4.17)

8̂<̂
:
.��/au D 0 in B.0; 1/;
u.x/

d.x/a�1
D f on @B.0; 1/;

u D 0 in Rn n B.0; 1/:

By using the integration by parts formula (2.15) and (4.15), we then find

(4.18)
Z
�

gu D 0; for all u solving (4.17):

Since by Proposition 4.1, u 2 Ea�1.B.0; 1// solving (4.17) means that u.x/

.1�jxj2/a�1
2

C1.B.0; 1// is harmonic. By rewriting (4.18) as

(4.19)
Z
�

g.1 � jxj2/a�1
u.x/

.1 � jxj2/a�1
dx D 0

for all harmonic functions u.x/

.1�jxj2/a�1
in B.0; 1/, we find that

g.1 � jxj2/a�1 2 .H.�//?;

where H.�/ is the set of all harmonic functions in �.
In order to prove the existence of v as in Proposition 4.5, we simply choose some

0 ¤ h 2 .H.�//? \ C1c .B.0I 1// and consider g D h.1 � jxj2/1�a in (4.14). We claim
that the corresponding solution, say vg , of (4.14) satisfies (4.15), i.e.,

(4.20)
vg.x/

.1 � jxj2/a.x/
D 0 on @B.0; 1/:

In order to show (4.20) for our choice of g, let us multiply (4.14) by u which solves (4.17)
with f 2 C1.@B.0; 1//. Following integration by parts (cf. (2.15)), we getZ

@B.0;1/

vg.x/

.1 � jxj2/a
f d� D

Z
�

g.1 � jxj2/a�1
u.x/

.1 � jxj2/a�1
dx:

Since by our choice g D h.1 � jxj2/1�a where h 2 .H.�//?, this meansZ
�

g.1 � jxj2/a�1
u.x/

.1 � jxj2/a�1
dx D 0:
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Therefore Z
@B.0;1/

vg.x/

.1 � jxj2/a
f D 0 for all f 2 C1.@B.0; 1//;

forcing (4.20) as desired. This completes the proof of Proposition 4.5.

A density result

We prove here that the set consisting of product of a-harmonic functions ¹u1u2º in a ball
forms a dense set in L1loc. Let u1 and u2 solve

(4.21)

8̂̂<̂
:̂
.��/au D 0 in B.0; 1/;

u.x/

.1�jxj2/a�1
j@B.0I1/ D f 2 C

1
c .�/;

u D 0 in Rn n B.0; 1/;

where � � @B.0; 1/ is some non-empty open set.

Proposition 4.7 (Density result). Let n � 2. The set ¹u1u2º, where uk solves (4.21), is
dense in L1loc.B.0; 1//.

Proof. It is enough to show that, for h 2 Cc.B.0; 1//,

(4.22)
Z
B.0;1/

hu1u2 D 0 for all u1; u2 satisfying (4.21) implies h D 0:

Writing zh D .1 � jxj2/2a�2h and vk D
uk

.1�jxj2/a�1
, the above identity (4.22) becomesZ

B.0;1/

zhv1v2 dx D 0;

where the vk are harmonic functions in B.0; 1/ with supp vkj@� � � , thanks to Pro-
position 4.1. Then the result of the linearised Calderón problem (see Theorem 1.1 in [15])
concludes that zhD 0, and hence hD 0. For � D @B.0; 1/, theL1-density of the product of
the harmonic functions was first observed by A. P. Calderón in his seminal article [8].

This completes the discussion of the proof of Theorem 1.4.
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