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Extremal mappings of finite distortion
and the Radon–Riesz property

Gaven Martin and Cong Yao

Abstract. We consider Sobolev mappings f 2 W 1;q.�;C/, 1 < q <1, between
planar domains � � C. We analyse the Radon–Riesz property for polyconvex func-
tionals of the form

f 7!

Z
�
ˆ.jDf.z/j; J.z; f // dz

and show that under certain criteria, which hold in important cases, weak conver-
gence in W 1;q

loc .�/ of (for instance) a minimising sequence can be improved to
strong convergence. This finds important applications in the minimisation problems
for mappings of finite distortion and the Lp and Exp-Teichmüller theories.

In honour of Antonio Córdoba and José Luis Fernández.

1. Introduction

Recently, geometric function theory has developed strong connections with the calculus
of variations and planar nonlinear elasticity by identifying a facinating interplay between
analysis and topology for mappings of finite distortion. As a simple example, if f is
a homeomorphism, then f 2 W 1;1

loc .�/ implies J.z; f / 2 L1loc.�/ and f is differenti-
able almost everywhere. Other examples have led to the solution of the Nitsche conjec-
ture [4, 6], higher regularity of extremal monotone mappings, [7], and other applications
in nonlinear elasticity, see for instance [3,8] and the references therein. Using the method
of p-harmonic replacement based on the Radó–Choquet–Kneser theorem, Iwaniec and
Onninen [9] have shown (aside from some minor technical issues) that for each p � 1,
given a weakly converging sequence of homeomorphisms hj W�! �0 in W 1;p.�/, with
hj*h, then there exist diffeomorphisms Qhj W�! �0 with Qhj converging to h strongly in
W 1;p.�/ and with Qhj � h 2 W

1;p
0 .�/. So weak convergence of a sequence is replaced

by strong convergence of a “nicer” sequence. As an application, the authors show that in
some natural planar models of nonlinear elasticity, the minimizers of the energy are strong
limits of homeomorphisms.
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An issue with this result however is that the initial sequence ¹hj º1jD1 may carry infor-
mation that the approximations ¹ Qhj º1jD1 do not, simply because the sequence ¹ Qhj º1jD1
may not be a minimising sequence even if ¹hj º1jD1 is. For instance, uniform or local
uniform bounds on the higher integrability of certain convex combinations of minors may
not follow from anyW 1;p-bound. Another example where this behaviour might arise is as
follows. Suppose we seek a minimiser to a variational problem whose Euler–Lagrange, or
other variational equations are sufficiently degenerate that known methods do not provide
existence or regularity. Suppose further one can perturb these equations to gain ellipti-
city and thereby existence and some regularity. The solutions to the perturbed equation
may have a weakly convergent subsequence for which local uniform bounds on nonlinear
quantities hold and which do not depend on the ellipticity constants. Strong convergence
may then imply that a weak limit satisfies the unperturbed equation, from which one
might deduce higher regularity. Despite all the suppositions here, we outline some con-
crete examples later among mean distortion functionals and Ahlfors–Hopf type equations.

1.1. Finite distortion functions and polyconvexity

Let � be a planar domain. A mapping f W�! C has finite distortion if
(1) f 2W 1;1

loc .�/, the Sobolev space of functions with locally integrable first derivatives,
(2) the Jacobian determinant J.z; f / 2 L1loc.�/,
(3) and there is a measurable function K.z; f / � 1, finite almost everywhere, such that

(1.1) jDf.z/j2 � K.z; f / J.z; f /; almost everywhere in �:

We recommend [2], Chapter 20, for the basic theory of mappings of finite distortion and
the associated governing equations: degenerate elliptic Beltrami systems.

In (1.1), the operator norm of Df is used, but for variational problems it is more
common to use

(1.2) K.z; f / D
kDf.z/k2

J.z; f /
;

where k � k is the Hilbert–Schmidt norm.
The notion of polyconvexity was introduced to the theory on nonlinear elasticity by

Ball in [5], and has proved to be an important concept in the calculus of variations ever
since. A matrix function „WRn�n ! R is polyconvex if it can be expressed as a convex
function of minors of Rn�n. See Definition 10.25 in [15], and in the current context,
Section 14.2 of [4]. Here we only consider the two-dimensional case and our main interest
here is the convexity of the function x2=y (which the reader should compare with the
definition at (1.2)). Namely,

x2

y
�
x20
y0
�
2x0

y0
.x � x0/ �

x20
y20
.y � y0/;

for any x; x0 � 0 and y; y0 > 0. In our applications, x will be jDf.z/j or kDf.z/k, and y
will be J.z; f /. We state our first lemma in a more general setting, but the proof is essen-
tially the same as Theorem 12.2 in [4]. Also we only write for jDf.z/j, but everything
follows similarly for kDf.z/k.



Extremal mappings of finite distortion and the Radon–Riesz property 2059

Lemma 1.1. Let � � C be a domain. Suppose that

(1) ¹fj º1jD1 is a sequence of W 1;q
loc .�/ functions, where 1 � q <1,

(2) f is a weak limit of fj in W 1;q
loc .�/,

(3) J.z; fj / * J.z; f / weakly in L1loc.�/,

(4) J.z; f / > 0 almost everywhere in �, and

(5) ˆ.x; y/W Œ0;1/ � Œ0;1/! Œ0;1/ is a convex function such that for almost every
z 2 �, ˆx.jDf.z/j; J.z; f // and ˆy.jDf.z/j; J.z; f // exist, and

0 � ˆx.jDf.z/j; J.z; f // <1; jˆy.jDf.z/j; J.z; f //j <1:

Then Z
�

ˆ.jDf.z/j; J.z; f // � lim inf
j!1

Z
�

ˆ.jDfj .z/j; J.z; fj //:

In Theorem 12.2 of [4], equality is actually proved for certain functionals because fj
is assumed a minimising sequence. This should remind us of the Radon–Riesz property.

1.2. Radon–Riesz property

A Banach space is called a Radon–Riesz space if every weakly convergent sequence
xj * x with kxj k ! kxk is strongly convergent, namely kxj � xk ! 0. See e.g. [14].

Lemma 1.2. Every uniformly convex Banach space is a Radon–Riesz space. In particular,
every Lp space with 1 < p <1 is a Radon–Riesz space.

Clearly, the map

f 7!

Z
�

ˆ.jDf.z/j; J.z; f // dz

is usually not a norm. Our aim is to prove that under certain criteria, weak convergence of
fj ! f implies convergence strongly in some W 1;q

loc .�/. This is our main result.

Theorem 1.3. Let � � C be a domain. Suppose that

(1) fj is a sequence of W 1;q
loc .�/ functions, for some 1 < q <1,

(2) f is a weak limit of fj in W 1;q
loc .�/,

(3) J.z; fj / * J.z; f / weakly in L1loc.�/,

(4) J.z; f / > 0 almost everywhere in �,

(5) and ˆ; ĵ W Œ0;1/ � Œ0;1/! Œ0;1/ is a sequence of functions which satisfies the
following conditions:
(a) There is a p>1 such that ĵ .jDfj j;J.z;fj // are uniformly bounded inLp.�/,

and

(1.3) lim
j!1

Z
�

ˆ
p
j .jDfj .z/j; J.z; fj // D

Z
�

ˆp.jDf.z/j; J.z; f //:

(b) For each point .x; y/ 2 �, ĵ .x; y/ is a non-decreasing sequence and we have
ĵ .x; y/! ˆ.x; y/.
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(c) Each ĵ .x; y/ is a convex function satisfying that, for almost every z 2 �,
. ĵ /x.jDf.z/j; J.z; f // and . ĵ /y.jDf.z/j; J.z; f // exist, and

0 � . ĵ /x.jDf.z/j; J.z; f // <1; j. ĵ /y.jDf.z/j; J.z; f //j <1:

(d) There is an s 2 .0; 1 � 1=p/ such that each ĵ .x; y/y
s is a convex function.

(e) For almost every point .x; y/ 2 �, if ĵ .xj ; yj /! ˆ.x; y/ and yj ! y, then
xj ! x.

Then, the following convergences hold both strongly and pointwise almost everywhere.

(i) ĵ .jDfj j; J.z; fj //! ˆ.jDf j; J.z; f // in Lp.�/,

(ii) fj ! f in W 1;r
loc .�/; 0 < r < q,

(iii) J.z; fj /! J.z; f / in Lrloc.�/; 0 < r < 1,

(iv) �fj ! �f in Lrloc.�/; 0 < r <1,

where �f D fz=fz is the Beltrami coefficient of f .

The following weighted case will be proved in a similar way.

Theorem 1.4 (Weighted case). Let � � C be a domain. Suppose that

(1) fj is a sequence of W 1;q
loc .�/ functions, for some 1 < q <1,

(2) f is a weak limit of fj in W 1;q
loc .�/,

(3) J.z; fj / * J.z; f / weakly in L1loc.�/,

(4) J.z; f / > 0 almost everywhere in �,

(5) �j ; � > 0 a.e. in �, both in L1loc.�/ and �j ! � locally uniformly in �,

(6) ˆ; ĵ W Œ0;1/ � Œ0;1/! Œ0;1/ is a sequence of functions which satisfies the fol-
lowing conditions:
(a) There is a p >1 such that ĵ .jDfj j;J.z;fj // are uniformly bounded inLp.�/,

and

(1.4) lim
j!1

Z
�

ˆ
p
j .jDfj .z/j; J.z; fj //�j .z/ D

Z
�

ˆp.jDf.z/j; J.z; f //�.z/:

(b) For each point .x; y/ 2 �, ĵ .x; y/ is a non-decreasing sequence and we have
ĵ .x; y/! ˆ.x; y/.

(c) Each ĵ .x; y/ is a convex function satisfying that for almost every z 2 �,
. ĵ /x.jDf.z/j; J.z; f // and . ĵ /y.jDf.z/j; J.z; f // exist, and

0 � . ĵ /x.jDf.z/j; J.z; f // <1; j. ĵ /y.jDf.z/j; J.z; f //j <1:

(d) There is an s 2 .0; 1 � 1=p/ such that each ĵ .x; y/y
s is a convex function.

(e) For almost every point .x; y/ 2 �, if ĵ .xj ; yj /! ˆ.x; y/ and yj ! y, then
xj ! x.

Then, the following convergences hold both strongly and pointwise almost everywhere.

(i0) ĵ .jDfj j; J.z; fj //�
1=p
j ! ˆ.jDf j; J.z; f //�1=p in Lp.�/,
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(ii0) fj ! f in W 1;r
loc .�/, 0 < r < q,

(iii0) J.z; fj /! J.z; f / in Lrloc.�/, 0 < r < 1,

(iv0) �fj ! �f in Lrloc.�/, 0 < r <1,

where �f D fz=fz is the Beltrami coefficient of f .

2. Proof of Theorems 1.3 and 1.4

To simplify notation, we write

ˆk;j D ˆk.jDfj .z/j; J.z; fj //; ˆk;f D ˆk.jDf.z/j; J.z; f //;

f̂ D ˆ.jDf.z/j; J.z; f //; Jj D J.z; fj /; Jf D J.z; f /:

Lemma 2.1. ĵ;j ! f̂ strongly in Lp.�/.

Proof. By (1.3), the sequence ĵ;j is uniformly bounded in Lp.�/, so there is a weak
limit‰ 2 Lp.�/. Note that Lemma 1.1 holds for every fixed k and any measurable subset
�0 � �. Thus Z

�0
ˆk;f � lim inf

j!1

Z
�0
ˆk;j � lim inf

j!1

Z
�0

ĵ;j D

Z
�0
‰:

This holds for every k, and so by Fatou’s lemma,Z
�0

f̂ � lim inf
k!1

Z
�0
ˆk;f �

Z
�0
‰:

From the Lebesgue differentiation theorem, f̂ .z/ � ‰.z/ for almost every z 2 �. Now
it follows from (1.3) thatZ

�

ˆ
p

f
�

Z
�

‰p � lim inf
j!1

Z
�

ˆ
p
j;j D

Z
�

ˆ
p

f
:

This forces f̂ D ‰, so it is the weak limit of ĵ;j in Lp.�/, and then the claim follows
from Lemma 1.2.

Next, as Jf > 0 almost everywhere we can choose �" b � on which

" < Jf <
1

"
; f̂ <

1

"
;

and ˇ̌̌
� �

[
">0

�"

ˇ̌̌
D 0:

Now let s 2 .0; 1� 1=p/ be as in Condition (5d) in Theorem 1.3. We choose a p0 2 .1; p/
such that sp0 < .s C 1=p/p0 < 1. Then

Lemma 2.2.
lim
j!1

Z
�"

ˆ
p0

j;j J
sp0

j D

Z
�"

ˆ
p0

f
J
sp0

f
:
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Proof. One direction comes from the polyconvexity and follows the same argument as
above: Z

�"

ˆ
p0

f
J
sp0

f
� lim inf

k!1

Z
�"

ˆ
p0

k;f
J
sp0

f
� lim inf

j!1

Z
�"

ˆ
p0

j;j J
sp0

j :

Lemma 2.1 and the choice of p0 give

lim
j!1

Z
�"

ˇ̌
ˆ
p0

j;j J
sp0

j �ˆ
p0

f
J
sp0

j

ˇ̌
� lim
j!1

Ck ĵ;j � f̂ k
p0

Lp.��/
kJj k

sp0

L1.��/
D 0:

So we only need to show

(2.1) lim sup
j!1

Z
�"

ˆ
p0

f
J
sp0

j �

Z
�"

ˆ
p0

f
J
sp0

f
:

Note that as sp0 < 1, the function x 7! xsp
0

is concave for x > 0. So

J
sp0

j � J
sp0

f
� sp0J

sp0�1

f
.Jj � Jf /:

It follows that Z
�"

ˆ
p0

f
.J
sp0

j � J
sp0

f
/ � sp0

Z
�"

ˆ
p0

f
J
sp0�1

f
.Jj � Jf /! 0;

as Jj * Jf in L1.�/. This proves (2.1) and completes the proof of the lemma.

If we apply Lemma 2.2 and follow the same proof as in Lemma 2.1, we can establish
the following.

Lemma 2.3. ĵ;jJ
s
j ! f̂ J

s
f

strongly in Lp
0

.�"/

Now by Lemma 2.3, in every �", up to a subsequence we have the pointwise almost
everywhere convergence ĵ;jJ

s
j ! f̂ J

s
f

. Let " ! 0, we can choose diagonally and
to obtain a subsequence that converges pointwise in �. By Lemma 2.1, we also have
the pointwise convergence ĵ;j ! f̂ . It follows that Jj ! Jf pointwise almost every-
where, then jDfj j ! jDf j pointwise almost everywhere, and then K.z; fj /! K.z; f /,
j�.z; fj /j ! j�.z; f /j, j.fj /zj ! jfzj and j.fj /zj ! jfzj, all pointwise almost every-
where.

Next, let�0 b�. By Vitali’s convergence theorem, both j.fj /zj ! jfzj and j.fj /zj !
jfzj strongly in Lr .�0/, for any 1 � r < q. In particular,Z

�0
j.fj /zj

r
!

Z
�0
jfzj

r and
Z
�0
j.fj /zj

r
!

Z
�0
jfzj

r :

On the other hand, Dfj * Df weakly in Lr .�0/. So it follows from Lemma 1.2 that
Dfj ! Df strongly in Lr .�0/. We may now apply Vitali’s convergence theorem once
again to get the remaining claims of Theorem 1.3.

The proof of Theorem 1.4 is essentially same. We only need to replaceˆ by ˆ�1=p in
the proof.
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3. Applications

3.1. exp.p/ minimising sequence

In Theorem 12.2 of [4] it is proved that the exp.p/ mean distortion

f 7!

Z
�

expŒpK.z; f /� dz

for homeomorphisms from � to �0 admits a minimiser for suitable boundary data.
In fact, there is minimising sequence fj which converges weakly to a minimiser f in

the Sobolev–Orlicz space W 1;P .�/, where P.t/ D t2=log.e C t /, andZ
�

expŒpK.z; f /� D lim
j!1

Z
�

expŒpK.z; fj /�:

Thus in Theorem 1.3 we may set ĵ .x; y/ D ˆ.x; y/ D expŒp
2
x2

y
� and any small s > 0,

recalling that that in our case the domain is always x2 � y and so expŒp
2
x2

y
�ys is convex

there. Thus we obtain the strong convergence of exp.pK.z; fj //, Dfj , and so forth. In
particular, for the case p > 2we have fj ! f strongly inW 1;2

loc .�/ (cf. [1]). Furthermore,
after changing variables we also haveZ

�0
expŒpK.w; h/� J.w; h/ D lim

j!1

Z
�0

expŒpK.w; hj /� J.w; hj /;

where hj D f �1j and hD f �1. Again in Theorem 1.3 we may set ĵ .x; y/D ˆ.x; y/D

expŒp
2
x2

y
�y1=2, and s > 0 very small, to obtain the strong convergence of hj ! h in

W
1;2

loc .�
0/. In fact, all we need is the pointwise inequality

ˆ.x; y/ �ˆ.x0; y0/ � ˆx.x0; y0/.x � x0/Cˆy.x0; y0/.y � y0/;

which proves the lower-semi continuity of the energies, as stated in Lemma 1.1. Further,
since J.z;f / > 0 a.e., the singularities do not affect the integrals. That proof is essentially
same as in §12 of [4].

3.2. Lp minimising sequence

In [11] we considered the boundary value problems for Lp-mean distortion for self ho-
meomorphisms of the unit disk D,

f 7!

Z
D

Kp.z; f / dz:

Unfortunately, in this case Df is not a priori in a sufficiently regular space, so a minim-
ising sequence fj might not have weakly convergent J.z; fj / in L1loc.D/, and further the
limit function f might not be a homeomorphism. However, the inverse sequence hj * h

weakly in W 1;2.D/, where h is a minimiser in an enlarged space where pseudo-inverses
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exist. See Section 5 of [11] for the definitions of the enlarged space and pseudo-inverses.
In particular, Z

D
Kp.w; h/ J.w; h/ D lim

j!1

Z
D

Kp.w; hj / J.w; hj /:

Here we can apply Theorem 1.3. Set ĵ .x; y/ D ˆ.x; y/ D .x
2=y/y1=p and any small

s > 0 to obtain the strong convergence of hj ! h in W 1;2.D/. In fact, more is true. In
the enlarged space there are pseudo-inverses fj D h�1j and f D h�1 such that fj * f in
W 1;2p=.pC1/.D/, each fj .D/ � D, andZ

D
Kp.z; f / D lim

j!1

Z
D

Kp.z; fj /:

We consider the sequence J 1=2.z; fj /, which is bounded in L2.D/. For all ' 2 C10 .D/,

lim
j!1

Z
D
J 1=2.z; fj / '.z/ D lim

j!1

Z
D
J 1=2.w; hj / '.hj .w//

D

Z
D
J 1=2.w; h/ '.h.w// D

Z
D
J 1=2.z; f / '.z/:

So J 1=2.z; f / is the weak limit of J 1=2.z; fj / in L2.D/. Also the minimiser h has the
holomorphic Hopf differential

‰ D Kp�1.w; h/hw hw D Kp.w; h/J.w; h/
�.w; h/

1C j�.w; h/j2
�

This gives us two cases: firstly, if‰ � 0, then h is a holomorphic function. But we know h
is monotone, so actually it is a conformal mapping, thus f .D/ D D. If ‰ is not identic-
ally zero, then J.w; h/ > 0 almost everywhere in D. But we know J.w; h/ D 0 almost
everywhere in D � f .D/. So in either case we have jf .D/j D � . Now

� � lim inf
j!1

Z
D
J.z; fj / �

Z
D
J.z; f / D

Z
f .D/

1

J.w; h/
J.w; h/ D �:

So the inequalities hold with equality, and again the Radon–Riesz Lemma 1.2 applies.
As J 1=2.z; fj / * J 1=2.z; f / in L2.D/, we obtain J 1=2.z; fj /! J 1=2.z; f / strongly in
L2.D/, which is equivalent to J.z; fj /! J.z; f / strongly in L1.D/. Now Theorem 1.3
applies and we also get that K.z; fj /!K.z; f / strongly inLp.D/, and fj ! f strongly
in W 1;q.D/ for all 1 � q < 2p=.p C 1/.

3.3. Truncated exponential minimising sequence

The exponential finite distortion problem is not variational, [12]. Thus in [13], to study
the exponential finite distortion problems, we consider the truncated problems and the
associated inverse problems:

f 7!

Z
D

NX
nD0

pnKn.z; f /

nŠ
; h 7!

Z
D

NX
nD0

pnKn.w; h/

nŠ
J.w; h/:
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As linear combinations of theLp problems, in the enlarged space there are minimisers hN
which have holomorphic Ahlfors–Hopf differentials

‰N D

NX
nD0

pnKn.w; hN /

nŠ
.hN /w .hN /w :

In Theorem 1.3 we set

ˆN;N D

vuut NX
nD0

pnKn.w; hN /

nŠ
J.w; hN /;

which is a polyconvex function of DhN for sufficiently large N . So Theorem 1.3 gives
hN ! h strongly in W 1;2.D/. A similar argument as in the last part tells us that their
inverses fN D h�1N also converge strongly to f D h�1, but in W 1;q.D/ for all q 2 Œ1; 2/.
In fact, we can prove that the limit function f is a homeomorphic minimiser for the
exp.p/ problem, and if the sequence ‰N =k‰N kL1.D/ is nondegenerate, then there is a
holomorphic ‰ such that ‰N ! ‰ locally uniformly, and then by the strong convergence
we have

‰ D lim
N!1

‰N D lim
N!1

NX
nD0

pnKn.w; hN /

nŠ
.hN /w .hN /w D expŒpK.w; h/�hw hw ;

and we can prove such an h is diffeomorphic in D, and then so is f D h�1. See [13] for
detailed discussions.

4. Mappings between surfaces

In this section we consider the following minimising problem. Let f0WS ! QS be a quasi-
conformal mapping, where S and QS are compact Riemann surfaces. We seek to study the
critical points of

(4.1) f 7!

Z
S

expŒpK.z; f /� d�.z/;

where f is in the same homotopy class as the datum f0 and where d�.z/ is the hyperbolic
area measure on S .

Again, this problem is not variational. However, following the argument of the previ-
ous section we can show that the inverse of a minimiser satisfies the variational equations.
That is the Ahlfors–Hopf equation.

We lift this problem to the universal cover. Any such mapping f as appears in (4.1)
has a lift Qf WD ! D which commutes with the fundamental groups � , of S , and Q� , of QS .
That is, f0�W�1.S/! �1. QS/ induces an isomorphism which we simply denote as  7! Q .
Then

(4.2) Qf ı  D Q ı Qf W D ! D:

Under these circumstances, Qf extends to S D @D and Qf jS is quasisymmetric. Notice too
that if Qfj ! Qf locally uniformly, and if Qfj satisfies (4.2), then so does the limit Qf .
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Next, if P denotes a (hyperbolically) convex fundamental polyhedron for � , then

(4.3)
Z
S

expŒpK.z; f /� d�.z/ D

Z
P

expŒpK.z; Qf /��.z/ dz;

where the weight �.z/ is the hyperbolic metric 1=.1 � jzj2/2. See [10] for more details.
Thus we may now we can consider (writing f for Qf )Z

P

expŒpK.z; f /��.z/;

where we also impose the automorphic condition at (4.2). Again we can consider the
inverse problem Z

QP

expŒpK.w; h/�J.w; h/�.h/;

where QP is a fundamental domain for Q� and we impose the automorphy condition

(4.4)  ı h D h ı Q W D ! D:

The associated truncated problems are to minimise

(4.5)
Z
QP

NX
nD0

pnKn.w; h/

nŠ
J.w; h/�.h/:

Then, as we have found earlier, there is a sequence of minimisers hN (in the enlarged
space) with holomorphic Ahlfors–Hopf differentials

(4.6) ‰N D

NX
nD0

pnKn.w; hN /

nŠ
.hN /w .hN /w �.hN /:

In fact, this is basically how Ahlfors sets up his approach to the proof of Teichmüller’s
theorem. However he multiplies through by a “convergence factor” to eliminate the bad
term �.h/ in (4.5) as it will make no difference in his application as he lets p!1. Now
�.hN /! �.h/ locally uniformly in D and so uniformly on QP . So by Theorem 1.4 there
is an h such that hN ! h strongly in W 1;2. QP /. Here the difference is that we know the
space of quadratic differentials is finite dimensional by the Riemann–Roch theorem, so
‰N =k‰N kL1.P / is nondegenerate, and so there is another holomorphic ‰ such that

‰ D expŒpK.w; h/� hw hw �.h/:

In fact, this argument works for each domain Q. QP /, where Q 2 Q� , so both of the func-
tions h and ‰ extend to D, where ‰ is a holomorphic function in D, and the equation
‰ D expŒpK.w; h/�hw hw �.h/ holds over D.

Also, since f is in the exponential class and is automorphic with respect to Fuchsian
groups of compact type, both f and hmust be self-homeomorphisms of the closed disk D.
To see this, we may argue as follows. If D D h.�/, hW� ! D smooth, then h.�/ D
. Q ı h ı /.�/, D D Q�1.D/ D h..�//. As h is a diffeomorphism onto, it follows that
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.�/ D � for each  2 � . As � is simply connected, �=� is a Riemann surface with
fundamental group � . This is the fundamental group of a closed surface, so �=� is a
closed surface and a fundamental domain for � lies in �. This shows � D D.

As noted, the automorphy condition passes to the limit. In the case �.z/ D 1
.1�jzj2/2

,
this and (4.6) together gives

‰N .w/ D

NX
nD0

pnKn.w;  ı hN /

nŠ
. ı hN /w . ı hN /w �. ı hN /

D

NX
nD0

pnKn.w; hN ı Q/

nŠ
.hN ı Q/w .hN ı Q/w �.hN ı Q/ D ‰N . Q/ Q

02:

By the strong convergence, these properties of hN and‰N persist in the limit for h and‰.
We conclude as follows.

Theorem 4.1. Consider the inverse hyperbolic exponential finite distortion problem h 7!R
D expŒpK.w; h/�J.w; h/�.h/, where �.z/ D 1=.1 � jzj2/2, and h is a self-homeomor-

phism of D and is automorphic with respect to the Fuchsian groups . Q�; �/. Then, there
are a critical point h and a holomorphic Ahlfors–Hopf differential ‰ such that

(4.7) ‰ D expŒpK.w; h/� hw hw �.h/:

Furthermore, ‰ D ‰. Q/ Q 02 for every Q 2 Q� .

Note that in these circumstances, we prove in [13] that there is a diffeomorphic solu-
tion to (4.5). Suitably normalised, we expect this solution to be unique. Further, we also
show that any quasiconformal solution to (4.5) is already a diffeomorphism. These two
fact strongly suggest the minimiser is a diffeomorphism, but our results to date fall a little
short of this as our uniqueness results are not yet strong enough.
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