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Carleson embedding on the tri-tree and on the tri-disc

Pavel Mozolyako, Georgios Psaromiligkos, Alexander Volberg and
Pavel Zorin-Kranich

Abstract. We prove a multi-parameter dyadic embedding theorem for the Hardy
operator on the multi-tree. We also show that for a large class of Dirichlet spaces
in the bi-disc and the tri-disc, this proves the embedding theorem of those Dirichlet
spaces of holomorphic functions on the bi- and tri-disc. We completely describe the
Carleson measures for such embeddings. The result below generalizes the embedding
result of Arcozzi et al. from the bi-tree to the tri-tree and from the Carleson–Chang
condition to the Carleson box condition. One of our embedding descriptions is sim-
ilar to the Carleson–Chang–Fefferman condition, and involves dyadic open sets. On
the other hand, the unusual feature is that the embedding on the bi-tree and the tri-
tree turns out to be equivalent to the one box Carleson condition. This is in striking
difference to works of Chang–Fefferman and the well-known Carleson quilt counter-
example. Finally, we explain the obstacle that prevents us from proving our results
on poly-discs of dimension four and higher.

To Antonio Córdoba, who was an inspiration for multi-parameter research of ours,
including this paper.

1. Introduction and the main result

The present article treats a two weight problem on multi-parameter paraproduct operators.
Singular bi-parameter and multi-parameter operators enjoyed and continue to enjoy much
attention, see [6, 12–14, 19, 20, 31]. They are notoriously difficult. Two weight problems
for singular integrals were studied in a series of papers by Nazarov, Treil, and Volberg for
dyadic singular operators, and in a series of papers by Lacey, Shen, Sawyer, and Uriarte-
Tuero for the Hilbert transform, see [22, 23, 29, 30], and the references therein. Another
example is a recent paper by Iosevich, Krause, Sawyer, Taylor, and Uriarte-Tuero [18]
on the two weight problem for the spherical maximal operator motivated by Falconer’s
distance set problem.

Classically, an estimate of paraproduct tri-linear forms [16] is based on the T1 the-
orem of David and Journé. The theory of Carleson measures (or classical BMO theory)
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is involved. It is well known [9, 10, 19, 20] that in the multi-parameter setting all these
results and concepts of Carleson measure, BMO, John–Nirenberg inequality, Calderón–
Zygmund decomposition are much more delicate. The paper [27] develops a completely
new approach to prove natural tri-linear bi-parameter estimates on bi-parameter para-
products, especially outside of the Banach range. In [27], Journé’s lemma [19] was used,
but the approach did not generalize to multi-parameter paraproduct forms. This issue was
resolved in [28], where a simplified method was used to address the multi-parameter
paraproducts.

We consider here bi-parameter and tri-parameter paraproducts and reveal the obstacle
to treat the dimension 4 objects. Our paraproducts are only dyadic ones, and we estim-
ate them only in L2. But we consider a two weight problem. One weight is arbitrary
and the other one is dictated by the problem from complex analysis in the poly-disc (our
original motivation). This other weight has the product structure because of this original
motivation. We are able to give the necessary and sufficient condition for the two weight
boundedness of such multi-parameter paraproducts in the two and three parameter cases
(and of course in the one parameter case).

Three remarks are in order: a) the general two weight problem even for two parameter
paraproducts seems to not having a simple necessary and sufficient criterion at all (unlike
a one parameter case of dyadic paraproducts, whose solution is basically due to Eric Saw-
yer); so it is a “miracle” that the full solution exists when one measure is arbitrary, and
another one has a product structure; b) this solution continues to amaze us because it seem-
ingly goes against a famous Carleson counterexample in the theory of Chang–Fefferman
product BMO; c) it is also amazing that the problem about holomorphic functions in the
poly-disc can be reduced to dyadic problems having nothing to do with complex analysis;
the information – in many cases – is not getting lost.

1.1. Background. A geometric problem and two weight estimates

To wet the appetite, consider first the following very simple geometric problem. We are
given a collection of non-negative numbers ¹˛I ºI2D.I0/ enumerated by the family D of
dyadic subintervals of unit interval I0 D Œ0; 1�. We wish to find an assignment I ! EI ,
I 2 D , of measurable sets in such a way that

(1) the sets EI are pairwise disjoint;
(2) m.EI / D ˛I .

There is an obvious necessary condition:

(1.1) 8J 2 D.I0/;
X

I2D.J /

˛I � m.J / :

A simple and very well-known elementary construction shows that (1.1) is not only neces-
sary but also sufficient. Moreover, such a condition (called the Carleson packing condition
with constant C D 1) is necessary and sufficient if I0 is a unit cube in Rd rather than a
unit interval, and when D means the collection of all dyadic sub-cubes of the unit cube.
The Lebesgue measure m can be replaced here by any finite Borel measure without point
masses.
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Now let us make the problem harder. We just mentioned that replacing dyadic inter-
vals dyadic cubes D represents a simple problem. But what if we augment the collection
of sets? It is very natural and useful, see e.g. [6], to consider the collection of dyadic rect-
angles Dk D D � � � � �D (k times), k � 2. It is much harder to prove that the condition

(1.2) 8� � D2;
X

I�J2�

˛I�J � �
�S

I�J2�I � J
�

for a finite Borel measure without point masses, is sufficient for the existence of the assign-
ment I � J ! EI�J , for all dyadic rectangles I � J of measurable sets, in such a way
that

(1) the sets EI�J are pairwise disjoint;
(2) �.EI�J / D ˛I�J .

Obviously, (1.2) is necessary for the existence of such a measurable assignment. How-
ever, several non-trivial proofs exist. The methods range from geometric ones (see Barron–
Pipher [6]), to convex analysis/functional analysis (see Hänninen [17], using a result of
Dor [11]). Here k D 2, but this is not essential, the same result holds for dyadic rectangles
in all dimensions.

Moreover, Hänninen [17] proved that dyadic rectangles can be replaced by arbitrary
collections of Borel sets.

Definition 1.1. (Carleson coefficients in the generality of a collection of Borel sets). Let�
be a locally finite Borel measure on Rd . Let � be a countable collection of Borel sets.
A family ¹˛SºS2� of non-negative reals is Carleson (with constant C D 1) if we haveX

S2�;S��

˛S � �.�/

for every union � of sets of the collection � .

Hänninen proved that the disjoint measurable assignment exists if and only if the
sequence ¹˛Sºs2� satisfies this general Carleson packing condition, that can be also writ-
ten as

8� 0 � � ;
X
S2� 0

˛S � �
�S

S2� 0 S
�
:

Now we would like to indicate the connection of the above mentioned “combinatorial”
problems to two-weight embedding theorems that have another (equivalent) disguise: two
weight paraproduct estimates.

We start again with the simple 1-dimensional dyadic case. We fix the canonical bijec-
tion between intervals of D.I0/ and a dyadic tree T , whose vertices we will still call I ,
and where I0 D Œ0; 1� is the root of T . We fix a measure � on I0; it will be one of our two
weights. The second weight lives on T and it is just a sequence of non-negative numbers
enumerated by vertices (= dyadic intervals): w WD ¹wI ºI2T .

The two-weighted problem is to find necessary and sufficient conditions on .w; �/ to
have

(1.3)
X
I2T

wI �
� Z

I

f d�
�2
� C

Z
f 2 d�:
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Let us show what this has in common with the previously considered geometric ques-
tion. There is an obvious necessary condition for (1.3) to hold: just plug f D1J , J 2 D ,
to obtain

(1.4) 8J 2 D ;
X

I2D.J /

wI � �.I /
2
� C�.J / :

We can now use the assignment mentioned above for ˛I WD wI�.I /
2=C . We will get

a disjoint family ¹EI ºI2D . As a next step, one can use that the dyadic maximal func-
tion with respect to any � is bounded in L2.I0; �/. This will finish the proof that (1.4)
is also sufficient for the embedding (1.3). The fact that (1.4) is necessary and sufficient
for the embedding (1.3) is called the Carleson–Sawyer theorem. Carleson proved it in
the 60’s, and used it in his interpolation and famous corona results. Sawyer’s generaliz-
ation appeared in the 80’s. Both results are fundamental in the dyadic approach to the
theory of Calderón–Zygmund operators.

Two (or multi) parameter paraproducts require a solution of a much more involved
two-weight problem. We fix a measure � on Œ0; 1�2; it will be one of our two weights. The
second weight lives on T 2 and it is just a sequence of non-negative numbers enumerated
by vertices (= dyadic rectangles): w WD ¹wI�J ºI;J2T .

The two-weighted problem is to find necessary and sufficient conditions on .w; �/ to
have

(1.5)
X
I;J2T

wI�J �
� Z

I�J

f d�
�2
� C

Z
Œ0;1�2

f 2 d�:

A bi-tree T 2 is a rooted graph with vertices being dyadic rectangles, and the root being
I0 � I0 D Œ0; 1�

2. It is a much more complicated graph than the simple T , in particular, it
has cycles. However, again there are simple necessary conditions for (1.5). We get one by
plugging f D 1I1�J1 , I1; J1 2D . But Carleson gave an example of weight w on T 2 such
that even with �Dm2, the Lebesgue measure on the plane, this necessary condition is not
sufficient. But there is a stronger necessary condition. Choose now f D 1[1

kD1
Ik�Jk . In

other words, choose a subset S 0 � D.I0/ �D.I0/, consider � D [R02S 0R0, and choose
f D 1� to plug into (1.5). Then we immediately and trivially get the following necessary
condition for the embedding (1.5) (called the Carleson–Chang packing condition):

(1.6) 8S 0 � D.I0/ �D.I0/;
X

R�[R02S 0R
0

wR � .�.R//
2
� C�

�S
R02S 0R

0
�
:

Again, the assignment of disjoint ER; R 2 D.I0/ �D.I0/, is the first step, but the
second step breaks down: the strong maximal (even dyadic strong maximal) operator with
respect to � is rarely bounded in L2.�/. But maybe one does not need maximal operators
to prove the embedding as above?

This is what we know about (1.5) and its analogs for the tri-tree and higher multi-trees.
(1) A. S.-Y. Chang proved that if�Dm2 (or�Dmd ) then the necessary condition (1.6)

is sufficient, and this holds for any w on T 2 (and correspondingly T d ).
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(2) For any � such that the strong dyadic maximal function is bounded in L2.�/, (1.6)
is sufficient, and this holds for anyw on T 2 (and correspondingly T d if we consider
the measure � on Œ0; 1�d ).

(3) Moreover, if (1.6) is sufficient for the embedding (1.5) with arbitrary w (maybe
with a different constant), then � is such that the strong dyadic maximal function is
bounded in L2.�/. This holds in any dimension d .

(4) There exists w such that (1.6) does not hold, but the following simplified version
does hold:

8I1 � J1 2 D.I0/ �D.I0/;
X

R�I1�J1

wR � .�.R//
2
� C�.I1 � J1/ :

(5) Such an example exists even with � D m2 (Carleson [7], Tao [32]).
(6) There exists .w; �/ such that (1.6) does hold, but the following more complicated

(but obviously necessary for the embedding (1.5), just plug f D 1F into (1.5))
condition does not hold:

8F � Œ0; 1�2; 8S 0 �D.I0/�D.I0/;
X

R�[R02S 0R
0

wR � .�.R \ F //
2
� C�.F / :

(7) The latter example hasw having only values 1 and 0, and moreover the support ofw
is a connected subgraph of T 2.

(8) In general, the necessary and sufficient conditions for (1.5) are unknown.
(9) The case w � 1 is interesting and has interesting applications to complex analysis.
(10) Whatever is �, for the case w � 1 for T 2 and T 3, we can give simple necessary and

sufficient conditions for the embedding (1.5) to hold
(11) We conjecture that the same answer holds for T d , d � 4, but we cannot prove this.
(12) Our answer for the case w � 1 for T 2 and T 3 is counterintuitive. At the first glance,

it seems to contradict Carleson’s example. Of course it does not. The answer is that
the embedding (1.5) holds if an only if (we give it for d D 2, the same answer with
obvious changes holds for d D 3, and this is the main result of the current article):

(1.7) 8I1 � J1 2 D.I0/ �D.I0/;
X

R�I1�J1

.�.R//2 � C0�.I1 � J1/ :

Of course, the constant C in (1.5) can be calculated by C0 in (1.7), but it is a non-
linear relationship.

1.2. Background. Embedding from L2.m2/ to `2.T 2; ¹ˇ2
R

º/, where ¹Rº are dyadic
rectangles

Everywhere below, the angular brackets h�iS mean the average over the set S . The meas-
ure, if not indicated otherwise, is the Lebesgue measure.

Lennart Carleson showed in [7] that the natural generalization, using a “box” condi-
tion, from the one parameter case (disc) to the bi-parameter case (bi-disc) of his embed-
ding theorem does not work. Sun-Yang A. Chang in [8] found the necessary and sufficient
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condition for the validity of the Carleson embedding for bi-harmonic extensions into the
bi-disc.

The discrete versions of these results can be motivated by considering a bi-parameter
dyadic paraproduct. For a dyadic rectangle R D I � J � Œ0; 1�2, denote by hR.x; y/ D
hI .x/hJ .y/ an associated L2 normalized Haar function. The simplest example of a bi-
parameter dyadic paraproduct is the operator

…b' WD
X
R

h'iR .b; hR/ hR :

The paraproduct…b is a bounded operator on L2 with respect to the Lebesgue measurem
on Œ0; 1�2 if and only if we have

(1.8)
X
R

h'i2R ˇ
2
R � C

Z
'2dm2;

where ˇR WD .b; hR/ are the Haar coefficients of the function b. In analogy to the one-
parameter Carleson embedding, one could ask whether (1.8) is equivalent to the “box”
condition

(1.9)
X
R�R0

ˇ2R � C
0m2.R0/

for every dyadic rectangle R0 � Œ0; 1�2. A counterexample showing that (1.9) does not
imply (1.8) was constructed by Carleson [7, 32].

It was observed by Chang [8] (in a continuous setting) that (1.8) is equivalent to the
bi-parameter Carleson (or Carleson–Chang) conditionX

R��

ˇ2R � C
0m2.�/ ;

where the constant C 0 is uniform for all subsets � � Œ0; 1�2 that are finite unions of
dyadic rectangles. This necessary and sufficient condition was later used by Chang and
Fefferman [9] to characterize the dual of the Hardy space on the bi-disc H 1.D2/. The
same embedding result holds in dimension d > 2, from L2.md / to `2.T d ; ¹ˇ2Rº/.

1.3. Terminology and notation

We begin with order-theoretic conventions.

Definition 1.2. A finite tree T is a finite partially ordered set such that, for every ! 2 T ,
the set ¹˛ 2T W˛�!º is totally ordered (we allow trees to have several maximal elements).

An d -tree T d is a Cartesian product of d (possibly different) finite trees with the
product order.

A subset U (respectively, D) of a partially ordered set T is called an up-set (respect-
ively, down-set) if, for every ˛ 2U and ˇ 2 T with ˛ � ˇ (respectively, ˇ � ˛), we also
have ˇ 2 U (respectively, ˇ 2 D).
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The Hardy operator on an d -tree T d is defined by

I�.
/ WD
X

 0�


�.
 0/ for any � W T d ! R:

In the one-parameter case d D 1, we denote it by I , and in the two-parameter case d D 2,
by I. The adjoint I� of the Hardy operator I is given by the formula

I� .
/ D
X

 0�


 .
 0/:

Definition 1.3. Let � andw be positive functions on T d . The box constant is the smallest
number Œw; ��Box such that

Eˇ Œ�� WD
X
˛�ˇ

w.˛/.I��.˛//2 � Œw; ��Box

X
˛�ˇ

�.˛/; 8ˇ 2 T d :

The Carleson constant is the smallest number Œw; ��C such thatX
˛2D

w.˛/.I��.˛//2 � Œw; ��C �.D/; 8D � T d down-set.

The hereditary Carleson constant (or restricted energy condition constant, or REC con-
stant) is the smallest constant Œw; ��HC such that

(1.10) EŒ�1E � D
X
˛2T d

w.˛/.I�.�1E /.˛//2 � Œw; ��HC �.E/; 8E � T
d :

The Carleson embedding constant is the smallest constant Œw; ��CE such that the adjoint
embedding X

˛2T d

w.˛/ jI�. �/.˛/j2 � Œw; ��CE

X
!2T d

j .!/j2�.!/

holds for all functions  on T d .

For positive numbers A;B , we write A . B if A � CB with an absolute constant C ,
that in particular does not depend on the tree or multi-tree or the weights w;�.

1.4. Main result

The inequalities

(1.11) Œw; ��Box � Œw; ��C � Œw; ��HC � Œw; ��CE

are obvious. The converse inequalities for 1-trees were proved in [29]. For 2-trees, in the
case w � 1, the converse inequality

Œ1; ��CE . Œ1; ��C
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was proved in [3]. In [4], it was proved that, more generally,

Œw; ��CE . Œw; ��Box

for weights w of tensor product form on 2-trees. In this article, we extend this result to
3-trees.

Theorem 1.4. Let �WT 3 ! Œ0;1/. Let wWT 3 ! Œ0;1/ be of tensor product form. Then
the converses of the inequalities in (1.11) also hold:

Œw; ��CE . Œw; ��HC . Œw; ��C . Œw; ��Box:

Theorem 1.4 will follow from conditional results on d -trees, namely Theorem 6.3 and
Theorem 7.3.

1.5. The methods

The methods of proving this main result of ours are mostly by potential theory and some
combinatorics. But this potential theory is very far from the classical one. It is a potential
theory on graphs with cycles, in particular, there will be no maximum principle for the
potentials considered below. This is the main difficulty and the main attraction of what
follows.

2. Holomorphic function spaces in the poly-disc

Another way to interpret the Hardy inequality (or more precisely, its weighted version, see
below) is to consider its connection to certain problems in the theory of Hilbert spaces of
analytic functions on the (poly-)disc. It was actually this connections that motivated the
study of this inequality in [5] and [3].

We start with some additional notation. Given an integer d � 1 and s D .s1; : : : ; sd / 2
Rd , we consider a Hilbert space Hs.Dd / of analytic functions on the poly-disc Dd with
the norm

kf k2
Hs.Dd /

WD

X
n1;:::;nd�0

j yf .n1; : : : ; nd /j
2 .n1 C 1/

s1 � � � .nd C 1/
sd ;

where

f .z/ D
X

n1;:::;nd�0

yf .n1; : : : ; nd / z
n1
1 � � � z

nd
d
; z D .z1; : : : ; zd / 2 Dd :

Observe that, clearly,

HEs.D
d / D

dO
jD1

Hsj .D/:

In particular, the choice s D .0; : : : ; 0/ gives a classical Hardy space on the poly-disc; on
the other hand, s D .1; : : : ; 1/ corresponds to the Dirichlet space.
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2.1. Embedding (Carleson) measures on the poly-disc

A measure � on Dd is called a Carleson measure for Hs if there is a constant C� such thatZ
Dd

jf .z/j2 d�.z/ � C�kf k
2
Hs.Dd /

;

or, in other words, the embedding IdWHs.Dd /! L2.Dd ; d�/ is bounded.
For brevity, we concentrate below on the case d D 2, indicating the changes necessary

for other d . Consider first the case of s D .1; 1/.
Given a holomorphic function

f .z1; z2/ D
X
m;n�0

amn z
m
1 z

n
2

on D2, we let
kf k2

D.D2/
D

X
m;n�0

jamnj
2 .mC 1/.nC 1/:

This norm can also be written as follows:

kf k2
D.D2/

D
1

�2

Z
D2

j@z1;z2f .z1; z2/j
2 dz1 dz2 C

1

2�2

Z
T

Z
D
j@z1f .z1; e

it /j2 dz1 dt

C
1

2�2

Z
D

Z
T
j@z2f .e

it ; eis/j2 ds dz2 C
1

4�2

Z
T

Z
T
jf .eis; eit /j2 ds dt

D kf k2� C other terms;

where kf k� is a semi-norm which is invariant under biholomorphisms of the bidisc.
In what follows, however, we use an equivalent norm, arising from the representation
D.D2/ D D.D/ ˝ D.D/ (this particular choice will be justified in a few lines). For
f 2 Hol.D/, let

(2.1) kf k2D WD
1

�

Z
D
jf 0j2.z/ dz C C0 jf .0/j

2;

whereC0 > 0 is a constant to be chosen shortly. It is a classical fact that the Dirichlet space
on the unit disc is a reproducing kernel Hilbert space ([5]), and, consequently, D.D2/ is
one as well. The reproducing kernel Kz , z 2 D2 (generated by k � kD ), is

Kz.w/ D
�
C1 C log

1

1 � Nz1w1

��
C1 C log

1

1 � Nz2w2

�
; z; w 2 D2

(so it is a product of reproducing kernels for D.D/ in the respective variables), and C1 > 0
is a constant depending on C0.

The definition of norm in (2.1) implies that Kz enjoys the following important prop-
erty:

<Kz.w/ � jKz.w/j; z; w 2 D2;

if we take C1 (respectively, C0) to be large enough.
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Let �;wWT d ! RC. We define a weighted Hardy operator to be

Iwf .˛/ WD
X
ˇ�˛

f .ˇ/w.ˇ/:

We call .�;w/ a trace pair for the weighted Hardy inequality if

(2.2)
Z
T d
.Iwf /2 d� .

Z
T d
f 2 dw

for any f WT d ! RC, i.e., the operator Iw WL2.T d ; dw/! L2.T d ; d�/ is bounded. The
dual version is

(2.3)
Z
T d
.I�.'�//2 dw �

Z
T d
'2 d�

for any 'WT d ! RC, where
I�'.ˇ/ WD

X
˛�ˇ

'.˛/:

It turns out that trace pairs for the weighted Hardy inequality and Carleson measures
for Hs are closely related. Below we give a brief overview of this relationship. We gloss
over most of the technical parts of this short exposition, for more details see [5] and
Section 2 of [3], where it was presented for d D 1, s D s1 2 .0; 1� and d D 2, s D 1,
respectively.

We start by assuming that s 2 .0; 1�d (so that Hs.Dd / is a weighted Dirichlet space
on the poly-disc), and that supp � � rDd for some r < 1 (the latter is just a convenience
assumption that allows us to make the corresponding graphs to be finite; no estimate below
will depend on r , or on the depth of the graph).

It is well known that Hsj .D/; 1 � j � d; is a reproducing kernel Hilbert space
(RKHS) with kernel Ksj satisfying (possibly after a suitable change of norm)

jKsj j.zj ; �j / � j1 � zj
N�j j
sj�1; 0 < sj < 1;

jKsj j.zj ; �j / � log j1 � zj N�j j�1; sj D 1:

Moreover, it is not hard to verify that

<Ks � jKsj; 0 < s � 1 :

However, the case s D 0 is a special case, as

(2.4) the Poisson kernel is not equivalent to the absolute value of the Cauchy kernel.

It follows immediately that HEs.D
d / is a reproducing kernel Hilbert space as well, and

KEs.z; �/ D

dY
jD1

Ksj .zj ; �j /; z; � 2 Dd :
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Going back to the Carleson embedding, we see that IdWHEs.Dd /!L2.Dd ;d�/ is bounded
if and only if its adjoint ‚ is bounded as well. Let us compute its action on a function
g 2 L2.Dd ; d�/:

.‚g/.z/ D h‚g;KEs.z; �/iHEs.D/ D hg;KEs.z; �/iL2.Dd ;d�/ D

Z
Dd

g.�/KEs.z; �/ d�.�/:

Hence, for ‚ to be bounded, it must satisfy

kgk2
L2.Dd ;d�/

& k‚gkHEs.Dd / D hg;‚giL2.Dd ;d�/

D

Z
D2d

g.z/ g.�/KEs.z; �/ d�.z/ d�.�/:

(2.5)

If inequality (2.5) holds, then trivially the following holds:

kgk2
L2.Dd ;d�/

&
Z

D2d

g.z/ g.�/KEs.z; �/ d�.z/ d�.�/; g � 0 :(2.6)

If we would know that the real part of the coordinate reproducing kernel is comparable
to its absolute value, we would deduce that ‚ is bounded if and only if

(2.7)
Z

D2d

g.z/g.�/ jKEs.z; �/j d�.z/ d�.�/ . kgk2
L2.Dd ;d�/

for any positive g on Dd .
In fact, (2.5) implies (2.6), and we can take the real part of both sides of (2.6), putting

the real part on the kernel. Now if we would know that

(2.8) <KEs.z; �/ D <
dY
jD1

Ksj .zj ; �j / �
ˇ̌̌ dY
jD1

Ksj .zj ; �j /
ˇ̌̌
D jKEs.z; �/j; z; � 2 Dd ;

we would deduce (2.5)) (2.7). The only thing we need for this implication is the above
pointwise equivalence (2.8). On the other hand, the implication (2.7)) (2.5) obviously
always holds.

We conclude that, in the presence of the pointwise equivalence (2.8), we have that
(2.5)� (2.7).

However, the equivalence (2.8) – ultimately important for us to prove the equivalence
of dyadic and analytic embeddings (see below) – has limitations. First of all, it is false
even for the 1D case d D 1 if s D 0, see (2.4). That makes the case s D 0 quite special. It
is well known that for the 1D case, the embedding measures for the Poisson and Cauchy
kernels on L2.T / are the same. This is rather simple, but should be considered as a “mir-
acle”. Already in the 2D situation, the fact that the embedding measures for the Poisson
Pz1Pz2 and the CauchyKE0.z; �/D .1� z1

N�1/
�1.1� z2 N�2/

�1 kernels on L2.T2/ are the
same is a subtle fact that will be considered in [25] separately.

Another interesting distinction of the case s D 0 is again about (2.4). The reader
will see that for s > 0, we will characterize the embedding in terms of a simple box
(rectangular) test. As it is well known from the works of Chang, Fefferman and Car-
leson [7, 8, 13, 32], such a characterization is not possible for the Poisson embedding
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ofL2.Td / if d � 2. We would wish to attribute this phenomena to the fact that the Poisson
kernel has a special shape.

Let q.˛/ be the Whitney rectangle described at the beginning of Section 2.4 below.
Let

P.˛; ˇ/ WD sup
z2q.˛/;�2q.ˇ/

P.z; �/ :

See the definition of wE0 below in (2.13).
In the language of the tree T d , the fact that the Poisson kernel has a special shape

means that the following inequality is false in general:

IwE01.˛ _ ˇ/ . P.˛; ˇ/;

This finishes the discussion of Es D E0, which corresponds to the Hardy space in the
poly-disc. Now let Es D .sj / and 0 < sj � 1.

2.2. Unweighted Dirichlet space in the poly-disc

We first consider the case when all sj D 1. For brevity, we assume d D 2. For the un-
weighted Dirichlet space, this is not a restriction of generality, as we will see soon. The
reproducing kernel is KE1.z; �/ D log.1 � z1 N�1/ log.1 � z2 N�2/ D K1.z1; �1/K1.z2; �2/.
The first idea is to see that our inequality (2.5) (equivalent to the embedding)

(2.9)
Z

D2

g.z/ g.�/KE1.z; �/ d�.z/ d�.�/ � Akgk
2
L2.D2;d�/

implies that for every C � 0 we have

(2.10)
Z

D2

g.z/g.�/.CCK1.z1; �1//.CCK1.z2; �2//d�.z/d�.�/�B.C/kgk
2
L2.D2;d�/

:

To deduce this inequality from (2.9), one should open the brackets and consider four terms
in the left-hand side. The term with K1.z1; �1//K1.z2; �2/ is . kgk2

L2.D2;d�/
by (2.9).

The term with C 2
R

D2 g.z/g.�/d�.z/ d�.�/ is obviously . kgk2
L2.D2;d�/

by the Hölder
inequality. Consider one of mixed terms (they are treated symmetrically):

C

Z
D2

g.z/ g.�/K1.z1; �1/ d�.z/ d�.�/ DW C � I;

skip C , and, using the disintegration theorem and the pushing forward of � to the first
coordinate (we call that push forward �1), we write I as follows:

I D

Z
D
G.z1/G.�1/K1.z1; �1// d�1.z1/ d�1.�1/;

where
G.w/ WD

Z
g.w; u/ d�w.u/

and d�w.u/ are slicing measures: �.E/ D
R
�w.E/d�1.w/.
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The push forward measure �1 on D is obviously a Carleson measure for 1D Dirichlet
space if � is a Carleson measure for the Dirichlet space in 2D. Therefore,Z

D
G.z1/G.�1/K1.z1; �1// d�1.z1/ d�1.�1/ � B

Z
D
jG.z1/j

2 d�1.z1/

� B

Z
D

� Z
D
jg.z1; z2/j d�z1.z2/

�2
d�1.z1/ � B

0

Z
D2

jg.z1; z2/j
2 d�z1.z2/d�1.z1/

� B 0
Z

D2

jg.z1; z2/j
2 d�.z/ :

We deduced (2.10) from (2.9) by the use of the disintegration theorem and slicing
measures. Notice that the nature of the kernel did not play any role. We could have done
this with any dimension d and any kernel KEs instead of KE1.

The fact that we worked with precisely KE1 is crucial. In fact, the values of 1 � z N�, for
z; � 2D, are obviously in the right half-plane. Hence, as =K1 is the argument of log 1

1�z N�
,

we have

(2.11) j=K1.z; �/j � �=2:

Hence, by adding a sufficiently large constant C > 0 to K1.z; �/ we achieve a) j<.C C
K1/j � j=.C C K1/j, and b) j<.C d C KE1.z; �//j � c<.…

d
jD1.C C K1/.zj ; �j /// for

any dimension d ; it is enough to choose C D C.d/ a large positive number. The latter
inequality implies that

<…d
jD1.C CK1.zj ; �j // � j…

d
jD1.C CK1.zj ; �j //j :

Therefore, for Es D E1, by modifying the kernel we can achieve (2.8) without changing
the class of Carleson measures. This is shown by (2.10). This means that without changing
the set of embedding measures, we can equivalently replace the inequality (2.5) by (2.7).
This reasoning works for Es D E1 and any dimension d .

2.3. Weighted Dirichlet space in the poly-disc

Now let Es D .sj /djD1; 0 < sj � 1, but Es ¤ E1. We are unable to repeat the trick that was
successful in the previous section. In fact, for Ks D .1 � z N�/s�1, with 0 < s < 1, (2.11)
does not hold, the imaginary part will not be bounded, and so the previous reasoning with
adding a large constant to each kernel of each variable does not work.

However, to reduce the analytic embedding (2.5) to the dyadic embedding on multi-
trees, we seem to really need to show that (2.5) implies (2.7) (the converse implication
being always trivial).

Here we have only partial results, namely for the case when

1 � ".d/ � sj � 1

for ".d/ sufficiently close to 0.
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We just notice that 1� z N� lies in the right half-plane if z; � 2 D, and so .1� z N�/" lies
in the cone C" D ¹uC iv; u � 0; jvj � u � tan�"º. Therefore, for every sj 2 .1 � "; 1/,

j=Ksj .zj ; �j /j � tan�" � <Ksj .zj ; �j / :

This implies that if " is sufficiently small (depending on the dimension d ), then (2.8)
holds, which, as we have already explained, gives us the equivalence of (2.5) and (2.7).

From (2.7), we will now proceed to conclude that the dyadic embedding holds. Then
we will explain why the dyadic embedding implies (2.7), thus closing the circular argu-
ment.

2.4. From the embedding of analytic functions in the poly-disc to the dyadic
multi-parameter embedding

Consider a fixed dyadic lattice D on T . By this, we mean the following. For any dyadic
arc I on T , the symbol Q.I/ denotes a Carleson box:

Q.I/ WD ¹z D rei� 2 D W � 2 I; 1 � jI j � r � 1º :

By q.I / we understand its top half:

q.I / WD ¹z D rei� 2 D W � 2 I; 1 � jI j � r � 1 � jI j=2º :

Sets q.I / form a classical Whitney decomposition of D into dyadic Carleson half-boxes.
This Whitney decomposition corresponds to a chosen dyadic lattice. Clearly there is a

one-to-one correspondence between these half boxes and the vertices of a dyadic tree T
just because vertices of T and dyadic intervals of D are in one-to-one correspondence. So
each half box has an address ˛, which is a vertex of T , so we can write

q.˛/ D q.I / :

We can choose a fixed dyadic lattice for each coordinate tori T . Consequently, the Whit-
ney decomposition of Dd generated by Cartesian products of the respective coordinate
decompositions can be encoded by vertices of T d , i.e., each (multi-)half box q corres-
ponds to a point ˛q 2 T d , and vice-versa, each ˛ 2 T d has a unique counterpart q.˛/,
where now ˛ is a multi-index corresponding to the vertex of T d .

The reader should keep it in mind when we will consider boxes constructed by ran-
dom choices of dyadic lattices ! WD .D1; : : : ;Dd /. Notice that the collections ! WD
.D1; : : : ;Dd / of dyadic lattices form a natural measure space provided with a probab-
ility measure: .�;P /. For future purposes, notice that given a point z in the poly-disc Dd ,
and a random multi-lattice !, we will denote the address of the box that contains z by
the symbol ˛!.z/ (any fixed z is contained in an open box almost surely, and, thus, the
address is uniquely defined by z and !). The box should be called q.˛!.z//; often we
will skip !.

As a result, we can define a family ƒDƒ! WMeasC.Dd /!MeasC.T d / of canonical
maps given by

(2.12) ƒ�.˛/ D �.q.˛//:
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Similarly, given a function g 2 L2.Dd ; d�/, we write

ƒg.˛/ WD
1

�.q.˛//

Z
q.˛/

g.z/ d�.z/:

A vertex ˛ 2 T d corresponds to a rectangle R.˛/ D I1 � � � � � Id . Let Es D .s1; : : : ; sd /,
0 < si � 1, i D 1; : : : ; d . Put

(2.13) wEs.˛/ D jI1j
s1�1 � � � jId j

sd�1 :

This is the weight on T d that is associated to the embedding theorem on T d . This
theorem corresponds to the embedding theorem of the class Hs on Dd .

Define a random kernel as follows. Fix ! 2 � and .z; �/ 2 D2d . In the dyadic multi-
lattice !, find ˛! and ˇ! such that z 2 q.˛!/ and � 2 q.ˇ!/. Up to measure zero of !,
z and � lie in corresponding open boxes, hence the boxes are uniquely defined, and so ˛!

and ˇ! are well-defined. Then consider

k!.z; �/ WD .IwEs1/.˛
!.z/ _ ˇ!.�// :

where ˛ _ ˇ is the least common ancestor of ˛ and ˇ in the geometry of T d . In particular,
for Es D E1, the multi-tree kernel IwE11.˛ _ ˇ/ is the number of ancestors that are common

for ˛ and ˇ. If Es ¤ E1, the kernel counts the weighted number of ancestors.
An elementary computation gives that, independently of !, the following inequality

holds if si ¤ 0; i D 1; : : : ; d :

(2.14) k!
Es
.z; �/ . jKEsj.z; �/:

The implied constant depends only on d and si ¤ 0; i D 1; : : : ; d .

Remark 2.1. If some si vanish, we have “a phase transition” in the kernel, and (2.14)
stops to be true in general. This explains the special role of Hardy spaces on the poly-disc.
If the reader thinks that the Chang–Fefferman theory gives the embedding theorem for the
Hardy spaceH 2.Dd / (the case si D 0; i D 1; : : : ; d ), we should upset the reader by saying
that this is not so. The Chang–Fefferman theory gives the characterization of embedding
measures in the d -harmonic space h2.Dd /. As, obviously, the Hardy space of holo-
morphic functions in the poly-disc is such thatH 2.Dd / � h2.Dd /, the Chang–Fefferman
theory gives the sufficient condition for a measure to be an embedding measure for the
Hardy class, but whether it is a necessary condition (we believe it is) is not known outside
the classical case d D 1. If the influential paper [15] were correct, then its proof could be
modified to give this necessity, but unfortunately the note [34] indicated a counterexample
to the reasoning (but not to the result) of [15].

The inverse inequality to (2.14) is generally not true due to the difference between
hyperbolic geometry on the unit disc and that of a dyadic tree. However, one can verify
that if one considers the family of dyadic lattices � ! D .D1; : : : ;Dd / on Td with a
natural probability measure on this family, then the following holds:

8.z; �/ 2 D2d ; 9�.z; �/ � �W

a) P .�.z; �// � cd > 0; and b) 8! 2 �.z; �/; jKEsj.z; �/ � Cd k
!
Es
.z; �/ :

(2.15)

where cd and Cd depend only on dimension d .
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Now (2.14) and (2.15) give us

(2.16) KEs.z; �/ � E! k
!
Es
.z; �/ :

By Tonelli’s theorem, we have

(2.17)
X
˛2T d

X
ˇ2T d

ƒg.˛/ƒg.ˇ/ IwEs1.˛ _ ˇ/ƒ�.˛/ƒ�.ˇ/ D
Z
T d
.I�.ƒgƒ�//2 dwEs;

For fixed !, and for z 2 Dd ; � 2 Dd , we use that k Es!.z; �/ is constant on each pair
of boxes from the multi-lattice ! detected by the pair .z; �/ to writeZ

Dd

Z
Dd

g.z/g.�/k!
Es
d�.z/d�.�/

D

X
q.˛!/

X
q.ˇ!/

ƒg.q.˛!//ƒg.q.˛!// IwEs 1.˛! _ ˇ!/ƒ�.q.˛!//ƒ�..q.ˇ!//

. kƒgk2
L2.ƒ�/

� kgk2
L2.�/

;(2.18)

where the constants of equivalence depend only on the dimension. Here we used (2.17)
and the boundedness of the operator with kernel IwEs1.˛ _ ˇ/ on the graph T d .

Now let us hit (2.18) by expectation in ! and use (2.16). Therefore (2.7) follows
from (2.3) for � D ƒ� and w D wEs .

Assume now that (2.7) holds. Fix a measure � on T d . Fix any !. Let � be any measure
on Dd such that ƒ� D �. ThenZ

Dd

Z
Dd

g.z/g.�/k!
Es
d�.z/d�.�/ . kgk2

L2.�/

just because of (2.14). Apply this inequality to the special non-negative g that assumes
constant values on each given box q.˛!/. We can choose those constants arbitrarily with
the only condition that kgk2

L2.�/
D kgk2

L2.ƒ�/
<1. Then we get (2.3) for � D ƒ� and

w D wEs .

2.5. Verifying (2.15)

It is enough to verify it for d D 1, because then we can use the product structure of the
kernel jKEsj and the independence of the lattices D1; : : : ;Dd . Put D.z; �/ WD jz � �j C
1 � jzj C 1 � j�j (it is a sort of distance). Then

Ks.z; �/ D j1 � z N�j
s�1
� D.z; �/s�1 :

Now we define the analogous dyadic distance that depends on a dyadic lattice, say lat-
tice L. We defineDL.z; �/ as the smallest length of the dyadic arcs from L that are larger
than max.1 � jzj; 1 � j�j/ and contain the shorter arc that has end-points z and �.

Then right-hand side of (2.15) (for d D 1) is � .DL.z; �//s�1 and DL is always
� cD, where c is an absolute constant. Of course we have

.distL.z; �//s�1 � Iws1.˛ _ ˇ/ :
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To prove (2.15) (for d D 1), it is enough to prove that

distL.z; �/ � C D.z; �/

for a set of dyadic lattices of a fixed probability. Let the full family of dyadic lattices be
just the rotation of one fixed lattice provided with the natural probability measure d�=2� .

Let I be a dyadic arc of length 2� � 2�m. Given z and �, let us calculate the probability
of being a bad dyadic lattice, where bad means that the inequality displayed above is false
with constant C D 8. Each dyadic lattice has two end-points of the first division, four
end-points of the second division, etc.

Then the probability for the first division points to be inside I is 2
2�=jI j

D 2 � 2�m (as
we have two such points). The probability for the second division points to be inside I
is 4 � 2�m. We continue until we find the (m� 4)-th division points, for which the probabil-
ity such a point is in I is almost 2m�4 � 2�m. These are all bad scenarios. Their probability
is at most 1=8.

Hence, the probability none of these points are in I (which we can call a “good” event)
is at least 7=8. But if none of these division points are inside I , we have

DL.z; �/ � 10D.z; �/ :

Inequality (2.15) is proved.
Let us formulate the reduction from the d -disc to the d -tree by a theorem.

Theorem 2.2. Let Es D .s1; : : : ; sd /, si 2 .0; 1�; i D 1; : : : ; d , where all si are sufficiently
close to 1: 1� si � "d , for a certain positive absolute constant "d and i D 1; : : : ; d . Let �
be a measure in Dd . Then the embedding operator idWHEs.Dd /! L2.Dd ; �/ is bounded
if and only if for any dyadic multi-lattice ! on Td , the measure � D ƒ� on T d obtained
by formula (2.12) and the weight wEs on T d from (2.13) give us the embedding pair on T d

in the sense that X
˛2T d

.I� �/2.˛/wEs.˛/ � C
Z
T d
 2 d� :

Notice that the weight wEs.˛/ here has a tensor product form:

˛ D .˛1; : : : ; ˛d / ) wEs.˛/ D us1.˛1/ � � �usd .˛d / :

Remark 2.3. Notice that for Es D E1 (Dirichlet space case), integration in (2.17) with
respect to dwEs means just summation over all vertices of T d . For other Es, a natural weight
appears (it weights the vertices), and the summation has to be with respect to this weight.
In our situation of the scale HEs (of various spaces of analytic functions in the poly-disc
described at the beginning of this section), the weight that appears is always the product
of weights in each coordinate. This emphasizes why we especially care about the results
with product weights.

To summarize, the problem of characterizing Carleson measures for the weighted
Dirichlet space HEs can be often moved to a discrete medium (for Es D E1 can be always
done, for any dimension d ), and after that this problem interpreted (without any loss of
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information) as the problem of characterizing a trace pair .�; wEs/. For instance, we will
see that (2.3) is equivalent to a single box condition (since wEs has a product structure)X

ˇ�˛

.I�ƒ�/2.ˇ/wEs.ˇ/ . I�ƒ�.ˇ/

for any ˇ 2 T d . On the poly-disc, this condition transforms toX
R�Q

�2.T .R//wEs.R/ . �.T .Q//; for any Q;

where Q and R are dyadic rectangles on the (poly-)torus Td , and T .Q/ is the usual tent
area above Q. One can also check that this condition is necessary by testing Carleson
embedding on appropriate functions.

The argument above fails, for a number of reasons, if even one of the parameters sj
becomes zero. However, for the classical Hardy space on the poly-disc one can still make
a connection between the Carleson embedding and the Hardy inequality, but now using
the direct embedding (2.2) instead of the dual (2.3), and the roles of � and w are reversed.
It is done in Section 3.

3. The end-point case s D 0

We repeat ourselves: the equivalence (2.8) – ultimately important for us to prove equival-
ence of dyadic and analytic embeddings – has limitations. First of all (2.8), is false even
for the case d D 1 if s D 0, see (2.4). That makes the case s D 0 quite special. It is well
known that for the d D 1 case, the embedding measures for the Poisson and the Cauchy
kernels onL2.T / are the same. This is rather classical, but should be considered as a “mir-
acle”, exactly because (2.8) fails. Already in the 2D situation, the fact that the embedding
measures for the Poisson Pz1Pz2 and the Cauchy KE0.z; �/ D .1 � z1

N�1/
�1.1 � z2 N�2/

�1

kernels on L2.T2/ are the same is a subtle fact that will be considered in [25] separately.
It is based on Ferguson–Lacey’s characterization of symbols of “little” Hankel operat-
ors [15, 21].

Another interesting distinction of the case s D 0 is about (2.4). The reader will see
that for s > 0 we characterize the embedding in terms of a simple box (rectangular) test.
As it is well known from the works of Chang, Fefferman and Carleson [7, 8, 13, 32], such
characterization is not possible for the Poisson embedding of L2.Td / if d � 2. We would
wish to attribute this phenomena to the fact that the Poisson kernel has a special shape. In
our language, this means that unlike (2.14) above, that holds for s ¤ 0, the same type of
inequality for the Poisson kernel,

IwE01.˛ _ ˇ/ . P.˛; ˇ/;

is false, whereP is a multi-parameter Poisson kernel,P.˛;ˇ/ WD supz2q.˛/;�2q.ˇ/P.z;�/.
For s D 0, the space Hs.Dd / DW H 2.Dd / is the Hardy space on the poly-disc. The

embedding IdWH 2.Dd / ! L2.Dd ; d�/ can be still equivalently described as inequal-
ity (2.5), but cannot be described any longer as inequality (2.7). The reason is that the
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reproducing kernel K0.z; �/ D .1 � z N�/�1 does not satisfy anymore the property that its
real part is equivalent to its absolute value.

Still, we want to deduce the embedding theorem IdWH 2.Dd / ! L2.Dd ; d�/ from
the dyadic statement of the type (2.3). Notice that the embedding of the Hardy space of
analytic functions in the poly-disc follows from the Poisson embedding. Also notice that
for dimension d D 1, these two embeddings are equivalent, in the sense that the classes
of embedding measures in the disc are the same.

This is absolutely not obvious for d > 1. So below we consider only the embedding
of L2.Td / by the means of the multi-Poisson kernel. We do not touch upon the question
of equivalence of this Poisson embedding of L2.Td / and the (Poisson) embedding of
H 2.Td /. The relation between the two embeddings (that ofL2.Td / and that ofH 2.Td /)
for d > 1will be addressed in [25]. It is a really subtle question, that requires the extension
of [15]. To our utmost consternation, this question has not been addressed in the literature.

To this end, we stop to consider the adjoint operator to the embedding IdWH 2.Dd /!

L2.Dd ; d�/. Instead we consider this embedding directly, namely, if P k denotes the
Poisson extension in the k-th variable, we write down our embedding as the following
inequality:

(3.1)
Z

Dd

ŒP 1 : : : P d f �2 d� �

Z
Td

jf j2 dmd ;

where Td is the torus andmd its Lebesgue measure. We emphasize again that this should
hold for any f 2 L2.Td ; md /. Let ¹q.˛/º˛2T d be the Whitney decomposition of Dd

generated by Cartesian products of the respective coordinate decompositions. By [8], we
know that the inequality (3.1) is equivalent to the Carleson–Chang condition:

(3.2)
X

˛Wq.˛/\Tent.�/¤;

�.q.˛// � Cmd .�/ 8 open � � Td :

So we wish to deduce the implication (3.2)) (3.1) by using only the dyadic multi-tree
statement that we will formulate now.

Let f WT d ! Œ0;1/ and letmd be the Lebesgue measure on @T d WD .@T /d given by
md .!/ D 2

�Nd . Now let � be an arbitrary union of elementary cubes !’s of size 2�N .
Call such sets dyadic open sets. For any ˛ 2 T d , we denote by R˛ the dyadic d -subrec-
tangle of the unit cube that corresponds to ˛. Let �WT d ! Œ0;1/ be such that

(3.3)
X

˛WR˛��

.md .R˛//
2�.˛/ � Cmd .�/ 8 dyadic open � � @T d :

We consider the inequality on the multi-tree T d :

(3.4)
Z
T d

�
I�.fdmd /

�2
d� � C1

Z
@T d

f 2 dmd :

Suppose we know that (3.3)) (3.4) (with different constants, but without dependence
onN ). We want to use this implication as the only tool to prove implication (3.2)) (3.1).

This requires some work even for the case d D 1. Below is the way to do this reduction
for d D 1; 2. General d follows the same steps.
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For an interval I of R, QI denotes a Carleson box, and TI denotes its upper half.
Similarly, for a rectangleRD I � J in R2, we haveQR WDQI �QJ and TR WD TI � TJ .
If I runs over a certain dyadic lattice of intervals, then the TI tile the upper half-plane.
Similarly, if R runs over dyadic system of rectangles, the TR tile C2

C. In the next two
subsections, I0 always denotes Œ�1; 1�, and we let Q0 be always QŒ�1;1�.

3.1. The one dimensional case

Let Pf mean the Poisson extension of f . We first consider the 1D case. Let � be a
measure that lies in the upper half plane, and that satisfies the following box Carleson
condition:

(3.5) �.QI / � C1 jI j; 8I :

Let f be a nonnegative test function on the real line with support in Œ�1=2; 1=2�, We want
to give a new proof of the Carleson embedding

(3.6)
Z
Q0

ŒPf �2 d� � C2

Z
f 2dx;

where C2 depends only on C1.
As we have Harnack’s inequality for Pf , we always may assume that � is a doubling

measure in the Poincaré metric of CC.
We wish to prove the implication (3.5)) (3.6) by allowing ourselves to use only the

implication (3.7)) (3.8), where given a dyadic lattice D , we have

�.QI / � C1 jI j; 8I 2 D ;(3.7) X
J2D

hf i2J �.TJ / � C

Z
R
f 2dx :(3.8)

Here are several notations: as always, for a given I , �I means the interval with the
same center, but with length �jI j. If I is an interval of a dyadic lattice D , then I j is its
ancestor such that jI j j D 2j jI j. We denote by cI D xI C iyI the center of TI , and by PI ,
the Poisson kernel with pole at cI . As PIf is bounded by an absolute constant times
the convex combination of the averages hf i2k I , k D 0; : : : ; log.1=jI j/, and the average
hf iI0 , we can choose kI that gives the maximum to hf i2k I , k D 0; : : : ; log.1=jI j/, and
then

Pf .cI / D PIf � A1hf i2kI �I C A2hf iI0 :

Our goal is to give a new way to prove (3.6). Traditionally it is deduced from (3.5) by
a interpolation argument. We wish to deduce it using only the dyadic L2 estimate. The
second term is trivial to estimate.

To estimate the first term, we will do the following. We consider the probabilistic space
of dyadic lattices built as follows. Divide R into equal intervals of size 2�N , where N is
very large. We do it to have Œ�1=2; 1=2� tiled. Now we can toss the coin and choose
which pair is united to one dyadic interval of size 2�NC1. These are the fathers. Toss the
coin again to choose who are grandfathers. Now for a given interval of size 2�N we have
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already 4 different grandfathers, each with probability 1=4. We continue this tossing for
a total number of N C 4 tossings. For any interval of size 2�N inside Œ�1=2; 1=2�, the
most senior ancestor will contain Q0 D Œ�1=2; 1=2� with probability 15=16. We call the
collection of such dyadic lattices � (it is a finite family of lattices). All dyadic lattices
in � have equal probability, and we just renormalize the probability to have P .�/ D 1.

The thus obtained random dyadic lattices will be called D.!/, their probability space
will be called .�; P /. Now fix ! 2 � (meaning fix one of those lattices), and consider
some small I 2 D.!/ of size 2�N . We consider cI and find kI as above. Consider 2kI I .
It may not be dyadic, but it has the same center xI as the dyadic I , so consider I kI
and I kIC10 and check whether I kI is inside 3

4
I kIC10. Suppose it is. Then obviously, as

xI 2 I
kI , we will have that

2kI I � I kIC10 :

It is very easy to see that

P
®
I kI is inside 3

4
I kIC10

¯
� 1=2 :

Thus
P¹2kI I � I kIC10º � 1=2 :

If the event 2kI I � I kIC10 happens, then we call TI good, we color it red, and we color
I kIC10 also red; but we take the measure � on TI , color it blue and move this blue mass to
TIkIC10 . No measure then is left in TI . All measure movements are “up”. It never happens
that the measure is moved into a square QJ , J 2 D.!/, from outside of QJ . Therefore,
the new measure satisfies the same Carleson condition (3.5) for all boxes QJ , where J is
in this D.!/.

Otherwise, we call TI bad, and we color it white. We do nothing else.
Then we look at intervals of size 2�NC1 and repeat all that. We do this for every D.!/.

Obviously the same TI can be good for some ! and bad for others. We established above
that the probability to be good is at least 1=2.

It may happen that a certain TJ has blue mass (moved from below) and original mass.
If we need to move mass from TJ we color blue and move only original mass, the “new”
mass; the blue mass, which came from below, rests unmoved.

When we finish the procedure we have a new measure, and we color it all blue (many
parts of it are already colored blue), and we call it �b.!/ (it is random, and it also depends
on f ). But it is dyadic Carleson like (3.5) for all boxes QI ; I 2 D.!/.

After this procedure, it may very well happen that for a given D.!/ and J 2 D.!/,
TJ is colored white, but J is colored red and TJ contains blue mass particles.

For every ! we also have subdomains R (colored red) and W (colored white) of Q0,
W D W.!/ consisting of bad TI ; I 2 D.!/, and R D R.!/, consisting of good TI ; I 2
D.!/. Now Z

R

ŒPf �2 d� .
X

I2D.!/;TI good

hf i2
IkIC10

�b.TIkIC10/C hf i
2
I0
j�j

�

X
J2D.!/;J red

hf i2J �b.TJ / � C

Z
R
f 2 dx;
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This is because we always preserve the dyadic box Carleson (3.5) property for �b.!/
in the corresponding D.!/. On the other hand, let us denote by F the union of all I ’s in
all dyadic lattices D.!/; ! 2 �, such that 2�N � jI j � 24. ThenZ

�

Z
R.!/

ŒPf �2 d� dP .!/ �
1

2

Z
Q0

ŒPf �2 d�;

because each TI , for I 2 F , will be red at least half of the time (meaning that P¹TI is redº
� 1=2).

3.2. The multi-dimensional case

Now the measure � is in Qn
0 . We will consider for brevity only the case n D 2. The

measure � satisfies the Chang–Carleson condition. For any open set G �Q0, consider its
tent: TG D .¹z; w/ 2 CC W R.z;w/ � Gº, where

R.z;w/ WD Œ<z � =z;<z C=z� � Œ<w � =w;<w C=w� :

The Chang–Carleson condition is

(3.9) �.TG/ � C1 jGj ;

where jGj denotes the plane Lebesgue measure of G.
As we have Harnack’s inequality, we always may assume that � is a doubling measure

in the natural metric of C2
C.

This allows us to notice the following. Consider any system of dyadic rectangles.
Choose any finite family of dyadic rectangles R D I � J of this system, we call their
union O “a dyadic open set”. It has a dyadic tent T dO . Now, by definition, it is the union
of all TQ for all dyadic Q (of the same system) such that Q � O .

The doubling property above (which we assume without loss of generality because
of Harnack’s principle) allows us to conclude that if � has property (3.9) it also has the
following dyadic Chang–Carleson property:

(3.10) �.T dO / � C jOj :

Now let P D P 1P 2 be the bi-Poisson extension. Fix a test function f � 0 supported
in Œ�1=2; 1=2�2. Consider two dyadic lattices of one variable as before D.!x/, D.!y/,
and consider the system of dyadic rectangles R D I � J , I 2 D.!x/; J 2 D.!y/. Call
this system D.!/, ! WD .!x ; !y/. Let cR D .cI ; cJ /, where cI is the center of TI and cJ
is the center of TJ .

Let P 1I be the Poisson kernel with pole at cI , and let P 2J be the Poisson kernel
with pole at cJ . The bi-Poisson extension P 1I P

2
J is bounded by an absolute constant

times the convex combination of the averages hf i2k I�2m J , k D 0; : : : ; log.1=jI j/, m D
0; : : : ; log.1=jJ j/, and the average hf iQ0 . We can choose kI ;mJ that gives the maximum
to hf i2k I�2m J , k D 0; : : : ; log.1=jI j/, m D 0; : : : ; log.1=jJ j/, and then we have

Pf .cI ; cJ / D P
1
I P

2
J f � A1hf i2kI I�2mJ J C A2hf iQ0 :
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Again we can ensure that

(3.11) P¹2kI I � I kIC10; 2mJ I � JmJC10º � 1=4 :

Then we just repeat the coloring scheme from subsection 3.1. This time we color the 4D
rectangles TR, R 2 D.!/, white if TR is bad, namely, if the event in (3.11) does not
happen, and we color it red and call it good if that event does happen. From red TR
we scoop all the measure �, color its particles blue and move to T OR for the ancestor
OR WD I kIC10 � JmJC10 of R D I � J .

Again we will have that the random blue measure �.!/ satisfies (3.10) as the original
measure � does. Then we repeat the calculation of subsection 3.1. We should prove the
embedding Z Z

Q0�Q0

ŒP 1P 2f �2 d� � C

Z Z
I0�I0

f 2 dm2 :

We just repeat the averaging over the probability calculation of subsection 3.1.

4. Surrogate maximum principle

From now on, our paper is devoted only to the multi-tree case (the dyadic n-rectangles
case). We will need to overcome a major difficulty: the potential theory on multi-trees
does not allow a maximum principle.

Let � be a positive function on an d -tree T d . Its energy is defined as

EŒ�� WD

Z
w.I��/2:

We view the weight wW T d ! Œ0;1/ as fixed, and keep it implicit in the notation. The
energy can be written in terms of the potential

V� WD I.w I��/;

as EŒ�� D
R
T d

V� d�. Consider the truncated potential and the partial energy:

V�
ı
WD I.1V��ıw I��/ and Eı Œ�� WD

Z
T d

V�
ı

d� D
Z
¹V��ıº

w.I��/2:

On a 1-tree, we have the maximum principle

(4.1) V�
ı
� ı:

It follows that, for any positive function � on T , we haveZ
T

V�
ı

d� D
Z
¹V��ıº

wI ��I �� � min.ıj�j;EŒ��1=2EŒ��1=2/

� .ıj�j/� .EŒ��EŒ��/.1��/=2

(4.2)
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for every � 2 .0; 1�, where

j�j WD

Z
T

�:

A similar estimate on 2-trees, with a specific �, was obtained in [4]. In this section, we
give a streamlined proof of such an estimate on 2-trees and extend it to 3-trees.

We do not know how to deal with d -trees with d � 4.
If T d D T1 � � � � � Td is an d -tree, then we denote by I1; : : : ; In the Hardy operators

acting in the respective coordinates, so that ID I1 � � �In. We use a similar index convention
for the operators �1; : : : ; �n.

4.1. 1-trees

Lemma 4.1. Let T be a tree, and let f; gWT ! Œ0;1/ be any functions. Then

.If /.Ig/ � I.If � g C f � Ig/:

Proof. We have

If .˛/Ig.˛/ � If .˛/Ig.˛/C I.fg/.˛/

D

X
˛0�˛;˛00�˛

f .˛0/g.˛00/C
X
˛0�˛

f .˛0/g.˛0/

D

X
˛0�˛00�˛

f .˛0/g.˛00/C
X

˛00�˛0�˛

f .˛0/g.˛00/

D

X
˛00�˛

If .˛00/g.˛00/C
X
˛0�˛

f .˛0/Ig.˛0/

D I.If � g/.˛/C I.f � Ig/.˛/:

Definition 4.2. Given a finite tree T , the set of children of a vertex ˇ 2 T consists of the
maximal elements of T that are strictly smaller than ˇ:

chˇ WD max¹ˇ0 2 T Wˇ0 < ˇº

A function gWT ! R is called superadditive if for every ˇ 2 T we have

g.ˇ/ �
X

ˇ 02 ch.ˇ/

g.ˇ0/:

The difference operator is defined by

�g.ˇ/ WD g.ˇ/ �
X

ˇ 02 ch.ˇ/

g.ˇ0/:

Lemma 4.3 (Partial summation). Let T be a finite tree. For any functions f; gW T ! R,
we have

(4.3)
X
˛2T

f .˛/g.˛/ D
X
˛02T

�f .˛0/Ig.˛0/:
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Proof. By induction on the size of the tree, one can show

f .˛/ D
X
˛0�˛

�f .˛0/:

It follows thatX
˛

f .˛/g.˛/ D
X

˛;˛0W˛0�˛

�f .˛0/g.˛/ D
X
˛0

�f .˛0/
X
˛W˛0�˛

g.˛/ D
X
˛02T

�f .˛0/Ig.˛0/:

Lemma 4.4. Let T be a tree, and let f; gWT ! R. Then

I �.fg/ D I �.�f � Ig/ � f .Ig � g/:

Proof. For ˇ 2 T , write #ˇ WD ¹˛ 2 T j ˛ � ˇº. This is again a sub-tree, on which we
can apply the partial summation identity (4.3). Hence,

I �.fg/.ˇ/ D

Z
#ˇ

fg D

Z
#ˇ

�f � I.g1#ˇ /

For each ˛ 2 #ˇ, we have

I.g1#ˇ /.˛/D
X


 W˛�
�ˇ

g.
/D
X

 W˛�


g.
/�
X

 Wˇ�


g.
/C g.ˇ/D Ig.˛/� Ig.ˇ/C g.ˇ/:

Therefore,

I �.fg/.ˇ/ D

Z
#ˇ

�f �.Ig�Ig.ˇ/Cg.ˇ// D

Z
#ˇ

�f �Ig�.Ig.ˇ/�g.ˇ//

Z
#ˇ

�f

D I �.�f � Ig/.ˇ/ � .Ig.ˇ/ � g.ˇ//f .ˇ/:

Corollary 4.5 (cf. Lemma 2.2 in [4]). Let T be a tree, and let f; gWT ! Œ0;1/ . Then

I �.fg/ � I �.�f � Ig/:

4.2. 2-trees

In this section we prove a version of (4.2) on 2-trees that refines Lemma 4.1 in [4]. Recall
that I D I1I2.

Lemma 4.6. Let T 2 be a bi-tree, and let f; gWT 2 ! Œ0;1/. Then

.If /.Ig/ � I.If � g C I1f � I2g C I2f � I1g C f � Ig/:

Proof. The linear operators I1 and I2 commute and I D I1I2. To each of I1 and I2 we
can apply Lemma 4.1. Hence,

.If /.Ig/ D .I1I2f /.I1I2g/ � I1
�
.I1I2f /.I2g/C .I2f /.I1I2g/

�
:
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By Lemma 4.1, the sum in the bracket is

D .I2I1f /.I2g/C .I2f /.I2I1g/

� I2
�
.I2I1f /.g/C .I1f /.I2g/

�
C I2

�
.I2f /.I1g/C .f /.I2I1g/

�
:

Hence,

.If /.Ig/ � I1
�
I2
�
.I2I1f /.g/C .I1f /.I2g/

�
C I2

�
.I2f /.I1g/C .f /.I2I1g/

��
D I.If � g C I1f � I2g C I2f � I1g C f � Ig/:

The following result will not be used in our current treatment of bi-trees. We include
it to illustrate the relation of Lemma 4.6 with the argument in [4].

Corollary 4.7 (cf. Theorem 3.1 in [4]). Let 0 < ı � �=4. Let f W T 2 ! Œ0;1/ with
suppf � ¹If � ıº. Then

.If /1If�� � 4�
�1I .I1f � I2f /:

Proof. Substituting f D g, Lemma 4.6 implies that

.If /2 � 2I .I1f � I2f C f � If /:

Using the support condition, this implies

.If / 1If�� � �
�1 .If /2 1If�� � �

�12I .I1f � I2f C ıf / 1If��

� 2��1 I .I1f � I2f /C 2ı�
�1 If 1If��:

Since 2ı��1 � 1=2, this implies

.If /1If�� � 4�
�1I .I1f � I2f /

4.2.1. Energy bound.

Lemma 4.8. Let T 2 be a 2-tree, and let f WT 2! Œ0;1/ be a function that is superadditive
in each parameter separately. LetwWT 2! Œ0;1/ be of tensor product form. Suppose that
suppf � ¹I.wf / � ıº. ThenZ

T 2
wf � I1.w1f / � I2.w2f / � I.wf / � ı

2

Z
T 2
wf 2:

Proof. By the hypothesis, the left-hand side of the conclusion is

� ı

Z
T 2
wf � I1.w1f / � I2.w2f / D ı

Z
T 2
w1f � I1.wf / � I2.w2f /

D ı

Z
T 2
wf � I �1 .w1f � I2.w2f // D ı

Z
T 2
wf � I �1 .f � I2.wf //:

(4.4)

By Corollary 4.5, we have

I �1 .f � I2.wf // � I
�
1 .�1f � I1I2.wf //:
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Since ¹I.wf / � ıº is an up-set, �1f is supported on this set. Since f is superadditive,
�1f � 0. Hence,

(4.5) I �1 .f � I2.wf // � I
�
1 .�1f � I.wf // � I

�
1 .�1f � ı/ D ıf:

Inserting (4.5) into (4.4), we obtain the claim.

Lemma 4.9. Let T 2 be a 2-tree, and let f WT 2! Œ0;1/ be a function that is superadditive
in each parameter separately. LetwWT 2! Œ0;1/ be of tensor product form. Suppose that
suppf � ¹I.wf / � ıº. ThenZ

T 2
w.I1w1f /

2 .I2w2f /
2
� 4ı2

Z
T 2
wf 2:

Proof. By Lemma 4.1 and the commutativity of operations in different coordinates,Z
T 2
w.I1w1f /

2.I2w2f /
2
� 4

Z
T 2
wI1.w1f � I1.w1f // � I2.w2f � I2.w2f //

D 4

Z
T 2
I1.w1f � I1.wf // � I2.w2f � I2.wf //

D 4

Z
T 2
I �2 .w1f � I1.wf // � I

�
1 .w2f � I2.wf //

D 4

Z
T 2
wI �2 .f � I1.wf // � I

�
1 .f � I2.wf //:

Using (4.5), we obtain the claim.

The next results improve Lemma 4.1 in [4].

Lemma 4.10 (Small energy majorization on bi-tree). Let T 2 be a 2-tree, and let f WT 2!
Œ0;1/ be a function that is superadditive in each parameter separately. Let wW T 2 !
Œ0;1/ be of tensor product form. Suppose that suppf � ¹I.wf / � ıº. Let � � 4ı. Then
there exists 'WT 2 ! Œ0;1/ such that

a) Iw' � Iwf; where Iwf 2 Œ�; 2��; b)
Z
T 2
w'2 � C

ı2

�2

Z
T 2
wf 2;

where C is an absolute constant.

Proof. Since 2ı��1 � 1=2, we have

.If /1If�� � 4�
�1I .I1f � I2f /

And thus

.If /1��If�2� � 4�
�1 I .I1f � I2f /1��If�2� � 4�

�1I .I1f � I2f � 1If�2�/:

Put
' WD 4��1.I1f � I2f � 1If�2�/

Then ' does already satisfy condition a) of the statement of the lemma. Now apply
Lemma 4.9 to see that condition b) of the statement of the lemma is satisfied as well.
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4.2.2. The lack of maximum principle and the capacity of bad sets. In [4] we proved
the analogous small energy majorization statement on the bi-tree T 2 but with ı=� in the
right-hand side of b).

Let us see why we care. Let � be a measure on @T 2 and let its potential V� � 1

on supp�. In the “usual” potential theory, the maximum principle would imply that the
potential V� � 1 everywhere (or at least that V� � C with absolute constant C , see [1]).

This is not true for potential theory on multi-trees. The reader can find the counter-
examples in [4].

The natural question arises: given �� 1, what is the size of the set ¹V� � �º? Let us
introduce the usual notion of capacity on T 2. Given a set E, we consider all ' such that
I' � 1 on E and

cap.E/ WD inf
Z
T 2
'2;

where the infimum is taken over such '. So one would like to estimate the capacity
cap.¹V� > �º/ of the bad set in terms of �, if V� � 1 on supp�.

Theorem 4.11. Let us be on T 2, and suppose V� � 1 on supp�. Then

cap.¹V� > �º/ �
CEŒ��

�4

for � � 1, where C is an absolute constant.

Proof. Consider f D I��, ı D 1. If f .˛/ ¤ 0, then there is ˇ � ˛ such that ˇ 2 supp�.
But then, by assumption, If .ˇ/ D II��.ˇ/ D V�.ˇ/ � 1. By the monotonicity of I, we
have that If .˛/ � 1. Hence

suppf � ¹If � ı D 1º;

and we are in the assumptions of the small energy majorization Lemma 4.10 on the bi-
tree. We apply it with data .f; ı D 1; � WD 2m�/ to get functions 'm, m D 0; 1; : : :, such
that

I'm � If D V�; where V�
2 Œ2m�; 2mC1��;

which means that

2�m��1I'm � 1; where V�
2 Œ2m�; 2mC1��;

On the other hand, putting ' WD
P
m 2
�m��1'm, we get firstly

I' � 1; where V�
2 Œ�;1/;

and secondly,Z
'2 �

�
��1

X
m

2�m
� Z
T 2
'2m
�1=2�2

� C
�
��1

X
m

��12�2m.

Z
T 2
f 2/1=2

�2
� C 0 ��4

Z
T 2
f 2:

As f D I��, we have
R
T 2
f 2 D

R
T 2

I��I�� D
R
T 2

II�� d� D
R
T 2

V� d� D EŒ��,
which proves the theorem.
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Remark 4.12. We do not know how precise is the rate ��4 in Theorem 4.11. We do not
even know whether the sharp rate should be polynomial or exponential. What we do know
(see [4]) is that for any large � there exists a measure �, such that V� � 1 on supp� but
such that, with an absolute positive constant c, the following holds:

(4.6) cap.¹V� > �º/ � ce�2� :

4.2.3. Continuation of energy estimates.

Lemma 4.13. Let � and � be positive measures on T 2, and let ı > 0. LetwWT 2! Œ0;1/

be of tensor product form. Then� Z
V�

ı
d�
�4
� 28 � ı2 Eı Œ��EŒ�� j�j

2:

Proof. Let f WD 1V��ıI
��. ThenZ

V�

ı
d� D

Z
I.wf / d� � j�j1=2

� Z
.I.wf //2 d�

�1=2
Lemma 4.6
� j�j1=2

�
2

Z
I.I1.wf / � I2.wf /C .wf / � I.wf // d�

�1=2
D 21=2 j�j1=2

� Z
w.I1.w1f / � I2.w2f /C f � I.wf //I

��
�1=2

� 21=2 j�j1=2 EŒ��1=4
� Z

w.I1.w1f / � I2.w2f /C f � I.wf //
2
�1=4
I

and expanding the square and using Lemma 4.8 and Lemma 4.9,

� 21=2 j�j1=2 EŒ��1=4
�
7ı2

Z
wf 2

�1=4
D 281=4 j�j1=2 EŒ��1=4 ı1=2 Eı Œ��

1=4:

4.3. 3-trees

Similarly to Lemma 4.6, we obtain the following result for 3-trees.

Lemma 4.14. Let T 3 be a 3-tree, and let f; gWT 3 ! Œ0;1/. Then

.If /.Ig/ � I
� X
A�¹1;2;3º

IAf � IAcg
�
;

where IA D
Q
i2A Ii .

Corollary 4.15. Let 0 < ı � �=4. Let f WT 3 ! Œ0;1/ with suppf � ¹If � ıº. Then

.If /1��If�2� � 4�
�1 I

� X
i2¹1;2;3º

Iif � I.i/f � 1If�2�

�
;

where I.i/ D
Q
j¤i Ij .
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Proof. Substituting f D g, Lemma 4.14 implies that

.If /2 � I
�
2

X
i2¹1;2;3º

Iif � I.i/f C 2f � If
�
:

Using the support condition, this implies

.If /1��If�2� � �
�1.If /2 1��If�2� � �

�1 I
�
2

X
i2¹1;2;3º

Iif � I.i/f C 2ıf
�

� ��1 I
�
2

X
i2¹1;2;3º

Iif � I.i/f
�
C 2ı��1 If:

Since 2ı��1 � 1=2, this implies

.If / 1��If�2� � 2�
�1 I

�
2

X
i2¹1;2;3º

Iif � I.i/f
�

1��If�2�

� 2��1 I
�
2

X
i2¹1;2;3º

Iif � I.i/f � 1If�2�

�
:

4.3.1. Energy bound.

Lemma 4.16. Let f W T 3 ! Œ0;1/ be superadditive. Let wW T 3 ! Œ0;1/ be a tensor
product. Suppose that suppf � ¹I.wf / � ıº. ThenZ

w.I1.w1f / � I2I3.w2w3f //
2 1I.wf /�� � 2ı�

Z
wf 2:

Proof. By Lemma 4.1, we haveZ
w.I1.w1f / � I2I3.w2w3f //

2 1I.wf /��

� 2

Z
wI1.w1f � I1.w1f // � .I2I3.w2w3f //

2 1I.wf /��

D 2

Z
I1.w1f � I1.wf // � .I2I3.w2w3f // � .I2I3.wf // 1I.wf /��

D 2

Z
w1f � I1.wf / � I

�
1

�
.I2I3.w2w3f // � .I2I3.wf // 1I.wf /��

�
:

(4.7)

By Corollary 4.5, we have

I �1
�
.I2I3.w2w3f // � .I2I3.wf //1I.wf /��

�
� I �1

�
�1.1I.wf /�� � I2I3.w2w3f // � I1.I2I3.wf //:

Since ¹I.wf / � �º is an up-set and f is superadditive in the first coordinate, we have
�1.1I.wf /�� � I2I3.w2w3f // � 0, and I1.I2I3wf / D Iwf � � on the support of the
former function. Hence,

I �1
�
.I2I3.w2w3f // � .I2I3.wf //1I.wf /��

�
� I �1

�
�1.1I.wf /�� � I2I3.w2w3f // � �

�
D � 1I.wf /�� � I2I3.w2w3f /:
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Using this bound, we obtain

(4.7) � 2�
Z
w1f � I1.wf / � I2I3.w2w3f / D 2�

Z
f � I1.wf / � I2I3.wf /

D 2�

Z
wf � I �1 .f � I2I3.wf //:

As in (4.5), we see that
I �1 .f � I2I3.wf // � ıf:

This implies the conclusion of the lemma.

Compare the next result with Lemma 4.10.

Lemma 4.17 (Small energy majorization on the tri-tree). Let T 3 be a 3-tree, and let
f W T 3 ! Œ0;1/ be a function that is superadditive in each parameter separately. Let
wW T 3 ! Œ0;1/ be of tensor product form. Suppose that supp f � ¹I.wf / � ıº. Let
� � 4ı. Then there exists 'WT 3 ! Œ0;1/ such that

a) I.w'/ � I.wf /; where I.wf / 2 Œ�; 2��; b)
Z
T 3
w'2 � C

ı

�

Z
T 3
wf 2;

where C is an absolute constant.

Proof. Since 2ı��1 � 1=2, we have

.Iwf / 1��If�2� � 2�
�1 I

�
2

X
i2¹1;2;3º

Iiwif � I.i/w.i/f
�

1��If�2�

� 2��1 I
�
2

X
i2¹1;2;3º

Iiwif � I.i/w.i/f � 1If�2�

�
:

Put
' WD 2��1

�
2

X
i2¹1;2;3º

Iiwif � I.i/w.i/f � 1If�2�

�
:

Then we have just seen that a) is satisfied. To prove b), just apply Lemma 4.16.

4.3.2. The lack of maximum principle and the capacity of bad sets. The reader can
compare this subsection with Subsection 4.2.2.

Let � be a measure on @T 3 and let its potential V� � 1 on supp�. As we already men-
tioned, in the “usual” potential theory, the maximum principle would imply that potential
V� � 1 everywhere (or at least that V� � C with absolute constant C , see [1]).

As we also already mentioned, see Subsection 4.2.2, this is not true for potential theory
on multi-trees.

A natural question arises: given �� 1, what is the size of the set ¹V� � �º? Let us
introduce the usual notion of capacity on T 3. Given a set E, we consider all ' such that
I' � 1 on E and

cap.E/ WD inf
Z
T 3
'2;

where the infimum is taken over such '. So one would like to estimate the capacity of the
bad set cap.¹V� > �º/ in terms of �, if V� � 1 on supp�.
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Theorem 4.18. Let us be on T 3, and let V� � 1 on supp�. Then

cap.¹V� > �º/ �
CEŒ��

�3

for � � 1, where C is an absolute constant.

Proof. Consider f D I��, ı D 1. If f .˛/ ¤ 0, then there is ˇ � ˛ such that ˇ 2 supp�.
But then, by assumption,

If .ˇ/ D II�.ˇ/ D V�.ˇ/ � 1:

By the monotonicity of I, we have that If .˛/ � 1. Hence

suppf � ¹If � ı D 1º;

and we are in the assumptions of the small energy majorization Lemma 4.17 on the tri-
tree. We apply it with data .f; ı D 1; � WD 2m�/ to finish the proof in exactly the same
manner as this has been done in Theorem 4.11.

Remark 4.19. We do not know how precise is the rate ��3 in Theorem 4.18. The lower
bound (4.6) still applies, since the Cartesian product of a 2-tree and a singleton is a 3-tree,
but there is a lot of room between the upper and the lower bound.

4.3.3. Continuation of energy estimates. The next result is a version of (4.2) for 3-trees.
The proof closely follows that of Lemma 4.1 in [4].

Lemma 4.20. Let � and � be positive measures on T 3, and let ı > 0. LetwWT 3! Œ0;1/

be of tensor product form. Then

(4.8)
� Z

V�
ı

d�
�3

. ı Eı Œ��EŒ��j�j:

Proof. Without loss of generality, Eı Œ�� ¤ 0 and � 6� 0. Let � > 0, to be chosen later.
Let f WD I�� � 1V��ı.˛/. This function is superadditive. Also, I.wf /DV�

ı
�V� � ı

on suppf , and Eı Œ�� D
R
wf 2.

For m D 0; 1; : : : let

�m WD 4.2
m�/�1

� X
i2¹1;2;3º

Ii .wif / � I.i/.w.i/f / � 1I.wf /�2mC1�

�
:

Then, by Corollary 4.15 with wf in place of f , we have

I.wf / � 12m�<I.wf /�2mC1� � I.w�m/;

and, by Lemma 4.16, we have Z
w�2m .

ı

2m�

Z
wf 2:
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Hence,Z
V�
ı

d� D
Z
¹V�
ı
��º

V�
ı

d�C
1X
mD0

Z
¹2m�<V�

ı
�2mC1�º

V�
ı

d�

� �j�j C

1X
mD0

Z
I.w�m/ d� D �j�j C

1X
mD0

Z
w�m I� d�

� �j�j C

1X
mD0

� Z
w�2m

�1=2
EŒ��1=2 � �j�j C

1X
mD0

C.ı=.2m�//1=2Eı Œ��
1=2EŒ��1=2

� �j�j C C.ı=�/1=2Eı Œ��
1=2EŒ��1=2:

Substituting � D .ıEı Œ��EŒ��/
1=3 j�j�2=3, we obtain (4.8).

Corollary 4.21. Let � and � be positive measures on T 3, and let ı > 0. ThenZ
V�
ı

d� � C 1=2(4.8) ı
1=2EŒ��1=6 j�j1=6EŒ��1=3 j�j1=3:

Proof. By Lemma 4.20 and Theorem 4.23, we have� Z
V�
ı

d�
�3
� C(4.8) ıEı Œ��EŒ�� j�j � C(4.8) ı

�
C(4.8) ıEŒ�� j�j

�1=2
EŒ�� j�j

4.4. d-trees

We say that a weight w satisfies the surrogate maximum principle if, for some � > 0,
C <1, and every positive functions �; �WT d ! Œ0;1/ and ı > 0, we have

(4.9)
Z

V�
ı

d� � C
�
ıj�j

���
Eı Œ��EŒ��

�.1��/=2
:

When d 2 ¹1; 2; 3º, every weight w of tensor product form satisfies the surrogate
maximum principle with � D 1=d and C independent of w. For d D 1, this follows from
the maximum principle (4.1). For d D 2, this holds by Lemma 4.13, and for d D 3, by
Lemma 4.20. This leads us to the following conjecture.

Conjecture 4.22 (Surrogate maximum principle). Let w WT d ! Œ0;1/ be of tensor pro-
duct form. Thenw satisfies the surrogate maximum principle with � D 1=n and C D C.n/
independent of w.

In what follows, we will work conditionally on the surrogate maximum principle. All
implicit constants are allowed to depend on �; C in (4.9), but not otherwise on w. In
particular, our results hold unconditionally for w of tensor product form if n 2 ¹1; 2; 3º.

Taking � D � in (4.9), we obtain Lemma 4.23 below.

Lemma 4.23. Let wW T d ! Œ0;1/ be such that the surrogate maximum principle (4.9)
holds. Let � be a positive measure on T d , and let ı > 0. Then

(4.10)
Z

V�
ı

d� � C 2=.1C�/(4.9) .ıj�j/2�=.1C�/ EŒ��.1��/=.1C�/:
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When using Lemma 4.23, we can also denote 2�=.1C �/ by the letter � again, which
proves (4.9) for d D 1; 2; 3.

Conjecture 4.24. For all positive integers d ,Z
V�
ı

d� � Cd .ıj�j/2=.dC1/ EŒ��.d�1/=.dC1/:

Notice that for d D 1 we have the best possible estimate, it is linear in ı. For d D 2,
we proved above the estimate with ı2=3. To our big surprise, we managed to improve this
result: in [24] we have proved the estimate � C� .ıj�j/1��EŒ��� for any � > 0. And we
can prove that the estimate with � D 0 is false for d D 2, see [26].

5. Carleson condition implies hereditary Carleson condition

For an arbitrary set E � T d , let

EE Œ�� WD

Z
E

w.I��/2:

Lemma 5.1. Let wW T d ! Œ0;1/ be such that the surrogate maximum principle (4.9)
holds. Let �WT d ! Œ0;1/ and define

E WD
°

V� > .2C(4.10)/
�1=� EŒ��

j�j

±
� T d :

Then

EE Œ�� WD
X
˛2E

w.˛/.I��.˛//2 �
1

2
EŒ��:

Proof. Put ı WD .2C(4.10)/
�1=� EŒ��=j�j. By Lemma 4.23, we have

EE Œ�� D EŒ�� � Eı Œ�� � EŒ�� � C(4.10) .ıj�j/
� EŒ��1�� D EŒ��=2;

and the claim follows.

Theorem 5.2. Let wW T d ! Œ0;1/ be such that the surrogate maximum principle (4.9)
holds. Then, for every �WT d ! Œ0;1/, we have

Œw; ��HC . Œw; ��Car:

Proof. Without loss of generality, Œw; ��Car D 1. Let

(5.1) A WD Œw; ��HC D sup
E�T d ;�.E/¤0

EŒ�1E �
�.E/

�

Since T d is finite, the constant A is finite, and there exists a maximizer E for (5.1). Let
� WD �1E and set

D WD ¹V� > cAº
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with a small constant c. Then, by Lemma 5.1, we have

ED Œ�� �
1

2
EŒ�� :

Hence, 0 < EŒ�� � 2ED Œ�� � 2ED Œ�� � 2�.D/. In particular, �.D/ ¤ 0.
By definition, we have V� > cA on D , and therefore

cA�.D/ �

Z
D

V� d� � EŒ��1=2 EŒ�1D �
1=2
� .2�.D//1=2.A�.D//1=2:

It follows that A . 1.

6. Hereditary Carleson condition implies Carleson embedding

Theorem 6.1. Let wW T d ! Œ0;1/ be such that the surrogate maximum principle (4.9)
holds. Let � and � be positive measures on T d with

(6.1) Œw; ��HC � 1 and Œw; ��HC � 1:

Then, for some �0 > 0, we haveZ
V� d� . j�j1=2��0 j�j1=2C�0 :

Remark 6.2. This improves upon the estimateZ
V� d� � EŒ��1=2EŒ��1=2 . j�j1=2 j�j1=2

that is immediate by Cauchy–Schwarz and the Carleson condition.

Proof. Let ı > 0, to be chosen later. By (4.9) and (6.1), we obtainZ
V�
ı

d� . ı� j�j.1��/=2j�j.1C�/=2:

Consider the down-set E WD ¹V� > ıº � T d . By the Cauchy–Schwarz inequality and
the Carleson condition, we haveZ

.V� � V�
ı
/ d� D

Z
E

wI��I�� � EE Œ��
1=2EE Œ��

1=2
� �.E/1=2EŒ��1=2:

Note that

ı�.E/ �

Z
E

V� d� � EŒ��1=2EŒ�1E �1=2 � EŒ��1=2�.E/1=2

by definition (1.10) of the hereditary Carleson constant. Hence,

�.E/1=2 � ı�1EŒ��1=2;
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and it follows that Z
.V� � V�

ı
/ d� � ı�1EŒ��1=2EŒ��1=2:

Hence, Z
V� d� � Cı� j�j.1��/=2 j�j.1C�/=2 C ı�1 j�j1=2 j�j1=2:

Optimizing in ı, we obtain Z
V� d� . j�j

1=2
1C� j�j

1=2C�
1C� :

Exactly as in Theorem 6.3 of [4], we can now prove the following result.

Theorem 6.3. Let wW T d ! Œ0;1/ be such that the surrogate maximum principle (4.9)
holds. Then, for every �WT d ! Œ0;1/, we have

Œw; ��CE . Œw; ��HC:

Alternatively, we can argue as follows. Let �; Q� be measures on T d with Œw;��HC � 1

and Œw; Q��HC � 1. By Theorem 6.1 and the definition of the hereditary Carleson con-
stant (1.10), the positive bilinear map

(6.2) . ; Q / 7!

Z
w.I� �/.I� Q Q�/

is bounded on Lp;1.�/ � Lp
0;1. Q�/ and on Lp

0;1.�/ � Lp;1. Q�/, where 1=p D 1=2 � �0.
By restricted type interpolation, it follows that the map (6.2) is also bounded on L2.�/ �
L2. Q�/. Theorem 6.3 arises in the case � D Q�,  D Q .

7. Box condition implies hereditary Carleson condition

7.1. Main estimate

Define

V�P .!/ WD
X

QW!�Q�P

w.Q/ I��.Q/;(7.1)

V�"0;good.!/ WD
X

P�!WVP .!/>"0
.wI��/.P /:

Lemma 7.1. Let n � 2 and �W T d ! Œ0;1/. Let wW T d ! Œ0;1/ be such that the sur-
rogate maximum principle (4.9) holds. Assume that EŒ�� � j�j and that

(7.2) V� � 1=3 on supp�:

Then, if "0 is small enough, we haveZ
V�"0;good d� & j�j:
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Proof of Lemma 7.1. It suffices to show that, for some "0 and "n�1, we have

�
®
! 2 T dV�"0;good.!/ � "n�1

¯
� j�j=2:

Let " > 0, to be chosen later, and define

"1 WD "; "2 WD ""
1=�
1 ; "3 WD ""

1=�
2 ; : : :

By Lemma 4.23, we haveZ
V�"j d� . "�j j�j

� EŒ��1�� . "�j

Z
d�

for some � > 0. By Chebyshov’s inequality, it follows that

(7.3) V�"j .!/ � ."j ="/
�=10

for a proportion � .1 � C"�/ of !’s. So we only consider !’s for which (7.3) holds for
all j D 1; : : : ; n � 1. Similarly, we may restrict to those !’s for which V�.!/ . 1.

Let
"0 WD " � "1 � � � "n�1:

For a fixed !, let

(7.4) U WD ¹Q � ! j VQ.!/ > "0º

and

Wj WD ¹Q � ! j V�.Q/ � "j º; 1 � j � n � 1:

For p 2 T d , write
"p WD ¹˛ 2 T d j ˛ � pº:

For p 2 "!, let
#p WD ¹˛ 2 T d j ! � ˛ � pº:

If U 6� Wn�1, then this means that there exists p 62 Wn�1 with "p � U. Hence,

V�"0;good.!/ �
X
p02"p

w�.p0/ D V�.p/ � "n�1:

Assume now that U�Wn�1. In this case, we will cover "! nW1 by boundedly many
sets of the form #q with q 2 "! nU. This will lead to a contradiction with (7.2), since,
by (7.3) and (7.4), the integral of

f WD w I��

is small on W1 and on each such set #q.
For a set of coordinates J � ¹1; : : : ; nº and a point p 2 T d , let

"Jp WD ¹q 2 T
d
j qj � pj for j 2 J; qj D pj for j 62 J º:
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Given J � ¹1; : : : ; nº with J ¤ ; and p 2 T d , we define a set QJ .p/ � T
d as

follows. If jJ j D 1, then QJ .p/ consists of the (unique) maximal element of "Jp nU, if
the latter set is nonempty, and is empty otherwise. If jJ j � 2, then QJ .p/ is a maximal set
of maximal elements of "Jp nWn�jJ jC1 such that the sets "J q nWn�jJ jC2 are pairwise
disjoint for q 2 QJ .p/.

Then, recursively, let R;.p/ WD ¹pº,

RJ .p/ WD
S
J 0�J

S
p02QJ .p/

RJ 0.p
0/;

where the first union runs over all subsets of J with cardinality jJ 0j D jJ j � 1.
We claim that, for every p 2 "! and every J � ¹1; : : : ; nº with J ¤ ;, we have

(7.5)
[

p02RJ .p/

#p0 � "Jp nWn�jJ jC1;

where we set Wn WD U to simplify notation. We prove (7.5) by induction on jJ j. For
jJ j D 1, the claim (7.5) obviously holds. Let now J with jJ j � 2 be given, and suppose
that (7.5) is known for all proper subsets of J . Let

D WD
[

p02RJ .p/

#p0; P WD "Jp nWn�jJ jC1:

By the inductive hypothesis,

(7.6) D � "J 0p
0
nWn�jJ jC2

for every p0 2 QJ .p/ and every J 0 ¨ J . Suppose that

(7.7) D 6� P :

Choose a maximal q 2 P nD . Since D is a down-set, q is also a maximal element of P .
We claim that

(7.8) ."J q \ "Jp
0/ nWn�jJ jC2 D ; for all p0 2 QJ .p/:

Indeed, suppose for a contradiction that there exists q0 2 ."J q \ "Jp
0/ nWn�jJ jC2, and

let q0 be minimal with this property. Since Wn�jJ jC2 is an up-set, q0 is also a minimal
element of "J q \ "Jp

0. Since q; p0 2 "Jp, q0 is in fact the coordinate-wise maximum
of q; p0. Since q and p0 are distinct maximal elements of P , in fact q0 coincides with p0

in at least one coordinate, so q0 2 "J 0p
0 for some J 0 ¨ J . Now, (7.6) implies that q0 2D ,

and, since D is a down-set and q0 � q, also q 2 D , a contradiction.
Therefore, (7.8) holds. But this contradicts the maximality of QJ .p/. So the assump-

tion (7.7) is false, and we obtain (7.5).
Let p � !. For 2 � jJ j � n, we have

1 & V�.!/ � V�.p/ �
X

q2QJ .p/

Z
"J qnWn�jJ jC2

f �
X

q2QJ .p/

.If .q/ � I.f 1Wn�jJ jC2
/.!//
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and, by definition of q 2 Wn�jJ jC1 and by (7.3), this is

�

X
q2QJ .p/

."n�jJ jC1 � ."n�jJ jC2="/
1=2=10/ & jQJ .p/j"n�jJ jC1:

It follows that
"1 � � � "n�1jR¹1;:::;nº.!/j . 1:

Hence, by (7.5),

V�.!/ � V�" .!/ D
Z
"!nW1

f �
X

p02R¹1;:::;nº.!/

Z
#p0

f D
X

p02R¹1;:::;nº.!/

V�p0.!/

� "0 jR¹1;:::;nº.!/j .
"0

"1 � � � "n�1
D ":

Therefore, by (7.3),

1=3 � V�.!/ D .V�.!/ � V�" .!//C V�" .!/ � C"C 1=10:

This inequality is false if " is sufficiently small, contradicting the assumption U �Wn�1.

7.2. Box condition implies hereditary Carleson condition

We refer to Lemma 3.1 in [2] or Lemma 7.1 in [4] for the following lemma.

Lemma 7.2 (Balancing lemma). Let �WT d ! Œ0;1/ with

EŒ�� D

Z
V� d� � Aj�j:

Then there exists a down-set QE � T d such that for the measure Q� WD �1 QE we have

VQ� �
A

3
on QE and EŒ Q�� �

1

3
EŒ��:

The next result contains the last missing inequality in Theorem 1.4.

Theorem 7.3. Let n � 2. Let wWT d ! Œ0;1/ be such that the surrogate maximum prin-
ciple (4.9) holds. Then, for every �WT d ! Œ0;1/, we have

Œw; ��HC . Œw; ��Box:

Proof. By scaling, we may assume Œw; ��Box D 1 without loss of generality. Let A WD
Œw; ��HC. Let E � T 2 be a subset such that �D �1E ¤ 0 and EŒ��D Aj�j (such a subset
exists because we assume that T d is finite). By Lemma 7.2, there exists a further subset
QE � T 2 such that Q� WD �1 QE satisfies

V Q� �
A

3
on QE

and Q� ¤ 0. Thus, replacing � by Q�, we may assume V� � A=3 on supp�.
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By Lemma 7.1 applied with �=A in place of �, for sufficiently small "; � > 0, we haveZ
V�"A;good d� � 2�EŒ��:

We claim that, with these values of " and � , we have

(7.9) EŒ�� �
�

1 � �

X
˛ W�"AI��.˛/�E˛ Œ��

w.˛/.I��.˛//2:

Indeed, suppose that ˛ is such that

� "AI��.˛/ > E˛Œ�� D
X
!�˛

�.!/V�˛ .!/; V�˛ .!/ D
X

ˇ W!�ˇ�˛

w.ˇ/.I��/.ˇ/;

where the latter definition is from (7.1). Then we haveX
!�˛WV�˛ .!/�"A

�.!/ D I��.˛/ �
X

!�˛WV�˛ .!/>"A

�.!/ � I��.˛/ �
1

"A

X
!�˛

V�˛ .!/�.!/

� .1 � �/ I��.˛/:

It follows thatX
˛ W�"AI��.˛/>E˛ Œ��

w.˛/.I��.˛//2 �
X
˛

w.˛/ I��.˛/
1

1 � �

X
!�˛ WV�˛ .!/�"A

�.!/

D
1

1 � �

X
!

�.!/
X

˛�! WV�˛ .!/�"A

w.˛/ I��.˛/

D
1

1 � �

X
!

�.!/.V� � V�good;"A/.!/ �
1 � 2�

1 � �
EŒ��:

This implies the claim (7.9).
By Lemma 4.23 again, and since V� � A=4 on supp�, we also have

(7.10) Ec0AŒ�� . .c0A/� j�j� EŒ��1�� . .c0/� EŒ��:

Taking c0 sufficiently small and combining (7.10) with (7.9), we obtain

EŒ�� .
X
˛2R

w.˛/.I��.˛//2; R WD ¹˛ 2 T d j �"AI��.˛/ � E˛Œ��;V�.˛/ � c0Aº:

For each ˛ 2 R, we have

� "AI��.˛/ � E˛Œ�� � E˛Œ�� � Œw; ��Box I��.˛/ D I��.˛/;

where � WD �1F , and F WD ¹ˇ 2 T d j 9˛ 2 R; ˛ � ˇº. It follows that

(7.11) A2EŒ�� . EŒ��:

On the other hand, using the definition of A, the fact that V� & A on supp � , and the
Cauchy–Schwarz inequality, we obtain

(7.12) EŒ�� � Aj� j .
Z

V� d� � EŒ��1=2EŒ��1=2:

From (7.12), we obtain EŒ�� . EŒ��, and inserting this into (7.11) gives A . 1.
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8. What we cannot prove

The main problem with pushing the results to d -trees, d � 4, lies with Lemma 4.10 and
Lemma 4.17. Let us start with majorization on a simple dyadic tree. All trees below are
big but finite. Let f and g be two non-negative functions on a simple dyadic tree T . As
always, If .v/ means summing f .u/ “up” from v to root o.

Here is the analog of Lemma 4.10 and Lemma 4.17. The big difference of the lemma
below is that it involves two functions: f and g. This is not the case for Lemma 4.10 and
Lemma 4.17, that involve one function.

Lemma 8.1. Let supp f � ¹Ig � ıº. Let g be a superadditive function. There exists
'WT ! RC such that

a) I'.!/ � If .!/; 8! 2 @T W Ig.!/ 2 Œ�; 2��;(8.1)

b)
Z
T

'2 � C
ı

�

Z
T

f 2:(8.2)

Proof. Put
' D ��1If � g � 1Ig�4� ;

and see [4].

Now let us see what happens on the bi-tree T 2. As before, If .v/means summing f .u/
“up” over all ancestors of v from v to root o. Notice that now a vertex may have two
parents.

Conjecture 8.2. Let supp f � ¹Ig � ıº. Let g be a function superadditive in its both
variables separately. There exists 'WT 2 ! RC such that

a) I'.!/ � If .!/; 8! 2 @T 2W Ig.!/ 2 Œ�; 2��I b)
Z
T 2
'2 � C

� ı
�

�� Z
T 2
f 2

for some positive � .

By analogy with the previous section, one may think that given f; g on T 2 such that

suppf � ¹Ig � ıº

and having g (super)additive on T 2, one constructs ' as in Lemma 8.1 by the formula

' D ��1 If � g � 1Ig�4� :

However, this is false.
What is true is the following: let suppf � ¹Ig � ıº and let � � 10ı and

' WD ��1.I1f � I2g C I1g � I2f C g � If /:

Then

(8.3) I.1Ig�2� � '/ � If; where Ig 2 Œ�; 2�� :
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So a) from the previous lemma can be generalized to the bi-tree with the following
formula for ':

(8.4) ' D ��1.I1f � I2g C I1g � I2f C g � If / � 1Ig�2�:

The main difficulty in generalizing Lemma 8.1 to bi-trees is that we cannot prove b)
of this lemma for the case of the bi-tree. This is because we have not a good estimate ofR
T 2
.If /2g2 via

R
T 2
f 2 for g that is separately superadditive in both variables.

Notice that this hurdle is removed if f D g because then

I.��1gIf / D I.��1f If / �
ı

�
If �

1

10
If;

and we have another ' for majorization: Q' WD c��1.2I1f � I2f /, where c D 10=9. In
fact, from (8.3) it now follows that

I.1If�2� � Q'/ � If; where If 2 Œ�; 2�� :

The analog of inequality b) of Lemma 8.1 � (8.2) on the bi-tree now follows from
Lemma 4.9.

For the tri-tree we do not have the analog of Lemma 8.1 with two functions f; g, as
we do not have it even on the bi-tree.

But similarly to (8.4), we can put

' D ��1.I1f � I23g C I2f � I13g C I3f � I12g

C I1gf � I23f C I2g � I13f C I3g � I12f C gIf /:
(8.5)

Again this function ' satisfies

(8.6) I.1I�2� � '/ � If; where Ig 2 Œ�; 2��;

which is the analog of a) of Lemma 8.1 (and the analog of (8.3)). However, we cannot
prove the analog of b) of Lemma 8.1 for this function.

The main difficulty in generalizing Lemma 8.1 to tri-trees is that we cannot prove b)
of this lemma on tri-tree. This misfortune happens by the same reason it happens on the
bi-tree: we have not a good estimate of

R
T 3
.If /2g2 via

R
T 3
f 2 for g that is separately

superadditive in both variables.
Notice that this hurdle is removed if f D g because then

I.��1gIf / D I.��1f If / �
ı

�
If �

1

10
If;

and in place of ' from (8.5), we have another ' for majorization:

Q' WD c��1.2I1f � I23f C 2I2f � I13f C 2I3f � I12f /;

where c D 10=9. In fact, from (8.6) it now follows that

I.1If�2� � Q'/ � If; where If 2 Œ�; 2�� :

The analog of inequality b) of Lemma 8.1 � (8.2) on the tri-tree now follows from
Lemma 4.16.
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8.1. What goes wrong on 4-tree

The reader has the right to ask: you do not know how to estimate
R
T 2
.If /2g2 via

R
T 2
f 2,

or
R
T 3
.If /2g2 via

R
T 2
f 2, but you know how to remove this hurdle in the case f D g?

Perhaps one could also remove this hurdle for f D g on the d -tree, d � 4.
Unfortunately, we can see now that the trick does not work for d � 4. Let us notice

that by the analogy with (8.4), (8.5), we can construct ' for the 4-tree:

' D ��1.I1f � I234g C I2f � I134g C I3f � I124g C I4f � I123g C I1g � I234f

C I2g � I134f C I3g � I124f C I4g � I123f C I12g � I34f C I23g � I14f

C I34g � I12f C I12f � I34g C I23f � I14g C I34f � I12g C gIf /:

Here I means summation in all four variables, the Hardy operator on T 4. Let us consider
what happens for the case g D f . We again can absorb the last term g If D f If � ıf
into the left-hand side because suppf � ¹If � ıº.

But to prove the analog of b) of Lemma 8.1, we would need to know how to estimate,
e.g., Z

T 4
.I12f � I34f /

2
� C

Z
T 4
f 2 :

We do not know how to achieve such an estimate.
To feel this difficulty better, let us prove Lemma 8.1, where the main point is the

following “weighted” estimate:

(8.7) supp f � ¹Ig � ıº )
Z
T

.If /2g2 � CıkIgk1

Z
T

f 2 for superadditive g :

8.1.1. The proof of Lemma 8.1 and the explanation where the proof breaks down on
the bi-tree. We just repeat the proof from [4], but we emphasize why the proof does not
work for very similar estimate of

R
T 2
.If /2g2. We are in the assumptions of Lemma 8.1.

That is, we are given two functions f; g on the tree T , and

1/ suppf � ¹Ig � ıº; 2/ g is a superadditive function.

We need to see why the key estimate (8.7) works on T and will not work on T 2 if one
replaces I by I and T by T 2 everywhere.

We start with a lemma that holds regardless of operators and measures.

Lemma 8.3. Let K be an integral operator with a positive kernel and let f and g be
positive functions. Then Z

.Kf /2g �
�

sup
suppg

KK�g
� Z

f 2:

Proof. Without loss of generality, f is positive. By duality, we haveZ
.Kf /2g D

Z
fK�.Kf � g/ � kf k2 kK

�.Kf � g/k2:
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We call the operator and its kernel by the same letter K. By the hypothesis,

Kh.x/ D

Z
K.x; y/h.y/;

with a positive kernel K. Hence

kK�.Kf � g/k22 D

Z
K�.Kf � g/K�.Kf � g/

D

Z
K.x; y/..If /.x/g.x//K.x0; y/ ..Kf /.x0/g.x0// d.x; x0; y/

�

Z
1

2
.Kf .x/2 CKf .x0/2/K.x; y/.g.x//K.x0; y/.g.x0// d.x; x0; y/

D
1

2

Z
K�..Kf /2 � g/K�.g/C

Z
K�.g/K�..Kf /2 � g/

D

Z
.KK�g/ � .Kf /2 � g �

�
sup

suppg
KK�g

� Z
.Kf /2 � g:

Substituting the second displayed estimate into the first we obtainZ
.Kf /2g � kf k2

�
sup

suppg
KK�g

�� Z
.Kf /2 � g

�1=2
:

The conclusion follows.

In the preceding lemma, the operator K could have been either I on T or I on T 2;
this did not matter. But in the next lemma, it matters whether we are on T or T 2.

Lemma 8.4. Let T be a finite tree, and let g; hW T ! Œ0;1/. Assume that g is superad-
ditive and � D kIhkL1.suppg/. Then for every ˇ 2 T , we have

I.gh/.ˇ/ D
X
˛�ˇ

g.˛/h.˛/ � �g.ˇ/:

Proof. Without loss of generality, we may consider the case when ˇ is the unique maximal
element of T and T D supp g. We induct on the depth of the tree. Let T be given and
suppose that the claim is known for all its branches. Then by the inductive hypothesis and
the superadditivity of g, we haveX

˛�ˇ

g.˛/h.˛/ D g.ˇ/h.ˇ/C
X

ˇ 02 ch.ˇ/

X
˛�ˇ 0

g.˛/h.˛/

� g.ˇ/h.ˇ/C
X

ˇ 02 ch.ˇ/

g.ˇ0/ sup
˛�ˇ 0

X
˛�˛0�ˇ 0

h.˛0/

� g.ˇ/h.ˇ/C
X

ˇ 02 ch.ˇ/

g.ˇ0/ sup
˛<ˇ

X
˛�˛0<ˇ

h.˛0/

�
key g.ˇ/h.ˇ/C g.ˇ/ sup

˛<ˇ

X
˛�˛0<ˇ

h.˛0/ D g.ˇ/ sup
˛�ˇ

X
˛�˛0�ˇ

h.˛0/:



Carleson embedding on the tri-tree and on the tri-disc 2113

Remark 8.5. It seems that this claim fails to be true on T 2. At least, the reasoning fails.
In Conjecture 8.2 we had to assume that g is superadditive in its both variables separately.
This assumption is indispensable for us, because in our applications of such a lemma
on T 2, the function g on T 2 always comes from some function (measure) f additive
on T 3 in each of its three variables. The function g is always defined by a simple rule g D
Iif � 1If�t , i D 1 or 2 or 3. But such a function g is automatically separately superadditive
in each of its two variables.

But if g is separately superadditive in its both variables, then the key estimate in the
above lemma does not work. In fact, instead of having

P
ˇ 02 ch.ˇ/ g.ˇ

0/ � g.ˇ/, we will
have to write X

ˇ 02 ch.ˇ/

g.ˇ0/ � 2g.ˇ/ :

This seemingly innocuous change leads to accumulation of constants in the above proof.
The above proof breaks down if it cannot keep constant 1 at every stage of the induction.

Now we present the proof of Lemma 8.1 by means of Lemma 8.3 and Lemma 8.4. Let
' D 2��1If � g � 1Ig�4�. Let ! be such that Ig.!/ � �. Then f .!/ D 0 and f .
/ D 0
for all ancestors of ! up to the first 
 0 such that Ig.
 0/ � ı. Hence, on such !,X


�!

If � g � 1Ig�4� D
X

�!

If � g D If .!/.� � ı/ �
�

2
If .!/:

We checked (8.1) of Lemma 8.1.
To check (8.2), we first apply Lemma 8.3 with

K WD I ı 1Ig�ı ;

which a composition of multiplication operator and I . ThenZ
T

'2 D
4

�2

Z
T

.If /2.g1Ig�4�/2 �
4

�2
sup

suppg
KK�.g21Ig�4�/

Z
T

f 2 :

To understand supsuppg KK
�.g21Ig�4�/, we use Lemma 8.4. By this lemma, for any

node ˛,
K�.g21Ig�4�/.˛/ � I �.g21Ig�4�/.˛/ � 4�g.˛/ :

Now we are left to estimate Kg D I.1Ig�ıg/. But just by the definition of I , we have

(8.8) I.1Ig�ıg/ � ı:

So
sup

suppg
KK�.g21Ig�4�/ � 4ı�;

and we get Z
T

'2 �
16ı

�

Z
f 2 :
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Remark 8.6. We already observed one obstacle to prove Conjecture 8.2. We did this in
Remark 8.5. Now let us observe, that even if we could manage to overcome this first
difficulty, we still have another very serious one: the analog of inequality (8.8) is blatantly
false on T 2. The following inequality is generically false on the bi-tree:

I.1Ig�ıg/ � ı:

Remark 8.7. Unfortunately, Conjecture 8.2 on T 2 turned out to be false. The counter-
example is built in [26].
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