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Expansion of harmonic functions near
the boundary of Dini domains

Carlos Kenig and Zihui Zhao

Abstract. Let u be a harmonic function in a C 1-Dini domain such that u vanishes
on an open set of the boundary. We show that near every point in the open set, u can
be written uniquely as the sum of a non-trivial homogeneous harmonic polynomial
and an error term of higher degree (depending on the Dini parameter). In particular,
this implies that u has a unique tangent function at every such point, and that the con-
vergence rate to the tangent function can be estimated. We also study the relationship
of tangent functions at nearby points in a special case.

Dedicated to Antonio Córdoba and Josechu Fernández
for their great work as editors of the Revista.

1. Introduction and main results

A harmonic function can be decomposed into the summation of homogeneous harmonic
polynomials of integer degrees. In particular, it can be written as a homogeneous har-
monic polynomial plus a higher-order error term. In [5], the author proved that a similar
expansion holds for solutions to elliptic operators whose coefficients are Lipschitz. This
is optimal: there are examples of elliptic operators with Hölder coefficients for which the
solution does not have finite order of vanishing (see [11] for an example of non-divergence
form operator, and [10] for an example of divergence form operator), so one cannot expect
an expansion in homogeneous harmonic polynomials of finite degrees. On the other hand,
if a solution of an elliptic operator with Hölder-continuous coefficient does have a finite
order of vanishing at a point, Han’s argument works and he gets a similar expansion near
that point.

In a C 1-Dini domain, consider a non-trivial harmonic function uwhich vanishes on an
open set of the boundary @D \ B5R.0/. Then u has a finite order of vanishing in BR.0/,
which follows from a doubling property proven in [1] and later in [8] using a different
method. Moreover, in a previous paper [9], we proved a more precise decay rate for such
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function (see Lemma 2.4); more importantly, we gave an estimate of the size of the singu-
lar set

�.u/ WD ¹X 2 D \ BR.0/ W u.X/ D 0 D jru.X/jº:

Combining the arguments in [9] and [5], we are able to show that u has a similar expansion
at the boundary of a Dini domain:

Theorem 1.1. Let D � Rd be a Dini domain with parameter � (see Definition 2.1) and
@D 3 0. Let R0; ƒ > 0 be finite. Suppose that u is a non-trivial harmonic function in
D \B5R0.0/, u D 0 on @D \B5R0.0/, and the (modified ) frequency function (defined in
Sections 4 and 3 of [9], and restated in (2.6)) at the origin satisfies N0.4R0/ � ƒ.

Then for any boundary point X0 2 @D \BR0.0/, there exists R > 0 such that u has a
unique expansion

(1.1) u.X/ D PN .X �X0/C Q .X �X0/ in BR.X0/;

where PN is a non-trivial homogeneous harmonic polynomial of degree N 2 N, and the
error term Q satisfies

(1.2) j Q .Y /j � C jY jN Q�.2jY j/;

and

(1.3) jr Q .Y /j � C jY jN�1 V�.2jY j/;

Here,

• N agrees with the vanishing order of u atX0, i.e.,N DNX0 D limr!0NX0.r/, where
NX0.�/ is the (modified ) frequency function of u centered at X0;

• the radius R is determined by the frequency function at X0 and the Dini parameter �
(see (4.7));

• Q� is determined by the Dini parameter � as in (5.19), and satisfies Q�.r/! 0 as r ! 0;

• V� is determined by � as in (6.13) and (6.10), and satisfies V�.r/! 0 as r ! 0.

Remark 1.2. We remark that when D is a C 1;˛ domain with ˛ 2 .0; 1/ (that is, when
�.r/ � r˛), the upper bounds of the error term satisfy that Q�.r/; V�.r/ . r˛ .

The significance of the above theorem is that we get a higher-order expansion of u
even though u only has regularity up to C 1 at the boundary. Moreover, it is more difficult
to estimate the gradient of the error term compared to [5]. This is not only because of
difficulties at the boundary, but also due to regularity issues. Recall that (because of a
different regularity and structure of the coefficient matrix) the solutions in the setting
of [5] are in the Sobolev space W 2;p for any p > 1, i.e., they are strong solutions. So
the Lp estimates of r Q as well as r2 Q follow directly from the estimate of Q in (1.2),
using interior Lp estimates for strong solutions, see Theorem 9.11 in [4]. But more work
is needed here to obtain the gradient estimate in (1.3).

We also remind the readers that for an interior point X0 2 D, we can simply use the
decomposition of u (into homogeneous harmonic polynomials of integer degrees) nearX0
to obtain the expansion

u.X/ � u.X0/ D PN .X �X0/C Q .X �X0/
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for any X 2 D such that jX � X0j < dist.X0; @D/, where the error term Q satisfies
j Q .Y /j � C jY jNC1 as well as higher regularity estimates.

Recall that in [9] we have studied the blow up of the function u at a boundary point as
follows. For any X0 2 @D \ BR0.0/ and r > 0, let

(1.4) TX0;ru.Z/ WD
u.X0 C rZ/�

1

rd

’
Br .X0/\D

u2dY
�1=2 ; for any Z 2

D �X0

r
�

SinceD is a C 1 domain (i.e., the domain above the graph of a C 1 function 'WRd�1!R),
clearly .D � X0/=r converges locally graphically to a half space, above the hyperplane
determined by r'.x0/, where x0 2 Rd�1 is such that X0 D .x0; '.x0// 2 @D. Assuming
without loss of generality that r'.x0/ D 0, then .D � X0/=r converges graphically to
the upper half space RdC. Then for any sequence rj ! 0, there exists a homogeneous
harmonic polynomial P in RdC (possibly depending on the sequence ¹rj º) of degree NX0 ,
such that modulo passing to a subsequence,

TX0;rj u! P locally uniformly and locally strongly in L2; and weakly in W 1;2;

and “
BC1 .0/

jP.Z/j2 dZ D 1;

where we denote BC1 .0/ WD B1.0/ \RdC. We say that P is a tangent function of u at the
point X0. A priori for different sequences ¹rj º, we may get different tangent functions.
However, using the expansion in (1.1), we can prove the following corollary.

Corollary 1.3. For any X0 2 @D \ BR0.0/, we have

(1.5) TX0;ru.Z/ D cPN .Z/CO.
Q�.r//;

where PN is the homogeneous harmonic polynomial as in (1.1), c is a normalizing con-
stant so that P D cPN has unit L2 norm in BC1 .0/, and Q� is as in Theorem 1.1. In
particular, the polynomial cPN is the unique tangent function of u at X0, and the conver-
gence rate to the tangent function is bounded by a constant multiple of Q�.r/.

We remark that the global estimate we obtained in Theorem 1.1 of [9] does not imply
the above result. In Corollary 1.3, not only do we know that there is a unique tangent
function at every point, we also know the convergence rate. The result in the current paper
complements the main theorem in [9] and uses the frequency function and purely PDE
arguments.

By the monotonicity of the frequency functionNX0.�/ and the fact that its limitNX0 D
limr!0NX0.r/ is integer-valued, we can show that

X0 2 @D \ BR0.0/ 7! NX0 2 N

is upper semi-continuous. The proof uses a standard argument adapted to the modified fre-
quency function we introduced in [9]. Since this fact is tangential to the main topic of this
paper, we defer the proof to the appendix. In general, the vanishing order could jump up,
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and we give a simple example in the footnote.1 But in the particular case where a sequence
Xj 2 @D \ BR0.0/ converging to X0 is such that NXj ! NX0 , since the vanishing order
is integer-valued, we have NXj � NX0 for j sufficiently large. We can then show that the
leading order polynomials in the expansion also converge:

Proposition 1.4. Let ¹Xj º; X0 be points in @D \ BR0.0/ satisfying Xj ! X0. Suppose
that NXj D NX0 for each j . Let PXj and PX0 denote the homogeneous harmonic polyno-
mials in the expansions (1.1) near Xj and X0, respectively. Then PXj converges to PX0 in
the C k-topology for any k 2 N.

The paper is organized as follows. In Section 2 we introduce some notation, recall
how we defined the modified frequency function in [9], and use that to estimate the ratio
of theL2 norm of u in two concentric balls of different radii. In Sections 3 and 4 we reduce
the problem from a harmonic function u in a C 1-Dini domain to a solution v in the upper
half-space to a divergence-form elliptic operator, whose coefficient matrix is the iden-
tity matrix at the center point and is Dini-continuous everywhere. Then, in Section 5,
we write down the expansion of v, estimate the error term using Dini-continuity of the
coefficient matrix, and show the leading-order homogeneous harmonic polynomial is non-
trivial. Moreover, in Section 6 we estimate the gradient of the error term in Lp and L1.
These are combined to give us the expansion of the original function u (i.e., Theorem 1.1)
in Section 7. The convergence rate to the (unique) tangent function is just a simple corol-
lary of that expansion. Finally, in Section 8 we prove Proposition 1.4, namely the tangent
functions are continuous at the boundary point where the vanishing orders do not jump up.

2. Preliminaries

Definition 2.1 (Dini domains). Let � W Œ0;C1/! Œ0;C1/ be a nondecreasing function
satisfying2

(2.1)
Z �
0

�.r/

r
<1:

In particular, (2.1) implies that �.r/ ! 0 as r ! 0. A connected domain D in Rd is
a C 1-Dini domain with parameter � if for each point X0 on the boundary of D there
is a coordinate system X D .x; xd /; x 2 Rd�1, xd 2 R, such that with respect to this
coordinate system X0 D .0; 0/, and there are a ball B centered at X0 and a continuously
differentiable function 'WRd�1 ! R satisfying the following:

(1) kr'kL1.Rd�1/ � C0 for some C0 > 0;

(2) jr'.x/ � r'.y/j � �.jx � yj/ for all x; y 2 Rd�1;
(3) D \ B D ¹.x; xd / 2 B W xd > '.x/º.

1Consider the upper-half space R3
C
D ¹.x1; x2; t / W x1; x2 2R; t > 0º. The function uWR3

C
!R defined as

u.x1; x2; t /D .x1 C x2/ � t is harmonic. Let L WD ¹.x1; x2; 0/ W x1 C x2 D 0º be a subset of @R3
C

. It is an easy
exercise to show that for any X0 2 L, the vanishing order NX0 is 2; and for any X0 2 @R3

C
n L, the vanishing

order NX0 is 1.
2In particular, we can choose R0 > 0 so that �.8R0/ < 1=72 and

R 16R0
0

�.s/
s ds � 1.
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Remark 2.2. By shrinking the ball B if necessary, we may modify the coordinate system
so that r'.0/ D 0.

Under the assumptions of Theorem 1.1, we have u 2 C 1.D \ B4R0.0// by the work
of [3]. Note that in [3], the Dini parameter is required to be doubling, in the sense that
there exists a constant C > 1 such that

(2.2) �.2r/ � C�.r/ for all r;

see (1.4) in [3]. This is not necessarily satisfied by all � above fulfilling (2.1), in which
case we just replace �.r/ by

˛.r/ WD sup
x;y2Rd�1

jx�yj�r

jr'.x/ � r'.y/j:

(In general, a bounded Dini domain D is characterized by finitely many coordinate sys-
tems and C 1 functions 'i ’s, as in Definition 2.1. In that case, we take ˛.r/ to be the
maximum of the above value for all 'i ’s in their respective domains.) We claim that ˛.�/
is doubling. In fact, assume that ˛.2r/ D jr'.x/ � r'.y/j for some x; y 2 Rd�1 with
jx � yj � 2r . Let z be the middle point on the line segment Œx; y�. Clearly jx � zj; jz �
yj � r . Thus

˛.2r/ D jr'.x/ � r'.y/j � jr'.x/ � r'.z/j C jr'.z/ � r'.y/j � 2˛.r/:

Besides, ˛ also satisfies the Dini condition (2.1), since ˛.r/� �.r/ by the property of r'.
Therefore, without loss of generality, we assume the above Dini parameter � satisfies (2.2).
Moreover, we remark that an example in [6] seems to indicate that Dini regularity is the
optimal condition to guarantee continuous differentiability of u.3

When D is not a convex domain, the standard Almgren frequency function for u
centered at a boundary point X , defined as

(2.3) r 7! N.u;X; r/ WD
r
’
Br .X/

jruj2 dXR
@Br .X/

u2 dHd�1
;

may not be monotone. (In the above definition, we assume we have extended u by zero
across the boundary, to simplify the notation.) However, in [9], for a Dini domain D and
for every boundary pointX0 2 BR0.0/\ @D, we were able to define a modified frequency
function for u, denoted by NX0.�/, using a special transformation ‰X0 , and prove that the
map r 7! NX0.r/ is monotone. More precisely, using the notation in Sections 3 and 4
of [9], we recall the definition of the transformation

(2.4) ‰X0 W X D .x; xd / 2 Rd�1 �R 7! X0 C .x; xd C 3jX j O�.jX j// 2 Rd ;

3In [6], the authors give a divergence-form elliptic operator LD �div.A.�/r/, where the coefficient matrix
A.�/ is continuous but its modulus of continuity fails the Dini condition (2.1), and a solution u to L which
satisfies u 2 W 1;p

loc for every p > 1 but u … W 1;1
loc .



C. Kenig and Z. Zhao 2122

where

(2.5) O�.r/ D
1

log2 2

Z 2r

r

1

t

Z 2t

t

�.s/

s
dsdt:

is a smoothed version of the Dini parameter � , and it satisfies �.r/ � O�.r/ � �.4r/. Then
u ı‰X0 satisfies a divergence-form elliptic equation in the domain‰�1X0 .D/, see Section 4
in [9]. As in Section 3 of [9], we may define the frequency function

N.u ı‰X0 ; r/ WD
rD.u ı‰X0 ; r/

H.u ı‰X0 ; r/

for non-homogeneous elliptic operator satisfying certain assumptions, see (3.8) in [9] or
the proof of Lemma A.2 for the details. Finally, in Proposition 3.10 of [9] we proved the
following.

Proposition 2.3. The map

(2.6) r 7! NX .r/ WD N.u ı‰X ; r/ exp
�
C

Z r

0

�.s/

s
ds
�

is monotone nondecreasing.

The following doubling property essentially follows from Corollary 3.28 in [9] and the
monotonicity of the (modified) frequency function for u ı‰X0 . (Recall that u is extended
by zero outside of D.)

Lemma 2.4 (L2-doubling property). LetX0 D .x0; '.x0// 2BR0.0/ be a boundary point
of D. Then for any pair of radii 0 < s < r sufficiently small, we have

(2.7)
� s
r

�dC2NX0 .2r/ .
’
Bs.X0/

u2 dX’
Br .X0/

u2 dX
.
� s
r

�dC2NX0 exp.�C
R 4r
0

�.s/
s ds/

;

whereNX0.�/D zN.X0; �/ is the monotone frequency function centered atX0, as is defined
in Sections 3 and 4 of [9], and NX0 D limr!0NX0.r/ 2 N.

Remark 2.5. We follow the convention in [9] and call the above a doubling property.
But we point out that it is actually a misnomer. In fact, under the same assumption it has
already been proven in Theorem 0.4 of [1] and Theorem 2.2 of [8] that there exists a
constant C > 0 such that

(2.8)
“
B2r .X0/

u2 dX � C

“
Br .X0/

u2 dX

for everyX0 2 @D \BR0.0/ and r sufficiently small. And (2.8) is what is usually referred
to as an L2-doubling property. In Lemma 2.4, not only do we compare the L2-norm of u
for a pair of balls of any radii 0 < s < r , we also get a precise estimate on the decay rate,
which is very close to d C 2NX0 , the decay rate for homogeneous harmonic polynomials
of degree NX0 . So Lemma 2.4 is much stronger than a doubling property.
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Proof. By (8.16) in [9], for r sufficiently small we have

Br .X0/ � B2r .X0 C 6r O�.2r/ed / D ‰X0.B2r /;

and similarly,

Br .X0/ � Br=2

�
X0 C

3r

2
O�
� r
2

�
ed

�
D ‰X0.Br=2/;

where O� is defined as in (2.5). Hence

(2.9)
“
Br .X0/

u2 dX .
“
B2r

ju ı‰X0 j
2 dY .

Z 2r

0

H.u ı‰X0 ; �/ d�;

and

(2.10)
“
Br .X0/

u2 dX &
“
Br=2

ju ı‰X0 j
2 dY &

Z r=2

0

H.u ı‰X0 ; �/ d�;

where H.u ı ‰X0 ; �/ is defined as in (3.8) of [9], and it is essentially the L2-surface
integral of u ı ‰X0 in B�.0/, adapted to a certain elliptic coefficient matrix. By (2.9),
(2.10), (3.30) in [9], (2.1) and the monotonicity of NX0.�/, we have’

Br .X0/
u2 dX’

Bs.X0/
u2 dX

.
R 2r
0
H.u ı‰X0 ; �/ d�R s=2

0
H.u ı‰X0 ; �/ d�

D
4r

s
�

R s=2
0

H.u ı‰X0 ;
4r
s
�/ d�R s=2

0
H.u ı‰X0 ; �/ d�

.
�4r
s

�dC2NX0 .2r/
:

SinceNX0.2r/ is uniformly bounded depending onƒ (see Lemma 5.1 in [9]), in particular
it follows that

(2.11)
“
B4r .X0/

u2 dX .ƒ
“
Br .X0/

u2 dX:

On the other hand, by (3.29) in [9] and the monotonicity of NX0.�/, we have’
Br .X0/

u2 dX’
Bs.X0/

u2 dX
&
’
B4r .X0/

u2 dX’
Bs.X0/

u2 dX
&
R 2r
0
H.u ı‰X0 ; �/d�R 2s

0
H.u ı‰X0 ; �/d�

D
r

s
�

R 2s
0
H.u ı‰X0 ;

r
s
�/d�R 2s

0
H.u ı‰X0 ; �/d�

&
�r
s

�dC2NX0 exp.�C
R 4r
0

�.s/
s ds/

;

where we have used (2.11) in the first inequality. This finishes the proof of the lemma.

The next lemma about matrices will be needed in Section 8. If not specified otherwise,
for any n � n matrix M we always use the matrix norm

(2.12) jM j WD sup
x2Rn
x¤0

jMxj

jxj
;

that is compatible with the `2 vector norms in Rn.



C. Kenig and Z. Zhao 2124

Lemma 2.6. Suppose S1 and S2 are n � n symmetric matrices such that jS1j; jS2j � 1.
Suppose that A and B are n � n symmetric, positive semi-definite matrices4 such that

(2.13) A2 D IdnCS1; B2 D IdnCS2:

Then A and B are invertible, and moreover,

(2.14) jA�1 � B�1j . jA2 � B2j D jS1 � S2j:

Proof. For each i D 1; 2, since jSi j � 1, all the eigenvalues of the symmetric matrix
Idn CSi are real-valued and close to 1. By the diagonalization of symmetric matrices
and (2.13), it follows that all the eigenvalues of A and B are real-valued and close to 1.
More precisely, by choosing jSi j small, we can guarantee that all the eigenvalues of A
and B lie in the interval Œ1=2; 2�. The same statements hold for the eigenvalues of their
inverse matrices A�1 and B�1. Hence by the sub-multiplicativity of matrix norms, we
have

jA�1 � B�1j D jA�1.A � B/B�1j . jA � Bj:
Therefore to prove (2.14) it suffices to show that

jA � Bj . jA2 � B2j:

Suppose that e1; : : : ; ed are eigenvectors of the matrix A (with respective eigenvalues
�1; : : : ; �d 2 Œ1=2; 2�) which form an orthonormal basis of Rd . Let j � j� denote the max-
imum norm of matrices, i.e., jM j� WD maxi;j jmij j for any matrix M D .mij /. Suppose
that under the orthonormal basis ¹e1; : : : ; ed º, the matrix A � B is written as .mij /, and
that jA � Bj� D jmij j for some i; j 2 ¹1; : : : ; dº.

Since
A2 � B2 D .A � B/AC B.A � B/;

when we multiply both matrices above by the vector ej we get that

.A2 � B2/ej D .A � B/Aej C B.A � B/ej D �j .A � B/ej C B.A � B/ej

D .�j Idd CB/.A � B/ej :(2.15)

Consider the diagonalization of the symmetric matrix B in the form

B D UDU�1; where U is an orthogonal matrix; and D D

 
�1

:::
�d

!
:

Notice that each�k is an eigenvalue ofB , and thus�k 2 Œ1=2;2�. It follows that �j C�k 2
Œ1; 4� for all k 2 ¹1; : : : ; dº. Because orthogonal matrices do not change vector norms, we
have that

j.�j Idd CB/.A � B/ej j

D jU.�j Idd CD/U�1 � .A � B/ej j D j.�j Idd CD/U�1 � .A � B/ej j

D

ˇ̌̌̌
ˇ
 
�jC�1

:::
�jC�d

!
� U�1.A � B/ej

ˇ̌̌̌
ˇ � jU�1.A � B/ej j D j.A � B/ej j:(2.16)

4The positive square root of the matrix Idn CSi always exists, by considering the diagonalization of the
symmetric matrix IdnCSi whose eigenvalues are all strictly positive (since jSi j � 1).
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Because A�B D .mij / under the orthonormal basis ¹e1; : : : ; ed º, we have by the choice
of ej that

(2.17) j.A � B/ej j D j.m1j ; : : : ; mdj /j � jmij j D jA � Bj� � jA � Bj;

where we used the equivalence of all matrix norms in the last inequality. Combining
(2.17), (2.16) and (2.15), we have that

jA � Bj . j.A � B/ej j � j.�j Idd CB/.A � B/ej j D j.A2 � B2/ej j � jA2 � B2j;

which finishes the proof of (2.14).

3. Orthogonal transformation

Let .x0; '.x0// be a boundary point such that r'.x0/¤ 0. We want to find an orthogonal
transformation O D Ox0 WR

d ! Rd and a function Q' D Q'x0 WR
d�1 ! R such that

O maps graph.'/ � .x0; '.x0// to graph. Q'/; and Q'.0/ D 0;r Q'.0/ D 0:

We first determine the orthogonal matrixO . We writeO in the form of a block matrix,

O D

�
QO b

d T c

�
;

where QO is a .d � 1/ � .d � 1/ matrix, b; d 2 Rd�1 and c 2 R. Since O should be an
orthogonal matrix, the block matrices ought to satisfy

(3.1)

8<:
QO QOT C bbT D Idd�1;
QOd C cb D 0;

jd j2 C c2 D 1:

Moreover, in order to guarantee that

O
��

x

'.x/

�
�

�
x0
'.x0/

��
D

�
y

Q'.y/

�
;

or equivalently,

(3.2)
²
QO.x � x0/C .'.x/ � '.x0//b D y;

d � .x � x0/C c.'.x/ � '.x0// D Q'.y/;

and the property that r Q'.0/ D 0, the matrix should satisfy

d C cr'.x0/ D QO
T
r Q'.0/C .b � r Q'.0//r'.x0/ D 0:

Combined with (3.1), we just need

(3.3)

8̂̂<̂
:̂
c2 D .1C jr'.x0/j

2/�1 ¤ 0;

d D �cr'.x0/;

b D QO r'.x0/;
QO.Idd�1Cr'.x0/r'.x0/T/ QOT D Idd�1 :
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Modulo the sign, c 2 R is uniquely determined. Since for any non-zero vector z 2 Rd�1,

(3.4) zT .Idd�1Cr'.x0/r'.x0/T/z D jzj2 C .z � r'.x0//2 � jzj2 > 0;

we have that the matrix Idd�1Cr'.x0/r'.x0/T is symmetric and positive semi-definite.
We can find a solution to the last equation in (3.3), for example, by letting QO be a sym-
metric, positive semi-definite matrix whose inverse matrix QO�1 is the square root of
Idd�1Cr'.x0/r'.x0/T. In particular,

j det QOj2 D
1

det.Idd�1Cr'.x0/r'.x0/T/
D

1

1C jr'.x0/j2
I

besides, by (3.4) and by choosing x0 sufficiently close to the origin so that jr'.x0/j � 1,
we can guarantee that the eigenvalues of QO are bounded from below and above (and the
bounds are uniform for all x0 near the origin). To sum up, the orthogonal matrix is of the
form

(3.5) O D

�
QO QOr'.x0/

.�cr'.x0//
T c

�
;

where c 2 R and the block matrix QO satisfies (3.3).
Next we show that the image of graph.'/ � .x0; '.x0// under O is indeed graphical.

First, considering (3.2) we look at the map

(3.6) g W x 2 Rd�1 7! QO.x � x0/C .'.x/ � '.x0//b DW y 2 Rd�1:

Clearly g.x0/ D 0. We compute

(3.7) Dg.x/ D QO C b .r'.x//T D QO C QOr'.x0/.r'.x//
T:

Hence, in particular,

Dg.x/jxDx0 D
QO C QOr'.x0/

�
r'.x0/

�T

D QO.Idd�1Cr'.x0/.r'.x0//T/ D . QOT/�1 D QO�1;

where we use (3.3) and the symmetry of QO in the second to last and last equalities, respect-
ively. By the inverse function theorem, near x0 the function g has an inverse function g�1,
which is defined in a neighborhood of the origin and satisfies

(3.8) Dg�1.y/ D
�
Dg.g�1.y//

��1
:

Therefore, by defining

(3.9) Q'.y/ D �cr'.x0/ � .g
�1.y/ � x0/C c .'.g

�1.y// � '.x0//

in a neighborhood of the origin, it satisfies the equality (3.2). Moreover,

@j Q'.y/ D
X
i

c.@i'.g
�1.y// � @i'.x0//@j .g

�1.y//i ;

or equivalently,

(3.10) r Q'.y/ D c.Dg�1.y//T.r'.g�1.y// � r'.x0//:
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Moreover, we claim that for y; y0 sufficiently close to the origin, we have

(3.11) jr Q'.y/ � r Q'.y0/j . �.2jy � y0j/;

where � is the modulus of continuity for r'. In fact, (3.7) implies that

jDg.x/ �Dg.x0/j D
ˇ̌
QOr'.x0/.r'.x/ � r'.x

0//T
ˇ̌

(3.12)
. jr'.x/ � r'.x0/j � �.jx � x0j/:

Here we use the boundedness of jr'.x0/j and the maximum norm j QOj. In particular, since
the eigenvalues of the matrix Dg.x0/ D QO�1 are bounded from above and below, it fol-
lows from (3.12) that for x sufficiently close to x0, the eigenvalues ofDg.x/ are also uni-
formly bounded from above and below, and thus the same holds for its inverse Dg�1.y/
(by (3.8)), for any y sufficiently close to 0 D g.x0/. Moreover, let x D g�1.y/; x0 D

g�1.y0/. Sinceˇ̌
Dg.x/

�
.Dg.x//�1 � .Dg.x0//�1

�
Dg.x0/

ˇ̌
D jDg.x0/ �Dg.x/j . �.jx � x0j/;

we get

jDg�1.y/ �Dg�1.y0/j D j.Dg.x//�1 � .Dg.x0//�1j

. jDg�1.y/j � �.jx � x0j/ � jDg�1.y0/j . �.jx � x0j/:(3.13)

Additionally,

(3.14) jx � x0j D jg�1.y/ � g�1.y0/j � kDg�1k1 jy � y
0
j � 2jy � y0j:

Therefore, by combining (3.10), (3.13) and (3.14), we get

jr Q'.y/ � r Q'.y0/j

D
ˇ̌
c.Dg�1.y//T.r'.g�1.y// � r'.x0// � c.Dg

�1.y0//T.r'.g�1.y0// � r'.x0//
ˇ̌

� c
ˇ̌
.Dg�1.y//TŒr'.g�1.y// � r'.g�1.y0//�

ˇ̌
C c

ˇ̌�
Dg�1.y/ �Dg�1.y0/

�T
.r'.g�1.y0// � r'.x0//

ˇ̌
. �.jg�1.y/ � g�1.y0/j/C jDg�1.y/ �Dg�1.y0/j � �.jg�1.y0/ � x0j/

. �.2jy � y0j/;

which finishes the proof of the claim (3.11).

4. Flattening and extension of u across the boundary

By the previous section, we may assume that near any boundary point .x0; '.x0// 2 @D \
BR0.0/, we have r'.x0/ D 0. If not, we just apply the orthogonal transformation Ox0 ,
under which the domain D (locally) becomes the region above the graph Q' D Q'x0 , which
satisfies Q'.0/ D 0, r Q'.0/ D 0 and the modulus of continuity becomes �.2�/ (modulo
uniform constants). Hence it suffices to consider D near the boundary point X0 D .0; 0/
with a flat tangent, i.e., r'.0/ D 0.
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Let u be a harmonic function in D. We consider the map

(4.1) ˆ W .y; s/ 2 RdC 7! .y; s C '.y// DW .x; t/ 2 D;

and vWRdC ! R defined by v.y; s/ WD u ı ˆ.y; s/. A simple computation shows that v
is the solution to the elliptic operator � div.A.y; s/rv/ D 0 in RdC, where the coefficient
matrix A.y; s/ is given by
(4.2)

A.y; s/ D .detDˆ/ � .Dˆ.y; s//�1.DˆT.y; s//�1 D

�
Idd�1 �r'.y/

.�r'.y//T 1C jr'.y/j2

�
:

In particular, A.y; s/ is independent of the s-variable, so we will denote it by A.y/. By
the properties of ', we know that A.0/ D Id and jA.y/ � A.y0/j . �.2jy � y0j/.

Since v D u ıˆ vanishes on B4R0.0/\ @R
d
C, we can extend v by odd reflection, i.e.,

we let

(4.3) Qv.y; s/ D

´
v.y; s/; .y; s/ 2 RdC ;

�v.y;�s/; .y; s/ 2 Rd� :

We also define

QA.y; s/ WD

8̂̂<̂
:̂
A.y; s/ D

�
Idd�1 �r'.y/

.�r'.y//T 1C jr'.y/j2

�
; .y; s/ 2 RdC;�

Idd�1 r'.y/

.r'.y//T 1C jr'.y/j2

�
; .y; s/ 2 Rd�:

A simple computation shows that the co-normal derivatives of Qv.y; s/ from above (that
is, RdC) and below (that is, Rd�) cancel each other out, or more precisely,

lim
s!0C

A.y; s/rv.y; s/ � .0;�1/C lim
s!0�

QA.y; s/r Qv.y; s/ � .0; 1/ D 0:

Using integration by parts, the newly-defined function Qv satisfies � div. QA.y; s/r Qv/ D 0
in B4R.0/. For simplicity we still denote Qv as v.

To summarize, by an orthogonal transformation (in Section 3), flattening the domain,
and an odd reflection, we have modified the original harmonic function u near any bound-
ary point X0 2 BR0.0/ \ @D into a solution v to a divergence-form elliptic operator
Lv WD � div. QA.y; s/rv/ in an entire ball B4R0.0/, where the coefficient matrix QA is the
identity matrix at the origin, and it is Dini continuous in the upper and lower half space,
respectively. We emphasize that QA is not even continuous across @RdC. In general, solu-
tions to operators of the form L may not have finite vanishing order at an interior point.
In fact, even if the coefficient matrix is Hölder continuous with exponent less than 1, the
corresponding solution may still have infinite vanishing order, for example see [10]. How-
ever, since v comes from the harmonic function u in a C 1-Dini domain, with vanishing
boundary data, we can show v does have finite vanishing order.

By the doubling property of u in Lemma 2.4, we can easily show the following doub-
ling property of v.
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Lemma 4.1. For any pair of radii 0 < r1 < r2 sufficiently small, we have

(4.4)
�r1
r2

�dC2NX0 .2r2/ .

’
Br1 .0/

v2dyds’
Br2 .0/

v2dyds
.
�r1
r2

�dC2NX0 exp.�C
R 4r2
0

�.s/
s ds/

:

Proof. Recall we defined v by v D u ıˆ and reflection across @RdC. Hence“
Br .0/

v2 dyds D 2

“
BCr .0/

ju ıˆ.y; s/j2 dyds �

“
ˆ.BCr .0//

u2 dxdt:

For any .y; s/ 2 BCr .0/, since '.0/ D 0 and r'.0/ D 0, it follows that

j'.y/j D j'.y/ � '.0/j � sup
�2Œ0;y�

jr'.�/j � j�j . r �.2r/:

Hence
jˆ.y; s/j D j.y; s C '.y//j < r .1C C�.2r//

and “
Br .0/

v2 dyds �

“
ˆ.BCr .0//

u2 dxdt �

“
B2r .X0/

u2 dX:

Similarly, “
Br .0/

v2 dyds �

“
ˆ.BCr .0//

u2 dxdt �

“
B r
2
.X0/

u2 dX:

On the other hand, in Lemma 2.4 we have shown that“
B2r .X0/

u2 dX �

“
Br .X0/

u2 dX �

“
B r
2
.X0/

u2 dX;

with constants depending on ƒ. Therefore we conclude that“
Br .0/

v2 dyds �

“
Br .X0/

u2 dX;

and the estimates (4.4) follows from (2.7).

Corollary 4.2. For any pair of radii 0 < r1 < r2 sufficiently small, we have

(4.5)
�r1
r2

�NX0 .2r2/ .
supBr1 .0/ jvj

supBr2 .0/ jvj
.
�r1
r2

�NX0 exp.�C
R 4r2
0

�.s/
s ds/

:

Proof. Recall that solutions to elliptic PDEs with vanishing boundary data satisfy the
following boundary L1 bound:

sup
Br .0/

jvj .
� 1
rd

“
B2r .0/

v2 dyds
�1=2

;
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see for instance Lemma 1.1.22 in [7]. Combined with the doubling property (4.4), we have
that

sup
Br .0/

jvj .
� 1
rd

“
B2r .0/

v2 dyds
�1=2

.
� 1
rd

“
Br .0/

v2 dyds
�1=2

:

On the other hand, � 1
rd

“
Br .0/

v2 dyds
�1=2

. sup
Br .0/

jvj:

Therefore,

sup
Br .0/

jvj �
� 1
rd

“
Br .0/

v2 dyds
�1=2

;

and the L1-doubling property follows from the L2-doubling property in Corollary 4.1.

Let R 2 .0; R0/ be sufficiently small such that Corollary 4.2 holds up to scale 2R.
Then for any 0 < r < 2R we have

(4.6) C1.R/ � r
NX0 .4R/ � sup

Br .0/

jvj � C2.R/ � r
NX0 exp.�C

R 8R
0

�.s/
s ds/:

For any ˛ 2 .0; 1/ sufficiently small, we may choose R small enough such that

(4.7) exp
�
C

Z 8R

0

�.s/

s
ds
�
�

NX0
NX0 � ˛

; NX0.4R/ � NX0 C ˛:

Note that in order to satisfy the second inequality, the choice ofR isX0-dependent. It then
follows from (4.6) that

(4.8) rNX0C˛ . sup
Br .0/

jvj . rNX0�˛:

In particular, since ˛ < 1, it follows that

lim sup
Y!0

jv.Y /j

jY jNX0C1
D C1:

On the other hand, by the boundary gradient estimate with Dini-continuous coefficient
in RdC and in Rd� (see Proposition 2.7 in [3], or more precisely, Lemma 2.11 in [3]), for
any Y 2 BR.0/ we have

jv.Y /j

jY j
. sup
BR.0/

jrvj .
1

R

� 1

Rd

“
B2R.0/

v2 dyds
�1=2

< C1:

Hence
supBr .0/ jvj

r
� C.R/ < C1:

This estimate, combined with (4.8), implies that for any k D 1; : : : ;NX0 � 1 (or for k D 1
when NX0 D 1) we have

jv.Y /j � CkjY j
k for any Y 2 BR.0/:
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We consider two cases:

either lim sup
Y!0

jv.Y /j

jY jNX0
D C1; or lim sup

Y!0

jv.Y /j

jY jNX0
< C1:

(When NX0 D 1, we can only have the second case.) In both cases, there exists N 2 N
such that

(4.9) jv.Y /j � CN jY j
N for any Y 2 B2R.0/;

and

(4.10) lim sup
Y!0

jv.Y /j

jY jNC1
D C1:

We callN the vanishing order of v (at the origin). Notice that the integerN D NX0 � 1 in
the first case, and N D NX0 in the second case. A priori we can not rule out the first case,
but at the end of the paper we will show it is impossible and v does have vanishing order
exactly NX0 .

We remark that a priori we only know there exist R0 D R0.X0/, possibly smaller than
the R chosen in (4.7), and C 0N > 0, such that

(4.11) jv.Y /j � C 0N jY j
N for any Y 2 B2R0.0/;

i.e., the inequality (4.9) holds in a smaller ball. When Y 2 B2R.0/ nB2R0.0/, by the upper
bound in (4.8), we have

jv.Y /j � C jY jNX0�˛ � C 0RNX0�˛ � C.R0; R;NX0/.2R
0/N � CN jY j

N :

Therefore (4.11) holds for all Y 2 B2R.0/, possibly with a bigger constant CN � C 0N .

5. Proof of the expansion

In this section, we will prove that there exists a non-trivial homogeneous harmonic poly-
nomial PN of degree N such that, in BR=2.0/, v has the expansion

(5.1) v.y; s/ D PN .y; s/C  .y; s/;

where

(5.2) j .y; s/j � C CN j.y; s/j
N Q�.j.y; s/j/;

and Q�.�/ is defined in (5.19) and it satisfies that Q�.r/! 0 as r ! 0.
For simplicity, we denote r WD j.y; s/j. Assume that 0 < r � R=2. We rewrite the

equation � div. QA.y; s/rv/ D 0 as

��v D div
�
. QA.y; s/ � Id/rv

�
:
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Note that the coefficient matrix satisfies QA.0/ D A.0/ D Id. We denote

Ef .y; s/ WD . QA.y; s/ � Id/rv.y; s/:

In Proposition 2.7 of [3] (or more precisely, in Lemma 2.11 of [3]), the authors proved that
a solution to an elliptic operator with Dini-continuous coefficients and which vanishes on
an open set of the boundary satisfies the boundary gradient estimate. Applying it to RdC
and Rd� respectively, we get

(5.3) jrv.y; s/j .
1

r

� 1
rd

“
B2r .0/

v2 dZ
�1=2

.
1

r
sup
B2r .0/

jvj:

Combined with the estimate (4.9), we get

(5.4) j Ef .y; s/j � j QA.y; s/ � Id j � jrv.y; s/j .
�.2r/

r
� sup
B2r .0/

jvj . �.2r/rN�1;

where the constant is just a constant multiple of the constant CN in the estimate (4.9).
Let � be a smooth cut-off function such that 0 � � � 1, � � 1 on BR=2.0/, and � is

compactly supported in BR.0/. Let �.�/ D cd j�j2�d be the fundamental solution of the
Laplacian in Rd with d � 3. (The proof for the planar case d D 2 with �.�/ D c log j�j
is similar.) In the ball BR.0/, we define

(5.5) w.Y / WD

“
¹jZj<Rº

�.Y �Z/ div. Ef �/.Z/ dZ:

By the divergence theorem, we have

w.Y / D

“
¹jZj<Rº

�.Y �Z/ div. Ef �/.Z/ dZ

D �

“
¹jZj<Rº

rZ.�.Y �Z// � Ef �.Z/ dZ D

“
¹jZj<Rº

r�.Y �Z/ � Ef �.Z/ dZ:

By considering the above integral in the regions ¹jZj < 2jY jº and ¹2jY j � jZj < Rº, one
can show it is well defined, and hence w.Y / is well defined. Moreover, it satisfies

��w.Y / D div. Ef �/.Y / D ��v.Y /; for Y 2 BR=2.0/;

i.e., v � w is a harmonic function in BR=2.0/. Hence v � w.Y / can be written as the
infinite sum of homogeneous harmonic polynomials. In particular, we have

(5.6) v � w.Y / D P1.Y /C  1.Y /;

where P1 is a harmonic polynomial of degree at most N , and the error term  1 satis-
fies j 1.Y /j � C1jY jNC1, where C1 only depends on the radius R and the constant CN
in (4.9).
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Next, we consider the Taylor expansion of r�.� � Z/ near the origin. We let ˇ D
.ˇ1; : : : ; ˇd / denote a d -index. For each k 2 ¹0; : : : ;N º, we define an Rd -valued function
as follows:

z�k.Y;Z/ WD
X
jˇ jDk

Dˇ
r�.�Z/

Y ˇ

ˇŠ
�

For fixed Z 2 Rd n ¹0º, the function z�k.�; Z/ is a harmonic homogeneous polynomial of
degree k. Besides, since

jDˇ
r�.�Z/j . jZj1�d�jˇ j;

we have

(5.7) jz�k.Y;Z/j � Ck jZj
1�d�k

jY jk ;

where the constant Ck depends on k as well as the dimension d .
Let

(5.8) P2.Y / WD

“
¹jZj<Rº

NX
kD0

z�k.Y;Z/ � Ef �.Z/ dZ:

Since z�k is not well defined at Z D 0, we first need to justify that the above integral is
well defined. In fact, for any ı 2 .0; R/, let

fı.Y / WD

“
¹ı�jZj<Rº

NX
kD0

z�k.Y;Z/ � Ef �.Z/ dZ:

By (5.7) and (5.4), we have

jfı.Y /j �

NX
kD0

“
¹ı�jZj<Rº

jz�k.Y;Z/j � j Ef .Z/j dZ .
NX
kD0

jY jk
Z R

ı

sN�k�1�.2s/ ds

�

N�1X
kD0

jY jkRN�k �.2R/C jY jN
Z 2R

2ı

�.s/

s
ds;

which is uniformly bounded as ı ! 0. Moreover, let  D .1; : : : ; d / be a d -index such
that j j D j 2 ¹0; 1; : : : ;N º. Notice that when we take the Y -derivative of z�k , it does not
affect the coefficients which just depend on Z. Then similarly we obtain

jDfı.Y /j .
N�1X
kDj

jY jk�j RN�k �.2R/C jY jN�j
Z 2R

2ı

�.s/

s
ds;

which is also uniformly bounded as ı! 0. (When j D N , the first term on the right-hand
side does not appear.) Since fı.Y / is a polynomial of degree at most N , it is completely
determined by Dfı.0/ with indices j j 2 ¹0; 1; : : : ; N º. Therefore as ı ! 0 (modulo
passing to a subsequence), the sequence fı.Y / converges to P2.Y / in C jloc.R

d /, for
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any j 2 N. Therefore P2 is well defined. Moreover, since fı.Y / is a harmonic func-
tion for any ı > 0, the limit function P2.Y / is a harmonic polynomial of degree less than
or equal to N .

We will estimate the error

(5.9)  2.Y / WDw.Y /�P2.Y /D
“
¹jZj<Rº

�
r�.Y �Z/�

NX
kD0

z�k.Y;Z/
�
� Ef �.Z/dZ:

For each � > 0, we denote

(5.10) Nv.�/ WD sup
B� .0/

jvj:

By the estimate (4.9), we know that Nv.�/ . �N whenever 0 < � � 2R. Denote r D jY j <
R=2. We split the integral in (5.9) into three parts:

I WD
“
¹jZj<2rº

r�.Y �Z/ � Ef �.Z/ dZ;

II WD
“
¹jZj<2rº

NX
kD0

z�k.Y;Z/ � Ef �.Z/ dZ;

III WD
“
¹2r�jZj<Rº

�
r�.Y �Z/ �

NX
kD0

z�k.Y;Z/
�
� Ef �.Z/ dZ:

By (5.4) and the bound on the fundamental solution � , we can easily estimate

j I j .
“
¹jZj<2rº

jY �Zj1�d � j Ef .Z/j dZ .
�.4r/

r
� Nv.4r/ �

“
¹jX j<3rº

jX j1�d dX

. �.4r/ � Nv.4r/(5.11)

. �.4r/rN :(5.12)

Combining (5.7) and (5.4), we get

j II j .
NX
kD0

rk �

“
¹jZj<2rº

j Ef .Z/j jZj1�d�k dZ

.
NX
kD0

rk
Z 2r

0

�1�d�k �
�.2�/

�
� Nv.2�/ � �d�1 d�

. rN
Z 2r

0

�.2�/

�
�
Nv.2�/

�N
d�(5.13)

.
� Z 4r

0

�.s/

s
ds
�
rN :(5.14)
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Lastly, since r�.�/ is smooth away from the origin, on the set ¹jZj � 2rº we have the
expansion

r�.Y �Z/ �

NX
kD0

z�k.Y;Z/ D
X

jˇ jDNC1

Dˇ
r�.�Y �Z/

Y ˇ

ˇŠ

for some � 2 Œ0; 1�. Hence by the decay of the fundamental solution, we haveˇ̌̌
r�.Y �Z/ �

NX
kD0

z�k.Y;Z/
ˇ̌̌
�

X
jˇ jDNC1

j�Y �Zj1�d�jˇ j �
r jˇ j

ˇŠ
.

rNC1

jZjdCN
;

where in the last inequality the constant multiple also depends on N . Therefore

j III j .
“
¹2r�jZj<Rº

rNC1

jZjdCN
� j Ef .Z/j dZ

. rNC1
Z R

2r

1

�dCN
�
�.2�/

�
� Nv.2�/ � �d�1 d�

. rNC1
Z R

2r

�.2�/

�2
�
Nv.2�/

�N
d�(5.15)

. rN
�
r

Z 2R

4r

�.s/

s2
ds
�
:(5.16)

We claim that

(5.17) r

Z 2R

4r

�.s/

s2
ds ! 0 as r ! 0:

In fact, we split into two cases: either
R 2R
0

�.s/

s2
ds < C1 (which happens if �.s/ decays

faster than s), or
R 2R
r

�.s/

s2
ds !C1 as r ! 0C. In the first case,

r

Z 2R

4r

�.s/

s2
ds �

� Z 2R

0

�.s/

s2
ds
�
r ! 0 as r ! 0I

and in the second case, applying L’Hospital rule, we get

lim
r!0C

r

Z 2R

4r

�.s/

s2
ds D lim

r!0C

�
�.4r/

4r2

�
1
r2

D lim
r!0C

�.4r/

4
D 0;

which also proves the claim (5.17). Combining (5.9), (5.12), (5.14), (5.16) and (5.17), we
conclude that

(5.18) j 2.Y /j . rN
�
�.4r/C

Z 4r

0

�.s/

s
ds C r

Z 2R

4r

�.s/

s2
ds
�
DW rN Q�.r/;

with

(5.19) Q�.r/ D �.4r/C

Z 4r

0

�.s/

s
ds C r

Z 2R

4r

�.s/

s2
ds ! 0 as r ! 0:
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Finally, combining (5.6) and (5.9), we have the following expansion in BR=2.0/:

(5.20) v.Y / D P1.Y /C P2.Y /C  1.Y /C  2.Y /;

whereP1CP2 is a harmonic polynomial of degree less or equal toN , j 1.Y /j �C1rNC1

and j 2.Y /j � C2rN Q�.r/. In the special case when �.s/ � s˛ with ˛ 2 .0; 1/, it is easy
to see that Q�.r/ � r˛ . By the estimate (4.9), we know that either P1 C P2 � 0, or it is
nontrivial and homogeneous of degree exactly N . In the special case when �.s/ � s˛ , it
is easy to rule out the first case, as is shown in [5]. However, the proof is more delicate for
general Dini parameters.

Assume for the sake of contradiction that P1 C P2 � 0. Then (5.20) implies that

(5.21) v.Y / D  1.Y /C  2.Y /;

where j 1.Y /j � C1rNC1. Recall that we split  2.Y / into three terms, I, II and III. Com-
bining (5.21) and (5.11), (5.13), (5.15), we get

jv.Y /j � j I j C j II j C j III j C j 1.Y /j

. �.4r/ � Nv.4r/C rN
Z 2r

0

�.2�/

�
�
Nv.2�/

�N
d�

C rNC1
Z R

2r

�.2�/

�2
�
Nv.2�/

�N
d� C C1 r

NC1:(5.22)

Now let � 2 .0;R=2/ be fixed, and we let Y vary in the annulusB�.0/ nB�=2.0/. Then
r D jY j 2 Œ�=2; �/, and (5.22) implies

jv.Y /j . �.4�/ � Nv.4�/C �N
Z 2�

0

�.2�/

�
�
Nv.2�/

�N
d�(5.23)

C �NC1
Z R

�

�.2�/

�2
�
Nv.2�/

�N
d� C C1�

NC1:

Similarly to (5.10), we define

NNv.�/ WD sup
B� .0/nB�=2.0/

jvj; for any � > 0:

We claim that

(5.24) Nv.�/ . NNv.�/ � Nv.�/:

The second equality is simply because of the inclusionB� .0/ nB�=2.0/�B� .0/. To prove
the first inequality, we note that

(5.25) Nv.�/ D sup
k2N0

NNv.2�k�/:

For each k 2 N, as in the proof of Corollary 4.2 and Lemma 4.1 (applying the same
argument to annuli instead of solid balls), we get

NNv.2�k�/

NNv.�/
. .2�k/NX0�˛ � .2�k/1�˛; for any 0 < � < 2R:
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To get the exponent NX0 � ˛ in the first inequality, we have used the choice of R in (4.7).
Combined with (5.25), we get

Nv.�/ D sup
k2N0

NNv.2�k�/ . NNv.�/;

with a constant depending on ˛. This finishes the proof of the claim. Applying the doub-
ling property in Corollary 4.2 and (5.24) to the estimate (5.23), we get

NNv.�/ . �.4�/ � Nv.4�/C �N
Z 2�

0

�.2�/

�
�
Nv.2�/

�N
d�

C �NC1
Z R

�

�.2�/

�2
�
Nv.2�/

�N
d� C C1�

NC1

. �.4�/ � NNv.�/C �N
Z 2�

0

�.2�/

�
�
NNv.�=2/

�N
d�

C �NC1
Z R

�

�.2�/

�2
�
NNv.�/

�N
d� C C1�

NC1

. �.4�/ � NNv.�/C �N
Z �

0

�.4�/

�
�
NNv.�/

�N
d�

C �NC1
Z R

�

�.2�/

�2
�
NNv.�/

�N
d� C C1�

NC1:(5.26)

We choose R sufficiently small so that

C � �.2R/ < 1=2;

where C > 0 denotes the constant in front of the first term in (5.26). This way, we can
move the first term to the left-hand side for any � < R=2, and (5.26) becomes

(5.27) NNv.�/ . �N
Z �

0

�.4�/

�
�
NNv.�/

�N
d� C �NC1

Z R

�

�.2�/

�2
�
NNv.�/

�N
d� C C1�

NC1

By setting

h.�/ WD
NNv.�/

�N

and dividing both sides of (5.27) by �N , we get

(5.28) h.�/ .
Z �

0

�.4�/

�
� h.�/ d� C �

Z R

�

�.2�/

�2
� h.�/ d� C C1�:

For every " > 0, let

g".�/ WD
h.�/

� C "
D
NNv.�/

�N
�

1

� C "
> 0:

By (4.9), each g".�/ is bounded from above (with a constant depending on "):

g".�/ �
CN

� C "
<
CN

"
< C1:
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Let �" WD �C " and �" WD � C ". Dividing both sides of (5.28) by �" and plugging in g".�/,
the inequality becomes

g".�/ D
h.�/

�"
.
1

�"

Z �

0

�.4�/

�
� g".�/�" d� C

�

�"

Z R

�

�.2�/

�
� g".�/

�"

�
d� C C1:

Notice that �" < �" when � < �, and

�

�"
�
�"

�
< 1 when � > �:

It then follows that

g".�/ .
Z �

0

�.4�/

�
� g".�/ d� C

Z R

�

�.2�/

�
� g".�/ d� C C1(5.29)

� C2

Z R

0

�.4�/

�
� g".�/ d� C C

0
1

� C2 sup
�2Œ0;R�

g" �

Z R

0

�.4�/

�
d� C C 01;(5.30)

where C2 is chosen to be the larger constants in front of the first two terms in the right-
hand side of (5.29). Since (5.30) holds for any � < R=2, we can take the supremum of
� 2 Œ0; R=2� and obtain

(5.31) sup
�2Œ0;R=2�

g" � C2 sup
�2Œ0;R�

g" �

Z R

0

�.4�/

�
d� C C 01:

For any � satisfying R=2 � � � R, by the doubling property of NNv we have

g".�/ D
NNv.�/

�N .� C "/
� C3

NNv.R=2/

.R=2/N .R=2C "/
D C3 � g"

�R
2

�
� C3 sup

�2Œ0;R=2�

g":

Hence (5.31) can be rewritten as

(5.32) sup
�2Œ0;R=2�

g" � C2C3 sup
�2Œ0;R=2�

g" �

Z R

0

�.4�/

�
d� C C 01:

We can choose R sufficiently small so that

C2C3

Z R

0

�.4�/

�
d� <

1

2
;

and thus (5.32) implies that

sup
�2Œ0;R=2�

g" � 2C
0
1 < C1:

Since each g" has a uniform upper bound independent of the parameter ", we conclude
that

NNv.�/

�NC1
D lim
"!0

g".�/ � 2C
0
1 < C1:
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In particular,

lim sup
�!0

NNv.�/

�NC1
� 2C 01 < C1:

On the other hand, by (5.24) and (4.10) we also know

lim sup
�!0

NNv.�/

�NC1
� lim sup

�!0

Nv.�/

�NC1
D lim sup

Y!0

jv.Y /j

jY jNC1
D C1:

This is a contradiction. Therefore we have shown that in the expansion (5.20), it is impos-
sible that P1 C P2 is trivial, and thus it must be a non-trivial homogeneous harmonic
polynomial of degree exactly N . This finishes the proof of (5.1) with the desired decay.

We remark that if N D NX0 � 1, by the expansion (5.1) it is impossible that

sup
Br .0/

jvj . rNX0�˛;

as is shown in (4.8). Therefore we must have that the degree N is exactly NX0 , and in
particular,

(5.33) jv.Y /j � CN jY j
NX0 for any Y 2 BR=2.0/;

and

lim sup
Y!0

jv.Y /j

jY jNX0C1
D 0:

6. Gradient estimate for the error term

In this section we estimate the gradient of the error term  . We first remark that  also
satisfies

 � 0 on BR.0/ \ @RdC:

Since v vanishes on the boundary, it suffices to show that PN vanishes as well on @RdC.
If not, since PN is a homogeneous function, there exists a unit vector Ee 2 @RdC such that
PN .Ee/ ¤ 0. Moreover,

(6.1) PN .r Ee/ D r
NPN .Ee/ for any r > 0:

On the other hand, by the estimate (5.2) we have

j .r Ee/j � C CN r
N Q�.r/:

Hence for any 0 < r < R=2 we always have

(6.2) jPN .r Ee/j D jv �  .r Ee/j D j .r Ee/j � C
0rN Q�.r/:

Combining (6.1) and (6.2), and letting r! 0, we get PN .Ee/D 0, which is a contradiction.
Therefore PN � 0 on @RdC, and hence  � 0 on @RdC \ BR.0/.
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Since v satisfies � div.A.�/rv/ D 0 and PN is a harmonic function, we have

� div.A.�/r / D � div.A.�/r.v � PN //
D � div.A.�/rv/C�PN C div..A.�/ � Id/rPN / D div..A.�/ � Id/rPN /:

That is to say, the error term  satisfies

(6.3)
²
� div.A.�/r / D div Eg in BCR .0/ WD BR.0/ \RdC;
 D 0 on BR.0/ \ @RdC;

where Eg is defined by
Eg.Z/ D .A.Z/ � Id/rPN .Z/

in the upper half space. Notice that when N D 1, PN must be a linear function and thus
rPN is a constant vector; when N � 2, rPN is (at least) Lipschitz continuous. In both
cases, it follows that Eg is Dini continuous. Recall that the coefficient matrix A.�/ in the
equation (6.3) is also Dini continuous in the upper half space. We will use the arguments
in Section 2 of [3] (more precisely, Lemma 2.11 in [3]) to estimate r .

Let r 2 .0;R=6/ be fixed, and denote  r .Y / WD  .rY / in BC1 .0/. Then it satisfies the
rescaled equation ²

� div.Ar .�/ r / D div Egr in BC2 .0/;
 r � 0 on B2.0/ \ @RdC;

where we denote

(6.4) Ar .Y / WD A.rY / and Egr .Y / WD r Eg.rY /:

For each Y 2 BC1 .0/ and 0 < t � 2, we denote

!Ar .t/ WD sup
Y;Y 02BC2 .0/

jY 0�Y j�t

jAr .Y
0/ � Ar .Y /j D sup

Z0;Z2BC2r .0/

jZ0�Zj�tr

jA.Z0/ � A.Z/j;

and

! Egr .t/ WD sup
Y;Y 02BC2 .0/

jY 0�Y j�t

j Egr .Y / � Egr .Y
0/j D r sup

Y;Y 02BC2 .0/

jY 0�Y j�t

j Eg.rY 0/ � Eg.rY /j:

Since the modulus of continuity of A.�/ is bounded above by �.2�/ (by (4.2)), it follows
that

(6.5) !Ar .t/ . �.2t r/:

On the other hand, since PN is a homogeneous harmonic polynomial of degree N ,
its derivative of any order is uniformly bounded in BC2 .0/ by a constant multiple of
kPN kL1.BC1 .0//

. Moreover,ˇ̌
Eg.rY 0/ � Eg.rY /

ˇ̌
�
ˇ̌
.A.rY 0/ � Id/.rPN .rY 0/ � rPN .rY //

ˇ̌
C j.A.rY 0/ � A.rY //rPN .rY /j

. �.2r jY 0j/ � rN�1jrPN .Y
0/ � rPN .Y /j C �.2r jY

0
� Y j/ � rN�1jrPN .Y /j

. rN�1�.4r/ � jY 0 � Y j C rN�1 � �.2r jY 0 � Y j/;
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where the constant depends on kPN kL1.BC1 .0//. Hence

(6.6) ! Egr .t/ . rN �.4r/ � t C rN � �.2t r/:

In particular ! Egr .�/ is Dini continuous. Therefore Lemma 2.11 in [3] implies that for any
Y 2 BC1 .0/,

(6.7) jr r .Y /j . kr rkL1.BC2 .0// C
Z 1=2

0

O! Egr .t/

t
dt;

where the constant depends on d , the ellipticity constants and !Ar , which we have shown
in (6.5) to be uniformly bounded. Moreover, following the notation in [3], O!�.t/ is determ-
ined by !�.t/ as follows: let ˇ 2 .0; 1/, we define5

(6.8) O!�.t/ WD !�.t/C !�.4t/C !
]
�.4t/;

with

(6.9) !]�.t/ WD sup
s2Œt;1�

� t
s

�ˇ
!�.s/:

It is also proven in [3] that if !�.�/ satisfies (2.1) and is doubling (i.e., (2.2)), then !]�.�/
also satisfies (2.1). By the above definitions (6.8) and (6.9), it is not hard to see if !.t/ �
�1!1.t/ C �2!2.t/, then O!.t/ � �1 O!1.t/ C �2 O!2.t/. Besides, when !�.t/ is taken to
be �.2t r/, we have that

!]�.t/ WD sup
s2Œt;1�

� t
s

�ˇ
�.2rs/D sup

s02Œ2tr;2r�

�2tr
s0

�ˇ
�.s0/� sup

s02Œ2tr;R�

�2tr
s0

�ˇ
�.s0/D �].2t r/;

where, as in (6.9), we define

(6.10) �].t/ WD sup
s2Œt;R�

� t
s

�ˇ
�.s/:

Hence
O!�.t/ D �.2t r/C �.8t r/C !

].4t/ � 2�.8t r/C �].8t r/:

When !�.t/ is taken to be t , we have that

O!�.t/ D t C 4t C !
]
�.4t/ . tˇ :

Therefore (6.6) implies that

O! Egr .t/ . rN �.4r/ � tˇ C rN � Œ�.8t r/C �].8t r/�;

and thus

(6.11)
Z 1=2

0

O! Egr .t/

t
dt . rN �.4r/C rN �

h Z 4r

0

�.s/

s
ds C

Z 4r

0

�].s/

s
ds
i
:

5In [3] they need the additional parameter Q!�.�/ because they work with Dini continuous functions in the
average sense, i.e., functions with Dini-mean oscillation. When one works with uniform Dini function, which is
our case here, Q!�.�/ can be simply taken the same as !�.�/.
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On the other hand, by Hölder’s inequality and the energy estimate with vanishing
boundary data (see, for example, Lemma 1.41 in [2]), we have“
BC2 .0/

jr r jdY.
�“

BC2 .0/

jr r j
2dY

�1=2
.
�“

BC3 .0/

j r j
2dY C

“
BC3 .0/

j Egr j
2dY

�1=2
. sup
BC3r .0/

j j C r � sup
BC3r .0/

j Egj . rN Q�.3r/;(6.12)

where we recall that Q�.�/ is defined in (5.19). Inserting (6.11) and (6.12) back into (6.7),
we obtain,

jr r .Y /j .
“
BC2 .0/

jr r j dY C

Z 1=2

0

O! Egr .t/

t
dt

. rN Q�.3r/C rN �.4r/C rN �
h Z 4r

0

�.s/

s
ds C

Z 4r

0

�].s/

s
ds
i
:

Or equivalently,

jr .rY /j . rN�1 �
h
Q�.3r/C �.4r/C

Z 4r

0

�.s/

s
ds C

Z 4r

0

�].s/

s
ds
i
:

Finally, let

(6.13) V�.r/ WD Q�.3r/C �.4r/C

Z 4r

0

�.s/

s
ds C

Z 4r

0

�].s/

s
ds;

where we recall that �].�/ is defined in (6.10) and it satisfies the Dini condition (2.1). We
conclude that

(6.14) jr .Y /j � C jY jN�1 V�.jY j/ for any Y 2 BC
R=6

.0/;

where
V�.r/! 0 as r ! 0:

We remark that exactly the same proof as above yields the gradient estimate of r on
the lower half space. Moreover r D rv � rPN is continuous up to the boundary
from above and below, by Proposition 2.7 in [3]. Therefore (6.14) holds in the entire
ball BR=6.0/.

7. Proof of Theorem 1.1 and Corollary 1.3

Now we are ready to prove the expansion of u by the expansion (5.1) for v which is proven
in the previous section. By the definition of v in Section 4, we have

(7.1) u.x; t/ D v.x; t � '.x// D PN .x; t � '.x//C  .x; t � '.x//:

Let r D j.x; t/j; then j'.x/j � �.2r/r . Hence for r sufficiently small, we have

r

2
< j.x; t � '.x//j <

3r

2
�
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By the error estimate (5.2), we have

(7.2) j .x; t � '.x//j � C 0CN r
N Q�.2r/:

On the other hand,

(7.3) PN .t; x � '.x// D PN .x; t/ � '.x/ �

Z 1

0

@dPN .x; t � �'.x// d�:

By (5.1), (5.33) and (5.2), we can estimate

1

rd

“
B2r .0/

jPN j
2 dX D

1

rd

“
B2r .0/

jv �  j2 dX

.
1

rd

“
B2r .0/

v2 dX C
1

rd

“
B2r .0/

 2 dX . C 2N r
2N
C C 2N r

2N Q�.2r/2 . C 2N r
2N ;

with a uniform constant (which only depends on the dimension d and the ellipticity).
(The r2N -decay clearly just follows from the homogeneity of PN . But here we want to
emphasize how the constant in front depends on the constant CN from (4.9).) Since PN is
a harmonic function in Rd , we have

(7.4) sup
B 3r
2
.0/

jrPN j .
1

r

� 1
rd

“
B2r .0/

jPN j
2 dX

�1=2
. CN r

N�1:

Moreover,

(7.5) kr
2PN kL1.Br / .

1

r2
kPN kL1.B2r / . CN r

N�2:

Thereforeˇ̌̌
'.x/ �

Z 1

0

@dPN .x; t � �'.x// d�
ˇ̌̌
� sup
B3r=2.0/

jrPN j � j'.x/j

. CN r
N�1
� r �.2r/ D CN r

N �.2r/:

Combined with (7.1), (7.2) and (7.3), we conclude that in BR=3.0/, u has the expansion

(7.6) u.x; t/ D PN .x; t/C Q .x; t/;

where the error term

Q .x; t/ D  .x; t � '.x// � '.x/ �

Z 1

0

@dPN .x; t � �'.x// d�

satisfies
j Q .x; t/j � C CN j.x; t/j

N Q�.2j.x; t/j/:

(For our purpose, the expansion (7.6) is meaningful only inside BR=3.0/ \D, i.e., when
t > '.x/, but the expansion holds in the entire ball if we consider an extension of u
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across the boundary by the odd reflection of v in (4.3) and the transformation as in (7.1).)
Moreover, by the gradient estimates in (6.14) and (7.5), we haveˇ̌

r Q .x; t/
ˇ̌
� C CN j.x; t/j

N�1 V�.2j.x; t/j/:

Recall that for any X0 D .x0; '.x0// 2 @D, we can apply a translation and orthogonal
transformation Ox0 as in Section 3 so that X0 becomes the origin and the tangent plane
to @D at X0 is flat (i.e., r'.x0/ D 0). Taking into account the orthogonal transformation,
we in fact get

u.x; t/ D PN
�
Ox0..x; t/ �X0/

�
C Q 

�
Ox0..x; t/ �X0/

�
D QPN ..x; t/ �X0/C

QQ ..x; t/ �X0/;

where QPN is still a non-trivial homogeneous harmonic polynomial of degree N D NX0 .
For simplicity, we still denote it as PN , and simply write

(7.7) u.x; t/ D PN ..x; t/ �X0/C Q ..x; t/ �X0/; in BR=3.X0/ \D:

In order to prove the uniqueness of the expansion, we assume that u has two such
expansions

u.X/ D PN .X �X0/C Q .X �X0/

and
u.X/ D P 0N .X �X0/C

Q 0.X �X0/;

such that

(7.8) j Q .Y /j � C1 jY j
N Q�.jY j/ and j Q 0.Y /j � C2 jY j

N Q�.jY j/:

Notice that the degree of the homogeneous harmonic polynomial is uniquely determined
by NX0 . It follows that

PN .Y / � P
0
N .Y / D

Q 0.Y / � Q .Y / for Y 2 BR=3.0/:

Let QPN WD PN � P 0N . Then it is also a homogeneous harmonic polynomial of degree N .
Assuming that QPN 6� 0, then there exists a unit vector Ee 2 Sd�1 such that QPN .e/ ¤ 0. In
particular, QPN .r Ee/ D rN QPN .e/ ¤ 0. On the other hand, by the estimates (7.8), we haveˇ̌

QPN .r Ee/
ˇ̌
D
ˇ̌
Q 0.r Ee/ � Q .r Ee/

ˇ̌
� .C1 C C2/r

N Q�.r/:

Hence it follows that ˇ̌
QPN .Ee/

ˇ̌
� .C1 C C2/ Q�.r/! 0 as r ! 0;

which contradicts the assumption that QPN .Ee/ ¤ 0. Therefore it must be the case that
QPN � 0. As a result, PN � P 0N and Q � Q 0, i.e., the expansion is unique. This finishes

the proof of Theorem 1.1.
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Now we set out to prove Corollary 1.3, or more precisely, to prove (1.5). Denote
X0 D .x0; '.x0//. We recall that TX0;ru is defined in the domain .D � X0/=r , which
is the region above the graph of the function

'r W y 2 Rd�1 7!
'.x0 C ry/ � '.x0/

r
�

Assuming without loss of generality thatr'.x0/D 0, we have that .D �X0/=r converges
to the upper half space RdC. Moreover, the Lebesgue measure of the set difference between
.D �X0/=r and RdC can be estimated as

(7.9)
ˇ̌̌
B1.0/\

�D�X0
r

�RdC

�ˇ̌̌
�

Z
Bd�11 .0/

j'r .y/jdy . sup
Bd�1r .x0/

jr'�r'.x0/j � �.r/:

Since PN is homogeneous of degree N , we have

(7.10)
1

rd

“
BCr .0/

jPN j
2 dY D

“
BC1 .0/

jPN .rZ/j
2 dZ D r2N

“
BC1 .0/

jPN j
2 dZ:

Combined with the estimate of Q , we have

(7.11)
1

rd

“
BCr .0/

ˇ̌
PN .Y /C Q .Y /

ˇ̌2
dY D

1

rd

“
BCr .0/

jPN j
2 dY CO.r2N Q�.r//:

By a change of variable, the pointwise bounds of PN ; Q and the estimate (7.9), we haveˇ̌̌ 1
rd

“
Br .0/\.D�X0/

jPN .Y /C Q .Y /j
2 dY �

1

rd

“
BCr .0/

jPN .Y /C Q .Y /j
2 dY

ˇ̌̌
�

“
B1.0/\.

D�X0
r �Rd

C/

ˇ̌
PN .rZ/C Q .rZ/

ˇ̌2
dZ

� sup
Br .0/

�
jPN j C j Q j

�2
�

ˇ̌̌
B1.0/ \

�D �X0
r

�RdC

�ˇ̌̌
. r2N �.r/:(7.12)

Therefore by combining (7.12), (7.11) and (7.10), we conclude

1

rd

“
Br .X0/\D

u2 dY D
1

rd

“
Br .0/\.D�X0/

ˇ̌
PN .Y /C Q .Y /

ˇ̌2
dY

D
1

rd

“
BCr .0/

jPN C Q j
2dY CO.r2N �.r//

D
1

rd

“
BCr .0/

jPN j
2 dY CO.r2N Q�.r//

D
1

rd

“
BCr .0/

jPN j
2 dY � .1CO. Q�.r///:
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Hence

TX0;ru.Z/ D
u.X0 C rZ/�

1

rd

’
BCr .0/

jPN j2 dY
�1=2
� .1CO. Q�.r///1=2

D
PN .rZ/C Q .rZ/�

1

rd

’
BCr .0/

jPN j2 dY
�1=2 .1CO. Q�.r///

D

�
PN .rZ/�

1

rd

’
BCr .0/

jPN j2 dY
�1=2 C Q .rZ/ �O� 1rN �

�
.1CO. Q�.r///

D cPN .Z/CO. Q�.r//;

where

c D
�“

BC1 .0/

jPN j
2dZ

��1=2
:

This finishes the proof of the claim (1.5).

8. Proof of Proposition 1.4

We denote Xj D .xj ; '.xj // for each j 2 N0. Recall that in Section 3 we found an ortho-
gonal transformation Oxj , which locally maps the domain D � Xj to a domain Dxj ,
defined as the region above the graph of a function Q'xj . Under this transformation, the
harmonic function u in D becomes a harmonic function Qu in Dxj : for any Y 2 Dxj suffi-
ciently close to the origin, we have

(8.1) Qu.Y / WD u.Xj CO
T
xj
Y /:

Recall that in Section 4, we were able to study the harmonic function Qu using the flattening
map

ˆxj W .y; s/ 2 RdC 7! .y; s C Q'xj .y// 2 Dxj

and

(8.2) v.y; s/ D Qu ıˆxj .y; s/:

Combining (8.1) and (8.2), we get a function vj WRdC ! R defined as

(8.3) vj .y; s/ D Qu.y; s C Q'xj .y// D u
�
Xj CO

T
xj
.y; s C Q'xj .y//

�
:

To study how the functions vj ’s are related, we need to study how the map Oxj and Q'xj
depend on the sub-index xj .

Recall that for any .x; '.x// 2 @D, the orthogonal matrix Ox is explicitly determined
by r'.x/, as in (3.5), where cx satisfies cx D .1 C jr'.x/j2/�1=2 and the block mat-
rix QOx is symmetric, positive semi-definite and satisfies that QO�1x is the square root of
Idd�1Cr'.x/r'.x/T. Hence

(8.4) jcx � cx0 j .
ˇ̌
jr'.x/j � jr'.x0/j

ˇ̌
� jr'.x/ � r'.x0/j � �.jx � x0j/I
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and the block matrices QO�1x and QO�1x0 satisfy the assumptions of Lemma 2.6. Therefore
we have that

j QOx � QOx0 j .
ˇ̌
.. QOx0/

�1/2 � .. QOx/
�1/2

ˇ̌
D
ˇ̌
r'.x0/r'.x0/T � r'.x/r'.x/T

ˇ̌
. jr'.x0/j �

ˇ̌
r'.x0/T � r'.x/

ˇ̌
C
ˇ̌
r'.x0/ � r'.x/

ˇ̌
� jr'.x/Tj

. jr'.x0/ � r'.x/j � �.jx � x0j/:(8.5)

Combining (3.5), (8.4) and (8.5), we get

(8.6) jOx �Ox0 j . �.jx � x0j/:

On the other hand, the map Q' is defined as in (3.9), where the function g is defined as
in (3.6): that is, for any .x; '.x// 2 @D,

gx W z 2 Rd�1 7! QOx.z � x/ � .'.z/ � '.x// QOxr'.x/ D y 2 Rd�1:

It follows that

gx.z/ � gx0.z/ D QOx
�
.x0 � x/C '.z/.r'.x0/ � r'.x//C .'.x/ � '.x0//r'.x/

C '.x0/.r'.x/ � r'.x0//
�
C . QOx � QOx0/

�
.z � x0/C

�
'.x0/ � '.z/

�
r'.x0/

�
:

Hence by (8.5), we get

kgx � gx0kL1.Bd�11 .0// . �.jx � x0j/:

Similarly, by (3.7), we obtain

kDgx �Dgx0kL1.Bd�11 .0// . j QOx � QOx0 j C j QOxr'.x/ � QOx0r'.x0/j . �.jx � x0j/:

In the same fashion (and using (3.14)), we conclude that

(8.7) k Q'x � Q'x0kL1.Bd�1
1=2

.0// . �.jx � x0j/; kr Q'x �r Q'x0kL1.Bd�1
1=2

.0// . �.jx � x0j/:

Recall that u is continuously differentiable near the boundary of the Dini domain (by
the work of [3]). Therefore combining (8.3), (8.6), (8.7) and Xj ! X0, we conclude that
vj ! v0 (locally uniformly) in the C 1-topology.

Let N D NX0 D NXj 2 N. By Section 5, each vj has the expansion

vj .Y / D Pj .Y /C  j .Y /

in some ball BRj .0/, where Pj is a non-trivial homogeneous harmonic polynomial of
degree N , and the error term  j satisfies j j .Y /j � Cj jY jN Q�.jY j/. By the proof in Sec-
tion 7, it suffices to show that Pj converges to P0 in the CN -topology. By the definitions
of wj and Pj;2 in (5.5) and (5.8), respectively, and the fact that rvj ! rv0 locally uni-
formly6, we get that

wj ! w0 and Pj;2 ! P0;2 uniformly.

6In fact, it suffices to know that rvj * rv0 weakly in Lp for some p > d .



C. Kenig and Z. Zhao 2148

On the other hand, since vj ! v0 uniformly, the harmonic functions vj �wj also converge
uniformly to v0 � w0. By the expansions of these harmonic functions to degree N as
in (5.6), the polynomials Pj;1 also converge uniformly to P0;1. Thus

Pj D Pj;1 C Pj;2 ! P0;1 C P0;2 D P0

locally uniformly. Since Pj ; P0 are homogeneous harmonic polynomials of the same
degree N , they also converge in the CN -topology. This finishes the proof of Proposi-
tion 1.4.

A. Appendix. Proof of upper semi-continuity of the vanishing order

The goal of this appendix is to prove the upper semi-continuity of the vanishing order.

Lemma A.1. Let D and u be as in Theorem 1.1. The map

X 2 @D \ BR0.0/ 7! NX 2 N

is upper semi-continuous. That is,

lim sup
X2@D\BR0

.0/

X!X0

NX � NX0 :

Recall that in Section 4 of [9], we define the modified frequency functions at different
boundary points by applying different transformation maps. To compare them, we need
to understand what the modified frequency function at each boundary point means in the
original domain D.

Lemma A.2. Let D and u be as in Theorem 1.1. For any X 2 @D \ B2R0.0/ and r > 0
small (so that �.4r/ < 1=26/, we have

(A.1) N.u ı‰X ; r/ D Œ1CO.�.4r//� �N.u;X C 3r O�.r/ed ; r/;

where ‰X and O� are defined in (2.4) and (2.5), respectively; N.u; Y; r/ denotes the stand-
ard Almgren frequency function of u centered at Y 2 D and at scale r , see (2.3); and
N.u ı‰X ; r/ denotes the frequency function for an elliptic equation (satisfied by u ı‰X /
in the domain ‰�1X .D/, see Section 3 of [9].

Remark A.3. The formula (A.1) is related to an observation pointed out in [8]: the Dini
domain is star-shaped near the boundary. To be more precise, let X 2 @D and let r > 0
be sufficiently small. Then the domain D \ Br .X/ is star-shaped with respect to some
Yr 2 D. (See the proof of Lemma 3.2 in [8].)

Proof. Recall that in (3.8) of [9], we define

D.u ı‰X ; r/ D

“
Br\�X

�jrg.u ı‰X /j
2
g dVg D

“
‰X .Br /\D

jruj2 dZ DW yD.X; r/
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and

H.u ı‰X ; r/ D

Z
@Br\�X

�.u ı‰X /
2 dV@Br D

Z
@Br\�X

Q�.u ı‰X /
2 dHd�1

D .1CO.�.4r///

Z
‰X .@Br /\D

u2 dHd�1
D .1CO.�.4r/// yH.X; r/;

where we introduce the notation

yH.X; r/ WD

Z
‰X .@Br /\D

u2 dHd�1:

Let

yN.X; r/ WD
r yD.X; r/

yH.X; r/
�

Then the frequency function satisfies

N.u ı‰X ; r/ D
r D.u ı‰X ; r/

H.u ı‰X ; r/
D .1CO.�.4r///

r yD.X; r/

yH.X; r/
(A.2)

D .1CO.�.4r/// yN.X; r/:

By the definition of ‰X in (2.4), it is clear that it can be written as X C ‰.�/ for a
map ‰ independent of X 2 @D. Besides, we have

‰.@Br / D @Br C 3r O�.r/ ed D @Br .3r O�.r/ed /:

To understand what the set @‰.Br / is, we first study the set ‰.Br /. Clearly,

‰.Br / D
[

�2Œ0;r/

‰.@B�/ D
[

�2Œ0;r/

@B�
�
3� O�.�/ed

�
:

Consider the function
f W � 2 Œ0; r/ 7! ��C 3� O�.�/;

which corresponds to the height of the lowest point of the (shifted) ball @B�.3� O�.�/ed /.
A simple computation shows that f is a continuous function, and that

f 0.�/ D �1C 3 O�.�/C 3� O� 0.�/ D �1C 3 O�.�/C
3

log2 2

Z 2�

�

�.2s/ � �.s/

s
ds

� �1C 3�.4�/C
3

log 2
�.4�/ � �1C 13�.4r/:

By choosing r sufficiently small so that �.4r/ < 1=26, we can guarantee that f is decreas-
ing. In particular, this implies that the balls ‰.@B�/D @B�.3� O�.�/ed / with � 2 Œ0; r/ are
nested, i.e.,

B�.3� O�.�/ed / � B�0.3�
0 O�.�0/ed /; if � � �0:
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In fact, let Y 2 B�.3� O�.�/ed / be arbitrary. Then

jY � 3�0 O�.�0/ed j � jY � 3� O�.�/ed j C .3�
0 O�.�0/ � 3� O�.�//

< �C f .�0/C �0 � .f .�/C �// D �0 C .f .�0/ � f .�// � �0:

Hence Y 2B�0.3�0 O�.�0/ed /. Moreover, by the intermediate value theorem, f .�/ assumes
all the values between lim�!r� f .�/ D �r C 3r O�.r/ and lim�!0C f .�/ D 0. Therefore
we have that

‰.Br / D Br .3r O�.r/ed /

and

(A.3) @‰.Br / D @Br .3r O�.r/ed / D ‰.@Br /:

Therefore,

yH.X; r/ D

Z
‰X .@Br /\D

u2 dHd�1
D

Z
@Br .XC3r O�.r/ed /\D

u2 dHd�1;

yD.X; r/ D

“
‰X .Br /\D

jruj2 dZ D

“
Br .XC3r O�.r/ed /

jruj2 dZ;

and the proof is finished.

Recall that in Proposition 3.10 of [9] we have shown that

(A.4) r 7! NX .r/ WD N.u ı‰X ; r/ exp
�
C

Z r

0

�.s/

s
ds
�

is monotone nondecreasing. SinceNX0 D limr!0NX0.r/, for r sufficiently small we have

(A.5) NX0.r/ � NX0 C
1

5
�

By Lemma A.2 and (A.4), we have

NX0.r/ D N.u ı‰X0 ; r/ exp
�
C

Z r

0

�.s/

s
ds
�

D
�
1CO.�.4r//

�
N.u;X0 C 3r O�.r/ed ; r/ exp

�
C

Z r

0

�.s/

s
ds
�
:(A.6)

Let r be sufficiently small so that

�.4r/ .
NX0 C 1=4

NX0 C 1=5
�

Then by (A.5) and (A.6) we get

(A.7) N
�
u;X0 C 3r O�.r/ed ; r

�
exp

�
C

Z r

0

�.s/

s
ds
�
� NX0 C

1

4
�
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Suppose OXj ; OX0 2 D satisfy OXj ! OX0. Then the standard Almgren frequency function
(see (2.3)) satisfies

N.u; OXj ; r/! N.u; OX0; r/ as j !1:

In fact, clearly the map

X 7!

“
Br .X/

jruj2 dY

is continuous, since u 2 W 1;2. By a change of variable, it is also easy to see the map

X 7!

Z
Br .X/

u2 dHd�1

is differentiable (and strictly positive for non-trivial harmonic functions u). Therefore,

N.u; OXj ; r/ D
r
’
Br . OXj /

jruj2dYR
Br . OXj /

u2 dHd�1
!

r
’
Br . OX0/

jruj2dYR
Br . OX0/

u2 dHd�1
D N.u; OX0; r/:

In particular, this combined with (A.7) and Xj ! X0 gives

(A.8) N
�
u;Xj C 3r O�.r/ed ; r

�
exp

�
C

Z r

0

�.s/

s
ds
�
� NX0 C

1

3
;

for j sufficiently large. Again by Lemma A.2 and by taking r sufficiently small, we have

NXj .r/ D
�
1CO.�.4r//

�
N.u;Xj C 3r O�.r/ed ; r/ exp

�
C

Z r

0

�.s/

s
ds
�
� NX0 C

1

2
�

By the monotonicity of the frequency function r 7! NXj .r/, we finally conclude that

NXj � NXj .r/ � NX0 C
1

2
�

SinceNX take integer values, we haveNXj � NX0 . This finishes the proof of Lemma A.1.
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