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Scattering on singular Yamabe spaces

Sun-Yung Alice Chang, Stephen E. McKeown and Paul Yang

Abstract. We apply scattering theory on asymptotically hyperbolic manifolds to sin-
gular Yamabe metrics, applying the results to the study of the conformal geometry of
compact manifolds with boundary. In particular, we define extrinsic versions of the
conformally invariant powers of the Laplacian, or GJMS operators, on the boundary
of any such manifold, along with associated extrinsicQ-curvatures. We use the exis-
tence and uniqueness of a singular Yamabe metric in any conformal class to define
also nonlocal extrinsic fractional GJMS operators on the boundary, and draw other
global conclusions about the scattering operator, including a Gauss–Bonnet theorem
in dimension four.

In honor of Antonio Córdoba and José Luis Fernández.

1. Introduction

Scattering theory on asymptotically hyperbolic manifolds has been studied with great
profit in the case that the metric is Einstein. In this paper we study the scattering problem
in the case that the metric has constant scalar curvature. For every compact Riemannian
manifold .XnC1; Ng/ with boundary M , it is known that there is precisely one defining
function u for the boundary so that the singular Yamabe metric g D u�2 Ng has constant
scalar curvature �n.nC 1/, so this study can be seen as bringing scattering theory to bear
as a tool in the study of the conformal geometry of compact manifolds with boundary.
The existence of the singular Yamabe metric (that is, of u) and its properties were shown
in [2, 4, 23]. We apply the methods of [6, 7, 18] and others to the setting of [13, 15], which
used the singular Yamabe metric to study conformal hypersurfaces.

Given an asymptotically hyperbolic (AH) manifold .XnC1; g/ with boundary M n D

@X , the scattering problem is defined as follows. Let Ng D r2g be a geodesic compacti-
fication of g, i.e., suppose that jdr j Ng D 1 on a neighborhood of M . Let f 2 C1.M/.
Consider the equation

(1.1) .�g C s.n � s//v D 0;
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where we assume that s > n=2 and that s.s � n/ … �pp.�g/ (the set of L2 eigenvalues
of the Laplacian); in our convention, �g is a negative operator. It is shown in [24] that a
solution v to this equation has asymptotics

v D rn�sF C rsG;

where F; G 2 C1.X/, at least so long as 2s � n … Z. In [18], it is shown that we can
always solve (1.1) with F jM D f . The scattering operator S.s/WC1.M/! C1.M/ is
then defined by S.s/f DGjM , and this operator extends to be meromorphic on Re s�n=2,
with poles only at s such that s.s � n/ is an eigenvalue of�g or at s D .nC q/=2, q 2N.

The case of g Einstein has been thoroughly studied. In that case, the poles for s D
.n C q/=2 with q odd actually do not exist (S.s/ is regular at these points), while at
s D n=2C j , the operator S.s/ has a simple pole whose residue is the so-called GJMS
operator P2j (with j � n=2 if the boundary dimension n is even). If n is even, S.s/1
is holomorphic across s D n, and in fact S.n/1 D cnQn, where Qn is the nth-order
Q-curvature and cn is a universal constant. On the other hand, if n is odd, then S.n/1D 0,
which reflects the fact that there is no (locally-defined) Q-curvature of odd order. How-
ever, a nonlocal Q-like term was defined in [7] by taking Qn D kn dds jsDnS.s/1 in case n
is odd. In addition to these results, there have been numerous interesting results linking
the scattering operator with the renormalized volume of an AH Einstein manifold.

We recall the definition of the renormalized volume in that setting. Let r be a geodesic
defining function for M , and consider the expansion

(1.2)
Z
r>"

dvg D c0 "
�n
C c1 "

1�n
C � � � C cn�1 "

�1
C E log

�1
"

�
C VC C o.1/:

The quantity VC is called the renormalized volume. While a priori it depends on the choice
of geodesic defining function r , it is shown in [14,20] that, if n is odd, then E D 0 and VC
is in fact well-defined independent of r . If the boundary dimension n is even, on the other
hand, then E is well-defined independently of r . Using scattering theory, it was shown
in [7, 18] that in the even case, E D

R
M
Qndvk (where k D NgjTM ). In [6], a formula

was given relating the renormalized volume in the even-n case to an integral over M of
a non-local quantity defined in terms of the scattering operator. (This was motivated by
the Gauss–Bonnet formula that exists for renormalized volume in the odd-n case, first
discovered in bulk dimension four by Anderson in [1].)

It was shown already in [10, 15] that the renormalized volume can be defined as well
in the singular Yamabe case, where r now is the Ng-distance to the boundary and g is the
corresponding singular Yamabe metric; but in this case, E is generically nonvanishing in
all dimensions and is a conformal invariant, while VC is no longer invariant. In fact, in
the case n D 2, E is simply a linear combination of the Willmore energy and the Euler
characteristic. Thus, in case n > 2, E can be seen as a generalization of the Willmore
energy. (In fact, [10] also treated renormalized volume on more general spaces than the
singular Yamabe spaces. See also [11].)

We generalize the scattering picture to the singular Yamabe setting, and obtain extrin-
sic analogues to all of the above results. Unlike the Einstein setting, where the existence
and uniqueness of Einstein metrics remain extremely challenging and one is often con-
strained in practice to use a non-unique formal expansion, the analytic picture in the
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singular Yamabe case is well understood and perhaps optimal: given any compact Rie-
mannian manifold .XnC1; Ng/ with boundary, there is a unique defining function u for the
boundary so that the AH metric g D u�2 Ng has constant scalar curvature �n.nC 1/. Any
global quantities defined in terms of this singular Yamabe metric are thus well defined
for .X; Ng/. This comes with a price, however: the power series expansion of u at the
boundary M is not smooth beyond order nC 1, after which log terms generically appear.
Throughout, therefore, we must keep careful track of the expansion of u and its regularity
in a way that has not had to be done in the Einstein case, where smooth formally Einstein
metrics have largely been considered.

Also unlike AH Einstein spaces, singular Yamabe metrics have no particular parity
properties, and this has numerous consequences: in general, this theory tends to behave
more like the even-dimensional-boundary Einstein theory in all dimensions than like the
odd-dimensional Einstein theory, whose special behaviors are entirely a product of parity
considerations. In some cases, though, even features of the even-dimensional Einstein case
are not reproduced. A first consequence, for example, is that S.s/ generically has poles
at s D .nC q/=2 for all q (not only even q). Therefore, we get residue operators P SY

q D

ressDn=2Cq=2 S.s/ for all q � n. Of course, since Einstein metrics are the singular Yamabe
metrics in their conformal class, our results must in all cases reduce to the usual ones in
that special case. Similarly, for all n – not only even – we can define QSY

n D c
�1
n S.n/1.

Here, QSY
n is a locally determined curvature quantity along M , which however depends

on Ng, and not merely on NgjTM . Similarly, for each q, P SY
q is a conformally covariant

differential operator along M whose coefficients depend on extrinsic data.
We now state our main results.

Theorem A. Let .XnC1; Ng/ be a compact Riemannian manifold with boundary .M n; k D

gjTM /, and let g be the singular Yamabe metric associated to Ng. Let VL be the tracefree
second fundamental form of M with respect to X , computed with inward-pointing unit
normal vector. Then the scattering operator S.s/WC1.M/! C1.M/ extends to a mero-
morphic family on the strip �1=2 < s < nC 1=2, regular for Re s D n=2. It has poles
only at s D .nC q/=2 (for q 2 N/ and for such s that s.s � n/ 2 �pp.�g/, the set of L2

eigenvalues of �g .
Suppose that q 2 N satisfies 2 � q � n and that .q2 � n2/=4 … �pp.�g/. Then there

is a conformally covariant differential operator P SY
q WC

1.M/! C1.M/, satisfying

cqP
SY
q D � ressD.nCq/=2 S.s/;

where cq is a nonvanishing universal constant, and Pq has principal part .��k/q if q
is even and, if q > 1 is odd, has the same principal part as VL��rk�r

k
� .�k/

.q�3/=2. The
operator P SY

q depends only on the jets of Ng at M .
If QNg D e2! Ng is a conformally-related metric with corresponding operators zP SY

q , then

zP SY
q f D e�.nCq/!=2P SY

q .e.n�q/!=2f /:

Several remarks are in order regarding this statement.
First, note that in the Einstein case considered by [18], the integer q is assumed to be

even, since otherwise P SY
q vanishes identically in that setting. Moreover, the indexing of
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our operators P SY
q differs from the indexing in that paper by a factor of two – what we

call P2 was there P1, etc. This is because in the other case, what are here the odd-order
operators vanish. Already in the literature, there is some difference in the numbering of
these operators. The operators defined in [18], of course, are the GJMS operators (unlike
those here). The operators defined here differ from the GJMS operators by terms depend-
ing on the extrinsic geometry of M in X .

Next, since in the Einstein case the odd-order operators vanish, the notation Pq for q
odd has there developed another meaning that, unfortunately, is not analogous to that used
here: see [7]. Given the strong analogy between the even-order operators and those in the
Einstein case, and the equivalence of definition here of the even- and odd-order operators,
it seems there is no very good way around having confusing notation. Observe also that
the odd-order operators defined in those settings do not exist in this setting, since their
definition depends on the vanishing of the residue at s D .n C q/=2. A similar remark
applies to the definition, below, of QSY

n for odd n; again, see [7].
As discussed more fully in Section 4, the restriction on s in the statement of the mero-

morphicity of the scattering operator is due to the non-regularity at order n C 2 of the
singular Yamabe solution u. In fact, stronger statements could be made, but the nonregu-
larity makes it somewhat delicate to discuss and define just what this means. Since we are
not interested in behavior at higher s in any event, we give the weaker statement.

When this paper was in revision, the preprint [21] appeared, which contains significant
further analysis of the operator P SY4 and the associated curvature QSY

4 defined here.
Finally, in work such as [5], it is common to use the notation s D n=2C 
 . The rela-

tionship between q and 
 , then, is q D 2
 .

Corollary B. The operators P SY
q are self-adjoint.

This follows from their definition in terms of the scattering operator.
We now define the QSY

n -curvature, as in [18], by QSY
n D c�1n S.n/1. This is well-

defined since R � ker P SY
n . This extrinsic Q-curvature quantity follows a conformal

transformation law like its intrinsic cousin (which however exists only for even order)
and, like it, gives the conformally invariant term in the volume expansion:

Theorem C. If E is as in (1.2), interpreted as in [15], then

E D

I
M

QSY
n dvk :

Furthermore, if QNg D e2! Ng, then

en! zQSY
n D Q

SY
n C P

SY
n !:

A corollary then follows immediately from Theorem 3.1 of [15]. To state it, we must
say slightly more about the singular Yamabe function. Given Ng, there is a unique defining
function u forM such that g D u�2 Ng has scalar curvature �n.nC 1/. As discussed above
and in [15], u has the expansion (in terms of the distance function r from the boundaryM
in X )

(1.3) u D rCu2r2Cu3r3C � � � CunC1rnC1CLrnC2 log.r/CunC2rnC2Co.rnC2/;

where L is a locally and extrinsically defined function on M , conformally invariant of
weight �.nC 1/. With this notation fixed, we have the following.
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Corollary D. Let .X; Ng/ be a Riemmanian manifold, and let Ft WM ,! X;0 � t < ı, be a
smoothly varying variation of M , where F0 is the identity. LetMt D Ft .M/, and write n
for the inward-pointing unit normal to M in X . Then

d

dt

ˇ̌̌
tD0

I
Mt

QSY
t dvMt D .nC 2/.n � 1/

I
M

h PF ; ni Ng Ldvk ;

where L is as in (1.3).

The results so far stated about P SY
q and QSY

n have actually appeared previously in the
recent literature. They were derived in a somewhat different framework by Gover and Wal-
dron ([9, 10, 13]), where they are defined in terms of the tractor calculus and the so-called
Laplace–Robin operators. When the current paper was quite advanced in preparation, the
paper [22] of Juhl and Orsted was brought to our attention. Among other things, it rein-
terprets the results of Gover and Waldron in the setting of scattering theory shared by
this paper. Our contribution with respect to this part of our material is thus a different
treatment, more similar in spirit to [6, 7, 18]. On the other hand, our perspective here is
also focused more than those papers on the unique global scattering operator associated to
every compact Riemmanian manifold with boundary. In particular, rather than doing only
asymptotic analysis at the boundary and thus neglecting the impact of the non-regularity
of the singular Yamabe solution, we take account of the logarithmic term. The following
results, more global in spirit, are new to this paper.

First, as stated above, S.s/1 is smooth across s D n. We now define

(1.4) S D
d

ds

ˇ̌̌
sDn

S.s/1 2 C1.M/:

This is a function dependent on the global geometry of .X; Ng/. Next, it follows from [18]
that for s 2 C near 1, there exists us D rn�sFs C rsGs satisfying .�g C s.n� s//us D 0
and FsjM D 1. Moreover, Fs and Gs may be uniquely determined by the requirement that
they be holomorphic in s. We then write

Fs.r/ D 1C a1.s/r C a2.s/r
2
C � � � C an.s/r

n
C � � � ;

where each aj is a smooth function onM , and aj is locally (and extrinsically) determined
for 1 � j � n. Finally, we recall the definition in [15] (see also [14]) of the renormalized
volume coefficients. Since g D u�2 Ng for a defining function u for the boundary, we may
write

dvg D r
�1�n.1C v.1/r C v.2/r2 C � � � / dr dvk

on a collar neighborhood Œ0; "/r �M near M in X . The functions v.j / 2 C1.M/ are
the renormalized volume coefficients. With these notations in hand, we may state our next
result, which is analogous to a theorem proved in [6] (based on [7]) in the Einstein setting.

Theorem E. Suppose .XnC1; Ng/ is a Riemannian manifold with boundary, and that g D
u�2 Ng is the associated singular Yamabe metric. Let r be the distance to @X with respect
to Ng, and let V.X; g; Ng/ be the renormalized volume of g when computed with respect
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to Ng, i.e., the constant term in the expansion (1.2). Then

(1.5)
V.X; g; Ng/ D�

I
M

S dvk �
1

n

� I
M

a01v
.n�1/dvk C 2

I
M

a2
0v.n�2/ dvk C � � �

C .n � 1/

I
M

a0n�1v
.1/ dvk C n

I
M

a0n dvk

�
;

where a prime denotes d
ds

ˇ̌
sDn

.

All the terms on the right-hand side except the first are local.
It was shown in [7] that, if g is in fact Einstein and n is odd, then this formula holds

with only the first term on the right-hand side present. Although in such a case g is also
the singular Yamabe metric and thus (1.5) applies, the results are not inconsistent, because
in that case, the v.k/ with k odd and the ak with k odd are both identically zero, and one
of these is a factor in each of the integrands multiplied above by 1=n when n is odd.

The following theorem, which was proved in [6] in the the special case of even-
dimensional Einstein metrics, states (in all dimensions) that the scattering term in (1.5)
is a conformal primitive for total QSY.

Theorem F. Let Ng be a smooth metric on .XnC1; M n/, and let g be the corresponding
singular Yamabe metric. As usual, let k D NgjTM . Suppose ! 2 C1.X/. Then

d

d˛

ˇ̌̌̌
˛D0

I
M

Se2˛! Ng dve2˛!k D �2cn

I
M

QSY
n ! dvk :

Finally, for X of dimension four, we apply Theorem E and the main result of [16] to
obtain a Gauss–Bonnet theorem in terms of the scattering operator.

Theorem G. Let .X4; Ng/ be a compact Riemannian manifold with boundary M 3 D @X ,
and let g be the singular Yamabe metric. Let r be the Ng-distance function to the boundary,
E the Einstein tensor of X , W the Weyl tensor, and S as in (1.4). Then

8�2�.X/ D
1

4

Z
X

jW j2g dvg �
1

2
f:p:

Z
r>"

jEj2g dvg C

I
M

.�6S C C/ dvk ;

where

C D �
11

36
HRC

1

108
HRC

5

108
H 3
C
389

144
H j VLj2k C

1

4
r
�
r
� VL��

C
23

6
VL��R�� �

17

3
VL��R�� C

1

12
@rR �

2

3
VL3:

Here, f:p: denotes the finite part of the integral as "! 0, L the second fundamental form
of M , H D k��L�� its mean curvature, and R, R, R�� and R�� the scalar and Ricci
curvatures of, respectively, M and X .

The following corollary also follows from Corollary 1.4 in [16], or from the previous
result.
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Corollary H. Let .X4; Ng/ be a compact Riemannian manifold with umbilic boundary
M 3 D @X . Then the quantity

zV D

I
M

�
�S C

1

6
C
�
dvk

is a conformal invariant.

We point out also that having a uniquely defined scattering operator, as stated in
Theorem A, allows one to define unique fractional extrinsic GJMS operators P SY

2
 D

S.n=2C 
/ of order 2
 as well, as in [5]. In the intrinsic case, such operators are unique
only when a global Einstein metric can be found. As there, these operators are nonlocal.

The paper is organized as follows. In Section 2 we review the background necessary
for the paper, and also introduce geodesic coordinates for the singular Yamabe setting.
These are a useful tool for studying the singular Yamabe metric, and in particular perform-
ing computations. In Section 3, we develop the existence theory for the class of singular
Yamabe GJMS operators of integral order, which entails formal analysis of the scattering
operator at the boundary. The analysis is a variation of that carried out in Section four
of [18]. The result is summarized in Theorem 3.1. In Section 4, we turn to the global
existence of the scattering operator and the results that follow from it, including Theo-
rems A–F and their corollaries. In Section 5, we perform specific computations in low
dimensions. This is done both to illuminate and illustrate the theory, and to demonstrate
the usefulness of geodesic normal coordinates for carrying out computations with singular
Yamabe metrics. We also there prove Theorem G.

Appendix A contains more thorough discussion of some analytic ramifications of the
limited regularity of the singular Yamabe metric.

2. Background

2.1. The singular Yamabe metric

Let
�
XnC1; Ng

�
be a Riemannian manifold with boundaryM n D @X . The singular Yamabe

(or Loewner–Nirenberg) problem is to find a defining function u forM so that the confor-
mally related complete metric gD u�2 Ng has constant scalar curvatureR.g/D�n.nC 1/.
It has long been known that the solution u exists and is unique (see [2, 4, 23]). Moreover,
it was shown in [2] that u is regular in the sense that, if r.x/ is the distance function toM
onX with respect to Ng, then u has an asymptotic expansion in powers of r and rk log.r/j ,
where k � nC 2. As discussed in detail in [15], this formal expansion can be obtained
term by term by writing out the equation R.g/ D �n.nC 1/ in terms of Ng. The equation
becomes

(2.1) n.nC 1/ D n.nC 1/ jduj2Ng � 2nu� Ngu � u
2R;

where R D R. Ng/ is the scalar curvature associated to the metric Ng. Then, differentiat-
ing equation (2.1) term by term, one can write the expansion (1.3), where u2; : : : ; unC1
and L are locally determined smooth functions onM , while unC2 is globally determined.
Each of the locally determined quantities is a universal expression in the intrinsic and
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extrinsic geometry of M as a hypersurface of .X; Ng/. In particular, L is an extrinsic con-
formal invariant of weight �.nC 1/. The function u itself is also conformally invariant
of weight 1: if MNg D e2! Ng, then Mu D e!u. This follows easily from the uniqueness of the
singular Yamabe metric.

In [15] (see also [10]), it was observed that one can define a renormalized volume for
singular Yamabe metrics, and that the volume expansion defines a geometrically interest-
ing energy term E that in some respects generalizes the Willmore energy. Specifically,
with the above notation, consider the quantity Volg.¹r > "º/. This can be expanded in
powers of " as follows:

(2.2) Volg.¹r > "º/ D c0 "�n C c1 "�nC1 C � � � C cn�1 "�1 C E log
1

"
C V C o.1/:

Here, each ck is determined locally in the sense that it is an integral over M of locally,
extrinsically-determined quantities. The energy E is a global (extrinsic) conformal invari-
ant of the embedding of M in X , and is also the integral over M of a local term; and V
is globally determined in the sense that it may depend on the geometry of .X; Ng/ far away
from M . When n D 2, it was shown in the same paper that E is a linear combination of
the Willmore energy of M and its Euler characteristic.

The singular Yamabe metric is, among other things, an asymptotically hyperbolic
(AH) metric, but there are subtleties that make the application of AH theory to this sit-
uation slightly delicate. It will be useful to discuss those subtleties here. We recall the
following definition.

Definition 2.1. An asymptotically hyperbolic space is a compact manifold XnC1 with
boundary M n, equipped on the interior VX with a metric g such that, for any defining
function ' for M in X , '2g extends to a metric Ng on X and jd'j2

Ng jTM � 1. If ' is
smooth, then g is called C k (or smooth) AH if Ng is a C k (or smooth) compact metric. The
conformal infinity is the conformal class Œ'2gjTM � on M .

In the most typical AH settings, one is given or constructs an AH metric, and it is
this that is considered natural; various compactifications correspond to various defining
functions ', but there is no canonical defining function and thus no canonical compactifi-
cation. On the other hand, in the singular Yamabe problem, the problem data is precisely
the compactification Ng, which is taken to be smooth. The AH metric, which is the singular
Yamabe metric, is canonically obtained from Ng, but is not generically a smooth AH metric
since u is not generically a smooth function; in particular, u is typically only C nC1 and
polyhomogeneous, and it is easy to show that g is only a C n AH metric.

A very useful result in AH geometry is the normal-form theorem, first proved in [17].
We will require it here with more attention than usual to the regularity of the metric, so
we here give a statement suited to our needs.

Lemma 2.2. Let Ng be a smooth metric on the manifold XnC1 with boundary M , and let
k D NgjTM . Let g D u�2 Ng be the corresponding singular Yamabe metric. Then for " > 0
sufficiently small, there is a unique C n diffeomorphism  W Œ0; "/ Or �M ,! X onto a collar
neighborhood of M such that such that  �g D d Or2Ch Or

Or2
, where h Or is a one-parameter

family of metrics on M with h0 D k.
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Moreover, . �1/� Or 2C1. VX/\C nC1.X/; we will hereafter denote this function sim-
ply Or . It further satisfies r Or 2 C nC2. We may write Or D ue! for ! 2 C1. VX/ \ C n.X/,
and limr!0 r@

nC1
r ! D 0.

The proof is in Appendix A.
If Or is extended to X as a positive smooth function, we will call the metric ONg D Or2g

a geodesic representative associated to Ng. The importance of these metrics for us is that
the singular Yamabe function associated to one of them is simply Or itself – that is, for
such a metric, the intrinsic distance to the boundary is the solution to the singular Yamabe
equation (2.1). This will greatly simplify some of our computations in Section 5.

2.2. Scattering on asymptotically hyperbolic spaces

The main results we need come from the paper [18] by Graham and Zworski, which
analyzed scattering on asymptotically hyperbolic manifolds using tools from [24]. Let
.XnC1; g/ be an AH manifold, with M D @X and conformal infinity Œh�. Let x be a
defining function for the boundary and let Ng D x2g (we do not here assume that x is
a geodesic defining function). Consider the operator .�g C s.n � s//u D 0, where u 2
C1. VX/. It is easy to show, by writing the operator �g in local coordinates, that any
solution to the equation must have leading order xn�s , assuming Re s � n=2 and s ¤ n=2.
Thus, the problem considered in [18] is the following, for Re s � n=2 with s ¤ n=2. Let
f 2 C1.M/ be prescribed. Then consider the problem

(2.3)

.�g C s.n � s//u D 0;

u D xn�sF C o.xn�s/ if Re s ¤ n=2;

u D xn�sF C xsG CO.xn=2C1/ if Re s D n=2; s ¤ n=2;
F;G 2 C1.X/ with F jM D f:

To describe the results of the paper, it will be useful to use sections of the normal den-
sity bundles C1.M; jN �M js/ over the boundary, which helpfully parametrize first-order
changes in the defining function. Given a choice k 2 Œk� of conformal representative of
the conformal infinity, and letting x be any defining function such that x2gjTM D k,
we can trivialize jN �M js by the global section jdxjs , and in particular can identify
C1.M; jN �M js/ with C1.M/. We will also use the notation E.�s/ for the bundle
C1.M; jN �M js/.

Let �.�g/ be the spectrum of the Laplacian of g. Graham and Zworski proved the
following theorem.

Theorem 2.3. There is a unique family of Poisson operators

P .s/ W C1.M; jN �M jn�s/! C1. VX/

for Re s � n=2; s ¤ n=2, which is meromorphic in ¹Re s > n=2º with poles only for s
such that s.s � n/ 2 �.�g/, and continuous up to ¹Re s D n=2º n ¹n=2º, and having the
properties that

.�g C s.n � s//P .s/ D 0;
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with expansions

P .s/f D xn�sF C xsG; if s … n=2CN0=2;

P .s/f D xn=2�k=2F CGxn=2Ck=2 log x; if s D n=2C k=2; k 2 N;

forF;G 2C1.X/ such thatF j@X D f . If sD n=2C j , thenGjM D�2p2kf , where p2k
is a differential operator onM of orderM having principal part �2j .p2j / D cj�2j .�

j

h
/,

where cj D .�1/j Œ22j j Š.j � 1/Š��1.

With this result in hand, we can define the scattering matrix as an operator S.s/ W
C1.M; jN �M jn�s/! C1.M; jN �M js/ for Re s � n=2; 2s � n … N0, and s.s � n/ …
�.�g/. For such s, and any f 2 C1.M; jN �M jn�s/, we have by the above

P .s/f D xn�sF C xsG;

with F jM D f . The scattering matrix is defined by S.s/f D GjM . It is shown in [18]
that S.s/ extends meromorphically to the entire plane.

The log terms in the theorem arise (when they do arise) for the usual reason seen
when the indicial roots of a regular singular ODE are separated by an integer. As the
statement makes clear, the log coefficient may vanish for .n C q/=2 with q odd, but is
always nonvanishing for even q.

This paper applies the results of [18] to the singular Yamabe metric.

2.3. Notation

Throughout, XnC1 is a compact manifold with boundary M n and smooth metric Ng. The
singular Yamabe metric g D u�2 Ng is as above. The distance function to M on X with
respect to Ng is r , while Or is as in Lemma 2.2. The induced metric on M is k D NgjTM .
When using coordinates, we use the convention that r D x0, while x1; : : : ; xn restrict to
coordinates locally on M . In index notation, we take 0 � i; j � n and 1 � �; � � n. The
second fundamental form ofM with respect to the inward-pointing Ng-unit normal @=@r is
denoted by L, and the trace-free part by VL. Our convention for L is that it is defined for
tangent vector fields Y and Z by L.Y;Z/ D hrYZ; @=@ri. The mean curvature of M is
H D k��L�� . Our curvature sign convention is such that Rij D Rkijk , and the Laplace
operator is a negative operator, i.e., the divergence of the gradient.

3. Local analysis

In this section we analyze formal solutions to the equation .�g C s.n � s//u D 0 for a
singular Yamabe metric g. Let Ng be a smooth metric on XnC1, and let u be the solution
to the singular Yamabe equation (2.1), so that g D u�2 Ng has constant scalar curvature
�n.nC 1/. We again let M D @X . Near M , we write Ng D dr2 C hr , where hr is a one-
parameter family of metrics onM and r is the Ng-distance toM . We write kD h0D NgjTM .

The following result, which is the primary result of this section, is directly analogous
to Proposition 4.2 of [18] for the Einstein case, and the proof is modified accordingly. One
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difference is that a log term arises here for every integer, whereas in the Einstein cases it
arises only for the even integers. The other significant difference is that the metric itself is
non-smooth, and via u has logarithmic terms that must be considered.

Most of the statements in the theorem appear (in rather different language) in [9, 13],
together with further facts not stated below. We are also indebted to an anonymous referee
for pointing out that the solution-generating sl.2/-algebra of [9] could in principle yield
a simplified proof.

Theorem 3.1. Let g be the singular Yamabe metric associated to .X; Ng/, and f 2C1.M/.
For every q 2 N with 1 � q � n, and s D .nC q/=2, there is a formal solution v to the
equation

.�g C s.n � s//v D O.r
1/

of the form
v D r .n�q/=2 .F CGrq log r/;

where F 2 C1.X/, G 2 C n�q;1�".X/ is polyhomogeneous, and F jM D f . Here F is
uniquely determined mod O.rq/ and G is uniquely determined mod O.r1/. In addition,

(3.1) GjM D �2cqP
SY
q f;

where cq ¤ 0 is a universal constant and P SY
q is a differential operator on M which, if q

is even, has principal part .��k/q=2, and if q > 1 is odd, has the same principal part as
VL��r�r�.�k/

.q�3/=2, where VL is the tracefree second fundamental form. If q D 1, then
G D 0.

Finally, P SY
q depends only on the jet of Ng at M , and defines a conformally invariant

operator E..q � n/=2/! E ..�q � n/=2/.

Proof. We wish to formally solve the equation .�g C s.n � s//v D 0. Now u D r C

O.r2/, so we may write u D r Qu for some Qu 2 C n.X/ satisfying QujM D 1. Thus,

�gv D r
1Cn
Qu1Cn.det h/�1=2@i

�
r1�n Qu1�n.det h/1=2 Ngij @j v

�
D r2 Qu2 @2rv C .1 � n/r Qu

2 @rv C .1 � n/r
2
Qu@r . Qu/@rv C

1

2
r2 Qu2h�� h0��@rv

C .1 � n/r2 Quh�� @�. Qu/@�.v/C r
2
Qu2�hrv:

(Here, a prime denotes @r .) Taking v D rn�s , we find

Œ�g C s.n � s/�v D r
n�sC2

Qu2 @2r  C 2.n � s/r
n�sC1

Qu2 @r 

C .n � s/.n � s � 1/rn�s Qu2 C .1 � n/.n � s/rn�s Qu2 

C .1 � n/rn�sC2 Qu2 @r C .1 � n/r
n�sC2

Qu@r . Qu/@r 

C .1 � n/.n � s/rn�sC1 Qu@r . Qu/ C
1

2
rn�sC2 Qu2h�� h0�� @r 

C
1

2
.n � s/rn�sC1 Qu2h�� h0�� C .1 � n/r

n�sC2
Quh�� @�. Qu/@�. /

C rn�sC2 Qu2�hr C s.n � s/r
n�s 
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D rn�sC1
h
r Qu2 @2r C ..nC 1 � 2s/ Qu

2
C .1 � n/r Qu@r QuC

1

2
r Qu2h�� h0��/@r 

C

�
s.s � n/

Qu2 � 1

r
C .1 � n/.n � s/ Qu@r QuC

1

2
.n � s/ Qu2h�� h0��

�
 

C .1 � n/r Quh�� @� Qu@� C r Qu
2�hr 

i
:

We may conclude that

Œ�g C s.n � s/� ı r
n�s
D rn�sC1 ıDs;

where

(3.2)

Ds D r Qu
2 @2r C

�
.nC 1 � 2s/ Qu2 C .1 � n/r Qu@r QuC

1

2
r Qu2h�� h0��

�
@r

C s.s � n/
Qu2 � 1

r
C .1 � n/.n � s/ Qu@r QuC

1

2
.n � s/ Qu2h�� h0��

C .1 � n/r Qu gradhr . Qu/C r Qu
2�hr :

Keeping in mind that Qu2 D 1CO.r/ and that @� Qu D O.r/, we observe that

(3.3) Ds.fj r
j / D j.j C n � 2s/rj�1fj CO.r

j /:

This equation is the same as that in [18]; however, we have avoided expressing the metric
in normal form here, since Ng is part of the data of the problem. It is also convenient to
record that

(3.4) Ds.gj r
j log r/D .2jCn�2s/gj rj�1C j.jCn�2s/gj rj�1 log.r/C o.rj�1/:

Suppose n � 2s … N0. Then (3.3) allows us to construct a formal solution. Set f0 D
F0 D f . For j � 1 with j � n, define fj by

j.j C n � 2s/fj D �r
1�jDs.Fj�1/jrD0;(3.5)

Fj D Fj�1 C fj r
j :

Then setting vj D rn�sFj , we clearly have

Œ�g C s.n � s/�vj D O.r
n�sCj /:

By induction, we may thus find vn D rn�sFn satisfying Œ�g C s.n � s/�vn D O.r2n�s/.
However, examining Ds in (3.2), we see that Ds.Fn/ contains a term of the form a.n� s/

fLrn log.r/, for some universal a 2 R, via the terms . Qu2 � 1/=r and @r Qu. Here L is as
in (1.3). The induction can therefore be continued only by first adding a term of the form
gnC1 r

nC1 log.r/ (see (3.4)) to cancel the rn log.r/ term before adding fn rn. Having done
this, the induction can be continued to infinite order, by adding monomials and logarithmic
terms, as is standard. (In fact, by the polyhomogeneity theorem in [2], higher powers of
logarithms may be necessary at high order, but this will be of no concern to us. For a
recent very explicit example of a construction with this behavior, see [25].)
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By Borel’s lemma, this gives us an infinite-order solution v. Just as in [18], an easy
induction shows that for j D 2p even,

f2p D c2p;sP
SY
2p;sf; with c2p;s D .�1/

p �.s � n=2 � p/

22ppŠ�.s � n=2/
;

where P2p;s is a differential operator on M with principal part equal to that of .��p
k
/.

The analysis of the leading part of the odd-order terms is somewhat more compli-
cated, because f2pC1 contains derivatives only of order 2p, and there are several different
contributions to these. Because

(3.6) @r�hr jrD0 D �k@r C 2
VL��r�r� C

2

n
H�k C l.o.t.s;

(where l.o.t.s denotes lower-order terms), it is clear from (3.2) that

f2pC1 D c2pC1;s VL
��
r�r��

p�1

k
f C d2pC1;sH�

p

k
f C l.o.t.s.

for some constants c2pC1;s and d2pC1;s . It is easy to compute, as a base case, that c1;s D 0
and d1;s D .n � s/=.2n/. Now, as VL��r�r��

p�1

k
and �k. VL��r�r��

p�2

k
/ have the

same principal parts, a straightforward induction shows that

c2pC1;s D
1

2.2p C 1/.s � n=2 � p � 1=2/
.2.�1/p�1c2p�2;s C c2p�1;s/:

It is then likewise easy to show by induction that cj;s > 0 whenever s > .nC j /=2, for
odd j .

We now show by induction that

d2pC1;s D
nC 2p � 2 � s

2n
.�1/p c2p;s :

This is clearly true for p D 0. We assume it is true for p0 < p. Let j D 2p C 1. We
next observe that @r QujrD0 D � 1

2n
H (see (2.6) in [15]), while h��h0�� jrD0 D �2H . As

cj�3;s=cj�1;s D �.j � 1/.2s � n � j /, we find from (3.2) and (3.5) that

j.2s � n � j /dj;s

D .�1/pcj�1;s

hj �1
2n

.1�2j �3nC4s/C
n�s

2n
.2s�n�1/�

cj�3;s

ncj�1;s
C .�1/p

dj�2;s

cj�1;s

i
D .�1/p

cj�1;s

2n

�
.j �1/.s�nC3sn�2s2�n2Cj.3s�2n�j // C .n�s/.2s�n�1/�

D .�1/p
jcj�1;s

2n
.j C n � s � 1/.2s � n � j /:

This yields the claim regarding d2pC1;s D dj;s . We emphasize that d2pC1;s is smooth
across s D .nC 2p C 1/=2.

For notational consistency, we defineP SY
2pC1;s to be so that f2pC1D c2pC1;sP2pC1;sf .

Now suppose that 2s � n D q, where 1 � q � n, as in the hypothesis. The above con-
struction works until the determination of fq ; then the coefficient in (3.3) vanishes, and
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we cannot remove the rq�1 term from Dq.Fq�1/. This may be addressed by adding a
term of the form gqr

q log.r/, where gq is determined by (3.4) to cancel the rq�1 term in
Dq.Fq�1/. Note that since q � n, this happens before the logarithm at order nC 1 dis-
cussed above. The expansion then continues as before, with additional logarithmic terms
appearing at order nC 1 (which limits the smoothness ofG). The remainder of the claims
follow immediately. As in [18], it is clear that (3.1) holds with P SY

q D P
SY
q;.nCq/=2

and with
cq D ressD.nCq/=2 cq;s . In particular,

(3.7)

c2p D .�1/
pŒ22ppŠ.p � 1/Š��1

c1 D 0

c2pC1 D
1

2.2p C 1/

�
2.�1/p�1 c2p�2;.nC2pC1/=2 C c2p�1;.nC2pC1/=2

�
> 0:

Since d2pC1;s does not contribute to the residue of P2pC1;s at s D .nC 2p C 1/=2, the
principal part of P SY

q is as claimed.

Note that the conformal invariance property of the operators P SY
q can be expressed as

follows instead of using bundles: if QNg D e2! Ng, then

zP SY
q f D e�.nCq/!=2 P SY

q .e.n�q/!=2f /:

4. Global analysis

In Section 2, we described the results on the scattering operator and the Poisson operators
proved in [18], based on [24]. Actually, both of those papers assume that one is dealing
with a smooth AH metric, i.e., a metric whose compactifications are smooth. Although
such is not true of AH Einstein metrics in odd dimension (even boundary dimension),
the existence theory for such metrics (given a conformal infinity) is very difficult and
largely open, and both existence and uniqueness are known sometimes to fail. There-
fore, papers such as [18] and [7] made the reasonable decision to restrict attention to
smooth formal Einstein metrics, which are Einstein up to as high an order as possible
while remaining smooth. The resulting quantities are not well-defined, if global; but given
the non-uniqueness of (some) Einstein metrics, they would not be in any event, in general.

In contrast, the singular Yamabe problem offers both existence and uniqueness for
any compact Riemannian manifold with boundary. There is therefore the opportunity to
define genuinely well-defined global quantities if one uses the singular Yamabe metric as
the AH metric for the scattering problem. On the other hand, this raises slight technical
difficulties: as we have seen, the singular Yamabe metric is not generally smooth, but has
a logarithmic term, and so technically we cannot simply apply results from [18] or [24] in
a simplistic fashion. We therefore state the following theorem; since the main goals of our
paper are geometric, we defer discussing the proof till Appendix A.

Theorem 4.1. Let .XnC1; Ng/ be a smooth Riemannian manifold with boundary M , let
k D NgjTM , and let g be the singular Yamabe metric corresponding to Ng. Let r be the
Ng-distance to M on X . There is a unique family of Poisson operators

P .s/ W C1.M; jN �M jn�s/! C1. VX/



Scattering on singular Yamabe spaces 2167

for n=2 � Re s < nC 1=2, which is meromorphic in ¹nC 1=2 > Re s > n=2º with poles
only for such s that s.n � s/ 2 �.�g/, and continuous up to ¹Re s D n=2º n ¹n=2º, such
that

.�g C s.n � s//P .s/ D 0;

with expansions

P .s/ D rn�sF C rsG; if s … n=2CN0=2;

P .s/f D rn=2�q=2F CGrn=2Cq=2 log r; if s D n=2C q=2; q 2 N;

where in the first case, both F;G 2 C n.X/ are polyhomogeneous, and in the second case,
F 2C1.X/ andG 2C n.X/ is polyhomogeneous. If sD n=2C j , thenGjM D�2p2qf ,
where p2q is a differential operator on M of order M having principal part �2j .p2j / D
cj�2j .�

j

k
/, where cj is as in (3.7).

As in the smooth case, we define the scattering operator for s > n=2, s.n� s/ … �.�g/
and 2s � n … N, by S.s/f D GjM , where P .s/f D rn�sF C rsG as above. We obtain
the following (see Appendix A).

Theorem 4.2. The scattering operator S.s/ has a meromorphic extension to the strip
�1=2 < s < nC 1=2, regular for Re s D n=2. On that strip, Propositions 3:6–3:10 of [18]
remain true.

The reason for the restriction on s in both of these statements is the following: as seen
in the proof of Proposition 3.1, the logarithmic term in the expansion of the singular Yam-
abe function u implies that a term of the form r2nC1�s log.r/will appear in the asymptotic
expansion of P .s/f . In order to be able to ignore this phenomenon in analyzing the scat-
tering operator, we require that the higher indicial root, s, occur before this power, i.e.,
s < 2nC 1 � s. The remaining cases could be analyzed, but they would be rather more
involved, and in any event are not necessary for what we wish to study here.

We are ready to prove Theorem A.

Proof of Theorem A. The existence and meromorphicity of the scattering operator is The-
orem 4.2. Theorem 3.1, together with Proposition 3.6 of [18], gives the remainder of the
claims.

Having defined the scattering operator, we can also finally define our QSY-curvature
as in the introduction:

(4.1) QSY
D c�1n S.n/1;

where cq is as in (3.7). Note that although S.s/ actually has a pole at sD n, the residue has
no constant term, so that S.s/1 continues holomorphically across s D n. This is discussed
in general in [18].

We also can now define the “fractional order GJMS operators” for this setting, follow-
ing [5] (where in fact this setting was mentioned, but not discussed in detail). We define
P SY
2
 D S.n=2C 
/. Once again this notation differs by a factor of two from the notation

in [5], which is done in order to be consistent with the integer case. For us, P2
 can be
viewed as a pseudodifferential operator of order 2
 ; see p. 107 of [18].
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We next prove the following theorem. The proof in the Einstein case is given in [7],
and in fact the same proof works here. To refresh the reader’s memory and demonstrate
that the proof carries over, and because we will want to refer back to it, we reproduce the
proof here.

Theorem 4.3. Let g be the singular Yamabe metric on .XnC1; Ng/, as above; and let r be
the Ng-distance function to M n D @X . There is a unique function U 2 C1. VX/ solving

��gU D n;

with asymptotics
U D log.r/C AC Brn log r;

where A 2 C1.X/ and B 2 C n.X/, and where AjM D 0 and BjM D �2cnQSY.

Proof. By uniqueness, we have P .n/1 D 1. Now for all s near n, we of course have

(4.2) .�g C s.n � s//P .s/1 D 0;

and P .s/1 is a holomorphic family of functions on VX . Set

U D �
d

ds
P .s/

ˇ̌
sDn

:

Then differentiating (4.2) with respect to s and taking s D n gives

�gU D �n:

On the other hand, near s D n we can write

(4.3) P .s/1 D rn�sFs C r
sGs :

This expansion can be extended to s D n, where P .n/1 D 1, and it was shown in [18]
and pointed out in [7] that the extension is unique subject to the requirement that Fs; Gs
be chosen to depend holomorphically on s across s D n. (Actually, in the Einstein case
considered in [7], this argument is needed only for n even, due to evenness properties
available in that case. In our situation, it applies to both even and odd n.)

It follows from the definition (4.1) of QSY and the definition of the scattering matrix
that GnjM D cnQSY; thus, Fn D 1 � cnQSYrn.

We can differentiate both sides of (4.3) and conclude

(4.4) U D Fn log.r/ � F 0n �Gn r
n log.r/ � rnG0n;

with 0 D d=ds. Since FsjM � 1, the second term vanishes. The result follows from the
above asymptotics.

Precisely the same arguments given in Section 3 of [7] for the even-n Einstein case
now immediately work, given Proposition 3.1 and Theorem 4.3, to produce Theorem C
and Corollary D. We do not reproduce those proofs here.
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Note that it follows from Corollary D and from [15], or from [10], that the boundary
integral of QSY is a global conformal invariant. Furthermore, two consequences of the
transformation rule in Theorem C is that QSY is generically nonzero (since P SY

n is gener-
ically nontrivial); and, although QSY is extrinsic in the sense that it depends on Ng and not
only k D NgjTM , it is nevertheless the case that given a conformal class Œ Ng�, QSY depends
only on NgjTM .

We may now prove Theorem E using an argument from [6].

Proof of Theorem E. Let U be as in Theorem 4.3. Then by Green’s theorem, we have

Volg.¹r > "º/ D �
1

n

Z
r>"

�gU dvg D �
1

n

Z
rD"

@U

@n
dvh"

D
1

n
"1�n

I
M

@U

@r

ˇ̌̌
rD"

dvh" ;(4.5)

since the outward normal to ¹x D "º is �"@=@r . Now, by (4.4),

@U

@r
D
1

r
� � � � � .n � 1/a0n�1 r

n�1
� na0n r

n
� n

� d
ds

ˇ̌̌
sDn

S.s/1
�
rn�1

� 2cnQ
SY rn�1 � 2ncnQ

SYrn�1 log.r/C o.rn�1/:

Since, by [15],
H
M
v.n/dvk D E D 2cn

H
M
QSYdvk , the result follows from (4.5) by col-

lecting zeroth-order terms in ".

Finally, with the above pieces all in place, the proof of Theorem F is identical to that
in [6].

5. Explicit computations

In this section, we compute several of the quantities and operators defined earlier for low
dimensions. Throughout, we work near the boundary M n D @XnC1, on a collar neigh-
borhood V with a diffeomorphism  W Œ0; "/r �M ! V such that  � Ng D dr2 C hr . We
use Greek indices 1 � �; � � n on M , and Latin indices 0 � i; j � n on X . In particular,
x0 D r . We set k D h0 D NgjTM .

We begin with the following lemma, which is an expansion of the metric in Fermi
coordinates. This is well known to first order. The result to this order is contained in [16].

Lemma 5.1. Let XnC1 be a smooth manifold with boundary @X D M n, and let Ng be a
smooth metric on X . Suppose that, near M , the metric g is written as Ng D dr2 C hr ,
where hr is a one-parameter family of metrics on M . Let k D NgjTM . Then

h�� D k�� � 2rL�� C r
2.L��L�� �R0��0/�

1

3
r3.r0R0��0 � 4L

�
.�R�/00� /CO.r

4/;

where L is the second fundamental form of M with respect to Ng, and R is the curvature
tensor of Ng. Moreover, all coefficients are evaluated at r D 0, and indices raised with k�1.



S.-Y. A. Chang, S. E. McKeown and P. Yang 2170

To compute the local invariants QSY and P SY
k

, we must formally solve the scattering
problem .�g C s.n � s//u D 0 for g the singular Yamabe metric. The straightforward
approach to this entails computing u from Ng, then computing the scattering operator of
g D u�2 Ng, and finally formally solving that equation. This approach is extremely tedious,
and we will pursue a different one. (For yet another approach, see the solution-generating
operator described in [9].) Let Or be a geodesic defining function with respect to gD u�2 Ng,
of the kind constructed in Lemma 2.2, and such that @ Or

@r
jM D 1. Then for ONg D Or2g, which

is a C n compact metric on X , the singular Yamabe function Ou is equal to Or , the ONg-distance
to M . This drastically simplifies the computation of OQSY and OP SY

k
. Moreover, because

(within a conformal class) both depend only on the boundary representative, and because
ONgjTM D NgjTM by construction, in fact we have in this way computed QSY and P SY

k
. All

that remains is to express the computed quantity in terms of invariants of our original
metric Ng, and for that task, the following three lemmas are the tools we will need.

The first is completely standard, and is included here only for convenience. The proof
is left as an exercise.

Lemma 5.2. Suppose Ng is a smooth metric on XnC1, and that QNg D e2! Ng. Let k D NgjTM .
Then extrinsic invariants at the boundary M transform as follows:

zH D e�!.H � n!r /;

VzL�� D e
! VL�� ;

zR�� D R�� � .n � 1/r
2
��! C .n � 1/!�!� � .� Ng! C .n � 1/ jd!j

2
Ng/ Ng�� ;

zR�� D R�� � .n � 2/r
2
��! C .n � 2/!�!� � .�k! C .n � 2/ jd!j

2
k/k�� ;

zR D e�2! .R � 2n� Ng! � n.n � 1/ jd!j
2
Ng/;

zR D e�2! .R � 2.n � 1/�k! � .n � 1/.n � 2/ jd!j
2
k/:

Here R�� and R are the Ricci and scalar curvatures for Ng, and R�� and R are the Ricci

and scalar curvatures for k; and similarly for zR, etc. Moreover, jd!j2
Ng is the squared

Ng-norm of d!, where d is the exterior derivative onX ; while jd!j2
k

is the squared k-norm
of d.!jM /, where d is the exterior derivative onM . Finally, L is the second fundamental
form of M with respect to the inward-pointing normal @=@r , and H D k��L�� .

Lemma 5.3. Let Ng be a smooth metric onXnC1, and let u be the singular Yamabe solution
for Ng, so that g D u�2 Ng has constant scalar curvature �n.nC 1/. Then u D r Qu, where
Qu D 1CO.r/. Moreover,

@r QujrD0 D �
1

2n
H and @2r QujrD0 D �

1

3n
.RCH 2/C

1

3.n � 1/
.R � j VLj2k/:

This is proved in [15]. See in particular equation (2.6) and pages 1788–89.

Lemma 5.4. Let n � 2 and let Ng be a smooth metric on XnC1, and let g be the cor-
responding singular Yamabe metric. Let Or be the geodesic defining function for M (with
respect to g/, as in Lemma 2.2, such that @ Or

@r
jM D 1. Then, if ONgD Or2g is the corresponding
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geodesic compactification of g, we can write ONg D e2! Ng, where

!jM D 0;

@r!jM D
1

n
H;

@2r!jM D
1C n

2n2
H 2
C

1

2n
R �

1

2.n � 1/
RC

1

2.n � 1/
j VLj2k I

and, for n � 3,

@3r!jM D �
1

n
�kH C

1

n � 2
r
�
r
� VL�� C

1

n � 2
VL��R�� �

2

n � 2
VL��R��

C
1

2n
@rRC

n2 C 2nC 1

2n3
H 3
C
nC 1

2n2
HR �

nC 2

2n.n � 1/
HR

C
3n2 � 4n � 2

2n.n � 1/.n � 20/
H j VLj2k :

Proof. Observe that the singular Yamabe function u D r Qu is a defining function for M .
Thus, taking r0 D u in equation (2.2) of [14] gives ONg D e2! Ng, where

2.grad Ng u/.!/C u jd!j
2
Ng D

1 � jduj2
Ng

u
�

We can write this equation as

2r2 Qu Ngij @i Qu@j! C 2r Qu
2 @r! C r

2
Qu2 Ngij @i!@j! D 1 � Qu

2
� 2r Qu@ Qu � r2 Ngij @i Qu@j Qu:

Now, tangential derivatives of both Qu and ! vanish to first order, so we can rewrite this as

2r2 Qu@r Qu@r! C 2r Qu
2 @r! C r

2
Qu2 @r .!/

2
D 1 � Qu2 � 2r Qu@r Qu � r

2 @r . Qu/
2
CO.r4/:

Differentiating gives

8r Qu@r . Qu/@r .!/C 2r
2 @r . Qu/

2 @r .!/C 2r
2
Qu@2r . Qu/@r .!/C 2r

2
Qu@r . Qu/@

2
r .!/

C 2 Qu2 @r .!/C 2r Qu
2 @2r .!/C 2r Qu

2 @r .!/
2
C 2r2 Qu@r . Qu/@r .!/

2
C 2r2 Qu2 @r .!/@

2
r .!/

D �4 Qu@r . Qu/ � 4r @r . Qu/
2
� 2r Qu@2r . Qu/ � 2r

2 @r . Qu/@
2
r . Qu/CO.r

3/:

Taking r D 0 and applying Lemma 5.3 gives

@r!jrD0 D
1

n
H:

Differentiating again mod O.r2/, we find

12 Qu@r . Qu/@r .!/C 12r@r . Qu/
2 @r .!/C 12r Qu@

2
r . Qu/@r .!/C 12r Qu@r . Qu/@

2
r .!/

C 4 Qu2 @2r .!/C 4r Qu@r . Qu/@
2
r .!/C 2r Qu

2 @3r .!/C 2 Qu
2 @r .!/

2

C 8r Qu@r . Qu/@r .!/
2
C 8r Qu2 @r .!/@

2
r .!/

D �8@r . Qu/
2
� 6 Qu@2r Qu � 14r@r . Qu/@

2
r . Qu/ � 2r Qu@

3
r . Qu/CO.r

2/:
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and setting r D 0 and using Lemma 5.3 gives

@2r!jrD0 D
1C n

2n2
H 2
C

1

2n
R �

1

2.n � 1/
RC

1

2.n � 1/
j VLj2k :

Finally, we differentiate again, mod O.r/:

24@r . Qu/
2 @r .!/C 24 Qu@

2
r . Qu/@r .!/C 36 Qu@r . Qu/@

2
r .!/

C 6 Qu2 @3r .!/C 12 Qu@r . Qu/@r .!/
2
C 12 Qu2 @r .!/@

2
r .!/

D �30@r . Qu/ @
2
r . Qu/ � 6@r . Qu/@

2
r . Qu/ � 8 Qu@

2
r . Qu/CO.r/:

Taking r D 0 and using our prior results gives the claimed formula for @3r!jM .

We also record some additional elementary formulas. First, it follows from Gauss’s
equation that

(5.1) VL��R0��0 D VL
��R�� � VL

��R�� C
n � 2

n
H j VLj2k �

VL3;

where VL3 D VLˇ˛ VL
�

ˇ
VL˛�. Next, it is easy to show using Codazzi’s equation that

(5.2)
rrR00jrD0 D

1

2
@rRC

1 � n

n
�kH Cr

�
r
� VL�� � VL

��R��

C
n � 1

2n
HR �

1C n

2n
HR �

1C n

2n
H j VLj2k C

n2 � 1

2n2
H 3:

Here, r is the Levi-Civita connection of k.
We now begin to analyze the singular Yamabe solution.
As mentioned above, we let g be the singular Yamabe metric corresponding to Ng

on XnC1, and let Or be the geodesic defining function corresponding to k, with ONg D Or2g.
That is, g D .d Or2 C Oh Or /= Or2, where Oh Or is a one-parameter family of smooth metric on M
with Oh0 D k. By Lemma 2.2, Or is C nC1, and thus ONg is C n. Also r ONg is C nC1. Now, with
respect to ONg, the singular Yamabe function Ou one obtains by starting with ONg is Or itself; this
follows because g D Or�2 ONg, and the singular Yamabe function is unique.

We introduce some further notations related to ONg. The Ricci and scalar curvatures we
will denote by Rij and R, respectively. The second fundamental form with respect to ONg
we will denote, for convenience, by OL. The tracefree part of this we will call VL, since it is
a conformal invariant at the boundary and thus identical to the corresponding tensor for Ng,
since NgjTM D ONgjTM D k. We use OH for the mean curvature k�� OL�� . Meanwhile, we will
continue to use R to denote the intrinsic curvature Rk of the boundary metric k.

Now, the equation satisfied by Ou, i.e., the singular Yamabe equation, is given by

n.nC 1/ D n.nC 1/ jd Ouj2
ONg
� 2n Ou� ONg Ou � Ou

2 OR:

(See (2.1).) Since Ou D Or , we have

0 D 2n� ONg Or C Or
OR:
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Since � ONg Or D
1
2
Oh�� Oh0�� , this can be re-expressed as

Oh�� Oh0�� D �
1

n
Or OR:

Taking Or D 0 and applying Lemma 5.1 immediately gives

(5.3) OH D 0:

This implies also that OLD VL. We differentiate, using the identity .h��/0 D�h�˛ h�ˇ h0
˛ˇ

,
to find

(5.4) � Oh�˛ Oh�ˇ Oh0˛ˇ
Oh0�� C

Oh�� Oh00�� D �
1

n
OR �

1

n
r @ Or
OR:

Taking Or D 0 and again using Lemma 5.1 gives

(5.5) �4 j OLj2k � 2
OR00 C 2 j VLj

2
k D �

1

n
OR:

(Recall that OL is the second fundamental form.) Now, it is easy to show, for any metric Ng
on an .nC 1/-dimensional manifold, that

j OLj2k D j
VLj2k C

1

n
OH 2:

Similarly, we have by Gauss’s formula that

OR00 D
1

2

�
OR �R � j VLj2k C

n � 1

n
OH 2
�

(see equation (4.3) in [15], keeping in mind that that paper has a different convention for
curvature indices). Applying these equations to ONg, and recalling that OH D 0, we conclude
from (5.5) that at r D 0,

(5.6) OR D
n

n � 1
.R � j VLj2k/:

Note that this result is good for n � 2, by Lemma 2.2. We differentiate (5.4) again, which
we can do if n � 3 according to Lemma 2.2. We find

2 Oh�� Oh˛� Oh0��
Oh0˛ˇ
Oh0�� � 3

Oh�˛ Oh�ˇ Oh0˛ˇ
Oh00�� C

Oh�� Oh000�� D �
2

n
@ Or
OR �

1

n
Or @2
Or
OR:

Taking Or D 0 and applying Lemma 5.1, we get

�4 OL3 � 4 OL�� OR0��0 � 2
O
r0
OR00 D �

2

n
@ Or
OR:

Now using our previous calculations, (5.1) and (5.2), we find

(5.7) @ Or
ORj OrD0 D �

2n

n � 2
r
�
r
� VL�� C

4n

n � 2
VL��R�� �

2n

n � 2
VL�� OR�� :
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Here, r and R are the connection and Ricci curvature, respectively, of k. We leave hats
off r; R, and VL because these are the same for ONg as for Ng.

Having derived the geometric consequences of using a geodesic compactification, we
next compute�g for any v 2 C1.X/, where (recall) g is the singular Yamabe metric. We
find

�gv D .detg/�1=2@i
�
.detg/1=2gij @j v

�
D Or1Cn .det ONg/�1=2 @i

�
Or1�n.det ONg/1=2 ONgij @j v

�
D Or2 @2

Orv C .1 � n/ Or @ Orv C
1

2
Or2 Oh�� Oh0��@ Orv C Or

2� Oh Or
v:

Now if f 2 C1.M/ and v D Orn�sf , we therefore find

(5.8) �gv D s.s � n/ Or
n�sf C

n � s

2
Orn�sC1 Oh�� Oh0��f C Or

n�sC2� Oh Or
f:

We expand the various quantities that appear in this expression. First, a straightforward
computation shows that

(5.9) � Oh Or
f D �kf C 2 Or

�
VL��r2��f Cr

� VL��f�
�
CO. Or2/:

Meanwhile, by iteratively applying the equation . Oh��/0 D � Oh�˛ Oh�ˇ Oh0
˛ˇ

, along with
Lemma 5.1 and equations (5.3)–(5.7), we find

Oh�� Oh0�� D
1

n � 1
Or.j VLj2k �R/C

2

n � 2
Or2.r�r� VL�� � 2 VL

��R�� C VL
�� OR��/:

Thus, we conclude from (5.8) and (5.9) that

Œ�g C s.n � s/�. Or
n�sf / D Orn�sC2

h n � s

2.n � 1/
.j VLj2k �R/C�kf

i
C Orn�sC3

hn � s
n � 2

.r�r� VL�� � 2 VL
��R�� C VL

�� OR��/

C 2 VL��r2��f C 2r
� VL��f�

i
CO. Orn�sC4/:(5.10)

We now formally solve the equation .�g C s.n � s//v D 0. Let f 2 C1.M/ be
arbitrary, and set v0 D rn�sf . We will perturb v0 at increasing orders to formally solve
the equation. To do this, we compute the indicial operator I js WC1.M/!C1.M/, which
we define by

I js . / D Or
�.n�sCj / Œ�g C s.n � s/�.r

n�sCj /j OrD0:

This operator tells us the effect of a perturbation of v at order Orn�sCj on Œ�g C s.n� s/�v.
It is easy to compute from (5.8) that

I js . / D j.n � 2s C j / :

Now it follows from (5.10) that Œ�g C s.n � s/�v0 D O. Orn�sC2/, so we want to perturb
at order Orn�sC2. Specifically, we wish to solve

I 2s  2 D �
� n � s

2.n � 1/
.j VLj2k �R/

�
f C�kf;
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which gives

 2 D
1

.n � 1/.nC 2 � 2s/

n � s

4
.R � j VLj2k/f �

1

2.nC 2 � 2s/
�kf:

We therefore set v2 D Orn�s.f C Or2 2/. (We skip v1 in our numbering since there is
no term of order Orn�sC1 in (5.10).) It can easily be shown from (5.10) that, apart from
removing the order Orn�sC2 term from .�g C s.n � s//v0, adding this perturbation to v0
has no other effects before order Orn�sC4. Thus, the next equation we wish to solve is

I 3s  3 D
s � n

n � 2
.r�r� VL�� � 2 VL

��R�� C VL
�� OR��/ � 2 VL

��
r
2
��f � 2r

� VL��f� :

Since I 3s D 3.nC 3 � 2s/, we obtain

(5.11)
 3 D

n � s

3.n � 2/.nC 3 � 2s/
.�r�r� VL�� C 2 VL

��R�� � VL
�� OR��/f

�
2

3.nC 3 � 2s/
. VL��r2��f Cr

� VL��f�/:

We set v3 D v2 C Or n�sC3 3. It then follows from Proposition 3.6 in [18] and Proposi-
tion 3.1 that

OP SY
1 D 0 and OP SY

2 D ��k C
n � 2

4.n � 1/
.R � j VLj2k/:

If n D 2,
OQSY
2 D

1

2
.R � j VLj2k/:

For n � 3,

OP SY
3 f D VL��r2��f Cr

� VL��f� C
n � 3

4.n � 2/

�
r
�
r
� VL�� � 2 VL

��R�� C VL
�� OR��

�
f:

And if n D 3,
OQSY
3 D

1

2
r
�
r
� VL�� � VL

��R�� C
1

2
VL�� OR�� :

Finally, we can use Lemma 5.4 to translate these results into formulas for our gen-
eral metric Ng. We obtain the following. Note that these quantities and operators have all
appeared previously in the recent literature, derived from parallel approaches to this prob-
lem. See (most comprehensively) [3], as well as [8, 10, 12].

Theorem 5.5. For any dimension,

P SY
2 f D ��kf C

n � 2

4.n � 1/
.Rk � j VLj

2
k/f .n � 2/

P SY
3 f D VL��r2��f Cr

� VL��f�

C
n � 3

4.n � 2/

�
r
�
r
� VL�� � 2 VL

��R�� C VL
��R�� C

n � 1

n
H j VLj2k

�
f:
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If n D 2, then

QSY
2 D

1

2
.Rk � j VLj

2
k/:

For n D 3, we have the following:

QSY
3 D r

�
r
� VL�� � 2 VL

��R�� C VL
��R�� C

2

3
H j VLj2k :

Observe that P SY
2 is the conformal Laplacian, plus an extrinsic pointwise conformal

invariant.

We next wish to compute the coefficients in Theorem E in the cases nD 2 and nD 3 to
express the renormalized volume in terms of the scattering operator. On the basis of (5.11),
we have

v3 D Or
n�sf C Orn�sC2

h n � s

4.n � 1/.nC 2 � 2s/
.R � j VLj2k/f �

1

2.nC 2 � 2s/
�kf

i
C Orn�sC3

h n � s

3.n � 2/.nC 3 � 2s/
.�r�r� VL�� C 2 VL

��R�� � VL
�� OR��/

�
2

3.nC 3 � 2s/
. VL��r2��f Cr

� VL��f�/
i
:

Recall that r (as opposed to Or) is the distance function fromM with respect to Ng. We wish
to express v2 in terms of r instead of Or , and for this purpose, we want to expand Or˛ for a
real number ˛. Let ˛ 2 R. Recall that we defined Qu by u D r Qu. Then

Or D e! u D r e! Qu;

where ! is as in Lemma 5.4. Thus,

Or˛ D r˛ e˛.!Clog Qu/:

Now,

Qu D 1C r Qur C
1

2
r2 Qurr C � � � ;

where we set Qur D @r QujrD0, etc. A standard calculation shows that

log Qu D r Qur C
1

2
r2. Qurr � Qu

2
r /C

1

6
r3. Qurrr � 3 Qur Qurr C 2 Qu

3
r /C � � � :

Therefore,

! C log Qu

D r. Qur C !r /C
1

2
r2. Qurr � Qu

2
r C !rr /C

1

6
r3. Qurrr � 3 Qur Qurr C 2 Qu

3
r C !rrr /C � � � :
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We obtain

expŒ˛.! C log Qu/� D 1C r.˛ Qur C ˛!r /

C r2
h˛
2
Qurr �

˛

2
Qu2r C

˛

2
!rr C

˛2

2
Qu2r C ˛

2
Qur !r C

˛2

2
!2r

i
C r3

h˛
6
Qurrr �

˛

2
Qur Qurr C

˛

3
Qu3r C

˛

6
!rrr C

˛2

2
Qur Qurr

�
˛2

2
Qu3r C

˛2

2
Qur!rr C

˛2

2
Qurr !r �

˛2

2
Qu2r !r C

˛2

2
!r !rr

C
˛3

6
Qu3r C

˛3

2
Qu2r !r C

˛3

6
!3r

i
CO.r4/:

Supposing now that ˛ D n � s C j (j � 0), and using Lemmas 5.3 and 5.4, a tedious
calculation yields

(5.12) Orn�sCj D rn�sCj C rn�sCjC1
�n � s C j

2n
H
�

C rn�sCjC2
h5n2 � 8snC 8jnC 3nC 3s2 � 6js � 3s C 3j 2 C 3j

24n2
H 2

C
n � s C j

12n
R �

n � s C j

12.n � 1/
RC

n � s C j

12.n � 1/
j VLj2k

i
C rn�sCjC3

hs � n � j
24n

�kH C
n � s C j

24.n � 2/
r
�
r
� VL�� C

n � s C j

24.n � 2/
VL��R��

C
s � n � j

12.n � 2/
VL��R�� C

n � s C j

48n
@rR

C
.n � s C j /.4n2 � 4snC 4jnC 6nC s2 � 2js � 3s C j 2 C 3j C 2/

48n3
H 3

C
.n � s C j /.3n � 2s C 2j C 2/

48n2
HR �

.n � s C j /.3n � 2s C 2j C 3/

48n.n � 1/
HR

C
.n � s C j /.5n2 � 2snC 2jn � 7nC 4s � 4j � 4/

48n.n � 1/.n � 2/
H j VLj2k

i
CO.rn�sCjC4/:

So for n D 2, we get

Or2�sD r2�s
�
1C

2�s

4
rH C r2

h26�19sC3s2
96

H 2
C
2�s

24
R�

s�2

12
RC

2 � s

12
j VLj2k

i�
:

Now taking f D 1 and n D 2, we find

v2 D r
2�s
C
2 � s

4
r3�sH

C r4�s
h3s2 � 19s C 26

96
H 2
C
2 � s

24
RC

s � 2

12
RC

2 � s

12
j VLj2k

i
CO.r5�s/:

So

a1.s/D
2 � s

4
H and a2.s/D

3s2�19s C 26

96
H 2
C
2�s

24
RC

s�2

12
RC

2�s

12
j VLj2k :
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Thus,

a01.2/ D �
1

4
H and a02.2/ D �

7

96
H 2
�
1

24
RC

1

12
R �

1

12
j VLj2k :

Now, by [16], we have

v.1/ D
1 � n

2n
H;(5.13)

v.2/ D
n � 5

12.n � 1/
.R � j VLj2k/C

n � 2

24n2
..n � 3/H 2

� 2nR/:(5.14)

So in this case, we have v.1/ D �1
4
H . Here v.1/ is the first renormalized volume coeffi-

cient, not our solution v to the scattering equation. Thus, using Theorem E, we find that
for n D 2,

(5.15) V.X;g; Ng/D �
I
M

� d
ds

ˇ̌̌
sD2

S.s/1
�
dvk �

1

96

I
M

.8R�4R � 8 j VLj2k�3H
2/ dvk :

Observe that if g happens to be Einstein and Ng is a geodesic compactification (so that
Ng D ONg, which in this context is smooth), then the last integral vanishes, since VL and H
vanish in this case, and 2R � R D 0 (by (5.6)). Thus, this result is consistent with Theo-
rem 4.1 of [6].

We next turn to nD 3. Using (5.12) for j D 0; 1, and 2 sequentially, and putting these
into the formula for v3, as well as using Lemma 5.2, we get (with f D 1)

(5.16) v3 D r
3�s
C r4�s

�3 � s
6

H
�

C r5�s
h54 � 27s C 3s2

216
H 2
C
3 � s

36
RC

.s � 3/.1 � s/

12.5 � 2s/
RC

.s � 3/.s � 1/

12.5 � 2s/
j VLj2k

i
C r6�s

hs � 3
72

�kH �
s C 1

24
r
�
r
� VL�� �

s C 1

24
VL��R�� C

s C 1

12
VL��R��

C
3 � s

144
@rRC

.3 � s/.56 � 15s C s2/

1296
H 3
C
.3 � s/.11 � 2s/

432
HR

C
.s � 3/.2s2 � 14s C 15/

144.5 � 2s/
HR �

2s3 � 28s2 C 69s � 25

144.5 � 2s/
H j VLj2k

i
CO.r7�s/:

It quickly follows that

a01.3/ D �
1

6
H;

a02.3/ D �
1

24
H 2
�
1

36
RC

1

6
R �

1

6
j VLj2k ;

a03.3/ D
1

72
�kH �

1

24
r
�
r
� VL�� �

1

24
VL��R�� C

1

12
VL��R�� �

1

144
@rR

�
5

324
H 3
�

5

432
HRC

1

16
HR �

13

144
H j VLj2k :
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Using the formulae (5.13) for the renormalized volume coefficients, we finally obtain

V.X; g; Ng/ D

I
M

h
�
d

ds

ˇ̌̌
sD3

S.s/1 �
13

432
HRC

5

1296
HRC

1

162
H 3
C

25

432
H j VLj2k

�
1

72
�kHC

1

24
r
�
r
� VL��C

1

24
VL��R��C

1

12
VL��R��C

1

144
@rR

i
dvk :

Theorem G and Corollary H now follow directly from this computation and the main
result of [16].

A. Analysis

We present here the proof of Lemma 2.2 and sketch the proof of Theorem 4.1. Both entail
adapting standard results for smooth AH metrics to the polyhomogeneous setting with
more careful discussion of regularity.

A.1. Normal form

For .X; Ng/ a smooth manifold with boundary, let r be the distance function to the bound-
ary. We let Diffb.X/ be the ring of differential operators generated by vector fields V that
are tangent to the boundary. In local coordinates .r;x�/ (1��� n) near the boundaryM ,
Diffb.X/ is generated over C1 by r @=@r and @=@x�.

For p � 2, we let Dp be the conormal functions

Dp.X/ D ¹u 2 C
p.X/ W Lu 2 Cp.X/ for all L 2 Diffb.X/º :

The examples of interest to us are smooth functions and those with asymptotic expansions
in r and rq log.r/, q � p C 1, with smooth coefficients. The following lemma is easy.

Lemma A.1. Let ! 2 Dp . Then r! 2 DpC1.

We prove the following variation on the existence and uniqueness of solutions to
first-order scalar noncharacteristic PDEs. We let x0 D r , and locally extend any coor-
dinate chart .x1; : : : ; xn/ on a neighborhood U � M to be coordinates along with r on
a neighborhood zU of U in X , by the geodesic identification zU � Œ0; "/r � U , where �
denotes diffeomorphism. We then let .�0; : : : ; �n/ be the corresponding natural coordinates
on T �X on zU .

Proposition A.2. Let F 2 Cp.T �X � R/ be such that, for any smooth one-form � 2

�1.X/;u 2 C1.X/, the function x 7! F.x;�.x/;u.x// 2Dp.X/, where p � 2. Suppose
that, in any coordinate system as above, @F =@�0jM > 0. Finally, suppose given '; � 2
C1.M/ such that, for every q 2M ,

F.q; �dr C d'; '/ D 0:

Then there exists a neighborhood V of M and a unique solution ! to F.x; d!; !/ D 0
on V such that !jM D '. Moreover, ! 2 Dp .
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Proof. Everything except the last statement is standard. We present an adaptation of the
usual proof which preserves conormality. We work locally in a coordinate chart. Recall
that the ordinary proof relies on converting the PDE to a first-order system of ODEs repre-
senting a characteristic flow off ofM , and parametrized by time t . We first eliminate t and
replace it by the first coordinate r , which is permissible because @r=@t jtD0 >0 by the non-
characteristic hypothesis. We thus begin by considering the following system of ODEs:

d�j

dr
D
@F =@xj C �j @F =@y

@F =@�0
.0 � j � n/;

dx�

dr
D
@F =@��

@F =@�0
.1 � � � n/;

dy

dr
D ��j

@F =@�j

@F =@�0
;

with initial conditions x�D�� (some ��), ��.0/D@�'.�1; : : : ; �n/, y.0/D'.�1; : : : ; �n/,
and with �0.0/ D � . Letting z D .x1; : : : ; xn; �0; : : : ; �n; y/, this system may be written

dz

dr
D G.r; z/;

where by hypothesis G is Cp�1. Moreover, for any multi-index ˛, @G=@x˛ is Cp�1

(where ˛ contains no 0’s, i.e., no r-derivatives); and so likewise is .r@r /kG for any k.
The system is equivalent to the integral equation

(A.1) z D z0 C

Z r

0

G.s; z.s// ds;

where z0 contains the initial values written above. This equation, of course, has a C 1

solution by standard theory (see, e.g., Section 1.2 of [26]). Now we view z as a function
both of r and of .�1; : : : ; �n/. Formally differentiating (A.1), we get

@z

@��
D
@z0

@��
C

Z r

0

@G

@za
@za

@��

(where we use the index a as an index for the components of z). Now, the integrand here is
still Cp�1 by hypothesis; and so by a standard argument, and its accompanying induction
(see, e.g., Section 13 of [27]), @j˛jz=@�˛ is Cp . On the other hand, using the identity

d

dr

�
r
dz

dr

�
D r

d2z

dr2
C
dz

dr

and (A.1), along with the easily-verified fact that H D
R r
0
G.s; z/ds is Cp along with

.r d
dr
/kH for any k, we conclude by induction that .r @

@r
/k
�
@j˛j

@�˛

�
z is Cp .

We now have functions x1.r; �1; : : : ; �n/; : : : ; xn.r; �1; : : : ; �n/. We wish to invert the
dependence of x on �. For notational simplicity, we assume by restriction and rescaling if
necessary that �1; : : : ; �n take values in all of Rn. Let ˆ.r; �1; : : : ; �n/ D .x1; : : : ; xn/,
and define Zr0 WR

n ! Rn by Zr0.�/ D ˆ.r0; �/. Now ˆ is Cp , and DZ0 is the identity,
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so by restricting r0 if necessary, we may assume thatZr is invertible. In fact, for each r0 it
is a C1 diffeomorphism onto its image, and thus has C1 inverse Z�1r0 . That this inverse
is Cp in r follows from the implicit function theorem.

To show that .r@r /kZ�1r is likewise Cp , we write

ˆ.r;Z�1r .x1; : : : ; xn// D .x1; : : : ; xn/;

and then differentiate both sides with respect to r . We obtain

@ˆ

@r
CD�Zr

�@Z�1
@x�

@x�

@r
C
@Z�1r
@r

�
D

�@x1
@r
; : : : ;

@xn

@r

�
:

Since D�Zr is invertible, we can solve this for @Z�1r =@r , and in particular we can exhibit
r@Z�1r =@r as a combination of terms already known to be Cp .

Thus, if we set !.r; x/ D y.r;Z�1r .x//, then ! is a solution of our PDE (just as in the
usual case), it is a solution at r D 0, and we show that d

dr
F.x; d!; !/ D 0. Moreover,

! 2 Dp .

We now can prove Lemma 2.2.

Proof of Lemma 2.2. Let r be the distance to M with respect to Ng. We wish to find Or so
that jd Or j Or2g � 1 on some neighborhood of the boundary. As in the usual proof (e.g. [14]),
write Or D ue! D r Que! ; where u is the singular Yamabe function and Qu D u=r . Recall
that Qu D 1CO.r/. We thus wish to find ! so that !jM D 0 and so that

2 grad Ng.u/.!/C u jd!j
2
Ng D

1 � jduj2
Ng

u
�

In the smooth case, one directly solves this by observing that it is a first-order noncharac-
teristic equation. However, doing so in this form would not give optimal regularity, which
we want. Using the fact that u D r Qu, we can rewrite this as follows:

(A.2) 2@r! C 2r Qu
�1
Ngij Qui!j C r Ng

ij!i!j D
1 � Qu2 � r2jd Quj2

Ng � 2r Qu@r Qu

r Qu2
�

The right-hand side is C n�1, and in particular, taking r D 0, we may solve for @r!jrD0.
We can then differentiate (A.2) iteratively, and at each stage, @r! is expressed in terms of
already-determined quantities. Observe, however, that by (1.3), the right-hand side con-
tains a term of the form cLrn log.r/. We can handle this by adding a term of the form
ArnC1 log.r/ to our formal expansion of ! (A 2 C1.M/), and iterating this procedure,
we can find some !0 of the form

!0 D a1 r C a2 r
2
C � � � C an r

n
C ArnC1 log.r/C anC1 rnC1 C � � � ;

where each aj 2 C1.M/, and such that equation (A.2) is satisfied through orderO.rnC1/
by !0. Now set ! D !0 C�, and substitute this into (A.2). We obtain the equation

2@r�C 2r Qu
�1
Ngij Qui�j C 2r Ng

ij!0i �j C r Ng
ij �i�j D O.r

nC1/;
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where the right-hand side, in particular, is a function in DnC1. Then since rui ; r!0i 2 C
n,

this is a noncharacteristic first-order equation withC n coefficients, and in fact the differen-
tial operator is n-conormal. Thus, by Proposition A.2, there is a unique solution � 2 Dn,
and so we get a unique solution ! D !0C� to (A.2), and ! 2Dn as well. Consequently,
Or D r Que! 2DnC1. We construct the diffeomorphism  , as always, by following the flow
lines of grad Ng Or . This is a C n vector field, so the result follows.

Observe that we actually show rather more than claimed – specifically, that the diffeo-
morphism is conormal – but the lemma is all we need for our purposes.

A.2. Meromorphic extension of the resolvent

Theorem 4.1 is proved in [18] in the context of smooth AH metrics. The proof proceeds
by first constructing an infinite-order formal solution uf satisfying

.�g C s.n � s//uf D O.r
1/;

and then using the following theorem from [24] (see also [19]).

Theorem A.3. Let .X; g/ be an asymptotically hyperbolic manifold. Then the resolvent
R.s/D .�g C s.n� s//

�1WL2g.
VX/!L2g.

VX/ for s >n has an extensionR.s/Wr1C1.X/
! rsC1.X/ that is holomorphic on C n � with � � C discrete. In particular, R.s/ is
meromorphic on the right half-plane.

Thus, we need the same theorem in the case where g is not smooth AH, but rather
polyhomogeneous, and where the codomain of R.s/ may likewise be only polyhomoge-
neous. Fortunately, the needed modifications to the proof are slight. The proof of [24]
proceeds by first proving the result on hyperbolic space, and in fact obtaining an explicit
formula for the Schwartz kernel of the resolvent there. On a general asymptotically hyper-
bolic space, the proof proceeds in three steps. First, ordinary elliptic analysis is used to
produce an interior solution with poor boundary regularity; then, the “normal operator”
of the Laplacian at a fixed point of the boundary is analyzed, and shown to coincide with
the Laplacian on hyperbolic space, so that the result there can be used to obtain better
regularity. Finally, the indicial operator at each point is used to obtain optimal regular-
ity via formal expansion and Borel’s lemma. The first two steps go through exactly the
same if the metric g is polyhomogeneous and (say) C n. And the last step, likewise, will
be the same except that logarithmic terms from the metric may appear on the right hand
side of the order-by-order construction, and need to be corrected by including logarithmic
terms in the solution. The order at which they appear can be computed formally using the
indicial operator.

In particular, the construction of the scattering operator proceeds exactly as in [18],
except that because smooth compactifications of the metric have a log term appearing of
the form rnC1 log.r/, expansions of P .s/f starting at rn�s will have a term of the form
rn�sC.nC1/ log.r/; to avoid the appearance of a log term at or before the second indicial
root s, therefore (which would complicate the analysis), we require s < 2n � s C 1, or
s < nC 1=2.
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