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Controlling unknown linear dynamics
with bounded multiplicative regret

Jacob Carruth, Maximilian F. Eggl, Charles Fefferman,
Clarence W. Rowley and Melanie Weber

Abstract. We consider a simple control problem in which the underlying dynamics
depend on a parameter that is unknown and must be learned. We exhibit a control
strategy which is optimal to within a multiplicative constant. While most authors
find strategies which are successful as the time horizon tends to infinity, our strategy
achieves lowest expected cost up to a constant factor for a fixed time horizon.

Dedicated to Antonio Córdoba, with admiration.

1. Introduction

Here, as in our previous paper [12], we investigate control problems in which we must
make decisions with little time and little data available. Our motivating example is the
success of pilots learning in real time to fly and safely land an airplane after it has been
severely damaged, as documented in [6].

To start to address these issues, we study a simple control problem whose dynam-
ics depend on a single unknown parameter a 2 R. We try to minimize an expected cost
S.�; a/, where � denotes our control strategy. For known a, classical control theory pro-
vides an optimal strategy �opt.a/, i.e., � 7! S.�; a/ achieves a minimum at � D �opt.a/.

Now suppose we have no prior information about a. It is then natural to evaluate a
strategy � by comparing its expected cost to that of �opt.a/ for each putative value of a.
Accordingly, we define the additive and multiplicative regret of a given strategy � to be
the functions

AR� .a/ WD S.�; a/ � S.�opt.a/; a/

and

MR� .a/ WD
S.�; a/

S.�opt.a/; a/
;

respectively, for all a 2 R. The additive regret is often called simply the “regret”, and the
multiplicative regret is also called the “competitive ratio”. (In the control theory literature,
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it is common to define regret by comparing our strategy to a particular class of competing
strategies. Here we allow arbitrary competing strategies.)

A natural question is whether there exists a strategy � for which the multiplicative
regret MR� .a/ is even bounded for all a. This is not obvious, even if the dynamics are
linear, because if, for instance, the parameter a determines the stability of the linear sys-
tem, an arbitrarily large value of a could make the cost S.�; a/ arbitrarily large. The main
result of this paper is to answer this question. In particular, for the common case of lin-
ear dynamics, we exhibit a strategy �� whose multiplicative regret remains bounded as
the unknown a varies over the whole real line. Our strategy �� controls the system while
learning about a on the fly.

We next comment on the state of the art regarding control with learning, and contrast
the regime studied here with that considered previously. Then we formulate our control
problem, state our main theorem, and describe the control strategy ��.

Control with learning has been considered in many application areas; see for exam-
ple [10], in which Dean et al. apply adaptive control techniques to learn and control linear
systems on the fly; the related [9]; as well as [3], in which Abeille and Lazaric use Thomp-
son sampling in the same setting. Online learning and control can further be expanded to
other complementary problems including the study of tracking adversarial targets [1] and
derivative-free optimisation for the linear quadratic problem [14].

As gradient descent methods are essential in offline optimization, studies have also
been undertaken that aim to apply these methods without prior information; these include
the derivation and implementation of adaptive online gradient descent by Bartlett, Hazan,
and Rakhlin [5], as well as the introduction of AdaGrad (adaptive gradient algorithm) by
Duchi, Hazan, and Singer [11], which has since become a staple in the machine learning
community.

We note work of Abbasi-Yadkori and Szepesvári [2], in which the authors were able to
prove that under certain assumptions the expected additive regret of the adaptive controller
is bounded by QO.

p
T /, where T denotes the time horizon. Further progress was made on

this problem by Chen and Hazan [8], who, assuming controllability of the system, gave the
first efficient algorithm capable of attaining sublinear additive regret in a single trajectory
in the setting of online nonstochastic control.

Much is known about the closely related “multi-armed bandit” problem; see, for ins-
tance, the classic papers [17, 18], the more recent survey [7], or [4], in which the authors
introduce an efficient algorithm which achieves the optimal sublinear additive regret for
the related bandit optimization problem.

As this list of references by no means does justice to the breadth of studies in the
literature, we point the reader towards [15] for a more thorough overview of online convex
optimization.

In this paper, we consider a simple toy problem that differs from the work cited above
in two respects.
• The time horizon T is fixed, whereas the literature is mainly concerned with asymp-

totic behavior as T !1.
• We must control a system that may be arbitrarily unstable.
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1.1. The problem

To state our problem, we begin by recalling the classical linear quadratic regulator (LQR)
control problem [16] in its simplest form. We consider a particle whose movement is
governed by a simple linear system driven by additive noise. We hope to keep that particle
close to the origin by applying a control. The position of the particle at time t is q.t/ 2R1,
and the control we apply is denoted by u.t/ 2 R1.

The particle moves according to the stochastic ODE

(1.1) dq D .aq C u/dt C dWt ; q.0/ D 0;

where a is a known constant and .Wt / denotes a Brownian motion, normalized so that
E..Wt /2/ D t . We are free to pick our favorite u.t/ in (1.1), provided only that

• u.t/ is determined by history up to time t (i.e., by .q.�//0���t ),
• and the stochastic ODE (1.1) admits a unique solution.

We define such a choice of u.t/ for each t and each history up to time t to be a
strategy, and we write �; � 0; Q� , etc. to denote strategies (we remark that in the control
theory literature strategies are often called “policies”).

Let us fix the parameter a in (1.1). Once we pick a strategy � , we can solve the stochas-
tic ODE (1.1) from time t D 0 to time t D T ; we define the cost of our strategy � to be
the quantity1

(1.2)
Z T

0

�
.q.t//2 C .u.t//2

�
dt

for a known “time horizon” T . The cost is a random variable, because the noise .Wt / is
random. We denote the expected value of the cost by S.�; a/.

The classic LQR problem is to pick � to minimize S.�; a/ for fixed known a. The
minimizer �opt.a/ of S.�; a/ for fixed, given a is well known; it prescribes the control

(1.3) u.t/ D �K.t; a/q.t/;

where K.t; a/ solves an ODE in the t -variable, with a appearing as a parameter. The
expected cost of the optimal strategy is comparable to a for a large positive, and to jaj�1

for a large negative. See Section 7 below.
Now we can state the problem studied here. Suppose our particle moves according

to (1.1), but we have absolutely no prior information about the coefficient a. How should
we pick our control strategy?

1.2. A strategy with bounded multiplicative regret

Our main result is as follows.

Theorem 1.1. The control strategy ��, to be described below, satisfies the inequality

S.��; a/ � C S.�opt.a/; a/ for all a 2 R;

where C is a positive constant depending only on the time horizon T .

1Usually, one sees coefficients multiplying the terms dWt in (1.1) and u2 in (1.2). These coefficients can be
easily scaled away.
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Thus, although �� is independent of a, its expected cost differs by at most a factor C
from that of the optimal strategy tailored to a; this holds for all a 2R. That is, for fixed T ,
the multiplicative regret of the strategy �� is bounded as a varies over the whole real line.

We explain further how the problem studied here differs from those considered in
[9,10] or [2]. In the context of our simple LQR problem (1.1), (1.2), [2,9] assume that a is
bounded or that a stabilizing gain is provided [10], and produce strategies whose additive
regret exhibits favorable asymptotics as T !1.

Here, we study a simple toy problem in a different regime. We regard T as fixed, and
exhibit a strategy whose multiplicative regret is bounded, even if a varies over the whole
real line. The case a� 1 is dangerous, because the dynamics are then highly unstable if
we undercontrol, while overcontrol will incur a high cost.

We next describe the strategy ��. We will partition the time interval Œ0; T � into a
prologue and several epochs. Note that we can execute our strategy without knowing T .

We begin the Prologue at time 0. During the Prologue we set u.t/�0 and observe q.t/.
Perhaps jq.t/j < 1 for all t 2 Œ0; T /, in which case the Prologue lasts until the end of
the game at time T . On the other hand, there may come a first time t0 2 .0; T / when
jq.t0/j D 1. In that case, we enter Epoch 0 at time t0. During Epoch 0, we continue to set
u.t/ � 0.

Assuming Epoch 0 occurs, we may find that jq.t/j< 2 for all t 2 Œt0; T /, in which case
Epoch 0 lasts until the end of the game. On the other hand, assuming Epoch 0 occurs, there
may come a first time t1 2 .t0; T / when jq.t1/j D 2. At time t1 we then enter Epoch 1,
during which we set

(1.4) a1 D 4
ln.2/
t1 � t0

and apply the control

(1.5) u.t/ D �2a1q.t/:

Here, a1=4 is a guess for the unknown parameter a, and (1.5) is a proxy for (1.3). We
will motivate (1.4) on the next page.

Suppose we have entered Epoch 1. It may happen that jq.t/j < 4 for all t 2 Œt1; T /, in
which case Epoch 1 lasts until the end of the game. On the other hand, it may happen that
jq.t2/j D 4 at some first time t2 2 .t1; T /. In that case, we enter Epoch 2, during which
we set

(1.6) a2 D 4
ln.2/
t2 � t1

C 212a1;

and apply the control

(1.7) u.t/ D �2a2q.t/:

We continue in this way, as many times as necessary. If we find ourselves in Epoch � � 1
starting at time t� 2 .0; T /, then it may happen that jq.t/j < 2�C1 for all t 2 Œt� ; T /, in
which case Epoch � lasts from time t� to the end of the game at time T . On the other
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hand, it may happen that jq.t�C1/j D 2�C1 at some first time t�C1 2 .t� ; T /. In that case,
we enter Epoch � C 1 at time t�C1. During Epoch .� C 1/, we set

(1.8) a�C1 D 4
ln 2

t�C1 � t�
C 212a�

and apply the control

(1.9) u.t/ D �2a�C1q.t/:

With probability 1, we will reach the end of the game after finitely many epochs. This
completes the description of our strategy ��.

We next comment on the proof of Theorem 1.1. The main challenge is to deal with
the case of large positive a, since then (1.1) may be highly unstable. Let us see how our
strategy �� performs in that case.

During the Prologue and Epoch 0 we set u � 0, hence (1.1) reduces to

(1.10) dq D aqdt C dWt ; q.0/ D 0; with a� 1:

It is then very likely that q.t/ will grow rapidly. In particular, we will encounter times t0
and t1 with jq.t0/j D 1 and jq.t1/j D 2, as in our description of the strategy ��.

In Epoch 0 – the time interval Œt0; t1� –, the stochastic ODE (1.10) tells us that q.t/ �
q.t0/ � exp.a � Œt � t0�/ with high probability. Since jq.t0/j D 1 and jq.t1/j D 2, it follows
that a � ln 2=.t1 � t0/ with high probability.

So, at the end of Epoch 0, we have an excellent guess for the unknown a. That is why
we define a1 by equation (1.4); the factor of 4 in that equation is inserted as a margin of
safety. As we enter Epoch 1, we very likely have a1 � 4a, hence (1.5) yields u � �8aq,
and (1.1) becomes

(1.11) dq � �7aqdt C dWt ; with a� 1:

Equation (1.11) leads to extremely stable behavior. In particular, since jq.t1/j D 2, it is
highly likely that soon after time t1 the system enters a regime in which jqj � 1 until
the end of the game at time T . So we will probably encounter the Prologue and Epochs 0
and 1, but no further epochs. During the Prologue and Epoch 0 we gather enough infor-
mation to guess a with high confidence, and in Epoch 1 we use that guess to control the
system and reverse the exponential growth of jqj. That is what happens with high proba-
bility.

We may be very unlucky; with small probability, it may happen that a1 � a. In that
case, (1.4) and (1.5) will lead us to undercontrol the system, and jqj will continue to
grow exponentially. If that disaster occurs, then at some first time t2 2 .t1; T / we will
have jq.t2/j D 4. At time t2 we then enter Epoch 2. We increase our previous guess for
the unknown a based on a1 to a new guess based on a2 given by (1.6). In place of our
previous rule (1.5), we now define our control u.t/ by (1.7). With high probability we
have a2 > a, which allows us to reverse the exponential growth of jqj starting in Epoch 2.
Very likely, then, Epoch 2 lasts until the end of the game at time 1.

However, we may be extraordinarily unlucky and end up with a2� a. In that exceed-
ingly rare event, the exponential increase of jqj continues unabated until we enter Epoch 3.
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We continue in this way until we finally reach an Epoch in which a� > a and the
game ends before we reach Epoch � C 1. This happens with probability 1. Already the
probability that we even reach Epoch 2 is exponentially small for a� 1.

So our strategy �� succeeds in controlling the system when a� 1. In particular, our
guesses (1.4), (1.6), (1.8) for a, and the consequent control formulas (1.5), (1.7), (1.9), are
reasonable.

Now let us see how �� performs when a is large and negative. During the Prologue,
we take u D 0, so our stochastic ODE (1.1) is simply

dq D �jajqdt C dWt ; q.0/ D 0; with jaj � 1:

Very likely, we never encounter jqj D 1, and therefore the Prologue lasts until the end
of the game. Thus, �� will very likely tell us to set u.t/ � 0 for all t . The expected cost
of that strategy (“do nothing”) is comparable to the cost of the optimal strategy �opt.a/

when a is large negative.
Finally, suppose a is neither large positive nor large negative; say jaj � 1. Then

S.�opt.a/; a/ and S.��; a/ are bounded above and below by constants depending only
on the time horizon T , which immediately implies the conclusion of Theorem 1.1.

This concludes our introductory explanation of the proof of Theorem 1.1. Detailed
proofs are given in Sections 3-6 below; we warn the reader that the rigorous proofs have to
deal with low-probability disasters omitted from this introduction. Section 7 reviews the
classical LQR problems, in particular deriving the asymptotic behavior of S.�opt.a/; a/

for jaj � 1.
We would like to obtain a strengthened form of Theorem 1.1 in which the constantC is

as small as possible up to an arbitrarily small error " > 0, with the strategy �� depending
on ". We believe that a slight variant of our present �� will be one ingredient in that
"-dependent strategy.

We refer the reader to our previous paper [12] for additional problems involving con-
trol with learning on the fly.

2. Main result and outline of proof

In this section we discuss the proof of Theorem 1.1. We adopt the following notation for
the remainder of the paper: We write Sopt.a/ WD S.�opt.a/; a/ and S�.a/ WD S.��; a/. In
order to prove Theorem 1.1, it is necessary to understand the asymptotic behavior of Sopt.
This is the content of the following lemma.

Lemma 2.1. There exists a constant C > 0, depending only on the time horizon T , such
that the following hold:

(i) For all jaj � 1, Sopt.a/ � C .

(ii) For all a � 1, Sopt.a/ � Ca.

(iii) For all a � �1, Sopt.a/ � C=jaj.

We prove Lemma 2.1 in Section 7. The following lemma, combined with Lemma 2.1,
proves Theorem 1.1.
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Lemma 2.2. There exists a constant C > 0, depending only on the time horizon T , such
that the following hold:

(i) For any a � 1, S�.a/ � Ca.

(ii) For any jaj � 1, S�.a/ � C .

(iii) For any a � �1, S�.a/ � C=jaj.

The proof of Lemma 2.2 is given in Sections 4-6.

Conventions on constants. Throughout this paper, we let C;C 0; C 00; : : : denote positive
constants depending only on T . If we wish to specify that a positive constant depending
only on T is smaller than 1 we use c; c0; : : :. These constants are not fixed throughout the
paper and will change from one line to another.

Given quantities X;Y � 0, we will write either X . Y or X D O.Y / if there exists a
constant C > 0 depending only on T such that X � CY . We write X � Y if X . Y and
Y . X .

3. Preliminaries

We begin this section by establishing some notation. For � � 0, we define q� WD 2� . We
also define q�1 WD 0. For � � �1 we let t� denote the first time t 2 Œ0; T / for which
jq.t/j D q� if such a time exists. If no such time exists we set t� D T . Note that we always
have t�1 D 0. For � � 0, we will refer to the time interval Œt� ; t�C1/ as Epoch �. If t� < T
then we say that Epoch � occurs. We let E� denote the event that Epoch � occurs. We
refer to the time interval Œ0; t0/ as the Prologue; note that the Prologue always occurs.

We now recall our strategy. Let us denote our control in the Prologue by u�1.t/ and
our control in Epoch � by u�.t/, i.e., when Epoch � occurs we set u.t/ D u�.t/ for
t 2 Œt� ; t�C1/. In the Prologue and Epoch 0 we exercise no control, i.e., we set u�1;u0 � 0.
When Epoch � occurs, we control during Epoch � with u�.t/D �2a� q.t/, where a� will
be defined shortly. We define a�1 D a0 D 0. We let C0 and C1 denote positive constants
which will be chosen later. Then, when Epoch � occurs for � � 1, we define

(3.1) a� D C0
log.2/
t� � t��1

C C1a��1:

Note that when Epoch � occurs for � � 1 we are guaranteed to have a� > 0. In Lemma 4.2
we fix C0 D 4 and C1 D 2`# , where `# is a universal constant which is chosen to be
sufficiently large in the later sections (we will see that it suffices to take `# D 12, and so
we can take C1 D 212 as in (1.8)).

Finally, for a given value of a in (1.1) we will write S�.a/ to denote the cost incurred
in Epoch � using strategy ��, and S�1.a/ to denote the cost incurred in the Prologue using
strategy ��. Specifically, we set

S�.a/ WD

Z t�C1

t�

.q2.t/C u2�.t// dt:

Note that S�.a/ is a random variable depending on the noise .Wt / in (1.1).
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We now state and prove some preliminary lemmas.

Lemma 3.1. Fix b ¤ 0 and � � �1. Define

X
.b/
t WD e

�bt
Qq.t/ � q� ;

where Qq is a random process satisfying Qq.0/ D q� and governed by

(3.2) d Qq D .b Qq/ dt C d zWt ;

where . zWt / is the standard Brownian motion. Then the following hold:

(1) For fixed t , X .b/t is a normal random variable with mean 0 and variance 1�e�2bt

2b
.

(2) Define
M
.b/
t WD sup

0�s�t

X .b/s :

Then for any � > 0,

P .M .b/
t > �/ D 2P .X .b/t > �/:

Proof. Using an integrating factor of the form e�bs Qq gives

d.e�bs Qq/ D e�bs d Qq � be�bs Qq ds D e�bsd zWs :

For fixed s, e�bsd zWs is normally distributed with mean 0 and variance e�2bsds. Integrat-
ing from 0 to t gives

(3.3) e�bt Qq.t/ � q� D

Z t

0

e�bs d zWs :

The right-hand side of (3.3) is normally distributed with mean 0 and (by the Itô isometry)
variance .1 � e�2bt /=.2b/. This proves the first claim.

Note that if we replace X .b/t by the Brownian motion then the second claim is simply
the reflection principle for the Brownian motion (see, for example, [13]). Therefore we
refer to this claim as the reflection principle for X .b/t . Note, however, that for fixed b,
X
.b/
t has a.s. continuous paths. Moreover, X .b/t satisfies the strong Markov property and

.X
.b/
tCt 0 �X

.b/
t / � e�btX

.b/
t 0 is symmetric. Examining the proof of the reflection principle

for the Brownian motion in [13] shows that these conditions are sufficient to prove the
reflection principle for X .b/t .

Remark 3.2. We first note that if, in Lemma 3.1, we assume instead that Qq.0/ D �q�
then, due to the symmetry of (3.2), we have that .e�bt Qq.t/C q�/ is distributed the same
as X .b/t given Qq.0/ D q� .

We also note that, when we apply Lemma 3.1, we will be taking Qq.t/ D q.t� C t /

in Epoch �, conditioned on an event that specifies a� and is independent of the noise in
Epoch �. In this case, we will be taking b D a � 2a� .

Remark 3.3. We record here a few simple observations which we will use repeatedly
throughout this paper. First, we note that there exists a constant c 2 .0; 1/ such that
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(a) When jbt j � 1=10, then

c � .bt/ � 1 � e�bt � bt:

(b) When bt � 1=10, then
c � 1 � e�bt < 1:

Second, for any positive integer N there exists a constant CN such that

exp.�x/ � CN � x�N for all x > 0.

Finally, we note that there exist constants C > 0 and c 2 .0; 1/ such that if Y is a
normal random variable with mean 0 and standard deviation � , then for any x > 0 we
have

P .jY j > x�/ � C exp.�cx2/:

Lemma 3.4. Fix ı > 0 and � � 0, and suppose that Qq is governed by (3.2) with b ¤ 0.
Suppose that j Qq.t�/j D 2� . Then

(1) if b > 0, then for each t > 0 the probability that j Qq.t� C t /j … Œ2�ebt .1 � ı/;
2�ebt .1C ı/� is at most Ce�cı

222�b;
(2) for each t 2 Œ0; 1

10jbj
�, the probability that j Qq.t�C t /j… Œ2�ebt .1�ı/; 2�ebt .1Cı/�

is at most Ce�cı
222�=t .

Proof. We write I WD Œ2�ebt .1 � ı/; 2�ebt .1C ı/�. First note that

P .j Qq.t� C t /j … I /

� P .j Qq.t� C t /j … I j Qq.t�/ D 2
�/C P .j Qq.t� C t /j … I j Qq.t�/ D �2

�/:

(3.4)

Now, since the event j Qq.t� C t /j … I implies the events Qq.t� C t / … I and �Qq.t� C t / … I ,
we continue from (3.4) to get

P .j Qq.t� C t /j … I /

� P . Qq.t� C t / … I j Qq.t�/ D 2
�/C P .�Qq.t� C t / … I j Qq.t�/ D �2

�/:

(3.5)

Note that when Qq.t�/ D 2� , Qq.t� C t / … I means that e�bt Qq.t� C t / � 2� … Œ�2�ı; 2�ı�.
Therefore

(3.6) P . Qq.t� C t / … I j Qq.t�/ D 2
�/ � P .X .b/t … Œ�2

�ı; 2�ı�/;

where X .b/t is as defined in Lemma 3.1. Similarly, when Qq.t�/ D �2� , �Qq.t� C t / … I
means that

(3.7) �e�bt Qq.t� C t / � 2
�
… Œ�2�ı; 2�ı�:

By Remark 3.2,

(3.8) P . Qq.t� C t /C 2
�
… Œ�2�ı; 2�ı� j Qq.t�/ D �2

�/ D P .X .b/t … Œ�2
�ı; 2�ı�/:
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Combining (3.5)–(3.8) gives

P .j Qq.t� C t /j … I / . P .X .b/t … Œ�2
�ı; 2�ı�/:(3.9)

By Remark 3.3 and Lemma 3.1, when jtbj � 1=10, the standard deviation of X .b/t is

� D
�1 � e�2bt

2b

�1=2
� t1=2;

and when tb � 1=10, the standard deviation of X .b/t is

� D
�1 � e�2bt

2b

�1=2
�

1

b1=2
�

Note that when X .b/t … Œ�2
�ı; 2�ı� holds, the normal random variable X .b/t is at least

N WD 2�ı=� standard deviations from its mean. By Remark 3.3, this implies that the
probability ofX .b/t … Œ�2

�ı;2�ı� holding for a given t is at most C exp.�cN 2/. Therefore

(3.10) P .X .b/t … Œ�2
�ı; 2�ı�/ .

´
exp.�c22�ı2=t/ when t jbj < 1=10;
exp.�c22�ı2b/ when tb > 1=10:

Note that t jbj < 1=10 implies that

(3.11) exp
�
�
c22�ı2

t

�
. exp.�c22�ı2b/I

combining (3.9), (3.10), and (3.11) proves the lemma.

Remark 3.5. Throughout this note, we will analyze probabilities which are conditioned
on events of the form a� 2 I for some interval I . We clarify here that this event will
always mean “Epoch � occurs and a� 2 I ”.

Before stating the next lemma, we remind the reader of the constants C0 and C1
appearing in the definition of a� (see equation (3.1)). Recall that C0 D 4 and C1 D 2`# ,
where `# is a universal constant which is chosen to be sufficiently large in the later sec-
tions.

Lemma 3.6. Let � � 1 and a 2 R. Let X � Œ0;1/, 
 WX ! .0;1/ and ˇWX ! .0;1/.
Suppose

ja � 2xj � 
.x/ and

.x/

ˇ.x/
<

1

10C0 log.2/
for all x 2 X . Let

ˇ� D inf
x2X

ˇ.x/:

Then
P ..a� � C1a��1/ � ˇ.a��1/ja��1 2 X/ . exp.�c22�ˇ�/:

Proof. Fix Qa 2 X . Using the definition of a� , we have

P .a� � C1 Qa � ˇ. Qa/j.a��1 D Qa// D P
�C0 log.2/
t� � t��1

� ˇ. Qa/
ˇ̌̌
.a��1 D Qa/

�
D P

�
9t2 Œ0; t�. Qa/� W jq.t��1 C t /j > 2

�
j.a��1 D Qa/

�
;(3.12)
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where t�WX ! R is defined by

(3.13) t�.x/ WD
C0 log.2/
ˇ.x/

�

Using our hypotheses on 
 and ˇ gives

(3.14) j.a � 2 Qa/t�. Qa/j <
1

10
�

Now observe that

P
�
9t 2 Œ0; t�. Qa/� W jq.t��1 C t /j > 2

�
ˇ̌
.a��1 D Qa/

�
� P

�
9t 2 Œ0; t�. Qa/� W q.t��1 C t / > 2

�
ˇ̌
.a��1 D Qa/ \ .q.t��1/ D 2

��1/
�

C P
�
9t 2 Œ0; t�. Qa/� W q.t��1 C t / < �2

�
ˇ̌
.a��1 D Qa/ \ .q.t��1/ D 2

��1/
�

C P
�
9t 2 Œ0; t�. Qa/� W q.t��1 C t / > 2

�
ˇ̌
.a��1 D Qa/ \ .q.t��1/ D �2

��1/
�

C P
�
9t 2 Œ0; t�. Qa/� W q.t��1 C t / < �2

�
ˇ̌
.a��1 D Qa/ \ .q.t��1/ D �2

��1/
�
:(3.15)

If t 2 Œ0; t�. Qa/� and q.t��1 C t / > 2� , then by Remark 3.3 and (3.14) we have

(3.16) q.t��1 C t /e
.a�2Qa/t

� 2��1 > 2��1
�
2 �

9

10
� 1

�
> c2��1

and

(3.17) q.t��1 C t / e
.a�2Qa/t

C 2��1 > 2��1 > c2��1

for all t 2 Œ0; t�. Qa/�. Similarly, if t 2 Œ0; t�. Qa/� and q.t��1 C t / < �2� , then

(3.18) q.t��1 C t / e
.a�2Qa/t

� 2��1 < �2��1 < �c2��1

and

(3.19) q.t��1 C t / e
.a�2Qa/t

C 2��1 < �2��1
�
2 �

9

10
� 1

�
< �c2��1:

Combining (3.15) through (3.19) with the definition of X .b/t and Remark 3.2 gives

P .9t 2 Œ0; t�.a��1/� W jq.t��1 C t /j > 2
�
ja��1 D Qa/

. P .9t 2 Œ0; t�. Qa/� W X .a�2Qa/t > c2��1/:

(3.20)

The reflection principle for X .b/t (the second part of Lemma 3.1) gives

P .9t 2 Œ0; t�. Qa/� W X .a�2Qa/t > c2��1/ � P
�
X
.a�2Qa/

t�.Qa/
> c2��1

�
:(3.21)

By (3.10), (3.13), and (3.14) we have

(3.22) P
�
X
.a�2Qa/

t�.Qa/
> Qc 2��1

�
. exp

�
�
c22�

t�. Qa/

�
. exp.�c022�ˇ�/:

Combining (3.12) with (3.20)–(3.22) finishes the proof of the lemma.



J. Carruth, M. F. Eggl, C. Fefferman, C. W. Rowley and M. Weber 2196

Before stating the next lemma, we remind the reader that we write E� to denote the
event that we reach Epoch �.

Lemma 3.7. Letm;M 2 R satisfy 0 < m < M . Let � � 1 be an integer. Let X � Œ0;1/
such that if Qa 2 X then m < 2 Qa � a < M . Then

P .E� j a��1 2 X/ . M exp.�c22�m/:

Proof. Fix Qa 2 X and Qt 2 .0; T /. Define Qb WD a � 2 Qa, �t WD 1
10M

, N WD bT�Qt
�t
c, and

Ij WD Œ j̨ ; ǰ � for j D 0; 1; : : : ;N ; here j̨ WD j�t for j D 0; 1; : : : ;N , ǰ D .j C 1/�t

for j D 0; 1; : : : ;N � 1, and ˇN D .T � Qt /. We remark that ˇN � .N C 1/�t . Note that
Qb 2 .�M;�m/. We have

P .E� j.a��1 D Qa/ \ .t��1 D Qt //

D P
�
9t 2 .0; T � Qt / W jq.Qt C t /j > 2� j .a��1 D Qa/ \ .t��1 D Qt /

�
�

NX
jD0

P
�
9t 2 Ij W jq.Qt C t /j > 2

�
j .a��1 D Qa/ \ .t��1 D Qt /

�
:

(3.23)

We claim that

(3.24) P
�
9t 2 Ij W jq.Qt C t /j > 2

�
j .a��1 D Qa/ \ .t��1 D Qt /

�
. exp.�c22�m/:

Combining (3.23) and (3.24), and using the fact that N . M gives

P
�
E� j .a��1 D Qa/ \ .t��1 D Qt /

�
. M exp.�c22�m/:

This proves the lemma. Thus it just remains to establish (3.24). We begin by noting that

P
�
9t 2Ij W jq.QtC t /j > 2

�
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
. P

�
9t 2 Ij W q.QtC t / > 2

�
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt / \ .q.t��1/ D 2

��1/
�

C P
�
9t 2Ij W q.QtC t / < �2

�
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt / \ .q.t��1/ D 2

��1/
�

C P
�
9t 2Ij W q.QtC t / > 2

�
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt / \ .q.t��1/ D �2

��1/
�

C P
�
9t 2Ij W q.QtC t / < �2

�
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt / \ .q.t��1/ D �2

��1/
�
:(3.25)

Since Qb < 0, we have e�Qbt � e�Qbj�t for t 2 Ij . Thus the existence of t 0 2 Ij for which
q.Qt C t 0/ > 2� implies that

(3.26) q.Qt C t 0/ e�
Qbt 0
� 2��1 & 2�e�

Qbt 0
� 2�e�

Qbj�t :

Similarly, if there exists t 0 2 Ij for which q.Qt C t 0/ < �2� , then we have

(3.27) q.Qt C t 0/ e�
Qbt 0
� 2��1 < �2�e�

Qbt 0
� 2��1 < �2�e�

Qbt 0
� �2�e�

Qbj�t :

This shows that the first two terms on the right-hand side of (3.25) are each bounded by

(3.28) P
�
9t 2 Ij W X

. Qb/
t > c2�e�

Qbj�t
�
;

where X .
Qb/
t is as in Lemma 3.1.
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By Remark 3.2, q.t��1 C t /e�
Qbt C 2��1 given q.t��1/ D �2��1 has the same distri-

bution as X .
Qb/
t . Using this observation, and arguing as in (3.26) and (3.27), shows that the

third and fourth terms on the right-hand side of (3.25) are also each bounded by (3.28).
Therefore

P
�
9t 2Ij W jq.Qt C t /j > 2

�
j .a��1 D Qa/ \ .t��1 D Qt /

�
. P

�
9t 2Ij W X

. Qb/
t > c2�e�

Qbj�t
�
:

(3.29)

The right-hand side of (3.29) is bounded by

P
�
9t 2 Œ0; ǰ � W X

. Qb/
t > c2�e�

Qbj�t
�
;

which, by the reflection principle for X .
Qb/
t (the second part of Lemma 3.1), is equal to

2P
�
X
. Qb/

ǰ
> c2�e�

Qbj�t
�
:

By Lemma 3.1, the standard deviation of X .
Qb/

ǰ
is

�1 � e�2 Qb ǰ

2 Qb

�1=2
:

Note that Remark 3.3 and the fact that j Qb�t j < 1=10 tell us that e Qb�t � .1C Qb�t/ > c.
Also, since Qb < 0, and since .j C 1/�t � ǰ for all 0 � j � N , we have je2 Qb.jC1/�t �
e2
Qb..jC1/�t� ǰ /j � 1 for all 0 � j � N . Therefore

c2�e�
Qbj�t j Qbj1=2

j1 � e�2
Qb ǰ j1=2

D
c2� j Qbj1=2e

Qb�t

je2
Qb.jC1/�t � e2

Qb..jC1/�t� ǰ /j1=2
� c0 2� j Qbj1=2 � c00 2�m1=2:

Thus when X .
Qb/

ǰ
> c2�e�

Qbj�t , the normal random variable X .
Qb/

ǰ
is at least c2�m1=2 stan-

dard deviations from its mean. Therefore, by Remark 3.3,

P
�
X
. Qb/

ǰ
> c2�e�

Qbj�t
�
� C exp.�c22�m/:

This completes the proof of (3.24), thereby completing the proof of the lemma.

Lemma 3.8. Let M � 0 and m > 0 be real numbers. Let � � �1 be an integer. Let X
be an event which is determined by a� and a��1 and which implies that aCm

2
� a� �M .

Then

EŒS�.a/ j X� .
.1CM 2/.1C q2� /

m
�

Proof. Fix Qa with .aCm/=2 � Qa �M . Since the event X is independent of the noise in
Epoch �, we can apply Lemma 3.1 to get that

(3.30) EŒq2.t� C t /
ˇ̌
.a� D Qa/ \X� D q

2
� e

2.a�2Qa/t
C
e2.a�2Qa/t � 1

2.a � 2 Qa/
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(since q.t� C t / is governed by dq D .a � 2 Qa/qdt C dWt and jq.t�/j D q�). Let �I
denote the indicator function of an interval I � R. Note that

EŒS�.a/ j .a� D Qa/ \X� . .1CM 2/E
hZ t�C1�t�

0

q2.t� C t /dt
ˇ̌̌
.a� D Qa/ \X

i
D .1CM 2/E

h Z T

0

q2.t� C t / �Œ0;t�C1�t� �.t/ dt
ˇ̌̌
.a� D Qa/ \X

i
D .1CM 2/

Z T

0

E
�
q2.t� C t /�Œ0;t�C1�t� �.t/

ˇ̌
.a� D Qa/ \X

�
dt

� .1CM 2/

Z T

0

q2� e
2.a�2Qa/t

C
e2.a�2Qa/t � 1

2.a � 2 Qa/
dt;(3.31)

where the last line follows from (3.30). Next, note that

(3.32)
Z T

0

q2� e
2.a�2Qa/t dt D

q2� .e
.2.a�2Qa/T � 1/

2.a � 2 Qa/
�

Since 2 Qa � a > m > 0, we have

(3.33)
q2� .e

.2.a�2Qa/T � 1/

2.a � 2 Qa/
.
q2�
m

and

(3.34)
e2.a�2Qa/t � 1

2.a � 2 Qa/
.
1

m

for all t 2 Œ0; T �. Combining (3.31)–(3.34) gives

EŒS�.a/ j .a� D Qa/ \X� . .1CM 2/
�q2� C 1

m

�
for any .aCm/=2 < Qa �M . Since X implies that .aCm/=2 < Qa �M , we have that

EŒS�.a/ j X� �
.1CM 2/.q2� C 1/

m
�

Lemma 3.9. Let � � 1 and a > 0. Fix Qa � a=4, Qt 2 Œ0; T /, and ı 2 .0; 1/. Define

t 0 WD
log.2/ � log.1C ı/

a � 2 Qa
and t 00 WD

log.2/ � log.1 � ı/
a � 2 Qa

�

Then

(1) If Qt C t 0 � T , then

P
�
t 0 < t� � Qt < t

00
j .a��1 D Qa/ \ .t��1 D Qt /

�
� 1 � C exp.�22�aı2c/:

(2) If Qt C t 0 � T , then

P
�
E� j .a��1 D Qa/ \ .t��1 D Qt /

�
� C exp.�22�aı2c/:
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Proof. First, observe that when Qt C t 0 � T , we have

P .t��Qt < t
0
j .a��1 D Qa/ \ .t��1 D Qt //

� P .9� 2 Œ0; t 0� W jq.Qt C �/j > 2� j .a��1 D Qa/ \ .t��1 D Qt //:

(3.35)

Define b WD .a � 2 Qa/. Note that Qa � a=4 implies that b � a=2. In particular, b > 0 and
thus we have eb� .1C ı/ � ebt

0

.1C ı/ D 2 for any � 2 Œ0; t 0�. Therefore,

P .9� 2 Œ0; t 0� W jq.Qt C �/j > 2� j .a��1 D Qa/ \ .t��1 D Qt //

� P .9� 2 Œ0; t 0� W jq.Qt C �/j > 2��1eb� .1C ı/ j .a��1 D Qa/ \ .t��1 D Qt //

� P .9� 2 Œ0; t 0� W jq.Qt C �/j … I j .a��1 D Qa/ \ .t��1 D Qt //;

(3.36)

where we write I to denote the interval Œ2��1eb� .1 � ı/; 2��1eb� .1C ı/�. Arguing as in
equations (3.4) through (3.9), we have

P
�
9� 2 Œ0; t 0� W jq.Qt C �/j … I

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
. P

�
9� 2 Œ0; t 0� W jX .b/� j > 2

��1ı
�
:

(3.37)

By the reflection principle for X .b/t (the second part of Lemma 3.1),

(3.38) P
�
9� 2 Œ0; t 0� W jX .b/� j > 2

��1ı
�
� P

�
jX

.b/
t 0 j > 2

��1ı
�
:

Combining (3.10) with (3.36)–(3.38), and using that b � a=2, we get

P
�
9� 2 Œ0; t 0� W jq.Qt C �/j > 2�

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
. exp.�c22�ı2b/ . exp.�c022�ı2a/:

Combining this with (3.35) implies that

(3.39) P .t� � Qt < t
0
j .a��1 D Qa/ \ .t��1 D Qt // . exp.�c022�ı2a

�
when Qt C t 0 � T . Note that

P .E� j .a��1 D Qa/ \ .t��1 D Qt //

D P
�
9� 2 Œ0; T � Qt / W jq.Qt C �/j > 2�

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
:

Arguing as in the proof of (3.39) shows that we have

P .E� j .a��1 D Qa/ \ .t��1 D Qt // . exp.�c022�ı2a/

when Qt C t 0 � T ; this proves the second assertion of the lemma.
Note that if Qt C t 00 > T , then

P .t� > Qt C t
00/ D 0:

This, combined with (3.39), proves the first assertion of the lemma when Qt C t 00 > T . Now
observe that when Qt C t 00 � T we have

P
�
.t� � Qt / > t

00
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
D P

�
8� 2 Œ0; t 00/; jq.Qt C �/j < 2�

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
� P

�
jq.Qt C t 00�j < 2�

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
:
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Since 2� D 2��1ebt
00

.1 � ı/,

P
�
jq.Qt C t 00/j < 2�

ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
D P

�
jq.Qt C t 00/j < 2��1ebt

00

.1 � ı/
ˇ̌̌
.a��1 D Qa/ \ .t��1 D Qt /

�
:

By Lemma 3.4, and again using that b � a=2,

P
�
jq.Qt C t 00/j < 2��1ebt

00

.1 � ı/
ˇ̌
.a��1 D Qa/ \ .t��1 D Qt /

�
. exp.�cı222�b/ . exp.�c0ı222�a/:

Therefore,

(3.40) P .t� � Qt > t
00
j .a��1 D Qa/ \ .t��1 D Qt // . exp.�cı222�a/:

Combining (3.39) and (3.40) finishes the proof of the first assertion of the lemma.

4. When a is large and positive

The goal of this section is to prove Lemma 2.2(i). In particular, we will show that

(4.1) S�.a/ . a

when a � 1. We define

Ao WD
®
b 2 R W 2`#a � b

¯
;

Ap WD
®
b 2 R W a � b < 2`#a

¯
;

Au WD
®
b 2 R W 0 � b < a

¯
;

where `# is as in Section 3. We have

EŒS�.a/� D EŒS�.a/ j a� 2 Ao� � P .a� 2 Ao/C EŒS�.a/ j a� 2 Ap� � P .a� 2 Ap/

C EŒS�.a/ j a� 2 Au� � P .a� 2 Au/:(4.2)

We now state a lemma which will allow us to control (4.2).

Lemma 4.1. If a � 1 and � � 1, then

(i) EŒS�.a/ j a� 2 Au� � P .a� 2 Au/ . 1=22� ,

(ii) EŒS�.a/ j a� 2 Ap� � P .a� 2 Ap/ . a=22� , and

(iii) EŒS�.a/ j a� 2 Ao� � P .a� 2 Ao/ . 1=22� .

Note that we have

S�.a/ D

1X
�D�1

EŒS�.a/�:

Combining this with (4.2) and the lemma above givesX
��1

EŒS�.a/� .
1X
�D1

a

22�
. a:
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We note that EŒS�1.a/�D O.1/ and EŒS0.a/�D O.1/. So once we prove Lemma 4.1, we
will have proved (4.1). The proof of Lemma 4.1 is contained in Sections 4.1–4.2. It relies
on the following lemma, which we devote the remainder of this section to proving.

Recall that E� denotes the event that Epoch � occurs. We write Ec� to denote the
complement of this event, i.e., the event that Epoch � does not occur.

Lemma 4.2. If � � 1, a > 0, and 0 � Qa � a=4, then

P ..a� 2 Ap/ [E
c
� j a��1 D Qa/ � 1 � C exp.�c22�a/:

Proof. Fix Qt 2 .0; T / and write b D a � 2 Qa. Define

t 0 D
log.2/ � log.1C 1=2/

b
D

log.4=3/
b

and

t 00 D
log.2/ � log.1 � 1=2/

b
D
2 log.2/
b

�

Then, since Qa � a=4, Lemma 3.9 tells us that when Qt C t 0 � T we have

P .E� j .a��1 D Qa/ \ .t��1 D Qt // . exp.�c22�a/:

When Qt C t 0 � T , then Lemma 3.9 tells us that

(4.3) P
�
t 0 < t� � Qt < t

00
j .a��1 D Qa/ \ .t��1 D Qt /

�
� 1 � C exp.�22�ac/:

Recall the definition of a� :

a� D C0
log.2/
t� � t��1

C C1a��1:

Combining this with (4.3) tells us that after conditioning on the events .a��1 D Qa/ and
.t��1 D Qt /, we have that

(4.4) C0
log.2/
t 00

� a� � C0
log.2/
t 0
C
C1

4
a

holds with probability � 1�C exp.�22�ac/. For reasons that will become clear through-
out the proof of Lemma 2.2, we would like C1D 2`# . We would like to guarantee that (4.4)
implies a� 2 Ap , therefore we need to choose `# and C0 so that

(4.5) a � C0
log.2/
t 00

and

(4.6) C0
log.2/
t 0

< 2`# a �
C1

4
a D 2`# a

3

4
�

Since b � a=2 (this follows from the hypothesis that Qa � a=4), we have

C0
log.2/
t 00

D C0
b

2
� C0

1

4
a �
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Therefore setting C0 D 4 ensures that (4.5) holds. Note that since b < a,

C0
4 log.2/
3t 0

D
16 log.2/b
3 log.4=3/

< 13a:

Thus, provided `# � 4, we have

C0
4 log.2/
3t 0

< 2`#a

and (4.6) holds. This proves the lemma in the remaining case Qt C t 0 � T .

4.1. Proof of Lemma 4.1 (i) and 4.1 (ii)

Proof of Lemma 4.1(i). Recall the definition of a� :

a� D C0
log.2/
t� � t��1

C C1a��1;

where C0 D 4 and C1 D 2`# . Notice that a� � C1a��1 and we can choose `# to ensure
C1 D 2

`# > 4. Therefore a� 2 Au implies that

a��1 �
a

C1
<
a

4
;

and so we have

P .a� 2 Au/ D P ..a� 2 Au/ \ .a��1 � a=4// � P .a� 2 Au j a��1 � a=4/:

Applying Lemma 4.2 gives

P .a� 2 Au j a��1 � a=4/ � 1 � P ..a� 2 Ap/ [E
c
� j a��1 � a=4/ . exp.�c22�a/:

Combining these gives that

(4.7) P .a� 2 Au/ . exp.�c22�a/

for � � 1. Recall that we write �I to denote the indicator function of an interval I � R.
Note that since a� 2 Au implies that a� � a, we have that

EŒS�.a/ j a� 2 Au� D E
h�
1C .2a�/

2
� Z t�C1

t�

q2.t/ dt
ˇ̌̌
a� 2 Au

i
. a2

Z T

0

E
�
q2.t/ � �Œt� ;t�C1�.t/

ˇ̌
a� 2 Au

�
dt . a222.�C1/;

where the last inequality uses the fact that jq.t/j � 2�C1 for t� � t � t�C1. Combining
this with (4.7) and applying Remark 3.3 finishes the proof.



Controlling unknown linear dynamics with bounded multiplicative regret 2203

Proof of Lemma 4.1(ii). By applying Lemma 3.8 with M D 2`#a and m D a, we obtain

(4.8) EŒS�.a/ j a� 2 Ap� . a22� :

Using the trivial bound P .a1 2 Ap/ � 1, we see that

(4.9) EŒS1.a/ j a1 2 Ap� � P .a1 2 Ap/ . a:

We now claim that

(4.10) P .a� 2 Ap/ D O
� 1

a224�

�
for � > 1. As in the proof of Lemma 4.1(i), we observe that a� � C1a��1. Note that if
a� 2 Ap , then a� < 2`#a; our choice of C1 D 2`# therefore guarantees that a��1 < a when
a� 2 Ap . Therefore

P .a� 2 Ap/ D P ..a� 2 Ap/ \ .a��1 2 Au// � P .a��1 2 Au/:

By (4.7) and Remark 3.3, we have that

(4.11) P .a��1 2 Au/ . exp.�c22�a/ D O
� 1

a224�

�
for � > 1. This proves (4.10). Combining (4.8) and (4.10), we get

EŒS�.a/ j a� 2 Ap� � P .a� 2 Ap/ .
1

a22�
�

a

22�

when � > 1. Combining this with (4.9) proves the lemma.

4.2. Proof of Lemma 4.1 (iii)

We begin this section by introducing some notation. Define, for integers ` � `# and � > 1,

A`o;� WD ¹b 2 R W 2`a��1 � b < 2
`C1a��1º;

A`o WD ¹b 2 R W 2`a � b < 2`C1aº:

As in the proof of Lemma 4.1(i), note that a� � 2`#a��1. Therefore, when � > 1, we have

EŒS�.a/ j a� 2 Ao� � P .a� 2 Ao/

D

X
`1�`#
`2�`#

E
�
S�.a/

ˇ̌
.a� 2 A

`2
o;�/ \ .a��1 2 A

`1
o /
�
� P ..a� 2 A

`2
o;�/ \ .a��1 2 A

`1
o //

C

X
`�`#

E
�
S�.a/

ˇ̌
.a� 2 A

`
o;�/ \ .a��1 2 Ap/

�
� P ..a� 2 A

`
o;�/ \ .a��1 2 Ap//

C

X
`�`#

E
�
S�.a/

ˇ̌
.a� 2 A

`
o/ \ .a��1 2 Au/

�
� P ..a� 2 A

`
o/ \ .a��1 2 Au//:

(4.12)



J. Carruth, M. F. Eggl, C. Fefferman, C. W. Rowley and M. Weber 2204

When � D 1, we have instead

EŒS1.a/ j a1 2 Ao� � P .a1 2 Ao/

D

X
`�`#

EŒS1.a/ j .a1 2 A
`
o/ \ .a0 2 Au/� � P ..a� 2 A

`
o/ \ .a0 2 Au//:

(4.13)

This is because a0 D 0, and so a0 2 Au. We write a0 2 Au in (4.13) rather than a0 D 0
to be consistent with (4.12).

Proof of Lemma 4.1(iii). Let � � 1. We will apply Lemma 3.8 three times. First, when
`1 � `# and `2 � `# we take M D 2`2C`1C2a and m D .2`1C`2 � 1/a to get

(4.14) EŒS�.a/ j .a� 2 A
`2
o;�/ \ .a��1 2 A

`1
o /� . 2`1C`2 a22� :

Next, when ` � `# we take M D 2`C`#C1a and m D .2` � 1/a to get

(4.15) EŒS�.a/ j .a� 2 A
`
o;�/ \ .a��1 2 Ap/� . 2`a22� :

Last, when ` � `#, we take M D 2`C1a and m D .2` � 1/a to get

(4.16) EŒS�.a/ j .a� 2 A
`
o/ \ .a��1 2 Au/� . 2`a22� :

Now let � > 1. Note that the event .a��1 2A
`1
o / implies that .2`1C1 � 1/a� 2a��1 � a

< .2`1C2 � 1/a. By Remark 3.5, the event .a� 2 A
`#
o;�/ implies the occurrence of the

event E� (recall that E� is the event that Epoch � occurs). Therefore for `1 � `# we have

P ..a� 2 A
`#
o;�/ \ .a��1 2 A

`1
o // � P .E� j .a��1 2 A

`1
o //:

We can then use Lemma 3.7 to get that

P .E� j .a��1 2 A
`1
o // . 2`1a exp.�c22� 2`1a/:

Combining the last two inequalities and applying Remark 3.3 gives

(4.17) P ..a� 2 A
`#
o;�/ \ .a��1 2 A

`1
o // .

1

26� 22`1a2
�

Similarly, note that the event .a��1 2 Ap/ implies that a � 2a��1 � a � .2`#C1 � 1/a.
We note that

P ..a� 2 A
`#
o;�/ \ .a��1 2 Ap// � P .E� j .a��1 2 Ap//

and apply Lemma 3.7 to get that

P .E� j .a��1 2 Ap// . a exp.�c22�a/:

Combining the last two inequalities and applying Remark 3.3 gives

(4.18) P ..a� 2 A
`#
o;�/ \ .a��1 2 Ap// .

1

24�a
�
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Next, note that when � � 2 we can apply (4.7) to get

P
�
.a� 2 A

`#
o / \ .a��1 2 Au/

�
� P .a��1 2 Au/ . exp.�c22�a/ .

1

24�a2
�(4.19)

When � D 1, we apply Lemma 4.2 to get that

(4.20) P .a1 2 A
`#
o / � 1 � P ..a1 2 Ap/ [E

c
1/ . exp.�ca/ .

1

a2
�

Now suppose ` > `# and � � 1. Note that when a� 2 A`o and a��1 2 Au we have

a� � C1a��1 � 2
`a � 2`#a � 2`�1a;

since C1 D 2`# . Moreover, a��1 2 Au implies that ja � 2a��1j � a. We choose `# to be
sufficiently large to guarantee that

1

2`�1
�

1

2`#
<

1

10C0 log.2/
I

this allows us to apply Lemma 3.6 with 
.x/ WD a and ˇ.x/ WD 2`�1a for all x 2 Au to
get

P
�
.a� 2 A

`
o/ \ .a��1 2 Au/

�
� P

�
.a� 2 A

`
o/
ˇ̌
.a��1 2 Au/

�
� P

�
.a� � C1a��1/ � 2

`�1a
ˇ̌
a��12Au

�
. exp.�c22�2`�1a/ .

1

24� 22`a2
�(4.21)

Now suppose `2 > `# and � > 1. Then .a� 2 A
`2
o;�/ implies that

a� � C1a��1 � 2
`2�1a��1

(where we’ve used that C1 D 2`# ). If a��1 � a, then

ja � 2a��1j � 2a��1:

Again, we choose `# to be sufficiently large to guarantee that

1

2`2�2
�

1

2`#�1
<

1

10C0 log.2/
I

this allows us to apply Lemma 3.6 with 
.x/ D 2x and ˇ.x/ D 2`2�1x for x 2 A`1o to get

P
�
.a� 2 A

`2
o;�/ \ .a��1 2 A

`1
o /
�
� P

�
.a� 2 A

`2
o;�/

ˇ̌
.a��1 2 A

`1
o /
�

� P
�
.a� � C1a��1/ � 2

`2�1a��1
ˇ̌
.a��1 2 A

`1
o /
�

. exp.�c22� 2`2C`1a/ .
1

24� 22.`1C`2/a2
;(4.22)

and again with x 2 Ap to get

P
�
.a� 2 A

`2
o;�/ \ .a��1 2 Ap/

�
� P

�
.a� 2 A

`2
o;�/

ˇ̌
.a��1 2 Ap/

�
� P

�
.a� � C1a��1/ � 2

`2�1a��1
ˇ̌
.a��1 2 Ap/

�
. exp.�c22� 2`2a/ .

1

24� 22`2 a2
�(4.23)
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Combining (4.14), (4.17), and (4.22) givesX
`1�`#
`2�`#

E
�
S�.a/ j .a� 2 A

`2
o;�/ \ .a��1 2 A

`1
o /
�
� P
�
.a� 2 A

`2
o;�/ \ .a��1 2 A

`1
o /
�

.
X
`1�`#
`2�`#

2`1C`2a22� �
� 1

24� 22.`1C`2/a2

�
. 2�2�

(4.24)

when � > 1. Next, combine (4.15), (4.18), and (4.23) to getX
`�`#

E
�
S�.a/ j .a� 2 A

`
o;�/ \ .a��1 2 Ap/

�
� P
�
.a� 2 A

`
o;�/ \ .a��1 2 Ap/

�
.
X
`�`#

2`a22� �
� 1

24� 22`a

�
. 2�2�

(4.25)

when � > 1. Finally, combine (4.16), (4.19), (4.20), and (4.21) to getX
`�`#

E
�
S�.a/ j .a� 2 A

`
o/ \ .a��1 2 Au/

�
� P
�
.a� 2 A

`
o/ \ .a��1 2 Au/

�
.
X
`�`#

2`a22� �
� 1

24�22`a2

�
� 2�2�

(4.26)

when � � 1. Combining these three bounds with (4.12) proves the lemma for � > 1.
Combining (4.26) and (4.13) proves the lemma for � D 1.

5. When jaj is bounded

In this section we prove Lemma 2.2 (ii), i.e., we show that there exists a constant C > 1

depending only on T such that S�.a/ � C for all jaj � 1. We first remark that

(5.1)
0X

�D�1

EŒS�.a/� D O.1/

since a�1 D a0 D 0 (and thus u�1 D u0 D 0) and jq.t/j � 2 for all t 2 Œ0; t1�. Next, recall
that

(5.2) a� D C0
log.2/
t� � t��1

C C1 � a��1;

where C0 D 4 and C1 D 2`# . Since we always have t� � t��1 � T , whenever we reach
Epoch � we have a� � C0 log.2/C ��11 =T > 2C ��11 =T . We define

�� WD
l log.T � 2`#/

log.C1/

m
C 1I
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observe that �� D O.1/. Note that if we reach Epoch �� we are guaranteed to have

a�� > 2
`#C1:

This implies that when � � �� C 1 we have

(5.3) EŒS�.a/� D EŒS�.a/ j .a��1 � 1/� � P .a��1 � 1/:

We will show that when � � 2 we have

(5.4) EŒS�.a/ j .a��1 � 1/� � P .a��1 � 1/ D O
� 1

22�

�
:

Combining (5.3) and (5.4) gives

(5.5)
1X

�D��C1

EŒS�.a/� �
1X

�D��C1

C

22�
D O.1/:

We now prove (5.4). Define

OA`o WD ¹b 2 R W 2` � b < 2`C1º

for ` � 0. Fix � � 2. We have

EŒS�.a/ j.a��1 � 1/� � P .a��1 � 1/

D

1X
`1D0

EŒS�.a/ j .a��1 2 OA
`1
o /� � P .a��1 2 OA

`1
o /:

(5.6)

Given a��1 > 0, we define

A`o;� WD ¹b 2 R W 2`a��1 � b < 2
`C1a��1º

for ` � 0. Note that a� � 2`#a��1; this follows from (5.2). Continuing from (5.6), we get

EŒS�.a/ j .a��1 � 1/� � P .a��1 � 1/

D

X
`1�0
`2�`#

EŒS�.a/ j .a�2A
`2
o;�/ \ .a��12

OA`1o /� � P ..a�2A
`2
o;�/ \ .a��12

OA`1o //:(5.7)

The event .a� 2A
`2
o;�/\ .a��1 2 OA

`1
o /, along with the assumption that jaj � 1, implies that

a� � 2
`1C`2C2 and 2a� � a� 2`1C`2C1 � 1� 2`1C`2 . Therefore we can apply Lemma 3.8

to get

(5.8) EŒS�.a/ j .a� 2 A
`2
o;�/ \ .a��1 2

OA`1o /� . 22�2`2C`1 :

Note that

P ..a�2A
`#
o;�/ \ .a��12

OA`1o // � P ..a�2A
`#
o;�/ j .a��12

OA`1o // � P .E� j .a��12 OA
`1
o //:

Since the event .a��1 2 OA
`1
o / for `1 � 0 implies that 2a��1 � a � 2`1C2 C 1 . 2`1 and

that 2a��1 � a � 2`1C1 � 1 � 2`1 , we can apply Lemma 3.7 to get

P .E� j .a��1 2 OA
`1
o // . 2`1 exp.�c22� 2`1/:
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Therefore

(5.9) P ..a� 2 A
`#
o;�/ \ .a��1 2

OA`1o // . 2`1 exp.�c22� 2`1/:

Now suppose that `2 > `#. In this case, the event .a� 2 A
`2
o;�/ implies that

a� � C1a��1 � .2
`2 � 2`#/a��1 � 2

`2�1a��1:

Therefore,

P ..a� 2 A
`2
o;�/ \ .a��1 2

OA`1o // � P .a� 2 A
`2
o;� j a��1 2

OA`1o /

� P .a� � C1a��1 � 2
`2�1a��1 j a��1 2 OA

`1
o /:

Note that ja � 2a��1j � 3a��1 (since we assume jaj � 1 � a��1). We are going to apply
Lemma 3.6 with ˇ.x/ D 2`2�1x, 
.x/ D 3x, and X D OA`1o . Note that in this case ˇ� D
2`2C`1�1. We choose `# to be large enough to ensure that the hypothesis


.x/

ˇ.x/
D

3

2`2�1
�

3

2`#
<

1

10C0 log.2/

holds. Applying Lemma 3.6 gives

P .a� � C1a��1 � 2
`2�1a��1 j a��1 2 OA

`1
o / . exp.�c22� 2`2C`1/:

Consequently,

(5.10) P ..a� 2 A
`2
o;�/ \ .a��1 2

OA`1o // . exp.�c22� 2`2C`1/:

Combining (5.7)–(5.10) and applying Remark 3.3, we get that

EŒS�.a/ j .a��1 � 1/� � P .a��1 � 1/

�

1X
`1D0

22� 22`1 exp.�c22� 2`1/C
X
`1�0
`2>`#

22� 2`2C`1 exp.�c22� 2`2C`1/ D O
� 1

22�

�
:

This proves (5.4). By (5.1) and (5.5), we will have proved Lemma 2.2(ii) once we show
that

(5.11)
��X
�D1

EŒS�.a/� D O.1/:

Note that (5.4), which we have just proved, implies that

EŒS�.a/� D EŒS�.a/ j a��1 < 1� � P .a��1 < 1/CO.1/

for 2 � � � ��. Therefore, since a0 D 0 and �� DO.1/, (5.11) is implied by showing that

(5.12) EŒS�.a/ j a��1 < 1� � P .a��1 < 1/ D O.1/
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for any 1 � � � ��. We first claim that

EŒS�.a/ j .a� � 2
`#C1/ \ .a��1 < 1/� D O.1/

when 1 � � � ��. Recall that we have jq.t/j � 2��C1 when t 2 Œt1; t��C1� and u.t/ D
�2a�q.t/when t 2 Œt� ; t�C1�. Therefore the assumption .a� � 2`#C1/ implies that ju.t/j D
O.1/ for all t 2 Œt1; t��C1�. This shows that when 1 � � � ��, we have

EŒS�.a/ j .a� � 2
`#C1/ \ .a��1 < 1/�

D E
h Z t�C1

t�

.q2.t/C u2.t// dt
ˇ̌̌
.a� � 2

`#C1/ \ .a��1 < 1/
i
D O.1/:

Thus, in order to prove (5.12), it remains to control

EŒS�.a/ j .a� > 2
`#C1/ \ .a��1 < 1/� � P ..a� > 2

`#C1/ \ .a��1 < 1//:

for 1 � � � ��. Note that we have

EŒS�.a/ j .a� > 2
`#C1/ \ .a��1 < 1/� � P ..a� > 2

`#C1/ \ .a��1 < 1//

D

1X
`D`#C1

EŒS�.a/ j .a� 2 OA
`
o/ \ .a��1 < 1/� � P ..a��1 < 1/ \ .a� 2 OA

`
o//:

(5.13)

The event .a� 2 OA`o/\ .a��1 <1/ (and the assumption that jaj � 1) implies that a� � 2`C1

and 2a� � a � 2`C1 � 1 � 2`. Therefore we can apply Lemma 3.8 to get

(5.14) EŒS�.a/ j .a� 2 OA
`
o/ \ .a��1 < 1/� . 2`:

Next, observe that the event .a� 2 OA`o/ given the event .a��1 < 1/, along with the fact that
` > `#, implies that

a� � C1a��1 > 2
`
� 2`# � 2`�1:

Therefore

P ..a��1 < 1/ \ .a� 2 OA
`
o// � P ..a� 2 OA

`
o/ j .a��1 < 1//

� P .a� � C1a��1 > 2
`�1
j .a��1 < 1//:

(5.15)

Note that j2a��1 � aj � 3. We will apply Lemma 3.6 with X D ¹b 2 R W b < 1º, ˇ.x/ D
2`�1, and 
.x/ D 3. We choose `# to be sufficiently large to guarantee that


.x/

ˇ.x/
D

3

2`�1
<

3

2`#
<

1

10C0 log.2/
�

Then we apply Lemma 3.6 to get that

(5.16) P .a� � C1a��1 > 2
`�1
j .a��1 < 1// . exp.�c2`�1/:

Combining (5.13)–(5.16) gives

EŒS�.a/ j .a� > 2
`#C1/ \ .a��1 < 1/� � P ..a� > 2

`#C1/ \ .a��1 < 1//

.
1X

`D`#C1

2` exp.�c2`�1/ D O.1/:

(5.17)

This completes the proof of (5.12), and thus completes the proof of Lemma 2.2(ii).
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6. When a is large and negative

In this section we prove Lemma 2.2(iii), i.e., we show that for all a � �1 we have that
S�.a/ . 1=jaj. We first note that

S�.a/ D

1X
�D�1

EŒS�.a/�:

Since a�1 D a0 D 0, we apply Lemma 3.8 with m D jaj and M D 0 to get

EŒS�1.a/C S0.a/� .
1

jaj
�

It remains to show that
1X
�D1

EŒS�.a/� D O
� 1
jaj

�
:

Let A`o;� be as in Section 4.2. Define

B`o WD ¹b 2 R W 2`jaj � b < 2`C1jajº:

When � � 2, we have

EŒS�.a/� �
X
`1�0

EŒS�.a/ j .a��1 2 B
`1
o /� � P .a��1 2 B

`1
o /

C EŒS�.a/ j .a��1 < jaj/� � P .a��1 < jaj/:

(6.1)

When � D 1, we have

(6.2) EŒS1.a/� D EŒS�.a/ j .a��1 < jaj/� � P .a��1 < jaj/:

We first show how to control the first term in (6.1). Recall (see (3.1)) that a� � 2`#a��1.
Therefore

EŒS�.a/ j .a��1 2 B
`1
o /� � P .a��1 2 B

`1
o /

D

X
`2�`#

EŒS�.a/ j.a�2A
`2
o;�/ \ .a��12B

`1
o /� � P ..a�2A

`2
o;�/ \ .a��12B

`1
o //:(6.3)

The event .a� 2 A
`2
o;�/ \ .a��1 2 B

`1
o / implies that a� � 2`2C`1C2jaj and 2a� � a �

2`2C`1 jaj. Therefore we can apply Lemma 3.8 to get

(6.4) EŒS�.a/ j .a� 2 A
`2
o;�/ \ .a��1 2 B

`1
o /� . 2`1C`2 � 22� � jaj:

Suppose `2 > `#. Then the event .a� 2 A
`2
o;�/ \ .a��1 2 B

`1
o / implies that

a� � C1a��1 � .2
`2 � 2`#/ � a��1 � 2

`2�1C`1 jaj

and that
ja � 2a��1j � jaj C 2

`1C2jaj � 2`1C3jaj:
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We are going to apply Lemma 3.6 with 
.x/ D 2`1C3jaj and ˇ.x/ D 2`1C`2�1jaj and
X D B

`1
o . Choosing `# sufficiently large guarantees that


.x/

ˇ.x/
D

1

2`2�4
<

1

2`#�4
<

1

10C0 log.2/
�

Therefore we apply Lemma 3.6 to get that

P ..a� 2 A
`2
o;�/ \ .a��1 2 B

`1
o // � P ..a� 2 A

`2
o;�/ j .a��1 2 B

`1
o //

� P .a� � C1a��1 � jaj � 2
`2C`1�1 j .a��1 2 B

`1
o //

. exp.�c22� 2`1C`2 jaj/ .
1

24� 22.`1C`2/jaj2
�

(6.5)

Next, note that

P ..a� 2 A
`#
o;�/ \ .a��1 2 B

`1
o // � P .E� j .a��1 2 B

`1
o //:

Since the event .a��1 2 B
`1
o / implies that 2a��1 � a � 2`1C2jaj C jaj � 2`1C3jaj and

2a��1 � a � 2
`1C1jaj C jaj � 2`1C1jaj, we can apply Lemma 3.7 to get

P .E� j .a��1 2 B
`1
o // . 2`1 jaj exp.�c22� 2`1 jaj/:

The last two equations and Remark 3.3 give

(6.6) P ..a� 2 A
`#
o;�/ \ .a��1 2 B

`1
o // .

1

26� 22`1 jaj2
�

Combining (6.3)–(6.6) givesX
`1�0

EŒS�.a/ j.a��1 2 B
`1
o /� � P .a��1 2 B

`1
o /

.
X
`2�`#
`1�0

2`1C`222� jaj
� 1

24� 22.`1C`2/jaj2

�
.

1

22� jaj
�

(6.7)

Next, we claim that

(6.8) EŒS�.a/ j .a��1 < jaj/� � P .a��1 < jaj/ D O
� 1

22� jaj

�
for � � 1. Combining this with (6.1), (6.2), and (6.7) gives

1X
�D1

EŒS�.a/� .
1X
�D1

1

22� jaj
.

1

jaj
�

This completes the proof of Lemma 2.2(iii), and thus it just remains to establish (6.8).
We have

EŒS�.a/ j.a��1 < jaj/� � P .a��1 < jaj/

D

X
`1�`#

EŒS�.a/ j .a�2A
`1
o / \ .a��1 < jaj/� � P ..a�2A

`1
o / \ .a��1 < jaj//:(6.9)
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Since the event .a� 2 A
`1
o / \ .a��1 < jaj/ implies that a� � 2`1C1jaj and 2a� � a �

2`1C1jaj C jaj � 2`1C1jaj, we apply Lemma 3.8 to get

(6.10) EŒS�.a/ j .a� 2 A
`1
o / \ .a��1 < jaj/� . 22� 2`1 jaj:

For `1 > `#, the event .a� 2 A
`1
o / \ .a��1 < jaj/ implies that

a� � C1a��1 � .2
`1 � 2`#/ � jaj � 2`1�1jaj

and that
ja � 2a��1j � 3jaj:

We will apply Lemma 3.6 with ˇ.x/D 2`1�1 jaj and 
.x/D 3jaj. Choosing `# sufficiently
large guarantees that


.x/

ˇ.x/
D

3

2`1�1
<

3

2`#�1
<

1

10C0 log.2/
�

Therefore we can apply Lemma 3.6 to get

P ..a� 2 A
`1
o / \ .a��1 < jaj// � P .a� 2 A

`1
o j a��1 < jaj/

� P .a� � C1a��1 � 2
`1�1jaj j .a��1 < jaj//

. exp.�c22�2`1�1jaj/ .
1

24� 22`1 jaj2
�

(6.11)

Since the event .a��1 < jaj/ implies that 2a��1 � a � 3jaj and 2a��1 � a � jaj, we can
apply Lemma 3.7 to get

P ..a� 2 A
`#
o / \ .a��1 < jaj// � P .E� j .a��1 < jaj//

. jaj exp.�c22� jaj/ .
1

26� jaj2
�

(6.12)

Combining (6.9)–(6.12) gives

EŒS�.a/ j .a��1 < jaj/� � P .a��1 < jaj/ .
X
`1�`#

1

22� 2`1 jaj
D O

� 1

22� jaj

�
:

This proves (6.8), finishing the proof of the lemma.

7. The optimal strategy for known a

The goal of this section is to prove Lemma 2.1. We define the expected cost-to-go of the
optimal strategy �opt.a/ at time t and position q by

(7.1) J0.q; t I a/ D E
h Z T

t

.q2 C u2/ dt
i
:

Note that (7.1) is more general than the quantity Sopt.a/ introduced in Section 2, but that
we have Sopt.a/D J0.0;0Ia/. We begin by deriving a Hamilton–Jacobi–Bellman equation
for J0. For a small time increment �t , we have

J0.q; t I a/ D .q
2
C u2/�t C EŒJ0.q C�q; t C�t I a/�;
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where �q and �t are the corresponding increments of q and t . Expanding the last term
in a Taylor series, we obtain

J0.q; t I a/ D .q
2
C u2/�t C J0.q; t I a/C .�t/@tJ0.q; t I a/C EŒ�q�@qJ0.q; t I a/

C
1

2
EŒ.�q/2� @2qJ0.q; t I a/C o.�t/:

Equation (1.1) implies that

EŒ�q� D .qaC u/�t and EŒ�q2� D �t:

Thus, after dividing by �t and taking �t ! 0, we obtain for an optimal strategy u,

0 D min
u2R

®
@tJ0 C .qaC u/@qJ0 C

1
2
@2qJ0 C q

2
C u2

¯
with J0.q; T I a/ D 0. The minimum of the right-hand side with respect to u occurs when

u D �
1

2
@qJ0:

We thus arrive at a final PDE:

0 D @tJ0 C .qa/@qJ0 C
1

2
@2qJ0 C q

2
�
1

4
.@qJ0/

2:

We can now guess a solution to J0 of the form

(7.2) J0.q; t I a/ D p.t I a/q
2
C r.t I a/;

where p.t I a/ and r.t I a/ are solutions to the following differential equations:

�p0.t I a/ D 2ap.t I a/C 1 � p2.t I a/; p.T I a/ D 0;(7.3)
�r 0.t I a/ D p; r.T I a/ D 0:(7.4)

Note that
Sopt.a/ D J0.0; 0I a/ D r.0I a/:

Solving (7.3) explicitly gives

(7.5) p.t I a/ D a �
p
a2 C 1 tanh

�
.t � T /

p
a2 C 1C tanh�1

� a
p
a2 C 1

��
:

We integrate (7.5) from 0 to T to get

r.0I a/ D aT � log
�

cosh
�

tanh�1
� a
p
a2 C 1

���
C log

�
cosh

�
tanh�1

� a
p
a2 C 1

�
� T

p
a2 C 1

��
:

(7.6)

Using the identity cosh.tanh�1.x// D 1=
p
1 � x2, (7.6) gives

r.0I a/ D aT � log
�p
a2 C 1

�
C log

�
cosh

�
tanh�1

� a
p
a2 C 1

�
� T

p
a2 C 1

��
:

(7.7)
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Next, we use the identity tanh�1.x/ D 1
2

log
�
1Cx
1�x

�
to get

tanh�1
� a
p
a2 C 1

�
D
1

2
log

�pa2 C 1C a
p
a2 C 1 � a

�
D log

�p
a2 C 1C a

�
:

Combining this with (7.7) gives

r.0I a/ D aT � log
�p
a2 C 1

�
C log

�
cosh

�
log

�p
a2 C 1C a

�
� T

p
a2 C 1

��
:

(7.8)

One can check that

S 0opt.a/ D
@

@a
.r.0I a// > 0:

This shows that Sopt is an increasing, continuous function of a. One can also check that
Sopt.�1/ D r.0I �1/ > 0. Combining these facts proves Lemma 2.1(i).

7.1. When a is large and positive

We now prove Lemma 2.1(ii), i.e., we show that Sopt.a/ & a when a � 1. Since Sopt
is continuous, increasing, and nonnegative it suffices to show that Sopt.a/ & a for all a
sufficiently large.

For large enough a, there exists some C > 0 so that

T
p
a2 C 1 � log

�p
a2 C 1C 1

�
� Ca:

Note that cosh.x/ � ex=2 and cosh.x/ is increasing for x > 0; this gives

log
�

cosh
�
T
p
a2 C 1 � log

�p
a2 C 1C 1

���
� log

�eCa
2

�
:

Combining this with (7.8) gives

Sopt.a/ D r.0I a/ � aT C log
�eCa
2

�
� C 0a

for sufficiently large a.

7.2. When a is large and negative

We now prove Lemma 2.1(iii), i.e., we show that Sopt.a/ & 1=jaj when a � �1. As in the
previous section, it suffices to prove that Sopt.a/ & 1=jaj for a < 0 with jaj sufficiently
large.

Note that log.
p
a2 C 1C a/D � log.

p
a2 C 1� a/. Combining this with (7.8) gives

Sopt.a/ D aT � log
�p
a2 C 1

�
C log

�
cosh

�
log

�p
a2 C 1C jaj

�
C T

p
a2 C 1

��
:
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Note that

log
�

cosh
�

log
�p
a2 C 1C jaj

�
C T

p
a2 C 1

��
� T

p
a2 C 1C log

�pa2 C 1C jaj
2

�
:

Therefore there exists c > 0 such that

Sopt.a/ � T
p
a2 C 1 � T jaj C log

�pa2 C 1C jaj
2
p
a2 C 1

�
�

c

jaj

for a < 0 with jaj sufficiently large.
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