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Homogenization of iterated singular integrals with
applications to random quasiconformal maps

Kari Astala, Steffen Rohde, Eero Saksman and Terence Tao

Abstract. We study homogenization of iterated randomized singular integrals and
homeomorphic solutions to the Beltrami differential equation with a random Beltra-
mi coefficient. More precisely, let .Fj /j�1 be a sequence of normalized homeo-
morphic solutions to the planar Beltrami equation @zFj .z/ D �j .z; !/@zFj .z/,
where the random dilatation satisfies j�j j � k < 1 and has locally periodic statistics,
for example of the type

(0.1) �j .z; !/ D �.z/
X
n2Z2

g.2j z � n;Xn.!//;

where g.z; !/ decays rapidly in z, the random variables Xn are i.i.d., and � 2 C10 .
We establish the almost sure and local uniform convergence as j!1 of the mapsFj
to a deterministic quasiconformal limit F1.

This result is obtained as an application of our main theorem, which deals with
homogenization of iterated randomized singular integrals. As a special case of our
theorem, let T1; : : : ;Tm be translation and dilation invariant singular integrals on Rd ,
and consider a d -dimensional version of �j , e.g., as defined above or within a more
general setting, see Definition 3.4 below. We then prove that there is a deterministic
function f such that almost surely,�jTm�j : : :T1�j ! f as j !1weakly inLp ,
for 1 < p <1.

We dedicate this paper to our friend and colleague ‘Josechu’ Fernández.

1. Introduction and statement of results

1.1. Background and motivation – a bird’s eye view

The purpose of this paper is twofold: we initiate a systematic study of random quasicon-
formal homeomorphisms, and we develop a framework for homogenization of iterated
singular integrals. Our main results regarding the former topic will be obtained as con-
sequences of our results regarding the latter, which are of independent interest. Since the
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precise statements of our results require some preparation, in this section we give a brief
and informal description of our work.

Recall that quasiconformal maps of C are homeomorphic W 1;2
loc -solutions of the Bel-

trami equation

(1.1) @zF.z/ D �.z/ @zF.z/; z 2 C;

and that for any measurable function �WC ! C with k�k1 < 1 there is an essentially
unique quasiconformal solution. Recent developments have shown an emerging need for
a theory of random quasiconformal maps. For example, simple closed planar curves can
be described via their welding homeomorphism, and random loops such as those associ-
ated with the Schramm–Loewner evolution SLE lead to random circle homeomorphisms.
Beginning with the work of Sheffield, these welding homeomorphisms can be described in
terms of Liouville quantum gravity. It is still open to analytically solve the “welding prob-
lem” of re-constructing the loops from these homeomorphisms. The standard approach of
solving welding problems is via the Beltrami equation (1.1), leading to random Beltrami
coefficients � in the case of random weldings. Progress towards solving this problem has
been made in [6].

There are also other cases in random geometry where quasiconformal mappings arise
naturally. For instance, certain scaling limits of domino tilings [10], and more generally
of dimer models [16], exhibit different limiting phases. Quasiconformal mappings appear
particularly useful in describing their geometry [3]. Moreover, there is a connection to
homogenization of random conductance models, which in turn can be thought of as a
special case of Brownian motion in a random environment. Here we refer to the review [8].

In another direction, in material sciences it is important to understand random materi-
als structures, modelled by elliptic PDE’s, and look for global or homogenised properties
of the material. From the vast literature on homogenization of random PDE’s, we mention
as examples [17], [12], and [2], where the last mentioned monograph contains an extensive
bibliography.

In the present paper we will approach the Beltrami equation (1.1), with a random
coefficient �, via the method of singular integral operators. We will mostly work with
solutions normalized by

(1.2) F.w/ D w for w 2 ¹0; 1;1º:

However, in the special deterministic case where � happens to be compactly supported, it
is often more convenient to work with the unique homeomorphic solution to (1.1) that has
the hydrodynamic normalization

(1.3) F.z/ � z D o.1/ as z !1:

This so-called principal solution to (1.1) can be obtained from the Neumann series1

@zF D �C �T�C �T�T�C � � � ;

with T a specific singular integral operator, the Beurling transform, see (1.16) below.

1Operators and multipliers in this paper are always applied from right to left unless otherwise specified, thus
for instance �T�T� D �T .�T�/.



Homogenization of iterated singular integrals 2287

Therefore, we are naturally led to the study of homogenisation phenomena for iterated
singular integral operators. Here it is useful to consider the problem from a broader point
of view. Our main result on homogenised iterated singular integrals shows that this can be
carried out in surprising generality, allowing for flexibility and a wide range of potential
applications:

Theorem 1.1. For each 1 � k � m � 1, let Tk be a translation and dilation invariant
singular integral. Further, let �.1/ D �.1/

ı
; : : : ;�.m/ D �

.m/

ı
be stochastic multiscale func-

tions. Then for any p 2 .1;1/, the iterated singular integral

hı WD �
.m/

ı
Tm�1�

.m�1/

ı
: : : �

.2/

ı
T1�

.1/

ı

converges weakly in Lp.Rd / to a deterministic limit function as ı ! 0 (convergence in
probability). For the subsequence h2�k , the weak convergence takes place almost surely.

The stochastic multiscale functions above are a large class of random functions with
ı-periodic statistical structure. Their precise definition is given in Section 3, and Section 4
is devoted to the proof of Theorem 1.1. In general, the multiscale functions need not be
bounded or compactly supported. An example of such function is provided by (0.1).

In the next subsection we present a variety of natural and specific random Beltrami
equations @zFı D �ı@zFı , where the coefficients �ı are stochastic multiscale functions
with k�k1 bounded by some k < 1. To complete the picture, we then need methods
more specifically related to quasiconformal mappings to show that the corresponding ran-
dom solutions Fı have almost surely a unique deterministic normalised quasiconformal
limit F1, see e.g. Theorem 1.6 below.

Finally, we mention that Theorem 1.1 also applies to many basic homogenization prob-
lems of random partial differential operators, see Example 1.13 in Section 1.3.

1.2. Quasiconformal homogenization

In this subsection we state our main results on quasiconformal homogenization and illus-
trate them by means of several model examples of coefficients �ı . We consider both
deterministic and random quasiconformal maps, though our main emphasis is on the lat-
ter case. It will be convenient to adopt the following rescaling notation.

Definition 1.2 (Rescaling notation). If ı > 0, n 2 Zd , and g WRd ! C is a function, we
define the rescaled function gŒn;ı�WRd ! C by the formula

gŒn;ı�.x/ WD g
�x
ı
� n

�
:

For instance, we will apply this convention to the weight

hxi WD .1C jxj2/1=2;

so that

hxiŒn;ı� D
�
1C

ˇ̌̌x
ı
� n

ˇ̌̌2 �1=2
for any x 2 Rd , ı > 0, and n 2 Zd .
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More generally, if g WRd ��! C is a function of a spatial variable x 2 Rd and a
supplementary variable ! 2 �, we define gŒn;ı�WRd ��! C by the formula

gŒn;ı�.x; !/ WD g
�x
ı
� n; !

�
:

We extend this convention to the complex plane C by identifying C with R2 (and Z2 with
the Gaussian integers ZŒi �.

We will typically apply this convention with functions g that are concentrated near the
unit ball B.0; 1/, in which case the rescaled function gŒn;ı� will be concentrated near the
ball B.nı; ı/. Conversely, the weight h �iŒn;ı� is small in B.nı; ı/ and large elsewhere.

1.2.1. Models of complex dilatations. We next consider basic examples of random dila-
tations we study in this paper. The first example illustrates that our general results apply
and give new information even in the deterministic case.

Model 1. The deterministic function

(1.4) �ı.z/ WD '.z/
X
n2Z2

aŒn;ı�.z/;

where ' 2 C10 .C/ is a test function and aWC ! C is a smooth non-constant function
supported on Œ0; 1�2, and the rescaling aŒn;ı� is defined by Definition 1.2. One assumes
that k'k1kak1 < 1: Hence in this case the �ı.x/ D �1.ı�1x/, and we are dealing with
deterministic homogenization of the Beltrami equation.

Model 2. Next assume that �ı is a random function given either by

(1.5) �ı.z/ WD a1Q0.z/
X
n2Z2

"n.1Q0/Œn;ı�.z/ D a1Q0.z/
X
n2Z2

"n1nıCŒ0;ı�2.z/;

or

(1.6) �ı.z/ WD a
X
n2Z2

"n 1nıCŒ0;ı�2.z/;

where a 2 C satisfies jaj < 1, Q0 WD Œ0; 1�2 is the unit square with corners 0, 1, i , 1C i ,
the "n 2 ¹�1;C1º are i.i.d. random signs, and nı C Œ0; ı�2 is the square of sidelength ı
and bottom left corner equal to nı, n 2 Z2. See Figure 1.

Above one could as well allow the "n to be arbitrary i.i.d. random variables with
j"nj � 1, but the above case gives the simplest example of stochastic homogenization as
now the dilatation is a random function whose law is ı-periodic in each coordinate axis
direction.

Model 3. A more general model is obtained by allowing the independent ‘bumps’ to have
non-compact support and adding an envelope factor that varies the size of � locally, and
is independent of the scaling ı. Thus, let g be a rapidly decreasing function and define the
random ‘bump field’

(1.7) Bı D
X
n2Z2

"ngŒn;ı�;
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where "n are any i.i.d random variables, the gŒn;ı� are defined by Definition 1.2, and we
assume the pointwise bound jBı j � 1: Then set

(1.8) �ı WD � 1UBı ;

where the ‘envelope function’ � satisfies the pointwise bound j�j � k for some k < 1 and
is Hölder continuous with some exponent ˛ > 0, and U � C is a domain with piecewise
Hölder-boundary (e.g., U could as well be the whole plane).

If we specialize to the case � � a, where a is a complex constant with jaj< 1; then �ı
becomes a constant multiple of the random bump field (1.7):

(1.9) �ı.z/ WD aBı.z/:

In each of the above model cases, let Fı be the unique solution to the (random or
deterministic) Beltrami equation

(1.10) @zFı D �ı @zFı

with 3-point normalization (1.2). The basic question of quasiconformal homogenization
then asks if the sequence F2�k converges as k !1. We soon answer this question by
showing that there is almost sure convergence to a deterministic limit homeomorphism.

Figure 1. A random qc-map obtained by Model 2, with a D 1=2:We thank David White for help in
producing the picture.
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1.2.2. Bump fields and envelope functions. In order to state our results, we need to
define properly the admissible envelope functions and random bump fields already alluded
to above when discussing Model 3.

Definition 1.3 (Random bump fields). We define random bump data to be a pair .g; X/,
where X is a random variable taking values in2 R, and gWC � R! C is a measurable
function with rapid decrease in the first variable,

(1.11) jg.z; y/j � CM hzi
�M for all M � 1 and z 2 C; y 2 R,

which obeys the pointwise boundˇ̌̌ X
n2Z2

g.z � n; yn/
ˇ̌̌
� 1

for all z 2 C and all real sequences .yn/n2Z2 . We define a random bump field with data
.g;X/ and scaling parameter ı > 0 to be a random field of the form

(1.12) Bı.z/ WD
X
n2Z2

gŒn;ı�.z; Xn/;

where the rescaling gŒn;ı� is defined by Definition 1.2, and Xn, n 2 Z2, are independent
copies of the random variable X .

In turn, the admissible envelope functions are as follows.

Definition 1.4 (Beltrami envelope functions). A measurable function �W C ! C is a
Beltrami envelope function if there is k 2 .0; 1/ such that j�.z/j � k for almost every
z 2 C and � is locally Hölder-continuous in L1-norm: there is ˛ > 0 such that, for any
R > 0, there is CR <1 with

k�h.1B.0;R/�/kL1.C/ � CR jhj
˛; for jhj � 1;

where the difference operator �h is defined by

(1.13) �hf .x/ WD f .x C h/ � f .x/:

Example 1.5. Assume that �WC ! C is ˛-Hölder continuous and satisfies j�j � k < 1.
Assume also that U � C is a domain with locally Hölder-regular boundary. Then it is
easy to verify that 1U� is a Beltrami envelope function. This holds also true if (locally)
the Minkowski dimension of @U is strictly less than 2.

1.2.3. Results on quasiconformal homogenization. In each of the Models 1-3 discussed
above, the random dilatation can be written in the form �ı D �Bı ; where � is a Beltrami
envelope function and Bı a random bump field. Hence our results on quasiconformal
homogenization, to be stated next, cover all these cases.

2We place our random parameter in the space R for sake of concreteness, but this space could be replaced
by a more general measurable space, e.g., Rd for any d , if one wished.
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Theorem 1.6. Let .g; X/ be random bump data, and let � be a Beltrami envelope func-
tion. For ı > 0, let

�ı.z/ D �.z/Bı.z/;

where Bı is the random bump field (1.12) determined by .g;X/. Denote by Fj , j � 1, the
3-point normalized solution to the random Beltrami equation

(1.14) @zFj D �2�j @zFj :

There is a unique deterministic limit function F1 such that F1 WC ! C is a quasicon-
formal homeomorphism and, as j !1, almost surely,

Fj ! F1 locally uniformly.

If in the previous theorem the envelope function � is constant in the whole plane, it
follows that the limit function has constant dilatation, and hence is linear. This follows
from Lemma 5.5 below. More generally, we have following result.

Theorem 1.7. Assume that the envelope function � is continuous at z0. Then the dilata-
tion �F1 of the limit function F1 is continuous at z0, and �F1.z0/ depends only on the
random bump data .g;X/ and on the value �.z0/. More precisely, one has

�F1.z0/ D h.g;X/.�.z0//;

where the function h.g;X/W ¹jzj < 1º ! ¹jzj < 1º is continuous.

Finally, we note that in some natural situations the limit function reduces to the identity
map. We refer to Lemma 5.6 below for a more general condition in this direction.

Theorem 1.8. If the random variables "n are symmetric, the limit F1 in both cases of
Model 2, (1.5) and (1.6), is given by the identity map, F1.z/ D z for all z. This is not
necessarily the case in the more general setting of (1.9).

The proofs of all the above three theorems are contained in Section 5, which also
contains other related results and remarks. In particular, the above theorem applies to the
deterministic homogenization problem as well. We also stress that the coefficient � need
not be compactly supported, in spite of the fact that the proof is based on the Neumann
series.

Remark 1.9. One should note that in the above result there is no need for the stochastic
bump fields corresponding to different ı’s to be independent. Indeed, their stochastic rela-
tion can be arbitrary. This can be understood by writing the dilatation of Fj in the form

�Fj .z/ D �.z/
� X
n2Z2

gŒn;2�j �.z; Xn;j /
�
;

where Xn;j � X; for each n; j , and only for each fixed j the random variables Xn;j ,
n 2 Z2, are assumed to be independent. Thus there can be arbitrary stochastic relations
between the different layers .Xn;j /n2Z2 and .Xn;j 0/n2Z2 for j 6D j 0: In particular, this
possible dependence structure between different scales does not affect the deterministic
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limit function F1, which depends only on the triplet .�; g; X/: The main reason for this
is that the failure probability in our main estimate (Theorem 3.9) decays polynomially in ı
(and hence exponentially in j if ı D 2�j ).

Let us also point out that for the sake of simplicity we leave out many considerations
that would be possible via the techniques of the present paper. For example, one may relax
the speed of convergence to zero in the subsequence B2�j , and it is possible to consider
quasiconformal maps between arbitrary domains.

In Section 5 we will also present a homogenization result for mappings of finite dis-
tortion, i.e., we consider random dilatations �ı with k�ıkL1.R2/ D 1: An example of this
kind of dilatation is given by

Model 4. A random function as in the model example (1.5),

(1.15) �ı.z/ WD 1Q0.z/
X
n2Z2

"n.1Œ0;1�2/Œn;ı�.z/ D 1Q0.z/
X
n2Z2

"n 1nıCŒ0;ı�2.z/;

but now with random i.i.d. variables "n such that j"nj < 1 and the tail of .1 � j"nj/�1 has
sufficiently fast exponential decay. Theorems 5.8, 5.13 and 5.14 in Section 5 generalize
Theorem 1.6 to the degenerate case (1.15) and beyond.

It is tempting to try to prove almost sure convergence of Fı in the above examples
solely using weak convergence of �ı . However, it is important to note that this is impossi-
ble, as the following example illustrates. Some deeper properties of �ı and their interac-
tion with singular integrals are involved here.

Example 1.10. Let a 2 .�1; 1/, and define the Beltrami coefficient �.z/ that is 2-periodic
in the x-variable and constant in the y-variable by setting

�.z/ WD

´
a if x 2 Œ2n; 2nC 1/; n 2 Z;

�a if x 2 Œ2nC 1; 2nC 2/; n 2 Z:

Write b D .1 � a/=.1C a/ and observe that the function

g.xC iy/ WD

´
.x�2n/Cn.1C b2/C iby if x2 Œ2n; 2nC 1/; n 2 Z;

b2.x�.2nC1//Cn.1Cb2/C1C iby if x2 Œ2nC1; 2nC2/; n 2 Z;

solves gz D �gz : Now consider the homogenized dilatation �j .z/ WD �.2jz/ for any
integer j � 1, and let Fj satisfy

@zFj D �j @zFj

with the three-point normalization, so that

Fj .z/ D
g.2jz/

j.1C b2/
�

As j !1; it is clear that �j converges locally weakly to zero. However, by the above
formulas we see that there is the uniform convergence Fj ! F1, where

F1.x C iy/ D x C
1 � a2

1C a2
iy;
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and �F1 � a2 identically. By considering the sequence z�j given by z�2j D �j and
z�2jC1 D 0, we obtain a locally weakly null sequence of dilatations for which the homo-
genization limit does not exist. Finally, we observe that its is easy to localize this observa-
tion and obtain the same phenomenon for compactly supported dilatations (see Lemma 5.4
below).

Remark 1.11. In a recent interesting work [14], Ivrii and Markovic provide a more
elementary geometric proof of some special cases of our results on quasiconformal homo-
genization, also allowing for non-uniform ellipticity, and give an application to random
Delaunay triangulations.

1.3. Further remarks on Theorem 1.1

As explained in Section 1.1, the application of Theorem 1.1 to quasiconformal homogen-
ization and solutions to Beltrami equation (1.1) comes via the Beurling transform

(1.16) Tg.z/ WD �
1

�
p.v.

Z
C

g.w/

.z � w/2
dw:

Namely, since T ı @z D @z on W 1;2.C/, finding a solution to @zfı D �ı@zfı , with the
hydrodynamic normalization fı.z/ � z D o.1/ at z ! 1, is equivalent to solving the
integral equation .1 � �ıT /@zfı D �ı . One then finds the solution via the L2-Neumann
series representation

@zfı D �ı C �ıT�ı C �ıT�ıT�ı C � � � ;

and the theorem allows us to deduce the weak convergence of each single summand in the
above formula.

The Beurling transform extends to all of L2.C/ as an isometric isomorphism. More-
over, it commutes with dilatations and translations. The class of singular integrals in Rd

allowed in Theorem 1.1 shares these two basic symmetries:

Definition 1.12 (Singular integral operator). A dilation and translation invariant singular
integral operator is any bounded linear operator T WL2.Rd /! L2.Rd / of the form

Tf .x/ D p.v.
Z

Rd

�..x � y/=jx � yj/

jx � yjd
f .y/ dy; for f 2 C10 .R

d /;

where �WSd�1 ! C is smooth and has mean zero.

The definition of the general class of random multipliers considered in Theorem 1.1,
the stochastic multifunctions, is slightly opaque as it employs the notion of stochastic
tensor products. Both these notions will be explained in Section 3 below. However, to give
a perhaps more intuitive idea of these notions, we describe here in detail a special class
of multifunctions which fits well with the notions of bump-fields and Beltrami envelope
functions discussed in the previous Section 1.2. Thus, working in arbitrary dimension
d � 1, fix m � 1 and consider for each index 1 � ` � m the random function

(1.17) �
.`/

ı
.x/ D �`.x/

X
n2Zd

.g`/Œn;ı�.x;Xn/;
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where we assume for each fixed ` that:
• The ‘envelope function’ �` does not depend on ı. Moreover, �` 2 Lp.Rd / for every
p 2 .1;1/ with the Hölder bound

k�h�`kLp.Rd / � C.p/jhj
p̨ ; for jhj � 1; where p̨ > 0:

• The random variables ¹Xnºn2Zd are independent and identically distributed, Xn � X
for all n 2 Zd :

• The ‘bump function’ g`.�; �/ satisfies an d -dimensional analogue of condition (1.11).

Lemma 3.11 below implies that such �.`/
ı

is a stochastic multifunction, covered by
Theorem 1.1.

As a last aspect, Theorem 1.1 applies easily to homogenization of many random dif-
ferential operators:

Example 1.13. For each ` D 1; : : : ; L, let P`.D/ be a constant coefficient second order
differential operator on Rd . Also let �.`/

ı
be random multipliers as in Theorem 1.1. For

simplicity, we assume that d � 3, and that the �.`/
ı

are supported on a fixed ball B � Rd .
Our basic ellipticity assumption is that they satisfy, almost surely,

(1.18)
LX
`D1

a`k�
.`/

ı
kL1.B/ � k < 1 for all ı 2 .0; 1/;

where the constants aj will be soon defined. We consider the following PDE on Rd with
random coefficient functions:

(1.19) �uı C

LX
`D1

�
.`/

ı
P`.D/uı D h:

Here the right-hand side h 2 L2.Rd / is fixed, and is also supported in the ball B . We
normalize the solutions uı of (1.19) by demanding that uı.x/! 0 as x !1.

We claim that this problem has a unique solution uı 2 PW 2;2.Rd / that converges
strongly (in probability) in PW s;2.Rd / for every s < 2 towards a deterministic function
u0 2 PW

2;2.Rd / as ı ! 0: Thus the present homogenization problem is solvable with a
deterministic limit.

In order to sketch the argument, let us denote by T` the homogeneous Fourier mul-
tiplier T` WD ��1P`.D/, and note that it is a scaling and translation invariant singular
integral3 on Rd . We choose a` WD supj�jD1 jP`.�/j in condition (1.18), i.e., a` is the
L2-norm of the operator T`. Then fı WD �uı 2 L2.B/ satisfies the equation

fı C

LX
`D1

�
.`/

ı
Tfı D h;

3Strictly speaking, the T` might not be precisely of the form in Definition 1.12 because there may be an
identity component in addition to a principal value integral; however it is a not difficult to extend the analysis
of this paper to this more general setting. More precisely, we note, leaving the details to the reader, that the
arguments of the proofs in Sections 2-4 remain valid and even simplify if some of the integral operators Tj is
replaced by the identity operator.
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which can be uniquely solved inL2.Rd / by the Neumann series and, via condition (1.18),
we obtain an L2-convergent series

(1.20) fı D hC
X

1�`1;:::;`m�L
m�1

.�1/m�
.`1/

ı
T`1�

.`2/

ı
T`2 � � ��

.`m/

ı
T`mh:

By applying the fundamental solution of the Laplacian, we see that uı D cd j � j2�d � fı
solves (1.19) with the right behaviour in the infinity, as d � 3. Since any other solution
has the same Laplacian, they must differ by a harmonic function that vanishes at infinity,
and hence their difference is zero.

Theorem 1.1 applies to each term in the sum (1.20), and together with the uniform
convergence in ı of the series in L2 we deduce that fı ! f0 weakly in L2.Rd /, where f0
is also supported in B . The rest of the claim follows from the standard properties of the
fundamental solution cd j � j2�d .

We finally note that above the operators P` may well have lower order terms since
those produce compact Fourier multipliers between functions on fixed compact subsets
of Rd . Hence the terms in the Neumann-series containing them can be taken care of by
multiple application of Theorem 1.1. Actually, we could instead of differential operat-
ors P` with constant coefficients consider as well classical pseudodifferential operators of
order 2 whose principal part is a homogeneous Fourier multiplier.

Similarly, the technique applies to fractional Laplacians, and in many other type of
homogenization problems. In order to spell out one more specific example – completely
without details –, consider the homogenization of the general conductivity equation in the
plane.

r �
�
A.x/ru.x/

�
D 0;

where the 2 � 2 matrix A.x/ D .ıj;k C �j;k.x//j;kD1;2 is measurable and uniformly
elliptic, and each �j;k is a stochastic multifunction. One may reduce this to the study
of the generalized Beltrami equation

@zf D �1@zf C �2 @zf ;

where the coefficients �j ’s are expressed in terms of in the matrix coefficients�j;k , see e.g.
Theorem 16.1.6 in [5]. The structure of the �j ’s allows them be approximated in a suitable
sense by multifunctions (see footnote 3 in this connection). The generalized Beltrami
equation may be solved by a 2� 2-matrix valued Neumann series, and the analysis can be
then carried out analogously to the case of the classical Beltrami equation.

For classical treatments of homogenization of the above PDE’s (however, not includ-
ing the case of more general case of Fourier multipliers we allow for), we refer to [17],
[18], and [1].

1.4. Structure of the paper

Section 2 develops the homogenization of deterministic iterated singular integrals. This is
much easier than the random setting, but has its own interest, and it will provide a handy
tool in treating the stochastic case later on. The admissible class of deterministic multipli-
ers will be called called multiscale functions (see Definition 2.12). They are defined using
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the notion of ‘multiscale tensor product’ (Definition 2.10), which generalizes the product
of an envelope function and a bump field. Our deterministic homogenization result is
stated as Corollary 2.25.

Section 3 first defines the probabilistic analogues of the deterministic notions, espe-
cially the ‘stochastic multiscale tensor product’ (Definition 3.2) is used to define stochastic
multiscale functions (Definition 3.1), which are quite a bit more general than the multipli-
ers we discussed in Section 1.2. The general form of our main result on homogenization
of randomized iterated singular integrals is formulated in Theorem 3.9 and Corollary 3.10.
Lemma 3.11 then verifies that the random multipliers (1.17) are particular instances of a
stochastic multiscale tensor product.

The proof of Theorem 1.1 is carried out in Section 4, where it is obtained as a con-
sequence of Theorem 3.9 and Corollary 3.10. Somewhat surprisingly, a considerable effort
needs to be spent in establishing the convergence of the expectation of the iterated ran-
domized integrals.

Finally, Section 5 applies Theorem 1.1 to quasiconformal homogenization. There we
combine Theorem 1.1 with methods from the theory of planar quasiconformal mappings
in order to show that the corresponding random solutions Fı almost surely have a unique
normalised deterministic quasiconformal limit F1, see e.g. Theorem 1.6.

2. Deterministic multiscale functions

In the sequel we use extensively the notationsX ≲ Y orX DO.Y / to denote the estimate
jX j � CY , where C is an absolute constant. If we need the constant C to depend on some
parameters, we shall indicate this by subscripts, or else indicate the dependence in the
text. For instance, X ≲p Y or X D Op.Y / means that jX j � CpY for some constant C
depending on p.

Our arguments in the following three sections are not specific to the Beurling trans-
form in the plane, and so we shall work in the more general context of singular integral
operators in a Euclidean space. Accordingly, we fix a dimension d � 1; in the application
to the Beltrami equation, we will have d D 2. We shall work with the standard Euclidean
space Rd , the standard lattice Zd , and the standard torus Td D Rd=Zd . We also have a
scale parameter 0 < ı < 1, which we shall think of as being small; several of our functions
shall depend on this parameter, and we shall indicate this by including ı as a subscript.

Before we can state the main result, it will be convenient to introduce a certain calculus
regarding various classes of functions (namely, envelope functions, localized functions,
negligible functions, and multiscale functions; we will define these classes later in this
section). To set up this calculus, we shall need a certain amount of notation and basic
theory.

Definition 2.1 (Hölder space). If 1 < p <1 and ˛ 2 .0; 1/, we letƒ˛;p.Rd / denote the
space of functions f whose norm

kf kƒ˛;p.Rd / WD kf kLp.Rd / C sup
0<jhj<1

k�hf kLp.Rd /

jhj˛

is finite, where �h was defined in (1.13).
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Remark. In what follows, one could also use Sobolev spaces W ˛;p.Rd / instead of Höl-
der spaces ƒ˛;p.Rd /, but we have elected to use Hölder spaces as they are slightly more
elementary. Also note that we usually use the symbol � for a Beltrami envelope function,
cf. Definition 1.4.

We recall the following definition from page 2294.

Definition 2.2 (Envelope function). An envelope function is a function f WRd ! C (not
depending on the scale parameter ı) such that for every 1 < p <1 there exists ˛ > 0

such that f 2 ƒ˛;p.Rd /. Thus the space of all envelope functions is\
1<p<1

[
˛2.0;1/

ƒ˛;p.Rd /:

Example 2.3. IfQ is a cube in Rd , then one checks that 1Q 2ƒ˛;p.Rd / for ˛ 2 .0;1=p/,
so that the indicator function 1Q is an envelope function. Any function in the Schwartz
class is an envelope function.

Lemma 2.4. The product of two envelope functions is again an envelope function.

Proof. From Hölder’s inequality, one quickly sees that the product of two functions in
ƒ˛;p.Rd / lies in ƒ˛;p=2.Rd /. The claim follows.

Definition 2.5 (Localized function). A (deterministic) localized function is a function
gWRd ! C (not depending on the scale parameter ı) such that for every 1 < p <1 and
N > 0, the function h �iNg lies in Lp.Rd /, where h �i is as in Definition 1.2. Thus the
space of all localized functions is\

1<p<1

\
N>0

h �i
�NLp.Rd /:

Example 2.6. The indicator function 1Q of a cube is a localized function, as is any func-
tion in the Schwartz class.

We shall often exploit the ability of localized functions to absorb arbitrary powers
of h �iŒn;ı� via the following lemma, which improves upon the triangle inequality in Lp at
the cost of inserting different localizing weights h �iŒn;ı� on each summand.

Lemma 2.7 (Localization lemma). Let ı > 0 and let 1 < p < 1. Then we have the
estimate  X

n2Zd

fn


Lp.Rd /

≲p;d
� X
n2Zd

kh�i
d
Œn;ı�fnk

p

Lp.Rd /

�1=p
for any sequence fn 2 Lp.Rd / of functions.

Proof. We can rescale ı D 1. It will suffice to prove the pointwise inequalityˇ̌̌ X
n2Zd

fn

ˇ̌̌
≲p;d

� X
n2Zd

h �i
pd

Œn;1�
jfnj

p
�1=p

:
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By Hölder’s inequality, it is enough to show that pointwise,� X
n2Zd

h �i
�p0d

Œn;1�

�1=p0
≲p;d 1;

where p0 D p=.p � 1/ is the dual exponent of p. But this can be established by direct
calculation.

Let us record a couple of elementary properties of localized functions.

Lemma 2.8.
(i) The product of two localized functions is a localized function.

(ii) For any localized function g and any sequence .an/, it holds that X
n2Zd

angŒn;ı�


Lp.Rd /

≲p;g ı
d=p
k.an/k`p ; 1 < p <1;

where gŒn;ı� is given by Definition 1.2.

Proof. Claim (i) follows from Hölder’s inequality, and claim (ii) is an immediate con-
sequence of Lemma 2.7.

Definition 2.9 (Discretization). Let f be an envelope function, and let 0 < ı < 1. We
define the discretization Œf �ı WZd ! C of f at scale ı to be the function

Œf �ı.n/ WD
1

ıd

Z
nıCŒ0;ı�d

f;

thus Œf �ı.n/ is the average value of f on the cube nı C Œ0; ı�d .

Definition 2.10 (Multiscale tensor product). Let f be an envelope function and let g be a
localized function. We define the multiscale tensor product f ˝ı gWRd ! C of f and g
to be the function

f ˝ı g WD
X
n2Zd

Œf �ı.n/ gŒn;ı�;

where gŒn;ı� is defined by Definition 1.2.

Definition 2.11 (Negligible function). A function F D Fı WR
d ! C depending on the

parameter 0 < ı < 1 is said to be negligible if for every 1 < p <1 there exists "p > 0
and Cp > 0 such that

kFıkLp.Rd / � Cp ı
"p

for all 0 < ı < 1.

Remark. Note in particular that if F is negligible, then Fı converges to zero in the Lp

norm as ı ! 0 for every 1 < p <1, and furthermore the same is true even if one multi-
plies Fı by an arbitrary power of .log 1

ı
/. This freedom to absorb logarithmic factors in ı

will be useful for technical reasons later in this paper.
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Definition 2.12 (Multiscale function). A function F D Fı WR
d ! C depending on the

parameter 0< ı < 1 is said to be a (deterministic) multiscale function if it has an expansion

Fı D

JX
jD1

fj ˝ı gj CGı ;

where J � 1 is an integer, f1; : : : ; fJ are envelope functions, g1; : : : ; gJ are localized
functions, and Gı is a negligible function. If Fı and zFı are two multiscale functions such
that the difference Fı � zFı is negligible, we say that Fı and zFı are equivalent.

Example 2.13. If Q is a cube, and g is a localized function, then the function

Fı.x/ WD
X
n2Zd

1Q.nı/ gŒn;ı�.x/

can be easily verified to be a multiscale function. To this end we use Lemma 2.8(ii) to
estimate

kFı � 1Q˝ı gkLp.Rd / �

 X
nWd.nı;@Q/�2

p
dı

jgŒn;ı�j

Lp.Rd /

≲ .ı.1�d//1=pıd=p D ı1=p:

Hence the difference Fı � 1Q˝ı g is negligible. A similar statement is true if 1Q is
replaced by a Schwartz function.

Example 2.14. The function �ı defined in (1.4) is a multiscale function. Indeed, �ı is
equivalent to '˝ı a. More generally, we will prove in Lemma 3.11 below that if g is
bounded and quickly decaying,

jg.x/j � CN hxi
�N for all N � 1 and x 2 Rd ,

then for any envelope function f the stochastic multiscale tensor product f ˝ı g is equi-
valent to the function f

P
n2Zd gŒn;ı�:

We continue with basic discretization estimates for envelope functions, encoded in the
following two lemmas.

Lemma 2.15. Let f be an envelope function.

(i) One has kŒf �ık`p.Zd / ≲p;d kf kLp.Rd /ı
�d=p for all 0 < ı < 1 and 1 < p <1.

(ii) For any r 2 Zd , we have

k�r Œf �ık`p.Zd / ≲p;f;d .rı/
"p ı�d=p

for some "p > 0 independent of ı or r .

Proof. From Hölder’s inequality followed by Fubini’s theorem, we have

kŒf �ık`p.Zd / �
� 1
ıd

Z
nıCŒ0;ı�d

jf jp
�1=p
n2Zd


`p.Zd /

D ı�d=pkf kLp.Rd /
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and (i) follows since f 2 Lp.Rd /. For (ii), observe that

�r Œf �ı D Œ�ırf �ı :

The claim now follows from (i) as f 2 ƒ"p ;p.Rd / for some "p > 0.

Also, discretization and multiplication almost commute:

Lemma 2.16. Let f and F be envelope functions. Then for every 1 < p <1 there exists
"p > 0 such that

kŒfF �ı � Œf �ı ŒF �ık`p.Zd / ≲p;f;F;d ı
�d=pC"p :

Proof. From Fubini’s theorem, we have

ŒfF �ı.n/ � Œf �ı.n/ŒF �ı.n/ D
1

ı2d

Z
ınCŒ0;ı�d

Z
ınCŒ0;ı�d

f .x/.F.x/ � F.y// dxdy:

Writing y D x C r , we can thus estimate

jŒfF �ı.n/ � Œf �ı.n/ŒF �ı.n/j �
1

ı2d

Z
Œ�ı;ı�d

Z
ınCŒ0;ı�d

jf .x/�rF.x/j dxdr;

and hence by Minkowski’s inequality,

kŒfF �ı � Œf �ı ŒF �ık`p.Zd / �
1

ıd

Z
Œ�ı;ı�d

 1ıd
Z
ınCŒ0;ı�d

jf .x/�rF.x/j dx


`
p
n .Zd /

dr:

Lemma 2.15(i) allows us to conclude

kŒfF �ı � Œf �ı ŒF �ık`p.Zd / �
ı�d=p

ıd

Z
Œ�ı;ı�d

kf�rF kLp.Rd / dr;

and finally, by Hölder’s inequality and the fact that f 2 L2p.Rd / and F 2 ƒ"2p ;2p.Rd /
for some "2p > 0, we see that for r 2 Œ0; ı�d ,

kf�rF kLp.Rd / ≲p;f;F ı
"2p

and the claim follows.

Next we consider the basic properties of multiscale functions. For this purpose we
need a couple of useful lemmas.

Lemma 2.17. Assume that f is an envelope function and g a localized function. Then for
any ı > 0,

(2.1) kf ˝ı gkLp.Rd / ≲p;d kf kLp.Rd / kh�i
dgkLp.Rd /:
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Proof. We apply the localization lemma (Lemma 2.7) to estimate

kf ˝ı gkLp.Rd / D

 X
n2Zd

Œf �ı.n/ gŒn;ı�


Lp.Rd /

≲p
� X
n2Zd

Œf �
p

ı
.n/kh�idŒn;ı� gŒn;ı�k

p

Lp.Rd /

�1=p
≲p;d ı

�d=p
kf kLp.Rd /ı

d=p
kh�i

dgkLp.Rd /;

where we have applied Lemma 2.15(i) and the fact that, for all n, kh�iŒn;ı�gŒn;ı�k
p

Lp.Rd /
D

ıdkh�igk
p

Lp.Rd /
.

In particular, if supp.g/ � Œ0; 1�d ; then the above lemma yields the simple estimate

kf ˝ı gkLp.Rd / ≲p;d kf kLp.Rd / kgkLp.Rd /:

The following lemma reduces us to considering multiscale tensor products f ˝ı g
with g supported in Œ0; 1�d :

Lemma 2.18. Assume that f is an envelope function and that g is either a localized
function, or .more generally/ that it satisfies for each p 2 .0;1/,

(2.2) kg1kCŒ0;1�d kLp.Rd / ≲g;p hki
�a; k 2 Zd ;

with some a > d . Then f ˝ı g is a multiscale function that is equivalent to f ˝ı zg,
where zg is supported in Œ0; 1�d and given explicitly by the formula

(2.3) zg.x/ WD 1Œ0;1�d .x/
X
k2Zd

g.x C k/:

Proof. Observe first that any localized function satisfies (2.2). The idea of the proof is
to use the Hölder type continuity of f to show that one may actually treat f locally
as a constant in the relevant scales. To show this, fix p 2 .1;1/ and observe that by
Lemma 2.17 we have

(2.4) kf ˝ı 1Œ0;1�dgkLp.Rd / ≲ kf kLp.Rd / k1Œ0;1�dgkLp.Rd /:

From Definition 2.10, for any ı > 0 we may decompose

f ˝ı g.x/ D
X
k2Zd

�
f .� C kı/˝ı .1Œ0;1�dg.� � k//

�
.x/:

Hence
Hı WD f ˝ı .g � zg/ D

X
k2Zd

.�kıf /˝ı 1Œ0;1�dg.� � k/:

By the envelope property of f , there is " 2 .0; a � d/ so that k�kıf kLp.Rd / ≲ .jkjı/":

Hence an application of (2.4) and our assumption on g yield that

kHıkLp.Rd / ≲
X
k2Zd

.jkjı/" k1Œ0;1�dg.� � k/kLp.Rd / ≲ ı";

and the neglibility of Hı follows.
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We remark that later on, when we deal with stochastic multiscale functions, then the
natural analogue of the above lemma is no longer valid, causing some additional technical
complications.

We now describe the weak convergence of multiscale functions in the limit ı ! 0.

Lemma 2.19. Let F D Fı be a multiscale function and let 1 < p <1. Then kFıkLp.Rd /

is bounded uniformly in ı. Furthermore, there exists F0 2Lp.Rd / such that Fı converges
weakly in Lp.Rd / to F0. Actually, there is " > 0 such that for any test function � 2
C10 .R

d /, ˇ̌̌ Z
Rd

.F0.x/ � Fı.x// �.x/ dx
ˇ̌̌
≲�;Fı ı

":

Proof. By linearity, it suffices to treat the cases when F is either a multiscale tensor
product or a negligible function. The claims are trivial in the latter case, so assume that
Fı D f ˝ı g for some envelope function f and localized function g.

The uniform boundedness of kFıkLp.Rd / follows immediately from Lemma 2.17. In
order to establish the weak convergence, let us first consider the model case in which
g D 1Œ0;1�d . Then for a.e. x we have Fı.x/ D Œf �ı.n/, where n is the integer part of x=ı.
We thus see that

Fı.x/ � f .x/ D
1

ıd

Z
nıCŒ0;ı�d

.f .y/ � f .x// dy;

and so, by the triangle inequality,

jFı.x/ � f .x/j �
1

ıd

Z
Œ�ı;ı�d

j�rf .x/j dr:

TakingLp norms, applying Minkowski’s inequality, and using the fact that f 2ƒ"p ;p.Rd /
for some "p > 0, we conclude that Fı converges strongly inLp.Rd / to f , which certainly
suffices.

By subtracting a constant multiple of this model case, we may assume in general that g
has mean zero. We claim that Fı now converges weakly to zero. Let � 2 C10 .R

d / be a
test function. We need to show thatZ

Rd

X
n2Zd

Œf �ı.n/ gŒn;ı�.x/ �.x/ dx ! 0

as ı ! 0. Using the mean zero nature of g, we can rewrite the left-hand side as

ıd
X
n2Zd

Œf �ı.n/

Z
Rd

g.r/�rı�.nı/ dr:

Since � is a test function and g is localized, the inner integral has magnitude O.ı/,
and furthermore vanishes unless n D O�.1=ı/. Thus the whole expression is bounded
by ı

R
jxj<c.�/=ı

jf j, and the lemma follows.

Parts (i) and (iii) of the the following corollary follow immediately from the above
proof, and (ii) is a consequence of (i).
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Corollary 2.20.
(i) If f is an envelope function, then f � f ˝ı 1Œ0;1�d is negligible.

(ii) Every envelope function is a multiscale function.

(iii) If Fı is a multiscale function with expansion Fı D
PJ
jD1 fj ˝ı gj CGı .where Gı

is negligible/, then for any p 2 .1;1/,

Fı �!
ı!0

JX
jD1

cjfj weakly in Lp; with cj WD
Z

Rd

gj ; j D 1; : : : ; J:

We remark that conclusion (iii) makes precise the intuitively obvious statement that a
multiscale tensor product approximates in some natural sense (a multiple of) the envelope
function as ı ! 0:

The sum of two multiscale functions is clearly a multiscale function. We proceed to
give other closure properties of multiscale functions, the first one being the closure under
multiplication.

Proposition 2.21. If F D Fı and G D Gı are multiscale functions, then FG D FıGı is
also a multiscale function.

Proof. If either F or G is negligible, then by Lemma 2.19 and Hölder’s inequality we see
that FG is also negligible. Hence by linearity we may assume that F; G are multiscale
tensor products, e.g., F D f ˝ı g and G D f 0 ˝ı g0. By Lemma 2.18 we may assume
in addition that supp.g/ � Œ0; 1�d and supp.g0/ � Œ0; 1�d : Then, by observing that gŒn;ı�
and g0

n0;ı
have disjoint supports if n 6D n0, we get

FG.x/ D
X
n2Zd

Œf �ı.n/ Œf
0�ı.n/ g

00
Œn;ı�;

where g00 WD gg0 is a localized function. From Lemma 2.16 we see thatX
n2Zd

.Œf �ı.n/ Œf
0�ı.n/ � Œff

0�ı.n// g
00
Œn;ı�

is negligible. Hence FG is equivalent toX
n2Zd

Œff 0�ı.n/ g
00
Œn;ı�;

which equals .ff 0/˝ı g00.x/. Since g00 is localized, and (by Lemma 2.4) ff 0 is an envel-
ope function, the claim follows.

Corollary 2.22. Assume that f; f 0 are envelope functions and g; g0 are localized func-
tions. Then the product .f ˝ı g/.f 0˝ı g0/ is a multiscale function equivalent to either of
the multiscale tensor products ff 0 ˝ zg1, ff 0 ˝ zg2, where

zg1.x/ WD 1Œ0;1�d .x/
X

n;m2Zd

g.nC x/g0.mC x/
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and
zg2.x/ WD

X
n2Zd

g.nC x/g0.x/:

Proof. The statement concerning the function zg1 follows directly from examining the
proofs of Lemma 2.18 and Proposition 2.21. The second statement in turn follows from
Lemma 2.18 by observing that zg2 is localized and zg1.x/D1Œ0;1�d .x/

P
k2Zd zg2.xCk/.

Interestingly enough, the multiscale property is also preserved under (translation and
scaling invariant) singular integrals. This is not at all evident a priori since for a singular
integral operator T , the function Tg is usually not even integrable when g is a local-
ized function. On the other hand, recall from standard Calderón–Zygmund theory (see
e.g. [19]) that T extends to a bounded linear operator on Lp.Rd / for all 1 < p <1.

Proposition 2.23. If F D Fı is a multiscale function, and T is a (translation and dila-
tion invariant) singular integral operator (independent of ı/, then TF D TFı is also a
multiscale function.

Proof. If F is negligible, then TF is negligible also since T is bounded on every Lp.Rd /
space. So we may assume that Fı D f ˝ı g for some envelope function f and some
localized function g. To simplify the notation, we now allow all implicit constants to
depend on f , g, T and d .

First suppose that g D 1Œ0;1�d . By Corollary 2.20, Fı differs from f by a negligible
function, thus TFı differs from Tf by a negligible function. Since f is an envelope func-
tion, and T is translation-invariant and bounded on every Lp.Rd /, we conclude that Tf
is an envelope function, and thus a multiscale function again by Corollary 2.20, and the
claim follows.

By linearity, it now suffices to treat the case when g has mean zero. Using the transla-
tion and dilation invariance of T , we observe that

TF D
X
n2Zd

Œf �ı.n/ T .gŒn;ı�/ D
X
n2Zd

Œf �ı.n/ .Tg/Œn;ı�:

If Tg were a localized function, we would now be done, but this clearly not true in general.
However, Tg.x/ decays roughly like hxi�d�1 or, more precisely, we have for any x 2 Rd

and 1 < p <1 that

(2.5) kTgkLp.B.x;1// ≲p hxi
�d�1;

whence Lemma 2.18 applies and the desired conclusion follows. In order to verify (2.5),
observe first from the Lp boundedness of T that the claim is easy for jxj � 4, so we may
assume jxj > 4. We then use the localized mean zero nature of g to decompose g into a
piece g1 of Lp norm Op.hxi

�d�1/ supported in Rd n B.0; jxj=8/ and mean zero, and a
mean zero localized function (with quantitative bounds independent of x) g2 supported
in B.0; jxj=4/. The contribution of g1 is acceptable by the Lp boundedness of T ; the
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contribution of g2 is acceptable by using the mean zero nature of g2 to note that, for
x0 2 B.x; 1/,

Tg2.x
0/ D

Z
B.0;jxj=4/

.K.x0; y/ �K.x0; 0// g2.y/ dy;

where

K.x; y/ D
�. x�y
jx�yj

/

jx � yjd

is the singular kernel of T , and then using the triangle inequality, the Calderón–Zygmund
type bounds on K, i.e.,

jK.x0; y/ �K.x0; 0/j � C jyj jx0j�d�1 for jyj < 2jx0j;

and the localized nature of y 7! g2.y/jyj.

Corollary 2.24. For any envelope function f , localized function g and singular integ-
ral T , the application T .f ˝ı g/ is equivalent to the multiscale function ATf Cf ˝ı g0,
where

A WD

Z
Rd

g and g0.x/ WD T .g � A1Œ0;1�d /.x/:

Iterating Proposition 2.21 and Proposition 2.23, we obtain our deterministic homogen-
ization result for iterated singular integrals:

Corollary 2.25. Let � D �ı be a multiscale function, and let T be a singular integral
operator. Letm� 1, let 1 < p <1, and define �m D �m;ı recursively by �1;ı WD �ı and
�m;ı WD �ıT�m�1;ı for m > 1. Then �m;ı is bounded in Lp.Rd / uniformly in ı, and is
weakly convergent to a limit �m;0 2 Lp.Rd /.

Remark. In principle it is possible to deduce a formula for the limit �m;0 by a repeated
application of Lemma 2.19 and Corollaries 2.22 and 2.25.

3. Stochastic multiscale functions

We now turn to a generalization of the above theory, in which the localized functions g
are allowed to be stochastic. We fix a probability space �, and then define a product
probability space

z� WD �Zd
WD ¹.!n/n2Zd W !n 2 � for all n 2 Zd º:

We often write z! WD .!n/n2Zd for an element of z�.

Definition 3.1 (Stochastic localized function). A stochastic localized function is a func-
tion gWRd ��! C (not depending on the scale parameter ı), where � is a probability
space, such that for every 1 < p <1 and k > 0, the function .x; !/ 7! hxikg.x; !/ lies
in Lp.Rd ��/. We view g as a random function from Rd to C.



K. Astala, S. Rohde, E. Saksman and T. Tao 2306

Definition 3.2 (Stochastic multiscale tensor product). Let f WRd ! C be an envelope
function and let gWRd ��! C be a localized function. We define the multiscale tensor
product f ˝ı gWRd � z�! C of f and g to be the function

(3.1) f ˝ı g.x; z!/ WD
X
n2Zd

Œf �ı.n/ gŒn;ı�.x; !n/;

where gŒn;ı� is defined by Definition 1.2. One can view f ˝ı g as a random function
from Rd to C.

Remark. In the above definition, we of course could have instead spoken of independent
copies of random functions g.�; �/ without introducing the product space z�: However, the
product space perhaps makes things slightly more transparent, at least for readers with
little background in probability.

Definition 3.3 (Stochastic negligible function). A functionF DFı WRd � z�!C depend-
ing on the parameter 0 < ı < 1 is said to be negligible if for every 1 < p <1 there exists
"p > 0 and Cp > 0 such that

kFıkLp.Rd�z�/ � Cp ı
"p

for all 0 < ı < 1. We view Fı as a random function from Rd to C.

Definition 3.4 (Stochastic multiscale function). A functionF DFı WRd � Q�!C depend-
ing on the parameter 0 < ı < 1 is said to be a stochastic multiscale function if we can write

Fı D

JX
jD1

fj ˝ı gj CGı ;

where J � 1 is an integer, f1; : : : ; fJ are envelope functions, g1; : : : ; gJ are stochastic
localized functions, and G D Gı is a stochastic negligible function.

As in the previous section, we say that functions Fı and F 0
ı

are equivalent if their
difference is a stochastic negligible function.

Example 3.5. For each n 2 Zd , let "n 2 ¹�1; 1º be an i.i.d. collection of signs, and letQ
be a cube in Rd . Then the random function

Fı.x/ WD 1Q.x/
X
n2Zd

"n 1nıCŒ0;ı/d .x/

is a stochastic multiscale function (setting � D ¹�1; 1º with the uniform distribution,
and "n to be the nth coordinate function of Q� D �Zd ).

Remark. In the case when the probability space � is trivial, stochastic multiscale func-
tions are essentially the same as deterministic multiscale functions.

Lemma 2.7 and its proof immediately generalize, so that we have

(3.2)
 X
n2Zd

fn.x; !n/

Lp.Rd�z�/

≲p;d;N
� X
n2Zd

khxidŒn;ı�fn.x; !/k
p

Lp.Rd��/

�1=p
:
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In a similar vein, Lemma 2.17 also generalizes to the stochastic setup, one just replaces
kh�idgkLp.Rd / by kh�idgkLp.Rd��/ on the right-hand side. In particular, we obtain:

Lemma 3.6. Let F D Fı WRd � Q�! C be a stochastic multiscale function, and let 1 <
p <1. Then kFıkLp.Rd� Q�/ is bounded uniformly in 0 < ı < 1.

Remark 3.7. Exactly the same proof actually shows that kFıkLp.Rd�z�/ stays bounded
in ı for more general functions of the form

Fı.x; z!/ D
X
n2Zd

Œf �ı.n/ .gn/Œn;ı�.x; z!/

assuming only the uniform localization supn2Zd kh�i
Ngn.�; �/kLp.Rd�z�/ <1 for N � 1

and p 2 .1;1/:

In turn, Proposition 2.21 has the following counterpart.

Proposition 3.8. If F 0 D F 0
ı

is a deterministic multiscale function and F D Fı is a
stochastic multiscale function, then F 0F D F 0

ı
Fı is a stochastic multiscale function.

Proof. It is enough to treat the case F D f ˝ı g and F 0 D f 0˝ı g0; where f and f 0 are
envelope functions, g is a stochastic localized function and g0 is a deterministic localized
function. Furthermore, by Lemma 2.18, we may assume that g0 has support in Œ0; 1�d .
Fix p > 1 and observe that by the definition of localized functions and Hölder’s inequality
we have

(3.3) kh�i
dg0.� �m/g.�; �/kLp.Rd�z�/ ≲g;g 0;p;a hmi

�a; m 2 Zd ;

for any a > 1; in particular for a D d C 1. It follows that zg is a stochastic localized
function, where zg is defined by zg.x; !/ WD

P
m2Zd g

0.x � m/g.x; !/. By Lemma 2.4,
the proposition follows as soon as we show that F 0

ı
Fı is stochastically equivalent to

.ff 0/˝ı zg. Note that by Lemma 2.16 and the stochastic counterpart of Lemma 2.17, the
latter function is equivalent to Hı WD

P
n2Zd Œf �ı.n/Œf

0�ı.n/ zgŒn;ı�.�; !n/, so it suffices
to show that the difference F 0

ı
Fı �Hı is negligible. To that end, we compute

.FıF
0
ı �Hı/.x; z!/ D

X
m2Zd

� X
n2Zd

Œf �ı.n/
�
�mŒf

0�ı.n/
�
g0ŒmCn;ı�.x/ gŒn;ı�.x; !n/

�
:

Using (3.3), first applying the stochastic version of Lemma 2.7, and then Lemma 2.15
together with Hölder’s inequality, we obtain

kFıF
0
ı �HıkLp.Rd�z!/ � ı

d=p
X
m2Zd

kŒf �ı�mŒf
0�ık`p.Zd / hmi

�d�1

≲f;f 0;p;g;g 0 ı
d=p

X
m2Zd

hmi�d�1jmıj"2p ı�d=2p ı�d=2p ≲ ı"2p ;

which verifies that the product FıF 0ı is a stochastic multiscale function.

We can now state our main technical result about stochastic multiscale functions.
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Theorem 3.9 (Main estimate on stochastic multiscale functions). Let m � 1, let �.1/ D
�
.1/

ı
; : : : ;�.m/D�

.m/

ı
be stochastic multiscale functions, and let T1; : : : ;Tm�1 be singular

integral operators. Define �m D �m;ı WRd � Q�! C recursively by

(3.4) �1;ı WD �
.1/

ı
I �m;ı WD �

.m/

ı
Tm�1�m�1;ı for m > 1:

Then �m;ı is bounded in Lp.Rd � z�/ uniformly in 0 < ı < 1, for any p 2 .1;1/: Fur-
thermore, there exists a (deterministic) limit function �m;0 2 Lp.Rd / and " > 0 with the
property that, given any test function � 2 C10 .R

d /, we have

(3.5) P
�ˇ̌̌ Z

Rd

Œ�m;ı.x; !/ � �m;0.x/� �.x/ dx
ˇ̌̌
� ı"

�
≲m;d;";�.1/;:::;�.m/;T1;:::;Tm�1;� ı

";

where P denotes the probability measure on Q�.

The proof of this theorem is lengthy and shall occupy the next section. Later, in Sec-
tion 5 we shall give applications to random Beltrami equations through the following
immediate consequence.

Corollary 3.10 (Almost sure convergence). Let �m;ı be as in Theorem 3.9 and assume
that a 2 .0; 1/: Then almost surely �m;aj ! �m;0 weakly in Lp.Rd / as j !1, for all
p 2 .1;1/.

Proof. We recall that the sequence �m;aj is uniformly bounded in each Lp.Rd / and that
one may pick a countable set of test functions in C10 .R

d / that is dense in every Lp.Rd /,
with 1 < p <1:Hence it is enough to prove almost sure convergence when tested against
a fixed test function. However, this follows immediately from Theorem 3.9 and the Borel–
Cantelli lemma.

Theorem 1.1 now follows from Theorem 3.9 and Corollary 3.10.
We finish this section by observing that in the case where g is bounded with quick

decay as x !1, our definition of a deterministic multiscale function is equivalent to the
product of the envelope function and the ‘bump field defined via g’.

Lemma 3.11. Assume that g is bounded and has quick decay in the first variable:

jg.x; !/j � CN hxi
�N for all N � 1 and x 2 Rd ; ! 2 �.

Then, for any envelope function f , the stochastic multiscale tensor product f ˝ı g is
equivalent to the function f .x/

�P
n2Zd gŒn;ı�.x; !n/

�
:

Proof. Observe first that, by the decay assumption, g is a stochastic localized function
and the bump field is uniformly bounded:ˇ̌̌ X

n2Zd

gŒn;ı�.x; !n/
ˇ̌̌
� C for all x 2 Rd :
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Combining this with Corollary 2.20(i), we see that the product f .x/.
P
n2ZdgŒn;ı�.x;!n//

is equivalent to fı.x/.
P
n2Zd gŒn;ı�.x; !n// , where

fı WD f ˝ı 1Œ0;1/d D
X
n2Zd

Œf �ı.n/ 1nıCŒ0;ı/d :

By using for each n 2 Zd the trivial identities

Œf �ı.n/ D
X
k2Zd

Œf �ı.n/ 1.nCk/ıCŒ0;ı/d and fı D
X
k2Zd

Œf �ı.nC k/ 1.nCk/ıCŒ0;ı/d ;

we may use the inequality (3.2) to estimate, for any p2.1;1/, as follows:

Qp WD
f ˝ı g � fı� X

n2Zd

gŒn;ı�.x; !n/
�
Lp.Rd� z!/

D

 X
k2Zd

� X
n2Zd

�k Œf �ı.n/1.nCk/ıCŒ0;ı/d .x/gŒn;ı�.x; !n/
�
Lp.Rd� z!/

≲
X
k2Zd

� X
n2Zd

j�k Œf �ı.n/
ˇ̌p
k1.nCk/ıCŒ0;ı/d .x/hxi

d
Œn;ı�gŒn;ı�.x; !n/

p
Lp.Rd� z!/

�1=p
≲
X
k2Zd

k�k Œf �ık`p.Zd / k1kıCŒ0;ı/d .x/hxi
d
Œ0;ı�gŒ0;ı�.x; !/kLp.Rd��/ :

By assumption,

k1kıCŒ0;ı/d .x/hxi
d
Œ0;ı�gŒ0;ı�.x; !/kLp.Rd��/ ≲ hki

�2d ıd=p;

and hence an application of Lemma 2.15 yields that

Qp ≲
X
k2Zd

.kı/"p ı�d=p ıd=p

hki2d
≲ ı"p ;

which completes the proof.

4. Proof of Theorem 3.9

In this section we establish Theorem 3.9. For that purpose, the first subsection below
introduces some useful notation, and we find that for our purposes it is enough to estimate
the size of the second moment and convergence of the first moment of suitable quantities,
see (4.8) and (4.9) below.

4.1. Notation and reduction to first and second moment estimates

We first settle the claim that �m;ı is uniformly bounded in Lp.Rd � z!/, stating this result
as a separate lemma.

Lemma 4.1. Define �m;ı.�; !/ as in Theorem 3.9. Then k�m;ıkLp.Rd�z!/ is uniformly
bounded in ı > 0:
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Proof. Fix ! 2 Q�. Since T1; : : : ; Tm�1 are bounded on Lq.Rd / for every 1 < q <1, we
see from Hölder’s inequality and induction on m that

(4.1) k�m;ı.�; !/kLp.Rd / ≲p

mY
jD1

k�
.j /

ı
.�; !/kLmp.Rd /:

Namely, if this is true for the value m � 1, we choose q > 1 with 1=q C 1=.mp/ D 1=p
and use the Lq-boundedness of Tm�1 to estimate

k�m;ı.�; !/kLp.Rd / �k�
.m/

ı
.�; !/kLmp.Rd / kTm�1�m�1;ı.�; !/kLq.Rd /

≲k�.m/
ı
.�; !/kLmp.Rd / k�m�1;ı.�; !/kLq.Rd /

≲k�.m/
ı
.�; !/kLmp.Rd /

m�1Y
jD1

k�
.j /

ı
.�; !/kL.m�1/q.Rd /;

and as .m� 1/q Dmp; the desired inequality (4.1) with indexm follows. Finally, Fubini’s
theorem and another application of Hölder’s inequality yield

(4.2) k�m;ıkLp.Rd� Q�/ ≲p

mY
jD1

k�
.j /

ı
kLmp.Rd� Q�/:

The claim then follows from Lemma 3.6.

Remark 4.2. The above bound also holds if the stochastic multiscale functions �.j /
ı

are
replaced by more general ones described in Remark 3.7.

We then proceed with some reductions towards the proof of Theorem 3.9. First of all,
by multilinearity, we may assume that each of the stochastic multiscale functions �.j /

ı
is

either a stochastic negligible function, or is a stochastic multiscale tensor product. If at
least one of the functions �.j /

ı
is stochastically negligible, we see by (4.2) that for every

1 < p <1 there exists " > 0 such that

k�m;ıkLp.Rd� Q�/ ≲p;" ı
":

By applying p D 2 (say) and setting �m;0 W� 0, we easily obtain the claim (3.5).
We may thus assume that for each 1 � j � m we have

(4.3) �
.j /

ı
D fj ˝ı gj

for some envelope functions fj and some stochastic localized functions gj . We allow all
implied constants to depend on fj and gj .

Next, we shall make the qualitative assumption that the envelope functions fj are
compactly supported in Rd . This is purely in order to justify certain interchanges of sum-
mation, as now all sums in the multiscale functions are finite for a fixed ı > 0. At the very
end of Section 4.3 we describe how this assumption can be dispensed with by a standard
limit argument.
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As the next step, we observe that for Theorem 3.9 it suffices to show for each � 2
C10 .R

d / that there exists a limit z D z� 2 C such that

P
�ˇ̌̌ Z

Rd

�m;ı �.x/ dx � z
ˇ̌̌
� ı"

�
≲" ı

"

for some " > 0 independent of �; ı. Indeed, the map � 7! z� is then a continuous (by the
uniform boundedness of k�m;ı.�; !/kLp.Rd /), linear, and densely defined functional on
Lp.Rd / for every 1 < p <1, and can then be used to reconstruct �m;0 by duality.

By (4.3) and (3.1), we can write

�
.j /

ı
.x; !/ D

X
nj2Zd

�
.j /

nj ;ı
.x; !nj /;

where

(4.4) �
.j /

nj ;ı
.x; !nj / WD Œfj �ı.nj / .gj /Œnj ;ı�.x; !nj /:

We can therefore expand out the expression

(4.5)
Z

Rd

�m;ı.x; !/ �.x/ dx

using (3.4) as

(4.6)
X
En2.Zd /m

Xı;En;

where En WD .n1; : : : ; nm/, and Xı;En is the complex-valued random variable

(4.7) Xı;En WD

Z
Rd

�
�
.m/

nm;ı
.�; !nm/Tm�1 : : : T1�

.1/

n1;ı
.�; !n1/

�
.x/ �.x/ dx:

Note that our qualitative hypotheses ensure that for each fixed ı, only finitely many of
the Xı;En are non-zero, and that each of the random variables Xı;En is bounded.

To obtain the concentration result (3.5), we use Chebyshev’s inequality. From that
inequality we see that it suffices to show a first moment estimate

(4.8)
ˇ̌̌ X
En2.Zd /m

E.Xı;En/ � z
ˇ̌̌
≲" ı

"

together with a second moment estimate of the form

(4.9) E
ˇ̌̌ X
En2.Zd /m

Xı;En � E.Xı;En/
ˇ̌̌2

≲" ı
"

for some " > 0 (independent of ı and �). (One can also control higher moments, but
the second moment will suffice for our application.) The rest of Section 4 is devoted to
proving the key estimates (4.8) and (4.9).
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4.2. The second moment estimate

In this section our aim is to settle the second moment estimate (4.9). To start with, we
expand the left-hand side asX

En;En02.Zd /m

E.Xı;EnXı;En0/ � E.Xı;En/E.Xı;En0/:

Now observe from (4.7) that Xı;En and Xı;En0 are independent and the corresponding term
in the above sum vanishes, unless we have nj D n0j 0 for some 1 � j; j 0 � m. Thus by the
triangle inequality and Cauchy–Schwarz we can estimate the previous expression by

2
X

1�j;j 0�m

X
En;En02.Zd /mWnjDn

0

j 0

E.jXı;Enj2/1=2 E.jXı;En0 j2/1=2:

It therefore suffices to establish an estimate of the form

(4.10)
X

En;En02.Zd /mWnjDn
0

j 0

E.jXı;Enj2/1=2 E.jXı;En0 j2/1=2 ≲" ı"

for all 1 � j; j 0 � m.
Fix j; j 0. We now pause to give a basic estimate on the size of each of theXı;En. Define

the kernel K0 by setting

K0.n/ WD
1

hnid
�

Proposition 4.3 (Size estimate). If 1 < p <1 and En 2 .Zd /m, then

E.jXı;Enjp/1=p ≲p ı
d
hıjnmji

�2d
� mY
iD1

jŒfi �ı.ni /j
�m�1Y
iD1

K0.niC1 � ni /:

For the proof of the proposition, we shall need the following weighted version of
the Lp bounds for singular integrals.

Lemma 4.4 (Localized singular integral bounds). Let T be a singular integral operator.
If n; n0 2 Zd , ı > 0, 1 < p <1, and N > d , then we have the bound

kh�i
�N
Œn0;ı�Tf kLp.Rd / ≲T;p;d;N K0.n � n

0/ kh�iNŒn;ı�f kLp.Rd /;

where f is any function for which the right-hand side is finite.

Proof. By scaling, we may set ı D 1. We have

kTf kLp.B.n0;1// ≲T;p;d K0.n � n
0/kf kLp.B.n;1//

for all n; n0 2 Zd and all f 2 Lp.B.n; 1// (extending f by zero outside of this ball).
Namely, if jn� n0j � 2, then the claim follows simply by using the integral representation
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of T and the triangle inequality (and Hölder’s inequality). If jn� n0j< 2, the claim instead
follows by using the boundedness of T on Lp.Rd /. It then follows that

kh�i
�N
Œn0;1�Tf kLp.Rd / ≲

X
k2Zd

hki�N kTf kLp.B.n0Ck;1//

≲
X
k2Zd

hki�N
� X
`2Zd

hn0 C k � n � `i�dkf kLp.B.nC`;1//

�
≲
� X
k;`2Zd

hki�N hn0 C k � n � `i�d h`i�N
�
kh�i

N
Œn;1�f kLp.Rd /:

This yields the stated estimate, since the last written sum is easily estimated to be less
than O.hn � n0i�d / by considering separately the case max.jkj; j`j/ � jn � n0j=4 and its
complement.

Proof of Proposition 4.3. Pick p 2 .1;1/ and fix ! 2 z�. Denote

g.�; !/ WD hxi3dŒnm;ı� Œ�
.m/

ı;nm
.�; !nm/Tm�1 : : : T1�

.1/

ı;n1
.�; !n1/�.x/

so that we may write

(4.11) jXı;Enj D
ˇ̌̌ Z

Rd

g.x;!/hxi�NŒnm;ı� �.x/dx
ˇ̌̌
� kg.�; !/kLp.Rd / kh�i

�3d
Œnm;ı�

�kLp0 .Rd /:

By an inductive application of Lemma 4.4 and Hölder’s inequality as in the proof of (4.1),
we see that

(4.12) kg.�; !/kLp.Rd / ≲
m�1Y
iD1

K0.niC1 � ni /

mY
iD1

kh�i
6d
Œni ;ı�

�
.i/

ı;ni
.�; !ni /kLpm.Rd /:

Since � is a Schwartz function, one easily verifies that

kh�i
�3d
Œnm;ı�

�kLp0 .Rd / ≲
ıd=p

0

hınmi2d
�

Moreover, (4.4) and the localized nature of gi yield that�
Ekh�i6dŒni ;ı� �

.i/

ni ;ı
.�; !ni /k

pm

Lpm.Rd /

�1=pm
≲ ıd=mpjŒfi �ı.ni /j:

By combining these estimates with (4.11), the desired estimate (4.10) follows by Hölder’s
inequality and the relation 1=p C 1=p0 D 1.

In order to utilize the above proposition, we need to introduce discrete fractional
integrals. To that end, given any real number ˛ 2 Œ0; d/, define the more general kernels
K˛WZd ! RC on the integer lattice by

(4.13) K˛.n/ WD
1

hnid�˛
�
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The convolution of functions defined on the lattice Zd is defined in the usual manner:

F �G.n/ WD
X
m2Zd

F.m/G.n �m/:

By direct computation, we have the convolution estimate

(4.14) K˛ �Kˇ ≲˛;ˇ;n K˛Cˇ

whenever ˛; ˇ > 0 and ˛ C ˇ < d . These estimates are unfortunately not true at the
endpoints ˛ D 0 or ˇ D 0, due to the logarithmic failure of summability of K0. However,
from Young’s inequality we easily see that

(4.15) kK0 � f k`q.Zd / ≲d;p;q kf k`p.Zd /

for all 1 � p < q � 1 and all f 2 `p.Zd /.
Finally, we are ready to estimate the left-hand side of (4.10) by

≲ S WD ı2d
X

En;En02.Zd /mWnjDn
0

j 0

hınmi
�2d

� mY
iD1

jŒfi �ı.ni /j
�m�1Y
iD1

K0.niC1 � ni /(4.16)

� hın0mi
�2d

� mY
i 0D1

jŒfi 0 �ı.n
0
i 0/j
�m�1Y
i 0D1

K0.n
0
i 0C1 � n

0
i 0/:

Writing nj D n0j 0 D n, we can rewrite this expression using the convolution operator
TK0f WD f �K0 and by denoting ˆı.n/ WD hıni�2d asX

n2Zd

jŒfj �ı.n/j jŒfj 0 �ı.n/jH1;ı.n/H2;ı.n/G1;ı.n/G2;ı.n/;(4.17)

with4

H1;ı.n/ WD
�
TK0.jŒfjC1�ı j/ : : : TK0.jŒfm�ı jˆı/

�
.n/;

H2;ı.n/ WD
�
TK0.jŒfj 0C1�ı j/ : : : TK0.jŒfm�ı jˆı/

�
.n/;

G1;ı.n/ WD
�
TK0.jŒfj�1�ı j/ : : : TK0.jŒf1�ı j/

�
.n/;

G2;ı.n/ WD
�
TK0.jŒfj 0�1�ı j/ : : : TK0.jŒf1�ı j/

�
.n/:

In order to bound these functions, observe first that for given p > 1, for any Q" > 0, and for
an arbitrary sequence .a.n//n2Zd ,

kaŒfi �ık`p.Zd / � kak`p.Zd / kŒfi �ık`1.Zd / ≲fi ;p;Q" ı
�Q"
kak`p.Zd /;(4.18)

4Below the definitions of H1;ı and its analogues are to be interpreted as follows: starting from the right,
one alternatively performs either a pointwise multiplication by a sequence jŒfk �ı j or an application by the oper-
ator TK0 .
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since Lemma 2.15 yields that kŒfi �ık`1.Zd / � kŒfi �ık`q.Zd / ≲ ı�d=q for all q > 1 and
we just take q large enough. Fix " > 0. Using alternately the above estimate (with a very
small value of Q") and the boundedness of TK0 W `

p.Zd /! `q.Zd / for any 1 < p < q <1
we obtain that

(4.19) kHk;ık`2C".Zd / ≲ ı�" kˆık`2.Zd / ≲ ı�"�d=2; k D 1; 2:

Set q D q."/ D 4"�1.2C "/ so that 2=q C 1=.2C "/ D 1=2; and use (4.18) to similarly
obtain the estimate

(4.20) kGk;ık`q.Zd / ≲ ı�"kŒf1�ık`q�"0 .Zd / ≲ ı�"�d=.q�"
0/ ≲ ı�.dC1/"; k D 1; 2;

where we just picked "0 > 0 small enough. Finally, plugging the above bounds in (4.17),
using 2=.1C "/C 4=q D 1 and the fact that kŒf1�ık`q.Zd / ≲ ı

�d", we obtain via Hölder’s
inequality that

S � ı2dkH1;ık`2C".Zd / kH2;ık`2C".Zd / kG1;ık`q.Zd / kG2;ık`q.Zd /

� kŒfj �ık`q.Zd / kŒfj 0 �ık`q.Zd /

≲ ı2d ı�"�d=2 ı�"�d=2 ı�2.dC1/" ı�2d" ≲ ıd�O."/:

If j D 1 (respectively, j 0 D 1), the term G1;ı (respectively, G2;ı ) is not present in (4.17),
and the above argument goes through with obvious modifications. The desired estimate
follows as " > 0 is arbitrary.

Remark. One way to understand the obtained bound for the second moment is to observe
that a computation analogous to the above one could also be used, e.g., to estimate the
quantity EkXı;En;ck2, which we know to be bounded. However, direct implementation
of the above method would give us a divergent upper bound of the form ı�O."/, due
to the logarithmic non-boundedness of the kernel K0 on `p-spaces, as we are ignoring
nontrivial cancellations that are behind Proposition 4.3. Roughly speaking, what saves us
above is that the condition nj D n0j 0 , due to independence, reduces the number of terms
by a factor ıd :

4.3. The first moment estimate

It now remains to establish the first moment estimate (4.8), whose proof is more combin-
atorial in nature. We can split the left-hand side into finitely many components, depending
on the equivalence class that n1; : : : ; nm generates. Given any surjective coloring func-
tion cW ¹1; : : : ; mº ! ¹1; : : : ; kº which assigns a “color” in some finite set of integers
¹1; : : : ; kº to every integer ¹1; : : : ;mº, let .Zd /mc denote the set of all En 2 .Zd /m such that
nj D nj 0 if and only if c.j / D c.j 0/. Clearly we can partition .Zd /m into finitely many
of the .Zd /mc . Thus it will suffice to show that for each coloring function c there exists a
complex number zc (independent of ı, but depending on all other parameters) for which
we have ˇ̌̌ X

En2.Zd /mc

E.Xı;En/ � zc
ˇ̌̌
≲" ı

":
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Fix c. We can reparameterise this asˇ̌̌ X
En2.Zd /k

¤

E.Xı;En;c/ � zc
ˇ̌̌
≲" ı

";

where .Zd /k
¤

is the space of all k-tuples .n1; : : : ; nk/ 2 .Zd /k with n1; : : : ; nk distinct,
and Xı;En;c W�k ! C is the complex-valued random variable

Xı;En;c WD

Z
Rd

�
�
.m/

ı;nc.m/
.�; !nc.m//Tm�1 : : : T1�

.1/

ı;nc.1/
.�; !nc.1//

�
.x/ �.x/ dx:

Observe from the inclusion-exclusion principle that the sum
P
En2.Zd /kn.Zd /k

¤

E.XEn;c/ can

be expressed as a finite linear combination of expressions of the form
P
En2.Zd /k0Ec.XEn;c0/,

where k0 < k and c0W ¹1; : : : ; nº! ¹1; : : : ; k0º is a surjective coloring, and c is a refinement
of c0 (i.e., c.j1/ D c.j2/ implies that c0.j1/ D c0.j2/) (for the readers benefit, this is
illustrated by a detailed example in Remark 4.6 below). Thus, by induction on k, it in fact
suffices to show that for every pair of colorings .c; c0/ with c finer than c0 there exists a
complex number z0c;c0 for which we haveˇ̌̌ X

En2.Zd /k

Ec.Xı;En;c0/ � z0c;c0
ˇ̌̌
≲" ı

";

where we used the notation

EcXı;En;c0 WD
Z

Rd

E
�
�
.m/

ı;nc0.m/
.�; !c.m//Tm�1 : : : T1�

.1/

ı;nc0.1/
.�; !c.1//

�
.x/ �.x/ dx:

Let us now use Fubini’s theorem to writeX
En2.Zd /k

Ec.XEn;c0/ D
Z

Rd

Tc;c0;ı.1/.x/ �.x/ dx;

where Tc;c0;ı is the (deterministic) operator

Tc;c0;ıh.x/ WD
X
En2.Zd /k

E
�
�
.m/

ı;nc0.m/
.�; !c.m//Tm�1 : : : T1�

.1/

ı;nc0.1/
.�; !c.1//h

�
.x/:

We next verify the uniform boundedness of our ‘colored’ sum.

Lemma 4.5. Assume that h D hı is a deterministic multiscale function. Then

(4.21) kTc;c0;ıhıkLp.Rd / � C <1 for ı > 0:

Proof. We double the number of coordinates in our probability space and consider the
product (probability) space z� � z�0 whose elements we can write as sequences .z!; z!0/ D
.!n; !

0
n/n2Zd , and choose unimodular random variables Yk;j W z�0 ! ¹1; �1º for k D

1; : : : ; m and j 2 Zd such that EY1;n1 � Ym;nm is equal to 1 if .n1; : : : ; nm/ respects
the coloring c0 (i.e., n` D n`0 for those `; `0 2 ¹1; : : : ; mº that have the same color with
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respect to c0), and otherwise this expectation is zero. For example, in the case m D 2

and one color (i.e., c0.1/ D c0.2/ D 1), one may take Y1;j D Y2;j D ‚j ; where .‚j /
is a Bernoulli sequence. In the general case, one associates independent copies of such
sequences for all the pairs .k; k0/ that have the same color. More explicitly, one can set
z�0 WD ¹�1; 1ºA with the Bernoulli measure, where A is the set of triples .n; `; `0/ with
n 2 Zd and `; `0 2 ¹1; : : : ; mº with c0.`/ D c0.`0/, and set

Yr;n.z!
0/ D

Y
.n;`;`0/2AW r2¹`;`0º

z!0n;`;`0

for any z!0 D z!0
.n;`;`0/2A

; r 2 ¹1; : : : ; mº; and n 2 Zd :
We may then write

(4.22)
Tc;c0;ıhı.x/ D Ez�� z�0

� X
En2.Zd /m

Œz�
.m/

ı;nm
.�; !c.m/; z!

0/Tm�1 : : : T1 z�
.1/

ı;n1
.�; !c.1/; z!

0/h�.x/
�
;

where for k 2 ¹1; : : : ; mº and n 2 Zd we set

z�
.k/

ı;n
.x; z!; z!0/ WD �

.k/

ı;n
.x; z!/Yk;n.z!

0/:

In particular, we may write

(4.23) Tc;c0;ıh D Ez�� z�0H
.m/

ı
Tm�1 : : :H

.1/

ı
hı ;

with
H
.k/

ı
.x; z!; z!0/ D

X
n2Zd

Œfk �ı.n/.gk/Œn;ı�.x; !c.k//Yk;n.z!/:

Recalling Remark 3.7, the argument of Lemma 3.6 applies as before since the additional
factors Yk;n or having the variable !c.k/ instead of !n do not affect our old estimates,
whence

kH
.k/

ı
kLp.Rd� z�� z�0/ �p C for all ı > 0; p 2 .1;1/.

Finally, Lemma 4.1 (together with Remark 4.2) and Hölder’s inequality yield the desired
result (4.21).

We pause to clarify by an example the role of colorings introduced above.

Remark 4.6. In order to illustrate the use of the colorings and the division to cases ‘split
and ‘non-split’ (the latter notions will introduced shortly below in the proof of Proposi-
tion 4.7), let us consider in the case m D 3 the expectation

S WD E
� X
.n1;n2;n3/2Z3

Xn1T Yn2TZn3

�
;

that is of the type we have to handle. Here, the Xn D Xn.x; Un/, Yj D Yn.x; Un/; Zn D
Zn.x; Un/ (n 2 Z) are (say bounded) random functions, and the Uj are i.i.d random vari-
ables. The linear operator T could be, e.g., a singular integral operator. In the first step, one
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uses independence and Fubini to write the above sum in the form (the extra subindex 6D
indicates that one sums only over triples or tuples consisting of unequal indices)

(4.24)

S D
X

n1;n2;n3; 6D

.EXn1/T .EYn2/T .EZn3/C
X

n1;n2; 6D

.E.Xn1T Yn1//T EZn2

C

X
n1;n2;6D

E.Xn1T .EYn2/TZn1/C
X

n1;n2; 6D

.EXn1/T E.Yn2TZn2/

C

X
n1

E.Xn1T Yn1TZn1/

DW S1 C S2 C S3 C S4 C S5:

The next step uses the inclusion-exclusion principle to rewrite the sums so that one sums
over all indices. For example, we obtain

S1 D
X

n1;n2;n3

.EXn1/T .EYn2/T .EZn3/ �
X
n1;n2

.EXn1/T .EYn1/T .EZn2/

�

X
n1;n2

.EXn1/T .EYn2/T .EZn1/ �
X
n1;n2

.EXn1/T .EYn2/T .EZn2/

C 2
X
n1

.EXn1/T .EYn1/T .EZn1/

WD S11 � S12 � S13 � S14 C 2S15:

Each of these terms can be expressed via a pair of colourings .c; c0/. Let c`k and c0
`k

stand
for the colours of the term S`k : At most three colours are needed. We have c1` D .1; 2; 3/
for each ` 2 ¹1; : : : ; 5º. In turn, c011 D .1; 2; 3/, c012 D .1; 1; 2/,c013 D .1; 2; 1/, c011 D
.1; 2; 2/, and c015 D .1; 1; 1/.

In a similar vein, the term S2 can be rewritten as

S2 D
X
n1;n2

.E.Xn1T Yn1//TEZn2 �
X
n1

.E.Xn1T Yn1//TEZn1 DW S21 � S22:

Now the colourings are c21 D c22 D .1; 1; 2/, c021 D .1; 1; 2/ and c022 D .1; 1; 1/. The
terms S3 and S4 are analogous, and finally the term S5 needs no further subdivision and
one has c5 D c05 D .1; 1; 1/:

Among the terms S11, S12, S13, S14, S15, S21, S22 and S5, the terms S11, S12, S14
and S21 will later on be designated as split, and the remaining ones as nonsplit. This means
the following: for a split term, one can concretely divide the defining sum to independent
left-hand and right-hand side summations, and also the expectations split accordingly. For
instance, we may write

S21 D f Tg; with f WD

nX
j1

E.Xj1T Yj1/ and g WD

nX
j2

EZj2 :

We return to the main course of the argument towards the first moment estimate, and
note that, in view of Lemma 2.19, it suffices to show the following.
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Proposition 4.7 (Main proposition). If cW ¹1; : : : ; mº ! ¹1; : : : ; kº is surjective, and
if h D hı is a (deterministic) multiscale function, then Tc;c0.h/ D Tc;c0;ı.hı/ is also a
(deterministic) multiscale function.

The remainder of this section is devoted to the proof of this proposition.
We first observe that one proves easily (e.g., compare the proof of Proposition 3.8)

that if we know the claim (for a given colouring c0) in the special case hı D 1, then it is
true (for the given colouring c0) in the general case. Namely, the proof of Proposition 3.8
applies as such to the product term H

.1/

ı
hı in the representation (4.23) verifying that

it can be replaced by zH .1/; which is of the same form as H .1/, and by decoupling the
representation we obtain an expression with 1 in place of hı :

We induct on k, i.e., the number of colors in c0. If there is only one color in c0, then

Tc;c0;ı.1/.x/ WD
X

n2.Zd /

Ec
�
�
.m/

ı;n
.�; !c.m//Tm�1 : : : T1�

.1/

ı;n
.�; !c.1//

�
.x/

D

h X
n2Zd

� mY
jD1

Œfj �ı.n/
�
gŒn;ı�.x/

i
;

where
g.�; !/ WD Ecgm.�; !c.j //Tm�1 : : : T1g1.�; !c.j //:

Obviously, g is a localized function, and hence Lemma 2.16 and Proposition 2.21 verify
that Tc;c0;ı.h/ is a multiscale function. Now we suppose inductively that k > 1, and that
the claim has already been proven for all smaller values of k.

We begin by disposing of the split case, in which there exists a non-trivial partition
¹1; : : : ; mº D ¹1; : : : ; j º [ ¹j C 1; : : : ; mº with 1 � j < m such that c0.¹1; : : : ; j º/ and
c0.¹j C 1; : : : ; mº/ are disjoint. By relabeling colors if necessary, we may assume that
c0.¹1; : : : ;mº/D ¹1; : : : ; k0º for some 1� k0 <k. Then, we let c01W ¹1; : : : ; j º! ¹1; : : : ; k

0º

be the restriction of c to ¹1; : : : ; j º, and c02W ¹1; : : : ; m � j º ! ¹1; : : : ; k � k
0º be the

function c02.i/ WD c
0.i C j /� k0. The restrictions c1; c2 are defined analogously using the

fact that c refines c0: Observe that, by the definition of Ec ,

Tc;c0;ı.1/.x/

WD

X
En2.Zd /k�k0

Ec2
�
�
.m/

ı;nc02.m�j /
.�; !c2.m�j //Tm�1 : : :TjC1�

.jC1/

ı;nc02.1/
.�; !c2.1//TjTc1;c01;ı.1/

�
.x/:

By the induction hypothesis, Tc1;c01;ı.1/ is a deterministic multiscale function, and then by
Proposition 2.23, TjTc1;c01;ı.1/ is also. The claim then follows by another application of
the inductive hypothesis.

Finally, we deal with the more difficult non-split case, in which no non-trivial partition
of the above type exists. In other words, we need to show that

Tc;c0ı.1/.x/ D
X
En2.Zd /k

E
�
�
.m/

ı;nc0.m/
.�; !c.m//Tm�1 : : : T1�

.1/

ı;nc0.1/
.�; !c.1//

�
.x/
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is a multiscale function. Using (4.4) and the fact that all the T1; : : : ; Tm�1 commute with
dilations, we can rewrite Tc;c0;ı1.x/ as

Tc;c0ı1.x/ WD
X
En2.Zd /k

� mY
iD1

Œfi �ı.nc0.i//
�
.GEn/Œ0;ı�.x/;

where

GEn.x/ WD E
�
gm.� � nc0.m/; !nc.m//Tm�1 : : : T1g1.� � nc0.1/; !nc.1//

�
.x/:

Using the translation-invariance of the T1; : : : ; Tm�1, we can further rewrite this as

Tc;c0;ı1.x/ WD
X
n2Zd

X
Er2.Zd /k Wrc.m/D0

� mY
iD1

Œfi �ı.nC rc.i//
�
.GEr /Œn;ı�.x/:

To estimate this expression, we observe that, exactly as in (4.12), we have for any
Er 2 .Zd /k , N > 0, and 1 < p <1 the estimate

(4.25) kh�i
NGErkLp.Rd / ≲N;p

m�1Y
iD1

K0.rc.iC1/ � rc.i//:

We combine this lemma with the non-split nature of c to obtain the following.

Lemma 4.8. For any N > 0 and 1 < p <1, there exists ˛ > 0 such thath �iN X
Er2.Zd /k W rc.m/D0WR�hEri<2R

jGEr j

Lp.Rd /

≲p;N;˛ R
�˛

for all R � 1.

Proof. In view of (4.25) and the triangle inequality, it suffices to show that

X
Er2.Zd /k W rc.m/D0;R�hEri<2R

m�1Y
iD1

K0.rc.iC1/ � rc.i// ≲˛ R
�˛

for ˛ sufficiently small. Now recall the kernels K˛ defined in (4.13). From the triangle
inequality (and the surjectivity of c), we see that

m�1Y
iD1

K0.rc.iC1/ � rc.i// ≲˛ R
˛

m�1Y
iD1

K˛.rc.iC1/ � rc.i//

whenever R � hEri. Thus it will suffice to show that

(4.26) S˛.c/ WD
X

Er2.Zd /k Wrc.m/D0

m�1Y
iD1

K˛.rc.iC1/ � rc.i// ≲˛ 1

for all ˛ � ˛0.m/ > 0.
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In order to prove this, we need a simple lemma on colorings, that needs some termin-
ology. Let cW ¹1; : : : ; mº ! ¹1; : : : kº be a (surjective) coloring. Fix k0 2 ¹1; : : : kº, and
denote ` D #c�1.k0/: One defines in an obvious way the coloring c0W ¹1; : : : ; m � `º !
¹1; : : : k � 1º that is obtained by removing color k0 from c. More precisely, if c is thought
as a sequence of length m containing integers from ¹1; : : : kº, the sequence c0 is obtained
by taking of all occurrences k from c, keeping the order of the remaining elements, and
replacing every j > k0 by j � 1:

Lemma 4.9. Let c be a non-split coloring with at least 3 colors. Then we may remove
from c a color .different from c.m// so that the remaining coloring is also non-split.

Proof. We begin by defining the convex support of a color k0 as the interval ¹j; j C
1; : : : ; j 0º; where j D min¹i 2 ¹1; : : : ; kº W c.i/ D k0º and j 0 D max¹i 2 ¹1; : : : ; kº W
c.i/ D k0º. To prove the lemma, note first that in case c.1/ D c.m/, we may remove any
other color and what remains is non-split. In case c.m/ 6D c.1/, we first try to remove the
color c.1/. If the outcome is non-split, we are done. If the outcome is split, it means that
there must be a color k0 whose convex support is contained in the convex support of c.1/,
in particular that color is different from c.m/: When color k0 is removed, it is clear that
remaining coloring is non-split.

We return to the proof of (4.26) and induct on the number of colours in c. If there is
only one color, the statement is obviously true. Assume then that c contains k different
colors with k � 2 and the statement is true if the number of colors does nor exceed k � 1:
Now, if k � 3, according to the previous lemma, there is a color k0 that can be removed
from c so that the remaining coloring c0 is non-split. If k D 2, we just pick k0 to be the
color different from c.m/: Then, since c is non-split, we may pick 1 � j < j 0 � k so that
j � j 0 � 2 and c.i/D k0 for all i with j 0 < i < j 0, but c.i/ 6D k0 for i D j; j 0:We obtain

X
rk02Zd

j 0�1Y
iDj

K˛.rc.iC1/�rc.i//D
X
m2Zd

K˛.m�rc.j //K˛.rc.j 0/�m/≲˛K2˛.rc.j /�rc.j 0//:

We thus obtain
S˛.c/ � S3˛.c

0/ ≲ 1;

and by induction the claim follows if we take (say) ˛ � ˛0 WD 3�.mC1/ initially.

Now we can finally show that Tc;ı1 is a multi-scale function. Fix 1 < p < 1, let
N > d be large, and let "0 > 0 be a small number to be chosen later. Let us first consider
the “non-local” contribution when hEri � R WD ı�"0 . From Lemma 2.15 (applied with p
close to infinity), we see that

kŒfi �ıkl1.Zd / ≲" ı
�"

for all " > 0. From Lemma 4.8 and the triangle inequality, we thus see thath �iN X
Er2.Zd /k W rc.m/D0;hEri�R

� mY
iD1

Œfi �ı.nC rc.i//
�
GEr


Lp.Rd /

≲p;N;" ı
�"R�˛jŒfm�ı.n/j
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for some ˛ > 0, and soh �iNŒn;ı� X
Er2.Zd /k W rc.m/D0;hEri�R

� mY
iD1

Œfi �ı.nC rc.i//
�
.GEr /Œn;ı�


Lp.Rd /

≲p;N;" ı
�" ıd=pR�˛ jŒfm�ı.n/j

for all n 2 Zd . Taking lp.Zd / norms of both sides and using Hölder and Lemma 2.15, we
obtain (if N is large enough) X

n2Zd

X
Er2.Zd /k W rc.m/D0;hEri�R

� mY
iD1

Œfi �ı.nC rc.i//
�
.GEr /Œn;ı�


Lp.Rd /

≲p;N;" ı
�"R�˛;

which is negligible by the choice of R if we let " be sufficiently small. Thus we only need
to consider the “local” contribution when hEri < R. We split this local contribution into
three pieces: the main term

(4.27)
X
n2Zd

X
Er2.Zd /k W rc.m/D0;hEri<R

h mY
iD1

fi

i
ı
.n/.GEr /Œn;ı�.x/;

a first error term

(4.28)
X
n2Zd

X
Er2.Zd /k W rc.m/D0;hEri<R

� mY
iD1

Œfi �ı.n/ �
h mY
iD1

fi

i
ı
.n/
�
.GEr /Œn;ı�.x/;

and a second error term

(4.29)
X
n2Zd

X
Er2.Zd /k W rc.m/D0;hEri<R

h mY
iD1

Œfi �ı.nC rc.i// �

mY
iD1

Œfi �ı.n/
i
.GEr /Œn;ı�.x/:

Let us first consider the main term (4.27). By Lemma 2.4,
Qm
iD1 fi is an envelope function.

From Lemma 4.8, we see that the functionX
Er2.Zd /k W rc.m/D0;hEri<R

GEr

is a localized function. By Definition 2.10, we thus see that (4.27) is a multiscale tensor
product of an envelope function and a localized function, and is thus a multiscale function.

To conclude the proof of Proposition 4.7, and hence the proof of Theorem 3.9, it
suffices to show that the expressions (4.28) and (4.29) are negligible. For this we shall just
use (4.25) rather than the more sophisticated estimate in Lemma 4.8 (in particular, we do
not need the non-split hypothesis).

Now we turn to (4.28). Let 1 < p < 1, and pick any N > d . Using the triangle
inequality, followed by Lemma 2.7, we can estimate the Lp.Rd / norm of (4.28) by

≲p;N
X

Er2.Zd /k W rc.m/D0;hEri<R

� X
n2Zd

�ˇ̌̌ mY
iD1

Œfi �ı.n/ �
h mY
iD1

fi

i
ı
.n/
ˇ̌̌

� kh�i
N
Œn;ı�.GEr /Œn;ı�.x/kLp.Rd /

�p�1=p
:
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Applying a rescaled version of (4.25), we can estimate this by

≲p;N ı
d=p

X
Er2.Zd /k W rc.m/D0;hEri<R

m�1Y
iD1

K0.rc.iC1/�rc.i//
 mY
iD1

Œfi �ı.�/�
h mY
iD1

fi

i
ı
.�/

`p.Zd /

:

Observe that on the ball of radius R, K0 has an `1 norm of O".ı�"/ for any ". Thus we
can estimate the previous expression by

≲p;N;" ı
d=p�"

 mY
iD1

Œfi �ı.�/ �
h mY
iD1

fi

i
ı
.�/

`p.Zd /

for any " > 0. Applying Lemma 2.16 and Hölder’s inequality repeatedly, we can thus
estimate this expression by

≲p;N;" ı
"p�"

for some "p > 0 depending on p. Setting " WD "p=2 (say), we see that (4.28) is negligible
as desired.

Finally, we estimate (4.29). Again let 1 < p <1, and pick any N > d . Arguing as
before, especially using the `1 norms of K0 on the ball of radius R, we can estimate the
Lp.Rd / norm of (4.29) by

≲p;N;" ı
d=p�"

 mY
iD1

Œfi �ı.� C rc.i// �

mY
iD1

Œfi �ı.�/

`p.Zd /

:

Using the crude estimateˇ̌̌ mY
iD1

ai �

mY
iD1

bi

ˇ̌̌
≲

mX
iD1

jai � bi j
Y
j¤i

.jai j C jbi j/;

the triangle inequality, and the already familiar estimate

kŒfi �ı.� C rc.i// � Œfi �ı.�/k`q.Zd / ≲ ı�d=qC"q ;

we get by Hölder that theLp.Rd /-norm of (4.29) has the upper bound ≲p;N;" .Rı/"mpı�",
where "mp > 0. By the choice of R and choosing " sufficiently small, we see that (4.29)
is negligible, as required. This proves Proposition 4.7.

The only thing that remains to be done to complete the proof of Theorem 3.9 is to get
rid of the assumption that the envelope functions are compactly supported. Recall (4.5) and
denote, in the general case, Zı WD

R
Rd �m;ı.x; !/�.x/dx, and for R > 0, set Zı;R WDR

Rd �R;m;ı.x; !/�.x/dx, where �R;m;ı is obtained from �m;ı by replacing each envel-
ope function fj in its definition by fj 1B.0;R/: Then, for a suitably chosen sequence
Rk " 1, we have kZı;Rk � ZıkL2.Rd�z�/ � 2

�k as k ! 1, according to (4.2), and
combined with Hölder’s inequality this easily implies that Zı;Rk ! Zı almost surely as
k !1: We know that there are complex numbers zk and c; " > 0 so that

(4.30) P.jZı;Rk � zkj > ı
"/ � cı";
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and the argument in the present section verifies that c is independent of k � 1: Now, as
EjZı;Rk j

2 is uniformly bounded in ı and k, we deduce that the sequence .zk/ is uniformly
bounded, and by moving to a subsequence, we may assume that zk ! z as k !1: One
obtains the desired inequality simply by letting k !1 in (4.30). The proof is complete.

5. Quasiconformal homogenization

Our remaining task here is to apply Theorem 3.9 with Corollary 3.10 to homogenization of
quasiconformal maps. Here it turns out convenient to proceed via the principal solutions,
cf. Subsection 1.1. This will require us to first make use of the results we have already
proven in the setting of compactly supported envelope functions. Once that is done, the
application to general quasiconformal homogenization poses no substantial difficulties.
This latter fact will be not come as a surprise for a specialist in quasiconformal maps, but
we present rather complete details for the reader’s convenience.

We refer to, e.g., Section 1 of [9] for a quick account of basic facts about planar
quasiconformal maps, and to [5] for a comprehensive exposition on the topic. Through-
out this section, T stands for the Beurling operator (1.16). We denote by D WD ¹jwj < 1º
the unit disc in the complex plane. Recall from the introduction that a (quasiconformal)
complex dilatation � is a complex valued measurable function on the plane whose sup-
norm is strictly less than 1, that a 3-point normalized homeomorphism of the extended
plane f WC ! C fixes points 0; 1 and 1, and that the measurable Riemann mapping
theorem guarantees existence and uniqueness of a 3-point normalized homeomorphic
W
1;2

loc -solution to the Beltrami equation @zf D �@zf for any quasiconformal dilatation.

5.1. Proof of Theorems 1.6, 1.7, and 1.8

In preparation for the proof ot Theorem 1.6, we begin with a few simple deterministic
lemmas, which are modifications of well-known methods in the theory of planar quasicon-
formal mappings. Our first lemma shows that weak convergence of each individual term
in the Neumann series is enough to guarantee uniform convergence of the corresponding
principal solutions and locally uniform convergence of the 3-point normalized solutions.

Lemma 5.1. Let us assume that for any j � 1 the dilatation �j satisfies k�j k1 � k < 1
and supp.�j / � B , where B � C is a ball. Denote the m-th term in the Neumann series
for �j by

 m;j WD �jT�j : : : T�j ;

where �j appears m times, m � 1. Assume also that for every fixed m there is the weak
convergence in Lp.C/,

 m;j
w
!  m as j !1;

for all 1 < p <1: Then the solution Fj of the Beltrami equation @zFj D �j @zFj , nor-
malized by the 3-point condition, converges locally uniformly to a k-quasiconformal limit
F1WC ! C.
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Proof. Let first fj be the principal solution that has the representation

fj D z C

1X
mD1

C m;j ;

where C is the Cauchy transform. All the functions  m;j are supported in the ball B , and
by the standard properties of T (see Section 4.5.1 in [5]), we have k m;j kLp.B/ � cam

for all j , where a D a.p; k/ < 1 as soon as if we fix p > 2 close enough to 2.
It is well known that for p > 2 the map C WLp.B/! C ˛.C/ is bounded and com-

pact for ˛ 2 .0; 1 � 2=p/, see, e.g., Theorems 4.3.11 and 4.3.14 in [5]. Here clearly the
homogeneous norm for C ˛ used in [5] can be replaced by the non-homogenous norm

kf kC˛ .C/ WD kf kL1.C/ C sup
z;w
jf .z/ � f .w/j jz � wj�˛

by the good decay of the Cauchy transforms of compactly supported functions. We may
thus deduce from the weak convergence of  m;j in Lp.B/ that for each m � 1 the term
C m;j converges in the C ˛.C/-norm to an element gm 2 C ˛.C/. Moreover, we have the
uniform bounds kC m;j kC˛.C/ � Cam and kgmkC˛.C/ � Cam for all m; j � 1. This
clearly yields the uniform convergence of the principal solutions:

(5.1) fj ! f1 D z C

1X
mD1

C m as j !1:

The limit f1 is k-quasiconformal from the normal family property of hydrodynamically
normalized k-quasiconformal maps with dilatations supported in a fixed ball.

Finally, to treat the 3-point normalized solutions Fj , simply observe we may write
them in terms of the principal solution as

Fj .z/ D .fj .1/ � fj .0//
�1.fj .z/ � fj .0//:

Thus .Fj / converges uniformly to the k-quasiconformal map

F1.z/ WD .f1.1/ � f1.0//
�1.f1.z/ � f1.0//:

Our second auxiliary result verifies that normalized k-quasiconformal maps whose
dilatations agree in a large ball are close to each other near the center of the ball.

Lemma 5.2. Let k < 1 and assume that both f WC ! C and gWC ! C are k-quasi-
conformal homeomorphisms that satisfy the 3-point normalization and, moreover, that

�g D �f in B.0;L/;

where L � 1: Then for any R < L we have

sup
jzj�R

jg.z/ � f .z/j � ".L; k;R/;

where limL!1 ".L; k;R/ D 0 for any fixed k;R.

Proof. First of all, quasisymmetry (see Definition 3.2.1 and Theorem 3.5.3 in [5]) and the
normalization of g imply that g.B.0;R//� B.0; r1/ and that g.B.0;L//� B.0; r2/, with
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r1 D r1.R; k/ and r2 D r2.L; k/!1 as L!1: Writing f D h ı g, it follows that h
is analytic in B.0; r2/ with h.0/ D 0 and h.1/ D 1. Then the function

H.z/ WD r�12 h.r2z/

is analytic and univalent in B.0; 1/ and satisfies the normalizationH.0/D 0 andH.1=r2/
D 1=r2. By the Koebe type estimates (see (2.74) in [5]), it is clear that H 0.0/ ! 1 as
L!1. Since the second derivative of H has a universal bound on, say, B.0; 1=2/ (see
Theorem 1.8 in [9]), we deduce that for any given " > 0 we have, for large enough L,

jH.z/ � zj � "jzj � "r1=r2 for jzj < r1=r2:

This implies that jf .z/ � g.z/j < "r1 for jzj < R; proving the lemma.

Next we have a global variant of Lemma 5.1.

Lemma 5.3. Let the dilatations�j satisfy j�j j � k < 1 for j D 1;2; : : : For anyL>1, we
write �j;L WD �j 1B.0;L/ and set  m;j;L WD �j;LT�j;L : : : T�j;L; where �j;L appears m
times. Assume that for every m � 1 and L > 1 there is the weak convergence

 m;j;L
w
!  m;L as j !1

in Lp.C/ for all 1 < p < 1: Then the 3-point normalized solution Fj of the Beltrami
equation @zFj D�j @zFj converges locally uniformly on C to a k-quasiconformal homeo-
morphism F .

Proof. Fix R > 0. For any L D 1; 2; 3; : : :, let Fj;L be the 3-point-normalized solution to
the Beltrami equation

@zFj;L D �j;L@zFj;L:

By Lemma 5.1, for every L � 1 we have uniform convergence Fj;L ! F1;L as j !1,
where F1;L is a k-quasiconformal homeomorphism. Given " > 0, Lemma 5.2 shows that
we may choose L0 WD L0.k; "; R/ so that

jFj;L � Fj;L0 j � " in z 2 B.0;R/; for L;L0 � L0:

A fortiori,
jF1;L � F1;L0 j � " in z 2 B.0;R/; for L;L0 � L0:

We deduce that the sequence .F1;L/L�1 is Cauchy in C.B.0; R//; so that F1;L ! F1
uniformly on B.0; R/. Since R was arbitrary, we see that F1 is a 3-point normalized
k-quasiconformal homeomorphism of the plane.

It remains to check that also Fj ! F1 uniformly on B.0;R/ for any given R � 1. To
this end, take L � L0 and estimate

lim sup
j!1

kFj � F1kC.B.0;R//

� lim sup
j!1

kFj � Fj;LkC.B.0;R// C lim sup
j!1

kFj;L � F1;LkC.B.0;R//

C kF1;L � F1kC.B.0;R//

� "C 0C " D 2";

where we used Lemma 5.2 again to estimate the first term.
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We are ready to establish Theorem 1.6.

Proof of Theorem 1.6. Let us first assume that the Beltrami envelope function � in the
statement of Theorem 1.6(i) (see Definition 1.4) is compactly supported. Observe that
in this case � is an envelope function in the sense of Section 2 (Definition 2.2), since
taking R large enough in Definition 1.4 we may apply the bound j�j � 1 to obtain for any
1 < p <1,

k�h�kLp.C/ � 2
1�1=p

jsupp.�/j1=p k�h�k
1=p

L1.C/
� C 0 jhj˛=p for jhj � 1:

Lemma 3.11 shows that �Bı is a stochastic multiscale function. By Corollary 3.10, for
eachm� 1 there exists a (deterministic) limit function  m such that, with probability one,
 m;j WD �2�j T�2�j : : : T�2�j converges weakly to  m in Lp.C/ for each 1 < p <1
and each m. The statement of part (i) then follows from Lemma 5.1.

In the case where the envelope � is not compactly supported, we use Lemma 5.3
to reduce to the compactly supported case. For this reduction, it is enough to note that
the function � 1B.0;R/ is an envelope function if � is a Beltrami envelope function, by
essentially the same argument as above – one uses additionally the observation that a char-
acteristic function of a ball is an envelope function.

We next turn to the proof of Theorem 1.7. For that end, we first establish a couple of
auxiliary results.

Lemma 5.4. Assume that k 2 Œ0; 1/ and let .fj / and .gj / be sequences of locally uni-
formly convergent k-quasiconformal maps in a domain��C such that the limit functions
f D limj!1 fj and g D limj!1 gj are non-constant. Assume also that j�fj ��gj j � "
in � for all j � 1: Then

j�f � �g j � "
1C k2

1 � k2
in �:

Proof. Take any ball B.z0; R/ � �. By considering fj .z/ � fj .z0/ and gj .z/ � gj .z0/
instead, we may assume that gj .z0/ D fj .z0/ D 0 for all j: The assumptions together
with the quasisymmetry property of the maps imply that if r > 0 is taken small enough,
then B.0; r/ � gj .B.z0; R// for all j � j0, and hence the map fj ı g�1j is well-defined
in B.0; r/ for j � j0. We may compute (see (13.37) in [5])

(5.2) �fj ıg�1j
.w/ D

� �fj � �gj
1 � �fj�gj

@zgj

@zgj

�
ı g�1.w/; for a.e. w 2 B.0; r/:

In particular, j�fj ıg�1j j � ".1 � k
2/�1, and letting k !1 we infer by the local uniform

convergence that j�f ıg�1 j � ".1� k2/�1 in the neighbourhood of z0: In particular, apply-
ing formula (5.2) to f and g, we obtain

j�f � �g j � .1C k
2/
ˇ̌̌ �f � �g
1 � �f �g

ˇ̌̌
� .1C k2/ j�f ıg�1 j � "

1C k2

1 � k2
�

Our next auxiliary result is quite specialized to our situation. Note that the existence of
the deterministic homogenization limit F1 is guaranteed by Theorem 1.6 that we already
verified.
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Lemma 5.5. Suppose that in Theorem 1.6 the Beltrami envelope function � is constant
on the complex plane. Then the dilatation � of the homogenization limit F1WC ! C is
constant on C, and therefore F1 is linear:

F1.z/ D
1

1C A
z C

A

1C A
z;

where the constant A D �F1 satisfies jAj < 1.

Proof. Let Fj be defined via (1.14), and let B2�j be the random bump field defined
by (1.12). Denote by Q2

d
the set of dyadic rational points in C, i.e., numbers of the form

.nCmi/2�`; where m; n and ` � 1 are integers. Since now �Fj D aB2�j , where a is a
constant with jaj < 1, we have for any b 2 Q2

d
,

�Fj .�Cb/ � �Fj .�/ for j � j0.b/;

where � stands for equivalence in distribution. As a consequence of the 3-point normal-
ization, we may write for j � j0.b/,

Fj .z/ � ajFj .z C b/C cj ;

where aj D .Fj .b C 1// � Fj .b//�1 and cj D �ajFj .b/: In the limit j !1, we thus
obtain

F1.z/ D aF1.z C b/C c

with constants a 6D 0 and c that depend only on b. This implies that

�F1.z/ D �F1.z C b/;

where the equality is in the sense of L1-functions.
Therefore, as an element of L1.C/, the dilatation � is periodic on C with dyadic

rational periods, and this easily implies that � is constant. Finally, for any A 2 D, the
linear map z 7! 1

1CA
z C A

1CA
z satisfies the 3-point normalization and has dilatation A,

whence it is the unique quasiconformal homeomorphism C!C with these properties.

After these preparations, we prove Theorem 1.7.

Proof of Theorem 1.7. We first define the function h.g;X/ with the help of a reference
homogenization limit. For any a 2 ¹jwj < 1º, let Fa be the unique deterministic limit map
of the homogenization problem

@zFa;j .z/ D aB2�j .z/@zFa;j :

By Lemma 5.5, Fa has constant dilatation in the whole plane; let us denote by h.g;X/.a/
its value. Theorem 1.6 and Lemma 5.4 yield immediately that the map a! h.g;X/.a/ is
continuous.

Assume next that the envelope function � is continuous in a neighbourhood of z0, with
�.z0/ D a. Then the dilatations of the sequences Fa;j and Fj (where Fj is as in the The-
orem, see (1.14)) are "-close in a small enough neighbourhood U of z0. Thus Lemma 5.4
shows that the dilatation of the homogenization limit F1 differs from h.g;X/.a/ by less
than ".1C k2/.1 � k2/�1 in a small enough neighbourhood U , and we deduce the con-
tinuity of �F1 and the equality �F1.z0/ D h.g;X/.a/ D h.g;X/.�.z0//:
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We state one more auxiliary result, which actually contains a more general statement
than what is needed for Theorem 1.8.

Lemma 5.6. Assume that g is invariant under rotation by the angle �=2:

g.z; t/ D g.iz; t/ for all z 2 C; t 2 R:

Moreover, assume thatX is such that the random field g.�;X/ is symmetric, i.e., g.�;X/�
�g.�; X/. Then h.g;X/.a/ D 0 for every a 2 D:

Proof. Let Bı be the random bump field defined by (1.12). The symmetry of g together
with the independence of the Xn imply the symmetry of Bı . Fix a 2 D: For j � 1, let Fj
solve the random Beltrami equation

(5.3) @zFj D aB2�j .z/@zFk ;

and denote zFj .z/ D .Fj .i//�1Fj .iz/. One computes that � zFj .z/ D ��Fj .iz/. The as-
sumptions of the lemma thus verify that

� zFj � �Fj ;

whence in the limit j !1 we deduce that F1.z/ D cF1.iz/ with a constant c 6D 0. By
Lemma 5.5, we obtain the identity

1

1C A
z C

A

1C A
z D c

� 1

1C A
iz �

Ai

1C A
z
�

for all z 2 C:

The above identity is possible only if c D �i and A D 0. Thus hg;X .a/ D A D 0, as was
to be shown.

Proof of Theorem 1.8. The statement that for both of the models (1.5) and (1.6), the deter-
ministic limit map is the identity map follows immediately from Lemma 5.6 and The-
orem 1.7.

Finally, we show that, in the generic case, the limit map is not the identity or, equi-
valently, that the Beltrami coefficient of the limiting map is not zero. To this end, we
consider a very simple case of the general model. Fix a bump function g 2 C10 ..0; 1/

2/

with kgk1 � 1 and consider the sequence of random dilatations �j;a, that depend on the
complex parameter a 2 D,

�j;a.z/ D a1Œ0;1�2.z/
X
n2Z2

"ng.2
j z � n/;

where the "n are an independent sequence of random signs ˙1: Let fj;a be the principal
solution of the corresponding Beltrami equation, and denote by fa the almost sure determ-
inistic limit function faD limj!1 fj;a:Using notation as in Lemma 5.1 (with�j D�j;a),
we see from (5.1) that fa has the (power series) representation

fa.z/ D z C

1X
mD1

.C m/.z/ D z C

1X
mD1

am.C z m/.z/;
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with
z m D lim

j!1

z m;j ; where z m;j WD �j;1T�j;1 : : : T�j;1;

and where the almost sure weak convergence to the (deterministic) limit z m in Lp.C/
for each p > 1 again follows from Corollary 3.10. We claim that fa is non-linear (equi-
valently, that the 3-point normalized limit is not the identity) for all but countably many
values of a 2D, unless z m is identically 0 for allm: To see this, notice that fa.z/� z! 0

as z!1; so that fa cannot be linear unless fa.z/� z is independent of z. By interpreting
.C z m/.z/ as the Taylor coefficients in the power series representation of a 7! fa.z/ � z

above, we see that fa is non-linear for all but countably many values of a unless C z m.z/
is independent of z for all m; or equivalently, z m � 0.

It thus suffices to give an example with z 2 6� 0: Let h 2 C10 .C/ be a compactly
supported test function that equals 1 on Œ0; 1�2. For j � 1, set

Yj WD

Z
C
h z 2;j D

Z
Œ0;1�2

�j;1T�j;1 and Y WD

Z
C
h z 2 D

Z
Œ0;1�2

z 2:

Then almost surely Y D limj!1 Yj and Y is a deterministic constant. We note that in
this special case, the convergence is not difficult to prove directly without resorting to our
general theory. In any case, we claim that the limit is non-zero for a suitable choice of g.
As the random variables Yj are uniformly bounded, we actually have Y D limj!1 EYj .
Since the supports of g.2j z � n/ are disjoint for different values of n, and E"n"n0 D ın;n0 ,
we may compute

(5.4) EYj D
X

n2Z2W 2�jn2Œ0;1/2

Z
C
g.2j z � n/Tg.2j z � n/ dz D

Z
C
g.z/Tg.z/ dz;

where in the last step we used the translation and scaling invariance of T:
It remains to verify that g 2 C10 ..0; 1/

2/ can be chosen so that the last integral in (5.4)
is not identically zero. The following example can be generalized to all kernels that are
not odd. Fix any ' 2 C10 .D/ with 0 � ' � 1 and ' 6� 0: If

R
C 'T ' D 0; then setting

'A WD '.� � A/C '.� C A/;

we have Z
C
'AT 'A � 2

�1

�

� Z
'
�2
.2A/�2 6D 0 as A!1.

By scaling and translating, the support may be taken to be in .0;1/2, and the choice gD 'A
for large enough A completes the proof of Theorem 1.6.

5.2. Convergence in probability

Here we sketch an alternative statement of the solution to the homogenization problem,
replacing ‘almost sure convergence’ by ‘convergence in probability’. Then there is no
need to restrict to subsequences of ı! 0: In order to rephrase Theorem 1.6 in this manner,
consider the principal solution fı of the homogenization problem

(5.5) @zFı D �Bı @zFı :
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In the case where the envelope function � is compactly supported, we know that the
terms  m;ı in the corresponding Neumann-series are all supported in a ball B.0; R/,
where R is independent of ı: Each term in the series converges weakly in probability
in Lp.B.0;R// as ı ! 0; i.e., for any h 2 Lp

0

there is the convergence in probabilityZ
C
h m;ı !

Z
C
h m:

Moreover, the Neumann series converges Lp.C/, with an exponentially decaying remain-
der term, uniformly with respect to ı > 0. All this easily implies a norm convergence
in C ˛ (compare the proof of Lemma 5.1), i.e.,

P.kfı � f kC˛.C/ > t/ < t

for all t > 0 as soon as ı < ı0.t/: In particular, fı ! f locally uniformly in probab-
ility. Finally, we may argue exactly as in the proof of Theorem 1.6 and dispense with
the assumption that the envelope has compact support. Let us record our conclusion as a
theorem:

Theorem 5.7. Let �ı be as in Theorem 1.6, and denote by Fı the 3-point normalized
solution to the Beltrami equation (5.5). Then Fı ! F1 locally uniformly in probability
as ı! 0; where F1 is the deterministic limit map given by Theorem 1.6. In other words,
for any R > 0 and " > 0 one has for ı < ı0."; R/ that

P.kFı � F kL1.B.0;R// > "/ < ":

5.3. Mappings of finite distortion

As our final application to quasiconformal homogenization, we consider some random
mappings of finite distortion, i.e., homeomorphisms for which the assumption k�k1 �
a < 1 is relaxed. This leads to the study of solutions to the Beltrami equation @ Nzf D
�@zf where we only have j�.z/j < 1 almost everywhere. From the general theory of
quasiconformal mappings and mappings of finite distortion, one knows that in order to
have a viable theory one needs some control on the size of the set where j�.z/j is close
to 1. For basic properties of planar maps of finite distortion we refer to Chapter 20 in [5]
or [4].

There is a well-established theory for mappings of G. David type, i.e., maps whose
distortion function

K.z/ WD
1C j�.z/j

1 � j�.z/j

is exponentially integrable, namely exp.aK.z// 2 L1loc for some a > 0: With this theory
in mind, a natural model for degenerate random Beltrami coefficients is

(5.6) �j .z/ WD
X

n2Z2W 2�jn2Œ0;1/2

"j;ng.2
j z � n/;

where kgkL1.C/ D 1; one has supp.g/ � Œ0; 1�2, and for each j � 1 we assume that "j;n
(n 2 Z2) are complex valued i.i.d. random variables taking values in D. Their common
distribution is assumed to be independent of j . In this situation, we have the following
result.



K. Astala, S. Rohde, E. Saksman and T. Tao 2332

Theorem 5.8. Assume the uniform tail estimate

(5.7) P
�1C j"j;nj
1 � j"j;nj

> t
�
� e� t

for some  > 2:Define the (possibly degenerate) Beltrami coefficients �j as in (5.6). Then
the 3-point normalized solutions Fj of the Beltrami equation @zFj D �j @zFj converge
almost surely locally uniformly to a deterministic limit homeomorphism F WC ! C.

We precede the proof with a couple of auxiliary observations.
First of all, we again use that convergence of the 3-point normalizations is equivalent

to convergence of the hydrodynamically normalized ones. Thus, we again consider the
principal solution

(5.8) fj .z/ WD z C C
� 1X
mD1

 m;j

�
;

of the Beltrami equation, where as before  m;j D �jT�j : : : T�j , with �j occurring m
times. This series is well-defined since almost surely each �j satisfies

k�j kL1.C/ � max¹j"j;nj W n 2 Z2; 2�jn 2 Œ0; 1/2º < 1:

By Corollary 3.10, almost surely each of the terms  m;j converges weakly to a limit  m
inLp for every 1 < p <1, and C. m;j /.z/ converges locally uniformly on C. Therefore
we expect that the limit map can be written again as

(5.9) f1 D z C C
� 1X
mD1

 m

�
;

and in proving the convergence one only needs to control the tail of this series. Our main
tool will be the following statement:

Lemma 5.9. In the situation just described, we have

(5.10) lim
M!1

sup
j�1

1X
mDM

k m;j kL2.C/ D 0 almost surely :

We will base our proof of Lemma 5.9 on the following basic estimate on the decay of the
L2-norm of the terms in the Neumann series.

Lemma 5.10 (Theorem 3.1 in [4], see also [11]). Assume that the dilatation � is com-
pactly supported, supp.�/ � B.0;R/: If for some p > 0 we have

(5.11) A WD

Z
B.0;R/

epK.z/ dz <1;

where

K WD
1C j�j

1 � j�j
;

then for any q 2 .0; p=2/, the m-th term in the Neumann-series satisfies the bound

(5.12) k mkL2.C/ � CR;q;Am
�q :
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Proof of Lemma 5.9. Denote the distortion function of fj by

Kj .z/ WD
1C j�j .z/j

1 � j�j .z/j
;

where �j is as in (5.6). In view of the above lemma, (5.10) follows as soon as we verify
that there is p > 2 such that

(5.13) sup
j�1

Z
Œ0;1�2

epKj .z/ dz <1 almost surely.

To this end, choose q 2 .1; 2/ and p > 2 so that pq < ; where  > 2 is from condi-
tion (5.7). Denote by Y a random variable with the distribution

Y � exp
�
p
�1C j"j
1 � j"j

��
�M with M WD E exp

�
p
�1C j"j
1 � j"j

��
;

where " has the same distribution as all of the variables "j;n. The expectation M above
is finite according to our assumption (5.7), in fact EY q <1: The very definition of �j
yields that Z

Œ0;1�2
epKj .z/ dz �M CZj ;

with

Zj � 2
�2j

22jX
`D1

Yj;`;

where for each j � 1 the random variables Yj;` are identically distributed copies of Y: In
order to estimate the tail of Zj , we recall the von Bahr and Esseen estimate [7], that states
for centered i.i.d. random variables X1; : : : ; XN , the inequality

E jX1 C � � � CXN jq � Cq
NX
sD1

E jXsjq; 1 � q � 2:

We obtain

P.Zj > 1/ � EZqj � 2
�2jq Cq 2

2j EY q D O.2�2.q�1/j /;

and the Borel–Cantelli lemma then yields that almost surely eventually Zj � 1: This
proves (5.13), and we have finished the verification of Lemma 5.9.

Below we will prove Theorem 5.8 using the Arzelà–Ascoli theorem. To this end we
need uniform modulus of continuity estimates for both sequences .fj / and .f �1j /: Here
note first that (5.10) implies the uniform bounds (with a random constant C )

(5.14) k@zfj kL2.C/ D k@zfj � 1kL2.C/ � C; for all j � 1:

Since the support of each �j is contained in 2D, this estimate together with the prop-
erties of the Cauchy transform shows that, outside 3D; the functions fj are uniformly
equicontinuous and fj .z/ � z is uniformly bounded. Thus uniform equicontinuity in all
of C follows from the following useful result (see [13] and [5], Theorem 20.1.6).
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Lemma 5.11 (Gehring, Goldstein and Vodopyanov). Assume that f 2 W 1;2.4D/ is a
homeomorphism. Then, if z1; z2 2 4D, one has

jf .z1/ � f .z2/j
2
�

9�
R
2D jrf j

2

log.e C 1=jz1 � z2j/
�

Next, the equicontinuity of the inverse maps is dealt with by another lemma (whose
proof actually reduces the situation to Lemma 5.11, see [15], [5], Lemma 20.2.3).

Lemma 5.12 (Iwaniec and Sverak). Assume that f is a (homeomorphic) principal solu-
tion of the Beltrami equation with distortion functionK, and with� supported inB.0;R0/.
Then, for z1; z2 in the disc B.0;R/; the inverse map g WD f �1 satisfies

jg.z1// � g.z2/j
2
�

C.R;R0/

log.e C 1=jz1 � z1j/

Z
B.0;R0/

K.z/ dz:

The original version assumes that � is supported in D, but the more general statement
follows again by scaling. Now (5.13) entails that in our case

R
B.0;R/

Kj .z/dz is uni-
formly bounded, and we obtain a (locally) uniform modulus of continuity for the inverse
maps f �1j .

After all these preparations, the proof of Theorem 5.8 can be done quickly.

Proof of Theorem 5.8. Almost surely, we have local uniform equicontinuity for both se-
quences .fj / and .f �1j /, uniform boundedness of fj .z/ at every point z outside 3D; and
thus locally uniform subsequential convergence to a homeomorphism by Arzelà–Ascoli.

Moreover, as in the proof of Lemma 5.1, almost surely each term in the series (5.8)
converges locally uniformly. Also, (5.10) implies that the VMO-norm of the remainder
in (5.8) converges uniformly to zero ([5], Theorem 4.3.9). Put together, we deduce the
convergence in VMO.3D/ of the whole sequence fj . Since the fj are analytic outside 2D;
this implies the uniqueness of the subsequential limit in C and establishes almost sure
locally uniform converge fj ! f1, where the limit f1 is a self-homeomorphism of the
plane given by (5.9).

Let us finally observe that the above proof actually yields the following more general
results, stated both for the deterministic and random homogenization problem. We assume
that the complex dilatations �ı are supported on a fixed ball B � C.

Theorem 5.13. Let � D �ı be a compactly supported deterministic multiscale function
such that for every 0 < ı < 1, we have j�ı.x/j < 1 for almost all x, and furthermore the
dilatation

K�ı .x/ WD
1C j�ı.x/j

1 � j�ı.x/j

is such that
R
B

exp.pK�ı / is bounded uniformly in ı for some p > 2: Then the associated
normalized solutions Fı with dilatation �ı converge locally uniformly in distribution to a
homeomorphism F1WC ! C as ı ! 0.

Theorem 5.14. Let � D �ı be a stochastic multiscale function such that, for ı > 0, we
have almost surely j�ı.x/j < 1 for almost all x, and furthermore for some p > 2 almost
surely supj�1

R
B

exp.pK�
2�j

/ <1. Then the associated normalized solutions F�
2�j

are
almost surely locally uniformly convergent as j !1.
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