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A remark on weak-strong uniqueness for suitable weak
solutions of the Navier–Stokes equations

Pierre Gilles Lemarié-Rieusset

Abstract. We extend Barker’s weak-strong uniqueness results for the Navier–Stokes
equations and consider a criterion involving Besov spaces and weighted Lebesgue
spaces.

Since my first paper in the Revista in 1986, I always enjoyed being published in this
journal which performs a wonderful job. I enjoyed as well reading in the Revista such
a nice collection of papers written by a nice (harmonious) community of (harmonic)
analysts. So many thanks to Antonio and to Josechu!

1. The Prodi–Serrin criterion for weak-strong uniqueness

In this paper, we are interested in extensions of the Prodi–Serrin weak-strong uniqueness
for (suitable) weak Leray solutions of the Navier–Stokes equations. We consider solutions
of the Navier–Stokes equations8̂<̂

:
@t EuC Eu � Er Eu D �Eu � Erp;

div Eu D 0;
Eu.0; �/ D Eu0;

where Eu0 is a square-integrable divergence-free vector field on the space R3.
Looking for weak solutions, where the derivatives are taken in the sense of distribu-

tions, it is better to write the first line of the system as

@t EuC div .Eu˝ Eu/ D �Eu � Erp:

If Eu is a solution on .0; T / � R3 such that Eu 2 L1..0; T /; L2/, then the pressure p can
be eliminated through the formula

div.Eu˝ Eu/C Erp D P .div.Eu˝ Eu//;
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where P is the Leray projection operator on solenoidal vector fields:

P Ef D �
1

�
Er ^ . Er ^ Ef /:

Moreover, Eu can be represented as a distribution which depends continuously on the time t
(see [19]) as

Eu D Eu0 C

Z t

0

�Eu � P .div .Eu˝ Eu// ds:

Leray [21] proved the existence of solutions Eu on .0;C1/ �R3 such that:
• Eu 2 L1t L

2
x \ L

2
t
PH 1
x ,

• limt!0CkEu.t; �/ � Eu0k2 D 0,
• we have the Leray energy inequality

(1.1) kEu.t; �/k22 C 2

Z t

0

k Er ˝ Euk22 ds � kEu0k
2
2:

Such solutions are called Leray solutions.1 His proof is based on a compactness criterion;
and provides no clue on the uniqueness of the solution to the Cauchy initial value problem.

A classical case of uniqueness of Leray weak solutions is the weak-strong unique-
ness criterion described by Prodi and Serrin [22, 23]: If Eu0 2 L2 and the Navier–Stokes
equations have a solution Eu on .0; T / such that

Eu 2 L
p
t L

q
x ; with

2

p
C
3

q
� 1 and 2 � p � C1;

then, if Ev is a Leray solution with the same initial value Eu0, we have Eu D Ev on .0; T /.
Let us remark that the existence of such a solution Eu restricts the range of the initial
value Eu0. As a matter of fact, when 2 < p < C1, existence of a time T > 0 and of a
solution Eu 2 Lpt L

q
x is equivalent to the fact that Eu0 belongs to the Besov space B�2=pq;p (see

Theorem 2.7 below).
We will see that a corollary of Barker’s theorem [1] shows the following extension of

the criterion: If Eu0 2 L2 and the Navier–Stokes equations have a solution Eu on .0; T / such
that

sup
0<t<T

t1=pkEukq < C1; with
2

p
C
3

q
� 1 and 2 < p < C1;

and
lim
t!0

t1=pkEukq D 0 if
2

p
C
3

q
� 1;

then, if Ev is a Leray solution with the same initial value Eu0, we have Eu D Ev on .0; T /. Let
us remark again that the existence of such a time T and such a solution Eu is equivalent
to the fact that Eu0 belongs to the Besov space B�2=pq;1 \ bmo�10 (see Definition 1.4 and
Theorem 2.8 below).

The space bmo�1 was introduced in 2001 by Koch and Tataru [14] for the study of
mild solutions to the Navier–Stokes problem. Let us recall the characterization of bmo�1

through the heat kernel [14, 15].

1Note that the continuity at t D 0 of t 7! Eu.t; � / in L2 norm is a consequence of the Leray inequality (1.1).
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Proposition 1.1. For 0 < T <1, define

kEukXT D sup
0<t<T

p
t kEu.t; �/k1 C sup

0<t<T
x02R3

�
t�3=2

Z t

0

Z
B.x0;

p
t/

jEu.s; y/j2 dy ds
�1=2

:

Then Eu0 2 bmo�1 if and only if .et� Eu0/0<t<T 2 XT (with equivalence of the norms
kEu0kbmo�1 and ket� Eu0kXT /.

Recall that the differential Cauchy problem for Navier–Stokes equations reads as8̂<̂
:
@t EuC Eu � Er Eu D �Eu � Erp;

div Eu D 0;
Eu.0; �/ D Eu0:

Under reasonable assumptions, the problem is equivalent to the following integro-
differential problem:

Eu D et� Eu0 � B.Eu; Eu/.t; x/;

where

(1.2) B.Eu; Ev/ D

Z t

0

e.t�s/�P div.Eu˝ Ev/ ds;

and P is the Leray projection operator (see [15, 19] for details).

Theorem 1.2 (Koch and Tataru’s theorem). There exists C0 (which does not depend on T )
such that if Eu and Ev are defined on .0; T / �R3, then

kB.Eu; Ev/kXT � C0kEukXT kEvkXT :

Corollary 1.3. Let Eu0 2 bmo�1 with div Eu0 D 0. If ket� Eu0kXT <
1
4C0

, then the integral
Navier–Stokes equations have a solution on .0; T / such that kEukXT � 2ke

t� Eu0kXT . This
is the unique solution such that kEukXT �

1
2C0

.

The solution Eu can be computed through Picard iteration as the limit of EUn, where
EU0 D e

t� Eu0 and EUnC1 D et� Eu0 � B. EUn; EUn/. In particular, we have, by induction,

k EUnC1 � EUnkXT � .4C0ke
t�
Eu0kXT /

nC1
ket� Eu0kXT :

Thus, Corollary 1.3 grants local existence of a solution for the Navier–Stokes equations
when the initial value belongs to the space bmo�10 .

Definition 1.4. Eu0 2 bmo�10 if Eu 2 bmo�1 and limT!0ke
t� Eu0kXT D 0.

Theorem 1.5 (Barker’s theorem, [1]). Let Eu0 2 L2 be a divergence-free vector field.
Assume, moreover,

Eu0 2 bmo�10 \ B
�s
q;1; with 3 < q < C1 and s < 1 �

2

q
;

and let Eu be the mild solution of the Navier–Stokes equations with initial value Eu0 such
that kEukXT �

1
2C0

. If Ev is a weak Leray solution of the Navier–Stokes equations with the
same initial value Eu0, then Eu D Ev on .0; T /.
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Again, we remark that if 0 < s < 1� 2=q, Eu0 2 bmo�10 and Eu is the mild solution with
kEukXT �

1
2C0

, then Eu0 2 B�sq;1 is equivalent to

sup
0<t<T

t s=2kEu.t; �/kq < C1:

In the following theorems, we shall state the assumptions in terms of the mild solution Eu
instead of the initial value Eu0. In Theorem 2.4, we shall give the equivalence between the
assumption on the solution Eu and the assumption on the initial value Eu0.

We aim to generalize Barker’s result to a larger class of mild solutions. Barker’s result
is based on an interpolation lemma which states that, if Eu0 2 bmo�10 \ L

2 \ B�sq;1, with
3 < q <C1 and�s >�1C 2=q, then Eu0 2 ŒL2;B�ı1;1��;1 for some � 2 .0;1/ and some
ı 2 .0; 1/. (Those conditions are in a way equivalent, as we shall see in Corollary 3.3.)
Then the comparison between the Leray solution Ev and the mild solution Eu is performed
through an estimation of both kEu � Ew"k2 and kEv � Ew"k2, where Ew" is the solution of
the Navier–Stokes problem with initial value Ew0;" such that k Ew0;" � Eu0k2 � C1"� and
k Ew"kB�ı1;1 < C1"

��1 (with C1 depending on Eu0 but not on ").
Our idea is to replace the space L2 by the larger space L2w D L

2.w dx/ with w.x/ D
.1C jxj/�2, and use the interpolation space ŒL2w ;B

�ı
1;1��;1 for some � 2 .0; 1/ and some

ı 2 .0; 1/. As we shall no longer deal with the L2 norm, the Leray inequality on kEvk2 will
not be sufficient. Instead, we shall consider a stricter class of weak solutions, namely, the
suitable weak Leray solutions [3].

Definition 1.6. A Leray solution is suitable on .0;T / if it fulfills the local energy inequal-
ity: there exists a non-negative locally finite measure � on .0; T / �R3 such that we have

(1.3) @t .jEuj
2/C 2j Er ˝ Euj2 D �.jEuj2/ � div..2p C jEuj2/Eu/ � �:

We may now state our main results. The first one (stated in [20]) weakens the integra-
bility requirement on the solution Eu from the Lebesgue spaceLq to the Morrey spaceMp;q.
Recall that the Morrey space Mp;q , 1 < p � q < C1, is defined by

kf kMp;q D sup
x02R3

sup
0<r�1

r3=q�3=p
� Z

B.x0;r/

jf .x/jp dx
�1=p

< C1:

For p D 1, one replaces the requirement f 2 Lploc by the assumption that f is a locally
finite Borel measure � with

kf kM 1;q D sup
x02R3

sup
0<r�1

r3=q�3
Z
B.x0;r/

d j�j.x/ < C1:

For 1 < p � C1, we have the continuous embeddings

Lq �M q;q
�Mp;q

�M 1;q :

The idea of considering Morrey spaces instead of Lebesgue spaces is quite natural. Indeed,
in the direct proof of the Prodi–Serrin criterion, a key estimate is the inequalityZ

juvj j Erwj dx � Ckukqkvk
1��
2 k Ervk�2 k

Erwk2
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for 0 � � � 1 and 1=q D �=3. This inequality still holds when the Lq norm is replaced
by the norm in the homogeneous Morrey space PM 2;q with 0 < � < 1 and 1=q D �=3,
see [16].

Theorem 1.7. Let Eu0 be a divergence-free vector field with Eu0 2 L2 \ bmo�10 . Assume
moreover that the mild solution Eu of the Navier–Stokes equations with initial value Eu0
such that kEukXT �

1
2C0

is such that

sup
0<t<T

t s=2kEu.t; �/k PMp;q < C1; with 2 < p � q < C1 and 0 � s < 1 �
2

p
�

If Ev is a suitable weak Leray solution of the Navier–Stokes equations with the same initial
value Eu0, then Eu D Ev on .0; T /.

Let us remark that the statement and proof of Theorem 1.7 we gave in [20] was false
(we assumed only that s < 1 � 2=q).2

The second one weakens the integrability requirement on the solution Eu from the
Lebesgue spaceLq to the weighted Lebesgue spaceLq..1C jxj/�N dx/ for someN � 0.

Theorem 1.8. Let Eu0 be a divergence-free vector field with Eu0 2 L2 \ bmo�10 . Assume
moreover that the mild solution Eu of the Navier–Stokes equations with initial value Eu0
such that kEukXT �

1
2C0

is such that

sup
0<t<T

t s=2kEukLq..1Cjxj/�N dx/ < C1; with N � 0; 2 < q < C1 and 0 � s < 1 �
2

q
�

If Ev is a suitable weak Leray solution of the Navier–Stokes equations with the same initial
value Eu0, then Eu D Ev on .0; T /.

Of course, Theorem 1.7 is a corollary of Theorem 1.8, as PMp;q �Lp..1C jxj/�N dx/

for N > 3 � 3p=q.
The paper is then organized in the following manner. In Section 2, we define stable

spaces and collect some technical results on generalized Besov spaces based on stable
spaces. In Section 3, we define potential spaces based on stable spaces and prove some
interpolation estimates. In Section 4, we give some remarks on the Koch and Tataru solu-
tions for the Navier–Stokes problem. In Section 5, we study stability estimates for suitable
weak Leray solutions with initial data in L2 \ ŒL2..1C jxj/�2dx/; B�ı1;1��;1 (see The-
orem 5.2). In Section 6, we prove the uniqueness theorem (Theorem 1.8). In Section 7, we
give some further comments on Barker’s conjecture on the uniqueness problem.

2. Stable spaces and Besov spaces

We define the convolutor space K by the following convention:
• a suitable kernel is a function K 2 L1.R3/ such that K is radial and radially non-

increasing (in particular, K is non-negative); this is noted as K 2 K0;

2The mistake was due to an incorrect equality � D �
 , while it should have been 
 D ��; as � < 1, the
equality turned to be incorrect.
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• f is a convolutor if f 2 L1 and there existsK 2 K0 such that jf j � K almost every-
where;

• the norm of f in K is defined as

kf kK D inf¹kKk1 j K 2 K0 and jf j � K a.e.º:

One easily checks that k�kK is a norm and that .K; k�kK/ is a Banach space.

Definition 2.1. A stable space of measurable functions on R3 is a Banach space E such
that

• E � L1loc.R
3/,

• if f 2E and g 2L1, fg 2E and kfgkE �Ckf kEkgk1 (whereC does not depend
on f nor g),

• if f 2 E and g 2 K, f � g 2 E and kf � gkE � Ckf kEkgkK (where C does not
depend on f nor g).

Examples of stable spaces:
(a) E D Lp , 1 � p � C1.
(b) E D Lp.w dx/, where w belongs to the Muckenhoupt class Ap for some 1 < p <
C1. If g 2 K0, then

jf � g.x/j � kgk1Mf .x/;

where Mf is the Hardy–Littlewood maximal function of f ; recall that the Hardy–
Littlewood maximal function is a bounded sublinear operator on Lp.w dx/ when
w 2 Ap , see [25].

(c) E D L
p
uloc for some 1 � p � C1, where

kf kLpuloc
D sup
x02R3

� Z
B.x0;1/

jf .x/jp dx
�1=p

:

By Minkowski’s inequality, we have

kf � gkE �

Z
jg.y/jkf . � � y/kLpuloc

dy D kgk1kf kLpuloc
:

(d) This example can be generalized to other shift-invariant spaces (for which the norms
kf kE and kf . � � y/kE are equal). For instance, we may take E as the Morrey
space Mp;q , 1 < p � q < C1.

Our next step is to introduce Besov-like Banach spaces based on stable spaces and to
describe the regularity of Koch–Tataru solutions when the initial value belongs addition-
ally to the Besov space.

Definition 2.2. Let T 2 .0;C1/. LetE be a stable space of measurable functions on R3.
For s > 0 and 1 � q � C1, we define the Besov-like Banach space B�sE;q as the space of
tempered distributions such that

t s=2 ket�f kE 2 L
q..0; T /; dt=t/:



A remark on weak-strong uniqueness 2223

Proposition 2.3. The norms kt s=2ket�f kEkLq..0;T /;dt=t/ are all equivalent, so thatB�sE;q
does not depend on T .

Proof. Assume that t s=2ket�f kE 2Lq..0;T /;dt=t/ for some T > 0 and consider t � T .
We have

et�f D
2

T

Z T

T=2

e.t��/� e��f d�;

so that

ket�f kE � C
2

T

Z T

T=2

ke��f kE d�

� C
2

T



� s=2ke��f kE

Lq..0;T /;d�=�/ k1T=2<� �1�s=2kLq=.q�1/..0;T /;d�=�/:
The equivalence of the norms is proved.

We remark that this proof shows as well that if 1 � q � r � C1, then B�sE;q � B
�s
E;r .

Another obvious property of Besov spaces is that if 0 < s < � , then B�sE;1 � B
��
E;1.

The main result in this section is the following theorem.

Theorem 2.4. Let E be a stable space of measurable functions on R3. Let 0 < T <C1,
and let Eu0 2 bmo�1, with div Eu0 D 0 and ket� Eu0kXT <

1
4C0

. Let Eu be the solution of the
integral Navier–Stokes equations on .0; T / such that kEukXT �

1
2C0

. Then the following
assertions are equivalent for 0 < � < 1 and 2 < q � C1:

(A) Eu0 2 B��E;q ,

(B) t�=2kEukE 2 L
q..0; T /; dt=t/.

Proof. Let us remark that the operator e.t�s/� P div is a matrix of convolution opera-
tors whose kernels are bounded by C.

p
t � s C jx � yj/�4, hence are controlled in the

convolutor norm k�kK by C 1p
t�s

. We thus have the inequality

kB.Eu; Ev/kE � C

Z t

0

1
p
t � s

kEu˝ EvkE ds

� C 0 sup
0<s<t

p
s kEu.s; �/k1

Z t

0

1
p
t � s

1
p
s
kEv.s; �/kE ds

(and we get a similar estimate by interchanging Eu and Ev in the last line). We thus want to
estimate

J.t/ D t�1=qC�=2
Z t

0

1
p
t � s

1
p
s
s1=q��=2L.s/ ds; with L 2 Lq..0; T /; dt/:

• If q D C1, we easily check that kJ k1 � C�kLk1 (since � < 1).
• If � � 2=q, we have s1=q��=2 � t1=q��=2, so that J.t/ �

R t
0

1p
t�s

1p
s
L.s/ ds. If 2 <

q < C1, as 1=
p
s belongs to the Lorentz space L2;1, we use the product laws and

convolution laws in Lorentz spaces to get that, if L 2 Lq , 1p
s
L 2 Lr;q with 1=r D

1=q C 1=2 and 1p
s
� . 1p

s
L/ 2 Lq;q D Lq . Thus, kJ kq � CkLkq .
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• If � > 2=q, we write

J.t/ � C
� Z t

0

.t � s/�1=qC�=2
p
t � s

1
p
s
s1=q��=2L.s/ ds

C

Z t

0

1
p
t � s

s�1=qC�=2
p
s

s1=q��=2L.s/ ds
�
;

and we use again the product laws and convolution laws in Lorentz spaces to get,
if L 2 Lq , that 1

s.1C�/=2�1=q
L 2 Lr;q with 1

r
D

1C�
2

and 1

s.1��/=2C1=q
� . 1

s.1C�/=2�1=q
L/ 2

Lq;q D Lq . We find again kJ kq � CkLkq .
We may now easily check that (B)) (A): we just write et� Eu0 D EuC B.Eu; Eu/ and

t�=2kB.Eu; Eu/kE

Lq..0;T /; dt=t/ � C sup

0<t<T

p
t kEu.t; �/k1



t�=2kEukE

Lq..0;T /; dt=t/:
In order to prove (A) ) (B), we write Eu as the limit of EUn, where EU0 D et� Eu0 and
EUnC1 D e

t� Eu0 � B. EUn; EUn/. By induction, EUn satisfies

t�=2 k EUnkE

Lq..0;T /; dt=t/ < C1
and

t�=2k EUnC1 � EUnkE

Lq..0;T /; dt=t/ � C sup

0<t<T

p
t k EUn � EUn�1k1

�
�

t�=2k EUnkE

Lq..0;T /; dt=t/ C 

t�=2k EUn�1kE

Lq..0;T /; dt=t/�:

If

AN D


t�=2 k EU0kE

Lq..0;T /; dt=t/ C N�1X

nD0



t�=2 k EUnC1 � EUnkE

Lq..0;T /; dt=t/
and " D 4C0k EU0kXT , we have

t�=2 k EUN kE

Lq..0;T /; dt=t/ � AN
and

ANC1 � AN .1C 2C"
NC1/ � A0

NC1Y
jD1

.1C 2C"j /:

This proves that kt�=2kEukEkLq..0;T /; dt=t/< C1.

Let us remark that the assumption Eu0 2 bmo�1 can be dropped in some cases, as
for example the solutions Eu in the Serrin class Lq..0; T /; Lr / with 2=q C 3=r � 1 and
3 < r < C1. In analogy with Lr , we define r-stable spaces in the following way.

Definition 2.5. For 2 < r < C1, an r-stable space of measurable functions on R3 is a
stable space E such that

• E is contained in B�3=r1;1 and, for f 2 E, kf k
B
�3=r
1;1
� Ckf kE .
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• E is contained in L2loc.

• If f; g 2 E, then fg 2 B�3=rE;1 and kfgk
B
�3=r
E;1

� Ckf kEkgkE .

The Morrey space M 2;r is a r-stable space; more precisely, it is the largest r-stable
space.

Lemma 2.6. LetE be a r-stable space of measurable functions on R3, where r2.2;C1/.
Then E �M 2;r and kf kM 2;r � Ckf kE .

Proof. Let � < 1 and x0 2 R3. We have

e�
2�.f 2/.x0/�

Z
B.x0;�/

f 2.y/dy inf
y2B.x0;�/

W�2.x0 � y/D
e�1=4

.4��2/3=2

Z
B.x0;�/

f 2.y/dy;

where Wt .x/ D 1

.4�t/3=2
e�x

2=.4t/. On the other hand, we have

e�
2�.f 2/.x0/� C�

�3=r
ke�

2�.f 2/k
B
�3=r
1;1
� C 0��3=rke�

2�=2.f 2/kE � C
00��6=rkf k2E :

This gives Z
B.x0;�/

f 2.y/ dy � C�3�6=rkf k2E ;

and thus f 2M 2;r .

Theorem 2.7. Let E be a r-stable space of measurable functions on R3. Let Eu0 2 E with
div Eu0 D 0. Let 0 < � < 1 and 2 < q < C1, with

2

q
� � � 1 �

3

r

and q < C1 if � D 1 � 3=r . Then the following assertions are equivalent:
(A) Eu0 2 B��E;q ,

(B) there exist T > 0 and a solution Eu of the integral Navier–Stokes equations on .0; T /
with initial value Eu0 such that t�=2kEukE 2 Lq..0; T /; dt=t/.

(This theorem thus holds for solutions Eu 2 Lq..0; T /; E/ under the Serrin condition
2=q C 3=r � 1.)

Proof. (A)) (B) is a direct consequence of Theorem 2.4 and of the embeddingB��M 2;r; q �

bmo�10 for � � 1 � 3=r and .�; q/ ¤ .1 � 3=r;1/. Indeed, for 0 < t < 1, we have

ket�f k1 �
2

t

Z t

t=2

ke��f k1 d�

� C
2

t
t�3=.2r/

Z t

t=2

ke�=2�f kM 2;r d�

� C 0t�1�3=.2r/


��=2ke��f kM 2;r




Lq..0;t/; d�/

k���=2kLq=.q�1/..t=2;t/; d�/

� C 00t�1�3=.2r/ t1=q


��=2ke��f kM 2;r




Lq..0;t/; d�=�/

t1�1=q t��=2

� C 000t�1=2 t .1���3=r/=2
� Z t

0

.��=2ke��f kM 2;r /q
d�

�

�1=q
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and Z t

0

Z
B.x0;

p
t/

jes�f j2 dy ds

� C

Z t

0

kes�f k2
M 2;r t

3=2�3=r ds

� C 0 t3=2�3=r


s�=2kes�f kM 2;r



2
Lq..0;t/; ds=s� /

k1kLq=q�2..0;t/; ds=s� /

� C 00 t3=2�3=r t .1��/2=q


s�=2kes�f kM 2;r



2
Lq..0;t/; ds=s/

t .1��/.1�2=q/

� C 00 t3=2 t1���3=r
� Z t

0

.s�=2kes�f kM 2;r /q
ds

s

�2=q
:

We now prove (B)) (A). We use again the identity

et� Eu0 D
2

t

Z t

t=2

e.t�s/� es� Eu0 ds

and get

e2t� Eu0 D
2

t

Z t

t=2

e.2t�s/� Eu.s; �/ ds C
2

t

Z t

t=2

e.2t�s/�B.Eu; Eu/ ds D Ev.t; �/C Ew.t; �/:

We want to estimate kt�=2ke2t� Eu0kEkLq..0;T /; dt=t/Dkt�=2�1=qke2t� Eu0kEkLq..0;T /;dt/.
We have

t�=2�1=qkEv.t; �/kE � Ct
�=2�1=q 2

t

Z t

t=2

kEukE ds

� C
2

t

Z t

t=2

s�=2�1=qkEukE ds � 4CMs�=2�1=qkEukE
.t/

and thus t�=2�1=qkEv.t; �/kE 2 Lq..0; T /; dt/.
On the other hand, we have

k Ew.t; �/kE � sup
t=2�s�t




 Z s

0

e.3t=2��/� P div et�=2.Eu˝ Eu/ d�




E

� C

Z t

0

1p
3t=2 � �

ket�=2.Eu˝ Eu/kE d�

� C 0
Z t

0

t1=2��C1=q

.t � �/1��C1=q
ket�jEuj2kE d�

� C 00 t1=2��C1=q�3=.2r/
Z t

0

1

.t � �/1��C1=q
kEuk2E d�;

and thus

t�=2�1=qk Ew.t; �/kE � CT
1=2��=2�3=.2r/

Z t

0

1

.t � �/1��C1=q
kEuk2E d�

D CT 1=2��=2�3=.2r/
Z t

0

1

.t � �/1��C1=q
���C2=q.��=2�1=qkEukE /

2d�:
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If J.�/ D ��=2�1=qkEukE , we have J.�/ 2 Lq..0; T /; d�/, hence J 2 2 Lq=2..0; T /; d�/,
���C2=qJ 2 2 Lp0; q=2..0; T /; dt/, with 1=p0 D 2=q C � � 2=q D � , and 1

�1��C1=q
�

.���C2=qJ 2/ 2 Lp1;q=2..0; T /; dt/, with 1=p1 D 1=p0 C 1 � 1=� C 1=q � 1 D 1=q.
Thus, t�=2�1=qke2t� Eu0.t; �/kE 2 Lq..0; T /; dt/ and Eu0 2 B��E;q .

The case .�; q/ D .1 � 3=r;C1/ can be treated in a similar way.

Theorem 2.8. LetE be a r-stable space of measurable functions on R3 with 3< r <C1.
Let Eu0 2 E with div Eu0 D 0. Then the following assertions are equivalent:

(A) Eu0 2 B
�1C3=r
E;1 and limt!0 t

1=2�3=.2r/ket� Eu0kE D 0,

(B) there exist T > 0 and a solution Eu of the integral Navier–Stokes equations on .0;T /,
with initial value Eu0, such that sup0<t<T t

1=2�3=.2r/kEukE < C1, and such that
limt!0 t

1=2�3=.2r/kEukE D 0.

Remark. We have the embedding B�1C3=rE;1 � bmo�1, but this does not grant existence
of a solution. The extra condition limt!0 t

1=2�3=.2r/ket� Eu0kE D 0 is used to get Eu0 2
bmo�10 , and thus to have the existence of a local solution.

3. Potential spaces and interpolation

IfE is a stable space, we define, for s 2R, the potential spaceH s
E asH s

ED.Id��/
�s=2E,

normed with kf kH s
E
D k.Id��/s=2f kE . For positive s, we have an obvious comparison

of the potential space H�sE with the Besov spaces.

Lemma 3.1. Let E be a stable space and s > 0. Then

B�sE;1 � H
�s
E � B

�s
E;1:

Proof. Indeed, we have

.Id��/�s=2 D
1

�.s=2/

Z C1
0

e�t et� t s=2
dt

t
�

If f belongs to B�sE;1, then t s=2ket�f kE 2L1..0; 1/; dt=t/ while ke�f k1 � kf kB�sE;1 �
Ckf kB�sE;1 , so that

kf kH�sE �
1

�.s=2/

� Z 1

0

t s=2ket�f kE
dt

t
C Cke�f kE

Z C1
1

e�t t s=2
dt

t

�
� C 0kf kB�sE;1 :

Conversely, if f 2H�sE , f D .Id��/s=2g, where g 2 E, and if 0 < � < 1, then we pick
N 2 N with N > s=2 and write

e��f D e��.Id��/N .Id��/s=2�Ng

D
1

�.N � s=2/

Z C1
0

e�t .Id��/N e.tC�/�g tN�s=2
dt

t
�

For ˛ 2 N3, with 0 � j˛j � 2N , we have

k@˛e.tC�/�gkE � C˛.t C �/
�j˛j=2

kgkE � C˛.1C .t C �/
�N /kgkE ;
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so that

ke��f kE � CkgkE

Z C1
0

e�t .1C .t C �/�N / tN�s=2
dt

t

� CkgkE

�
�.N � s=2/C

Z �

0

tN�s=2
dt

t
C

Z C1
�

dt

t1Cs=2

�
� C 0kgkE�

�s=2:

The lemma is proved.

Let us recall the definition of Calderón’s interpolation spaces ŒA0;A1�� and ŒA0;A1�� ,
see [4]. We assume that A0 and A1 are subspaces of � 0, so that A0 \A1 and A0 CA1 are
well defined.

We begin with the definition of the first interpolate ŒA0; A1�� . Let � be the open
complex strip � D ¹z 2 C j 0 < <z < 1º. We let F .A0; A1/ be the space of functions F
defined on the closed complex strip x� such that:

• F is continuous and bounded from x� to A0 C A1,
• F is analytic from � to A0 C A1,
• t 7! F.it/ is continuous from R to A0, and limjt j!C1kF.it/kA0 D 0,
• t 7! F.1C i t/ is continuous from R to A1, and limjt j!C1kF.1C i t/kA0 D 0.

Then

f 2 ŒA0; A1�� ” there exists F 2 F .A0; A1/ such that f D F.�/

and
kf kŒA0;A1�� D inf

fDF.�/
max

�
sup
t2R
kF.it/kA0 ; sup

t2R
kF.1C i t/kA1

�
:

Now, let us recall the definition of the second interpolate ŒA0; A1�� . Let G .A0; A1/ be the
space of functions G defined on the closed complex strip x� such that:

• 1
1Cjzj

G is continuous and bounded from x� to A0 C A1,
• G is analytic from � to A0 C A1,
• t 7! G.it/ �G.0/ is Lipschitz from R to A0,
• t 7! G.1C i t/ �G.1/ is Lipschitz from R to A1.

Then

f 2 ŒA0; A1�
�
” there exists G 2 G .A0; A1/ such that f D G0.�/

and

kf kŒA0;A1��

D inf
fDG0.�/

max
�

sup
t1;t22R




G.it2/ �G.it1/
t2 � t1





A0
; sup
t1;t22R




G.1C i t2/ �G.1C i t1/
t2 � t1





A1

�
:

Three important properties of those complex interpolation functors are as follows:
• The equivalence theorem: if A0 (or A1) is reflexive, then ŒA0; A1�� D ŒA0; A1�� for
0 < � < 1.
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• The duality theorem: if A0 \A1 is dense in A0 and A1, then .ŒA0;A1�� /0 D ŒA00;A
0
1�
�

for 0 < � < 1.
• The density theorem: A0 \ A1 is dense in ŒA0; A1�� .

An easy classical example of interpolation concerns the Lebesgue spaces Lp on a
measured space .X; �/: ŒLp0 ; Lp1 �� D Lp , with 1 < p0 < C1, 1 < p1 < C1, 0 <
� < 1 and 1=p D .1 � �/=p0 C �=p1. Indeed, if f 2 Lp , we write f D F� , where
Fz.x/D jf .x/j

.1�z/p=p0Czp=p1 f .x/=jf .x/j. If p0 � p1, we have jFz.x/j � jf .x/jp=p0
if jf .x/j � 1. and jFz.x/j � jf .x/jp=p1 if jf .x/j < 1. By dominated convergence, this
gives the continuity of F from x� to Lp0 C Lp1 . For the holomorphy, we use the equiva-
lence between (strong) holomorphy and weak-* holomorphy; thus, it is enough to check
that z 2� 7!

R
Fz.x/g.x/d� is holomorphic if g 2 Lq0 \Lq1 , where 1=qi C 1=pi D 1.

Thus, we obtain that Lp � ŒLp0 ; Lp1 �� . As

ŒLp0 ; Lp1 �� D ŒL
p0 ; Lp1 �� D .ŒLq0 ; Lq1 �� /

0

and as Lq is dense in ŒLq0 ;Lq1 �� (where 1=q C 1=p D 1), we obtain from the embedding
Lq � ŒLq0 ; Lq1 �� that ŒLp0 ; Lp1 �� � Lp .

A similar result holds for weighted Lebesgue spaces Lp.w d�/:

ŒLp0.w0 d�/;L
p1.w1 d�/�� D L

p.w d�/;

with 1 < p0 < C1, 1 < p1 < C1, 0 < � < 1 and 1=p D .1 � �/=p0 C �=p1, and
w D w1��0 w�1 . If f 2 Lp.w d�/, one defines

Fz.x/ D
� w.x/
w0.x/

�.1�z/=p0� w.x/
w1.x/

�z=p1
jf .x/j.1�z/p=p0Czp=p1

f .x/

jf .x/j
�

We have

jFz.x/j � max
�� w.x/
w0.x/

�1=p0
jf .x/jp=p0 ;

� w.x/
w1.x/

�1=p1
jf .x/jp=p1

�
:

The proof is then similar to the case of Lebesgue spaces.
If we want to interpolate Morrey spaces Mp0;q0.R3/ and Mp1;q1.R3/ and obtain a

Morrey space, then it is necessary to assume that p0=q0 D p1=q1, see [17, 18]. We then
obtain

ŒMp0;q0 ;Mp1;q1 �� DMp;q

when 1 < p0 � q0 < C1, 1 < p1 � q1 < C1, p0=q0 D p1=q1, 0 < � < 1, 1=p D
.1 � �/=p0 C �=p1 and 1=q D .1 � �/=q0 C �=q1. As Mp0;q0 \Mp1;q1 is not dense
in Mp;q and is dense in ŒMp0;q0 ; Mp1;q1 �� , we can see that we must use the second
interpolation functor. The embedding ŒMp0;q0 ;Mp1;q1 �� �Mp;q is obvious: for a ball B
with radius r � 1, we have that the map f 7! f 1B is bounded from Mp0;q0 to Lp0 with
norm less or equal to r3.1=p0�1=q0/, and from Mp1;q1 to Lp1 with norm less or equal to
r3.1=p0�1=q0/, hence from ŒMp0;q0 ; Mp1;q1 �� to ŒLp0 ; Lp1 �� with norm less or equal to
r3.1=p�1=q/. As ŒLp0 ; Lp1 �� D Lp , we obtain the desired estimates.

If f belongs to Mp;q , we define Fz.x/ D jf .x/j.1�z/p=p0Czp=p1f .x/=jf .x/j. Now
since jFz.x/j �max..jf .x/jp=p0 jf .x/jp=p1/, we deduce that z 7! Fz is bounded from x�
toMp0;q0 CMp1;q1 and holomorphic on the open strip� (again by equivalence between
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analyticity and weak-* analyticity). But it is no longer continuous, and we cannot apply
the first functor of Calderón. Instead, we follow Cwikel and Janson [9] and define Gz DR z
1=2

Fw dw. We may then apply the definition of the second functor and find that f 2
ŒMp0;q0 ;Mp1;q1 �� . Thus, ŒMp0;q0 ;Mp1;q1 �� DMp;q .

Now, we are going to describe complex interpolation of potential spaces on weighted
Lebesgue spaces when varying both the regularity exponents and the weights.3

Proposition 3.2. Let � 2 .0; 1/, let s0, s1 be real numbers, and let 1 < p0; p1 < C1,
sD .1� �/s0C �s1 and 1=pD .1 � �/=p0C �=p1. If w0 is a weight in the Muckenhoupt
class Ap0 and w1 is a weight in the Muckenhoupt class Ap1 , then

.Id��/�sLp.w1��0 w�1 dx/ D Œ.Id��/
�s0Lp0.w0 dx/; .Id��/�s1Lp1.w1 dx/�� :

Proof. Let f D .Id��/�sg, where g 2 Lp.w dx/. We define

Hz.x/ D
� w.x/
w0.x/

�.1�z/=p0� w.x/
w1.x/

�z=p1
jf .x/j.1�z/p=p0Czp=p1

f .x/

jf .x/j

and

Fz;".�/ D
�2 � �
2 � z

�4
e"�.Id��/�.1�z/s0�zs1Hz :

We first remark that, for " > 0 fixed, the operators e"�.Id��//�� with � 2 Œs0; s1� are
equicontinuous from Lpi .wi dx/ to .Id��/�siLpi .wi dx/ (it is enough to check that the
norms of the convolutors e"�.Id��/si�� in K are uniformly bounded.

Moreover, the operators . 2��
2�it

/4.Id��/�it , with t 2 R, are uniformly bounded on
Lpi .wi dx/. Let us recall the definition of Calderón–Zygmund convolutors. A Calderón–
Zygmund convolutor is a distribution K 2 � 0.R3/ such that OK 2 L1 (so that the convo-
lution withK is a bounded operator on L2) and, when restricted to R3 n ¹0º,K is defined
by a locally Lipschitz function such that supx¤0jxj

3jK.x/j C jxj4j Erxj<C1. The space
CZ of Calderón–Zygmund convolutors is normed by

kKkCZ D k OKk1 C sup
x¤0

jxj3 jK.x/j C jxj4 j Erxj:

If 1 < p <C1,w 2Ap andK 2 CZ, then kf �KkLp.w dx/ � Cw;pkf kLp.w dx/kKkCZ.
Since we have

kKkCZ � C
X
j˛j�4

kj�jj˛j@˛�
OKk1;

it is clear that . 2��
2�it

/4.Id��/�itf D Kt � f with supt2RkKtkCZ < C1.
Now we may apply the second interpolation functor and find that e"�f D F�;" 2

Œ.Id��/�s0Lp0.w0 dx/; .Id��/�s1Lp1.w1 dx/�� if g 2 Lp.w dx/. Moreover, its norm
is controlled independently from " > 0, as, for ˛ D 0 or ˛ D 1, we have that the functions
H˛Cit are bounded in Lp˛ .w˛ dx/, the operators . 2��

2�it
/4.Id��/�it are equicontinuous

3This can be seen as a variation on Stein’s interpolation theorem [9, 24].
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onLp˛ .w˛ dx/ and the operators e"� are equicontinuous onLp˛ .w˛ dx/. One then writes

F˛Cit;" D .Id��/�.1�˛/s0�˛s1
�
e"�

� 2 � �
2 � i t

�4
.Id��/�itH˛Cit

�
:

To conclude, we remark that Lpi .wi dx/ is the dual of Lqi .w�qi=pi dx/ and that � is
dense in this predual. Thus, e"�f is bounded in

ŒH
s0
Lp0 .w0 dx/

;H
s1
Lp1 .w1 dx/

��

D
�
Œ.Id��/s0Lq0.w�q0=p00 dx/; .Id��/s1Lq1.w�q1=p11 dx/��

�0
if .Id��/sf 2 Lp.wdx/. As " goes to 0, e"�f is weak-� convergent to f . Thus,

.Id��/�sLp.w dx/ � Œ.Id��/�s0Lp0.w0dx/; .Id��/�s1Lp1.w1dx/�� ;

and we can interchange the second and the first interpolation functors as H s0
Lp0 .w0 dx/

is
reflexive.

Conversely, assume that f 2 Œ.Id��/�s0Lp0.w0 dx/; .Id��/�s1Lp1.w1 dx/�� and
pick F 2 F ..Id��/�s0Lp0.w0 dx/; .Id��/�s1Lp1.w1 dx/// such that f D F.�/. Set

Hz;" D
�2 � �
2 � z

�4
e"�.Id��/.1�z/s0Czs1Fz :

We easily check that Hz;" 2 A.Lp0.w0dx/; L
p1.w1dx// with H�;" D e"�.Id��/sf .

Thus, we find that e"�.Id��/sf is bounded in ŒLp0.w0 dx/;Lp1.w1dx/�� DLp.wdx/,
and finally f 2 .Id��/�sLp.w dx/.

Corollary 3.3. Let 2 < q < C1 and s < 1 � 2=q.

(a) There exist 
 > 0 and 2 < r <C1 such that 
 C 3=r < 1, and � 2 .0; 1/ such that

B�sq;1 � ŒL
2;H�
r ��;1 � ŒL

2; B�
�3=r1;1 ��;1:

(b) For 0 � N < 4=q, there exist 
 > 0 and 2 < r < C1 such that 
 C 3=r < 1, and
� 2 .0; 1/ such that

B�s
Lq..1Cjxj/�N dx/;1

�

h
L2
� dx

.1C jxj/2

�
;H�
r

i
�;1
�

h
L2
� dx

.1C jxj/2

�
; B�
�3=r1;1

i
�;1

:

Proof. If s < � < 1� 2=q, thenB�sq;1�H
��
Lq andB�s

Lq..1Cjxj/�N dx/;1
�H��Lq..1Cjxj/�N dx/.

Thus, if r > q, then, for � 2 .0;1/ and 
 >� such that .1 � �/=2C �=r D 1=q and �
 D � ,
we have

B�sq;1 � ŒL
2;H�
r �� � ŒL

2;H�
r ��;1 � ŒL
2; B�
�3=r1;1 ��;1:

As 
 C 3
r
D .1� 2

r
/ �
1�2=q

C
3
r
D

�
1�2=q

CO.1
r
/, we have 
 C 3

r
< 1 for r large enough.

Similarly, if .1 � �/M D N and M < 2 (so that, in particular, .1C jxj/�M 2 A2), we
have

B�s
Lq..1Cjxj/�N dx/;1

� ŒL2..1C jxj/�M dx/;H�
r �� � ŒL
2..1C jxj/�2dx/;H�
r ��;1

� ŒL2..1C jxj/�2dx/; B�
�3=r1;1 ��;1:

As M D N
1��
D N 1=2�1=r

1=q�1=r
D

qN
2
CO.1

r
/, we have M < 2 for r large enough.
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4. Mild solutions for the Navier–Stokes equation

In this section, we develop some remarks on the solutions provided by Koch and Tataru’s
theorem (Theorem 1.2 and Corollary 1.3).

Let Eu0 2 bmo�10 , with div Eu0 D 0. If ket� Eu0kXT <
1
4C0

, then the integral Navier–
Stokes equations have a solution on .0; T / such that kEukXT � 2ke

t� Eu0kXT . This solution
is computed through Picard iteration as the limit of EUn, where EU0 D et� Eu0 and EUnC1 D
et� Eu0 � B. EUn; EUn/. In particular, by induction, we have

k EUnC1 � EUnkXT � .4C0ke
t�
Eu0kXT /

nC1
ket� Eu0kXT

and
k EUnkXT � 2ke

t�
Eu0kXT :

It is easy to check that Eu is smooth. For X˛ D L1 if ˛ D 0 and PB˛1;1 if ˛ > 0, we have

kuvkX˛ � C˛.kuk1kvkX˛ C kvk1kukX˛ /;

and kEuk1 � 2ket� Eu0kXT =
p
t for 0 < t < T , while

Eu.t; �/ D et�=2 Eu.t=2; �/ �

Z t=2

0

e.t=2�s/�P div.Eu.t=2C s; �/˝ Eu.t=2C s; �// ds;

so that

kEu.t; �/kX.nC1/=2 � C
1

t1=4
kEu.t=2; �/kXn=2

C Cket� Eu0kXT

Z t=2

0

1

.t=2 � s/3=4
1
p
s
kEu.t=2C s; �/kXn=2 ds;

and, by induction on n,
kEu.t; �/kXn=2 � Cn t

�1=2�n=4:

Thus, for 0 < t < T , Eu is smooth with respect to the space variable x. So is Erp, by hypoel-
lipticity of the Laplacian (as �p D �

P3
iD1

P3
jD1 @iuj @jui ). Then we have smoothness

with respect to the time variable by controlling the time derivatives through the Navier–
Stokes equations.

Proposition 4.1. Let Eu0 2 bmo�10 with div Eu0 D 0. LetE � � 0 be a stable space. If, more-
over, Eu0 belongs to E, then the small solution Eu to the integral Navier–Stokes equations
with initial value Eu0, i.e., the solution on .0; T / such that kEukXT � 2ke

t� Eu0kXT , satisfies
sup0<t<T kEu.t; �/kE < C1 and limt!0kEu.t; �/ � e

t� Eu0kE D 0. In particular, if � is
dense in E, then limt!0kEu.t; �/ � Eu0kE D 0.

Moreover, if E � � 0 is the dual of a space E0 where � is dense,

sup
0<t<T

p
t k Er ˝ EukE < C1:

Proof. We have

kB.Eu; Ev/.t; �/kE � CE

Z t

0

1
p
t � s

min.kEuk1kEvkE ; kEukEkEvk1/ ds:
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By induction, we have EUn 2 L1..0; T /; E/ with, for n � 0 (and EU�1 D 0),

k EUnC1.t; �/ � EUn.t; �/kE

� C

Z t

0

1
p
t � s

1
p
s

p
sk EUn.s; �/ � EUn�1.s; �/k1.k EUn.s; �/kE C k EUn�1.s; �/kE / ds

� C 0.4C0ke
t�
Eu0kXT /

n

nX
kD0

k EUk � EUk�1kL1..0;T /;E/:

Thus, we have

C1X
kD0

k EUk � EUk�1kL1..0;T /;E/ � k EU0kL1..0;T /;E/

1Y
nD0

.1C C.4C0ke
t�
Eu0kXT /

n/:

Thus, sup0<t<T kEu.t; �/kE < C1.
We have that supt>0

p
t k Er ˝ EU0kE < C1, and we will show by induction that

supt>0
p
t k Er ˝ EUnkE < C1. Indeed, for � 2 .0; 1/ and 0 < t < T , we have

EUnC1.t; �/ D e
�t� EUnC1..1 � �/t; �/

�

Z �t

0

e.�t�s/�P div. EUn..1 � �/t C s; �/˝ EUn..1 � �/t C s; �// ds

and, since div.Eu˝ Ev/ D Eu � Er Ev,

@j EUnC1.t; �/ D e
�t� EUnC1..1 � �/t; �/

�

Z �t

0

e.�t�s/�P @j . EUn..1 � �/t C s; �/ � Er EUn..1 � �/t C s; �// ds:

This gives

k Er EUnC1.t; �/kE � C
1
p
�t
k EUnC1kL1..0;T /;E/ C C

Z �t

0

1
p
�t � s

1

.1 � �/t C s
ds

� sup
0<s<T

p
s k Er ˝ EUn.s; �/kE

p
s k EUn.s; �/k1

� C1
1
p
�t
C C1

p
�

1 � �

1
p
t

sup
0<s<T

p
s k Er ˝ EUn.s; �/kE ;

whereC1 does not depend on n nor on �. For � small enough, we haveC1
p
�=.1��/<1=4

and sup0<s<T
p
sk Er ˝ EU0.s; �/kE � 2C1=

p
�. By induction, we get sup0<s<T

p
sk Er ˝

EUn.s; �/kE � 2C1=
p
� for every n 2 N. If E � � 0 is the dual of a space E0, where � is

dense, we conclude that sup0<s<T
p
sk Er ˝ Eu.s; �/kE < C1.

Proposition 4.2. Let Eu0 2 bmo�10 with div Eu0D 0. LetwD .1C jxj/�N , where 0�N <3.
If, moreover, Eu0 belongs to L2.w dx/, then the small solution Eu to the integral Navier–
Stokes equations with initial value Eu0, i.e., the solution on .0; T / such that kEukXT �
2ket� Eu0kXT , satisfies Eu 2 L1..0; T /; L2.w dx// and Er ˝ Eu 2 L2..0; T /; L2.w dx//.
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Proof. Let

�R D �
� x
R

� 1

..1C jxj/2/N=2
;

where � 2 D is equal to 1 on a neighborhood of 0. We know that Eu is smooth, so that, for
0 < t0 � t < T ,

@t .jEuj
2/C 2j Er ˝ Euj2 D �.jEuj2/ � div..2p C jEuj2/Eu/;

and thus Z
�R.x/jEu.t; x/j

2 dx C 2

Z t

t0

Z
�R.x/j Er ˝ Eu.s; x/j

2 dx ds

D

Z
�R.x/jEu.t0; x/j

2 dx C

Z t

t0

Z
�.�R.x//jEu.t; x/j

2 dx ds

C

Z t

t0

Z
.2p C jEuj2/Eu � Er.�R.x// dx ds:

For j˛j�2, we have j@˛.�R/j�Cw. On the other hand, we know that Eu 2L1.L2.wdx//
and
p
tuiuj 2 L

1.L2.w dx//, and thus
p
t .2p C jEuj2/ 2 L1.L2.w dx// (as w 2 A2

and p D �
P
1�i�3

P3
jD1

@i@j
�
.uiuj /). Therefore, we get thatZ

�R.x/ jEu.t; x/j
2 dx C 2

Z t

t0

Z
�R.x/ j Er ˝ Eu.s; x/j

2 dx ds

� C sup
0<s<T

Z
jEu.s; x/j2w.x/ dx C C

Z T

0

Z
jEu.s; x/j2w.x/ dx ds

C

Z T

0

Z
p
s j2p C jEuj2j jEujw.x/ dx

ds
p
s
< C1:

We then let R go toC1 and t0 go to 0.

5. Barker’s stability theorem

In this section, we extend a lemma of Barker on Leray weak solutions with initial values
in L2 \ ŒL2; PB�ı1;1��;1 (for some ı < 1 and � 2 .0; 1/) to the case of some solutions with
initial values in L2.w dx/\ ŒL2.w dx/;H�
r ��;1, where w D .1C jxj/�N , 0 � N � 2,
and 
 C 3=r < 1.

Definition 5.1. A weighted Leray weak solution for the Navier–Stokes equations with
divergence-free initial value Eu0 2 L2.w dx/, where w D .1C jxj/�N , 0 � N � 2, is a
divergence-free vector field Eu defined on .0; T / �R3 such that

• Eu 2 L1..0; T /; L2.w dx// and Er ˝ Eu 2 L2..0; T /; L2.w dx//,
• there exists p 2 D 0..0; T / �R3 such that

@t Eu D �Eu � Eu � Er Eu � Erp;

• limt!0kEu.t; �/ � Eu0kL2.w dx/ D 0,
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• Eu fulfills the weighted Leray inequality: for 0 < t < T ,Z
jEu.t; x/j2w.x/ dx C 2

Z t

0

Z
j Er ˝ Eu.s; x/j2w.x/ dx ds

�

Z
jEu0.t; x/j

2w.x/ dx � 2

3X
iD1

Z t

0

Z
@iw.s; x/Eu.s; x/ � @i Eu.s; x/ dx ds

C

Z t

0

Z
.jEu.s; x/j2 C 2p.s; x// Eu.s; x/ � Erw.x/ dx ds:

The Navier–Stokes problem in L2.w dx/ has recently been studied by Bradshaw,
Kukavica and Tsai [2], and Fernández-Dalgo and Lemarié-Rieusset [11]. As j Erwj �Nw,
we find that

p
w Eu 2 L2..0; T /; H 1/. In particular, we have wuiuj 2 L4..0; T /; L6=5/.

The pressure p is determined by the equation �p D �
P3
iD1

P3
jD1 uiuj (see [12]) and,

as w6=5 2 A6=5, we have p 2 L4..0; T /; L6=5.w6=5 dx//. As j Erwj � Nw3=2, we see
that the right-hand side of the weighted Leray inequality is well defined. As in the case of
Leray solutions, the strong continuity at t D 0 of t 2 Œ0; T / 7! Eu.t; �/ 2 L2.w dx/ (which
is only weakly continuous for t > 0) is a consequence of the weighted Leray inequality.

Theorem 5.2. Let Eu0 be a divergence-free vector field such that Eu0 2 L2.w dx/, where
w D .1C jxj/�N , 0 � N � 2. Let Eu1, Eu2 be two weighted Leray weak solutions for the
Navier–Stokes equations with initial value Eu0. If, moreover, Eu0 2 ŒL2.w dx/; H

�

r ��;1

for some 
 > 0, 2 < r < C1 with 
 C 3=r < 1 and � 2 .0; 1/, then there exist T0 > 0,
C � 0 and � > 0 such that, for 0 � t � T0,

kEu1.t; �/ � Eu2.t; �/kL2.w dx/ � Ct
�:

Proof. This theorem was proved by Barker [1] in the case N D 0. Our proof will follow
the same lines as Barker’s proof.

As Eu0 2 ŒL2.wdx/;H
�

r ��;1, for every "2 .0;1/, we may split Eu0 in Eu0D Ev0;"C Ew0;"

with kEv0;"kH�
r � C1"
��1 and k Ew0;"kL2.w dx/ � C1"� , where C1 depends only on Eu0. As

Eu0 D P Eu0 and as P is continuous on H�
r and on L2.w dx/, we may assume (changing
the value of the constant C1) that Ev0;" and Ew0;" are divergence free. Let ı D 
 C 3=r < 1.
SinceH�
r � B�ı1;1, for 0 < t � 1, we have ket�Ev0;"k1 � C2 t�ı=2 "��1. If 0 < T1 < 1,
we have

sup
0<t<T1

p
t ket�Ev0;"k1 � C2 "

��1T
1�ı=2
1

and

sup
0<t<T1;x2R3

s
1

t3=2

Z t

0

Z
B.x;
p
t/

jet�Ev0;"j2 dx � C3 "
��1T

1�ı=2
1 ;

so that

ket�Ev0;"kXT1 � .C2 C C3/"
��1T

1�ı=2
1 <

1

8C0
if T1 < min.1; C4 "2=1�ı.1��//:

By (the proof of) Theorem 2.4, we know that the Navier–Stokes equations with ini-
tial value Ev0;" will have a solution Ev" on .0; T1/ such that kEv".t; �/k1 � C5 t�ı=2 "��1.
Moreover, by Proposition 4.1, Ev" is a weighted Leray weak solution.



P. G. Lemarié-Rieusset 2236

Let Eu be a weighted Leray solution on .0; T / for the Navier–Stokes equations with
initial value Eu0. We are going to compare Eu and Ev". We know that Ev" is smooth, so that

@t .Eu � Ev"/ D Eu � @t Ev" C Ev" � @t Eu:

If p" is the pressure associated to Ev", then on .0; T2/, where T2 D min.T; T1/, we have

@t .Eu � Ev"/ D Eu ��Ev" C Ev" ��Eu � div.p" EuC pEv"/ � Eu � .Ev" � Er Ev"/ � Ev" � .Eu � Er Eu/

D Eu ��Ev" C Ev" ��Eu � div.p" EuC pEv"/ � .Eu � Ev"/ � .Ev" � Er Ev"/

� Ev" � .Eu � Er.Eu � Ev"// � div
�
jEv"j

2

2
.EuC Ev"/

�
D Eu ��Ev" C Ev" ��Eu � Ev" � ..Eu � Ev"/ � Er.Eu � Ev"//

� div
�
p" EuC pEv" C

jEv"j
2

2
.EuC Ev"/C .Ev" � .Eu � Ev"//Ev"

�
:

Since Ev" 2 L2..0; T2/; L1/, this can be integrated on .0; t/ � R3 against the measure
w.x/ dxds, givingZ
Eu � Ev"w.x/ dx �

Z
Eu0 � Ev0;"w.x/ dx

D �

Z t

0

Z 3X
iD1

@iw.x/.Eu.s; x/ � @i Ev".s; x/C Ev".s; x/ � @i Eu.s; x// dx ds

� 2

Z t

0

Z
. Er ˝ Eu.s; x/ � Er ˝ Ev".s; x//w.x/ dx ds

�

Z t

0

Z
Ev".s; x/ � ..Eu.s; x/ � Ev".s; x// � Er.Eu.s; x/ � Ev".s; x///w.x/ dx ds

C

Z t

0

Z
p.s; x/ Ev".s; x/ � Erw.x/C p".s; x/Eu.s; x/ � Erw.x/ dx ds

C

Z t

0

Z
jEv".s; x/j

2

2
.Eu.s; x/ � Ev".s; x// � Erw.x/

C .Ev".s; x/ � Eu.s; x//Ev".s; x/ � Erw.x/ dx ds:

Together withZ
jEu.t; x/j2w.x/ dx C 2

Z t

0

Z
j Er ˝ Eu.s; x/j2w.x/ dx ds

�

Z
jEu0.t; x/j

2w.x/ dx � 2

3X
iD1

Z t

0

Z
@iw.s; x/Eu.s; x/ � @i Eu.s; x/ dx ds

C

Z t

0

Z
.jEu.s; x/j2 C 2p.s; x// Eu.s; x/ � Erw.x/ dx ds
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andZ
jEv".t; x/j

2w.x/ dx C 2

Z t

0

Z
j Er ˝ Ev".s; x/j

2w.x/ dx ds

D

Z
jEv0;".t; x/j

2w.x/ dx � 2

3X
iD1

Z t

0

Z
@iw.s; x/Ev"..s; x/ � @i Ev".s; x/ dx ds

C

Z t

0

Z
.jEv"..s; x/j

2
C 2p".s; x// Ev".s; x/ � Erw.x/ dx ds;

this givesZ
jEv".t; x/ � Eu.t; x/j

2w.x/ dx C 2

Z t

0

Z
j Er ˝ .Ev" � Eu/j

2w.x/ dx ds

�

Z
jEv0;" � Eu0j

2w.x/ dx � 2

3X
iD1

Z t

0

Z
@iw.Ev" � Eu/ � @i .Ev" � Eu/ dx ds

C 2

Z t

0

Z
.p" � p/.Ev" � Eu/ � Erw dx ds

� 2

Z t

0

Z
Ev" � ..Eu � Ev"/ � Er.Eu � Ev"// w dx ds

C

Z t

0

Z
jEv" � Euj

2
Ev" � Erw C .jEuj

2
� jEv"j

2/.Eu � Ev"/ � Erw dx ds:

Thus, we haveZ
jEv".t; x/ � Eu.t; x/j

2w.x/ dx C 2

Z t

0

Z
j Er ˝ .Ev" � Eu/j

2w.x/ dx ds

�

Z
jEv0;" � Eu0j

2w.x/ dx C C6

Z t

0

k
p
w.Eu � Ev"/k2 k

p
w Er.Eu � Ev"/k2 ds

C C6

Z t

0

k.p � p"/ wkL6=5 k
p
w.Ev" � Eu/k6 ds

C C6

Z t

0

kEv"k1 k
p
w.Eu � Ev"/k2 k

p
w Er ˝ .Eu � Ev"/k2 ds

C C6

Z t

0

k
p
w.Eu � Ev"/k

2
3 .k
p
w Euk3 C k

p
w Ev"k3/ ds:

We have

kw.p � p"/k6=5 � C7 kw.Eu˝ Eu � Ev" ˝ Ev"k6=5

� C7 k
p
w.Eu � Ev"/k2 .k

p
w Euk3 C k

p
w Ev"k3/;

k
p
w.Eu � Ev"/k

2
3 � k

p
w.Eu � Ev"/k2 k

p
w.Eu � Ev"/k6

and
k
p
w.Eu � Ev"/k6 � C8

�
k
p
w.Eu � Ev"/k2 C k

p
w Er ˝ .Eu � Ev"/k2

�
;
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so that

k
p
w.Eu.t; �/ � Ev".t; �//k

2
2 C 2

Z t

0

Z
k
p
w Er ˝ .Ev" � Eu/k

2
2 ds

� k
p
w.Ev0;" � Eu0/k

2
2 C C9

Z t

0

k
p
w.Eu � Ev"/k2 k

p
w Er.Eu � Ev"/k2 ds

C C9

Z t

0

.k
p
w.Eu � Ev"/k2 C k

p
w Er ˝ .Eu � Ev"/k2/ k

p
w.Eu � Ev"/k2

� .k
p
w Euk3 C k

p
w Ev"k3/ ds

C C9

Z t

0

kEv"k1 k
p
w.Eu � Ev"/k2 k

p
w Er ˝ .Eu � Ev"/k2 ds

� k
p
w.Ev0;" � Eu0/k

2
2 C

Z t

0

k
p
w Er ˝ .Ev" � Eu/k

2
2 ds

C C10

Z t

0

k
p
w.Eu � Ev"/k

2
2 .1C k

p
w Euk23 C k

p
w Ev"k

2
3 C kEv"k

2
1/ ds:

By Gronwall’s lemma, for 0 < t < T2, we have

k
p
w.Eu.t; �/ � Ev".t; �//k

2
2

� k
p
w.Ev0;" � Eu0/k

2
2 exp

� Z T2

0

C10.1Ck
p
w Euk23 C k

p
w Ev"k

2
3 C kEv"k

2
1/ ds

�
:

Since T2 � T , Z T2

0

k
p
w Euk23 ds �

Z T

0

k
p
w Euk23 ds < C1;

and, by Propositions 4.1 and 4.2,Z T2

0

k
p
w Ev"k

2
3 ds �

Z T1

0

k
p
w Ev"k

2
3 ds � C11kEu0k

2
L2.w dx/

:

Finally, we haveZ T2

0

kEv"k
2
1 ds � C12

Z T1

0

t�ıkEv0;"k
2
B�ı1;1

dt � C13T
1�ı
1 "2.��1/ � C14:

Thus, we have
k
p
w.Eu.t; �/ � Ev".t; �//k

2
2 � C15 "

2� ;

where C15 depends only on Eu and Eu0.
We may now estimate kEu1.t; �/ � Eu2.t; �/kL2.w dx/ for two weighted Leray weak

solutions defined on .0; T /. If t 2 .0; T /, we define " D . 4
C4
t /1�ı=.2.1��// and T3 D

1
2
C4 "

2.1��/=.1�ı/ D 2t . If t is small enough, we have 0 < " < 1 and T3 < min.1; T /.
Thus, we know that, for a constant C that depends only on Eu1, Eu2 and Eu0,

kEu1.t; �/� Eu2.t; �/kL2.w dx/ � kEu1.t; �/� Ev".t; �/kL2.w dx/ C kEv".t; �/� Eu2.t; �/kL2.w dx/

� C"� D C
� 4
C4
t
�� 1�ı

2.1��/
:

The theorem is proved.
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6. Weak-strong uniqueness

Proof of Theorem 1.8. Recall that we consider two solutions Eu, Ev of the Navier–Stokes
equations on .0; T / with the same initial value Eu0 such that:

• Eu0 is a divergence-free vector field with Eu0 2 L2 \ bmo�10 ,
• ket� Eu0kXT <

1
4C0

,

• Eu is the mild solution of the Navier–Stokes equations with initial value Eu0 such that
kEukXT �

1
2C0

,
• for some N � 0 , 2 < q < C1 and 0 � s < 1 � 2=q,

sup
0<t<T

t s=2 kEukLq..1Cjxj/�N dx/ < C1;

• Ev is a suitable weak Leray solution of the Navier–Stokes equations.
We know, by Propositions 4.1 and 4.2, that the mild solution Eu is a suitable weak Leray

solution. In particular, we have sup0<t<T kEu.t; �/k2<C1 and sup0<t<T t
1=2kEu.t; �/k1�

kEukXT < C1. Thus,
sup

0<s<T

t1=2�1=q kEukq < C1:

If 0 � ˛ � 1, we find that

sup
0<t<T

.
p
t /.1�˛/.1�2=q/C˛s kEukLq..1Cjxj/�˛N dx/ < C1:

By Theorem 2.4, we find that

Eu0 2 B
�s˛
Lq..1Cjxj/�˛N dx/;1

; with s˛ D .1 � ˛/.1 � 2=q/C ˛s:

For 0 < ˛ <min.1; 4
Nq
/, we have 0 < s˛ < 1� 2=q and ˛N < 4=q, so that we may apply

Corollary 3.3.
The next step is to check that Eu and Ev, which are suitable Leray weak solutions, are

weighted Leray weak solutions, for the weight w.x/ D .1C jxj/�2. This means that we
must check that Ev (and Eu) fulfills the weighted Leray energy inequality. We consider a
non-negative function � 2 D.R3/ equal to 1 on a neighborhood of 0 and 0 for jxj � 1,
and a function ˛ smooth on R such that 0 � ˛ � 1, with ˛.t/ equal to 0 on .1; 0/ and 1
on .1;C1/. For 0 < t0 < t1 < T , R > 0 and 0 < " < min.t1 � t0; T � t1/, we define the
test function

't0;t1;";R.t; x/ D ˛
� t � t0

"

��
1 � ˛

� t � t1
"

�� 1

.1C
p
1=R2 C x2 /2

�
� x
R

�
D ˛t0;t1;".t/ �R.x/;

which is non-negative and supported in Œt0; t1 C "� � B.0;R/. If q is the pressure associ-
ated to the solution Ev, by the suitability of Ev, we have“

't0;t1;";R
�
@t .jEvj

2/C 2j Er ˝ Evj2 ��.jEvj2/C div..2q C jEvj2/Ev/
�
dx dt � 0:
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As, for R � 1, j�Rj � Cw and j Er�Rj � Cw3=2, dominated convergence when R!C1
gives us“ �1

"
˛0
� t � t1

"

�
�
1

"
˛0
� t � t0

"

��
jEvj2w.x/ dxdt C 2

“
˛t0;t1;"j

Er ˝ Evj2w.x/ dxdt

� �2

3X
iD1

“
˛t0;t1;" @iw.Ev � @i Ev/ dx dt C

“
˛t0;t1;".jEvj

2
C 2q/Ev � Erw dx dt:

If " goes to 0, we get

lim sup
"!0

Z �1
"
˛0
�s � t1

"

�
�
1

"
˛0
�s � t0

"

��� Z
jEv.s; x/j2w.x/ dx

�
ds

C 2

Z t1

t0

Z
j Er ˝ Evj2w.x/ dx ds

� �2

3X
iD1

Z t1

t0

Z
@iw.Ev � @i Ev/ dx ds C

Z t1

t0

Z
.jEvj2 C 2q/Ev � Erw dx ds:

For almost every t0, t1, we have that t0 and t1 are Lebesgue points of the map

s 7!

Z
jEv.s; x/j2w.x/ dx;

so that

lim
"!0

Z �1
"
˛0
�s � t1

"

�
�
1

"
˛0
�s � t0

"

��� Z
jEv.s; x/j2w.x/ dx

�
ds

D

Z
jEv.t1; x/j

2w.x/ dx �

Z
jEv.t0; x/j

2w.x/ dx:

If t0 goes to 0 and t1 goes to t , we have

kEv.t0; �/ � Eu0kL2.w dx/ � kEv.t0; �/ � Eu0k2 ! 0;

so that
lim
t0!0

Z
jEv.t0; x/j

2w.x/ dx D

Z
jEu0.x/j

2w.x/ dx;

while Ev.t1; �/ is weakly convergent to Ev.t; �/, so thatZ
jEv.t; x/j2w.x/ dx � lim inf

t1!t

Z
jEv.t1; x/j

2w.x/ dx:

Thus, we get the weighted Leray energy inequality.
By Theorem 5.2, we then know that there exists T0 > 0, C � 0 and � > 0 such that,

for 0 � t � T0,
kEu.t; �/ � Ev.t; �/kL2.w dx/ � Ct

�:

Moreover, we can do the same computations as in the proof of Theorem 5.2 in order to
estimate @t .Eu � Ev/ (since Eu is smooth) and write, if p is the pressure associated to Eu and q
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the pressure associated to Ev,

@t .Eu � Ev/ D Eu ��Ev C Ev ��Eu � Eu � ..Eu � Ev/ � Er.Eu � Ev//

� div
�
q EuC pEv C

jEuj2

2
.EuC Ev/C .Eu � .Ev � Eu//Eu

�
:

As Eu 2 L2.."; T /; L1/ for every " > 0, this can be integrated on ."; t/ � R3 against the
measure w.x/ dx ds and givesZ

Eu.t; x/ � Ev.t; x/w.x/ dx �

Z
Eu."; x/ � Ev."; x//w.x/ dx

D �

Z t

"

Z 3X
iD1

@iw.Eu � @i Ev C Ev � @i Eu/ dx ds

� 2

Z t

"

Z
. Er ˝ Eu � Er ˝ Ev/w.x/ dx ds

�

Z t

"

Z
Eu � ..Eu � Ev/ � Er.Eu � Ev//w.x/ dx ds

C

Z t

"

Z
pEv � Erw C q Eu � Erw dx ds

C

Z t

"

Z
jEuj2

2
.Ev � Eu/ � Erw C .Ev � Eu/Eu � Erw.x/ dx ds:

As Eu."; �/ and Ev."; �/ are strongly convergent to Eu0 in L2.w dx/, we findZ
Eu.t; x/ � Ev.t; x/w.x/ dx �

Z
Eu0 � Eu0w.x/ dx

D �

Z t

0

Z 3X
iD1

@iw.Eu � @i Ev C Ev � @i Eu/ dx ds

� 2

Z t

0

Z
. Er ˝ Eu � Er ˝ Ev/w dx ds

� lim
"!0

Z t

"

Z
Eu � ..Eu � Ev/ � Er.Eu � Ev//w dx ds

C

Z t

0

Z
pEv � Erw C q Eu � Erw dx ds

C

Z t

0

Z
jEuj2

2
.Ev � Eu/ � Erw C .Ev � Eu/Eu � Erw dx ds:

We have

lim
"!0

Z t

"

Z
Eu � ..Eu � Ev/ � Er.Eu � Ev//w dx ds

D

Z t

0

Z
s� Eu � s��..Eu � Ev/ � Er.Eu � Ev//w dx ds;

as s� Eu 2 L2L1, s��.Eu � Ev/ 2 L1.L2.w dx// and Er ˝ .Eu � Ev/ 2 L2.L2.w dx//.
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Using now the weighted Leray inequalities on Ev and on Eu, we getZ
jEv.t; x/ � Eu.t; x/j2w.x/ dx C 2

Z t

0

Z
j Er ˝ .Ev � Eu/j2w dx ds

� �2

3X
iD1

Z t

0

Z
@iw.Ev � Eu/ � @i .Ev � Eu/ dx ds

C 2

Z t

0

Z
.q � p/.Ev � Eu/ � Erw dx ds � 2

Z t

0

Z
Eu � ..Eu � Ev/ � Er.Eu � Ev//w dx ds

C

Z t

0

Z
jEv � Euj2 Eu � Erw C .jEuj2 � jEvj2/.Eu � Ev/ � Erw dx ds;

and thus Z
jEv.t; x/ � Eu.t; x/j2w.x/ dx C 2

Z t

0

Z
j Er ˝ .Ev � Eu/j2w dx ds

� C

Z t

0

k
p
w.Eu � Ev/k2k

p
w Er.Eu � Ev/k2 ds

C C

Z t

0

k.p � q/wkL6=5k
p
w.Ev � Eu/k6 ds

C C

Z t

0

kEuk1k
p
w.Eu � Ev/k2k

p
w Er ˝ .Eu � Ev/k2 ds

C C

Z t

0

k
p
w.Eu � Ev/k23.k

p
w Euk3 C k

p
w Evk3/ ds:

At this point, we get

k
p
w.Eu.t; �/ � Ev.t; �//k22 C 2

Z t

0

Z
k
p
w Er ˝ .Ev � Eu/k22 ds

�

Z t

0

k
p
w Er ˝ .Ev � Eu/k22 ds

C C

Z t

0

k
p
w.Eu � Ev/k22.1C k

p
w Euk23 C k

p
w Evk23 C kEuk

2
1/ ds:

Let
A.t/ D t�2�k

p
w.Eu.t; �/ � Ev.t; �//k22

and
B.t/ D 1C k

p
w Euk23 C k

p
w Evk23:

We have

A.t/ � C

Z t

0

A.s/B.s/ ds C Ct�2�
Z t

0

A.s/s2� kEuk21 ds:

Thus, for 0 < t < � < T ,

A.t/ � C sup
0<s<�

A.s/
� Z �

0

B.s/ ds C
1

2�
sup
0<s<�

skEu.s; �/k21

�
:
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For � small enough, we have

C
� Z �

0

B.s/ ds C
1

2�
sup
0<s<�

skEu.s; �/k21

�
< 1;

and thus sup0<t<� A.t/ D 0. We conclude that Eu D Ev on Œ0; ��. Since Eu is bounded on
Œ�; T �, the uniqueness is easily extended to the whole interval Œ0; T �.

7. Further comments on Barker’s conjecture

In his paper [1], Barker raised the following question.

Question 7.1. If Eu0 belongs to L2 \ bmo�10 , does there exists a positive time T such
that every weak Leray solution of the Cauchy problem for the Navier–Stokes equations
with Eu0 as initial value coincide with the mild solution in XT ?

This can be seen as the endpoint case of the Prodi–Serrin weak-strong uniqueness
criterion, as the assumption of Prodi–Serrin’s criterion, i.e., existence of a solution Eu such
that

Eu 2 L
p
t L

q
x ; with

2

p
C
3

q
� 1 and 2 � p � C1;

is equivalent, if 2 < p <C1, to the fact that Eu0 belongs to B�1C3=qq;p � bmo�10 . Existence
of a mild solution when Eu0 belongs toB�1C3=qq;p goes back to the paper of Fabes, Jones and
Rivière [10]. Existence of mild solutions has been extended by Cannone [5] to the case of
B
�1C3=q
q;1 \ bmo�10 , and Koch and Tataru’s theorem [14] can be seen as the endpoint case

of the theory for existence of mild solutions.
Barker [1] extended weak-strong uniqueness to the case B�1C3=qq;1 \ bmo�10 , and he

could even relax the regularity exponent and consider the caseB�sq;1 \ bmo�10 , s < 1�2=q.
We have shown that the integrability could even be relaxed into B

�1C3=q

Lq..1Cjxj/�N dx/;1
\

bmo�10 with N � 0 and s < 1 � 2=q. But under the sole assumption Eu0 2 L2 \ bmo�10 ,
weak-strong uniqueness remains an open question.

An alternative way to study the problem is to impose restrictions on the class of solu-
tions, beyond the Leray energy inequality or the local Leray energy inequality. One may
for instance consider an approximation process that provides weak Leray solutions when
Eu0 2 L

2 and consider whether the solutions provided by this process coincide with the
mild solution when, moreover, Eu0 2 bmo�10 . There are many processes that pave the way to
Leray solutions (and in most cases to suitable weak Leray solutions); in [19], we described
fourteen different processes (including ˛-models, frequency cut-off, damping, artificial
viscosity, hyperviscosity, etc.).

The scheme is always the same. One approximates the Navier–Stokes equations (NS)
by equations (NS˛) depending on a small parameter ˛ 2 .0; 1/. Equations (NS˛) with ini-
tial value Eu0 2 L2 have a unique solution Eu˛ . One then establishes an energy (in)equality
that allows to control Eu˛ uniformly on L1..0; T /; L2/ \ L2..0; T /;H 1/. Moreover, one
proves that @t Eu˛ is controlled uniformly in L6=5..0; T /;H�3/. By the Aubin–Lions theo-
rem, there exists a sequence ˛k! 0 such that Eu˛k is weakly convergent inL2..0;T /;H 1/
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and strongly convergent in .L2..0; T / � R3//loc to a limit Ev. One then checks that Ev is a
weak Leray solution of the Navier–Stokes equations with initial value Eu0.

Some of those processes behave well for initial values Eu0 2 bmo�10 , others do not
seem to be well adapted to such initial values. More precisely, if one can prove that, when
Eu0 belongs to L2 \ bmo�10 , there exists a time T0 such that the solutions Eu˛ remain small
inXT0 (ket� Eu0kXT0 <�<

1
4C0

and sup˛2.0;1/kEu˛kXT0 � 2��
1
2C0

), then the weak limit Ev
will still remain controlled in XT0 . But there is only one weak solution Eu in XT0 such that
kEukXT0 �

1
2C0

. Thus, the process cannot create a Leray solution that would escape the
weak–strong uniqueness.

Such processes can be found in processes that mimick Leray’s mollification. Mollifi-
cation has been introduced by Leray [21] in his seminal paper on weak solutions for the
Navier–Stokes equations. The approximated problem he considered is to solve

@t Eu˛ C .'˛ � Eu˛/: Er Eu˛ D �Eu˛ � Erp˛;

with div Eu˛ D 0 and Eu˛.0; �/D Eu0. Here, ' 2D , ' � 0,
R
' dx D 1 and '˛.x/D 1

˛3
'.x
˛
/.

Solving the mollified problem amounts to solving the integro-differential problem

Ev D et� Eu0 � B.'˛ � Ev; Ev/.t; x/;

where

B.Ev; Ew/ D

Z t

0

e.t�s/� P div.Ev ˝ Ew/ ds:

Since g'˛ � Ev.t; �/k1 � kEv.t; �/k1 and� Z t

0

Z
B.x0;

p
t/

j'˛ � Ev.s; �/.y/j
2 dy ds

�1=2
D

� Z t

0

Z
B.x0;

p
t/

ˇ̌̌ Z
'˛.z/ Ev.s; y � z/ dz

ˇ̌̌2
dy ds

�1=2
�

� Z t

0

Z
B.x0;

p
t/

Z
'˛.z/ jEv.s; y � z/j

2 dz dy ds
�1=2

D

� Z
'˛.z/

� Z t

0

Z
B.x0Cz;

p
t/

jEv.s; y/j2 dy ds
�
dz
�1=2

;

we find that k'˛ � EvkXT � kEvkXT . Thus, the theorem of Koch and Tataru (Theorem 1.2
and Corollary 1.3) still applies:

• For every ˛ > 0 and every T > 0, we have

kB.'˛ Ev; Ew/kXT � C0kEvkXT k EwkXT :

• If ket� Eu0kXT <
1
4C0

, then the mollified Navier–Stokes equations have a solution on
.0; T / such that kEu˛kXT � 2ke

t� Eu0kXT .
Now, we may consider various other approximations of the Navier–Stokes equations

of the form

(7.1) Ev D et� Eu0 �

NX
iD1

'i;˛ � Bi . i;˛ � Ev; �i;˛ � Ev/.t; x/;
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where
• 'i ,  i , �i are either the Dirac mass or functions in L1,
• f˛.x/ D

1
˛3
f .x

˛
/ for f 2 ¹'i ;  i ; �i ; i D 1; : : : ; N º,

• Bi .Ev; Ew/ D
R t
0
e.t�s/��i .D/.Ev ˝ Ew/ds, where �i is given convolutions with smooth

Fourier multipliers homogeneous of degree 1, that is, if Ez D �i .D/.Ev ˝ Ew/, then
zk D

P
p;q�3Ki;k;p;q � .vpwq/, where the Fourier transform ofKi;k;p;q is and homo-

geneous of degree 1 and is smooth on R3.
The proof of the Koch and Tataru theorem asserts that operators of the form B.Ev; Ew/ DR t
0
e.t�s/��.D/.Ev ˝ Ew/ ds are bounded on XT .
Writing kık1 D 1, we have



 NX

iD1

'i;˛ � B. i;˛ � Ev; �i;˛ � Ev/.t; x/






XT

�

� NX
iD1

kBikopk'ik1k ik1k�ik1

�
kEvkXT k EwkXT D C1kEvkXT k EwkXT

If ket� Eu0kXT <
1
4C1

, then the modified equations (7.1) have a solution on .0;T / such that
kEu˛kXT � 2ke

t� Eu0kXT .
Note that the equations (7.1) can be written as well as

@t Ev D �Ev �

NX
iD1

'i;˛ � �i .D/.. i;˛ � Ev/˝ .�i;˛ � Ev//

with initial value Ev.0; �/ D Eu0. Among example of such approximations, we have the
various ˛-models studied by Holm and Titi:

The Leray-˛ model. The Leray-˛ model has been discussed in 2005 by Cheskidov,
Holm, Olson and Titi [8]. The approximated problem is to solve

@t Eu˛ C ..Id�˛2�/�1 Eu˛/ � Er Eu˛ D �Eu˛ � Erp˛;

with div Eu˛ D 0 and Eu˛.0; �/ D Eu0. This is equivalent to write

@t Eu˛ D �Eu˛ � P div...Id�˛2�/�1 Eu˛/˝ Eu˛/:

The Navier–Stokes-˛model. The mathematical study of the Navier–Stokes-˛ model has
been done by Foias, Holm and Titi in 2002, see [13]. The approximated problem is to solve

@t Eu˛ C ..Id�˛2�/�1 Eu˛/ � Er Eu˛ D �Eu˛ �
3X
kD1

u˛;k Er.Id�˛2�/�1u˛;k � Erp˛;

with div Eu˛ D 0 and Eu˛.0; �/ D Eu0. We can rewrite the equation as

@t Eu˛C..Id�˛2�/�1 Eu˛/ � Er Eu˛

D �Eu˛�

3X
kD1

.˛2�.Id�˛2�/�1u˛;k/ Er.Id�˛2�/�1u˛;k� Er
�
p˛C

j.Id�˛2�/�1 Eu˛j2

2

�
:
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This is equivalent to write

@t Eu˛ D �Eu˛ � P div...Id�˛2�/�1 Eu˛/˝ Eu˛/

�

3X
jD1

3X
kD1

P@j ..˛@j .Id�˛2�/�1u˛;k/.˛ Er.Id�˛2�/�1u˛;k//:

The Clark-˛ model. The Clark-˛ model has been discussed in 2005 by Cao, Holm and
Titi [6]. The approximated problem is to solve

@t Eu˛ C .Id�˛2�/�1 Eu˛ � Er Eu˛ D �Eu˛ C ..Id�˛2�/�1 Eu˛ � Eu˛/ � Er.Id�˛2�/�1 Eu˛

C ˛2
3X
kD1

.@k.Id�˛2�/�1 Eu˛/ � Er.@k.Id�˛2�/�1 Eu˛/ � Erp˛;

with div Eu˛ D 0 and Eu˛.0; �/ D Eu0. We can rewrite the equation as

@t Eu˛ C ..Id�˛2�/�1 Eu˛/ � Er Eu˛

D �Eu˛ C

3X
kD1

˛2@k
�
.@k.Id�˛2�/�1 Eu˛/ � Er.Id�˛2�/�1 Eu˛

�
� Er � p˛:

This is equivalent to write

@t Eu˛ D �Eu˛ � P div...Id�˛2�/�1 Eu˛/˝ Eu˛/

�

3X
kD1

P@j
�
.˛@k.Id�˛2�/�1 Eu˛/ � .˛ Er.Id�˛2�/�1 Eu˛/

�
:

The simplified Bardinal model. The simplified Bardina model is another ˛-model stud-
ied by Cao, Lunasin and Titi in 2006, see [7]. This model is given by

@t Eu˛ C ..Id�˛2�/�1 Eu˛/ � Er ..Id�˛2�/�1 Eu˛/ D �Eu˛ � Erp˛;

where we have again div Eu˛ D 0 and Eu˛.0; �/ D Eu0. This is equivalent to write

@t Eu˛ D �Eu˛ � P div
�
..Id�˛2�/�1 Eu˛/˝ ..Id�˛2�/�1 Eu˛/

�
:

Thus, when Eu0 2 bmo�10 , all those ˛-models give back the mild solution Eu 2 XT
when ˛ goes to 0.

A. Comments on the weights wN .x/ D .1C jxj/�N

In this paper, we considered a suitable weak Leray solution Eu associated to an initial data
Eu0 2 L

2 \ bmo�10 . This solution satisfies on a small time interval .0; T0/ that Eu 2 L1L2

and that sup0<t<T
p
t kEu.t; �/k1 < C1. In particular, for 2 < q < C1,

(A.1) sup
0<t<T

t1=2�1=qkEu.t; �/kq D sup
0<t<T

t1=2�1=qkEu.t; �/kLq.W0 dx/ < C1:
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In Theorem 1.8, the assumption on the solution Eu is

(A.2) sup
0<t<T

t s=2kEukLq..1Cjxj/�N dx/ D sup
0<t<T

t s=2kEukLq.wN dx/ < C1;

with
N � 0; 2 < q < C1 and 0 � s < 1 �

2

q
�

This means that we ask a little more integrability in time but relax a lot integrability in
space, as N may be as large as we want (in particular, in order to include Morrey spaces).

However, in order to deal with tools of harmonic analysis, we need to consider N not
too large. This is fixed by interpolating between (A.1) and (A.2). If 0 � ˛ � 1, we find
that

sup
0<t<T

.
p
t /.1�˛/.1�2=q/C˛s kEukLq..1Cjxj/�˛N dx/ D sup

0<t<T

t s˛=2 kEukLq.wN˛ dx/ < C1:

We still have s˛ < 1 � 2=q, but (taking small values of ˛) we may have N˛ as small as
we want. In particular, for N˛ < 4=q, we may apply Corollary 3.3.

Thus, Eu0 belongs to an interpolate of L2.w2 dx/ with a Besov space B�ı1;1 with
ı < 1. Moreover, since Eu and Ev belong to L1L2 � L1L2.w2 dx/, the end of the proof
is done by energy estimates in L2.w2 dx/. Thus, the proof deals with a lot of change in
the weights.
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