Rev. Mat. Iberoam. 38 (2022), no. 7, 2217-2248
DOI 10.4171/RMI/1386

©2022 Real Sociedad Matemética Espaiiola
Published by EMS Press and licensed under a CC BY 4.0 license

A remark on weak-strong uniqueness for suitable weak
solutions of the Navier—Stokes equations

Pierre Gilles Lemarié-Rieusset

Abstract. We extend Barker’s weak-strong uniqueness results for the Navier—Stokes
equations and consider a criterion involving Besov spaces and weighted Lebesgue
spaces.

Since my first paper in the Revista in 1986, I always enjoyed being published in this
Jjournal which performs a wonderful job. I enjoyed as well reading in the Revista such
a nice collection of papers written by a nice (harmonious) community of (harmonic)
analysts. So many thanks to Antonio and to Josechu!

1. The Prodi-Serrin criterion for weak-strong uniqueness

In this paper, we are interested in extensions of the Prodi—Serrin weak-strong uniqueness
for (suitable) weak Leray solutions of the Navier—Stokes equations. We consider solutions
of the Navier—Stokes equations

3ii + 1 - Vii = Aii — Vp,
divii =0,
u(0,-) = o,

where 11 is a square-integrable divergence-free vector field on the space R3.
Looking for weak solutions, where the derivatives are taken in the sense of distribu-
tions, it is better to write the first line of the system as

3.1 + div (i ® 11) = Al — V p.

If # is a solution on (0, T) x R3 such that u € L>((0, T'), L?), then the pressure p can
be eliminated through the formula

div(ii ® il) + Vp = P(div(ii ® ii)),
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where PP is the Leray projection operator on solenoidal vector fields:
- l - = =
]P’fz—ZVA(VAf).

Moreover, il can be represented as a distribution which depends continuously on the time ¢
(see [19]) as

t
i =i +/ Adi — P(div (ii ® 1)) ds.
0

Leray [21] proved the existence of solutions # on (0, +-00) x R3 such that:
s iel®L2NL2H],
e lim,_, o+ ||ﬁ(l, ) — ﬁ()”g =0,

* we have the Leray energy inequality
4 -
(11) )13 +2 [ 19 @ il ds < ol
0

Such solutions are called Leray solutions." His proof is based on a compactness criterion;
and provides no clue on the uniqueness of the solution to the Cauchy initial value problem.

A classical case of uniqueness of Leray weak solutions is the weak-strong unique-
ness criterion described by Prodi and Serrin [22,23]: If o € L? and the Navier—Stokes
equations have a solution i on (0, T') such that

- 2 3
ueLf’Lfc, with — + — <1 and 2 < p < +00,
P q

then, if ¥ is a Leray solution with the same initial value g, we have # = ¥ on (0, T).
Let us remark that the existence of such a solution  restricts the range of the initial
value #g. As a matter of fact, when 2 < p < +o00, existence of a time T > 0 and of a
solution ii € L? L% is equivalent to the fact that iio belongs to the Besov space B; 3 7 (see
Theorem 2.7 below).

We will see that a corollary of Barker’s theorem [1] shows the following extension of
the criterion: If 11y € L? and the Navier—Stokes equations have a solution 1 on (0, T') such
that

Upi= .2 3
sup /Py < +oo, with—4+ —<1land2 < p < +o0,
0<t<T P g

and s 3

lim (Y2 ifl, =0 if =+ =<1,

t—0 p q
then, if ¥ is a Leray solution with the same initial value ii¢, we have # = v on (0, T). Let
us remark again that the existence of such a time 7 and such a solution # is equivalent
to the fact that 1o belongs to the Besov space B, §</,P N bmoal (see Definition 1.4 and
Theorem 2.8 below).

The space bmo™! was introduced in 2001 by Koch and Tataru [14] for the study of

mild solutions to the Navier—Stokes problem. Let us recall the characterization of bmo ™!

through the heat kernel [14, 15].

Note that the continuity at f = 0 of ¢ > #(t,-) in L2 norm is a consequence of the Leray inequality (1.1).
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Proposition 1.1. For 0 < T < oo, define

. . _ t . 1/2
liley = swp VEla ol + s (72 [ fispPdyas)”
0<t<T 0<tTR73" 0 JB(x0,/1)
X0€

Then iy € bmo™! if and only if (e'®1ig)o<i<T € X1 (With equivalence of the norms
It o1 and lle* % diollx)-

Recall that the differential Cauchy problem for Navier—Stokes equations reads as
d4ii 4+ 1 - Vii = Ali — Vp,
divi =0,
u(0,+) = Uo.
Under reasonable assumptions, the problem is equivalent to the following integro-
differential problem:
i =e"®iig— B, i)(t, x),

where
t
(1.2) B(ii,7) = [ eIAP div(ii ® ¥) ds,
0

and P is the Leray projection operator (see [15, 19] for details).

Theorem 1.2 (Koch and Tataru’s theorem). There exists Co (which does not depend on T)
such that if i and v are defined on (0, T) x R3, then

I1BGi, ¥)lx; < Colltillxr 1V]lx7-

1

Corollary 1.3. Let iy € bmo™ ' with diviig = 0. If [ ®iiollx, < 3¢, then the integral

Navier—Stokes equations have a solution on (0, T) such that ||ii||x, < 2||e"®tio||x,. This

is the unique solution such that ||il||x, < ﬁ

The solution # can be computed through Picard iteration as the limit of l}n, where

Up = ¢'®iip and (7n+1 = ey — B(l}n, (7"). In particular, we have, by induction,

1Un+1 = Unlixy < (4Colle"® tiollx, )"l tholxy-

Thus, Corollary 1.3 grants local existence of a solution for the Navier—Stokes equations
when the initial value belongs to the space bmoo_l.

Definition 1.4. iig € bmoy' if % € bmo ™! and limg_o|le?® tig||x, = 0.

Theorem 1.5 (Barker’s theorem, [1]). Let iy € L? be a divergence-free vector field.
Assume, moreover,

R _ _ 2
uoebmoolﬂquoo, with3 < g < +oocands < 1— —,
’ q

and let 1 be the mild solution of the Navier-Stokes equations with initial value o such
that |i||x, < 2—&) If U is a weak Leray solution of the Navier—Stokes equations with the
same initial value g, thenu = v on (0, T).
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Again, we remark thatif 0 <s < 1—2/¢,ug € bmoa1 and # is the mild solution with
ldllx, < ﬁ, then iig € B, is equivalent to

s/2

sup 18|z, ) |lqg < +o0.

0<t<T
In the following theorems, we shall state the assumptions in terms of the mild solution #
instead of the initial value iig. In Theorem 2.4, we shall give the equivalence between the
assumption on the solution # and the assumption on the initial value 1.

We aim to generalize Barker’s result to a larger class of mild solutions. Barker’s result
is based on an interpolation lemma which states that, if iig € bmog1 NnL2N B(; 5. with
3<g<+ooand —s > —1+2/q,theniig € [L?, Bgofoo]g,oo for some 6 € (0, 1) and some
8 € (0, 1). (Those conditions are in a way equivalent, as we shall see in Corollary 3.3.)
Then the comparison between the Leray solution v and the mild solution # is performed
through an estimation of both ||1i — W,||» and || — W,||2, where w, is the solution of
the Navier—Stokes problem with initial value g ¢ such that || — tig|l2 < C1e? and
[l ps < C16%~1 (with C; depending on iig but not on €).

Our idea is to replace the space L? by the larger space L2, = L*(w dx) with w(x) =
(14 |x|)~2, and use the interpolation space [L2, Bo_oé:oo]g,oo for some 0 € (0, 1) and some
8 € (0,1). As we shall no longer deal with the L2 norm, the Leray inequality on |||, will
not be sufficient. Instead, we shall consider a stricter class of weak solutions, namely, the
suitable weak Leray solutions [3].

Definition 1.6. A Leray solution is suitable on (0, 7') if it fulfills the local energy inequal-
ity: there exists a non-negative locally finite measure 1 on (0, 7) x R3 such that we have

(1.3) 3, ([i]?) + 2|V @i = A(ii[?) — div(2p + |ii|?)ii) — p.

‘We may now state our main results. The first one (stated in [20]) weakens the integra-
bility requirement on the solution # from the Lebesgue space L4 to the Morrey space M4,
Recall that the Morrey space M7, 1 < p < g < 400, is defined by

1/p
| fllazpe = sup sup r3/q73/”([ |f ()P dx) < 400.
B(xo,7)

X0 eR3 0<r<l1

p

For p = 1, one replaces the requirement f € L

finite Borel measure v with

by the assumption that f is a locally

If e = sup sup 3472 / dIpl(x) < +o0.
B(xo,r)

xo€R3 0<r=<1
For 1 < p < 400, we have the continuous embeddings
19 c M?9 c MP1 ML

The idea of considering Morrey spaces instead of Lebesgue spaces is quite natural. Indeed,
in the direct proof of the Prodi—Serrin criterion, a key estimate is the inequality

S 160 1110 (1T
/Iuvl IVwldx < Cllullgllvlz™ Vvl [Vwla
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for 0 <6 < 1 and 1/¢g = 6/3. This inequality still holds when the L7 norm is replaced
by the norm in the homogeneous Morrey space M4 with 0 < 6 < 1 and 1/g = 6/3,
see [16].

Theorem 1.7. Let iig be a divergence-free vector field with tig € L% N bmoo_l. Assume
moreover that the mild solution U of the Navier-Stokes equations with initial value i
such that ||ul|x, < ﬁ is such that

. 2
sup ts/2||u(t,-)||M,,,q <400, with2<p<g<+ooandd<s<1——-
0<t<T p

If ¥ is a suitable weak Leray solution of the Navier—Stokes equations with the same initial
value g, then i = v on (0, T).

Let us remark that the statement and proof of Theorem 1.7 we gave in [20] was false
(we assumed only that s < 1 —2/g).”

The second one weakens the integrability requirement on the solution % from the
Lebesgue space L9 to the weighted Lebesgue space L4 ((1 + |x|)™ dx) for some N > 0.

Theorem 1.8. Let 1ig be a divergence-free vector field with g € L? N bmoal. Assume
moreover that the mild solution i of the Navier-Stokes equations with initial value 1
such that ||u|x, < ﬁ is such that

. 2
sup ts/2||u||Lq((1+|xD7Ndx) <400, withN >0,2<g<4oc0oand0<s<1——-
0<t<T q
If ¥ is a suitable weak Leray solution of the Navier—Stokes equations with the same initial
value g, then i = v on (0, T).

Of course, Theorem 1.7 is a corollary of Theorem 1.8, as M 74  L?((1 + |x|)~N dx)
for N >3 —3p/q.

The paper is then organized in the following manner. In Section 2, we define stable
spaces and collect some technical results on generalized Besov spaces based on stable
spaces. In Section 3, we define potential spaces based on stable spaces and prove some
interpolation estimates. In Section 4, we give some remarks on the Koch and Tataru solu-
tions for the Navier—Stokes problem. In Section 5, we study stability estimates for suitable
weak Leray solutions with initial data in L2 N [L2((1 + |x|)2dx), B;o‘g’oo]ggoo (see The-
orem 5.2). In Section 6, we prove the uniqueness theorem (Theorem 1.8). In Section 7, we
give some further comments on Barker’s conjecture on the uniqueness problem.

2. Stable spaces and Besov spaces

We define the convolutor space K by the following convention:

* a suitable kernel is a function K € L'(R3) such that K is radial and radially non-
increasing (in particular, K is non-negative); this is noted as K € Ko;

>The mistake was due to an incorrect equality p = 7y, while it should have been y = 7p; as < 1, the
equality turned to be incorrect.
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+ fisaconvolutorif f € L! and there exists K € K such that | /| < K almost every-
where;

¢ the norm of f in K is defined as
Ifllxk = inf{|[Kly | K € Koand |f]| < K ae.]}.

One easily checks that ||-||k is a norm and that (K, ||-||x) is a Banach space.

Definition 2.1. A stable space of measurable functions on R is a Banach space E such
that

« ECL;.(R?,

e if feEandge L™, fge Eand | fglle <C| fllgllglloo (Where C does not depend
on f nor g),

eif feFandgekK, fxge Eand | f xglle <C|flellglk (where C does not

depend on f nor g).

Examples of stable spaces:
(a) E=LP,1<p<+o0.
(b) E = LP(wdx), where w belongs to the Muckenhoupt class 4, for some 1 < p <
+o00. If g € Ky, then
|/ *g()] = llglli My (x),

where M is the Hardy-Littlewood maximal function of f'; recall that the Hardy—
Littlewood maximal function is a bounded sublinear operator on L?(w dx) when
w € A, see [25].

) E=L"

iloc Tor some 1 < p < +o00, where

g, = s ([ dreoras)™.

uloc
xp€R3

By Minkowski’s inequality, we have

If*glle < /Ig(y)lllf(-—y)lly’ dy = llglhllfllzz_ -

uloc uloc

(d) This example can be generalized to other shift-invariant spaces (for which the norms
|/ g and || f(- — ¥)| g are equal). For instance, we may take E as the Morrey
space MP4,1 < p < g < +o0.

Our next step is to introduce Besov-like Banach spaces based on stable spaces and to
describe the regularity of Koch—Tataru solutions when the initial value belongs addition-
ally to the Besov space.

Definition 2.2. Let T € (0, +00). Let E be a stable space of measurable functions on R3.
Fors > 0and 1 < g < 400, we define the Besov-like Banach space Bl_,:sq as the space of
tempered distributions such that

512 e fllg € LI((0,T), dt /1).
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Proposition 2.3. The norms ||t*/2||e'® £ || || La(0.T), dt /1) are all equivalent, so that Bg*,
does not depend on T .

Proof. Assume that /2 ||e'® f| g € L9((0,T),dt/t) for some T > 0 and consider t > T.

We have
2 T
etAf — T /’;/ e(t—e)AeeAf d@,
2

so that
2 T
e fle <€ [ e fle as
T/2

2 oA -
< C =021 FE | yacor.as/6) 117720 0" Lara-v0,7), a0r0)-
The equivalence of the norms is proved. ]

We remark that this proof shows as well thatif 1 < ¢ <r < +oo, then Bz, C Bz’
Another obvious property of Besov spaces is thatif 0 < s < o, then B® | C BE"I
The main result in this section is the following theorem.

Theorem 2.4. Let E be a stable space of measurable functions on R3. Let 0 < T < 400,
and let tig € bmo™!, with diviig = 0 and |e'® tio||x, < 1 . Let ii be the solution of the

integral Navier-Stokes equations on (0, T') such that ||u|| XT < 2C Then the following
assertions are equivalent for 0 < o0 < land?2 < g < +o00:

(A) iip € B5?,
(B) t°/2|jii||g € L1((0,T),dt/t).
Proof. Let us remark that the operator ¢=)2 P div is a matrix of convolution opera-

tors whose kernels are bounded by C(+/t —s + |x — y|)™*, hence are controlled in the
convolutor norm || ||g by C ﬁ We thus have the inequality

¢
1
BGi.§ <C - Tl d
|| (M U)HE = o m”u®v”E §
C’ su u(s, v(s, ds
<SI<>t~/_||( )”oo[ «/_«/_”( e

(and we get a similar estimate by interchanging # and ¥ in the last line). We thus want to
estimate
1

J) =t 1/q+0'/2/
(t) Nerih
e If ¢ = 400, we easily check that || J ||eoc < Co||L|lco (since o < 1).
« If o <2/q, we have s1/479/2 < (1/4-0/2 o that J(1) < [0 ﬂ [L(s) ds. If2 <

g < 400, as 1/./s belongs to the Lorentz space L2°°, we use the product laws and
convolution laws in Lorentz spaces to get that, if L € L9, i L e L™ with 1/r =

1/g +1/2and - L) e L9 = L4. Thus, |J ||, < C||L||q

s1/479/2 [ (s)ds, with L € L1((0,T),dr).

*(f
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e If o > 2/q, we write

t (i _ —1/q+c/2
(t—s)'4 [y
Jo<c( | Y22 Vaol2p g4
® = (/(.) Vt—s ﬁs (s) ds

t 1 gla+o/2
+
0 VI—S NG

and we use again the product laws and convolution laws in Lorentz spaces to get,
: 1 4 ith 1 1+ 1 1

if L € Lq, that mL e L4 with ;= TJ and S(=0)/2+1/q % (s(1+o)/2—l/q L) (S
L?9 = L9. We find again || J |4 < C||L|l4-

We may now easily check that (B) = (A): we just write /2 1ig = 1 + B(ii, 1) and

sl/q_“/zL(s) ds),

[¢772 1B, W) | & HL‘J((O,T),dt/t) =C OE‘ZJET Vil ) lloo HIO/ZHﬁ”E”Lq((O,T),dt/t)'

A

In order to prove (A) = (B), we write i as the limit of Uy, where Uy = ¢'2iiy and

Ups1 = e'Biig — B(Uy, Uy). By induction, U, satisfies

||t < 400

12 {7
‘ ||Un||E||Lq((0,T),dt/t)

and

[¢72 1041 = Unll || oo,y auyy < € b VillUn = Un-i oo

x (”ta/z”(}n”E ”Lq((O,T),dt/t) + “’0/2”6"—1”19 “L‘I((O,T),dt/t))’
If
N—1
AN = ”’0/2 ||(70||E ”Lq((O,T),dt/t) + Z ”’0/2 ”0"+1 - U"HE ||L4((0,T),dt/t)
n=0

and ¢ = 4C0||(70||XT, we have

S
e ||UN||EHLq((o,T),dt/z) < AN
and
N+1 .
A1 S Ay(1+2CN T < 49 [T (1 +2C8).
j=1
This proves that ||9/2|ii|| lLa(0,1),dt/e)< +00. L]

Let us remark that the assumption iy € bmo~! can be dropped in some cases, as
for example the solutions # in the Serrin class L2((0,T), L") with 2/q + 3/r < 1 and
3 < r < +oo. In analogy with L", we define r-stable spaces in the following way.

Definition 2.5. For 2 < r < 400, an r-stable space of measurable functions on R3isa
stable space E such that

e FE is contained in B;j,{,g and, for f € E, ||f||B;3é£ <C|fle-
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e F is contained in L2
« If f.g € E, then fg € By, 5 and || fgll, s = Clflelglle-

The Morrey space M2 is a r-stable space; more precisely, it is the largest r-stable
space.

Lemma 2.6. Let E be a r-stable space of measurable functions on R3, where r € (2,+00).
Then E C M?" and | f ||pr2r < C | fllE-

Proof. Let p < 1 and x¢ € R3. We have
o1/4

Sz [ L0 i W0 =g [ e,

B(x0,p) y€B(x0,p

where W;(x) = e~**/(40) On the other hand, we have

1
(4m1)3/2
_ 2 _ 2 _
A () (x0) < Co TP A ()| pagy < C'p7¥ NP A2 (f2) e < C7p "I f 11
This gives
[ sy = o f I,
B(x0,p)
and thus f € M>7. n
Theorem 2.7. Let E be a r-stable space of measurable functions on R3. Let iiy € E with
diviig =0. Let0 < 0 <l and 2 < q < 400, with
2
q
and g < 400 if 0 = 1 —3/r. Then the following assertions are equivalent:

(A) iio € B5Y,

(B) there exist T > 0 and a solution i of the integral Navier-Stokes equations on (0, T)
with initial value iio such that t°/?||ii| g € L1((0,T), dt/1).

so=1I-

N W

(This theorem thus holds for solutions # € L4((0, T'), E) under the Serrin condition
2/q+3/r<1)

Proof. (A) = (B)is adirect consequence of Theorem 2.4 and of the embedding B} M2r,q C
bmo, ! foro < 1—3/r and (0,q) # (1 —3/r,00). Indeed, for 0 < t < 1, we have

t
I8 e = 7 [ 1% F oot
t

2 t
<c2p3en / 169728 £ [[pg2r d6
1 t/2

—1— OA —
= C/[ ! 3/(2r)H90/2||e f”M“ Lq((O,t),de)He 0/2||Lq/(q—1)((,/2,,),d9)

< C//t—1—3/(2r)tl/q HQU/ZHeGAf”MZ:T 1-1/q t—0/2

L9((0,1),d6/6) |
t do\1/q
< C///t—l/2t(l—c—3/r)/2(/ (90/2||€0Af||M2,r)q 7)
0
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and
t
/[ le2 £ dy ds
0 JB(xo,4/7)
t
<c / [ F112,a, 132737 dis
0

3/2-3 201 ,5A 2
=< Clt / /r”SG/ ”es f”MZ” LLI((o,t),ds/sU)”]l”L‘I/Q*Z((O,t),ds/s(’)
< C//t3/2—3/r t(l—J)Z/q ”so/leesAf ||M2,r t(l—a)(1—2/q)

2
L4((0,t),ds/s)
t ds\2/4q
< C//t3/2t1—a—3/r</ (SU/ZHesAf”MZJ)q T) .
0

We now prove (B) = (A). We use again the identity

- 2 (! -
etA g = _/ e(t—s)A esA o ds
t Ji)2

and get
2 [t 2 [t
2y = -/ PO (s, ) ds + -/ @ ARG ) ds = B(t,+) + W(t,-).
t Ji)2 t Ji)2

2tA

uollEllLaco,1),de/0) = ||t<7/2—1/q ||e2’A by

We want to estimate ||7°/2||e
We have

ollEllLa(o,1),d0)-

q 2 (1 L
e oy
2

t/

2 (! S
<cC ;/ 71274 || g ds < 4C Moro-vjayiy, ()
t/2

and thus 192714 5(¢, )| g € L1((0,T), dt).
On the other hand, we have

N
IO )e < sup fe(3’/2")APdive’A/2(ﬁ@ﬁ)df”E
0

t/2<s<t

t
1
sc/ L
0 3t/2—<

t o 41/2—0+1/q

2230 @ )| g dt

=C lle* 21| £ dz

0 (l‘ _ .5)1—0+1/q

t
1
" 1/2—a+1/q—3/(2r) =12

<C"t /0 —(l_t)l_aﬂ/q”u”Edr,

and thus
t
_ - o/ 1 -
g = O [ ar
! 1

= CTV/?2~0/2-3/Cr) / —0+2/q (To/Z—I/q ||ﬂ "E)Z dr.

0 (l‘ _ T)l—o-‘rl/q
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If J(r) = t°/27Y4||ii| i, we have J(t) € L9((0, T), d7), hence J2 € L9/2((0, T) dv),

r7o2/a 52 ¢ [Po:4/2((0, T), dt), with 1/py =2/q + 0 —2/q = o, and T—l—l/q *
(t70F2/aJ2) € LP14/2((0,T), dt), with 1/py = 1/po+1—1/0 +1/g—1=1/q.
Thus, 1972714 e Aiig (1, -)|| g € L9((0,T), dt) and ity € BZY,. "

The case (0,q) = (1 —3/r, +00) can be treated in a similar way.

Theorem 2.8. Let E be a r-stable space of measurable functions on R3 with 3 < r < 4+o0.
Let tig € E with diviig = 0. Then the following assertions are equivalent:

(A) g € BE};B/r and lim; o t1/273/@0) || A iy || g = 0,

(B) there exist T > 0 and a solution u of the integral Navier-Stokes equations on (0, T),
with initial value g, such that supy_, -y tY/>73/@P|ii||g < +o00, and such that
lim— t'/27/ @i g = 0.

Remark. We have the embedding B, 1;3/ " Cbmo! but this does not grant existence
of a solutlon The extra condition lim;_,q ¢1/23/@") ||e ol = 0is used to get ig €
bmo, !, and thus to have the existence of a local solution.

3. Potential spaces and interpolation

If E is a stable space, we define, for s € R, the potential space Hj, as Hy = (Id —A)_S/ 2E,
normed with | f'[| gy = [|(1d —A)*/2 f| . For positive s, we have an obvious comparison
of the potential space H ;* with the Besov spaces.

Lemma 3.1. Let E be a stable space and s > 0. Then
Bg') C Hg® C Bg's.

Proof. Indeed, we have

+
(1d _A)—S/Z — 1 / Oo el !B ys/2 ﬂ
[(s/2) Jo t

If f belongs to BE*|, then 1512)|e'® fllg € L'((0,1),dt/t) while |[e? £, < I flBzs, <
C”f”BEfl’ so that

I/ g <

L ee s 2 v ciet i [t 8y < g
I'(s/2) t/ = E1
Conversely, if f € Hg®, f = (Id—A)S/zg, where g € E, and if 0 < 6 < 1, then we pick
N € N with N > s/2 and write
S = eeA(Id—A)N (Id—A)*>Ng

oo N (+0)A , N-s/2 41 dr
_— (Id-A -
F(N ~5/2) / (d—A)7e 8! ra

For o € N3, with 0 < |a| < 2N, we have

0% D) g < Co(t + )72 gllg < Ca(1 + (£ +0) ™) |gllE,
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so that
+o00 dt
% flle < Cliglle [ e 4@+ 0) )N
0
[4 +o0
dt dt
_ N—s/2 27 -
= Cllele(rv —sy+ [ She [T S0)
< C'liglheb™".
The lemma is proved. ]

Let us recall the definition of Calderén’s interpolation spaces [Ag, A1]g and [Ag, 4:]?,
see [4]. We assume that Ay and A; are subspaces of §’, so that Ag N A7 and Ag + A, are
well defined.

We begin with the definition of the first interpolate [Ag, A1]g. Let 2 be the open
complex strip 2 = {z € C | 0 < Rz < 1}. We let F (Ao, A1) be the space of functions F
defined on the closed complex strip € such that:

 F is continuous and bounded from Q to Ag + A1,

e F is analytic from 2 to Ag + A1,

* t+ F(it) is continuous from R to Ay, and lim;|— 4o || F(it)[l4, = O,

* t+ F(1 +it)is continuous from R to Ay, and limy|— oo || F(1 4 it)|l4, = 0.
Then

f €[Ao, A1]lg < thereexists F € F (Ao, A1) such that f = F(6)

and
I f 40,411, =, inf max(supl| F(it)|l,. supl| F(1 +i)]l4,).
f=F () teR teR

Now, let us recall the definition of the second interpolate [Ao, A1]%. Let 9(Ag. A1) be the
space of functions G defined on the closed complex strip €2 such that:

o ﬁ G is continuous and bounded from € to Ao + A1,

e G is analytic from Q to Ag + A1,

e ¢t G(it) — G(0) is Lipschitz from R to Ay,

e t+> G(1 +it)— G(1) is Lipschitz from R to A;.

Then
f €[Ao. A1]° < thereexists G € §(Ag, A1) such that f = G'(0)
and
I/ g, 4100
. G(ity) — G(ity) G(1+it)—G(1+ity)
= inf max( sup ‘— , ‘ )
f=G6"(6) t1,1€R I —1h Ao t1,1€R hh—1 Ay

Three important properties of those complex interpolation functors are as follows:

¢ The equivalence theorem: if Ay (or A;) is reflexive, then [Ay, A1]9 = [Ayp, A1]p for
0<6 <.
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¢ The duality theorem: if Ag N A7 is dense in Ag and Ay, then ([4o, A1]9)’ = [4},, A’1]9

for0 <6 < 1.

¢ The density theorem: Ay N A is dense in [Ag, A1]g.

An easy classical example of interpolation concerns the Lebesgue spaces L? on a
measured space (X, u): [LP°, LP']g = L?, with 1 < pg < +00, 1 < p1 < 00,0 <
0 <land 1/p = (1—-0)/po+ 6/p:1. Indeed, if f € LP, we write f = Fy, where
Fy(x) = | f(x)|722/pot2p/21 f(x) /| f(x)].1f po < p1, we have | F;(x)] < | f(x)]P/70
if | f(x)] > 1. and | F;(x)| < |f(x)|?/PV if | f(x)| < 1. By dominated convergence, this
gives the continuity of F from  to LP° + LP'. For the holomorphy, we use the equiva-
lence between (strong) holomorphy and weak-* holomorphy; thus, it is enough to check
thatz € Q > [ F;(x)g(x)dp is holomorphic if g € L9° N L9, where 1/¢; + 1/p; = 1.
Thus, we obtain that L? C [LP0, LP1]y. As

[LPo, LP']g = [Lpo’Lpl]G = ([L%°, L9']p)

and as L9 is dense in [L4°, L9t]g (where 1/q + 1/p = 1), we obtain from the embedding
L9 C [L9°, L9y that [LP0, LP1]g C LP.
A similar result holds for weighted Lebesgue spaces L? (w d):

[LP0(wo dp), LP* (wy dp)le = LP (wdp),

with 1 < pg < +00, 1 < p; <4+00,0<8 <1land 1/p=(1-0)/po+ 60/p1, and
w = wiwl. If £ € L?(w dp), one defines

_w(x) \=2/po f w(x) \Z/ 1 (=2)p/potzp/m S (X)
EO=(mm) (o) @I s,

‘We have

P20 < max( (ALY ) ey, (LSNP i),

wo(x) wi(x)

The proof is then similar to the case of Lebesgue spaces.

If we want to interpolate Morrey spaces M ?0:4°(R3) and M ?1+91(R3) and obtain a
Morrey space, then it is necessary to assume that pg/qo = p1/¢1, see [17, 18]. We then
obtain

[MPO;‘]O’MPIsql]g = MP4

when 1 < pg < qo < 400, 1 < p1 <¢q1 < 400, po/go = p1/q1,0< 0 <1, 1/p =
(1—6)/po+6/pyand 1/qg = (1 —0)/q0 + 0/q1. As MPo-90 N M P91 ig not dense
in MP4 and is dense in [M P90 MP1-91], we can see that we must use the second
interpolation functor. The embedding [M 7090, M P1-911% < M P4 is obvious: for a ball B
with radius r < 1, we have that the map f +— f1p is bounded from M P0-90 to [P0 with
norm less or equal to 73(1/P0=1/40) "and from M P19' to LP' with norm less or equal to
r3(1/P0=1/40) 'hence from [M 7090, MP1-01]% to [LPo, LP1]? with norm less or equal to
p3/p=1/a) Ag [LPo, LP1]9 = L?, we obtain the desired estimates.

If f belongs to M P4, we define F,(x) = | f(x)|(1=2)2/Po+zp/P1 £(x)/| f(x)|. Now
since | F; (x)| < max((| f(x)|1’/1’0 | f(x)|?/P1), we deduce that z > F, is bounded from Q
to M Po-90 M P1-491 and holomorphic on the open strip €2 (again by equivalence between
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analyticity and weak-* analyticity). But it is no longer continuous, and we cannot apply
the first functor of Calderdn. Instead, we follow Cwikel and Janson [9] and define G, =
/; lz /2 Fy dw. We may then apply the definition of the second functor and find that f €
[M P00 pfP1:a1]0 Thus, [M P00 MP1-01]0 = pPa,

Now, we are going to describe complex interpolation of potential spaces on weighted
Lebesgue spaces when varying both the regularity exponents and the weights.’

Proposition 3.2. Let 0 € (0, 1), let ¢, 51 be real numbers, and let 1 < pgy, p1 < +00,
s=(1—=0)so+0syand1/p=(1—0)/po—+60/p1.If wgis aweight in the Muckenhoupt
class Ap, and wy is a weight in the Muckenhoupt class #p,, then

(Id —A) = LP (wi™w? dx) = [(1d —A) O LP (wo dx), (Id —A) ™' LP' (w; dx)]g.

Proof. Let f = (Id—A)"5g, where g € L?(w dx). We define

_w(x) \=2/po f w(x) \Z/ P (—-2)p/potzp/p1 S X)
m0=(po) (o) @Il s

and Yo
Fz,g(') = (2;) egA(Id—A)_(l_Z)SO_ZSIHZ.
—Z

We first remark that, for ¢ > 0 fixed, the operators e*A(Id —A))"" with 7 € [s0, s1] are
equicontinuous from L% (w; dx) to (Id —A)™5 LPi (w; dx) (it is enough to check that the
norms of the convolutors e®2 (Id —A)* 7 in K are uniformly bounded.

Moreover, the operators (2 lt)“(Id A)7, with t € R, are uniformly bounded on
LPi(w; dx). Let us recall the definition of Calderon—Zygmund convolutors. A Calderén—
Zygmund convolutor is a distribution K € §'(R3) such that K € L (so that the convo-
lution with K is a bounded operator on L?) and, when restricted to R3 \ {0}, K is defined
by alocally Lipschitz function such that sup, 4 lx[3| K (x)| + |x|* |§x| < 400. The space
CZ of Calder6n—Zygmund convolutors is normed by

[Kllcz = [I1Klloo + Sl;P|X|3 |K(O)] 4 [x[*[Vx].
x#0

If1 < p<4oo,weA,and K € CZ then || f * K| Lowdx) < Cuw.pll fllLewax) | K llcz.
Since we have .
IKllez < € D7 IEI™0E K oo

l|<4

it is clear that (2 ”)4(Id —AN)7 f = K, x [ with sup,cg || K |lcz < +00.

Now we may apply the second interpolation functor and find that e®® f = Fo, €
[Ad—=A)750LPo(wo dx), (Id—A) 51 LP1(w; dx)]g if g € LP (w dx). Moreover, its norm
is controlled independently from ¢ > 0, as, for @ = 0 or « = 1, we have that the functions
Hy1i; are bounded in LP=(wg dx), the operators (2 o t) (Id —A)~** are equicontinuous

3This can be seen as a variation on Stein’s interpolation theorem [9, 24].
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eA

on LP«(w, dx) and the operators ¢°2 are equicontinuous on LP2 (wy dx). One then writes

Y 00 Hair).

To conclude, we remark that L?i (w; dx) is the dual of L% (w~9/Pi dx) and that § is

dense in this predual. Thus, e®2 f is bounded in

K
[HLOVO (wo dx)’

Fd-‘rit,e = (Id —A)_(l_“)so—asl ( (

S1
Hi'os oy a))?

= ([(Id =A% LP (wy 9070 dx), (1d —A)* L (w] 9P dx)]g)’
if Id—A)* f € L?(wdx). As € goes to 0, e®2 f is weak-* convergent to f. Thus,
Id—A) " LP(wdx) C [Id—A) 0 LP(wodx), Id—A) ™1 LP' (w; dx)]°,

and we can interchange the second and the first interpolation functors as H? 170 (wo d x)
reflexive.

Conversely, assume that f € [(Id —A) ™% L2 (wq dx), (Id —A) ™1 L' (w dx)]? and
pick F € F((Id—A)"50LPo(wg dx), (Id—A)"51 LP1(wy dx))) such that f = F(6). Set

2—0\4 _
Heo = (5—) e ad—n)0 -0 F= F,

We easily check that H; ; € A(LP°(wodx), LP'(w;dx)) with Hg, = efA(Id—A) f.
Thus, we find that ¢?2 (Id —A)* f is bounded in [L?° (wo dx), L?' (w; dx)]g = L? (w dx),
and finally f € (Id—A)™*L?(w dx). |

Corollary 3.3. Let2 < g < +ooands <1—2/q.
(@) Thereexisty > 0and?2 <r < oo suchthaty + 3/r <1, and 6 € (0, 1) such that
Byio C L2 H " Np o0 C L2 B3 Nb.00

(b) For0 <N < 4/q, thereexisty >0and?2 <r < +oo suchthaty + 3/r < 1, and
0 € (0, 1) such that

o e -N dx)c0 [L ((1_:1#) H_y]g,oo C [1}(#) B;O}’,;O-?)/ril@’oo'

Pl"OOf: IfS <o < 1 —2/q,then B_S CH_O and BLq((l+\x\)_Ndx) OOC HLq((l-HxD Ndx)
Thus, if r > ¢, then, for 6 € (0, 1) and y>osuchthat(1—-0)/2+60/r=1/gandfy =0,
we have

Byt C L2 H g C (L2 H Vg0 C L2, B—H/']g
Asy + % =(1- %)1_2/(] + % == 2/q + 0( ), we have y + < 1 for r large enough.

Similarly, if (1 — )M = N and M < 2 (so that, in particular, (1 +x)™M € A»), we
have

Bqu((1+|x|) N dx),00 - [Lz((l + |x|)7M dx), H "]g C [Lz((l + |x|)72dx)v H;y]e,oo

CIL2((1+ |x))"2dx). B35 .00

AsM =25 =N }Z i?: = % + O(%), we have M < 2 for r large enough. [
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4. Mild solutions for the Navier-Stokes equation

In this section, we develop some remarks on the solutions provided by Koch and Tataru’s
theorem (Theorem 1.2 and Corollary 1.3).

Let ig € bmoy !, with divig = 0. If ||’ tig||x, < ﬁ, then the integral Navier—

tA -

u

Stokes equations have a solution on (0, T') such that ||u||x, < 2|e’®¢]|x, - This solution

is computed through Picard iteration as the limit of Un, where ﬁo = e’y and (7,,+1 =

ey — B(ﬁn, 17,,) In particular, by induction, we have
|Un+1 = Unllxy < (4Colle" iollx,)" " lle"* diollx,
and .
1Unllx; < 2lle"®iollx, -

It is easy to check that % is smooth. For X, = L*® if @ = 0 and Bg‘om if @ > 0, we have

luvlix, < Calllulloollvlix, + lvlloollullx,),

and 1| oo < 2[l€ 2 tig||x,/+/T for 0 < ¢ < T, while

t/2
i, ) = e /2,) — / W 2=OAP div(ii(1/2 + 5,) @ 1i(1/2 + s5.+)) ds,
0
so that

- L.
It Ny = € 71 E/2.) %, 2

42 1 1
+C||etAMo||XT/ Wﬁllu(lﬂJﬂw)llxn/z ds,
o _
and, by induction on 7,
”ﬁ(ts ')”Xn/z = Cnt_l/z_n/4'

Thus, for 0 < ¢ < T, i is smooth with respect to the space variable x. So is v P, by hypoel-
lipticity of the Laplacian (as Ap = — ZLI 213= 1 0iuj0;u;). Then we have smoothness
with respect to the time variable by controlling the time derivatives through the Navier—
Stokes equations.

Proposition 4.1. Let iig € bmo, ! with diviig = 0. Let E C 8’ be a stable space. If, more-
over, iy belongs to E, then the small solution i to the integral Navier-Stokes equations
with initial value o, i.e., the solution on (0, T) such that |[ii||x, < 2|le'®io|x,, satisfies
supg ;<7 ii(t,*)|E < +oo and lim,|[t(t,-) — e'Piig||g = 0. In particular; if S is
dense in E, then lim;_ol||ui(t, ) — tg||g = 0.
Moreover, if E C 8’ is the dual of a space Eg where S is dense,
sup V1|V ®ii|g < +oo.
0<t<T
Proof. We have

t
min([li]lo [[9]l 2. 2] £ 1V ]lc) ds.

N 1
BGi, v)(t,)|lE < CE/O Ji—s
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By induction, we have Un € L*°((0,T), E) with, forn > 0 (and l7_1 =0),
1Tnt1(2,) = Un(t, )| &

t - - - -
EC[;ﬁ%?%JW%QJ—%AWJMN%@NM+MMﬂkww%

n
< C'(4Colle" ™ tiollx,)" Y Uk — Uk—1llL(0.1).E)-

k=0
Thus, we have
+00 o0
> 10k = Ut llz=(o.1).8) < 10ollLooqo.y. 5y [ [(1 + C@Colle g [lx,)™).
k=0 n=0

Thus, supO<t<T”ﬁ(Zﬁ )”E < +_>OO. .
We have that sup,., /7 ||V ® Us|lg < +00, and we will show by induction that
sup;-o V1 |V ® UyllE < +00. Indeed, forn € (0,1) and 0 < ¢ < T, we have

Ups1(t,-) = "2 Upir (1= )1, -)

nt o o
- / MDA div(U, (1 — )t +5,-) @ Uy (1 — )t +5,-)) ds
0

-

and, since div(ii ® ¥) = - Vi,
8jﬁn+1(f,') = "0, 1 (1=t -)

nt - > -
_/1emﬂmp%wua—mrmwva«rwﬁ+&»d&
0

This gives
190041t g < C— [T oy - Ly
, = _— o0 S
n+1 E Jit n+111L*((0,T),E) o Jii—s (d—mi+s
X sup /5 [V® Un(s,)lE /5 1Un(s,)lloo
0<s<T
1 n 1 > -
<o oL 5180,

vt L —n /t o<s<T
where C; does not depend on n nor on 7. For n small enough, we have C; ./n/(1-n) <1/4
ajld SUPg<s<T VIV ® Ug(s. )| < 2Cy/ /7. By induction, we get supy -, 1 IV ®
Un(s, )|l <2Cy//nforeveryn € N.If E C §' is the dual of a space Eo, where § is
dense, we conclude that supy_, -7 VSV ®ii(s,)||g < +oo. n

Proposition 4.2. Let iig € bmoy ' with diviig = 0. Let w = (1 + |x|)™", where 0 < N <3.
If. moreover, iig belongs to L*(w dx), then the small solution i to the integral Navier—
Stokes equations with initial value iy, i.e., the solution on (0, T) such that ||ul|x, <

2||e!Biio||x,. satisfies ii € L®((0,T), L2(w dx)) and V ® ii € L2((0,T), L?(w dx)).
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Proof. Let

br =0 ( X ) 1
FTUR) (@ + Ve
where 6 € D is equal to 1 on a neighborhood of 0. We know that i is smooth, so that, for
O<to<t<T,

3:(|i]?) + 2|V @ i[> = A(il[*) — div(Qp + |ii[)i),

and thus

t -
/¢R(x)|ﬁ(t,x)|2dx+2/ /¢R(x)|V®ﬁ(s,x)|2dxds
to ,
- / R (t0. )2 dx + / / ARt x)P dx ds

t —
+ /to /(Zp + [i|?)ii - V($pr(x)) dx ds.

For || <2, we have |3% (¢ )| < Cw. On the other hand, we know that i € L (L?(w dx))
and v/tu;ju; € L%°(L2(w dx)), and thus /7(2p + |ii|?) € L®(L?(w dx)) (as w € A,
and p = —3 i3 213»:1 %(uiuj)). Therefore, we get that

/¢R(x)|ﬁ(t,X)|2dx +2/ /¢R(x)|%®ﬁ(s,x)|2dx ds
to

T
<C sup /|ii(s,x)|2w(x)dx+C/ /|ﬁ(s,x)|2w(x)dxds
0

0<s<T

T
I d
+/ /ﬁ|2p+|u|2||u|w(x)dx—s < +o0.
0 \/E

We then let R go to +o00 and 7y go to 0. ]

5. Barker’s stability theorem

In this section, we extend a lemma of Barker on Leray weak solutions with initial values

in L2 N[L2, B;olioo]&oo (for some § < 1 and 6 € (0, 1)) to the case of some solutions with

initial values in L2(w dx) N [Lz(w dx), H,«_y]e’oo, where w = (1 + |x|)_N, 0<N<2,
andy +3/r < 1.

Definition 5.1. A weighted Leray weak solution for the Navier—Stokes equations with
divergence-free initial value g € L?(w dx), where w = (1 + [x|)™,0< N <2,isa
divergence-free vector field u defined on (0, 7') x R3 such that

e e L®(0,T), L2(wdx)) and V ® ii € L2((0, T), L2(w dx)),
* there exists p € D'((0, T) x R3 such that

3yl = Aii —ii - Vii — Vp,

o lim; o lu(t,-) —tioll 2w ax) = 0.
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* 4 fulfills the weighted Leray inequality: for 0 < ¢ < T,

/|ii(t,x)|2w(x)dx+2/t[|§®ﬁ(s,x)|2w(x)dxds
0

3 t
§/|ﬁo(t,x)|2w(x)dx—22/0 /Biw(s,x)ﬁ(s,x)-Biii(s,x)dxds

i=1
+ /t /(|ﬁ(S,X)|2 +2p(s, x))ii(s, x) - Vw(x) dx ds.
0

The Navier-Stokes problem in L?(w dx) has recently been studied by Bradshaw,
Kukavica and Tsai [2], and Ferndndez-Dalgo and Lemarié-Rieusset [11]. As le < Nuw,
we find that /wu € L2((0, T), H'). In particular, we have wu;u; € L*((0, T), L%).
The pressure p is determined by the equation Ap = — Zle Zj’-:l u;u;j (see [12]) and,
as w5 € Ag/s, we have p € L*((0, T), LY5(w®5 dx)). As |[Vw| < Nw?/?2, we see
that the right-hand side of the weighted Leray inequality is well defined. As in the case of
Leray solutions, the strong continuity at# = 0 of t € [0, T) > 1u(t,-) € L?(w dx) (which
is only weakly continuous for # > 0) is a consequence of the weighted Leray inequality.

Theorem 5.2. Let iy be a divergence-free vector field such that iy € L?(w dx), where
w=(1+|x])™,0< N <2 Letiiy, ii be two weighted Leray weak solutions for the
Navier-Stokes equations with initial value o. If, moreover, iig € [L?(w dx), Hy "]9.00
forsomey > 0,2 <r < 4oowithy +3/r < 1and0 € (0, 1), then there exist Ty > 0,
C > 0andn > 0 such that, for 0 <t < Ty,

”ﬁl(t’ ) - ﬁZ(l’ ')||L2(wdx) = Ct".

Proof. This theorem was proved by Barker [1] in the case N = 0. Our proof will follow
the same lines as Barker’s proof.

Asiig € [L2(wdx), Hy "]g.00, forevery e € (0, 1), we may split i in tig = Ug,s + Wo ¢
with [[Ug,¢[| g7 < C1e%~Vand ||Wo el 12 dx) < C16%, where Cy depends only on iig. As
tig = Piig and as P is continuous on H, ¥ and on L?(w dx), we may assume (changing
the value of the constant Cy) that g . and W are divergence free. Let§ =y + 3/r < 1.
Since H, ¥ C Bgo‘g’oo, for0 <t <1, we have ||etA1'50,E||oo <Cot 8201 1f0< Ty <1,
we have

- — 1-68/2
sup V7 [le2Boelloo < Co 8?1 T}
0<t<Ty

[ . e
sup %/ / |e’Av0,£|2 dx < C3£9 1T11 8/2,
0<t<T),xeR3 | I 0 JB(x,\0)

and

so that
> 11— . . —§(1—
||€tAU0,e||XT1 < (Cy+ C3)éb 1T11 b2 < FToN if Ty < min(1, Cqe?/1730=9),
0
By (the proof of) Theorem 2.4, we know that the Navier—Stokes equations with ini-

tial value ¥, will have a solution ¥ on (0, T;) such that ||Tg(z, )||eo < C5t78/2071,
Moreover, by Proposition 4.1, U, is a weighted Leray weak solution.
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Let # be a weighted Leray solution on (0, T') for the Navier—Stokes equations with
initial value 1¢. We are going to compare # and .. We know that ¥, is smooth, so that

8,(17 . ‘DS) = ﬁ . 81‘1_56 + 1_58 . 8,ﬁ
If p, is the pressure associated to g, then on (0, T,), where T, = min(T, T}), we have
: (il - Up) = 1 - ATp + B - Al — div(peii + pUe) — i - (Ve - Vs) — g - (i - Vid)
ATy + T - Al — div(pgii + pis) — (i — Bg) - (Us - Vs)

<

=02
- O N . v - -
—va-(u-V(u—vs))—dlv(| ;' (u +v€))

=i Ay + Up - Al — U - (5 — Bp) - V(i — B))

=2
. > > v > > - 5 o \\o
— d1v(peu + pve + |%l(u 4+ Ve) + (Ve - (U — vs))va).

Since v, € L2((0, T»), L®), this can be integrated on (0, ) x R3 against the measure

w(x)dxds, giving
/ii <V, w(x)dx — / g - Uo,e w(x)dx
t 3
= —/ / Zaiw(x)(ﬁ(s,x) - 0; Ve (s, X) + Ue(s, x) - 0;U(s, x)) dx ds

07 im

- z[ot /(6 ® #i(s, x) - V ® Be (s, X)) w(x) dx ds

- [t / T (s, x) - ((# (s, X) — Be(s, %)) - V(i (s, X) — B (5, x))) w(x) dx ds
ot ) )

+ [ /p(s,x) Ue(s, x) - Vw(x) + pe(s, x)i(s, x) - Vw(x) dx ds
0

t ez 2
+/0 /'””“(STX)' (ii(s, X) — De(s, X)) - Vw(x)
+ (Te(s, x) - 1 (s, X)) Ve (s, x) - Vw(x) dx ds.

Together with

t -
/|ﬁ(l,x)|2w(x)dx+2/ /|V®ﬁ(s,x)|2w(x)dxds
0
3 t
tio(t, x)|? dx —2 d;w(s, x)u(s, x) - d;u(s,x)dx d
§/|u0(t X)|“w(x)dx ;/0 / w(s, x)u(s,x) - 0;u(s,x)dx ds

toeo , ) .
+./0 f(lu(s,x)| +2p(s,x))u(s, x) - Vw(x)dx ds
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and

t —
f|ﬁs(t,x)|2w(x)dx+2/ /|V®Ug(s,x)|2w(x)dxds
0
3 t
:/|50,6(I,x)|2w(x)dx—22/ /8iw(s,x)t78((s,x)-aiﬁs(s,x)dxds
i=170

t
4 [ [0 + 29205030 5u65.)- T dxds,
0
this gives
t
/|17€(t,x)—ﬁ(t,x)|2 w(x)dx—i—Z[ /|V®(f58—ﬁ)|2w(x)dxds
0
3 t
§/|T)o,g—ﬁo|2w(x)dx—22/ /Biw(ﬁa—ﬁ)-ai(ﬁa—ﬁ)dxds
i=170
t —
+2[ /(pg—p)(f)g—ﬁ)-dexds
0
t
_z/ /68-((ﬁ—ﬁs)-V(ﬁ—ﬂe))wdxds
0
t
+/ /|T)€—z7|2178-Vw+(|ﬁ|2—|ﬁs|2)(ﬁ—ﬁ€)-dexds.
0
Thus, we have
t
/|178(t,x)—ﬁ(t,x)|2w(x)dx+2[ /|V®(ﬁs—ﬁ)|2w(x)dxds
0
t
< [ o~ ol w)dx + Co [ IV =Tl | Vi 96 - ) ds
0
t
+Co [ 10 = p) wlzss IV @~ D)l ds
t
+C6/ [Telloo | Vw (G = Vo) l|2 vVw V & (i — Vg)l|2 ds
0

t
+c6/ IV = 512 (I iills + | Bells) ds.
0

We have
lw(p = pe)lle/s < C7llw( & i — Ve ® Velle/s
< C7|[Vw @ — V)2 (Vw3 + | Vw ell3),
Ivw @ — )13 < [IVw @ = Ve)ll2 Vw1 — )l
and

Ivw @i = e)lls < Cs(lIVw @i — Be)ll2 + | Vw V @ (@ — ) l2).
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so that

IV it ) — 5t D2 + 2/0 /WW ® (s — )2 ds
l -
< ||ﬁ(ao,e—ﬁo)||§+cgfo 1V i = B | ViV = 55)]]2 ds

t
+ c9/ (I = o)l + |V Y & (G — Be)lla) |30 i — o)
0
< (IN@iills + |V ella) ds
t
+ c9/ 1Belloo I/ G — 512 |3 ¥ ® (i — 5e) |2 ds
0

t
< ||ﬁ(ao,g—ao)||§+/ BV & (e — )2 ds
0

t
+ Cm/ Ivw @ =) 15 (1 + [[Vwit]l3 + [vVw el + [1Tell3,) ds.

0
By Gronwall’s lemma, for 0 < ¢ < T», we have
IVw i, ) = B3

T
< 1V o~ T3 exp( [ Crol1+ Vol + | Va5l + el) ds).
0

Since T, < T,

T, T

[ ivwigas < [CivwiBds < +oo.

0 0

and, by Propositions 4.1 and 4.2,

T h
| = [ 1V ds = Culfiolaga:

Finally, we have

T2 Tl
/ [1DellZ, ds < Clz/ f_8||50,a||§;75 dt < Ci3 T 32070 < ¢y,
0 0 09,00

Thus, we have
IVw (e, ) = (2.3 < C15*,
where C15 depends only on i and .

We may now estimate [[(, ) — uz(t, ) ||L2(w ax) for two weighted Leray weak
solutions defined on (0, T). If € (0, T), we define ¢ = (Ci4t)1_5/(2(1_9)) and T3 =
%C4 g20-0)/(=8) — 24 If ¢ is small enough, we have 0 < ¢ < 1 and T3 < min(1, 7).
Thus, we know that, for a constant C that depends only on i1, 1> and i,

iy (2, ) =t (t, ) 2w axy < N1(t ) =Ve(t, )l L2 ax) + 10e(t, ) =ti2(t, )| 22w ax)
N
< Cge = C(—l) .
< Cs
The theorem is proved. ]
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6. Weak-strong uniqueness

Proof of Theorem 1.8. Recall that we consider two solutions i, U of the Navier-Stokes
equations on (0, 7') with the same initial value i such that:

* g is a divergence-free vector field with #iy € L2 N bmoy*,

tA > 1
o le"uollx, < icy’
* 1 is the mild solution of the Navier—Stokes equations with initial value i such that
= 1
liillx, < 5

e forsome N >0,2<g<+oc0oand 0 <s<1-2/q,

2 -
sup 12 ]3| Lo (14 1x)-N d) < 0O,
0<t<T

* ¥ is a suitable weak Leray solution of the Navier-Stokes equations.

We know, by Propositions 4.1 and 4.2, that the mild solution # is a suitable weak Leray
solution. In particular, we have supy, -7 [|#(z,-) |2 < 400 and supy_, 7t /2 ||ii (£, ) oo <
ullx, < +oo. Thus,

sup Y27V i, < 4oo0.

0<s<T

If0 <« <1, we find that

sup (V)T ¥es G100 p-an dx) < +00.
0<t<T

By Theorem 2.4, we find that

g € BZ;((’[(1+|X\)_“N dxyoor  Withsy = (1 —a)(1-2/¢) +as.
For 0 < & < min(1, Niq), wehave 0 < 54 <1 —2/q andaN < 4/q, so that we may apply
Corollary 3.3.

The next step is to check that % and v, which are suitable Leray weak solutions, are
weighted Leray weak solutions, for the weight w(x) = (1 + |x|)2. This means that we
must check that ¥ (and #) fulfills the weighted Leray energy inequality. We consider a
non-negative function 8 € D (R3) equal to 1 on a neighborhood of 0 and 0 for |x| > 1,
and a function & smooth on R such that 0 < o < 1, with «(¢) equal to 0 on (00, 0) and 1
on (1,+00).ForO <ty <t; <T,R>0and0 < & < min(t; —ty, T — t1), we define the
test function

Prosre R (1, X) = “(t _gto)(l _“<t _gtl)) 1+ \/1/;—2 T x2)2 9(%)

= yg11,6(t) OR(X),

which is non-negative and supported in [tg, 11 + €] X B(0, R). If ¢ is the pressure associ-
ated to the solution ¥, by the suitability of ¥, we have

// b0k (9:(F2) + 219 ® 52— A(TP) + div(2q + [51)9)) dx di <0.
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As, for R > 1, |0g| < Cw and |VOg| < Cw3/2, dominated convergence when R — 400
gives us

[ o) = () w2 st i

3
< —22// Utp.tr.0 0w (D - 0;D) dx di +/fa,0,,l,s(|ﬁ|2 +2¢)% - Vw dx dt.

i=1

If & goes to 0, we get

limsup/(é a’(S;h) - éo/(%))([ [9(s, x)|? w(x) dx) ds

e—0
151 N
+2/ /|V®17|2w(x)dxds
to

3 151 151 N
5—22[ /Biw(ﬁ-aiﬁ)dxds—}—/ f(|5|2+2q)5~dexds.
i=17% fo

For almost every 1y, 11, we have that 7o and ¢; are Lebesgue points of the map

s0—>[|17(s,x)|2w(x)dx,

so that

. 1 (S —1h 1 (S — o o 2
gE)I(l) (Ea( . )—;a( - ))</|v(sx)| w(x)dx)ds
= /|T)(ll,x)|2w(x) dx—/|ﬁ(lo,x)|2w(x) dx.
If 9 goes to 0 and #; goes to ¢, we have
9(t0, ) — tioll 2w ax) < IIV(to,-) —tioll2 = O,

so that

i, / 1500, )P w(x) dx = / o ()2 w(x) dx.

while ¥(71, ) is weakly convergent to ¥(z, -), so that

[|t7(t,x)|2 w(x)dx < litmirtlf/|t7(t1,x)|2w(x) dx.
1—>

Thus, we get the weighted Leray energy inequality.
By Theorem 5.2, we then know that there exists 79 > 0, C > 0 and 1 > 0 such that,
forO <t < Ty,
i (t,-) = 0(t,)lL2qwax) < Ct".
Moreover, we can do the same computations as in the proof of Theorem 5.2 in order to
estimate 9, (% - ) (since # is smooth) and write, if p is the pressure associated to # and ¢
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the pressure associated to v,
9:Gi-T)=ii-AD+ - Al —ii - (i — V) - V(ii — D))

=12
- > (22 IS, S s oo
—div(qu + pv + |T(u +v)+ - —u))u).

As i € L?((e, T), L™) for every & > 0, this can be integrated on (g, 1) x R3 against the
measure w(x) dx ds and gives

/ﬁ(t,x)~5(t,x) w(x)dx—/ﬁ(s,x)'ﬁ(e,x))w(x)dx
PR
=—/ /Zaiw(ﬁ.aiwrﬁ-a,-ﬁ)dxds
& i=1
! - -

—2/ /(V@ﬁ-V@T))w(x)dxds
&
t

—/ /ﬁ-((ﬁ—f))-V(ﬁ—ﬁ))w(x)dxds
€
t

+/ /pﬁ-Vw+qﬁ-dexds
&
t |ﬁ|2 R o = o 2

+/ /T(v—u)-Vw+(v-u)u-Vw(x)dxds.

As ii(e,-) and U(e, -) are strongly convergent to iig in L?(w dx), we find

/fi(t,x)-ﬁ(l,x)w(x)dx—/ﬁo-ﬁo w(x)dx
PR
=—/ /Zaiw(ﬁ-8i6+ﬁ-8,~ﬁ)dxds
0 i
t - -
—2[ /(V@ﬁ-V@ﬁ)wdxds
0
t
—lim/ /ﬁ-((ﬁ—?))-V(ﬁ—B))wdxds
e—>0 Jo
t
+/ [pﬁ-Vw+qﬁ-dexds
0
t |ﬁ|2 . . N il =
+/ T(v—u)-Vw—l—(v'u)u'dexds.
0
We have
t
lir%/ /ﬂ-((ﬁ—ﬁ)-V(ﬁ—B))wdxds
e—>0 J,
t
=/ /s"ﬁ-s_”((ﬁ—ﬁ)-V(ﬁ—ﬁ))wdxds,
0

as s € L2L%®, s7(ii — ¥) € L®°(L?(wdx)) and V ® (ii — ¥) € L2(L?(w dx)).
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Using now the weighted Leray inequalities on v and on i, we get
t
/|17(t,x)—ﬁ(t,x)|2w(x)dx—}—2/ [|V® @ —i)?wdxds
0
3 t
5—22[ /8iw(ﬁ—ﬁ)-8i(5—ﬁ)dxds
i=1"0
t . t .
+2/ [(q—p)(ﬁ—ﬁ)-dexds—Z/ /ﬁ-((ﬁ—ﬁ)-V(ﬁ—T)))wdxds
0 0
t
+/ /|ﬁ—ﬁ|2ﬁ-Vw+(|12|2—|17|2)(17—17)-dede,
0
and thus
t
/|T)(t,x)—7,7(1‘,x)|2 w(x) dx +2/ /|V® @ —uw)|*>wdxds
0
t
< [V @ - DIV Vi~ 5k ds
0
t
+ [ 1= wllosl V5 G = Dlsds
t
4 C [ Nilol VG = 51 ViV ® G = D)z ds
0
t
+C/ IVw(i = ) 13(IVwills + | Vw|3) ds.
0

At this point, we get
t
IV G.-) - 5. +2/ fllﬂw; G- i3 ds
0
t
s/ VBT G — )2 ds
0

t
+C/0 IVw @ = D) 150 + | Vwidl3 + Vw35 + [i]3,) ds.

Let

A@) =7 Vw @) — 5@, )3
and

B(t) =1+ |Vwiil3 + Vw3
We have

t t
A(t) §C/ A(s)B(s)ds—i—Ct‘”’/ A(s) 2" ||u |2, ds.
0 0

Thus, for0 <t <1t < T,

A() < C sup A(s)(/OTB(s)ds—i—zl—n sup s||ﬁ(s,-)||go).

0<s<rt O<s<t
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For 7 small enough, we have

T
1 = 2
c(/o B(s)ds + 5 sup s||u(s,-)||oo> <1,

O<s<rt

and thus supy,., A(t) = 0. We conclude that # = ¥ on [0, ]. Since i is bounded on
[z, T'], the uniqueness is easily extended to the whole interval [0, T']. L]

7. Further comments on Barker’s conjecture

In his paper [1], Barker raised the following question.

Question 7.1. If iiy belongs to L% N bmoo_l, does there exists a positive time 7' such
that every weak Leray solution of the Cauchy problem for the Navier—Stokes equations
with 1 as initial value coincide with the mild solution in X7?

This can be seen as the endpoint case of the Prodi—Serrin weak-strong uniqueness
criterion, as the assumption of Prodi—Serrin’s criterion, i.e., existence of a solution # such
that

- .2 3
iel?PL?, with—+=<land2<p < +oo,
P 4

is equivalent, if 2 < p < +00, to the fact that 1 belongs to By, },+3/ 1c bmoo_l. Existence

of a mild solution when 1 belongs to B, },H/ 7 goes back to the paper of Fabes, Jones and

Riviere [10]. Existence of mild solutions has been extended by Cannone [5] to the case of

B, (1; 3a N bmo,, 1 and Koch and Tataru’s theorem [14] can be seen as the endpoint case
of the theory for existence of mild solutions.
Barker [1] extended weak-strong uniqueness to the case B, (1; 34 bmoo_l, and he

could even relax the regularity exponent and consider the case B, &, N bmoal, s<1-2/q.
—143/q
La((1+|x])~N dx),00 n

bmog1 with N > 0 and s < 1 —2/qg. But under the sole assumption #g € L% N bmoo_l,
weak-strong uniqueness remains an open question.

An alternative way to study the problem is to impose restrictions on the class of solu-
tions, beyond the Leray energy inequality or the local Leray energy inequality. One may
for instance consider an approximation process that provides weak Leray solutions when
iy € L? and consider whether the solutions provided by this process coincide with the
mild solution when, moreover, i1y € brnoo_l. There are many processes that pave the way to
Leray solutions (and in most cases to suitable weak Leray solutions); in [19], we described
fourteen different processes (including a-models, frequency cut-off, damping, artificial
viscosity, hyperviscosity, etc.).

The scheme is always the same. One approximates the Navier—Stokes equations (NS)
by equations (NS, ) depending on a small parameter « € (0, 1). Equations (NS, ) with ini-
tial value 1y € L2 have a unique solution #,. One then establishes an energy (in)equality
that allows to control #, uniformly on L*((0,T), L?) N L?((0,T), H'). Moreover, one
proves that 9, 1i is controlled uniformly in L/5((0, T'), H—3). By the Aubin—Lions theo-
rem, there exists a sequence a — 0 such that iy, is weakly convergentin L>((0,7), H')

We have shown that the integrability could even be relaxed into B
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and strongly convergent in (L2((0, T) x R3))joc to a limit ¥. One then checks that v is a
weak Leray solution of the Navier—Stokes equations with initial value .

Some of those processes behave well for initial values g € bmoo_l, others do not
seem to be well adapted to such initial values. More precisely, if one can prove that, when
1y belongs to L2 N bmoo_l, there exists a time T, such that the solutions 1, remain small
in X7, (|le’® o llx7, <1< 4170 and supgye(o,1) llta llx7, <21 < ﬁ), then the weak limit ¥
will still remain controlled in X7,. But there is only one weak solution # in X7, such that
|l Xg, = ﬁ Thus, the process cannot create a Leray solution that would escape the
weak—strong uniqueness.

Such processes can be found in processes that mimick Leray’s mollification. Mollifi-
cation has been introduced by Leray [21] in his seminal paper on weak solutions for the
Navier—Stokes equations. The approximated problem he considered is to solve

il + (Pq * lig).Viig = Alig — V pa.

with diviiy = 0 and 1i4(0,-) = tig. Here,p € D, ¢ >0, [@dx = 1 and gy (x) = a%(p(g).
Solving the mollified problem amounts to solving the integro-differential problem

etA =

U= UQ—B(gﬁa*ﬁ,ﬂ)(l,X),

where ,
B, ) = / IR P div(T ® W) ds.
0

Since g g * U(7,*)|loo < [U(2.*)]loo and
t . ) 1/2
(/ / |¢a * U(s, ) (V)" dy dS)
0 JB(x0,/7)
t R 2 1/2
— (/ / /%(z) v(s,y—z)dz‘ dyds)
0 JB(x0,/1)

t . N 1/2
([ [ [e@licy-Pdda)
0 JB(x0,/1)

~(faa([ [ ieoris)s)”

we find that ||¢q * Ullx, < ||U|lx,. Thus, the theorem of Koch and Tataru (Theorem 1.2
and Corollary 1.3) still applies:

* Forevery a > 0 and every T > 0, we have

I1B(¢a, W)llx; = Collvllxy 10 lx7-

o If [lef2 iy xr < ﬁ, then the mollified Navier—Stokes equations have a solution on

(0, T) such that ||iig|lx, < 2|e"®ollx, .

Now, we may consider various other approximations of the Navier—Stokes equations
of the form

N
(7.1) = eYiig— ) i * Bi(Yia % U, fia * D), ),

i=1
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where
* @i, Vi, x; are either the Dirac mass or functions in L1,
© fa(x) = 5 f(E)for f €f{pi i xivi =1,....N},
e B;(¥,0) = fot e84, (D) (¥ ® W) ds, where o; is given convolutions with smooth
Fourier multipliers homogeneous of degree 1, that is, if Z = 0;(D)(¥ ® W), then
Zk = )y g<3 Kik.p.g * (pwyq), where the Fourier transform of K x4 is and homo-
geneous of degree 1 and is smooth on R3.
The proof of the Koch and Tataru theorem asserts that operators of the form B(v, W) =
fot "2 5(D)(¥ ® W) ds are bounded on X7.
Writing ||8]|; = 1, we have

N
Z(pi,a * B(l//i,a * 6» Nio * 1-}))(t»x)

i=1

X7

N
< (leBillopllwi|I1III/fi||1I|Xi||1)||5|IXTIILTJIIXT = C1]|Vllxr | wllx,

i=1
If |2t ||x, < %, then the modified equations (7.1) have a solution on (0, 7) such that

liallx, < 2lle"®iiollx;-
Note that the equations (7.1) can be written as well as

N
0,5 = AT =) ¢ia *0i (D) (Vi * V) ® (Yi * D))

i=1

with initial value ¥(0, -) = i#g. Among example of such approximations, we have the
various «-models studied by Holm and Titi:

The Leray-a model. The Leray-o model has been discussed in 2005 by Cheskidov,
Holm, Olson and Titi [8]. The approximated problem is to solve

il + (Id —a2A) Yig) - Viig = Adig — V pa,
with diviiy = 0 and 14 (0, -) = . This is equivalent to write
Vil = Allg — P div((Id —a?A) iig) ® iig).

The Navier—Stokes-a model. The mathematical study of the Navier—Stokes-o model has
been done by Foias, Holm and Titi in 2002, see [13]. The approximated problem is to solve

3
dyiiq + ((1d—02A)iig) - Viig = Alg — ¥ g V(Id—a?A) Mg — V pa,

k=1

with diviiy = 0 and 14 (0, -) = 1y. We can rewrite the equation as

Ayt + ((Ad —a2A) " Yig) - Viig

n I(Id—azA)_lﬁalz)

3
- A{ia—Z(azA(Id—azA)_lua,k)§(ld—oe2A)_lua’k—%( . >

k=1
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This is equivalent to write
il = Atig — P div(((Id —a® A) liig) ® iig)
3 3
=3 Po; ((@d; (1d—o?A) Mg ) @V (Id —0 A) Mg ).
j=1k=1

The Clark-« model. The Clark-o model has been discussed in 2005 by Cao, Holm and
Titi [6]. The approximated problem is to solve

g + (d—a2A) Vg - Viig = Alig + (Id—a®A) Vg —iig) - V(Id —a2A) Vg
3
+o” ) (0 (ld—a?A) " iig) - VO (ld —o® A) i) = V pa.
k=1
with diviig = 0 and 14 (0, -) = 1y. We can rewrite the equation as
il + ((Id —a2A)Yiiy) - Viig
3
= Aiig + »_ &?0 (0 (1d —a® A)Viig) - V(d —a? A)iig) = V - po.

k=1

This is equivalent to write
3ty = Allg — P div((Id —a®A) ') ® il)
3

— > PO ((ed(Id—a?A) i) - (@V(Id—a?A) iy)).
k=1

The simplified Bardinal model. The simplified Bardina model is another «z-model stud-
ied by Cao, Lunasin and Titi in 2006, see [7]. This model is given by

diig + ((Id—a2A) iig) - V ((d —a?A) tig) = Alig — V pa,
where we have again div i, = 0 and 114 (0, -) = u¢. This is equivalent to write
g = Atlg — P div(((Id—e*A)iig) ® ((Id—a®A) iiy)).

Thus, when iy € bmoo_l, all those a-models give back the mild solution 1 € X7
when « goes to 0.

A. Comments on the weights wy (x) = (1 + |x|)™V

In this paper, we considered a suitable weak Leray solution i associated to an initial data
g€ L?nN bmoal. This solution satisfies on a small time interval (0, Ty) that 1 € L% L?
and that supy, .7 v/ ||ii(Z, )] o < +00. In particular, for 2 < ¢ < +o0,

(A1) sup /2 V4G, )l = sup Y2Vt )| Lawy axy < +o00.

0<t<T 0<t<T
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In Theorem 1.8, the assumption on the solution # is

(A.2) sup " 2([ii |l aca iz ax) = Sup 12|l Laquy ax) < +00.
0<t<T 0<t<T
with 5
N>0, 2<g<+400 and 0<s<l——-
q

This means that we ask a little more integrability in time but relax a lot integrability in
space, as N may be as large as we want (in particular, in order to include Morrey spaces).

However, in order to deal with tools of harmonic analysis, we need to consider N not
too large. This is fixed by interpolating between (A.1) and (A.2). If 0 <« < 1, we find
that

sup (V1)U 15 e ay = SUp 52 |l Laquy, dx) < oo
0<t<T 0<t<T

We still have s, < 1 — 2/¢, but (taking small values of «) we may have N, as small as

we want. In particular, for Ny < 4/¢, we may apply Corollary 3.3.

Thus, 1o belongs to an interpolate of L?(w, dx) with a Besov space B;o‘g’oo with
§ < 1. Moreover, since # and U belong to L>®L? C L*®L?(w, dx), the end of the proof
is done by energy estimates in L2(w, dx). Thus, the proof deals with a lot of change in

the weights.
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