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The large sieve with prime moduli

Henryk Iwaniec

Abstract. The large sieve type estimates of true order of magnitude for character
sums to prime moduli are established. The main result holds for coefficients sup-
ported on numbers which have no small prime divisors.

Dedicated to Professor Antonio Córdoba Barba, with admiration and friendship.

1. Introduction

The classical large sieve deals with general exponential sums

F.˛/ D
X
n

an e.˛n/; e.x/ D e2�ix ;

at real points ˛ .mod 1/ in various sets which are well-spaced, but not necessarily regularly
spaced. In 1966, H. Davenport and H. Halberstam proved that if k˛r � ˛sk > ı, with
0 < ı < 1 for r ¤ s, thenX

r

ˇ̌̌ X
n6N

an e.˛rn/
ˇ̌̌2
� .ı�1 CN/

X
n6N

janj
2

for any complex numbers an, where the implied constant is absolute. This covers the case
of all the rational points ˛ D a=q with 1 6 q 6 Q, a .mod q/, .a; q/ D 1, giving

(1.1)
X
q6Q

X�

a .mod q/

ˇ̌̌ X
n6N

an e
�an
q

�ˇ̌̌2
� .Q2

CN/
X
n6N

janj
2:

Expanding the primitive Dirichlet characters � .mod q/ into the additive charac-
ters e.an=q/ by means of Gauss sums, one derives from (1.1) the following inequality
(see [2]):

(1.2)
X
q6Q

q

'.q/

X�

� .mod q/

ˇ̌̌ X
M<n6MCN

an�.n/
ˇ̌̌2
� .Q2

CN/
X

M<n6MCN

janj
2:

Here and thereafter, the
P� denotes restricted summation over primitive characters.
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The large sieve inequality (1.2) is powerful enough to produce results of the Riemann
hypothesis quality. Actually, LSI is robust not only due to arbitrary coefficients an but
also that it holds true for character sums over short segments. A great panorama and nice
refined large sieve inequalities were presented at the Harish–Chandra Research Institute
in February 2005 by Olivier Ramaré [3]. Dieter Wolke (1969–1971) established a few
significant large sieve type estimates with fractions a=q of prime denominators. His best
results in [4] and [5] show the following.

Theorem 1 (D. Wolke). For any complex numbers an, 16n6N , withN 6Q2.logQ/�8,
we have

(1.3)
X
q6Q
q prime

X�

a .mod q/

ˇ̌̌ X
n6N

an e
�an
q

�ˇ̌̌2
�

Q2 log logQ

log.Q=
p
N/

X
n6N

janj
2:

Our goal is to remove the factor log logQ in (1.3) subject to some usable restrictions
for the coefficients an. We do not know if the bound (1.3) holds true without the factor
log logQ for general coefficients. Throughout we assume

(1.4) L D logQ; N 6 Q2L�8 and D D Q=
p
N:

Theorem 2. For any complex numbers an, 1 6 n 6 N , we have

(1.5)
X
q6Q
q prime

X�

a .mod q/

ˇ̌̌ X
n6N

.n;P /D1

an e
�an
q

�ˇ̌̌2
�

.1C ı/Q2

logD

X
n6N

.n;P /D1

janj
2;

where P is any positive integer and

(1.6) ı D .log logQ/5=2
Y
pjP
p<D

�
1 �

1

p

�1=2
:

The implied constant in (1.5) is absolute.

Note that one needs a few small prime divisors of P to kill the factor .log logQ/5=2

in (1.6). For example, if P D P.z/ is the product of all primes p 6 z and N 6 Q2z�2

with z D exp.log logQ/5, then (1.5) holds with ı D 1.

Remarks. Some sequences an are naturally supported on numbers free of prime divisors
in a set P of positive density �. For example, the numbers of type n D u2 C v2 with
.u; v/ D 1 have no prime divisors p � 3 .mod 4/, so � D 1=2. Letting P be the product
of p 2 P , p < z, we get Y

pjP

�
1 �

1

p

�
� .log z/�� ;

which kills .log logQ/5=2 in (1.6) if z D exp.log logQ/5=� . Therefore (1.5) holds for
N 6Q2z�2 with ı D 1, and the restriction .n;P /D 1 for these numbers an is redundant.
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Note that for every complex numbers an we have the formulaX
a .mod q/

ˇ̌̌ X
n6N

an e
�an
q

�ˇ̌̌2
D .q CO.N//

X
n6N

janj
2;

which yields more precise estimates than (1.3) and (1.5) if N 6 Q.
In our applications (a work in progress), the coefficients an satisfy

(1.7) an �
1
p
n

logp
logN

; if p j n; 1 6 n 6 N:

Hence X
n6N

.n;P.z//¤1

janj
2
�

X
p<z

1

p

� logp
logN

�2 X
n<N

.n;P.p//D1

1

n
�

log z
logN

�

We do not need (1.7), but only the following weaker condition:

(1.8)
X
n6N

.n;P.z//¤1

janj
2 6 A

log z
logN

;

where A is a positive constant. Now applying (1.5) twice with P D 1 and P D P.z/, we
derive the following.

Theorem 3. Let N 6 Q2z�2 with z D exp.log logQ/5. Suppose (1.8) holds with some
A > 0. Then

(1.9)
X
q6Q
q prime

X�

a .mod q/

ˇ̌̌ X
n6N

an e
�an
q

�ˇ̌̌2
�

Q2

logD

� X
n6N

janj
2
C A".Q/

�
;

where ".Q/ D .log logQ/8= logQ and the implied constant is absolute.

Remarks. A typical sequence, but not the only one, which satisfies (1.8) consists of the
coefficients of a mollified L-function. For example, one can apply Theorem 3 to show that
the mollified Dirichlet L-functions

L.s; �/ D L.s; �/
X
m<M

�.m/
�
1 �

logm
logM

� �.m/
ms

;

with M D Q1=8 and Re s D 1=2, satisfyX
q6Q
q prime

X
� .mod q/

jL.s; �/j6 �
jsj2Q2

logQ
;

where the implied constant is absolute.

In our applications, we can reduce the coefficient an by the slowly vanishing crop
factor 1 � logn= logN for 1 6 n 6 N D Q2. We take advantage of this factor to replace
logD by logQ. Precisely, we deduce from Theorem 2 the following.
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Theorem 4. Let an be complex numbers for 1 6 n 6 N D Q2 which satisfy (1.8) with
z D exp.log logQ/8. ThenX

q6Q
q prime

X�

a .mod q/

ˇ̌̌ X
n6N

an

�
1 �

logn
logN

�
e
�an
q

�ˇ̌̌2
�

Q2

logQ

� X
n6N

janj
2
C A".Q/

�
;(1.10)

X
q6Q
q prime

X�

� .mod q/

ˇ̌̌ X
n6N

an

�
1 �

logn
logN

�
�.n/

ˇ̌̌2
�

Q2

logQ

� X
n6N

janj
2
C A".Q/

�
;(1.11)

where ".Q/ D .log logQ/8= logQ and the implied constant is absolute.

Proof. The contribution of terms an.1 � logn= logN/ in (1.10) with M < n < N , M D
Q2z�2 and N D Q2, is bounded by�

Q
log z
logQ

�2 X
n6N

janj
2

on using (1.1). For 1 6 n 6 M , we write

log
N

n
D

Z N

n

du

u
;

so the corresponding part of (1.10) is estimated as follows:

.logN/�2
X
q

X�

a

ˇ̌̌ Z N

1

X
n<min.u;M/

an e
�an
q

�du
u

ˇ̌̌2
6 .logN/�2

� Z N

1

�
log

N

u

��1=2 du
u

�
�

Z N

1

�
log

N

u

�1=2X
q

X�

a

ˇ̌̌ X
n<min.u;M/

an e
�an
q

�ˇ̌̌2 du
u

�

� Q

logN

Z N

1

�
log

N

u

��1=2 du
u

�2�X
n

janj
2
C A".Q/

�
D

2Q2

logQ

�X
n

janj
2
C A".Q/

�
on using (1.9) for sums of length min.u;M/. Adding the above estimates, we get (1.10).
Then (1.11) follows from (1.10) by means of Gauss sums.

Remarks. For technical simplifications, we replace the range of moduli 1 6 q 6 Q in
every statement above by the dyadic segment Q < q 6 2Q. It is clear that the results so
modified are sufficient for deriving the primary ones.
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2. First estimation of S.Q; N/ and of S [.Q; N/

For the proof of Theorem 1 and Theorem 2, we need to estimate

(2.1) S.Q;N / D
X
q

X�

a .mod q/

ˇ̌̌X
n

an e
�an
q

�ˇ̌̌2
:

Here and thereafter, q runs over primes in the segment Q < q 6 2Q, an are complex
numbers supported on n 6 N , .n; P / D 1, with

Q 6 N 6 Q2L�8; L D logQ:

Recall thatDDQ=
p
N , soL4 6D 6

p
Q. By the duality principle it suffices to estimate

S�.Q;N / D
X
n

f .n/
ˇ̌̌X
q

X�

a .mod q/

�.q; a/ e
�an
q

�ˇ̌̌2
for any complex numbers �.q; a/ with q prime, Q < q 6 2Q and a .mod q/, .a; q/ D 1.
Here f .x/ is the majorizing function given by (A.3). Squaring out, we write

S�.Q;N / D
X
q

X�

a .mod q/

X
q1

X�

a1 .mod q1/

�.q; a/ �.q1; a1/
X
n

f .n/ e
�� a
q
�
a1

q1

�
n
�

6
X
q

X�

a .mod q/

j�.q; a/j2
X
q1

X�

a1 .mod q1/

X
n

f .n/ e
�� a
q
�
a1

q1

�
n
�
;

where (see (A.2) and (A.3))X
n

f .n/ e.˛n/ D 6N max.1 � 2k˛kN; 0/:

Hence

(2.2) S�.Q;N / 6 6N
X
q

X�

a .mod q/

j�.q; a/j2 �.q; a/;

where �.q; a/ is the number of fractions a1=q1 .mod 1/ such that

(2.3)



a
q
�
a1

q1




 < 1

2N
�

To estimate �.q; a/, we approximate a=q by a fraction b=c with 1 6 c 6 C , .b; c/ D 1,
such that

a

q
�
b

c
C � .mod 1/ with j� j 6

1

cC
;

where C is at our disposal, C < Q. Then (2.3) becomes

(2.4)



b
c
�
a1

q1
C �




 < 1

2N
�
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Take h � bq1 � ca1 .mod cq1/, jhj 6 cq1=2 so (2.4) becomes

(2.5)
ˇ̌̌ h
cq1
C �

ˇ̌̌
<

1

2N
�

Note that � D `=cq, with 1 6 j`j 6 q=C , .`; c/D 1. If hD 0, then q1 j c, c j q1 and q1 D
c 6 C < Q, contradiction. If .h; c/ ¤ 1, then .h; c/ D q1 6 c, contradiction. Therefore
we have

(2.6) .h; c/ D 1; 1 6 jhj 6 H D .1C 2j� jN/cQN�1

by (2.5). Given h as above, the prime number q1 lies in the intersection of the segmentsˇ̌̌
q1 C

h

�c

ˇ̌̌
<

Q

j� jN
; Q < q1 6 2Q;

so q1 is in a segment of length

Y D 5Q=.1C 2j� jN/

and in the residue class q1 � hb .mod c/. Now we choose

C D
p
N

so that Y > 5Q.1 C 2c=
p
N/�1 > cQ=

p
N D cD. By the Brun–Titchmarsh theorem

(see (A.9)), we find that the number of primes q1 is � Y='.c/ logD. Multiplying this
by 2H , we get

(2.7) �.q; a/�
c

'.c/

Q2

N logD
�

Q2

N

log logQ
logD

�

Finally, introducing (2.7) into (2.2), we obtain

S�.Q;N /� �
X
q

X�

a .mod q/

j�.q; a/j2;

with �� Q2.log logQ/.logD/�1. This completes the proof of Theorem 1 by duality.

Remarks. We lost the factor log logQ in (2.7) after applying the maximum bound for
c='.c/. Although the average value of c='.c/ is bounded, it does not apply here. However,
we have not exploited fully the properties (2.6). If H is relatively large, we can save the
factor '.c/=c from the condition .h; c/D 1, see Lemma A.3. Unfortunately, ifH is small,
then this coprimality condition does not help to recover '.c/=c. This case occurs when
many rationals a=q are very close to the same point b=c. Recall that

(2.8)
a

q
�
b

c
�

`

cq
with 1 6 j`j 6

q

C
�

Hence
H D

cQ

N
C j`j

2Q

q
�
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If c > LNQ�1 or j`j > L, then H > L, and Lemma A.3 is applicable saving the factor
'.c/=c. Accordingly, we split (2.1) into two sums,

S.Q;N / D S [.Q;N /C S].Q;N /:

The first partial sum S [.Q; N / runs over the fractions a=q which admit the approxima-
tions (2.8) with either c > LNQ�1 or j`j > L. We just proved by duality that

(2.9) S [.Q;N /�
Q2

logD

X
n

janj
2

for any complex numbers an, 1 6 n 6 N 6 Q2L�8. We have not used the restriction
.n; P / D 1 to get (2.9).

It remains to estimate the second partial sum S].Q; N /, which runs over the frac-
tions a=q very close to b=c such that

a

q
�
b

c
�

`

cq
.mod 1/; .b; c/ D 1; .`; c/ D 1;

with
1 6 j`j 6 L and 1 6 c 6 LNQ�1 D C0; say:

Recall our choice (1.4) and note that C0 D CLD�1 6 CL�1. Hence

S].Q;N / D 2
X
16`6L

S`.Q;N /;(2.10)

S`.Q;N / D
X

16c6C0
.c;`/D1

X
Q<q62Q
q prime

ˇ̌̌ X
n6N

.n;P /D1

an e
�
n
� b
c
C

`

cq

��ˇ̌̌2
;(2.11)

where b .mod c/ is determined by bq � �` .mod c/.

3. Applying sieve to S`.Q; N/

First we attach to q an upper-bound sieve of level D, that is, the factor

�.q/ D
X
mjq

�.m/;

which is non-negative for every positive integer q, see (A.5). Here �.m/ are sieve weights
supported on squarefree numbers m 6 D, .m; c/ D 1. If q is prime, q > D, these factors
are redundant; �.q/ D 1 because m D 1 is the only possible divisor of q.

Next we extend the summation (2.11) to all integers q weighted by a smooth function
�.q=Q/ with 0 6 �.x/ 6 1, �.x/ D 1 if 1=2 < x < 1, and �.x/ D 0 if x is not in the
segment 1=3 < x < 3. We also assume the symmetry �.x/ D �.1=x/ for elegant writing.
We get the upper bound

S`.Q;N / 6 SC.Q;N /;
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where

SC.Q;N / D
X

16c6C0

X
b .mod c/

.c;b`/D1

S
�b
c

�
and

(3.1) S
�b
c

�
D

X
q��`b .mod c/

�.q/ �
� q
Q

� ˇ̌̌̌ X
n6N

.n;P /D1

an e
�
n
� b
c
C

`

cq

��ˇ̌̌̌2
:

We dropped the subscript ` in the notation of SC.Q; N / and S.b=c/ for simplicity. We
open the square and change the order of summation to write (3.1) in the bilinear form

(3.2) S
�b
c

�
D

XX
n1;n26N
.n1n2;P /D1

an1 an2A.n1 � n2/ e
�
.n1 � n2/

b

c

�
;

with

A.n/ D
X

q��`b .mod c/

�.q/ �
� q
Q

�
e
�`n
cq

�
D

X
.m;c/D1

�.m/A.m; n/;(3.3)

A.m; n/ D
X

u��`bm .mod c/

�
�mu
Q

�
e
� `n

cmu

�
:(3.4)

We evaluate A.m; n/ by the Euler–Maclaurin formula (see (A.1)), giving

A.m; n/ D A1.m; n/C A0.m; n/;

with

A1.m; n/ D
1

c

Z
�
�mx
Q

�
e
� `n

cmx

�
dx;(3.5)

A0.m; n/ D

Z
 
�x C `bm

c

�
d
�
�
�mx
Q

�
e
� `n

cmx

��
:(3.6)

Accordingly, we split

A.n/ D A1.n/C A0.n/;

S
�b
c

�
D S1

�b
c

�
C S 0

�b
c

�
;

SC.Q;N / D S1.Q;N /C S 0.Q;N /:

4. Estimation of S 0.Q; N/

We treat S 0.Q;N / first because it is simpler than S1.Q;N /. A crude bound for S 0.Q;N /
will be good enough. The restriction .n; P / D 1 on the coefficients an is still not needed.
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We change x in (3.6) into y D `=cmx, getting

A0.m; n/ D

Z
 
�`
c

� 1

cmy
C bm

��
d
�
�
� `

cyQ

�
e.ny/

�
D

Z
 
�`
c

� 1

cmy
C bm

�� �
�`

cy2Q
�0
� `

cyQ

�
C 2�in�

� `

cyQ

��
e.ny/ dy;

where y is in the segment `=3cQ < y < 3`=cQ due to the support of �.x/. Hence

S 0
�b
c

�
� D

Z 3`=cQ

`=3cQ

²
cQ

`

ˇ̌̌X
n

an e
�
n
�b
c
C y

��ˇ̌̌2
C

ˇ̌̌X
n

nan e
�
n
�b
c
C y

��ˇ̌̌ ˇ̌̌X
n

an e
�
n
�b
c
C y

��ˇ̌̌³
dy;

whereD is the trivial bound for
P
j�.m/j. Note that 3`=cQ < 1=c.c CC0/, where C0 D

LNQ�1, so we are in the range of Lemma A.1, giving

S 0.Q;N /� D
�C0Q

`
CN

�X
n

janj
2 6 2DLN

X
n

janj
2:

Summing over 1 6 ` 6 L D logQ, we see that S 0.Q; N / contributes to S].Q; N / at
most DL2N

P
janj

2 and DL2N 6 Q2L�2, which is stronger than the desired bound
Q2= logD.

5. Estimation of S 1.Q; N/

Finally, we come to the main part of this work:

S1.Q;N / D
X

16c6C0

X
b .mod c/

.c;b`/D1

S1
�b
c

�
:

Changing x into y D `=cmx, we write (3.5) as (by the property �.x/ D �.1=x/)

A1.m; n/ D
`

c2m

Z
�
�cyQ
`

�
e.ny/

dy

y2

for n D n1 � n2. Inserting this into (3.3) and then into (3.2), we get

S1
�b
c

�
D

`

c2
V.c/

Z
�
�cyQ
`

� ˇ̌̌
F
�b
c
C y

�ˇ̌̌2 dy
y2
;

where

(5.1) V.c/ D
X

.m;c/D1

�.m/m�1 �
c

'.c/
.logD/�1;
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(see (A.6), (A.7)), and
F.˛/ D

X
n6N

.n;P /D1

an e.˛n/:

We lost the factor c='.c/ in (5.1), which will be compensated with saving from the restric-
tion of the coefficients an by .n; P / D 1. We get

S1
�b
c

�
6 9Q2 `�1V.c/

Z 3`=cQ

`=3cQ

ˇ̌̌
F
�b
c
C y

�ˇ̌̌2
dy:

Hence

(5.2) S1.Q;N /�
Q2

` logD
T.N/;

with

T .N / D
X

16c6C0

c

'.c/

X�

b .mod c/

Z 3`=cQ

`=3cQ

ˇ̌̌
F
�b
c
C y

�ˇ̌̌2
dy:

Remarks. We have 3`=cQ 6 1=c.c C C0/ and c='.c/ � log logQ, so Lemma A.1
implies

T .N /� .log logQ/
X
n6N

.n;P /D1

janj
2;

but for the proof of Theorem 2 we need

(5.3) T .N /� .log logQ/3=2
Y
pjP
p<D

�
1 �

1

p

�1=2 X
n6N

.n;P /D1

janj
2:

To this end, we establish a suitable hybrid large sieve estimate in Theorem 5.

6. A hybrid large sieve

Let P be a positive integer and let .an/ be a sequence of complex numbers supported on
1 6 n 6 N , .n; P / D 1.

Theorem 5. Let C > 3, D > 4, DC 2 6 N . Then

(6.1)
X
c6C

X�

b .mod c/

Z 1=cCD

1=9cCD

ˇ̌̌X
n

an e
�
n
�b
c
C y

��ˇ̌̌2
dy � �

X
n

janj
2;

where
�2 D .log logC/

Y
pjP
p<D

�
1 �

1

p

�
and the implied constant is absolute.
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Proof. Let
F.˛/ D

X
n

an e.˛n/:

We write the left side of (6.1) in the following fashion (the first step of the duality opera-
tion):

A D
X
c

X�

b

Z ˇ̌̌
F
�b
c
C y

�ˇ̌̌2
dy

D

X
n

an
X
c

X�

b

Z
e
�
n
�b
c
C y

��
F
�b
c
C y

�
dy:

We introduce here the redundant factors of type (A.11) where �.d/ are supported on
squarefree divisors of P ,

�.1/ D 1; j�.d/j 6 1; �.d/ D 0 if d > z:

Actually, we choose (A.10) with z D
p
D=2. We get

A D
X
n

an
X
c

� X
d jn

.d;c/D1

�.d/

�X�

b

Z
e
�
n
�b
c
C y

��
F
�b
c
C y

�
dy:

Note that the condition .d; c/ D 1 is redundant because d D 1 is the only possible divi-
sor of n and P . After that, we apply Cauchy’s inequality (the second step of the duality
operation), getting

(6.2) A2 6 B
X
n

janj
2;

where

B D
X
n

f .n/

ˇ̌̌̌X
c

X
d jn

.c;d/D1

�.d/
X
b

�
Z
e
�
n
�b
c
C y

��
F
�b
c
C y

�
dy

ˇ̌̌̌2

and f .x/ is given by (A.3). Squaring out, we get the sum

C D
X

n�0 .mod Œd;d1�/

f .n/ e
�
n
�b
c
�
b1

c1
C y � y1

��
with 1=9 < ycCD 6 1 and 1=9 6 y1c1CD < 1. By Poisson’s formula (A.2), we get

(6.3) C D
1

Œd; d1�

X
k

yf
� k

Œd; d1�
C
b

c
�
b1

c1
C y � y1

�
:

Since Œd; d1� 6 D=4 < N , all terms in (6.3) vanish except for at most one integer k such
that ˇ̌̌

k C Œd; d1�
�b
c
�
b1

c1
C y � y1

�ˇ̌̌
<
Œd; d1�

2N
�
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Take g � Œd; d1�.bc1 � b1c/ .mod cc1/, jgj 6 cc1=2 and move k so thatˇ̌̌
k C

g

cc1
C Œd; d1�.y � y1/

ˇ̌̌
<
Œd; d1�

2N
�

Here we have
Œd; d1�

2N
6

D

8N
6

1

8cc1
and Œd; d1� jy � y1j <

1

4C
max

�1
c
;
1

c1

�
6

1

4cc1
�

Hence k D 0, g D 0, C D yf .y � y1/=Œd; d1�,

(6.4) Œd; d1�.bc1 � b1c/ � 0 .mod cc1/

and

B D
X
d

X
d1

�.d/�.d1/

Œd; d1�

�

X
c

X
b

X
c1

X
b1

.c;bd/D.c1;b1d1/D1
Œd;d1�.bc1�b1c/�0 .mod cc1/

Z 1=cCD

1=9cCD

Z 1=c1CD

1=9c1CD

yf .y�y1/F
�b
c
Cy

�
F
�b1
c1
Cy1

�
dydy1:(6.5)

Recall that yf .y � y1/ D 6N.1 � 2jy � y1jN/ if

(6.6) jy � y1j <
1

2N

and yf .y � y1/ D 0 otherwise. Now we solve the congruence (6.4). Let 
 D .c; c1/, so
c D 
s, c1 D 
s1 with .s; s1/D 1. We have .b; 
s/D .b1; 
s1/D 1, .d; s/D .d1; s1/D 1
and .dd1; 
/ D 1. Then (6.4) becomes

Œd; d1�.bs1 � b1s/ � 0 .mod 
ss1/:

This is equivalent to s j d1, s1 j d and

(6.7) bs1 � b1s � 0 .mod 
/:

Putting
d D es1 and d1 D e1s;

we have .ee1ss1; 
/ D 1, .e; s/ D .e1; s1/ D 1 and Œd; d1� D ss1Œe; e1�. Since d and d1
are squarefree, we have the extra property .ee1; ss1/ D 1. By the periodicity of F.˛/
in ˛ .mod 1/, we can change b .mod�
s/ and b1 .mod�
s1/ into b � ˛s C ˇ
 and
b1 � ˛s1 C ˇ1
 with ˛ .mod�
/, ˇ .mod�s/, ˇ1 .mod�s1/. Note that we have the same
˛ in both b, b1 due to (6.7). HenceX

b

X
b1

F
�b
c
C y

�
F
�b1
c1
C y1

�
D

X�

˛ .mod 
/

�X
ˇ

F
�˛


C
ˇ

s
C y

���X
ˇ1

F
�˛


C
ˇ1

s1
C y1

��
D �.ss1/

X�

˛ .mod 
/

F
�˛


C y

�
F
�˛


C y1

�
;
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because the sum over ˇ .mod�s/ of F.˛=
 C ˇ=sC y/ results in twisting the coefficients
by the Ramanujan sums X�

ˇ .mod s/

e
�
n
ˇ

s

�
D �.s/:

This sum is the Möbius function because .n; P / D 1 and Œd; d1� D ss1Œe; e1� divides P .
Now (6.5) becomes

B D
X



X�

˛ .mod 
/

XX
.ss1;
/D1

�.ss1/

ss1
(6.8)

�

XX
.ee1;
ss1/D1

�.es1/�.e1s/

Œe; e1�

“
yf .y � y1/F

�˛


C y

�
F
�˛


C y1

�
dydy1;

where 1 6 
 6 C and the integrals are over the segments

1

9
6 y
sCD 6 1;

1

9
6 y1
s1CD 6 1:

Hence y > 1=9N , y1 > 1=9N , y � y1 by (6.6), and s � s1. Before handling the integrals,
we are going to estimate the above double sum over e; e1. For �.d/ given by (A.10), we
have

�.es1/�.e1s/ D �.ss1/�.e/�.e1/.log z=es1/.log z=e1s/.log z/�2;

with es1 < z and e1s < z, or else the terms vanish. Hence the sum over e; e1 in (6.8)
agrees with (A.17) for z replaced by z=s, z1 replaced by z=s1, and P having its prime
divisors of q D 
ss1 removed, up to the factor �.ss1/.log z/�2. Therefore (A.17) gives
the bound


ss1

'.
ss1/

Y
p<z
pjP

�
1 �

1

p

�
:

Inserting this bound into (6.8), we obtain (note that yf > 0)

B�
Y
p<z
pjP

�
1 �

1

p

� X

6C




'.
/

X�

˛ .mod 
/

Z 1=
CD

0

Z 1=
CD

0

yf .y � y1/

�

ˇ̌̌
F
�˛


C y

�
F
�˛


C y1

�ˇ̌̌� X
s�1=y
CD

1

'.s/

�� X
s1�1=y1
CD

1

'.s1/

�
dydy1

�

Y
p<z
pjP

�
1 �

1

p

� X

6C




'.
/

X�

˛ .mod 
/

Z 1=
CD

0

ˇ̌̌
F
�˛


C y

�ˇ̌̌2
dy

by
R
yf .y � y1/ dy1 D f .0/ D 3. Finally, by (A.8) and (A.4), we get

B�
Y
p<z
pjP

�
1 �

1

p

�
.log logC/

X
n

janj
2:

Then by (6.2) we complete the proof of Theorem 5.
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To get (5.3), we use (6.1) with C replaced by C0 D LNQ�1 and D D Q2=3L2N

(note that C0D DQ=3L). Introducing this into (5.2) and summing 1=` over 1 6 ` 6 LD

logQ (see (2.10)), we get a contribution bounded by (1.5). This completes the proof of
Theorem 2.

A. Appendix

We list results with some comments and some proofs which are known in the literature in
different forms.

The Euler–Maclaurin and Poisson summation formulas assert thatX
n�a .mod q/

f .n/ D
1

q

Z
f .x/C

Z
 
�x � a

q

�
f 0.x/ dx;(A.1)

X
n�a .mod q/

f .n/e.˛n/ D
1

q

X
k

yf
�k
q
C ˛

�
e
�ak
q

�
;(A.2)

where  .x/ D x � Œx� � 1=2, f 0.x/ is the derivative of f .x/ and yf .y/ is the Fourier
transform of f .x/ provided f .x/ and yf .y/ satisfy suitable growth and smoothness con-
ditions.

There are Fourier pairs f .x/, yf .y/ such that

0 6 f .x/ 6 3; f .x/ > 1 if jxj 6 N;

0 6 yf .y/ 6 6N; yf .y/ D 0 if jyj > 1=2N:

For example,

(A.3) f .x/ D 3
� sin�x=2N
�x=2N

�2
; yf .y/ D 6N max.1 � 2jyjN; 0/:

The Farey points of order C > 1 are the fractions a=c with 1 6 c 6 C , .a; c/ D 1. If

a0

c0
<
a

c
<
a00

c00
; 1 6 c0; c; c00 6 C;

are consecutive points, then C < c C c0 6 c C C , C < c C c00 6 c C C and their Farey
mediants are

aC a0

c C c0
D
a

c
�

1

c.c C c0/
and

aC a00

c C c00
D
a

c
C

1

c.c C c00/
�

Hence, given C > 1, every real ˛ can be written as

˛ D
a

c
C � with 1 6 c 6 C; .a; c/ D 1; j� j 6

1

cC
�

The unit segment ˛ .mod 1/ is covered exactly by the segments with end-points being the
Farey mediants. Hence, the Parseval formulaZ 1

0

ˇ̌̌X
n

an e.˛n/
ˇ̌̌2
d˛ D

X
n

janj
2

implies the following hybrid large sieve inequality.
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Lemma A.1. For any complex numbers an, we have

(A.4)
X

16c6C

X�

a .mod c/

Z 1=c.cCC/

�1=c.cCC/

ˇ̌̌X
n

an e
�
n
�a
c
C ˛

��ˇ̌̌2
d˛ 6

X
n

janj
2:

Next we show some elementary estimates related to sieve theory. We use an upper-
bound sieve .�d / of level D > 2. This is a sequence supported on squarefree numbers
d < D with �1 D 1, �1 6 �d 6 1, such that

(A.5)
X
d jn

�d > 0 for every positive n:

Applying this property for numbers n coprime with P , it follows that the sequence .�d /
restricted by .d; P / D 1 is also an upper-bound sieve. The sieve methods (see the Funda-
mental Lemma in [1]) yield

(A.6) 0 <
X
d

�d

d
�

Y
p<D

�
1 �

1

p

�
� .logD/�1:

If P > 1 is fixed, then X
n6X

.n;P /D1

�X
d jn

�d

�
� X

'.P /

P

� X
.d;P /D1

�d

d

�
as X !1. Hence we get the clear inequalities

(A.7) 0 6
X

.d;P /D1

�d

d
6

P

'.P /

�X
d

�d

d

�
:

Using (A.7), one can generalize (A.6) as follows:

0 6
X
d jc

�d

d
�

Y
pjc
p<D

�
1 �

1

p

�
;

where the implied constant is absolute. To see this, apply (A.7) with P being the product
of primes p < D, p − c. Then (A.6) yields

P

'.P /

�X
d

�d

d

�
�

Y
p−c
p<D

�
1C

1

p

�
.logD/�1 �

Y
pjc
p<D

�
1 �

1

p

�
:

Lemma A.2. For every c > 1, we have

(A.8)
c

'.c/
� log log.3c/:

Proof. If the number of distinct prime divisors of c is r , then the r th prime number is
pr � log.3c/. Hence c='.c/ is bounded by the product of .1 � 1=p/�1 over p 6 pr ,
which is� logpr � log log.3c/.
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Lemma A.3. LetA> 1 andHA > log.3c/. Then the number of integers h with .h; c/D 1
in every interval of length H is bounded by AH'.c/=c up to an absolute constant factor.

Proof. By an upper-bound sieve of levelD DH'.c/=c, the number in question is bound-
ed by

H
Y
pjc
p<D

�
1 �

1

p

�
D H

'.c/

c

Y
pjc
p>D

�
1 �

1

p

��1
;

and the last product is bounded by

A
Y
pjc

p>HA

�
1 �

1

p

��1
� A exp.H�A log c/ < 3A:

Lemma A.4 (Brun–Titchmarsh theorem). Let q > 1 and .a;q/D 1. The number of primes
p � a .mod q/ in an interval of length y > 4q is

(A.9) �.x C yI q; a/ � �.xI q; a/�
y

'.q/

�
log

y

q

��1
;

where the implied constant is absolute.

The particular sequence of numbers

(A.10) �.d/ D �.d/max
�
1 �

log d
log z

; 0
�

is often used for mollification of L-functions. This sequence is not an upper-bound sieve,
because it fails (A.5). Nevertheless, we built

(A.11)
X
d jn

�.d/

as redundant factors into our architecture of dual forms. We come up with the sequence of
numbers

�.d/ D
X

Œd1;d2�Dd

�.d1/�.d2/;

which satisfies (A.5); it is an upper-bound Selberg sieve. We need estimates for various
sums involving �.d/ and �.d/. First we give two easy lemmas.

Lemma A.5. For M > 1, we have

(A.12)
X
m6M

�.m/

m
log

M

m
� 1:

Proof. This can be seen between the following elementary lines:

1 D
X
`m6M

�.m/

`m
D

X
m6M

�.m/

m

�
log

M

m
C 
 CO

� m
M

��
;

1 D
X
`m6M

�.m/ D
X
m6M

�.m/
�M
m
CO.1/

�
:
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Lemma A.6. For any d > 1 and M > 1, we have

(A.13)
X
m6M
.m;d/D1

�.m/

m
log

M

m
�

d

'.d/
�

Proof. Let ı run over numbers with prime divisors in d . We haveX
ınDm

�.n/ D

´
�.m/; if .m; d/ D 1;
0; otherwise:

Hence (A.13) follows from (A.12) and the fact that
P
ı�1 D d='.d/.

If .�d / and .�k/ are finite sequences of real numbers, let

Gq.�; �/ D
XX
.dk;q/D1

�d �k=Œd; k�;

and let G.�; �/ be the case of q D 1. By the asymptotic formulaX
n6X
.n;q/D1

�X
d jn

�d

��X
kjn

�k

�
�
'.q/

q
Gq.�; �/X

as X !1, it follows by Cauchy’s inequality that�'.q/
q

Gq.�; �/
�2

6 G.�; �/G.�; �/:

In particular,
Gq.�; �/ 6

q

'.q/
G.�; �/:

In general, we have the expression (see the lines between (7.12)–(7.13) of [1] for g.p/ D
p�1, h.p/ D .p � 1/�1)

G.�; �/ D
X
d

'.d/
� X
m�0 .mod d/

�.m/m�1
�2
:

For our choice (A.10), one derives from (A.13) with M D z=d that

(A.14) G.�; �/� .log z/�2
X
d<z

�2.d/

'.d/
� .log z/�1:

From the above observations, one derives the following.

Lemma A.7. Let z > 1, z1 > 1 and

(A.15) Vq.z; z1/ D
XX
d<z; d1<z1
.dd1;q/D1

�.d/�.d1/

Œd; d1�

�
log

z

d

��
log

z1

d1

�
:
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For any q > 1, we have

(A.16) Vq.z; z1/�
q

'.q/
.log z/1=2 .log z1/1=2;

where the implied constant is absolute.

Lemma A.8. Let 1 < z1 6 z and P > 1. Then

WP .z; z1/ D
XX
d<z; d1<z1
d jP; d1jP

�.d/�.d1/

Œd; d1�

�
log

z

d

��
log

z1

d1

�
� .log z/2

Y
p<z
pjP

�
1�

1

p

�
;(A.17)

where the implied constant is absolute.

Proof. Apply (A.16) for q being the product of primes p < z, p − P . Then (A.17) is equal
to (A.15), so it is bounded by

.log z/
Y
p<z
p−P

�
1C

1

p

�
� .log z/2

Y
p<z
pjP

�
1 �

1

p

�
:
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