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Oscillation inequalities in ergodic theory and analysis:
one-parameter and multi-parameter perspectives

Mariusz Mirek, Tomasz Z. Szarek and James Wright

Abstract. In this survey we review useful tools that naturally arise in the study of
pointwise convergence problems in analysis, ergodic theory and probability. We will
pay special attention to quantitative aspects of pointwise convergence phenomena
from the point of view of oscillation estimates in both the single and several param-
eter settings. We establish a number of new oscillation inequalities and give new
proofs for known results with elementary arguments.

In honour of Antonio Córdoba and José Luis Fernández.

1. Introduction

Pointwise convergence is the most natural as well as the most difficult type of convergence
to establish. It requires sophisticated tools in analysis, ergodic theory and probability. In
this survey, we will review variation and oscillation semi-norms as well as the �-jump
counting function which give us quantitative measures for pointwise convergence. How-
ever, we will concentrate on the central role that oscillation inequalities play, both in the
one-parameter and multi-parameter settings.

In the one-parameter setting, we derive a simple abstract oscillation estimate for the
so-called projective operators, which will result in oscillation estimates for martingales,
smooth bump functions as well as the Carleson operator. The multi-parameter oscillation
semi-norm is the only available tool that allows us to handle efficiently multi-parameter
pointwise convergence problems with arithmetic features. This contrasts sharply with the
one-parameter setting, where we have a variety of tools including oscillations, variations
or �-jumps to handle pointwise convergence problems. The multi-parameter oscillation
estimates will be illustrated in the context of the Dunford–Zygmund ergodic theorem for
commuting measure-preserving transformations, as well as observations of Bourgain for
certain multi-parameter polynomial ergodic averages.
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We begin with describing methods that permit us to handle pointwise convergence
problems in the context of various ergodic averaging operators. Before we do this, we set
up notation and terminology, which will allow us to discuss various concepts in a fairly
unified way.

Throughout this survey, the triple .X;B.X/; �/ denotes a � -finite measure space.
The space of all formal k-variate polynomials P.m1; : : : ;mk/ with k 2 ZC indetermi-
nates m1; : : : ;mk and integer coefficients will be denoted by ZŒm1; : : : ;mk �. We will
always identify each polynomial P 2 ZŒm1; : : : ;mk � with a function .m1; : : : ; mk/ 7!
P.m1; : : : ; mk/ from Zk to Z.

Let d;k 2ZC. Consider a family T D .T1; : : : ; Td / of invertible commuting measure-
preserving transformations on X , polynomials PD.P1; : : : ; Pd /�ZŒm1; : : : ;mk �, an
integer k-tuple M D .M1; : : : ; Mk/ 2 ZkC, and a measurable function f WX ! C. We
consider the multi-parameter polynomial ergodic average

1

M1 � � �Mk

M1X
m1D1

� � �

MkX
mkD1

f
�
T
P1.m1;:::;mk/
1 � � �T

Pd .m1;:::;mk/

d
x
�
:

We denote this average by AP
M IX;T

f .x/, and we use the notation

(1.1) AP
M IX;T f .x/ WD Em2QM f .T

P1.m/
1 � � �T

Pd .m/

d
x/; x 2 X;

whereQM WD ŒM1�� � � � � ŒMk � is a box in Zk with ŒN � WD .0;N �\Z, for any real num-
berN � 1, and Ey2Y f .y/ WD

1
#Y

P
y2Y f .y/ for any finite set Y and any f WY ! C. We

will often abbreviate AP
M IX;T

to AP
M IX when the transformations are understood. Depend-

ing on how explicit we want to be, more precision may be necessary and we will write out
the averages

AP
M IXf .x/ D A

P1;:::;Pd
M1;:::;Mk IX

f .x/ or AP
M IX;T f .x/ D A

P1;:::;Pd
M1;:::;Mk IX;T1;:::;Td

f .x/:

Example 1.2. Due to the Calderón transference principle [13], the most important dynam-
ical system, from the point of view of pointwise convergence problems, is the integer shift
system. Namely, it is the d -dimensional lattice .Zd ;B.Zd /;�Zd / equipped with a family
of shifts S1; : : : ; Sd WZd ! Zd , where B.Zd / denotes the � -algebra of all subsets of Zd ,
�Zd denotes counting measure on Zd , and Sj .x/ WD x � ej for every x 2 Zd (here ej
is the j th basis vector from the standard basis in Zd , for each j 2 Œd �). Then the aver-
age AP

M IX;T
from (1.1) with T D .T1; : : : ; Td / D .S1; : : : ; Sd / can be rewritten for any

x D .x1; : : : ; xd / 2 Zd and any finitely supported function f WZd ! C as

(1.3) AP
M IZd

f .x/ D Em2QM f .x1 � P1.m/; : : : ; xd � Pd .m//:

1.1. Birkhoff’s and von Neumann’s ergodic theorems

In the early 1930’s, Birkhoff [5] and von Neumann [61] established an almost everywhere
pointwise ergodic theorem and a mean ergodic theorem, respectively, which we summa-
rize in the following result.
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Theorem 1.4 (Birkhoff’s and von Neumann’s ergodic theorem). Let .X;B.X/; �/ be a
� -finite measure space equipped with a measure-preserving transformation T WX ! X .
Then for every p 2 Œ1;1/ and every f 2 Lp.X/, the averages

Am
M IX;T f .x/ D Em2ŒM�f .T

mx/; x 2 X; M 2 ZC;

converge almost everywhere on X and in Lp.X/ norm as M !1.

Although there are many proofs of Theorem 1.4 in the literature (we refer for instance
to the monographs [21, 64] for more details and the historical background), there is a par-
ticular proof which is important in our context. This proof illustrates the classical strategy
for handling pointwise convergence problems, which is based on a two-step procedure:

(i) The first step establishesLp.X/ boundedness (for p 2 .1;1/), or a weak type .1;1/
bound (when p D 1) of the corresponding maximal function supM2ZC jA

m
M IX;T f .x/j.

This in turn, using the Calderón transference principle [13], can be derived from the cor-
responding maximal bounds for supM2ZC jA

m
M IZf .x/j, the Hardy–Littlewood maximal

function on the set of integers, see (1.3). Having these maximal estimates in hand, one can
easily prove that the set

PCŒLp.X/� D
®
f 2 Lp.X/ W limM!1Am

M IX;T f exists �-almost everywhere on X
¯

is closed in Lp.X/.
(ii) In the second step, one shows that PCŒLp.X/� D Lp.X/. In view of the first step,

the task is reduced to finding a dense class of functions in Lp.X/ for which we have
pointwise convergence. In our problem, let us first assume p D 2. Then invoking a variant
of the Riesz decomposition [69], a good candidate is the space IT ˚ JT � L2.X/, where

IT WD ¹f 2 L2.X/ W f ı T D f º;

JT WD ¹g � g ı T W g 2 L2.X/ \ L1.X/º:

We then note that Am
M IZf D f for f 2 IT , and limM!1Am

M IX;T h D 0 for h 2 JT , since

Am
M IX;T h DM

�1.g ı T � g ı TMC1/

telescopes, whenever h D g � g ı T 2 JT . This establishes pointwise almost everywhere
convergence of Am

M IX;T on IT ˚ JT , which is dense in L2.X/. These two steps guaran-
tee that PCŒL2.X/� D L2.X/. Consequently, Am

M IX;T converges pointwise on Lp.X/ \
L2.X/ for any p 2 Œ1;1/. Since Lp.X/ \ L2.X/ is dense in Lp.X/, we also conclude,
in view of the first step, that PCŒLp.X/� D Lp.X/, and this completes a brief outline of
the proof of Theorem 1.4.

1.2. Dunford–Zygmund pointwise ergodic theorem

In the early 1950’s, it was observed by Dunford [19] and independently by Zygmund [77]
that the two-step procedure can be applied in a multi-parameter setting. More precisely, the
Dunford–Zygmund multi-parameter pointwise ergodic theorem, where the convergence is
understood in the unrestricted sense, can be formulated as follows.
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Theorem 1.5 (Dunford–Zygmund ergodic theorem). Let d 2 ZC and let .X;B.X/; �/
be a � -finite measure space equipped with a family T D .T1; : : : ; Td / of not necessarily
commuting and measure-preserving transformations T1; : : : ; Td WX ! X . Then for every
p 2 .1;1/ and every f 2 Lp.X/, the averages

A
m1;:::;md
M1;:::;Md IX;T

f .x/ D Em2QM f .T
m1
1 � � �T

md
d
x/; x 2 X; M D .M1; : : : ;Md / 2 ZdC;

converge almost everywhere on X and in Lp.X/ norm as min¹M1; : : : ;Md º ! 1.

This theorem has a fairly simple proof, which is based on the following identity:

A
m1;:::;md
M1;:::;Md IX;T

f D A
m1
M1IX;T1

ı � � � ı A
md
Md IX;Td

f:

The Lp.X/ bounds for the strong maximal function supM2ZdC
jA

m1;:::;md
M1;:::;Md IX;T

f j, for
p 2 .1;1�, follow easily by applying d times the corresponding Lp.X/ bounds for
supM2ZC jA

m
M IX;T f j. This establishes the first step in the two-step procedure described

above. The second step is based on a suitable adaptation of the telescoping argument
to the multi-parameter setting and an application of the classical Birkhoff ergodic the-
orem, see [62] for more details. These two steps establish Theorem 1.5 and motivate
our further discussion on multi-parameter convergence problems. One also knows that
pointwise convergence in Theorem 1.5 may fail if p D 1, and that the operator f 7!
supM2ZdC

jA
m1;:::;md
M1;:::;Md IX;T

f j is not of weak type .1; 1/ in general (even if we assume

that the transformations Tj , 1 � j � d , commute). A model example is X D Zd and
Tjx D x � ej , 1 � j � d , where ej is the j th coordinate vector. Then the corresponding
maximal operator is just the strong maximal operator, for which it is well known that the
weak type .1; 1/ estimate does not hold.

1.3. Quantitative tools in the study of pointwise convergence

The approach described in the context of Theorem 1.4 and Theorem 1.5 has a quantitative
nature, but it says nothing quantitatively about pointwise convergence. This approach is
very effective in pointwise convergence questions arising in harmonic analysis, as there
are many natural dense subspaces in Euclidean settings which can be used to establish
pointwise convergence. However, for ergodic theoretic questions, when one works with
abstract measure spaces, the situation is dramatically different, as Bourgain showed [6–8].
We shall see more examples below.

Consequently, the second step from the two-step procedure may require more quan-
titative tools to establish pointwise convergence. To overcome the difficulties with deter-
mining dense subspace for which pointwise convergence may be verified, Bourgain [8]
proposed three other approaches.

(1) The first approach is based on controlling the so-called oscillation semi-norms.
Let J � N be so that #J � 2, let I D .Ij W j 2 N�J / be a strictly increasing sequence of
length J C 1 for some J 2 ZC, which takes values in J , and recall that for any sequence
.at W t 2 J/ � C, and any exponent 1 � r <1, the r-oscillation seminorm is defined by

(1.6) OrI;J .at W t 2 J/ WD
� J�1X
jD0

sup
Ij�t<IjC1

t2J

jat � aIj j
r
�1=r

:
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We will give a more general definition of r-oscillations in the multi-parameter setting;
see (2.3).

(2) The second approach is based on controlling the so-called r-variation seminorms.
For any I�N, any sequence .at W t 2 I/�C, and any exponent 1� r <1, the r-variation
semi-norm is defined to be

V r .at W t 2 I/ WD sup
J2ZC

sup
t0<���<tJ
tj2I

� J�1X
jD0

jatjC1 � atj j
r
�1=r

;

where the latter supremum is taken over all finite increasing sequences in I.
(3) The third approach is based on studying the �-jump counting function, which is

closely related to r-variations. For any I�N and any �> 0, the �-jump counting function
of a sequence .at W t 2 I/ � C is defined by

N�.at W t 2 I/ WD sup
®
J 2 N W 9t0<���<tJ

tj2I
W min
0�j�J�1

jatjC1 � atj j � �
¯
:

We also refer to Section 2 for simple properties of r-oscillations, r-variations and �-jumps.
These will be illustrated in the context of bounded martingales, a toy model explaining
their quantitative nature and their usefulness in pointwise convergence problems.

1.4. Bourgain’s pointwise ergodic theorem

In the early 1980’s, Bellow [1] (being motivated by some problems from equidistribution
theory), and independently Furstenberg [23] (being motivated by some problems from
additive combinatorics in the spirit of Szemerédi’s theorem [73] for arithmetic progres-
sions), posed the problem of whether for any polynomial P 2 ZŒm� and any measure-
preserving map T WX ! X on a probability space .X;B.X/; �/, the averages

(1.7) A
P.m/
M IX;T f .x/ D Em2ŒM�f .T

P.m/x/; x 2 X; M 2 ZC;

converge almost everywhere on X as M !1, for any f 2 L1.X/.
An affirmative answer to this question was given by Bourgain in a series of ground-

breaking papers [6–8] which we summarize in the following theorem.

Theorem 1.8 (Bourgain’s ergodic theorem). Let .X;B.X/; �/ be a � -finite measure
space equipped with an invertible measure-preserving transformation T WX!X . Assume
that P 2 ZŒm� is a polynomial such that P.0/ D 0. Then for every p 2 .1;1/ and every
f 2 Lp.X/, the averages APM IX;T f from (1.7) converge almost everywhere on X and in
Lp.X/ norm as M !1.

Theorem 1.8 is an instance where establishing pointwise convergence on a dense
class is a challenging problem. The decomposition IT ˚ JT of von Neumann (as for
Am
M IX;T ) is not sufficient if degP � 2, though it still makes sense. Even for the squares

P.m/ D m2, it is not clear whether limM!1 Am2
M IX;T h D 0 for h 2 JT . The reason is

that the averages Am2
M IX;T h do not telescope for h 2 JT anymore, since the differences

.mC 1/2 �m2 D 2mC 1 have unbounded gaps.
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Nearly two decades after Bourgain papers [6–8], it was discovered that the range of
p 2 .1;1/ in Bourgain’s theorem is sharp. In contrast to Birkhoff’s theorem, if P 2 ZŒm�
is a polynomial of degree at least two, the pointwise convergence at the endpoint for
p D 1 may fail as was shown by Buczolich and Mauldin [10] for P.m/ D m2 and by
LaVictoire [49] for P.m/ D mk for any k � 2. This also stands in sharp contrast to what
happens for continuous analogues of ergodic averages, and shows that any intuition that
we build in Euclidean harmonic analysis (when sums are replaced with integrals) can fail
dramatically in discrete problems.

Bourgain [6–8] also used the two-step procedure to prove Theorem 1.8. In the first
step, it was proved that for all p 2 .1;1�, there exists Cp;P > 0 such that for every
f 2 Lp.X/ we have

(1.9)
 sup
M2ZC

jAPM IX;T f j

Lp.X/

� Cp;P kf kLp.X/:

However, in the second step of the two-step procedure, a quantitative pointwise ergodic
theorem was established by studying oscillation semi-norms, see (1.6). More, precisely, it
was proved that for any � > 1, any sequence of integers I D .Ij W j 2 N/�L� WD ¹b�nc W
n 2 Nº such that IjC1 > 2Ij for all j 2 N, and any f 2 L2.X/, one has

(1.10) kO2I;J .A
P
M IX;T f WM 2 L� /kL2.X/ � CI;� .J /kf kL2.X/; J 2 ZC;

where CI;� .J / is a constant depending on I and � that satisfies

(1.11) lim
J!1

J�1=2 CI;� .J / D 0:

Bourgain [6–8] had the ingenious insight to see that inequality (1.10) with (1.11)
suffices to establish pointwise convergence of APM IX;T f for any f 2 L2.X/. Inequal-
ity (1.10) with (1.11) can be thought of as the weakest possible quantitative form for
pointwise convergence. On the one hand, (1.10) is very close to the maximal inequality,
since by using (1.9) with p D 2 we can derive (1.10) with a constant at most J 1=2. On the
other hand, any improvement (better than J 1=2) for the constant in (1.10) implies (1.11)
and so ensures pointwise convergence of APM IX;T f for any f 2 L2.X/, see Proposi-
tion 2.8, where the details, even in the multi-parameter setting, are given. Therefore, from
this point of view, inequality (1.10) with (1.11) is the minimal quantitative requirement
necessary to establish pointwise convergence.

Bourgain’s papers [6–8] were a significant breakthrough in ergodic theory, which used
a variety of new tools (ranging from harmonic analysis and number theory through prob-
ability and the theory of Banach spaces) to study pointwise convergence problems in
analysis understood in a broad sense. In [8], a complete proof of Theorem 1.8 is given
using the notions of r-variations and �-jumps (introduced by Pisier and Xu [66]), which
are two important quantitative tools in the study of pointwise convergence problems. This
initiated a systematic study of quantitative estimates in harmonic analysis and ergodic the-
ory which resulted in a vast literature: in ergodic theory [10,33–36,42,43,49,54,55,59], in
discrete harmonic analysis [29–32,51,53,57,60,65,70], and in classical harmonic analysis
[2, 3, 14, 17, 26, 37, 38, 45, 46, 56, 58, 63].
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Not long after [8], Lacey refined Bourgain’s argument (see Theorem 4.23 on p. 95
of [70]), and showed that for every � > 1 there is a constant C� > 0 such that for any
f 2 L2.X/ one has

(1.12) sup
J2ZC

sup
I2SJ .L� /

kO2I;J .A
P
M IX;T f WM 2 L� /kL2.X/ � C�kf kL2.X/;

where SJ .L� / denotes the set of all strictly increasing sequences ID.Ij W j 2N�J /�L�
of length J C 1 for some J 2ZC. Inequality (1.12) was the first uniform oscillation result
in the class of � -lacunary sequences. Lacey’s observation naturally motivated a question
(which also motivates this survey) whether there are uniform estimates, independent of
� > 1, of oscillation inequalities in (1.12). For the Birkhoff averages Am

M IX;T , this was
explicitly formulated in Problem 4.12 on p. 80 of [70]. We will discuss below uniform
oscillation estimates as well as other quantitative forms of pointwise convergence includ-
ing r-variations and �-jumps.

1.5. Martingales: a model to study pointwise convergence problems

In order to understand the relationship between r-oscillations, r-variations and �-jumps,
we will use bounded martingales f D .fn W X ! C W n 2 ZC/ as a toy model to help us
understand the connections and various nuances. All properties that will be used in the
discussion below are collected in Section 2. The discussion will follow the development
of the various notions in chronological order.

The r-variations for f D .fn W X ! C W n 2 ZC/ were investigated by Lépingle [50],
who established that for all r 2 .2;1/ and p 2 .1;1/, there is a constant Cp;r > 0 such
that

(1.13) kV r .fn W n 2 ZC/kLp.X/ � Cp;r sup
n2ZC

kfnkLp.X/:

In fact, Lépingle [50] also proved a weak type .1;1/ estimate. A counterexample from [38]
for r D 2 shows that (1.13) holds with sharp ranges of exponents. This counterexample
plays an important role showing that r-variation estimates only hold when r > 2. In fact,
this is the best we can expect in applications in analysis and ergodic theory.

Inequality (1.13) can be thought of as an extension of Doob’s maximal inequality
for martingales, which gives a quantitative form of the martingale convergence theorem.
Indeed, on the one hand, inequality (1.13) implies that the sequences .fn W n 2 ZC/ con-
verges almost everywhere on X as n!1. On the other hand, one has sup

n2ZC

jfnj

Lp.X/

� kV r .fn W n 2 ZC/kLp.X/ C kfn0kLp.X/

for any n0 2 ZC (see (2.14) below), which shows that r-variational estimates lie deeper
than maximal function estimates. We refer to [8, 57, 66] for generalizations and different
proofs of (1.13).

Interestingly, Bourgain [8] gave a new proof of inequality (1.13), where it was used
to address the issue of pointwise convergence of APM IX;T f , see (1.7). This initiated a
systematic study of r-variations and other quantitative estimates in harmonic analysis and
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ergodic theory, which resulted in a vast literature [33, 34, 37, 38, 55, 57–59, 63, 76], and
recently [29, 43, 54]. Due to (2.19) below, one has

(1.14) sup
�>0

k�N�.fn W n 2 ZC/
1=r
kLp.X/ � kV

r .fn W n 2 ZC/kLp.X/;

which combined with (1.13) implies �-jump inequalities for martingales for any r > 2.
Although the right-hand side of (1.14) blows up when r ! 2, it is possible to prove that
for every p 2 .1;1/, there exists a constant Cp > 0 such that

(1.15) sup
�>0

k�N�.fn W n 2 ZC/
1=2
kLp.X/ � Cp sup

n2ZC

kfnkLp.X/:

Inequality (1.15) was first established by Pisier and Xu [66] on L2.X/, and then extended
by Bourgain (inequality (3.5) in [8]) on Lp.X/ for all p 2 .1;1/. In fact, Bourgain
used (1.15) to prove (1.13) by noting that (1.14) can be reversed in the sense that for every
p 2 Œ1;1� and 1 � � < r � 1, one has

(1.16) kV r .fn W n 2 ZC/kLp;1.X/ ≲p;�;r sup
�>0

k�N�.fn W n 2 ZC/
1=�
kLp;1.X/;

which follows from (2.20) below. One cannot replace Lp;1.X/ with Lp.X/ in (1.16),
see [54] for more details. Combining (1.15) and (1.16) with � D 2 and interpolating, one
obtains (1.13). Therefore uniform �-jump estimates from (1.15) can be thought of as end-
point estimates for r-variations where we have seen that r-variations may be unbounded at
the endpoint in question. We have already noted the failure of Lépingle’s inequality (1.13)
when r D 2.

Even though we have a fairly complete picture of the relationship between r-variations
and �-jumps, the relations with r-oscillations are less obvious. It follows from (2.15)
below that

(1.17) sup
J2ZC

sup
I2SJ .ZC/

kOrI;J .fn W n 2 ZC/kLp.X/ � kV
r .fn W n 2 ZC/kLp.X/;

where SJ .ZC/ denotes the set of all strictly increasing sequences ID.Ij W j2N�J /�ZC
of length J C1 for some J 2ZC. In view of (1.13), this immediately implies r-oscillations
estimates for martingales on Lp.X/ for all r 2 .2;1/ and p 2 .1;1/.

It was shown by Jones, Kaufman, Rosenblatt and Wierdl (Theorem 6.4 on p. 930
of [33]) that for every p 2 .1;1/ there is a constant Cp > 0 such that

(1.18) sup
J2ZC

sup
I2SJ .ZC/

kO2I;J .fn W n 2 ZC/kLp.X/ � Cp sup
n2ZC

kfnkLp.X/:

Inequality (1.18) is also an extension of Doob’s maximal inequality for martingales, as
one has sup

n2ZC

jfnj

Lp.X/

� sup
J2ZC

sup
I2SJ .ZC/

kO2I;J .fn W n 2 ZC/kLp.X/ C kfn0kLp.X/

for any n0 2 ZC. This follows from Proposition 2.6 below. Moreover, in view of Propo-
sition 2.8, inequality (1.18) also gives a quantitative form of the martingale convergence
theorem.
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In Section 3 we give a new proof of inequality (1.18), which follows from an abstract
result formulated for certain projections, see Theorem 3.1 in Section 3. This abstract
theorem will also establish oscillation inequalities for smooth bump functions (see Propo-
sition 3.13 and Theorem 3.17), and establish oscillation inequalities for the Carleson
operator (see Proposition 3.34 as well as Proposition 3.22). It will also show that oscil-
lation estimates are very close to maximal estimates even though it follows from Propo-
sition 2.6 that oscillations always dominate maximal functions, see the discussion below
Theorem 1.8.

Inequalities (1.17) and (1.18) are similar to inequalities (1.14) and (1.15), respectively,
and this raises a natural question whether 2-oscillations can be interpreted as an endpoint
for r-variations when r > 2 in the sense of inequality (1.16). Recently this problem was
investigated in [54, Theorem 1.9] and answered in the negative. Specifically, one can show
if 1 � p <1 and 1 < � � r <1 are fixed, then it is not true that the estimates

sup
�>0

k�N�.f .�; t / W t 2 N/1=rk`p;1.Z/ � Cp;�;r sup
I2S1.N/

kO
�
I;1.f .�; t / W t 2 N/k`p.Z/;

kV r .f .�; t / W t 2 N/k`p;1.Z/ � Cp;�;r sup
I2S1.N/

kO
�
I;1.f .�; t / W t 2 N/k`p.Z/(1.19)

hold uniformly for every measurable function f WZ �N ! R. The failure of the inequal-
ities (1.19) shows that the space induced by �-oscillations is different from the spaces
induced by r-variations and � jumps whenever � � r . Also, the failure of the inequali-
ties (1.19) shows that �-oscillation inequalities cannot be seen (at least in a straightforward
way, understood in the sense of inequality (1.16)) as endpoint estimates for r-variations,
though it still makes sense to ask whether a priori bounds for 2-oscillations imply bounds
for r-variations for any r > 2. This is an intriguing question from the point of view of
quantitative pointwise convergence problems. If true, it would reduce pointwise conver-
gence problems to the study of 2-oscillations, which in certain cases are simpler since they
are closer to square functions.

1.6. Quantitative forms of Bourgain’s ergodic theorem

Quantitative bounds in the context of ergodic polynomial averaging operators have been
intensively studied over the last decade. These investigations were the subject of the fol-
lowing papers [54–56, 59], which generalized Bourgain’s papers [6–8] in various ways,
and can be summarized as follows.

Theorem 1.20. Let d;k2ZC and P D .P1; : : : ;Pd /�ZŒm1; : : : ;mk � such thatPj .0/D0
for j 2 Œd � be given. Let .X;B.X/;�/ be a � -finite measure space endowed with a family
T D .T1; : : : ; Td / of commuting invertible measure-preserving transformations on X . Let
f 2Lp.X/ for some 1�p�1, and forM 2ZC, letAP

M IX;T
f DA

P1;:::;Pd
M1;:::;Mk IX;T1;:::;Td

f

be the polynomial ergodic average defined in (1.1) with parametersM1D � � � DMk DM .

(i) (Mean ergodic theorem) If 1 < p < 1, then the averages AP
M IX;T

f converge in
Lp.X/ norm as M !1.

(ii) (Pointwise ergodic theorem) If 1 < p <1, then the averages AP
M IX;T

f converge
pointwise almost everywhere on X as M !1.
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(iii) (Maximal ergodic theorem) If 1 < p � 1, then one has

(1.21)
 sup
M2ZC

jAP
M IX;T f j


Lp.X/

≲d;k;p;deg P kf kLp.X/:

(iv) (Variational ergodic theorem) If 1 < p <1 and 2 < r <1, then one has

(1.22) kV r .AP
M IX;T f WM 2 ZC/kLp.X/ ≲d;k;p;r;deg P kf kLp.X/:

(v) (Jump ergodic theorem) If 1 < p <1, then one has

(1.23) sup
�>0

k�N�.A
P
M IX;T f WM 2 ZC/

1=2
kLp.X/ ≲d;k;p;deg P kf kLp.X/:

(vi) (Oscillation ergodic theorem) If 1 < p <1, then one has

(1.24) sup
J2ZC

sup
I2SJ .ZC/

kO2I;J .A
P
M IX;T f WM 2ZC/kLp.X/ ≲d;k;p;deg P kf kLp.X/:

Moreover, the implicit constants in (1.21), (1.22), (1.23) and (1.24) can be taken to be
independent of the coefficients of the polynomials from P , depending only on p and the
degree of the family P .

We now give some remarks about Theorem 1.20.
(1) Theorem 1.20 is a multi-dimensional, quantitative counterpart of Theorem 1.8

with sharp ranges of parameters 1 < p < 1 and 2 < r < 1, which contributes to the
Furstenberg–Bergelson–Leibman conjecture (see Section 5.5, p. 468, in [4]) in the linear
case for the class of commuting measure-preserving transformations. The Furstenberg–
Bergelson–Leibman conjecture is a central open problem in pointwise ergodic theory.
Moreover, inequalities (1.23) and (1.24) are the strongest possible quantitative forms of
pointwise convergence. By taking d D kD 1 andP1.m/Dm in Theorem 1.20, we recover
Birkhoff’s and von Neumann’s results stated in Theorem 1.4. Taking d D k D 1 and
P1 2 ZŒm� in Theorem 1.20, we also recover Bourgain’s polynomial ergodic theorem
from Theorem 1.8 above.

(2) The mean ergodic theorem in (i) is a consequence of the dominated convergence
theorem combined with (ii) and (iii). Each of the conclusions from (iv), (v) and (vi)
individually implies pointwise convergence from (ii), as well as the maximal estimates
from (iii). It also follows from (2.20) that (v) implies (iv). Details about these implications
can be easily derived from the properties of oscillations, variations and jumps collected in
Section 2.

(3) Sharp r-variational estimates (1.22) were obtained for the first time in [55], with
a conceptually new proof which also works for other discrete operators with arithmetic
features [56]. Not long afterwards, the ideas from [55] were extended [59] to establish
uniform �-jump estimates (1.23). Partial result for r-variational estimates (1.22) were
obtained in [42, 60, 76].

(4) It was observed in [55] that (1.22) and Hölder’s inequality imply that for every
p 2 .1;1/, for any r > 2, every f 2 Lp.X/ and every J 2 ZC, one has

sup
I2SJ .ZC/

kO2I;J .A
P
M IX;T f WM 2 ZC/kLp.X/ ≲d;k;p;r;deg P J 1=2�1=r kf kLp.X/;
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with the same implicit constant as in (1.22) and so blows up as r tends to 2. This inequality
is a non-uniform version of (1.24) in the spirit of Bourgain’s oscillation inequality (1.10).
However it was observed recently [54] that the methods from [55, 59] give the uniform
oscillation inequality in (1.24). From this point of view (and from the discussion above
for martingales) inequality (1.24) can be thought of as an endpoint for (1.22) at r D 2,
though it is not an endpoint in the sense of inequality (2.20) below. It would be nice to
know whether it is possible (if at all) to use (1.24) to recover (1.22).

(5) Inequality (1.24) is also a contribution to an interesting problem from the early
1990’s of Rosenblatt and Wierdl (Problem 4.12 on p. 80 of [70]) about uniform estimates
of oscillation inequalities for ergodic averages. In [33], Jones, Kaufman, Rosenblatt and
Wierdl proved (1.24) for the classical Birkhoff averages with d D k D 1 and P1.m/Dm,
giving an affirmative answer to Problem 4.12 on p. 80 of [70]. In [54], it was shown that
Problem 4.12 on p. 80 of [70] remains true even for multidimensional polynomial ergodic
averages.

(6) The proof of Theorem 1.20 is an elaboration of methods developed in [55, 59]
and also recently in [54]. The main tools are the Hardy–Littlewood circle method (major
arcs estimates); Weyl’s inequality (minor arcs estimates); the Ionescu–Wainger multi-
plier theory (see [32, 53, 59] and also [65], [74]); the Rademacher–Menshov argument
(see for instance [58]); and the sampling principle of Magyar–Stein–Wainger (see [51]
and also [57]). The methods from [53, 55, 57–59] were further developed by the first
author in collaboration with Krause and Tao [43], which resulted in establishing point-
wise convergence for the so-called bilinear Furstenberg–Weiss ergodic averages. This
was a long-standing open problem, which makes a significant contribution towards the
Furstenberg–Bergelson–Leibman conjecture [4].

1.7. A multi-parameter variant of the Bellow and Furstenberg problem

After completing [6–8], Bourgain observed that the Dunford–Zygmund theorem (see The-
orem 1.5) can be extended to the polynomial setting at the expense of imposing that the
measure-preserving transformations in Theorem 1.5 commute. Bourgain’s result can be
formulated as follows.

Theorem 1.25 (Polynomial Dunford–Zygmund ergodic theorem). Let d 2 ZC and let
P1; : : : ; Pd 2 ZŒm� such that Pj .0/ D 0 for j 2 Œd � be given. Let .X;B.X/; �/ be a
� -finite measure space endowed with a family T D .T1; : : : ; Td / of commuting invertible
measure-preserving transformations on X . Let f 2 Lp.X/ for some 1 � p � 1, and
for M 2 ZdC, let AP1.m1/;:::;Pd .md /

M IX;T
f D A

P1.m1/;:::;Pd .md /
M1;:::;Md IX;T1;:::;Td

f be the polynomial ergodic
average defined in (1.1).

(i) (Mean ergodic theorem) If 1 < p <1, then the averages AP1.m1/;:::;Pd .md /
M IX;T

f con-
verge in Lp.X/ norm as min¹M1; : : : ;Md º ! 1.

(ii) (Pointwise ergodic theorem) If 1 < p <1, then the averages AP1.m1/;:::;Pd .md /
M IX;T

f

converge pointwise almost everywhere on X as min¹M1; : : : ;Md º ! 1.



M. Mirek, T. Z. Szarek and J. Wright 2260

(iii) (Maximal ergodic theorem) If 1 < p � 1, then one has

(1.26)
 sup
M2ZdC

jA
P1.m1/;:::;Pd .md /
M IX;T

f j

Lp.X/

≲d;p;degP1;:::;degPd kf kLp.X/:

(iv) (Oscillation ergodic theorem) If 1 < p <1, then one has

sup
J2ZC

sup
I2SJ .Z

d
C/

kO2I;J .A
P1.m1/;:::;Pd .md /
M IX;T

f WM 2 ZdC/kLp.X/(1.27)

≲d;p;degP1;:::;degPd kf kLp.X/:

(We refer to Section 2 for the definitions of the sets SJ .ZdC/, see (2.2), and the multi-
parameter oscillations, see (2.3).) Moreover, the implicit constants in (1.26) and (1.27)
can be taken to be independent of the coefficients of the polynomials P1; : : : ; Pd , depend-
ing only on p and degP1; : : : ; degPd .

We now give some remarks about Theorem 1.25.
(1) Theorem 1.25(i)-(iii) is attributed to Bourgain, though it has never been published.

The first and third authors learned about this result from Bourgain in October 2016, when
they started to work with Bourgain and Stein on some aspects of multi-parameter ergodic
theory [9].

(2) In this paper we prove Theorem 1.25 using a general abstract principle, see Propo-
sition 4.1 in Section 4. In contrast to Bourgain’s original observation, our proof of Theo-
rem 1.25 relies on uniform bounds for multi-parameter oscillation inequalities.

(3) Theorem 1.25(iv) with linear polynomials P1.m/ D � � � D Pd .m/ D m was estab-
lished in [35], where it was essential that T D .T1; : : : ; Td / is a commuting family of
measure-preserving transformations onX . It is straightforward to see that (iv) implies (iii)
by (2.7), as well as (ii) by appealing to Proposition 2.8. Using the dominated convergence
theorem with (ii) and (iii), we also obtain (i). So it suffices to prove (1.27), which we do
in Section 4.

(4) To prove Theorem 1.25, it is essential to note that

(1.28) A
P1.m1/;:::;Pd .md /
M IX;T

f D A
P1.m1/;:::;Pd .md /
M1;:::;Md IX;T1;:::;Td

f D A
P1.m1/
M1IX;T1

ı : : : ı A
Pd .md /
Md IX;Td

f;

where the latter averages (defined in (1.7)) commute as long as the family T D.T1; : : : ;Td /

is commuting. Using identity (1.28) and iterating appropriately (1.24) with k D d D 1,
we will be able to derive (1.27). We refer to Section 4 for details.

Theorem 1.25 can be thought of as a simple case of a multi-parameter variant of the
Bellow and Furstenberg problem, which is a central open problem in modern ergodic
theory, and can be subsumed under the following conjecture.

Conjecture 1.29. Let d; k 2 ZC be given and let .X;B.X/; �/ be a probability mea-
sure space endowed with a family T D .T1; : : : ; Td / of invertible commuting measure-
preserving transformations on X . Assume that P D .P1; : : : ; Pd / � ZŒm1; : : : ;mk � such
that Pj .0/ D 0 for j 2 Œd � are given. Then for any f 2 L1.X/, the multi-parameter
polynomial averages AP

M IX;T
f .x/ D A

P1;:::;Pd
M1;:::;Mk IX;T1;:::;Td

f .x/ defined in (1.1) converge
for �-almost every x 2 X , as min¹M1; : : : ;Mkº ! 1.
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A few remarks about this conjecture, its history, and the current state of the art, are in
order.

(1) As seen above, the case d D k D 1 of Conjecture 1.29 with P1.m/ D m follows
from Birkhoff’s ergodic theorem, see Theorem 1.4. The case d D kD 1 of Conjecture 1.29
with arbitrary polynomials P1 2 ZŒn� was the famous open problem of Bellow [1] and
Furstenberg [23], and was solved by Bourgain [6–8] in the mid 1980’s, see Theorem 1.8.
The general case d; k 2 ZC of Conjecture 1.29 with arbitrary polynomials P1; : : : ; Pd 2
ZŒm1; : : : ;mk � in the diagonal setting M1 D � � � D Mk , that is, the multi-dimensional
one-parameter setting, follows from Theorem 1.20.

(2) A genuinely multi-parameter case d D k � 2 of Conjecture 1.29 for averages (1.1)
with Pj .m1; : : : ; md / D Pj .mj /, where Pj 2 ZŒmj � for j 2 Œd � follows from Theo-
rem 1.25, which extends the case of linear polynomials P1.m/ D � � � D Pd .m/ D m

established independently by Dunford [19] and Zygmund [77] in the early 1950’s, see
Theorem 1.5.

(3) Thanks to the product structure of (1.28), Theorem 1.5, as well as Theorem 1.25,
have relatively simple one-parameter proofs, which are based on iterative applications of
Theorem 1.4 and Theorem 1.20, respectively. This is explained in Proposition 4.1 below.
However, the situation is dramatically different when orbits in (1.1) are defined along
genuinely k-variate polynomials P1; : : : ; Pd 2 ZŒm1; : : : ;mk � since then we lose the
product structure (1.28). This can be illustrated by considering averages (1.1) for d D 1,
k D 2 with, let us say, P1.m1;m2/D m21m

3
2. Then Conjecture 1.29 becomes challenging.

Surprisingly, even in this simple case, it seems that there is no simple way (like changing
variables or interpreting the average from (1.1) as a composition of simpler one-parameter
averages as in (1.28)) that would help us reduce the matter to the setup where pointwise
convergence is known. This was one of the motivations leading to Conjecture 1.29.

(4) The Dunford–Zygmund theorem (see Theorem 1.5 above) was originally proved
for not necessarily commuting, measure-preserving transformations T D .T1; : : : ; Td /

on X . However, it is well known for instance from the Bergelson–Leibman paper [4]
that the commutation assumption imposed on the family T1; : : : ; Td WX ! X in (1.1) is
essential in order to have an ergodic theorem if degPj � 2 for at least one j 2 Œd � and
d � 2. Even in the one-parameter case (assuming k D 1) in (1.1), an ergodic theorem may
fail. The question to what extent one can relax commutation relations among T1; : : : ; Td
in (1.1), even in the one-parameter case, is very intriguing. This also motivates the desire
to understand Conjecture 1.29 in the commutative setting first, as it is unclear whether
Conjecture 1.29 is true for all polynomials P1; : : : ; Pd 2 ZŒm1; : : : ;mk �.

(5) With respect to the noncommutative setting, we mention that recently the first and
second authors with Ionescu and Magyar [29] established Conjecture 1.29 with k D 1,
d 2 ZC and arbitrary polynomials P1; : : : ; Pd 2 ZŒm� in the diagonal nilpotent setting,
i.e., one-parameter and multi-dimensional, when T D .T1; : : : ; Td / is a family of invert-
ible measure-preserving transformations of a � -finite measure space .X;B.X/; �/ that
generates a nilpotent group of step two. In view of the Bergelson–Leibman paper [4], the
nilpotent setting is probably the most general setting where Conjecture 1.29 might be true,
at least in the one-parameter case.

(6) We finally mention that progress towards establishing Conjecture 1.29 was recently
made by the first and third authors in collaboration with Bourgain and Stein [9]. This
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conjecture was verified for any integer d � 2 with k D d � 1 for averages (1.1) with
polynomials

Pj .m1; : : : ;md�1/ D mj for j 2 Œd � 1�I and
Pd .m1; : : : ;md�1/ D P.m1; : : : ;md�1/;

(1.30)

whenever P 2 ZŒm1; : : : ;md�1� is a polynomial such that

P.0; : : : ; 0/ D @1P.0; : : : ; 0/ D � � � D @d�1P.0; : : : ; 0/ D 0;

which has partial degrees (as a polynomial of the variable mi for any i 2 Œd � 1�) at least
two. Furthermore, it follows from [9] that for any P 2 ZŒm1; : : : ;md �, the following
averages,

APM IX;T f .x/ WD E.m1;:::;md /2QM f .T
P.m1;:::;md /x/; x 2 X;(1.31)

where M D .M1; : : : ; Md / 2 ZdC; do converge almost everywhere on X provided that
min¹M1; : : : ; Md º ! 1. In fact, Conjecture 1.29 was originally formulated with aver-
ages (1.31); the authors learned about this from Jean Bourgain in a private communication
in October 2016. The proof from [9] developed new methods from Fourier analysis and
number theory. Even though the averages (1.1) with polynomials from (1.30) share a lot
of difficulties that arise in the general case, there are some cases that are not covered by
the methods developed in [9]. At this moment it is not clear whether Conjecture 1.29 is
true in full generality. The work in [9] is a significant step towards understanding Conjec-
ture 1.29 that sheds new light on the general case and will either lead to its full resolution
or to a counterexample. The authors plan to investigate this question in the near future.

1.8. Overview of the paper

In this paper we prove an abstract principle for the so-called projective operators, see
Theorem 3.1 in Section 3, which allows us to deal with one-parameter oscillation inequal-
ities in a fairly unified way. As a consequence of Theorem 3.1, we give a simple proof
of the Jones–Kaufman–Rosenblatt–Wierdl oscillation inequality for martingales (Theo-
rem 6.4 on p. 930 of [33]), see Proposition 3.11, and then we prove oscillation inequalities
for smooth bumps, see Proposition 3.13 and Theorem 3.17. Further, we discuss oscilla-
tion estimates for projection operators corresponding to orthonormal systems in Hilbert
spaces, see Proposition 3.22, and finally we obtain new oscillations inequalities for the
Carleson operator, see Proposition 3.34. In Section 4 we build a multi-parameter theory
of oscillation estimates, see Proposition 4.1 and Corollary 4.6. As an application of our
method, we give a simple proof of Theorem 1.25.

This paper can be viewed as a fairly systematic treatment of oscillation estimates in
the one-parameter as well as multi-parameter settings in ergodic theory and analysis. In
the multi-parameter setting, oscillation semi-norms seem to be the only viable tool that
allows us to handle efficiently multi-parameter pointwise convergence problems. This is
especially the case in [9] where operators with arithmetic features were studied. It also
contrasts sharply with the one-parameter setting, where we have a variety of available tools
to handle pointwise convergence problems: including oscillations, variations or jumps,
see [37, 55] and the references given there.
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2. Notation and useful tools

We now set some notation that will be used throughout the paper. Basic properties of one-
parameter as well as multi-parameter r-oscillation semi-norms, r-variation semi-norms
and �-jump counting functions will be also gathered here. We borrow notation from [9],
Section 2, and [54], Section 2.

2.1. Basic notation

Let ZC WD ¹1; 2; : : :º, N WD ¹0; 1; 2; : : :º and RC WD .0;1/. For d 2ZC, the sets Zd , Rd ,
Cd and Td WD Rd=Zd have standard meaning. We will also consider the set of dyadic
numbers D WD ¹2n W n 2 Zº. For any x 2 R, we define the floor function

bxc WD max¹n 2 Z W n � xº:

For x; y 2 R, let x ^ y WD min¹x; yº and x _ y WD max¹x; yº. For every N 2 RC and
A � R, define

ŒN � WD .0;N � \ Z D ¹1; : : : ; bN cº;

as well as

A�N WD Œ0;N �\A; A<N WD Œ0;N /\A; A�N WD ŒN;1/\A; A>N WD.N;1/\A:

We use 1A to denote the indicator function of a setA. If S is a statement, we write 1S to
denote its indicator, equal to 1 if S is true and 0 if S is false. For instance, 1A.x/ D 1x2A.

For two nonnegative quantities A and B , we write A ≲ B if there is an absolute
constant C > 0 such thatA� CB; however, C > 0may change from occurrence to occur-
rence. We will write A ' B when A ≲ B ≲ A. We will write ≲ı or'ı to emphasize that
the implicit constant depends on ı. For two functions f WX ! C and g W X ! Œ0;1/, we
write f D O.g/ if there exists C > 0 such that jf .x/j � Cg.x/ for all x 2 X . We will
also write f D Oı.g/ if the implicit constant depends on ı.

2.2. Euclidean spaces

The standard inner product, the corresponding Euclidean norm, and the maximum norm
on Rd are denoted, respectively, for any x D .x1; : : : ; xd /, � D .�1; : : : ; �d / 2 Rd , by

x � � WD

dX
kD1

xk �k ; jxj WD jxj2 WD
p
x � x; and jxj1 WD max

k2Œd�
jxkj:

2.3. Function spaces

Throughout this paper, all vector spaces will be defined over C. For a continuous linear
map T WB1 ! B2 between two normed vector spaces B1 and B2, its operator norm will
be denoted by kT kB1!B2 .

The triple .X;B.X/; �/ denotes a measure space X with a � -algebra B.X/ and a
� -finite measure �. The space of all �-measurable functions f WX ! C will be denoted
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by L0.X/. The space of all functions in L0.X/ whose modulus is integrable with p-th
power is denoted by Lp.X/ for p 2 .0;1/, whereas L1.X/ denotes the space of all
essentially bounded functions in L0.X/. These notions can be extended to functions tak-
ing values in a separable normed vector space .B; k � kB/; for instance,

Lp.X IB/ WD
®
F 2 L0.X IB/ W kF kLp.X IB/ WD kkF kBkLp.X/ <1

¯
;

where L0.X IB/ denotes1 the space of measurable functions from X to B (up to almost
everywhere equivalence). For any p 2 Œ1;1�, we define a weak-Lp space of measurable
functions on X by setting

Lp;1.X/ WD ¹f W X ! CW kf kLp;1.X/ <1º;

where for any p 2 Œ1;1/ we have

kf kLp;1.X/ WD sup
�>0

��.¹x 2 X W jf .x/j > �º/1=p; and kf kL1;1.X/ WD kf kL1.X/:

In our case, we will mainly take X D Rd or X D Td equipped with the Lebesgue
measure, andX DZd endowed with the counting measure. IfX is endowed with a count-
ing measure, we will abbreviate Lp.X/ to `p.X/, Lp.X IB/ to `p.X IB/, and Lp;1.X/
to `p;1.X/.

2.4. Fourier transform

We will use the convention that e.z/ D e2�iz for every z 2 C, where i2 D �1. Let FRd

denote the Fourier transform on Rd defined for any f 2 L1.Rd / and for any � 2 Rd as

FRdf .�/ WD

Z
Rd

f .x/ e.x � �/ dx:

We can also consider the Fourier transform for finite Borel measures � on Rd . If f 2
`1.Zd /, we define the discrete Fourier transform (Fourier series) FZd , for any � 2 Td , by
setting

FZdf .�/ WD
X
x2Zd

f .x/ e.x � �/:

Sometimes we shall abbreviate FZdf or FRdf to yf , if the context will be clear.
Let G D Rd or G D Zd . It is well known that their corresponding dual groups

are G� D .Rd /� D Rd or G� D .Zd /� D Td , respectively. For any bounded function
mWG� ! C and a test function f WG ! C, we define the Fourier multiplier operator by

TGŒm�f .x/ WD

Z
G�

e.�� � x/m.�/FGf .�/ d�; for x 2 G:(2.1)

One may think that f WG ! C is a compactly supported function on G (and smooth if
G D Rd ) or any other function for which (2.1) makes sense.

1Note that there are various definitions of L0.X IB/ in the literature.
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2.5. Littlewood–Paley theory

Often we will control oscillation and variation semi-norms by certain square functions of
the form

S.f /.x/ WD
�X
k2Z

j�k � f .x/j
2
�1=2

;

where .�k/k2Z is a sequence of Borel measures on Rd with bounded total variation sat-
isfying j y�k.�/j � C min¹jakC1 �j˛; jak �j�˛º for some ˛ > 0 and for all k 2 Z. Here,
infk2Z akC1=ak > 1. What we call standard Littlewood–Paley arguments sometimes refer
to the arguments developed in the seminal paper [20]. In particular, Theorem B in [20]
implies that the square function S satisfies Lp bounds kS.f /kLp � Cpkf kLp for all
p 2 .1;1/ whenever the corresponding maximal function �� associated to the measures
.�k/k2Z satisfies the same Lp bounds.

At one point we will use a powerful square function bound of Rubio de Francia asso-
ciated to any pairwise disjoint collection of intervals .Ij W j 2 Z/ on R. It states�X

j2Z

jTRŒ1Ij �f j
2
�1=2

Lp.R/
≲ kf kLp.R/

whenever p 2 Œ2;1/. See Theorem 1.2 in [71].

2.6. Coordinatewise order �

For any x D .x1; : : : ; xk/ 2 Rk and y D .y1; : : : ; yk/ 2 Rk , we say x � y if an only if
xi � yi for each i 2 Œk�. We also write x � y if and only if x � y and x ¤ y, and x �s y

if and only if xi < yi for each i 2 Œk�. Let I � Rk be an index set such that #I � 2, and
for every J 2 ZC [ ¹1º define the set

SJ .I/ WD
®
.ti W i 2 N�J / � IW t0 �s t1 �s : : : �s tJ

¯
;(2.2)

where N�1 WDN. In other words, SJ .I/ is the family of all strictly increasing sequences
(with respect to the coordinatewise order) of length J C 1 taking their values in the set I.

2.7. Oscillation semi-norms

Let I � Rk be an index set such that #I � 2. Let .at .x/ W t 2 I/ be a k-parameter family
of complex-valued measurable functions defined on X . For any J � I, any 1 � r <1
and a sequence I D .Ii W i 2 N�J / 2 SJ .I/, the multi-parameter r-oscillation seminorm
is defined by

OrI;J .at .x/ W t 2 J/ WD
� J�1X
jD0

sup
t2BŒIj �\J

jat .x/ � aIj .x/j
r
�1=r

;(2.3)

where BŒIi � WD ŒIi1; I.iC1/1/� � � � � ŒIik ; I.iC1/k/ is a box determined by the element Ii D
.Ii1; : : : ; Iik/ of the sequence I 2 SJ .I/. In order to avoid problems with measurability,
we always assume that I 3 t 7! at .x/ 2 C is continuous for �-almost every x 2 X , or J
is countable. We also use the convention that the supremum taken over the empty set is
zero.
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Remark 2.4. Let 1 � r <1. Some remarks are in order.
(1) Clearly, OrI;J .at W t 2 J/ defines a semi-norm.

(2) Let I � Rk be an index set such that #I � 2, and let J1; J2 � I be disjoint. Then
for any family .at W t 2 I/ � C, any J 2 ZC and any I 2 SJ .I/, one has

OrI;J .at W t 2 J1 [ J2/ � O
r
I;J .at W t 2 J1/CO

r
I;J .at W t 2 J2/:

(3) Let I � Rk be a countable index set such that #I � 2 and J � I. Then for any
family .at W t 2 I/ � C, any J 2 ZC, any I 2 SJ .I/, one has

(2.5) OrI;J .at W t 2 J/ ≲
�X
t2I

jat j
r
�1=r

:

(4) Let .at W t 2 Ik/ be a k-parameter family of measurable functions on X . For any
I�R with #I � 2 and any sequence I D .Ii W i 2N�J /2SJ .I/ of length J 2 ZC[¹1º,
we define the diagonal sequence NI D . NIi W i 2N�J / 2SJ .Ik/ by setting NIi D .Ii ; : : : ; Ii /
2 Ik for each i 2 N�J . Then for any p 2 Œ1;1� and for any J � Ik , one has

sup
I2SJ .I/

kOrNI ;J .at W t 2 J/kLp.X/ � sup
I2SJ .Ik/

kOrI;J .at W t 2 J/kLp.X/:

We now show that oscillation semi-norms always dominate maximal functions.

Proposition 2.6. Assume that k 2 ZC, I � R is such that #I � 2, and let .at W t 2 Ik/
be a k-parameter family of measurable functions on X . Then for every p 2 Œ1;1� and
r 2 Œ1;1/, we have

(2.7)
 sup
t2.In¹sup Iº/k

jat j

Lp.X/

� sup
t2Ik
katkLp.X/C sup

J2ZC

sup
I2SJ .I/

OrNI ;J .at W t 2Ik/

Lp.X/

;

where NI 2 SJ .Ik/ is the diagonal sequence corresponding to a sequence I 2 SJ .I/ as
in Remark 2.4.

Proof. Let aD inf I and b D sup I. We see that a < b, since #I � 2. We choose a decreas-
ing sequence .an W n 2 N/ � I and an increasing sequence .bn W n 2 N/ � I such that
a � an � bn � b for every n 2 N, satisfying

lim
n!1

an D a and lim
n!1

bn D b;

and such that an D a for all n 2N if a 2 I. By the monotone convergence theorem, we get sup
t2.In¹sup Iº/k

jat j

Lp.X/

D lim
n!1

 sup
t2Œan;bn/k\Ik

jat j

Lp.X/

� sup
n
ka NankLp.X/ C sup

n

 sup
t2Œan;bn/k\Ik

jat � a Nan j

Lp.X/

;

where Nan D .an; : : : ; an/ 2 Œan; bn/k \ Ik , and consequently we obtain (2.7).
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A remarkable feature of the oscillation seminorms is that they imply pointwise con-
vergence. This property is formulated precisely in the following proposition.

Proposition 2.8. Let .X;B.X/; �/ be a � -finite measure space. For k 2 ZC, let .at W
t 2 RkC/ be a k-parameter family of measurable functions on X . Suppose that there are
p; r 2 Œ1;1/ such that for any J 2 ZC one has

sup
I2SJ .RC/

kOrNI ;J .at W t 2 RkC/kLp.X/ � Cp;r .J /;

where
lim
J!1

J�1=.p_r/Cp;r .J / D 0;

and NI 2 SJ .RkC/ is the diagonal sequence corresponding to a sequence I 2 SJ .RC/ as
in Remark 2.4. Then the limits

(2.9) lim
min¹t1;:::;tkº!1

a.t1;:::;tk/ and lim
max¹t1;:::;tkº!0

a.t1;:::;tk/;

exist �-almost everywhere on X .

Proof. We only prove the first conclusion of (2.9), as the second one can be proved in
much the same way. Suppose by contradiction that the first limit in (2.9) does not exist �
almost everywhere on X . Since � is a � -finite measure, then there exists X0 � X such
that �.X0/ <1, and also there is a small ı > 0 such that

�
�®
x 2 X0 W lim

N!1
sup
s;t� NN

jas.x/ � at .x/j > 2ı
¯�
> 2ı;

where NN D .N; : : : ; N / 2 ZkC. For N 2 ZC, define

AN WD
®
x 2 X0 W sups;t� NN jas.x/ � at .x/j > 2ı

¯
:

Note that ANC1 � AN for every N 2 ZC, and consequently from the continuity of mea-
sure one has

lim
N!1

�
�®
x 2 X0 W sups;t� NN jas.x/ � at .x/j > 2ı

¯�
> 2ı:

Hence there is an N0 2 ZC such that for every N � N0, we have

�
�®
x 2 X0 W supt� NN jat .x/ � a NN .x/j > ı

¯�
> ı:

For M;N 2 ZC, we now define

BNM WD
®
x 2 X0 W sup NN�t�s NM

jat .x/ � a NN .x/
¯
> ıj:

We observe that BNM � B
N
MC1 for every M;N 2 ZC and using once again continuity of

measure, we obtain for every N � N0,

(2.10) lim
M!1

�.BNM / D �
�®
x 2 X0 W supt� NN jat .x/ � a NN .x/j > ı

¯�
> ı:
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Using (2.10) recursively, we can construct a strictly increasing sequence .Ii W i 2N/�RC
with I0 D N0 such that for every i 2 N we have

(2.11) �
�®
x 2 X0 W supt2BŒ NIi �

jat .x/ � a NIi .x/j > ı
¯�
> ı;

where NIi D .Ii ; : : : ; Ii / 2 RkC. Then by (2.11) we obtain for every J 2 ZC that

J ıpC1 D

J�1X
jD0

ıpC1 �

Z
X

J�1X
jD0

sup
t2BŒ NIj �

jat .x/ � a NIj .x/j
p d�.x/

� J 1�q=r sup
I2SJ .ZC/

kOrNI ;J .at W t 2 RkC/k
p

Lp.X/
;

where q WD p ^ r . Thus

J q=rıpC1 � sup
I2SJ .RC/

kOrNI ;J .at W t 2 RkC/k
p

Lp.X/
� Cp;r .J /

p:

Letting J !1 we get a contradiction. This completes the proof of Proposition 2.8.

2.8. Variation semi-norms

We recall the definition of r-variations. For any I � R, any family .at W t 2 I/ � C, and
any exponent 1 � r <1, the r-variation semi-norm is defined to be

V r .at W t 2 I/ WD sup
J2ZC

sup
t0<���<tJ
tj2I

� J�1X
jD0

jatjC1 � atj j
r
�1=r

;(2.12)

where the latter supremum is taken over all finite increasing sequences in I.

Remark 2.13. Some remarks about definition (2.12) are in order.
(1) Clearly, V r .at W t 2 I/ defines a semi-norm.
(2) The function r 7! V r .at W t 2 I/ is non-increasing. Moreover, if I1 � I2, then

V r .at W t 2 I1/ � V
r .at W t 2 I2/:

(3) Let I � R be such that #I � 2. Let .at W t 2 R/ � C be given, and let r 2 Œ1;1/.
If V r .at W t 2 R/ <1, then limt!1 at exists. Moreover, for any t0 2 I one has

(2.14) sup
t2I
jat j � jat0 j C V

r .at W t 2 I/:

(4) Let I � R be such that #I � 2. Then for any r � 1, any family .at W t 2 I/ � C,
any J 2 ZC [ ¹1º, and any I 2 SJ .I/, one has

(2.15) OrI;J .at W t 2 I/ � V r .at W t 2 I/ � 2
�X
t2I

jat j
r
�1=r

:
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(5) Let .at .x/ W t 2 RC/ be a family of complex-valued measurable functions on a
� -finite measure space .X;B.X/; �/. Then for any p � 1 and r � 2 we have

(2.16) sup
N2ZC

sup
I2SN .RC/

kOrI;N .at W t 2 RC/kLp.X/

≲ sup
N2ZC

sup
I2SN .D/

kOrI;N .at W t 2 D/kLp.X/ C
�X

n2Z

V r .at W t 2 Œ2
n; 2nC1�/2

�1=2
Lp.X/

:

The inequality (2.16) is an analogue of Lemma 1.3 on p. 6716 of [37] for oscillation
semi-norms.

2.9. Jumps

The r-variation is closely related to the �-jump counting function. Recall that for any
� > 0, the �-jump counting function of a function f W I ! C is defined by

N�f WD N�.f .t/ W t 2 I/

WD sup
®
J 2 N W 9t0<���<tJ

tj2I
W min
0�j�J�1

jf .tjC1/ � f .tj /j � �
¯
:(2.17)

Remark 2.18. Some remarks about definition (2.17) are in order.
(1) For any � > 0 and a function f W I ! C, let us also define the following quantity:

N�f WD N�.f .t/ W t 2 I/

WD sup
®
J 2 N W 9s1<t1�����sJ<tJ

sj ;tj2I
W min
1�j�J

jf .tj / � f .sj /j � �
¯
:

Then one has N�f � N�f � N�=2f .
(2) It is clear from these definitions that f 7! sup�>0 k�N�.f .�; t / W t 2 I/1=�kLp.X/

satisfies a quasi-triangle inequality. However it is not obvious whether a genuine triangle
inequality is available for �-jumps. In many applications, the problem can be overcome
since there is always a comparable semi-norm in the following sense. Namely, for every
p 2 .1;1/, and � 2 .1;1/ there exists a constant 0 < C <1 such that for every measure
space .X;B.X/; �/, and I � R, there exists a (subadditive) seminorm jjj � jjj such that the
following two-sided inequality

C�1jjjf jjj � sup
�>0

k�N�.f .�; t / W t 2 I/1=�kLp.X/ � C jjjf jjj

holds for all measurable functions f WX � I ! C. This was established in Corollary 2.2
on p. 805 of [57].

(3) Let .at .x/ W t 2R/ be a family of measurable functions on a � -finite measure space
.X;B.X/;�/. Let I � R and #I � 2. Then for every p 2 Œ1;1� and r 2 Œ1;1/, we have

(2.19) sup
�>0

k�N�.at W t 2 I/1=rkLp.X/ � kV
r .at W t 2 I/kLp.X/;

since for all � > 0 we have the following pointwise estimate:

�N�.at .x/ W t 2 I/1=r � V r .at .x/ W t 2 I/:
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(4) Let .X;B.X/; �/ be a � -finite measure space and let I � R. Fix p 2 Œ1;1� and
1 � � < r �1. Then for every measurable function f WX � I! C we have the estimate

(2.20) kV r
�
f .�; t / W t 2 I

�
kLp;1.X/ ≲p;�;r sup

�>0

k�N�.f .�; t / W t 2 I/1=�kLp;1.X/:

The inequality (2.20) can be thought of as an inverse to inequality (2.19). A proof of (2.20)
can be found in Lemma 2.3 on p. 805 of [57]. Moreover, one cannot replace Lp;1.X/
with Lp.X/ in (2.20), see Lemma 2.24 in [54]. One can also show that there is a function
f WZC�ZC ! R such that

sup
N2ZC

sup
I2SN .ZC/

kOrI;N .f .�; n/ W n 2 ZC/k`p.ZC/ D1; 2 � r � 1;

but
sup
�>0

k�N�.f .�; n/ W n 2 ZC/
1=2
k`p.ZC/ <1:

3. One-parameter oscillation estimates

We state a simple one-parameter oscillation estimate for projections, which has many
interesting implications. Here we are inspired by observations of M. Lacey who high-
lighted and pointed out the importance of projections in pointwise ergodic theory; see [70].

Theorem 3.1. Let .X;B.X/; �/ be a � -finite measure space and let I � R be such that
#I � 2. Let .Pt /t2I be a family of projections; that is, the linear operators Pt WL0.X/!
L0.X/ satisfy

(3.2) PsPt D Ps^t ; for s 6D t:

If the set I is uncountable, then we assume in addition that I 3 t 7! Ptf is continuous
�-almost everywhere on X for every f 2 L0.X/. Let p; r 2 .1;1/ be fixed. Suppose that
the Pt are bounded on Lp.X/, and suppose that the following two estimates hold:

(3.3) sup
J2ZC

sup
I2SJ .I/

�J�1X
jD0

j.PIjC1 �PIj /f j
r
�1=r

Lp.X/
≲p;r kf kLp.X/; f 2Lp.X/;

and the vector-valued estimate uniformly in .fj /j2Z 2 L
p.X I `r .Z//

(3.4)
�X

j2Z

sup
t2I
jPtfj j

r
�1=r

Lp.X/
≲p;r

�X
j2Z

jfj j
r
�1=r

Lp.X/
:

Then the following one-parameter oscillation estimate holds:

(3.5) sup
J2ZC

sup
I2SJ .I/

kOrI;J .Ptf W t 2 I/kLp.X/ ≲p;r kf kLp.X/; f 2 Lp.X/:

Proof. Fix J 2 ZC and I 2 SJ .I/ and observe, using (3.2), that

.Pt � PIj /f D Pt .PIjC1 � PIj /f; whenever Ij < t < IjC1:
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Using this identity and then (3.4), we see that� J�1X
jD0

sup
Ij<t<IjC1

t2I

jPtf � PIj f j
r
�1=r

Lp.X/

�

� J�1X
jD0

sup
t2I
jPt .PIjC1�PIj /f j

r
�1=r

Lp.X/
≲p;r

� J�1X
jD0

j.PIjC1�PIj /f j
r
�1=r

Lp.X/
:

Now applying (3.3) we arrive at (3.5). The proof of Theorem 3.1 is complete.

Remark 3.6. A few remarks are in order.
(1) Theorem 3.1 will be applied mainly when r D 2. Then the estimate in (3.3) is a

square function estimate, which can be deduced from the estimate

(3.7) sup
J2ZC

sup
I2SJ .I/

sup
j"j j�1
0�j�J

J�1X
jD0

"j .PIjC1f �PIj f /

Lp.X/

≲p kf kLp.X/; f 2Lp.X/:

In fact, the implication from (3.7) to (3.3) is a simple consequence of Khintchine’s
inequality.

(2) Let .X;B.X/; �/ be a � -finite measure space, let I � R be countable, and let
.Tt /t2I be a family of bounded operators on Lp.X/ for p 2 .1;1/ satisfying�X

t2I

j.Tt � Pt /f j
2
�1=2

Lp.X/
≲p kf kLp.X/; f 2 Lp.X/;(3.8)

where .Pt /t2I is a family of projections as in Theorem 3.1 satisfying (3.3) and (3.4) with
r D 2. Then one has

sup
J2ZC

sup
I2SJ .I/

kO2I;J .Ttf W t 2 I/kLp.X/ ≲p kf kLp.X/; f 2 Lp.X/:(3.9)

In fact, in view of (2.15), the inequality (3.8) easily reduces the 2-oscillation estimate for
.Tt /t2I to a 2-oscillation estimate for .Pt /t2I . This observation will be very useful in
many applications. We will see how it works in the case of smooth bump functions, see
Theorem 3.17.

(3) As we know, oscillation inequalities are important in pointwise convergence prob-
lems, and in the vast majority of applications it suffices to understand (3.9) for pD 2. This
can be nicely illustrated as follows: suppose for p 2 .1;1/ one has an a priori maximal
bound

ksup
t2I
jPtf jkLp.X/ ≲p kf kLp.X/; f 2 Lp.X/:(3.10)

Then (3.10) with p D 2 can be used to verify (3.4) with p D r D 2. Finally, it remains
to verify (3.3) with p D r D 2, which in many cases can be deduced by using Fourier
techniques or exploiting almost-orthogonality phenomena invoking T T � arguments, see
Proposition 3.22.

We now derive some consequences of Theorem 3.1.
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3.1. Oscillation inequalities for martingales

We recall some basic facts about martingales. We will follow notation from [28], Sec-
tion 3, p. 165. Let .X;B.X/;�/ be a � -finite measure space and let I be a totally ordered
set. A sequence of sub-� -algebras .Ft W t 2 I/ is called a filtration if it is increasing and the
measure � is � -finite on each Ft . A martingale adapted to a filtration .Ft W t 2 I/ is a fam-
ily of functions f D .ft W t 2 I/�L1.X;B.X/;�/ such that fs DEŒft jFs� for every s; t 2 I
so that s � t , where EŒ�jF � denotes the the conditional expectation operator with respect to
a sub-� -algebra F �B.X/. We say that a martingale f D .ft W t 2 I/� Lp.X;B.X/;�/
is bounded if

sup
t2I
kftkLp.X/ ≲p 1:

Applying Theorem 3.1, we immediately recover the oscillation inequality of Jones–
Kaufman–Rosenblatt–Wierdl [33], which in fact is an oscillation inequality for bounded
martingales.

Proposition 3.11. For every p 2 .1;1/, there exists a constant Cp > 0 such that for every
bounded martingale f D .fn W n 2 Z/ � Lp.X;B.X/; �/ corresponding to a filtration
.Fn W n 2 Z/ one has

(3.12) sup
J2ZC

sup
I2SJ .Z/

kO2I;J .fn W n 2 Z/kLp.X/ � Cp sup
n2Z
kfnkLp.X/:

Inequality (3.12) was established in Theorem 6.4 on p. 930 of [33]. The authors first
established (3.12) for p D 2, then proved weak type .1; 1/ as well as L1 ! BMO vari-
ants of (3.12), and consequently derived (3.12) for all p 2 .1;1/ by interpolation. Our
approach is direct and will avoid using any interpolation arguments in the proof.

Proof of Proposition 3.11. Fix p 2 .1;1/. Define projections by Pn.f / WD EŒf jFn� for
any n 2 Z and f 2 Lp.X/. Since f D .fn W n 2 Z/ is a martingale, then fn D Pn.fn/ for
any n 2 Z, and consequently (3.2) holds. Moreover, by Burkholder [11], see also [12], it
is very well known that (3.7) holds, which in view of Remark 3.6 implies

sup
J2ZC

sup
I2SJ .ZC/

� J�1X
jD0

jPIjC1.fIJ / � PIj .fIJ /j
2
�1=2

Lp.X/
≲p sup

n2Z
kfnkLp.X/:

This consequently verifies inequality (3.3). Invoking the Fefferman–Stein inequality for
non-negative submartingales (Theorem 3.2.7 on p. 178 of [28]), we obtain�X

j2Z

sup
n2Z

ˇ̌
EŒjfj j jFn�

ˇ̌2�1=2
Lp.X/

≲p
�X

j2Z

jfj j
2
�1=2

Lp.X/
;

uniformly in .fj /j2Z 2 L
p.X I `2.Z//, which in turn verifies the vector-valued estimate

from (3.4). Appealing to Theorem 3.1, the oscillation inequality (3.12) follows and the
proof of Proposition 3.11 is complete.

3.2. Oscillation inequalities for smooth bump functions

Our aim will be to show that oscillation inequalities hold for L1-dilated smooth bump
functions. We begin with the main estimate.
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Proposition 3.13. For d 2 ZC, let �WRd ! Œ0; 1� be a smooth function satisfying

(3.14) 1Œ�1;1�d � � � 1Œ�2;2�d for � 2 Rd :

For every n 2 Z and � 2 Rd , define �2n.�/ WD �.2�n�/. Then for every p 2 .1;1/, one
has

(3.15) sup
J2ZC

sup
I2SJ .Z/

kO2I;J .TRd Œ�2n �f W n 2 Z/kLp.Rd / ≲p kf kLp.Rd /;

uniformly in f 2 Lp.Rd /.

Proof. Setting Pnf WD TRd Œ�2n �f for every n 2Z, and using (3.14), one sees that Pn is a
projection in the sense of (3.2). Standard arguments based on the Littlewood–Paley theory
(see Section 2.5) show that (3.3) with r D 2 holds. By the Fefferman–Stein inequality [72],
we also obtain (3.4). An application of Theorem 3.1 now gives (3.15) as desired.

Now our aim will be to extend inequality (3.15) to continuous times and general
smooth bump functions.

Remark 3.16. A few remarks concerning Proposition 3.13 are in order.
(1) An important feature of our approach in Proposition 3.13 is that we do not need

to invoke the corresponding inequality for martingales in the proof. This stands in sharp
contrast to variants of inequality (3.15) involving r-variations, where all arguments to the
best of our knowledge use the corresponding r-variational inequalities for martingales.

(2) Of course, inequality (3.15) can be reduced to the martingale setting from Propo-
sition 3.11 by invoking square function arguments (Lemma 3.2 on p. 6722 of [37]) and
standard Littlewood–Paley theory. The details may be found in [58].

(3) With respect to the previous two remarks, it would be interesting to know whether
the r-variational counterpart of Proposition 3.13 can be proved without appealing to r-va-
riational inequalities for martingales, see Lépingle’s inequality (1.13).

Theorem 3.17. For d 2 ZC, let �WRd ! C be a Schwartz function. For t 2 RC and
x 2 Rd , define �t .x/ WD t�d�.t�1x/. Then for every p 2 .1;1/, one has

(3.18) sup
J2ZC

sup
I2SJ .RC/

kO2I;J .�t � f W t 2 RC/kLp.Rd / ≲p kf kLp.Rd /; f 2 Lp.Rd /:

Remark 3.19. Theorem 3.17 immediately extends to families of partial convolution oper-
ators. If Rd D Rn �Rm, we write elements x 2 Rd as x D .x0; x00/, where x0 2 Rn and
x00 2 Rm. Let � be a Schwartz function on Rn and define

Ttf .x/ D

Z
Rn

f .x0 � y; x00/ �t .y/ dy:

The oscillation inequality (3.18) implies the corresponding oscillation inequality for the
family of partial convolution operators .Tt /t2RC .

Proof of Theorem 3.17. To prove (3.18), in view of (2.16), it suffices to show

(3.20) sup
J2ZC

sup
I2SJ .D/

kO2I;J .�t � f W t 2 D/kLp.Rd / ≲p kf kLp.Rd /; f 2 Lp.Rd /;
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and

(3.21)
�X

k2Z

V 2
�
�t � f W t 2 Œ2

k ; 2kC1�
�2�1=2

Lp.Rd /
≲ kf kLp.Rd /; f 2 Lp.Rd /:

Short 2-variational estimates were treated in [37] and in particular, the estimate (3.21)
follows directly from Lemma 6.1 in [37].

To establish (3.20), we first observe that we may assume that
R

Rd �.x/dx D 0. Indeed,
if
R

Rd �.x/dx ¤ 0, then by scaling we may assume that
R

Rd �.x/dx D �.0/D 1, where �
appears in Proposition 3.13. By standard Littlewood–Paley arguments (see Section 2.5),
we note that (3.8) holds with Ttf D �t � f and Ptf D TRd Œ�t �f . Thus, by Remark 3.6,
we see that (3.20) follows from the oscillation inequality (3.15) and so we may assume �
has mean zero. Using (2.5), we see that

LHS of (3.20) ≲
�X

k2Z

j�2k � f j
2
�1=2

Lp.Rd /
≲ kf kLp.Rd /I

the last inequality following directly from Theorem B in [20]; see Section 2.5. This com-
pletes the proof of Theorem 3.17.

3.3. Oscillation inequalities for orthonormal systems

The following result justifies in a strong sense the importance of oscillation inequalities.

Proposition 3.22. Let .X;B.X/; �/ be a � -finite measure space such that the corre-
sponding Hilbert space L2.X/ is endowed with an orthonormal basis .ˆn/n2N . Then the
projection operators

(3.23) Pnf WD

nX
kD0

hf;ˆkiˆk ; f 2 L2.X/;

satisfy the oscillation estimate

(3.24) sup
J2ZC

sup
I2SJ .N�N /

kO2I;J .Pnf W n 2 N�N /kL2.X/ ≲ log.N C 1/ kf kL2.X/:

Furthermore, if the projection operators Pn satisfy the maximal estimate

(3.25)
sup
n2N
jPnf j


L2.X/

≲ kf kL2.X/; f 2 L2.X/;

then one has the uniform bound

sup
J2ZC

sup
I2SJ .N/

kO2I;J .Pnf W n 2 N/kL2.X/ ≲ kf kL2.X/; f 2 L2.X/:(3.26)

Proof. It is easy to see that Pn from (3.23) satisfies (3.2). To verify (3.3), we fix J 2 ZC
and I 2 SJ .N/ and note that by orthogonality we have� J�1X

jD0

j.PIjC1 � PIj /f j
2
�1=22

L2.X/
D

J�1X
jD0

IjC1X
k1DIjC1

IjC1X
k2DIjC1

hf;ˆk1ihf;ˆk2ihˆk1 ; ˆk2i

�

X
k2N

jhf;ˆkij
2
D kf k2

L2.X/
;
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where in the last equality we have used Parseval’s identity for orthonormal bases. This
proves (3.3) with p D r D 2. A famous result of Rademacher [68] and Menshov [52]
asserts that there is a constant C > 0 such that for anyN 2ZC, the projection operator Pn
from (3.23) satisfies

(3.27)
 sup
n2ŒN �

jPnf j

L2.X/

� C log.NC1/
� X
n2ŒN �

jhf;ˆnij
2
�1=2

≲ log.NC1/kf kL2.X/:

Using (3.27), we see that (3.4) holds with p D r D 2 with constant log.N C 1/. Now
applying Theorem 3.1 we obtain (3.24).

Under condition (3.25), we see that (3.4) holds with a uniform constant for p D r D 2
and so, applying Theorem 3.1 again, we obtain (3.26).

Proposition 3.22 is a key example in the study of oscillation semi-norms from the point
of view their importance and usefulness in pointwise convergence problems. It exhibits,
in view of inequality (2.7), that oscillation estimates (3.26) and maximal estimates (3.25)
are equivalent in the class of orthonormal systems.

However, we have to emphasize that the maximal estimate from (3.25) is a very strong
condition. On the one hand, we have Menshov’s construction [52] of an orthonormal basis
.‰n/n2N � L

2.Œ0; 1�/ and a function f0 2 L2.Œ0; 1�/ with almost everywhere diverging
partial sums

Pn
kD0hf;‰ki‰k . Therefore maximal estimate (3.25) for Menshov’s system

cannot hold. In fact, the best what we can expect in the general case is the Rademacher–
Menshov bound (3.27). The above-mentioned Menshov’s construction [52] also shows
that (3.27) is sharp and that the logarithm in (3.27) cannot be removed.

On the other hand, there is the famous result of Carleson (see [15]) which led to
establishing (3.25) for the canonical trigonometric system .e.n�//n2Z on L2.Œ0; 1�/ (see
also [22, 27, 48]).

3.4. Oscillation inequalities for the Carleson operator

In this subsection, we obtain certain r-oscillation estimates for partial Fourier integrals on
the real line R.

The Carleson operator Ct is defined, for f 2 �.R/, x 2 R and t 2 RC, by

(3.28) Ctf .x/ WD TRŒ1Œ�t;t��f .x/ D

Z t

�t

FRf .�/ e.�x�/ d�;

The celebrated Carleson–Hunt theorem (see the papers of Carleson [15] and Hunt [27])
asserts that for every p 2 .1;1/ there is a constant Cp > 0 such thatsup

t>0

jCtf j

Lp.R/

� Cpkf kLp.R/; f 2 Lp.R/:(3.29)

Remark 3.30. A few remarks about the Carleson–Hunt theorem are in order.
(1) Carleson [15] originally proved that the maximal partial sum operator of Fourier

series corresponding to square-integrable functions on the circle is weak type .2; 2/. Not
long afterwards this result was extended by Hunt [27] who proved that the maximal partial
sum operator of Fourier series is bounded on Lp.T / for any p 2 .1;1/.
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(2) Kenig and Tomas [39] used a transplantation arugment to show that the latter result
is equivalent to inequality (3.29). This equivalence was extended to variation and oscil-
lation inequalities in [63]. The foundational work of Kolmogorov [40, 41] shows that the
range of p 2 .1;1/ in inequality (3.29) is sharp.

(3) An alternative proof of Carleson’s theorem was provided by Fefferman [22], who
pioneered the ideas of the so called time-frequency analysis.

(4) Lacey and Thiele [48] established an independent proof on the real line of the
weak type .2; 2/ boundedness of the maximal Fourier integral operator (3.28). The latter
bound was extended by Grafakos, Tao, and Terwilleger [25] to (3.29) for all p 2 .1;1/,
see also [67].

(5) Inequality (3.29) was extended to the vector-valued setting by Grafakos, Martell
and Soria [24], who proved that that for every p; r 2 .1;1/, there is a constant Cp;r > 0
such that �X

j2Z

sup
t>0

jCtfj j
r
�1=r

Lp.R/
� Cp;r

�X
j2Z

jfj j
r
�1=r

Lp.R/
;(3.31)

uniformly in .fj /j2Z 2 L
p.X I `r .Z//.

(6) We finally refer to the survey of Lacey [45], where details (including comprehen-
sive historical background) and an extensive literature are given about this fascinating
subject of pointwise convergence of Fourier series and related topics.

A far-reaching quantitative extension of (3.29) was obtained by the third author in
collaboration with Oberlin, Seeger, Tao and Thiele [63], which asserts that for every p 2
.1;1/ and for every r > max¹2; p=.p � 1/º, there is a constant Cp;r > 0 such that

kV r .Ctf W t 2 RC/kLp.R/ � Cp;rkf kLp.R/; f 2 Lp.R/:(3.32)

See also in [75] for a different proof using outer measures. Furthermore, a restricted weak-
type bound is established at the endpoint p D r 0 when p 2 .1; 2/ (here r 0 D r=.r � 1/)
and it is open whether weak type .p; p/ holds true. It also follows from [63] that the
ranges of parameter p 2 .1;1/ and r > max

®
2; p0

¯
in (3.32) are sharp. In the endpoint

case p D r 0, the Lorentz space Lr
0;1 cannot be replaced by a smaller Lorentz space.

For weighted variational estimates for the Carleson operator, see [18] and [17], and the
references given there.

Inequality (3.32), in view of inequality (2.15), immediately implies that for every p 2
.1;1/ and for every r > max¹2; p0º, there is a constant Cp;r > 0 (actually, the same as
in (3.32)) such that

(3.33) sup
J2ZC

sup
I2SJ .RC/

kOrI;J .Ctf W t 2 RC/kLp.R/ � Cp;rkf kLp.R/; f 2 Lp.R/:

For applications of (3.32) and (3.33) to the Wiener–Wintner theorem in ergodic theory,
see [47] and [63].

It has been observed by M. Lacey [44] (see [70] for the case pD 2) that (3.33) remains
true for r D 2 whenever p 2 Œ2;1/. Furthermore, this can be extend to all p > 1 when
we restrict the t parameter in Ct to dyadic numbers t 2 D. Our aim here is to show how
these results follow as an immediate consequence of Theorem 3.1.
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Proposition 3.34. Let .Ct /t2RC be as in (3.28). Then for every p 2 Œ2;1/, there exists a
constant Cp > 0 such that

sup
J2ZC

sup
I2SJ .RC/

kO2I;J .Ctf W t 2 RC/kLp.R/ � Cpkf kLp.R/; f 2 Lp.R/:(3.35)

Furthermore, for .Ct /t2D , we have

(3.36) sup
J2ZC

sup
I2SJ .D/

kO2I;J .Ctf W t 2 D/kLp.R/ � Cpkf kLp.R/; for all p 2 .1;1/:

Proof. Observe the operators .Ct /t2RC are projections in the sense of (3.2). Moreover,
when the sequence .Ij /j2N � D lies among the dyadic numbers, the bound

sup
J2ZC

sup
I2SJ .D/

� J�1X
jD0

j.CIjC1 � CIj /f j
2
�1=2

Lp.R/
≲p kf kLp.R/; p 2 .1;1/;

follows from the classical Littlewood–Paley inequality associated to dyadic intervals (no
need to refer to the refinements of the theory from Section 2.5). This verifies (3.3) with
r D 2 and p 2 .1;1/ in the dyadic case. Furthermore, by Rubio de Francia’s square
function theorem for intervals (see Section 2.5), one has for every p 2 Œ2;1/ that

sup
J2ZC

sup
I2SJ .RC/

� J�1X
jD0

j.CIjC1 � CIj /f j
2
�1=2

Lp.R/
≲p kf kLp.R/; f 2 Lp.R/;

which verifies (3.3) with r D 2 and p 2 Œ2;1/. Using (3.31) with r D 2, we also see
that (3.4) is verified with r D 2 and p 2 .1;1/. Thus, invoking Theorem 3.1, inequali-
ties (3.35) and (3.36) follow.

Proposition 3.34 for p D 2 was established by Rosenblatt and Wierdl (see inequal-
ity (4.12) on p. 82 of [70]). In [47], Lacey and Terwilleger established (3.36) for p 2
.1;1/. Proposition 3.34 gives a simple proof of these results.

In view of inequality (2.7) it is not difficult to see that the maximal estimates (3.29) and
the oscillation estimates (3.35) for the Carleson operator are equivalent for all p 2 Œ2;1/.

We also remark that the proof above also gives a proof of (3.33) which does not appeal
to the variational inequality (3.32). Indeed, Rubio de Francia’s result (inequality (7.1) on
p. 10 of [71]) states that for every p 2 .1; 2/ and r > p0, one has

(3.37) sup
J2ZC

sup
I2SJ .RC/

� J�1X
jD0

j.CIjC1 � CIj /f j
r
�1=r

Lp.R/
≲p;r kf kLp.R/;

for f 2 Lp.R/. Hence using (3.37) and (3.31) and invoking Theorem 3.1, we obtain the
desired claim in (3.33).

A counterexample of Cowling and Tao [16] to Rubio de Francia’s conjecture (Conjec-
ture 7.2 in [71]) shows that for all p 2 .1; 2/, one has

sup
kf kLp.R/�1

sup
I2S1.RC/

� 1X
jD0

j.CIjC1 � CIj /f j
r
�1=r

Lp.R/
D1; where r D

p

p � 1
�

Therefore (3.33) for r D p0 with p 2 .1; 2/ cannot hold. This shows that the range of p
and r in (3.33) and (3.35) is sharp.
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4. Multi-parameter oscillation estimates

In this section we establish Theorem 1.25. We begin with proving an abstract multi-
parameter oscillation result, which may be of independent interest. Before we do this,
we need more notation. For a linear operator T WL0.X/! L0.X/, we shall denote by jT j
the sublinear maximal operator taken in the lattice sense defined by

jT jf .x/ D sup
jgj�jf j

jTg.x/j; x 2 X; and f 2 Lp.X/:

For two linear operators S; T WL0.X/! L0.X/, we have jST jf � jS jjT jf whenever
f 2 L0.X/.

Proposition 4.1. Let .X;B.X/; �/ be a � -finite measure space and let I � R be such
that #I � 2. Let k 2 N�2 and p; r 2 .1;1/ be fixed. Let .Tt /t2Ik be a family of linear
operators of the form

Tt WD T
1
t1
� � �T ktk ; t D .t1; : : : ; tk/ 2 Ik ;

where ¹T iti W i 2 Œk�; ti 2 Iº is a family of commuting linear operators, which are bounded
onLp.X/. If the set I is uncountable, then we also assume that I 3 t 7! T it f is continuous
�-almost everywhere onX for every f 2L0.X/ and i 2 Œk�. Further assume that for every
i 2 Œk�, we have

(4.2) sup
J2ZC

sup
I2SJ .I/

kOrI;J .T
i
t f W t 2 I/kLp.X/ ≲p;r kf kLp.X/; f 2 Lp.X/;

and

(4.3)
�X

j2Z

�
sup
t2I
jT it jjfj j

�r�1=r
Lp.X/

≲p;r
�X

j2Z

jfj j
r
�1=r

Lp.X/
;

uniformly in .fj /j2Z 2 L
p.X I `r .Z//. Then we have the multi-parameter r-oscillation

estimate

sup
J2ZC

sup
I2SJ .Ik/

kOrI;J .Ttf W t 2 Ik/kLp.X/ ≲ kf kLp.X/; f 2 Lp.X/:

Proof. For i 2 Œk� and n D .n1; : : : ; ni�1; niC1; : : : ; nk/ 2 Ik�1, let us denote

T .i/n WD T
1
n1
� � �T i�1ni�1

T iC1niC1
� � �T knk :

Using this definition, the bound (4.3) and proceeding inductively, we easily see that

(4.4)
�X

j2Z

�
sup
n2Ik�1

jT .i/n j jfj j
�r�1=r

Lp.X/
≲p

�X
j2Z

jfj j
r
�1=r

Lp.X/
;

uniformly in i 2 Œk� and .fj /j2Z 2 L
p.X I `r .Z//. Furthermore, for n 2 Ik and Ij D

.Ij1; : : : ; Ijk/ 2 Ik , we have the identity

(4.5) Tnf � TIj f D

kX
mD1

T
.m/

n.m;n;Ij /
.Tmnm � T

m
Ijm
/f;

where n.m; n; Ij / WD .n1; : : : ; nm�1; Ij.mC1/; : : : ; Ijk/ 2 Ik�1.
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We now fix J 2 ZC and a sequence I 2 SJ .Ik/. Applying the identity (4.5), the
triangle inequality, the bound (4.4) applied to

f mj D sup
Ijm�nm<I.jC1/m

nm2I

jTmnmf � T
m
Ijm
f j

and (4.2), we obtain� J�1X
jD0

sup
n2BŒIj �\Ik

jTnf � TIj f j
r
�1=r

Lp.X/

�

kX
mD1

� J�1X
jD0

�
sup

n2BŒIj �\Ik
jT
.m/

n.m;n;Ij /
j jTmnmf � T

m
Ijm
f j
�r�1=r

Lp.X/

�

kX
mD1

� J�1X
jD0

�
sup
n2Ik�1

jT .m/n j

�
sup

Ijm�nm<I.jC1/m
nm2I

jTmnmf � T
m
Ijm
f j
��r�1=r

Lp.X/

≲
kX

mD1

� J�1X
jD0

sup
Ijm�nm<I.jC1/m

nm2I

jTmnmf � T
m
Ijm
f jr

�1=r
Lp.X/

≲ kf kLp.X/:

This completes the proof of Proposition 4.1.

We have a simple consequence of the above result.

Corollary 4.6. Let k 2 N�2 and fix parameters n1; : : : ; nk 2 ZC, and p 2 .1;1/. For
every i 2 Œk�, let �i WRni !C be a Schwartz function, and define �iti .x/ WD t

�ni
i �i .t�1i x/

for every ti 2 RC and x 2 Rni . Set N WD n1 C � � � C nk and for t D .t1; : : : ; tk/ 2 RkC
and x D .x1; : : : ; xk/ 2 RN WD Rn1 � � � � � Rnk , consider the operator Tt WLp.RN /!
Lp.RN / defined by

Ttf .x/ WD

Z
Rn1

� � �

Z
Rnk

� kY
iD1

�iti .zi /
�
f .x � z/ dz1 : : : dzk ; z D .z1; : : : ; zk/:

Then we have the following multi-parameter oscillation estimate:

(4.7) sup
J2ZC

sup
I2SJ .R

k
C/

kO2I;J .Ttf W t 2 RkC/kLp.RN / ≲p kf kLp.RN /; f 2 Lp.RN /:

Proof. For i 2 Œk� and zi 2 Rni , we denote by z.i/i D .z
.i/
1 ; : : : ; z

.i/

k
/ the point in RN D

Rn1 � � � � �Rnk such that z.i/j D 1¹j º.i/zi 2 Rni for any j 2 Œk�. We define the operators
T iti WL

p.RN /! Lp.RN / by

T itif .x/ WD

Z
Rni

�iti .zi /f .x � z
.i/
i / dzi ; x D .x1; : : : ; xk/ 2 RN ; ti 2 RC:
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These operators commute and we have Tt D T 1t1 ı � � � ı T
k
tk

. Furthermore, these are partial
convolution operators with Schwartz functions and so Theorem 3.17 (see Remark 3.19)
implies that the oscillation estimate (4.2) holds for the family .T it /t2RC , for each i 2 Œk�.
Finally, the Fefferman–Stein vector-valued maximal inequality shows that (4.3) holds and
so Proposition 4.1 gives us the desired conclusion (4.7). This completes the proof of Corol-
lary 4.6.

We close this section by establishing the main ergodic result of this survey.

Proof of Theorem 1.25. We will invoke Proposition 4.1 with kD d and r D 2. As in (1.28)
note that

A
P1.m1/;:::;Pd .md /
M IX;T

f D A
P1.m1/;:::;Pd .md /
M1;:::;Md IX;T1;:::;Td

f D A
P1.m1/
M1IX;T1

ı � � � ı A
Pd .md /
Md IX;Td

f;

where the averages AP1.m1/M1IX;T1
; : : : ; A

Pd .md /
Md IX;Td

commute. Thus it remains to verify (4.2)
and (4.3). We fix j 2 Œd �. For (4.2), we refer to Theorem 1.4 in [54], which ensures that
for every p 2 .1;1/, one has

sup
J2ZC

sup
I2SJ .ZC/

kO2I;J .A
Pj .mj /
Mj IX;Tj

WMj 2 ZC/kLp.X/ ≲p kf kLp.X/; f 2 Lp.X/:

For (4.3) we refer to Theorem C in [56], which guarantees that for every p2.1;1/ one has�X
�2Z

�
sup

Mj2ZC

jA
Pj .mj /
Mj IX;Tj

jjf�j
�2�1=2

Lp.X/
≲p

�X
�2Z

jf�j
2
�1=2

Lp.X/
;

uniformly in .fj /j2Z 2 L
p.X I `2.Z//. This completes the proof of the multi-parameter

oscillation inequality (1.27) in Theorem 1.25.
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