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Non-transversal multilinear duality and joints

Anthony Carbery and Michael Chi Yung Tang

Abstract. We develop a framework for a duality theory for general multilinear oper-
ators which extends that for transversal multilinear operators which has been estab-
lished by Carbery, Hänninen and Valdimarsson (2022). We apply it to the setting
of joints and multijoints, and obtain a “factorisation” theorem which provides an
analogue in the discrete setting of results of Bourgain and Guth from the Euclidean
setting.

To Antonio Córdoba and José Luis Fernández, to mark the terrific achievements of
the Revista Matemática Iberoamericana over the last thirty-five years. It was Anto-
nio’s paper “Translation invariant operators” which introduced the first author to the
delights of the world of Kakeya, for which he is forever grateful.

1. Introduction

In this note we consider multilinear duality in the context of non-transversality, motivated
by the study of joints and multijoints. In what might be called the transversal case, such a
theory has been developed in [5] (see also [7] and [6]), and the basic set-up there was as
follows.

We have a � -finite measure space .X; d�), a collection of normed lattices Y1; : : : ;Yd ,
and for each j a positive linear operator Tj WYj !M.X/, where M.X/ denotes the space
of measurable functions on X . A standard introduction to normed lattices and positive
operators is [19]. On first reading, one may take Yj to be Lpj .Yj / and T to be a linear
operator T WLpj .Yj /!M.X/ such that Tf .x/ � 0 a.e. for all nonnegative f 2 Lpj .Yj /.

Let ˛1; : : : ; ˛d be positive exponents satisfying
Pd
jD1 j̨ D 1. Suppose that we have

a “multilinear” norm bound on the weighted geometric mean T1f1.x/˛1 � � � Tdfd .x/˛d
given by

(1.1) k.T1f1/
˛1 � � � .Tdfd /

˛d kLq.X/ � Akf1k
˛1
Y1
� � � kfdk

˛d
Yd
;

where 1� q <1. We also assume that the Tj saturateX , meaning roughly that no subset
of X of positive measure remains unreached by all fj 2 Yj after the application of Tj (for
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the formal definition, see [5]). The conclusion is that for every nonnegative M 2 Lq
0

.X/,
there are locally integrable functions gj on X such that

(1.2) M.x/ � g1.x/
˛1 � � �gd .x/

˛d a.e.,

and for all j , for all fj 2 Yj , we have

(1.3)
Z
X

Tjfj .x/gj .x/ d�.x/ � AkMkq0 kfj kYj :

For reasons set out in [5], this is termed a multilinear duality theorem. In particular,
under the hypotheses described by (1.2) and (1.3), (1.1) follows by a simple application
of Hölder’s inequality. The scope of this theorem includes many inequalities arising in
multilinear harmonic analysis, especially those which have a transversal geometric set-up.
For this reason, we refer to this theory as the transversal multilinear duality theory; in
the present context, this means precisely that we are dealing with a pointwise product of
powers of several positive linear operators Tj WYj !M.X/.

There are, however, many other examples of multilinear geometric inequalities in har-
monic analysis which do not exhibit this transversality property, among them the general
endpoint multilinear Kakeya theorem of Bourgain and Guth, [3], and the multijoints estim-
ates of Zhang [26]. These are better modelled in the abstract setting by a single positive
multilinear operator T defined on the product Y1 � � � � � Yd . There is no longer any clear
role for a collection of possibly different exponents j̨ , and it seems natural to assign
the common value 1=d in place of them. In any case, the natural starting point of the
non-transversal theory is that of a positive multilinear T WY1 � � � � � Yd !M.X/ which
saturates X , and to assume that we have, for some q � 1,

(1.4) kT .f1; : : : ; fd /
1=d
kLq.X/ � A

�
kf1kY1 � � � kfdkYd

�1=d
;

in analogy with (1.1). Can we make conclusions analogous to (1.2) and (1.3)? It is not
perhaps immediately clear what the nature of such conclusions may be, but the following
describes one potential set of conclusions which has proved useful in practice.

Potential conclusion. For every M 2 Lq
0

.X/ of norm 1, there exist positive linear
operators Rj WYj ! L1.X/ such that, for every nonnegative fj 2 Yj ,

(1.5) M.x/dT .f1; : : : ; fd /.x/ � R1f1.x/ � � �Rdfd .x/ a.e.,

and

(1.6) kRj kYj!L1.X/ � A:

By an even more transparent application of Hölder’s inequality, the hypotheses described
by (1.5) and (1.6) readily yield (1.4). Moreover, when T .f1; : : : ; fd /.x/ happens to be
of the form T1f1.x/ � � � Tdfd .x/, the potential conclusion coincides with the conclusion
described by (1.2) and (1.3), where for each fixed M with kMkq0 D 1, Rj and gj are
related by

Rjf .x/ D gj .x/Tjf .x/:

It therefore seems reasonable to hope that under the hypothesis (1.4), we may expect to
deduce the conclusion described by (1.5) and (1.6).

Unfortunately this is not the case, as was demonstrated in Proposition 8.1 of [5], using
a concrete example.
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1.1. The main result

In this note we demonstrate that in principle one may indeed recover the potential conclu-
sion posited above, under an auxiliary structural hypothesis, at the expense of a larger con-
stant. We then go on to verify the auxiliary hypothesis in a case of current interest in har-
monic analysis and discrete geometry, the joints and multijoints estimates of Zhang [26].
We now state the auxiliary structural hypothesis we impose.

Structural hypothesis. For every nonnegative .f1; : : : ; fd / in some dense subspace
of Y1 � � � � � Yd , there are positive linear operators Sj W Yj ! M.X/ such that for all
nonnegative hj 2 Yj ,

(1.7) T .h1; : : : ; hd /.x/ � S1h1.x/ � � �Sdhd .x/ a.e.,

and

(1.8) S1f1.x/ � � �Sdfd .x/ � B
dT .f1; : : : ; fd /.x/ a.e.1

Note that this auxiliary hypothesis is automatically verified in the transversal case with
B D 1 and Sj independent of .fj /. In general, the operators Sj in this structural hypothesis
are permitted to depend on the particular inputs fj .

Theorem 1. Suppose that .X;d�/ is a � -finite measure space and Yj are normed lattices.
Let T W Y1 � � � � � Yd ! M.X/ be a positive multilinear operator which saturates2 X .
Assume that we have, for some q � 1,

kT .f1; : : : ; fd /
1=d
kLq.X/ � A

�
kf1kY1 � � � kfdkYd

�1=d
:

Assume moreover that the operator T satisfies the auxiliary structural hypothesis given
by (1.7) and (1.8). Then for every nonnegative M 2 Lq

0

.X/ with kMkq0 D 1, there exist
positive linear operators Rj WYj ! L1.X/ such that for every nonnegative fj 2 Yj ,

M.x/dT .f1; : : : ; fd /.x/ � R1f1.x/ � � �Rdfd .x/ a.e. and kRj kYj!L1.X/ � AB:

In contrast with the transversal theory, Theorem 1 has content even in the case that the
measure space X is a singleton (meaning essentially that we are dealing with multilinear
forms rather than multilinear operators).

1.2. The symmetric case

If our operator T is symmetric in its arguments (and in particular this requires Yj D Y

for all j ), we can choose the operators Rj WY ! L1.X/ in the conclusion of Theorem 1
to all coincide: if �j .x; y/ is the kernel of Rj , then we can take the kernel of R to beQd
jD1 �j .x; y/

1=d . Moreover, for similar reasons, the auxiliary structural hypothesis in
the case that T is symmetric is stronger than the following symmetric version:

1We thank Timo Hänninen for pointing out that it is really only an integrated version of this condition that
we use.

2I.e., for each subset E � X of positive measure, there exists a subset E 0 � E of positive measure and a
nonnegative .h1; : : : ; hd / 2 Y1 � � � � � Yd such that T .h1; : : : ; hd / > 0 a.e. on E 0.
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Structural hypothesis (symmetric version). For every nonnegative f in some dense
subspace of Y, there is a positive linear operator S WY !M.X/ such that for all nonneg-
ative hj 2 Y,

(1.9) T .h1; : : : ; hd /.x/ � Sh1.x/ � � �Shd .x/ a.e.,

and

(1.10) Sf .x/d � BdT .f; : : : ; f /.x/ a.e.

Under this weaker structural hypothesis, and under only the diagonal version of the main
hypothesis (1.4), we can still obtain the conclusion of Theorem 1 with all the Rj coincid-
ent:

Theorem 2. Suppose that .X; d�/ is a � -finite measure space and Y is a normed lattice.
Let T W Yd ! M.X/ be a symmetric positive multilinear operator which saturates X .
Assume that we have, for some q � 1,

kT .f; : : : ; f /1=dkLq.X/ � Akf kY :

Assume moreover that the operator T satisfies the auxiliary structural hypothesis given
by (1.9) and (1.10). Then for every nonnegativeM 2Lq

0

.X/ with kMkq0 D 1, there exists
a positive linear operator RWY ! L1.X/ such that for all nonnegative fj 2 Y,

M.x/dT .f1; : : : ; fd /.x/ � Rf1.x/ � � �Rfd .x/ a.e. and kRkY!L1.X/ � AB:

It is not clear whether Theorem 1 also implies Theorem 2, even if we are willing to
lose constants depending on the degree of multilinearity d . While the diagonal condition

kT .f; : : : ; f /1=dkLq.X/ � Akf kY

readily implies the off-diagonal condition3

kT .f1; : : : ; fd /
1=d
kLq.X/ � dA

�
kf1kY1 � � � kfdkYd

�1=d
;

it is less clear that the diagonal auxiliary conditions (1.9) and (1.10) imply their off-
diagonal counterparts (1.7) and (1.8).

3Indeed, assume that for all f we have kT .f; : : : ; f /1=d kLq.X/ � Akf kY : Given .fj /, let �j > 0 be such
that …j�j D 1 and consider f WD

P
j �j fj . Then

kT .f1; : : : ; fd /
1=d
kLq.X/ D kT .�1f1; : : : ; �dfd /

1=d
kLq.X/ � kT .f; : : : ; f /

1=d
kLq.X/

� Akf kY � A
X
j

�j kfj kY :

Therefore, by the arithmetic-geometric mean inequality,

kT .f1; : : : ; fd /
1=d
kLq .X/ � A inf

…j �jD1

X
j

�j kfj kY D dA
�
kf1kY � � � kfd kY

�1=d
:

At least when d D 2, this numerology is sharp. Consider the discrete setting in which X is a singleton and the
bilinear form T is given by a matrix. If T has constant 1 in the off-diagonal case, then some entry .i; j / of the
matrix A corresponding to T is 1. Let QT be the bilinear form with matrix with entries 1 in the .i; j / and .j; i/
positions, and zero entries elsewhere. Then the diagonal constant for T will be at least as large as it is for QT , and
a direct calculation shows that for QT it is exactly 1=2 when i ¤ j and 1 when i D j .



Non-transversal multilinear duality and joints 2389

It is also not clear to what extent the structural conditions might be necessary in order
for the conclusions of Theorems 1 and 2 to hold.

We prove Theorems 1 and 2 in Section 2 below in the special case of finite discrete
measure spaces X , Y and Yj (over which the lattices Y and Yj are defined). The details
of the arguments for the general cases will appear elsewhere.

1.3. Joints and multijoints

Joints and multijoints problems can be regarded as discrete analogues of the Kakeya and
multilinear Kakeya problems on Euclidean spaces. Let F be a field and let L be a family
of lines in Fd . A joint of L is a meeting point in Fd of d lines in L which have linearly
independent directions. If we have d families of lines L1; : : : ;Ld in Fd , a multijoint is
a joint for L1 [ � � � [Ld with the additional restriction that exactly one line forming the
joint comes from each family Lj . We denote by J the set of joints or multijoints formed
by a family or families of lines, according to context.

For the joints problem, we define

N.x/ WD #¹.l1; : : : ; ld / 2 L j l1; : : : ; ld form a joint at xº

and for the multijoints problem,

N.x/ WD #¹.l1; : : : ; ld / 2 L1 � � � � �Ld j l1; : : : ; ld form a joint at xº:

We allow repetitions in the families L and Lj , and our definition of N.x/, as well as the
cardinalities jLj and jLj j, are understood to count such repetitions.

The joints problem originated in Chazelle et al., [9], where it was proved that

jJ j . jLjd=q

for q D 12=7 in R3. Improvements in R3 were made in [2,11,20,21], and finally Guth and
Katz established the endpoint case q D 2 in [13]. The endpoint result was extended to Rd

in [17, 18]. Subsequently, Carbery and Iliopoulou, Dvir and Tao generalised these results
from Rd to Fd for an arbitrary field F , see [8,10,23]. See also Iliopoulou [14]. Results on
the multijoint problem were established in [15, 16], and the first sharp multilinear result
was due to Zhang, who established the following.

Theorem 3 (Zhang, [26]). For the joints problem, we haveX
x2J

N.x/1=.d�1/ . jLjd=.d�1/;

and for the multijoints problem we haveX
x2J

N.x/1=.d�1/ .
�
jL1j � � � jLd j

�1=.d�1/
;

where the implicit constants depend only on d .

Alternative and more general approaches to this result are discussed in [24] and [25].
We can take advantage of the possibility of repetitions, together with the scaling

enjoyed by the estimates in this result, and also the density of the rationals in the real
numbers, to see that the joints and multijoints problems fit into the framework we have set
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out above. Let Yj D `
1.Lj / with counting measure (and we now assume the lines in Lj

are distinct), and let X be the set of multijoints of L1; : : : ;Ld , again with counting meas-
ure. For fj 2 `1.Lj /, let

T .f1; : : : ; fd /.x/ D
X
lj2Lj

ı.x; l1; : : : ; ld /f1.l1/ � � � fd .ld /;

where the multijoints kernel ı is given by ı.x; l1; : : : ; ld / D 1 if x 2 l1; : : : ; ld and the
directions of l1; : : : ; ld are linearly independent, and by ı.x; l1; : : : ; ld / D 0 otherwise.
The second estimate of Theorem 3 then gives

kT .f1; : : : ; fd /
1=d
kd=.d�1/ .

�
kf1k1 � � � kfdk1

�1=d
:

Similarly, if we take all the families Lj to be a common family L, the first estimate of
Theorem 3 then gives the symmetric-form inequality

kT .f; : : : ; f /1=dkd=.d�1/ . kf k1:

(Note that in order for kf k1 to be finite, f must be countably supported, and so the
inequalities just displayed follow from those for finitely supported f by monotone con-
vergence.)

Indeed, in this discussion, there is nothing to prevent us from taking L and Lj to be
the families of all lines in Fd . Corresponding to the case of joints, we obtain:

Theorem 4. Let F be an arbitrary field, and let L� be the family of all lines in Fd . For
every finitely supported M WFd ! RC, there is a nonnegative function g.x; l/ defined on
Fd �L� such that, for all x 2 Fd and l 2 L�, we have

M.x/d ı.x; l1; : : : ; ld / � g.x; l1/ � � �g.x; ld /

and for all l 2 L�, X
x2l

g.x; l/ .
� X
x2Fd

M.x/d
�1=d

;

where the implicit constant depends only on d .

The function g here is the kernel of the operatorR of Theorem 2. We shall deduce this
from the discrete and finite version of Theorem 2 in Section 4, having verified the auxiliary
hypothesis via Theorem 5 in Section 3. Theorem 5 may perhaps be of independent interest.

As a direct consequence of this result, we have the following.

Corollary 1. Let L1; : : : ;Ld be finite families of lines in Fd , and let J be the set of their
multijoints. Then for every M W J ! RC, there are nonnegative functions gj .x; lj / such
that, for all x 2 J and lj 2 Lj , we have

M.x/d ı.x; l1; : : : ; ld / � g1.x; l1/ � � �gd .x; ld /;

and for all j , for all lj 2 Lj ,X
x2lj

gj .x; lj / .
�X
x2J

M.x/d
�1=d

;

where the implicit constant depends only on d .
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Note the similarity between these results and some of the estimates around the concept
of visibility which were developed and used in Euclidean space by Guth [12] and Bourgain
and Guth [3] in their analysis of the endpoint multilinear Kakeya inequality.

We also note that Theorem 4 has also been obtained in a more general form (using
more direct and entirely different methods) by the second author, see [22]. See also The-
orem 6 in Section 5 below, where we indicate how the finite support hypothesis onM may
be dispensed with.

2. Proofs of Theorems 1 and 2 in the finite discrete setting

We first observe that it suffices to prove the desired conclusions for q D 1, since the
general case for q > 1 andM 2 Lq

0

follows from the case q D 1 applied with the measure
M.x/d�.x/ in place of d�.x/. Moreover, when q D 1 it suffices to take M � 1.

We begin with Theorem 2 since the argument is a little simpler.
We will write the argument additively on finite discrete measure spaces, and in par-

ticular Y is a normed lattice over a finite set Y . The x-sums in what follows are all with
respect to the weight � on X whose explicit appearance we suppress. Denote the kernel
of T by K.x; y1; : : : ; yd /. The operator R of the conclusion is determined by its kernel,
which we denote by g.x; y/. Let

C D ¹g.x; y/ � 0 j K.x; y1; : : : ; yd / � g.x; y1/ � � �g.x; yd /º

be the set of those g satisfying our set of constraints (corresponding to the first conclusion
of Theorem 2). Note that C is nonempty and indeed there exists g 2 C satisfying all of
its defining inequalities with strict inequality. Moreover, C is convex by the arithmetic-
geometric mean inequality. Let

F D ¹f W Y ! RC j kf kY � 1º;

and note that F is also convex. Corresponding to the second conclusion of Theorem 2, we
seek a g 2 C such that

sup
f 2F

X
x;y

g.x; y/f .y/ � ABI

that is, we need to show that

min
g2C

sup
f 2F

X
y

X
x

f .y/g.x; y/ � AB:

Note that the mappings

f 7!
X
y

X
x

f .y/g.x; y/ and g 7!
X
y

X
x

f .y/g.x; y/

for g 2 C fixed and f 2 F fixed, respectively, are linear, hence concave and convex.
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We may apply a minimax theorem4 to obtain

min
g2C

sup
f 2F

X
y

X
x

f .y/g.x; y/ D sup
f 2F

inf
g2C

X
y

X
x

f .y/g.x; y/:

Fix f 2 F . We now wish to show that

inf
g2C

X
x

X
y

f .y/g.x; y/ � AB:

The constraints given by C on different x 2 X are independent of each other, and so, with

Cx D ¹S.x; �/ j K.x; y1; : : : ; yd / � S.x; y1/ � � �S.x; yd /º;

we have
inf
g2C

X
x

X
y

f .y/g.x; y/ D
X
x

inf
S2Cx

X
y

f .y/S.x; y/:

By the auxiliary structural hypothesis, for each fixed x and f 2 F , we have

min
S2Cx

�X
y

f .y/S.x; y/
�d
� Bd

X
y1;:::;yd

K.x; y1; : : : ; yd /f .y1/ � � � f .yd /;

and thusX
x

inf
S2Cx

X
y

f .y/S.x;y/� B
X
x

� X
y1;:::;yd

K.x;y1; : : : ; yd /f .y1/ � � �f .yd /
�1=d

�AB

also by hypothesis. This concludes the argument for Theorem 2.
Now we turn to Theorem 1. We recall that we are in the case q D 1, and we continue

in the finite and discrete setting. We use the shorthand notation y D .y1; : : : ; yd /, where
yj 2 Yj and Yj is a normed lattice over the finite set Yj . We are now looking for functions
g1.x; y1/; : : : ; gd .x; yd / satisfying the constraints defined by

C D ¹.g1; : : : ; gd / � 0 j K.x; y/ � g1.x; y1/ � � �gd .x; yd /º

and such that
sup
j

sup
kfj kYj �1

X
x

X
yj2Yj

gj .x; yj /fj .yj / � AB:

Note that the set C is nonempty and convex (and once again there exist members of C

satisfying the defining constraints with strict inequality).

4In the present context, we observe that Slater’s condition is satisfied, so we may apply the results in [4],
p. 226. Alternatively, we could use the more sophisticated lopsided minimax theorem found in [1] (and which
was deployed in [5]), and which we shall need anyway in the general case. The topological hypotheses of that
theorem reduce here to the continuity (for each fixed f ) of the map g 7!

P
x;y f .y/g.x; y/ and the existence

of an f 2 F (a suitable constant f will work) such that the sets ¹g 2 C j
P
x;y f .y/g.x; y/ � �º are compact

for all sufficiently large �; with the usual topology on the underlying finite-dimensional Euclidean space, these
conditions are easily verified.



Non-transversal multilinear duality and joints 2393

The left-hand side of the last expression can also be written as

supP
j bjD1

X
j

bj sup
kfj kYj �1

X
x;yj

gj .x; yj /fj .yj /

or, equivalently, with fj replacing bjfj ,

supP
j kfj kYj �1

X
j

X
x;yj

gj .x; yj /fj .yj /:

Let
F D

°
.f1; : : : ; fd / 2 .Y1 � � � � � Yd /C

ˇ̌̌ X
j

kfj kYj � 1
±
;

and note that F is also convex. What we are trying to show, then, is that

min
.g1;:::;gd /2C

sup
.f1;:::;fd /2F

X
j

X
x;yj

gj .x; yj /fj .yj / � AB:

Once again we can use a minimax theorem to interchange the inf and the sup, and therefore
we wish to show

sup
.f1;:::;fd /2F

inf
.g1;:::;gd /2C

X
j

X
x;yj

gj .x; yj /fj .yj / � AB:

So fix .fj / 2 F and look at

inf
.g1;:::;gd /2C

X
x

X
j

X
yj

gj .x; yj /fj .yj / D
X
x

�
inf

.g1;:::;gd /2C

X
j

X
yj

gj .x; yj /fj .yj /
�
;

which is valid since the constraints imposed by C for different x are independent of each
other.

Temporarily fix x. So, with Kx.y/ D K.x; y/ and Sj WYj ! RC, let

Cx D
®
.S1; : : : ; Sd / j Kx.y/ � S1.y1/ � � �Sd .yd /

¯
:

We are now looking at

inf
.S1;:::;Sd /2Cx

X
j

X
yj

Sj .yj /fj .yj / D inf
.S1;:::;Sd /2Cx

inf
t1:::tdD1

1

d

X
j

tjd
X
yj

Sj .yj /fj .yj /

D inf
.S1;:::;Sd /2Cx

dY
jD1

�
d
X
yj

Sj .yj /fj .yj /
�1=d

D d inf
.S1;:::;Sd /2Cx

� X
y1;:::;yd

S1.y1/ � � �Sd .yd /f1.y1/ � � � fd .yd /
�1=d

� Bd
�X

y

K.x; y/f1.y1/ � � � fd .yd /
�1=d

;

where the first equality holds because Cx is invariant under replacing Sj by tjSj with
…j tj D 1, the second equality holds by the arithmetic-geometric mean inequality and
knowledge of its extremisers, and the final inequality holds because of the auxiliary hypo-
thesis.



A. Carbery and M. C. Y. Tang 2394

Therefore we have, using the main hypothesis,

inf
.g1;:::;gd /2C

X
j

X
x;yj

gj .x; yj /fj .yj / � Bd
X
x

�X
y

K.x; y/f1.y1/ � � � fd .yd /
�1=d

D Bd kT .f1; : : : ; fd /
1=d
k1 � ABd

Y
j

kfj k
1=d

Yj
� AB

X
j

kfj kYj � AB;

as required, once again using the arithmetic-geometric mean inequality. This concludes
the argument for Theorem 1.

Remark. In the general case, the definition of the set F appearing in the proof will be
amended to refer to the dense subspace of Y or Y1 � � � � � Yd which features in the auxili-
ary hypothesis. In the case of the application to joints, F will consist of finitely-supported
functions defined on the class of all lines in Fd . It is in the application of a suitable
minimax theorem that we shall be required to provide substantial additional arguments
relating to compactness in order to establish the full versions of Theorems 1 and 2.

3. Verification of the auxiliary hypothesis for the multijoints kernel

In this section, we verify that the auxiliary structural hypotheses discussed above are
indeed verified in the setting of the multijoints kernel ı. Since ı is symmetric, it suffices
to establish the symmetric version of the auxiliary hypothesis.

Let L� be the set of all lines in Fd and consider nonnegative f belonging to the
dense linear subspace of `1.L�/ consisting of finitely supported functions. Focusing on
the kernel of the desired operator S , we seek nonnegative S.x; l/ (defined on Fd � L�

and dependent on f ) such that

S.x; l1/ � � �S.x; ld / � 1 when ı.x; l1; : : : ; ld / D 1

and X
l2L�

S.x; l/f .l/ .
� X
l1;:::;ld2L�

ı.x; l1; : : : ; ld /f .l1/ � � � f .ld /
�1=d

:

This a pointwise task in x, and therefore it suffices to carry it out when x D 0.
Let L0 denote the set of all lines in Fd passing through 0, and let ı.l1; : : : ; ld / D

ı.0; l1; : : : ; ld /. The following result thus verifies the auxiliary hypothesis for the case of
joints, and is perhaps of independent interest.

Theorem 5. For each finitely supported nonnegative f defined on L0, there is a function
S WL0 ! RC such that

S.l1/ � � �S.ld / � 1 when ı.l1; : : : ; ld / D 1

and X
l2L0

S.l/f .l/ .
� X
l1;:::;ld2L0

ı.l1; : : : ; ld /f .l1/ � � � f .ld /
�1=d

;

where the implicit constant depends only on d .
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3.1. Preliminary remarks to the proof

Note that, for f fixed, we only need to define S on those l 2 L0 which are in the support
of f . Fix f nonnegative finitely supported on L0. We want to show that there is a set of
weights .S.l//l2suppf satisfying

S.l1/ � � �S.ld / � 1 whenever ı.l1; : : : ; ld / D 1

(admissibility), and such that� X
l2suppf

S.l/f .l/
�d

.
X
l1;:::;ld

ı.l1; : : : ; ld /f .l1/ � � � f .ld /

(main estimate).
The naive approach is to try the ansatz S � 1 and see what happens in the main

estimate. Immediately we see there is an obstruction to it holding: if f happens to be
supported on a collection of lines which all lie in some fixed hyperplane, the right-hand
side will be zero while the left-hand side need not be. Therefore our construction of S will
need to take account of this obstruction. When the obstruction is in place, however, we
can simply set S � 0, since the admissibility condition never comes into play.

More generally, we may expect similar issues to present themselves when the total
mass of f is concentrated on some hyperplane � , in the sense thatX

l��

f .l/ &
X
lª�

f .l/:

Moreover, concentration of mass on a hyperplane may arise because of a priori concen-
tration on a lower-dimensional subspace. It is therefore pertinent to consider in turn the
possibility of concentration of mass of f on lines, then on 2-planes, then on 3-planes, and
so on up to and including hyperplanes. If there is no concentration occuring at any stage,
we may hope to be able to take S � 1; if concentration does occur at some stage, we may
expect to take S to be small on the lines contributing to the concentration and large on
the remaining lines, in such a way that the admissibility condition holds. If concentration
occurs at multiple stages, we will correspondingly take a graded approach to defining S .

3.2. Construction of an increasing sequence of subspaces and its immediate
properties

Let 1 D ˛1 < ˛2 < � � � < ˛d�1, which we take to be given by ˛k D 2k�1. We first look
for the smallest k1, with 1 � k1 � d � 1, for which there is an ˛k1 -heavy k1-plane �1,
i.e., for which X

l��1

f .l/ > ˛k1

X
l 6��1

f .l/:

Of course there may be no such �1. If there is one, we next look for the smallest k2, with
k1 < k2 � d � 1, for which there is an ˛k2 -heavy k2-plane �2 which contains �1, i.e.,
for which X

l��2; l 6��1

f .l/ > ˛k2

X
l 6��2

f .l/:
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Again, there may be no such �2. If there is one, we next look for the smallest k3, with
k2 < k3 � d � 1, for which there is an ˛k3 -heavy k3-plane �3 which contains �2, i.e.,
for which X

l��3; l 6��2

f .l/ > ˛k3

X
l 6��3

f .l/:

We continue this process until we are forced to stop – either because we never started if
there were no ˛k-heavy planes of any dimension k less than d , or because we have arrived
at some �N of dimension kN D d � 1, or because we have a �N of dimension kN < d � 1
but there are no ˛k-heavy k-planes for any kN < k � d � 1.

We shall deal separately with the case in which the sequence of subspaces is empty,
and so we assume we have a non-empty maximal5 increasing sequence of subspaces
�1 ¨ �2 ¨ � � � ¨ �N (with N � 1) of dimensions .1 �/ k1 < k2 < � � � < kN .� d � 1/,
respectively, such that for each 1 � n � N ,6

(3.1)
X

l��n; l 6��n�1

f .l/ > ˛kn

X
l 6��n

f .l/;

and such that for all subspaces � which contain �n�1 and which satisfy kn�1<dim�<kn,
we have X

l��; l 6��n�1

f .l/ � ˛dim�

X
l 6��

f .l/;

and thus

(3.2)
X

l��; l 6��n�1

f .l/ � ˛kn�1
X
l 6��

f .l/:

We can qualitatively improve the right-hand side of this inequality to include the addi-
tional constraint that l � �n at the expense of a multiplicative constant:

Lemma 1. We have

(3.3)
X

l��; l 6��n�1

f .l/ � 4˛kn�1
X

l��n; l 6��

f .l/:

Proof. Notice that for each n and for each subspace � which contains �n�1 and which is
strictly contained in �n we have, by (3.2) and (3.1),X
l��; l 6��n�1

f .l/ � ˛kn�1
X
l 6��

f .l/ D ˛kn�1
X

l 6��; l��n

f .l/C ˛kn�1
X
l 6��n

f .l/

< ˛kn�1
X

l 6��; l��n

f .l/C
˛kn�1

˛kn

X
l��n; l 6��n�1

f .l/

D ˛kn�1
X

l 6��; l��n

f .l/C
˛kn�1

˛kn

X
l��n; l 6��

f .l/C
˛kn�1

˛kn

X
l��; l 6��n�1

f .l/:

5In the sense that it cannot be extended.
6We interpret the condition l 6� �0 to be the void condition.
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Rearranging this inequality gives�
1 �

˛kn�1

˛kn

� X
l��; l 6��n�1

f .l/ � ˛kn�1

�
1C

1

˛kn

� X
l��n; l 6��

f .l/

or X
l��; l 6��n�1

f .l/ � ˛kn�1

� ˛kn C 1

˛kn � ˛kn�1

� X
l��n; l 6��

f .l/:

With ˛k D 2k�1, we have 1 < .˛kn C 1/=.˛kn � ˛kn�1/ � 4, and we are done.

3.3. Arranging the mass of f into layers

For 1 � n � N C 1, let
Fn D

X
l��n; l 6��n�1

f .l/

(where we interpret the conditions l 6� �0 and l � �NC1 as void). Note that by (3.1), we
immediately have

(3.4) Fn > ˛knFnC1:

For a k-plane � and a K-plane … with K > k, and lines l1; : : : ; lK�k � … such that
l1; : : : ; lK�k 6�� , let ı�;….l1; : : : ; lK�k/D 1 if e.l1/; : : : ; e.lK�k/ are linearly independent,
and ı�;….l1; : : : ; lK�k/ D 0 otherwise. We have the following lemma, which is proved
below in Section 3.6.

Lemma 2. For some constants ˇn, we have for 1 � n � N C 1,

F kn�kn�1n � ˇn
X

lkn�1C1;:::;lkn��n;

lkn�1C1;:::;lkn 6��n�1

ı�n�1;�n.lkn�1C1; : : : ; lkn/f .lkn�1C1/ � � � f .lkn/

(where we take k0 D 0 and kNC1 D d/.

In particular, this lemma applies in the exceptional case that the sequence of subspaces
is empty, in which case the conclusion reads as�X

l

f .l/
�d

.
X
l1;:::;ld

ı.l1; : : : ; ld /f .l1/ � � � f .ld /:

This demonstrates that the choice S � 1 satisfies the main condition (as well as trivially
the admissibility condition) in the exceptional case.

Note that we have, as a direct consequence of the lemma, that

(3.5) F
k1�k0
1 � � �F kn�kn�1n � � �F

d�kN
NC1 �

�NC1Y
nD1

ˇn

� X
l1;:::;ld

ı.l1; : : : ; ld /f .l1/ � � � f .ld /:
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3.4. Definition of S and the main condition

We assume the sequence of subspaces is nonempty. For parameters �1; : : : ; �NC1 defined
below, we define S by

S.l/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�1; l� �1;

�2; l� �2; l 6� �1;
:::

�n; l� �n; l 6� �n�1;
:::

�N ; l � �N ; l 6� �N�1

�NC1; l 6� �N :

Using the arrangement of the mass of f into layers, we therefore haveX
l

S.l/f .l/ D �1F1 C � � � C �nFn C � � � C �NC1FNC1:

In the light of (3.5), we shall therefore choose

�n D F
�1
n

NC1Y
nD1

F .kn�kn�1/=dn ;

where k0 D 0 and kjC1 D d , and this verifies the main condition on S .

3.5. The admissibility condition

Again we may assume that the sequence of subspaces is nonempty. If ı.l1; : : : ; ld / D 1,
the worst-case scenario is that there are k1 l’s contained in �1, .k2 � k1/ l’s contained
in �2 but not contained in �1, etc. So the worst value of S.l1/ � � �S.ld / will be

(3.6) �
k1
1 �

k2�k1
2 � � � �

d�kN
NC1 D F

�k1
1 F

�.k2�k1/
2 � � �F

�.d�kN /
NC1

�NC1Y
nD1

F .kn�kn�1/=dn

�d
D 1:

Withmn denoting the number of l’s contained in �n but not contained in �n�1, the general
case follows from:

Lemma 3. Suppose that m1 C � � � C mNC1 D d and mn � kn � kn�1 for all 1 � n �
N C 1. Then

�
m1
1 � � � �

mn
n � � � �

mNC1
NC1 � 1:

Proof. We write

�
m1
1 � � � �

mn
n � � � �

mNC1
NC1

D
�
�
k1
1 � � � �

kn�kn�1
n � � � �

d�kN
NC1

� �
�
m1�k1
1 � � � �mn�.kn�kn�1/n � � � �

mNC1�.d�kN /

NC1

�
D �

m1�k1
1 � � � �mn�.kn�kn�1/n � � � �

mNC1�.d�kN /

NC1

D F
k1�m1
1 � � �F kn�kn�1�mnn � � �F

d�kN�mNC1
NC1 � F 0NC1 D 1

by (3.6) and repeated use of (3.4) (noting that each ˛n � 1).
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3.6. Proof of Lemma 2

It is here that we finally use the fact that for all subspaces � which contain �n�1 and which
are strictly contained in �n, inequality (3.3) holds.

For ease of notation, fix n, let kn�1 D k and let kn D k C r . Relabel �n�1 as …0

and �n as …1. Let � be the set of all lines which are contained in …1 but which are not
contained in …0.

Inequality (3.3) of Lemma 1 now becomes: for all subspaces � with …0 ¨ � ¨ …1,

(3.7)
X

l��; l 6�…0

f .l/ � 4˛kn�1

X
l 6��; l�…1

f .l/:

We wish to prove

(3.8)
�X
l2�

f .l/
�r
� ˇn

X
l1;:::;lr2�

ı…0;…1.l1; : : : ; lr /f .l1/ � � � f .lr /:

Let .l1; : : : ; lr / be an r-tuple of lines, each of which lies in �. Then, together with …0,
they span a subspace of…1 of dimension j for some j 2 ¹kC 1; : : : ; kC rº. For kC 1�
j � k C r , let

�j D
®
.l1; : : : ; lr / 2 �

r
j dim span¹…0; l1; : : : ; lrº D j

¯
:

Note that ı…0;…1.l1; : : : ; lr / D 1 if and only if .l1; : : : ; lr / 2 �kCr .
We expand the left-hand side of (3.8) as

kCrX
jDkC1

X
.l1;:::;lr /2�j

f .l1/ � � � f .lr /;

and to prove (3.8) it suffices (indeed it is equivalent) to show that for k C 1 � j < k C r ,X
.l1;:::;lr /2�j

f .l1/ � � � f .lr / .
X

.l1;:::;lr /2�kCr

f .l1/ � � � f .lr /;

and this in turn follows if we can show that for k C 1 � j < k C r ,X
.l1;:::;lr /2�j

f .l1/ � � � f .lr / .
X

.l1;:::;lr /2�jC1

f .l1/ � � � f .lr /:

If .l1; : : : ; lr / 2 �j , then for some .j � k/-tuple, which is without loss of generality
.l1; : : : ; lj�k/, we have that ¹…0; l1; : : : ; lj�kº spans a j -plane H¹l1;:::;lj�kº satisfying

…0 ¨ Hl1;:::;lj�k ¨ …1:
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Therefore,X
.l1;:::;lr /2�j

f .l1/ � � � f .lr /

�

� r

j � k

� X
¹e.l1/;:::;e.lj�k/º

lin: indep:

f .l1/ � � � f .lj�k/
X

lj�kC1;:::;lr�H¹l1;:::;lj�k º

f .lj�kC1/ � � � f .lr /

D

� r

j � k

� X
¹e.l1/;:::;e.lj�k/º lin: indep:

f .l1/ � � � f .lj�k/

� X
l�H¹l1;:::;lj�k º

f .l/

�r�.j�k/
:

We use (3.7), which is applicable since …0 ¨ Hl1;:::;lj�k ¨ …1, to estimate the bracketed
expression here by

4˛k

� X
l�H¹l1;:::;lj�k º

f .l/

�r�.j�k/�1� X
l 6�H¹l1;:::;lj�k º

; l�…1

f .l/

�
:

This shows that X
.l1;:::;lr /2�j

f .l1/ � � � f .lr / .
X

.l1;:::;lr /2�jC1

f .l1/ � � � f .lr /;

as needed. This completes the proof of Lemma 2 and Theorem 5.

4. Proof of Theorem 4

In the case that the field F is finite, we can simply let X D Fd with counting measure,
Y D L� (the set of all lines in Fd ) with counting measure, Y D `1.Y /, and let T WYd !
M.X/ be given as above by

T .f1; : : : ; fd /.x/ D
X
lj2L�

ı.x; l1; : : : ; ld /f1.l1/ � � � fd .ld /:

Then T saturates X , and by Zhang’s theorem we have

kT .f; : : : ; f /1=dkLd=.d�1/.X/ . kf kL1.Y /:

We have shown in Section 3 that T satisfies the auxiliary structural hypothesis given
by (1.9) and (1.10). Thus, by the discrete and finite version of Theorem 2, there exists
g.x; l/ � 0 (the kernel of the operator R) defined on X �L� such that

M.x/d ı.x; l1; : : : ; ld / � g.x; l1/ : : : g.x; ld / and
X
x2l

g.x; l/ .
� X
x2Fd

M.x/d
�1=d

uniformly in l 2 L�, where the implicit constant depends only on d . This completes the
argument when F is finite.

For the general case when the field is infinite, we will first need a straightforward
linear-algebraic lemma:
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Lemma 4. Let V be a finite-dimensional vector space over a field F . Let A � V be a
finite subset of V . Then there is a finite set B satisfying A � B � V such that for every
subset C � B of linearly independent vectors, there is a subset D � B n C such that
C [D forms a basis for V .

Proof. Let U D spanA and let F be a linearly independent set of vectors in V n U such
that span .A[F /D V . Let B DA[F . If C � B is a linearly independent set of vectors,
then C \ A can be extended to a basis of U by adding vectors from A n C , and C \ F
can be extended to a basis of spanF by adding vectors from F . Thus C can be extended
to a basis of V using vectors from B .

In order to simplify notation, we assume from this point on that .
P
x2FdM.x/

d /1=d D

kMkd D 1. It suffices to define gW suppM � L� ! RC, such that for all x 2 suppM ,
whenever l1; : : : ; ld 2 L� form a joint at x we have

M.x/d � g.x; l1/ � � �g.x; ld / and
X
x2l

g.x; l/ . 1

uniformly in l 2L�. We will define g in a piecemeal fashion: we first identify a finite fam-
ily L of lines, and define g on suppM �L; and then we define g on suppM � .L� nL/.
Finally, we check that our g satisfies the desired conclusions.

We identify the finite family of lines L. Included in L is the set L0 of all lines con-
taining two or more points of suppM . For each point x 2 suppM , we consider the set L0x
of lines in L0 which contain x. By the linear-algebraic lemma, there is a finite set L00x of
lines containing x, which contains L0x , such that every subset of L00x whose members have
linearly independent directions can be augmented by lines from L00x to form a joint at x.
We include all these sets L00x , for x 2 suppM , in our set L. Clearly L is finite, and any
line not in L contains at most one point of suppM .

We now define g on J � L, where J is the set of joints of L. This in particular
defines g on suppM � L. Indeed, we simply apply the discrete and finite version of
Theorem 2 to L and J (observing that the saturation and auxiliary hypotheses hold) to
obtain g.x; l/ for x 2 J and l 2 L which is such that for all x 2 suppM , whenever
l1; : : : ; ld 2 L form a joint at x, we have

(4.1) M.x/d � g.x; l1/ � � �g.x; ld /

and, for all l 2 L,

(4.2)
X
x2l\J

g.x; l/ � Cd :

Note that this last inequality implies that for all l 2L and all x02J we have g.x0; l/�Cd :
Next we define g on suppM � .L�nL/. As we noted above, for any l 2L�nL, l con-

tains at most one point of suppM . If l contains no point of suppM , we define g.x; l/D 0
for all x2 suppM . If l \ suppM D ¹x0º, we define g.x0; l/ D Cd and g.x; l/ D 0 for
all x 2 suppM n ¹x0º. Note that for all l 2 L� nL,

(4.3)
X

x2 l\ suppM

g.x; l/ � Cd

since there can be at most one term in the sum on the left-hand side.
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Finally, we verify our desired conclusions. The second conclusion follows immedi-
ately from (4.2) and (4.3). For the first conclusion, take an x0 2 suppM and let l1; : : : ; ld
be a d -tuple of lines forming a joint at x0, some of which may be in L and some of which
may be in L� nL. If all the lines lie in L, (4.1) directly gives what we need. Otherwise,
for some 0 � k � d � 1, there are k lines l1; : : : ; lk in L and d � k lines lkC1; : : : ; ld
in L� nL. By our construction of L, we may augment l1; : : : ; lk with lines l 0

kC1
; : : : ; l 0

d

in L to form a joint at x0. And we have

g.x0; lj / � g.x0; l
0
j / for k C 1 � j � d;

because each instance of the left-hand side is exactly Cd , while each instance of the right-
hand side is at most Cd . Therefore,

g.x0; l1/ � � �g.x0; ld / � g.x0; l1/ � � �g.x0; lk/ � g.x0; l
0
kC1/ � � �g.x0; l

0
d / �M.x0/

d ;

since l1; : : : ; lk ; l 0kC1; : : : ; l
0
d

form a joint at x0. This completes the verification of the first
conclusion.

5. Concluding remarks

The verification of the auxiliary hypothesis in the case of joints formed by planes of higher
dimensions appears to require more work, and will be addressed elsewhere. Nevertheless,
once this is achieved, we will have an independent proof of results analogous to Theorem 1
which have already been obtained directly by the second author in [22].

Verification of the auxiliary hypothesis in the context of the Euclidean multilinear
Kakeya problem is another matter which we are currently addressing.

The details of the proofs of the full versions of Theorems 1 and 2 will also appear
elsewhere. As remarked previously, it is not clear to what extent the auxiliary hypotheses
are necessary for the conclusions of Theorems 1 and 2 to hold.

Finally, we observe that we can remove the hypothesis in Theorem 4 thatM be finitely
supported if, instead of its discrete and finite version, we use the full force of Theorem 2:

Theorem 6. Let F be an arbitrary field and let L� be the family of all lines in Fd . For
every M W Fd ! RC, there is a nonnegative function g.x; l/ defined on Fd � L� such
that, for all x 2 Fd and l 2 L�, we have

M.x/d ı.x; l1; : : : ; ld / � g.x; l1/ � � �g.x; ld /

and for all l 2 L�, X
x2l

g.x; l/ .
� X
x2Fd

M.x/d
�1=d

:

Proof. If
P
x2Fd M.x/

d D 1, then there is nothing to prove. Hence we may assume
that

P
x2Fd M.x/

d <1 and that therefore M is countably supported. Take X to be the
support of M with counting measure. Let Y D L� with counting measure, Y D `1.Y /,
and let T WYd !M.X/ be given as above by

T .f1; : : : ; fd /.x/ D
X
lj2L�

ı.x; l1; : : : ; ld /f1.l1/ � � � fd .ld /:
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Then T saturates X , and by Zhang’s theorem we have

kT .f; : : : ; f /1=dkLd=.d�1/.X/ . kf kL1.Y /:

We note that T satisfies the auxiliary structural hypothesis given by (1.9) and (1.10), where
the dense subspace of `1.L�/ is taken to be the space of finitely supported functions
defined on L�. Thus, by Theorem 2, there exists g.x; l/ � 0 defined on X �L� such that
for all x 2 X and l1; : : : ; ld 2 L�,

M.x/d ı.x; l1; : : : ; ld / � g.x; l1/ � � �g.x; ld / and
X
x2l

g.x; l/ .
� X
x2Fd

M.x/d
�1=d

uniformly in l 2 L�. For x … X and arbitrary l 2 L�, we can take g.x; l/ D 0.
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