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Unique continuation on convex domains

Sean McCurdy

Abstract. In this paper, we obtain estimates on the quantitative strata of the critical
set of non-trivial harmonic functions u which vanish continuously on V � @�, a rel-
atively open subset of the boundary of a convex domain� � Rn. In particular, these
estimates improve dimensional estimates on ¹jruj D 0º both in V � @� and as it
approaches V \ �. These estimates are not obtainable by naively combining inte-
rior and boundary estimates, and represent a significant improvement upon existing
results for boundary analytic continuation in the convex case.

1. Introduction

Unique continuation is a fundamental property for functions which solve the Laplace and
related linear equations. A closely related problem is that of boundary unique contin-
uation: given a domain � � Rn and a function u which is harmonic in � and vanishes
continuously on V � @�, how large can the set ¹Q 2 V W jruj D 0º be if u 6� 0? Boundary
unique continuation is closely tied to the Cauchy problem and questions of well-posedness
and stability of solutions to boundary value problems (see, for instance, [21] and [4]). In
this paper, we address two questions. First, we address the question of boundary unique
continuation for harmonic functions on convex domains. Second, we also address the
question of how the critical set ¹jruj D 0º \ � approaches V � @�. We follow the
approach of Garofalo and Lin [11] insofar as we make essential use of the Almgren fre-
quency function. And, because we want to obtain results on the full critical set ¹jruj D 0º,
we use packing estimates inspired by Cheeger, Naber, and Valtorta [8]. These tools allow
us to obtain results about the strata of the critical set ¹jruj D 0º as it approaches V � @�.

1.1. Background on boundary unique continuation for harmonic functions

For dimensions n � 3, Bourgain and Wolff [6] have constructed an example of a function
uWRnC! R which is harmonic in RnC, C 1 up to the boundary Rn�1 � Rn, and for which
both u andru vanish on a set of positive surface measure. This result has been generalized
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by Wang [23] to C 1;˛ domains,� � Rn, for n � 3. However, the sets of positive measure
for which these functions vanish are not open.

In general, the following question posed by Lin in [18] is still open.

Question 1.1. Let n � 2 and let � � Rn be an open, connected Lipschitz domain. If u is
a harmonic function which vanishes continuously on a relatively open set V � @�, does

Hn�1.¹x 2 V W jruj D 0º/ > 0

imply that u is the zero function?

If u is non-negative, the techniques of PDEs on non-tangentially accessible (NTA)
domains give a comparison principle [9] which allows us to say that the norm of the
normal derivative is point-wise comparable to the density of the harmonic measure with
respect to the surface measure d� . Additionally, for Lipschitz domains it is well known
that the harmonic measure is mutually absolutely continuous with respect to d� . These
two facts then imply that if the normal derivative vanishes on a set of positive (surface)
measure, then u must be identically 0.

The challenge is for harmonic functions u which change sign. For such functions, the
aforementioned techniques fail completely because we cannot apply the Harnack princi-
ple. Authors have therefore approached this problem by asking for additional regularity.
In [18], Lin proves that for C 1;1 domains, � � Rn, for n � 2, if u is a non-constant har-
monic function which vanishes on a relatively open set V � @�, then dimH .¹x 2 V W

jruj D 0º/ � n � 2. Similar results were later shown by Adolfsson and Escauriaza for
domains with locally C 1;˛ boundary, [1]. Relatedly, Kukavica and Nystöm showed that
Hn�1.¹x 2 V W jruj D 0º/ > 0 implies that u � 0 if @� is C 1 Dini, [17]. Recently, this
result has been greatly improved. Kenig and Zhou [16] employed powerful techniques
from [19] and [10] to show that for C 1 Dini domains, the .n� 2/-generalized singular set
¹u D 0 D jrujº has finite .n � 2/-dimensional upper Minkowski content.

For merely convex domains � � Rn, Adolfsson, Escauriaza, and Kenig showed that
if u is a harmonic function in � which vanishes continuously on a relatively open set
V � @�, then if ¹x 2 V W jruj D 0º has positive surface measure, u must be a con-
stant function [2]. The method of attack pursued in [2] (and [1, 17, 18]) was centered
on showing that the harmonic function is “doubling” on the boundary in the follow-
ing sense. If � � Rn, then there exists an absolute constant M < 1 such that, for all
B2r .Q/ \ @� � V , Z

B2r .Q/\�

u2 dx �M

Z
Br .Q/\�

u2 dx:

This doubling property allows the authors to show that the normal derivative is an
A2-Muckenhoupt weight with respect to surface measure, a kind of quantified version of
mutual absolute continuity. It is well known that if u vanishes in a surface ball �r .Q/
and the normal derivative of u is a 2-weight with respect to surface measure, then either
¹Q0 2 �r .Q/ W jruj D 0º has measure zero or ¹Q0 2 �r .Q/ W jruj > 0º has measure
zero. The improvement from measure to dimension bounds in [1] and [18] comes from
applying an additional Federer dimension-reduction type argument.
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Recently, Tolsa has answered Question 1.1 in the affirmative for C 1 domains and
Lipschitz domains with small Lipschitz constant, [22].

In this paper, we restrict our investigation to convex domains � and obtain bounds
upon the full generalized critical set ¹jruj D 0º. We note that this includes ¹x 2 @� W
jruj D 0º and ¹x 2 � W jruj D 0º.

Theorem 1.2. Let � be a convex domain and let u 2 C 0.�/ be a non-constant function
such that �u D 0 in �. Let V � @� be a relatively open set. If u D 0 on V , then for any
compact subset K � V , there exists a radius 0 < r.K/ such that

dimH .Br .K/ \ ¹jruj D 0º n sing.@�//

� dimM.Br .K/ \ ¹jruj D 0º n sing.@�// � n � 2:

Furthermore,

dimM

�
Br .K/ \ ¹jruj D 0º \�

�
� n � 2:

The content of Theorem 1.2 is two-fold. First, consider the results restricted to the
boundary ¹jruj D 0º \ V � @�. Alberti [3] proved (among other things) that the singu-
lar set of a convex function is aC 2 .n� 2/-rectifiable set, which implies that the geometric
singular set of a convex body satisfies dimH .sing.@�//� n� 2. Thus, Theorem 1.2 com-
bined with [3] implies

dimH .V \ ¹jruj D 0º/ � n � 2;

which gives a strong improvement on the results of [2], which proved that in this situation
Hn�1.V \ ¹jruj D 0º/ D 0.

Second, Theorem 1.2 provides new insight into how the critical set interacts with @�.
Returning to [3], Alberti also proved that the singular set of a convex function may be pre-
scribed to be any C 2 .n � 2/-rectifiable set. Thus, it can happen that dimM.sing.@�// D
n � 1. On the other hand, from the interior perspective, [20] proved finite .n � 2/-dimen-
sional upper Minkowski content bounds on ¹jruj D 0º in the interior. However, the naive
application of these estimates degenerate as one approaches the boundary because upper
Minkowski dimension is not stable under countable unions. Considering ¹jruj D 0º \�
as it approaches @�, it was unknown whether or not ¹jruj D 0º \ � could oscillate
wildly and have positive .n�1/-upper Minkowski dimension like sing.@�/, would remain
.n�2/-upper Minkowski dimensional like the interior, or if something in between these
two held. Theorem 1.2 proves that the set ¹jrvj D 0º \� cannot oscillate too wildly as
it approaches @�, and that ¹jruj D 0º \� \K inherits its upper Minkowski dimension
bounds from the interior rather than the boundary.

It is still an open question whether or not the .n � 2/-upper Minkowski content of
¹jruj D 0º \ @� n sing.@�/ is finite.

2. Definitions and main results

Theorem 1.2 is a corollary to Theorem 2.11 below and a containment result (Lemma 2.12).
In order to state these results, we need the following definitions.

We start by defining a certain class of domains.
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Definition 2.1 (A normalized class of convex domains). Let D.n/ be the collection of
connected, open domains � � Rn which satisfy the following conditions:

(1) 0 2 @�.
(2) � \ B2.0/ is convex.
(3) � \ .B2.0//c 6D ;.

One of the key tools of this paper will be an Almgren frequency function, introduced
by Almgren in [5].

Definition 2.2. (Almgren frequency function) Let r > 0, � � Rn, uWRn ! R such that
u 2 C.B2r .p// \W

1;2.B2r .p// and p 2 �. We define the following quantities:

H�.p; r; u/ WD

Z
@Br .p/\�

ju � u.p/j2 d�;

D�.p; r; u/ WD

Z
Br .p/

jruj2 dx;

N�.p; r; u/ WD r
D�.p; r; u/

H�.p; r; u/
�

Remark 2.3 (Invariances of the Almgren frequency function). This normalized version
of the Almgren frequency function is invariant in the following senses. Let a; b; c 2 R
with a; r 6D 0. If w.x/ D au.bx C p/C c and Tp;b� D 1

b
.� � p/, then

N�.p; r; u/ D NTp;b�.0; b
�1r; w/:

We now define the class of functions in which we will work in this paper.

Definition 2.4 (A class of functions). Let A.n; ƒ/ be the set of functions uWRn ! R
which have the following properties:

(1) uWRn ! R is harmonic in a convex domain, � 2 D.n/.
(2) u 2 C.B2.0//, u D 0 on �c \ B2.0/, and u is non-constant.
(3) N�.0; 2; u/ � ƒ.

We shall use rescalings which are adapted to the quantitative stratification methods
introduced by Cheeger and Naber in [7] for studying the regularity of stationary harmonic
maps and minimal currents.

Definition 2.5 (Rescalings). For a set��Rn, let Tp;r� WD .��p/=r . For u 2A.n;ƒ/,
let � be its associated domain. We define the rescaled function Tx;ru of u at a point
x 2 B1.0/ at scale 0 < r < 1 by

Tx;ru.y/ WD
u.x C ry/ � u.x/� R

@B1.0/\Tx;r�
.u.x C rz/ � u.x//2 d�.z/

�1=2 �
In the case that the denominator is zero, we define Tx;ru D1.

The geometry we wish to capture with the rescalings Tx;rf is encoded in their trans-
lational symmetries.
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Definition 2.6 (The class of blow-up profiles). Let u 2 C.Rn/. We say u is 0-symmetric
if u satisfies one of the following conditions:

(1) u is a homogeneous harmonic polynomial,
(2) u is homogeneous and harmonic in a convex cone �0 2 D.n/ and vanishes in �0 c.

We will say that u is k-symmetric if u is 0-symmetric and there exists a k-dimensional
subspace V such that u.x C y/ D u.x/ for all x 2 Rn and all y 2 V .

We now define the quantitative version of symmetry which describes how close to
being k-symmetric a function is in a ball, Br .x/ � Rn.

Definition 2.7 (Quantitative symmetry). Let u 2A.n;ƒ/, with associated domain�. The
function u will be called .k; "; r; p/-symmetric if there exists a k-symmetric function P
with degree of homogeneity bounded by C.n;ƒ/ such that

(1)
R
@B1.0/

jP j2 d� D 1,

(2)
R
B1.0/\Tp;r�

jTp;ru � P j
2 dV < ".

We shall say that u is .k; ı0; r; p/-symmetric with respect to a k-dimensional sub-
space V if there is a k-symmetric function P which satisfies that u is .k; ı0; r; p/-sym-
metric such that P.x C y/ D P.x/ for all y 2 V .

Remark 2.8. The value of the homogeneity bound C.n;ƒ/ in Definition 2.7 will be taken
to be 2C2.n;ƒ/ for C2 as in Lemma 6.2, below.

Definition 2.9 (Quantitative generalized critical strata). Let u 2A.n;ƒ/, with� 2D.n/

its associated domain. For 0 < ", 0 < r � 1, and integer 0 � k � n � 1, we denote the
.k; "; r/-generalized critical strata of u by Ck";r .u/, and we define it by

Ck";r .u/ WD ¹x 2 � W u is not .k C 1; "; s; x/-symmetric for all r � s � 1º:

We shall also use the notation Ck" .u/ for Ck";0.u/.

It is immediate from the definitions that Ck";r .u/�Ck
0

"0;r 0.u/ if k� k0, "0� " and r � r 0.
Moreover, if u 2 A.n; ƒ/ is .k; "; r; x/-symmetric, then by the continuity of g.h/ DR
Br .xCh/

juj2dx, there exists a radius 0< rx such that u is .k;"; r;x/-symmetric inBrx .x/.
As a special case, this implies that the Ck";r .u/ are closed.

Definition 2.10 (Qualitative generalized critical set). Let u 2 A.n; ƒ/, with � 2 D.n/

its associated domain. Using the quantitative generalized critical strata, we define the gen-
eralized critical set of u as Cn�2.u/ WD [� \r Cn�2�;r .u/. In turn, we define the strata of
the generalized critical set as follows: Ck.u/ WD [� \r Ck�;r .u/.

We shall use the convention that for any A � Rn, Br .A/ D ¹x 2 Rn W d.A; x/ < rº.
Recall that we can define the upper Minkowski s-content by

M�;s.A/ D lim sup
r!0

Vol.Br .A//
!n�srn�s

;(2.1)

and the upper Minkowski dimension as

dimM.A/ WD inf¹s WM�;s.A/ D 0º D sup¹s WM�;s.A/ > 0º:
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It is a basic result that the s-dimensional Hausdorff measure satisfies

H s.A/ W lim
ı!0

inf
°X

diam.Ui /s W A � [iUi and diam.Ui / � ı
±
�M�;s.A/;

and hence the Hausdorff dimension

dimH .A/ WD inf¹s W H s.A/ D 0º D sup¹s W H s.A/ > 0º

satisfies dimH .A/ � dimM.A/ for all sets A � Rn. Now, we can state the main technical
results.

Theorem 2.11 (Technical theorem). Let u 2 A.n; ƒ/. Then, for any r0 > 0 and for all
0 < r0 < r ,

(2.2) Vol
�
Br .C

k
";r0
.u/ \ B1=4.0//

�
� C.n;ƒ; k; "/ rn�k�":

In particular, letting r0 ! 0,

HkC"
�
Ck" .u/ \ B1=4.0/

�
�M�;kC"

�
CkC"" .u/ \ B1=4.0/

�
� C.n;ƒ; k; "/:

Lemma 2.12 (Containment). There exists an 0 < " D ".n;ƒ/ such that�
Cn�2.u/ \�

�
\ B1=8.0/ � Cn�2" .u/(2.3)

and �
Cn�2.u/ \ @� n sing.@�/

�
\ B1=8.0/ � Cn�2" .u/:(2.4)

Proof of Theorem 1.2 assuming Lemma 2.12. For each point x 2K � V , there is a radius
0 < r such that B4r .x/ \ @� � V . Since K is compact, we may find a finite subcover
¹Bri .xi /ºi . Thus, Lemma 2.12 implies that in each Bri .xi /,

inf¹s WM�;s.Bri .xi / \ ¹jruj D 0º n sing.@�// <1º � n � 2:

Since upper Minkowski dimension is stable under finite unions, the first claim of Theo-
rem 1.2 holds. The second follows from an identical argument using Lemma 2.12.

2.1. Outline of the paper

The structure of this paper is roughly in four parts. Sections 3 and 4 use the geometric
techniques of [11, 12] (and many, many others) to establish that the Almgren frequency
is monotonically non-decreasing and bounded on ¹u D 0º. Section 5 uses these results to
establish compactness of ¹Tp;ruº for u.p/ D 0. Section 6 extends these results to p 2 �
such that u.p/ 6D 0.

The second part of this paper is devoted to obtaining geometric control upon Ck";r .u/.
The general idea is to employ the usual “frequency pinching” (Lemma 7.2) and cone-
splitting results (Lemma 7.6). However, as we are considering N�.p; r; u/ at points p
such that u.p/ 6D 0, the Almgren frequency is not monotonic. Thus the usual frequency
pinching argument must be modified. This is overcome by proving that

dist.p; ¹u D 0º/ < 
 and N�.p; 1; u/ �N�.p; 1=10; u/ � 
;
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for 
 > 0 sufficiently small implies that u is .0; "; 1; p/-symmetric (see Lemma 7.2). In
Corollary 7.7 we prove that if x 2Ck" .u/, then ¹p 2�Wu is .0;ı;r;p/-symmetricº\Br .x/
is contained in a tubular neighborhood of a k-plane Lk .

The third part of this paper is devoted to obtaining packing estimates to prove The-
orem 2.11. To do so, we use the tools of [8], which do not require restricting to a level
set or the delicate machinery which powers the finer estimates of [10]. The fact that we
do not control the tilt of approximating Lk at different scales accounts for the .k C "/-
dimensional results.

The fourth part of this paper is devoted to proving the containment results which prove
Lemma 2.12.

Throughout this paper, the constant C will by ubiquitous and represent different con-
stants even within the same string of inequalities. A constant written C.n; ƒ/ will only
depend upon n and ƒ, but each instantiation may represent a distinct constant.

3. The Almgren frequency function

In this section, we develop crucial properties of the Almgren frequency function. The main
result of this section is the monotonicity of the Almgren frequency on p 2 ¹u D 0º \�
(Lemma 3.4).

We now register some of the elementary properties of H�.p; r; u/, D�.p; r; u/, and
N�.p; r; u/, and of their derivatives.

Lemma 3.1. Let u 2 A.n;ƒ/ and p 2 � \ B1.0/ and all 0 < r < 1. Then,

d

dr
H�.p; r; u/ D

n�1

r
H�.p; r; u/C2D�.p; r; u/C2u.p/

Z
@�\Br .p/

ru � E� d�;(3.1)

d

dr
D�.p; r; u/ D

n � 2

r
D�.p; r; u/C 2

Z
@Br .p/

.ru � E�/2 d�(3.2)

C

Z
@�\Br .p/

.Q � p/ �E�.ru � E�/2 d�.Q/;

d

dr
ln
�H�.p; r; u/

rn�1

�
D
2

r
N�.p; r; u/C 2

u.p/
R
@�\Br .p/

ru � E� d�

H�.p; r; u/
;(3.3)

d

dr
ln.H�.p; r; u// D

n � 1

r
C
2

r
N�.p; r; u/C 2

u.p/
R
@�\Br .p/

ru � E� d�

H�.p; r; u/
;(3.4)

where E� is the unit outer normal of the relevant domains.

Proof. In the interior setting, for Br .p/ ��, these identities follow from straightforward
computation. The identity (3.1) follows from the change of variables y! rx C p and the
divergence theorem, while (3.2) relies upon the Rellich–Necas identity,

(3.5) div.X jruj2/ D 2div..X � ru/ru/C .n � 2/ jruj2;

the divergence theorem, and the fact that u vanishes on the boundary. The last two equa-
tions follow immediately from (3.1). Without exception, the standard interior computa-
tions go through identically for radii for which Br .p/ \ @� 6D ;, where we also use the
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identity Z
Br .p/

.u � u.p//�u D u.p/

Z
@�\Br .p/

ru � E� d�;

where E� is the outer unit normal vector to �. See Theorem 2.2.3 and Corollary 2.2.5
in [12], and the proof of the doubling property in [2] for details.

The following lemma records a useful identity which follows from the previous lemma
by straightforward computation.

Lemma 3.2. For u 2A.n;ƒ/, p 2�\B1.0/, and all 0 < r < 1, d
dr
N�.p; r; u/ may be

decomposed into four terms:

d

dr
N�.p; r; u/ D N

0
1.r/CN

0
2.r/CN

0
3.r/CN

0
4.r/;(3.6)

where

N 01.r/ WD
2r
�
H�.p; r; u/

R
@Br .p/\�

.ru � E�/2 d��
� R
@Br .p/\�

.u�u.p//.ru � E�/ d�
�2�

H�.p; r; u/2
;

N 02.r/ WD
1

H�.p; r; u/
r

Z
@�\Br .p/

.Q � p/ � E�.ru � E�/2 d�.Q/;

N 03.r/ WD 2N�.p; r; u/
u.p/

H�.p; r; u/

Z
@�\Br .p/

ru � E� d�;

N 04.r/ WD
2r

H�.p; r; u/2

�
u.p/

Z
@�\Br .p/

ru � E� d�
�2
;

and E� is the unit outer normal.

Lemma 3.3. Let u 2 A.n;ƒ/ and p 2 � \ B1.0/ \ ¹u D 0º. For all 0 < r < 1,

N 01.r/ D
2r
�
H�.p; r; u/

R
@Br .p/

.ru � E�/2 d� �
� R
@Br .p/

.u � u.p//.ru � E�/ d�
�2�

H�.p; r; u/2

D
2

rH�.p; r; u/

� Z
@Br .p/\�

jru � .y�p/ �N�.p; r; u/.u.y/ � u.p//j
2 d�.y/

�
:

Proof. Recall that by the Cauchy–Schwarz inequality, we have that for � D hw; vi=kvk2,

kvk2kw � �vk2 D kwk2kvk2 � jhw; vij2:

Choosing w D ru � .y � p/ and v D u � u.p/, we have

N 01.r/ D H�.p; r; u/
�1 2r

� Z
@Br .p/\�

ˇ̌̌
.u/� �

1

r
�.p; r; u/.u � u.p//

ˇ̌̌2
d�
�

D
2

rH�.p; r; u/

� Z
@Br .p/\�

jru � .y � p/ � �.p; r; u/.u.y/ � u.p//j2 d�.y/
�
;
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where

(3.7) �.p; r; u/ WD

R
@Br .p/\�

.u.y/ � u.p//ru � .y � p/ d�.y/

H�.p; r; u/
�

The divergence theorem then implies that for u.p/ D 0, �.p; r; u/ D N�.p; r; u/.

Lemma 3.4 (Monotonicity). Let u 2 A.n; ƒ/ and let p 2 ¹u D 0º \� \ B1.0/. Then
N�.p; r; u/ is monotonically non-decreasing in 0 < r < 1.

Proof. Recall Lemma 3.2. Note that N 01.r/ is non-negative, by the Cauchy–Schwartz
inequality. Furthermore,N 02.r/ is non-negative because @� is a convex surface and E� is the
outer normal, implying .Q � p/ � E� � 0 for all p 2 � \ B2.0/ and all Q 2 @� \ B2.0/.
Observe that N 03.r/ D N 04.r/ D 0 because u.p/ D 0. Therefore, d

dr
N�.p; r; u/ is non-

negative.

4. The zero set: uniform frequency bounds

The main result in this section is Lemma 4.3, which gives a uniform bound on the Almgren
frequency function for all p 2 �\ B1=4.0/ for which u.p/ D 0 and all 0 < r � 1=2. We
begin with a few basic results.

Lemma 4.1 (H�.p; r; u/ is doubling). Let u 2A.n;ƒ/, with p 2 B1.0/\ ¹uD 0º D�.
For any 0 < s < S � 1,

(4.1) H�.p; S; u/ �
�S
s

�.n�1/C2N�.p;S;u/
H�.p; s; u/:

Proof. Recalling equations (3.1) and (3.3),

ln
�H�.p; S; u/
H�.p; s; u/

�
D ln.H�.p; S; u// � ln.H�.p; s; u// D

Z S

s

H 0�.p; r; u/

H�.p; r; u/
dr

D

Z S

s

�n � 1
r
C
2

r
N�.p; r; u/

�
dr:

We bound N�.p; r; u/ by N�.p; S; u/ using Lemma 3.4. Plugging in these bounds, we
have that for r 2 Œs; S�,

ln
�H�.p; S; u/
H�.p; s; u/

�
� Œ.n � 1/C 2N�.p; S; u/� ln.r/jSs :

Evaluating and exponentiating gives the desired result.

Remark 4.2. Because N�.p; r; u/ is monotonic for p 2 B1.0/ \ ¹u D 0º \�, we can
also extract the inequality

ln
�H�.p; S; u/
H�.p; s; u/

�
� Œ.n � 1/C 2N�.p; s; u/� ln.r/jSs ;
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which leads to

(4.2) H�.p; s; u/ �
� s
S

�.n�1/C2N�.p;s;u/
H�.p; S; u/ �

If S D 1 and u D Tp;ru, then we have that for all 1 > s > 0,

(4.3) H�.0; s; Tp;ru/ � s
.n�1/C2N�.Q;0;Tp;ru/:

We are now ready for the main result of this section.

Lemma 4.3 (Uniform bound on frequency). Let u 2 A.n; ƒ/, as above. There is a con-
stant C1.n;ƒ/ such that for all p 2 ¹u D 0º \� \ B1=4.0/ and all r 2 .0; 1=2�,

(4.4) N�.p; r; u/ � C1.n;ƒ/:

Proof. Recall that 0 2 @� and that the Almgren frequency function is invariant under
rescalings. Therefore, we normalize our function u by the rescaling v D T0;1u.

Therefore, applying Lemma 4.1 to Q D 0, letting r D cR, and integrating both sides
with respect to R from 0 to S , we have that for any c 2 .0; 1/,Z

BS .0/

jvj2 dV �

Z S

0

�1
c

�.n�1/C2N�.0;R;v/ Z
@BcR.0/

jvj2 d�dR

�

�1
c

�.n�1/C2N�.0;S;v/ Z S

0

Z
@BcR.0/

jvj2 d�dR:

Thus, letting S D 1 and c D 1=16 and dividing by !n, we obtain

(4.5)
«
B1.0/

jvj2 dV � 162N�.0;1;v/
«
B1=16.0/

jvj2 dV:

Thus, for any p 2 ¹v D 0º \� \ B1=4.0/, by inclusion,Z
B1.0/

jvj2 dV �

Z
B3=4.p/

jvj2 dV and
Z
B1=16.0/

jvj2 dV �

Z
B9=16.p/

jvj2 dV:

Therefore, substituting these bounds into (4.5),

(4.6)
«
B3=4.p/

jvj2 dV � 162N�.0;1;v/
� «

B9=16.p/

jvj2 dV
�
:

Now, we wish to bound
ª
B3=4.p/

jvj2 dV from below and
ª
B9=16.p/

jvj2 dV from above.

By (3.1), if v.p/ D 0, d
dr

R
@Br .p/

jvj2 d� � 0. Thus, for all p 2 ¹v D 0º \� \ B1=4.0/,
we boundZ

B3=4.p/

jvj2 dV �

Z 3=4

5=8

Z
@Br .p/

jvj2 d�dr � c

Z
@B5=8.p/

jvj2 d�;Z
B9=16.p/

jvj2 dV �

Z 9=16

0

Z
@B9=16.p/

jvj2 d�dr � c

Z
@B9=16.p/

jvj2 d�:
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Plugging the above bounds into (4.6) and dividing, we obtain

(4.7)

ª
@B5=8.p/

jvj2 d�ª
@B9=16.p/

jvj2 d�
� C.n/ 162N�.0;1;v/

for all p 2 ¹v D 0º \� \ B1=4.0/. Recalling (3.3) and Lemma 3.4, we see that

ln
� «

@B5=8.p/

v2 d�
�
� ln

� «
@B9=16.p/

v2 d�
�
D

Z 5=8

9=16

d

dr
ln
� 1

rn�1
H�.p; r; v/

�
dr

D

Z 5=8

9=16

2

r
N�.p; r; v/ dr � 2N�.p; 1=2; v/

�
ln
�5
8

�
� ln

� 9
16

��
� 2cN�.p; 1=2; v/:

Thus, (4.7) gives us that

2cN�.p; 1=2; v/ � ln
� ª

@B5=8.p/
jvj2 d�ª

@B9=16.p/
jvj2 d�

�
� ln

�
C.n/ 162N�.0;1;v/

�
D 2N�.0; 1; v/ ln.16/C C.n/ � 2ƒ ln.16/C C.n/:

Now, Lemma 3.4 gives, for 1=2 > s > 0, that N�.p; 1=2; v/ � N�.p; s; v/. Since
N�.p; r; v/ D N�.p; r; u/, we have the desired claim.

5. The zero set: compactness

The uniform bounds on the Almgren frequency function allow us to prove compactness
results on the collection of rescaling ¹Tp;ruº. The main results of this section are weak
compactness (Lemma 5.4), and the geometric non-degeneracy of the domains � (Corol-
lary 5.2).

We now state a sequence of preliminary corollaries to Lemma 4.3. We shall denote the
C 0;
 .B1.0//-norm by

kukC 0;
 .B1.0// WD kukC 0.B1.0// C sup
x;y2B1.0/
x 6Dy

ju.x/ � u.y/j

jx � yj

�

Lemma 5.1 (Uniform Hölder continuity). Let u 2 A.n;ƒ/, Q 2 B1=4.0/\ @�, and r 2
.0; 1=2�. Then

kTQ;rukC 0;
 .B1.0// � C.n;ƒ/:

We defer the proof of this statement to the Appendix A. The techniques are standard.

Corollary 5.2 (Non-degeneracy of domains). Let u 2 A.n; ƒ/ and let � 2 D.n/ be its
associated convex domain. There exists a constant 0 < c D c.ƒ; n/ such that, for all
Q 2 @�\B1=4.0/ and 0 < r � 1=2, @B1.0/\ TQ;r� is a relatively open convex surface
with

Hn�1.@B1.0/ \ TQ;r�/ > c:
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Proof. That @Br .Q/ \� is relatively open and relatively convex is immediate from the
definition of �. By Lemma 5.1, we see that maxB1.0/ jTQ;ru.x/j � C.n; ƒ/. And by
definition, HTQ;r�.0; 1; TQ;ru/ D 1. Furthermore, we have that

HTQ;r�.0; 1; TQ;ru/ � Hn�1.@B1.0/ \ TQ;r�/C
2:

Therefore, Hn�1.@B1.0/ \ TQ;r�/ � C
�2 D c.

Corollary 5.3. For all u 2A.n;ƒ/,Q0 2 @�\B1=4.0/, and 0 < r � 1=2, the following
estimate holds. Let Q 2 TQ0;r@� \ B1=2.0/ and let LQ be a supporting hyperplane to
Q 2 TQ0;r@�. Then for all p 2 TQ0;r� \ B1=4.Q/,

jTQ0;ru.p/j � C.n;ƒ/ dist.p;LQ/:

In particular, jrTQ0;ru.Q/j � C.n;ƒ/ for all Q 2 @TQ0;r� \ B1=2.0/.

Proof. Let HQ be the half-space with boundaryLQ which contains TQ0;r�. Consider the
Dirichlet problem

�� D 0 in HQ \ B1=2.Q/;

� D

´
C.n;ƒ/ on @B1=2.Q/ \ TQ0;r�;
0 on @.B1.Q/ \HQ/ n .@B1=2.Q/ \ TQ0;r�/;

where we choose C.n; ƒ/ to be the same constant in Lemma 5.1 for which we have
sup@B1.0/ jTQ0;ruj � C.n; ƒ/. Note that for any Q 2 @�, HQ \ B1=2.Q/ is a Wiener
regular domain and the boundary data is piecewise continuous, so a unique solution �
must exist.

By the maximum principle, TQ0;ru � � in TQ0;r� \ B1=2.Q/. We now argue that �
is comparable to a linear function in B1=4.Q/ \HQ. Let L be the affine linear function
with ¹L D 0º D LQ such that

max
@B1=2.Q/

L D max
@B1=2.Q/

� D C.n;ƒ/:

By Theorem 5.1 in [14], there is a constant C such that, for all x 2 B1=4.Q/ \HQ,

�.x/ � CL.x/;

where C depends only upon the geometry of B1=4.Q/ \ HQ. Since this geometry is
always a half-ball, this constant is uniform. So we have that for all x 2 B1=4.Q/ \HQ,

�.x/ � CL.x/ � C2C.n;ƒ/ dist.x; LQ/:

Thus, for p 2 TQ0;r� \ B1=4.Q/, we have

TQ0;ru.p/ � �.p/ � C.n;ƒ/ dist.x; LQ/:

Applying this argument to˙TQ0;ru, we obtain the desired estimate.
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Lemma 5.4 (Preliminary compactness). Let ui 2 A.n; ƒ/, Qi 2 @�i \ B1=4.0/, and
0 < ri � 1=4. Then there exists a subsequence (also indexed by i/ such that

(1) TQi ;riui ! u1 in C 0;
 .B1.0//.

(2) If we define �1 D Int.¹ju1j > 0º/, then TQi ;ri�i \ B1.0/! �1 \ B1.0/ in the
Hausdorff metric on compact subsets, and �1 is a non-degenerate convex domain
with 0 2 @�1 which satisfies the same non-degeneracy as that of Corollary 5.2.

(3) u1 is harmonic in �1.

Proof. By definition, TQi ;riui .0/ D 0. Therefore, Lemma 5.1 implies the first conver-
gence result by Arzelà–Ascoli. Note that since HTQi ;ri�i .0; 1; TQi ;riui / D 1 for all i ,
H�1.0; 1; u1/ D 1.

By taking a further subsequence, we may assume that limi TQi ;ri�i D �
0 exists in a

set theoretic sense. The uniform convergence in (1) implies that, for all 0 < ", ¹ju1j > "º
�
T1
ND1

S1
iDN ¹jTQi ;riui j � " � 1=N º. Since ¹jTQi ;riui j > 1=2º is non-empty, and as

jTQi ;riui j > 1=4 in B.2C.n;ƒ//�1=
 .¹jTQi ;riui j > 1=2º/, �1 is non-degenerate. For all
y 2�1 and all 0 < ı, there exists a point x 2�1 such that jx � yj � ı and ju1.x/j > "
for some " > 0. Since x 2 limiTQi ;ri�i and 0 < ı was arbitrary,�1 � limi Bı.TQi ;ri�i /

for all ı > 0.
To see the converse containment, we observe that for any x0 2 Int.�0/, if Bı.x0/��0

then, for all sufficiently large i , Bı=2.x/ � TQi ;ri�i and TQi ;riui is uniformly bounded
in W 1;2.Bı.x0//. Therefore, TQi ;riui converge to a harmonic function in Int.�0/. By the
convexity of TQi ;ri�i for all i , Int.�0/ is connected.

Now, let 0 < ı and suppose that for all sufficiently large i there exists xi 2 TQi ;ri�i n
Bı.�1/\B1.0/. By passing to a subsequence, we may assume xi ! x1 2B1.0/\�0 n

Bı=2.�1/ Since u1D 0 onBı=2.x1/, it must be that limi!1 supBı=2.x1/ jTQi ;riui j D 0.
Since Int.�0/ is connected, by unique continuation TQi ;riui ! 0 in �0. But this contra-
dicts u1 being non-trivial. Thus, there must be a subsequence such that TQi ;ri�i \ B1.0/
! �1 \ B1.0/ in the Hausdorff metric on compact subsets. Convexity and the conclu-
sion of Corollary 5.2 are preserved under this mode of convergence, and so (2) is proved.

Now that we know that �0 D �1, the previous argument proves (3), as well.

6. Estimates off the zero set

In this section we prove that analogs of the results of Sections 4 and 5 hold for all p 2
B1=8.0/\� and 0 < r � 1=8. The key to obtaining estimates off ¹uD 0º is the following
technical lemma.

Lemma 6.1 (Technical lemma). For any u 2 A.n; ƒ/, Q 2 B1=4.0/, and 0 < r < 1=4,
there is a constant 0 < c.n;ƒ/ such that for all y 2 B1=2.0/,

c.n;ƒ/ < HTQ;2r�.y; 1=4; TQ;2ru/ < C.n;ƒ/:

Proof. Note that the upper bound follows directly from Lemma 5.1. To show the lower
bound, we argue by compactness. Suppose that there is a sequence of functions ui 2
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A.n;ƒ/, points Qi 2 @�i \ B1=4.0/ and radii 0 < ri < 1=4, such that there exist points
yi 2 B1=2.0/ \� for which

HTQi ;2ri�i .yi ; 1=4; TQi ;2riui / � 2
�i :

Letting i ! 1, by Lemma 5.4, there exists a subsequence TQj ;2rj uj which converges
to a Hölder continuous function, u1, which is harmonic in a non-degenerate convex
domain, �1. Note that u1 vanishes on the boundary of @�1 \ B8.0/. Similarly, we
may take subsequences such that yi ! y1. Note that Hölder convergence implies that
H�1.0; 1; u1/ D 1. Since we have that H�1.y; 1=4; u1/ D 0, it must be that u1 D
u1.y1/ on @B1=4.y/\�1. If @B1=4.y/ � �1, then u1 � u1.y1/ in �1. This con-
tradicts u1.0/ D 0 and H�1.0; 1; u1/ D 1. If @B1=4.y/ intersects @�1, then u1.y1/
D 0, since u1 must vanish continuously on @�1. However, this forces u1 � 0, which
contradicts H�1.0; 1; u1/ D 1.

Lemma 6.2 (Bounding the Almgren frequency). Let u 2 A.n;ƒ/, p 2 B1=8.0/\� and
0 < r � 1=8. Then, there is a constant C2 D C2.n;ƒ/ <1 such that

N�.p; r; u/ � C2:

Proof. For p 2 ¹u D 0º \ �, Lemma 4.3 proves the desired inequality. Let p 2 � be
such that u.p/ 6D 0. Let 0 < ı D dist.p; @�/ and Q 2 @� be such that jp �Qj D ı.
If Br .p/ � �, we use the monotonicity of the Almgren frequency function to reduce to
considering Bı.p/. We let � D max¹r; ıº � 1=8. Consider TQ;4�u. We note that

C1.n;ƒ/ � NTQ;4��.0; 1; TQ;4�u/

D

R
B1.0/

jrTQ;4�uj
2dVR

@B1.0/
TQ;4�u2 d�

�

Z
B1=4.TQ;4�p/

jrTQ;4�uj
2 dV:

On the other hand, Lemma 6.1 implies that

HTQ;4��.TQ;4�p; 1=4; TQ;4�u/ � c.n;ƒ/:

Therefore, we have

N�.p; r; u/ D
DTQ;4��.TQ;4�p; 1=4; TQ;4�u/

4HTQ;4��.TQ;4�p; 1=2; TQ;4�u/
� C.n;ƒ/:

Lemma 6.3 (Lipschitz bounds). For u 2A.n;ƒ/, for allQ 2 @�\B1=4.0/, and all radii
0 < r � 1=8, TQ;ru 2 Lip.B1.0// with uniform Lipschitz constant Lip.TQ;ru/� C.n;ƒ/.

Proof. Since TQ;ru is continuous and constant outside of TQ;r�, we reduce to bounding
rTQ;ru at interior points y 2 TQ;r�\B1.0/. Note that by our definition of the rescalings
(Definition 2.5) and Lemma 4.1,

jTQ;ru.y/j D

� 1
.4r/n�1

H�.Q; 4r; u/

1
rn�1

H�.Q; r; u/

�1=2
jTQ;4ru.y

0/j

� 42C1.n;ƒ/ jTQ;4ru.y
0/j � C.n;ƒ/ jTQ;4ru.y

0/j;
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where y0 D y=4. Note that y0 2B1=4.0/\ TQ;4r�. Let ı D dist.y0; TQ;4r@�/. Therefore,
rTQ;4r u.y

0/ D
ª
Bı .y

0/
rTQ;4r udV . Recall that jruj is subharmonic, and therefore by

Lemma 6.2,

jrTQ;4r u.y
0/j �

«
Bı .y

0/

jrTQ;4r uj dV �
� «

Bı .y
0/

jrTQ;4r uj
2 dV

�1=2
�

�
C2.n;ƒ/ ı

�2

«
@Bı .y

0/

.TQ;4r u � TQ;4r u.y
0//2 d�

�1=2
:

Now, let Q0 2 TQ;4r@� be a point such that ı D jy0 �Q0j and let y0 D y00 CQ0. Now,
we translate the domain by Q:«
@Bı .y

0/

.TQ;4ru�TQ;4ru.y
0//2 d� D

«
@Bı .y

00/

.TQ;4ru.xCQ/� TQ;4ru.y
00
CQ//2 d�:

Note that TQ;4r u.x CQ0/ 2 A.n; C1.n;ƒ//.
Now, by Corollary 5.3 applied to TQ;4r u.xCQ/ 2 A.n;C1.n;ƒ// with Q0 D 0, we

bound «
@Bı .y

0/

.TQ;4r u � TQ;4r u.y
0//2 d�

D

«
@Bı .y

00/

.TQ;4r u.x CQ/ � TQ;4r u.y
00
CQ//2d�.x/

�

«
@Bı .y

00/

.4C.n; C1.n;ƒ//ı/
2 d� D .4C.n; C1.n;ƒ//ı/

2:

Thus, we have that

jrTQ;r u.y/j � C.n;ƒ/ jTQ;4r u.y
0/j

� C.n;ƒ/
�
C1.n;ƒ/ ı

�2
� «

@Bı .y/

.TQ;r u � TQ;r u.y//
2 d�

��1=2
� C.n;ƒ/C1.n;ƒ/

1=2 1

ı
.4C.n; C1.n;ƒ//ı/ � C.n;ƒ/:

We now prove that the Almgren frequency is a function of uniformly bounded varia-
tion.

Lemma 6.4 (Bounded variation). Let u 2 A.n;ƒ/ and p 2 B1=8.0/ \�. Then, there is
a constant C3 D C3.n;ƒ/ <1 such that for all 0 < r � 1=8,

var.N�.p; r; u/; Œ0; 1=8�/ � C3:

Proof. We estimate the variation by a “rays of the sun” argument. Since N�.p; r; u/ is
monotone increasing and bounded for p 2 ¹u D 0º \�, we argue for u.p/ 6D 0. Again,
we let ı D dist.p; @�/. Then

var.N�.p; r; u/; Œ0; 1=8�/ � 2
Z 1=8

0

N 03.r/ dr C jN�.p; 0
C; u/ �N�.p; 1=8; u/j

� 2

Z 1=8

ı

2N�.p; r; u/
1

H�.p; r; u/

Z
Br .p/\@�

u.p/ru � E� d�drC2C2:
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Now, if we letQ02@� be a point such that jp�Q0j D ı, we may calculate by Lemma 6.1,
Lemma 4.1, Lemma 5.3, and Lemma 6.3,

1

H�.p; r; u/

Z
Br .p/\@�

u.p/ru � E� d�

� C.n;ƒ/

Z
B1.TQ0;rp/\TQ0;r@�

TQ0;r u.y/
1

r
rTQ0;r u � E�TQ0;r� d�

� C.n;ƒ/

Z
B1.TQ0;rp/\TQ0;r@�

ı

r2
d� � C.n;ƒ/

ı

r2
�

Thus, by Lemma 6.2, we may bound

var.N�.p; r; u/; Œ0; 1=8�/ � 8C2.n;ƒ/C.n;ƒ/
Z 1=8

ı

ı

r2
dr C 2C2.n;ƒ/

� C.n;ƒ/ ı.8C 1=ı/C 2C2.n;ƒ/ � C3.n;ƒ/:

This proves the lemma.

Lemma 6.5 (Compactness). Let ui 2 A.n; ƒ/, pi 2 �i \ B1=8.0/, and ri 2 .0; 1=8�.
Then, there exist a subsequence and a function, u1 2 W

1;2
loc .R

n/, such that Tpj ;rj uj con-
verges to u1 in the following senses:

(1) Tpi ;riui ! u1 in C 0.B1.0//.

(2) Tpi ;riu! u1 in L2.B1.0//.

(3) Tpi ;ri�i \ B1.0/! �1 \ B1.0/ in the Hausdorff metric on compact subset and
�1 \ B1.0/ D supp.u1/ \ B1.0/ is a non-degenerate, convex set.

(4) rTpi ;riu! ru1 in L2.B1.0/IRn/.

Proof. To see .1/, we observe that Tpi ;riui .0/D 0 and ¹Tpi ;riuiº are uniformly Lipschitz.
Therefore, by Arzelà–Ascoli, there exists a subsequence which converges in C 0.B1.0//.
Since C 0.B1.0// � L2.B1.0//, this also proves .2/.

(3) follows analogously as in the proof of Lemma 5.4(2). That is, if Tpi ;ri�i \ B1.0/
6D B1.0/ for a subsequence of i , then Tpi ;ri�i is a translation of TQi ;ri�i for some
Qi 2 @Tpi ;ri�i \B1.0/. Thus, after possibly passing to a subsequence so that the limiQi
exists, the argument of Lemma 5.4(2) applies, and (3) follows immediately.

Our choice of rescaling Tpj ;rj u gives N�.0; 1; Tpj ;rj uj / D
R
B1.0/

jrTpj ;rj uj j
2 dV .

Therefore, Lemma 6.2 yields that therTpj ;rj uj are uniformly bounded inL2.B1.0/IRn/.
Therefore, Rellich compactness gives weak convergence.

The only thing remaining to show is that rTpj ;rj uj !ru1. By (3), we may choose a
subsequence such that @�j have a convergent subsequence and Tpi ;ri @�i ! @�1 locally
in the Hausdorff metric to a non-degenerate convex domain. Since the boundary of a
convex domain is locally the graph of a Lipschitz function, dimM.@�1 \B1.0//D n� 1.
Thus, by continuity of measures and Lemma 6.3, for all " > 0 we can find a �.ƒ; n; "/
independent of Tpj ;rj uj , such thatZ

B1.0/\B� .@�1/

jrTpj ;rj uj j
2 dV � ":
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Therefore, using the notation @�j;� D B� .Tpj ;rj @�j /,

lim
j!1

D�i .1; 0; Tp;rj uj / D lim
j!1

Z
B1.0/

jrTpj ;rj uj j
2 dV

D

Z
B1.0/n@�j;�

jrTpj ;rj uj j
2 dV C lim

j!1

Z
B1.0/\@�j;�

jrTp;rj uj j
2 dV

� lim
j!1

Z
B1.0/nB�=2.@�1/

jrTpj ;rj uj j
2 dV C " � D�1.1; 0; u1/C ";

where the last inequality follows from theW 1;2-convergence of harmonic functions in the
region B1.0/ nB� .@�1/. Since " > 0 was arbitrary, we have limj!1D�i .1; 0;Tpj ;rj uj /
� D�1.1; 0; u1/. The other inequality follows from the same trick or from lower semi-
continuity. Thus, limj!1D.1; 0; TQj ;rj uj / D D�1.1; 0; u1/. This implies strong con-
vergence.

Corollary 6.6 (Convergence of the Almgren frequency). For uj 2A.n;ƒ/, pj 2B1=8.0/
\�i , and rj 2 .0; 1=8�, there exist a subsequence and a limit function such that

NTpj ;rj�i .0; 1; Tpj ;rj uj /! N�1.0; 1; u1/:(6.1)

Proof. The continuous convergence of Tpj ;2rj uj in B1.0/ and the strong convergence
rTpj ;2rj uj in B1.0/ give the desired convergence of HTpj ;2rj�i .0; 1=2; Tpj ;2rj uj / and of
DTpj ;2rj�j .0; 1=2; Tpj ;2rj uj /, respectively. Recall that by Definitions 2.2 and 2.5,

NTp;2r�.0; 1=2; Tp;2ru/ D
1

2

DTp;2r�.0; 1=2; Tp;2ru/

HTp;2r�.0; 1=2; Tp;2ru/
D
DTQ;r�.0; 1; TQ;ru/

HTQ;r�.0; 1; TQ;ru/
�

Corollary 6.7 (Limit functions are harmonic in the limit domain). Let the sequence of
functions Tpj ;rj uj converge to the function u1 in the senses of Lemma 6.5. Then, u1 is
harmonic in �1.

Proof. Recall that, up to a subsequence, the boundaries TQ;r@�j converge to the bound-
ary @�1 of a convex domain in the Hausdorff distance on compact subsets. Therefore,
for any 0 < ", for j large enough, every TQ;ru will be harmonic in the region B1.0/ n
B".@�1/. By the C 0;
 .B1.0// convergence of harmonic functions, u1 is therefore har-
monic in B1.0/ n B".@�1/. Letting "! 0 gives the desired statement.

7. Geometric control

The main results of this section are two “quantitative rigidity” results about homogeneous
harmonic functions. Both are essentially consequences of the compactness obtained in
Lemma 6.5.

Lemma 7.1. Let u 2 A.n;ƒ/. Let p 2 � \ B1=8.0/ and 0 < r � 1=8. If

N�.p; r; u/ D N�.p; r=10; u/;

and either u.p/ D 0 or Br .p/ � �, then u is .0; 0; s; p/-symmetric for all 0 < s � 1.
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Proof. The hypotheses imply that N�.p; s; u/ is a constant for all r=10 � s � r . Further-
more, using the notation in Lemma 3.2, N 01.s/ D N 02.s/ D N 03.s/ D N 04.s/ D 0 for all
r=10 � s � r . Thus, by Lemma 3.3 we have that for all y 2 @Bs.p/,

ru � .y � p/ D @ru D N�.p; s; u/.u � u.p//:

SinceN�.p; s;u/ is a constant for all r=10� s � r , this becomes a separable ODE in polar
coordinates, and u � u.p/ D v.s; �/ D sN�.p;r;u/v.�/. Since � \ Br .p/ is open, unique
continuation implies that u � u.p/ is a homogeneous function of degree N�.p; r; u/ in
� \ B1.p/. In particular, u is .0; 0; s; p/-symmetric for all 0 < s � 1.

Standard quantitative rigidity results usually prove that if N�.p; r; u/ is almost con-
stant (N�.p; 1; u/ � N�.p; r; u/ � ı."/), then u is almost a homogeneous harmonic
polynomial (kTp;1u � P kL2.B1.0// �

p
"). However, these results rely essentially upon

the monotonicity of N�.p; r; u/. If N�.p; r; u/ is not monotonic, then N�.p; 1; u/ D
N�.p; r; u/ does not imply that the Almgren frequency is constant. In fact, even when
N�.p; r; u/ is constant for 1=10 < r < 1, if u.p/ 6D 0, it is not clear that u would be
homogeneous. To overcome this technical issue, we consider p which are merely very
close to ¹u D 0º.

Lemma 7.2 (Quantitative rigidity). Let u 2 A.n; ƒ/, as above. Let p 2 B1=8.0/ \ �
and 0 < r � 1=8. For every ı > 0, there is an 0 < 
0 D 
0.n; ƒ; ı/ such that for any
0 < 
 � 
0, if

jN�.0; 1; Tp;ru/ �N�.0; 1=10; Tp;ru/j � 


and either dist.p; ¹u D 0º/ � 
r or B1.0/ � Tp;r�, then Tp;ru is .0; ı; 1; 0/-symmetric.

Proof. We argue by contradiction. Assume that there exists a ı > 0 such that there is a
sequence of functions ui 2 A.n; ƒ/, points pi 2 B1=8.0/ \�i , and radii 0 < ri < 1=8,
such that dist.pi ; ¹ui D 0º/ � ri 2�i and

jN�i .0; 1; Tpi ;riui / �N�i .0; 1=10; Tpi ;riui /j � 2
�i ;

but that no Tpi ;riui is .0; ı; 1; 0/-symmetric.
By Lemma 6.5, we have that there exists a subsequence such that Tpj ;rj uj converges

strongly in W 1;2.B1.0// to a function u1. By Corollary 6.7, we know that u1 is har-
monic in a convex domain �1. Furthermore, by Lemma 6.5 (1), u1.0/ D 0 and u1 D 0
on @�1. By Lemma 6.2 and the proof of Corollary 6.6 applied to Tpj ;rj uj , we have that
limj!1N�j .0; r; Tpj ;rj uj / D N�1.0; r; u1/ 2 Œ0; C2.n;ƒ/�, and that N�1.0; r; u1/ is
constant for 1=10 � r � 1. Therefore, by Lemma 7.1, u1 is .0; 0; 1; 0/-symmetric. This
contradicts our assumption that that no Tpi ;riui is .0; ı; 1; 0/-symmetric.

For the case that B1.0/ � Tpi ;ri�i , repeat the argument to obtain the same contradic-
tion.

Remark 7.3. By the scale invariance of the Almgren frequency, Lemma 7.2 implies that
for all 0 < ı, if 0 < 
 � 
0.n;ƒ; ı/, then

jN�.p; r; u/ �N�.p; r=10; u/j � 


and either dist.p; ¹u D 0º/ � 
r or Br .p/ � � implies u is .0; ı; r; p/-symmetric.
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Next, we obtain a “cone-splitting” result. The prototypical example of a result like this
is the following proposition. See Theorem 4.1.3 in [12] for the proof of similar results.

Proposition 7.4. Let P WRn ! R be a 0-symmetric function. Let k � n � 2. If P is
symmetric with respect to some k-dimensional subspace V and P is homogeneous with
respect to some point x 62 V , then P is .k C 1/-symmetric with respect to span¹x; V º.

In order to prove a similar result for our almost-symmetric functions u 2A.n;ƒ/, we
need the following preliminary observation.

Lemma 7.5. Let 0� k � n� 1 be an integer and let 0 < "i satisfy "i! 0. If ui 2A.n;ƒ/

with associated domain�i , pi 2�i \B1.0/, 0<ri�1, and ui is .k;"i ; ri ;pi /-symmetric,
then there is a function u1 2 L2.B1.0// such that there exists a subsequence such that

Tpj ;rj uj ! u1 in the senses of Lemma 6.5,

and u1 is .k; 0; 1; 0/-symmetric.

Proof. The existence of u1 is proven in Lemma 6.5. In order to prove the lemma, it suf-
fices to prove that if Pj is a k-symmetric function which satisfies that uj is .k; "j ; rj ; pj /-
symmetric, then there is a subsequence such that Pj ! P1 for some k-symmetric func-
tion P1 with order of homogeneity less than or equal to 2C2.n; ƒ/. Since by assump-
tion NR.0; 1; Pj / D krPj kL2.B1.0/IRn/ � 2C2.n; ƒ/, the sequence Pj is bounded in
W 1;2.B1.0//. Hence, by Rellich–Kondrakov, there is a subsequence, which we continue
to label Pj , such that

Pj * P1 in W 1;2.B1.0//

for some P1 2 L2.B1.0// satisfying NR.0; 1; P1/ D krPj kL2.B1.0/IRn/ � 2C2.n;ƒ/.
If there is a subsequence for which Pj are homogeneous harmonic polynomials, then

we may reduce to a subsequence of the same order. Since convergence in L2.B1.0//
implies C1.B1.0// convergence, this implies that, in particular, the coefficients converge.
Hence, P1 is a homogeneous harmonic polynomial.

If there is a subsequence for which Pj are homogeneous harmonic polynomials, then
we may extract a subsequence such thatPj are defined upon convex cones�j in D.n/. By
following the arguments of Lemma 6.5 and Corollary 6.7, we have that P1 is harmonic
and defined upon a non-degenerate convex cone �1.

To see that in either case P1 has k symmetries, we precompose with rotations Oj
sending the k-planes Vj ! Rk � Rn. Thus the Pj ıOj only rely upon (the same) .n�k/
variables. Since Oj converges as j !1, we see that P1 ıOj converges to P1 ıO1,
which itself only depends upon those .n� k/ variables. Thus, P1 is a k-symmetric func-
tion.

Lemma 7.6 (Cone-splitting). Let 0 � k � n � 2 be an integer and let u 2 A.n;ƒ/. For
any fixed "; � > 0 and any 0 < r � 1=8, there is a 0 < ı0 D ı0.n; �; "; ƒ/ such that for
0 < ı < ı0, the following holds. If p 2 � \ B1=8.0/ and u is .k; ı; r; p/-symmetric with
respect to a k-dimensional subspace V and .0; ı; r; x/-symmetric for some x 2 Br .p/ n
B� r .V C p/, then v is .k C 1; "; r; p/-symmetric.
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Proof. Assume that there exists a ı; � > 0 for which there exist a sequence of 0 < ri � 1,
functions ui 2 A.n; ƒ/ and points ¹piº for which ui is .k; i�1; ri ; pi /-symmetric with
respect to some Vi and .0; i�1; ri ; xi /-symmetric for some xi 2 Bri .pi / n B� .Vi C pi /,
but that all ui are not .k C 1; ı; ri ; pi /-symmetric.

By considering Tpi ;riui and applying Lemma 6.5 and Lemma 6.7, there exists a har-
monic function u1 2 L2.B1.0// such that a subsequence Tpj ;rj uj ! u1 in the senses of
the lemma. Note that u1 is non-degenerate. Taking further subsequences, we may reduce
to a sequence for which

Tpj ;riVj ! V; xj ! x 2 B1.0/ n B� .V /:

Now, by Lemma 7.5, u1 is .k; 0; 1; 0/-symmetric with respect to V and .0; 0; 1; x/-
symmetric. Then, by Proposition 7.4, u1 is .k C 1; 0; 1; 0/-symmetric. Since ui ! u in
L2.B2.0//, we have our contradiction. Thus the lemma follows by taking the smallest
0 < ı0 for 0 � k � n � 2, eliminating the dependence upon k.

Corollary 7.7. Let k � n� 2 and u 2A.n;ƒ/. For any fixed "; � > 0 and any 0 < r � 1,
there is a 0 < ı0 D ı0.n; �; "; ƒ/ such that for 0 < ı < ı0, the following holds. If p 2
� \ B1=4.0/ and u is .0; ı; r; p/-symmetric but not .k C 1; "; r; p/-symmetric, then there
exists an affine k-plane V such that

¹x 2 Br .p/ W u is .0; ı; r; x/-symmetricº � B� r .V /:(7.1)

Proof. Let 0 < "1; : : : ; "n�1 be small parameters to be chosen later. To prove the lemma,
we inductively apply Lemma 7.6. That is, suppose that there is another point x1 2Br .p/ n
B� r .p/ such that u is .0; ı; r; x/-symmetric; then Lemma 7.6 implies that for any 0 < "1
there is a 0 < ı0.n; �; "1; ƒ/ such that if ı � ı0.n; �; "1; ƒ/, then u is .1; "1; r; p/-sym-
metric with respect to some affine 1-plane V1. Inducting up, assume that u is .i; "i ; r; p/-
symmetric with respect to Vi . Then, for any 0 < "iC1 there exists a ı0.n; �; "iC1;ƒ/ such
that if we can find an xiC1 2 Br .p/ n B� r .Vi / such that u is .0; ı; r; x/-symmetric and
0 < ı; "i � ı0.n; �; "iC1; ƒ/, then u is .i C 1; "iC1; r; p/-symmetric with respect to Vi .

Therefore, choosing 0 < "n�1 � ı0.n; �; "; ƒ/ and 0 < "i�1 � ı0.n; �; "i ; ƒ/ for all
i D 1; : : : ; n � 1, we obtain 0 < ı0.n; �; "; ƒ/ D ı0.n; �; "1; ƒ/, as desired. Since it is
assumed that such that u is not .k C 1; "; r; p/-symmetric, this procedure must terminate
before step k C 1, and therefore there must exist an affine k-plane such that the claim of
the corollary holds.

8. The covering and its properties

The lemmata in the previous section allow us to inductively define a covering with the right
packing conditions. Quantitative rigidity allows us to prove a “quantitative differentiation”
lemma that bounds the number of scales across which the frequency can change by more
than some threshold 
 > 0. Cone splitting, on the other hand, will give us good geometric
control of the singular set at scales for which v is close to a homogeneous harmonic
polynomial. Together, these things will give us the necessary packing conditions. First,
we describe the covering.
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8.1. The general construction

Let u 2 A.n; ƒ/, and let "; r > 0, k � n � 2, and N 2 N be given. We use the notation
�i D 10�i . In this section we describe a general procedure which will produce a cover
of Ck";r .u/ \ B1=10.0/ by balls of radius �N .

We begin by defining an auxiliary quantity. Let

D.u; x; r/ D inf ¹ı0 > 0 W u is .0; ı0; r; x/-symmetricº:(8.1)

Let 0 < ı0. We shall refer to ı0 as the sorting threshold. For any i 2 N, we can assign to
each x 2 Ck";r .u/ \ B1=8.0/ an i -tuple T i .x/ according to the rule

.T i .x//j D 1 if D.u; x; �j / � ı0;

.T i .x//j D 0 if D.u; x; �j / < ı0:

For any Ti we shall use jT i j to denote the sum of the entries. Note that there is a partial
ordering on the set of these i -tuples. That is, if k < i , we can say that T k < T i if .T k/j D
.T i /j for all j 2 ¹1; 2; : : : ; kº.

Now, we partition our set according to these i -tuples. For any given i -tuple T i 2¹0;1ºi ,
we define

E.T i / D ¹x 2 Ck";r .u/ \ B1=10.0/ W T
i .x/ D T iº:

It follows immediately from the definitions that E.T i / � E.T k/ if and only if T k < T i .
We now define our covering inductively. For i D 1, we let C k";r .T

i / D B1=10.0/ for
both 1-tuples T i 2 ¹0; 1º1. Now, assume that i 2 N, i < N , and C k";r .T

i / has been
defined and consists of balls of radius �i . Within each ball B�i .y/ 2 C

k
";r .T

i / partition
the set B�i .y/ \ E.T

i / into the sets E.T iC1/ for T iC1 such that T i < T iC1. For either
such T iC1, take a minimal covering of B�i .y/ \ E.T

iC1/ by balls of radius �iC1 cen-
tered at points in B�i .y/ \ E.T

iC1/. The union of these balls is C k";r .T
iC1/. For some

i -tuples, the set E.T i / may be empty. In this case, we simply allow the corresponding
collection of balls C k";r .T

i / be empty.
If i D N , we terminate the procedure. Note that for any sorting threshold 0 < ı0 and

N 2 N, this procedure defines a sequence of collections such that

Ck";r .u/ \ B1=10.0/ �
[
TN

[
B�N .y/2C

k
";r .TN /

B�N .y/:

8.2. Properties of the construction

Now, we argue that there is a choice of sorting threshold 0< ı0 with the desired properties.

Lemma 8.1. Let u 2 A.n; ƒ/. Let 0 < ı0 be the sorting threshold in the construction
above. There is a constant D.n; ƒ; ı0/ <1 such that for any N 2 N there are at most
ND.n;ƒ;ı 0/ sets E.T N / such that E.T N / is non-empty.

Proof. Let 0 < ı0 be given. Let 0 < 
0.n; ƒ; ı0/� 1 as in Lemma 7.2 and Remark 7.3.
Now, decompose � D [1jD0Aj .�/, where

Aj .�/ D � \ B
j0
.@�/ n B



jC1
0
.@�/:
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We shall argue that there is a D D D.n;ƒ; ı0/ such that jT N .p/j � D for all p 2 � \
B10.0/. If the claim is true, then if N � D there are at most 2N � ND N -tuples with
jT N j � D. And, if N � D there are at most

�
N
D

�
many N -tuples with jT N j � D. Since�

N
D

�
� ND , we have the desired claim: Ck";r .u/ \ B1=10.0/ is contained in the union of at

most ND nonempty sets E.T N / and covered by at most ND collections C k";r .T
N /.

To prove the claim, we argue by cases. Let p 2 E.T N /. If p 2 @�, then u.p/D 0 and

jT N .p/j � j¹i 2 N W jN�.p; �i ; u/ �N�.p; �iC1; u/j � 
0.n;ƒ; ı
0/ºj � C3.n;ƒ/


�1
0 ;

where C3.n;ƒ/ is the bounded variation bound from Lemma 6.4 and 
0.n;ƒ; ı0/ is as in
Remark 7.3.

Now, assume that p 2 Aj .�/. Note that, by Remark 7.3,

jN�.p; �i ; u/ �N�.p; �iC1; u/j � 
0.n;ƒı
0/

still implies .T N .p//i D 0 ifB�i .p/�� or if dist.p;@�/� 
0.n;ƒ;ı0/�i . But the condi-
tions B�i .p/ � � or dist.p; @�/ � 
0.n;ƒ; ı0/�i only fail for i 2 Œ.j � 1/ ln.
0/

ln.�0/
; .j C 1/

ln.
0/
ln.�0/

�. Therefore,

jT N .p/j �
C3.n;ƒ/


0.n;ƒ; ı0/
C 3

ln.
0.n;ƒ; ı0//
ln.�0/

DW D.n;ƒ; ı0/

independently of j . This proves the claim.

Remark 8.2. If, later, we choose 0 < 
 � 
0.n; ƒ; ı0/ so that 
 D 
.n; ƒ; "/, then the
statement of Lemma 8.1 holds with a new D D D.n;ƒ; "/.

We now prove that this construction satisfies the claimed packing condition.

Lemma 8.3. Let u 2A.n;ƒ/, 0 < "; r < 1, and k � n� 2. Let ı0 D ı0.n; 1=10; ";ƒ/ be
as in Corollary 7.7. Let 
0.n;ƒ; ı0/ be as in Lemma 7.2.

Then for all N 2 N with �N � r , there exist constants 0 < c1; c2, depending only on
the ambient dimension n and a constant D.n;ƒ; "/, such that each collection C k";r .T

N /

consists of at most .c1��n1 /D.c2�
�k
1 /N�D balls of radius �N .

Proof. For any given N -tuple T N for which E.T N / is non-empty, let T i < T N . Now let
B�i .x/ 2 C

k
";r .T

i /. Consider the set

A WD B�i .x/ \E.T
N /:

We argue by cases.
Case 1. .T N /i D 0. In this case, u is .0; ı0; �i ; x/-symmetric. By applying Corol-

lary 7.7, we see that A � B�i .x/ \ B�iC1.V
k/ for some k-dimensional plane V k . Thus,

the minimal covering from the construction can cover A � B�i .x/ \ B�iC1.V
k/ by at

most c1.n/��k1 balls of radius �iC1.
Case 2. .T N /i D 1. In this case, we have no control. Therefore, the minimal covering

of A described in the construction could consist of at most c2.n/��n1 balls of radius �iC1.
Carrying this process through, by the proof of Lemma 8.1, Case 2 can only happen at

most D.n;ƒ; "/ times. Thus, C k";r .T
N / is a collection of at most .c1��n1 /D.c2�

�k
1 /N�D

balls of radius �N , as claimed.
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8.3. Proof of Theorem 2.11

Proof. Let 0 < "; r < 1, and k � n� 2. Let ı0 D ı0.n; 1=10; ";ƒ/ be as in Corollary 7.7.
Let 0 < 
0.n;ƒ; ı0/ be as in Lemma 7.2. Recalling c2.n/ from Lemma 8.3, let

0 < 
 � min¹
0.n;ƒ; ı0/; c
�2="
2 º < 1:

The construction given in Section 8.1 gives a covering of B1=10.0/ \ Ck";r .u/ by balls
of radius �N . Doubling the radius of these balls is sufficient, then, to cover B1=10.0/ \
B�N .C

k
";r .u//.

Thus, by Remark 8.2 for D D D.n;ƒ; "/,

Vol.B1=10.0/ \ B�N .C
k
";r .u/// � N

D.c1�
�n
1 /D.c2�

�k
1 /N�D.!n 2�

N /n

� c.n/NDcD1 c
N�D
2 .!n2/

n�n�kN �
�D.n�k/
1 :

Estimating ��D.n�k/1 � C.n;ƒ; "/ andND � C.n;ƒ; "/c2.n/
N for allN 2N and recall-

ing from our choice of 0 < 
 that c2.n/ � 
�"=2, we obtain

Vol.B1=8.0/ \ B�N .C
k
";r .u/// � N

DcD1 c
N�D
2 .!n2/

n�n�kN �
�D.n�k/
1

� C.n;ƒ; "/ c2.n/
2N�Dc1.n/

D.!n2/
n�n�kN

� C.n;ƒ; "/ 
�N" �n�kN � C.n;ƒ; "/ �n�k�"N :

Thus, for any 0 < r we may find an N 2 N such that �NC1 � r < �N . Thus, we may
estimate

Vol.B1=10.0/ \ Br .Ck";r .u/// � C.n;ƒ; "/ �
n�k�"
N D C 0.n;ƒ; "/ rn�k�":

Covering B1=4.0/ by at most C.n/ many such balls of radius 1=10 and repeating the
argument produces (2.2).

9. Containment

We now turn to proving Lemma 2.12, which follows from the rigidity and continuity of
the Almgren frequency function.

Lemma 9.1. Let u 2 A.n; ƒ/. Suppose that Q 2 @� \ B1=4.0/ and that there exists a
p 2 Cn�2.u/ such that Br .p/ � � \ B1=4.0/ and p � B2r .Q/. Then there is an 0 <
ı.n;ƒ/ such that N�.Q; 4r; u/ � 1C ı.

Proof. Suppose that the statement is false. Then, there exists a sequence of ui ,Qi ; pi and
0 < ri such that Bri .pi / � �i \ B1=4.0/ for which

NTQi ;4ri�i .0; 1; TQi ;4riui / � 1C 2
�i :

By Lemma 6.5, we may extract a subsequence TQj ;4rj uj which converges strongly in
W 1;2.B1.0// to a function u1. Similarly, we may assume that TQj ;4rjpj ! p and that
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B1=4.p/ � �1 \ B1=2.0/. Observe that by Lemma 6.6, N�1.0; 1; u1/ D 1. There-
fore, since �1 is convex, N�1.0; 0

C; u1/ � 1, which implies N�1.0; r; u1/ is con-
stant for 0 < r � 1. By Lemma 7.1, u1 must be a piecewise linear function. There-
fore, N�1.p; 1=4; u1/ D 1. However, N�j .pj ; rj ; uj / � 2 for all j , which implies by
Lemma 6.6 that N�1.p; 1=4; u1/ � 2. This is a contradiction.

Lemma 9.2. Let u 2 A.n; ƒ/. Suppose that p 2 � \ B1=4.0/, 0 < r � 1=4, and that
N�.p; r; u/ � 2. If either p 2 @� or Br .p/ � �, then there is an 0 < " D ".n;ƒ/ such
that u is not .n � 1; "; r; p/-symmetric.

Proof. Suppose that the statement is false. Then there exists a sequence of ui , pi , and
0 < ri such thatNTpi ;ri�i .0; 1;Tpi ;riui /� 2 and ui is .n� 1;2�i ; r;p/-symmetric. Apply-
ing Lemma 6.5, we may extract a subsequence Tpj ;rj uj which converges strongly in
W 1;2.B1.0// to a function u1. By Lemma 6.6, N�1.0; 1; u1/ � 2. But, by Lemma 7.5,
the function u1 is .n � 1; 0; 1; 0/-symmetric and hence piecewise linear.

If either B1.0/��1 or 0 2 @�, then, as u1 is piecewise linear,N�1.0; 1; u1/D 1.
This is a contradiction.

9.1. Proof of Lemma 2.12

Proof. First, we prove (2.3). Because for all integers k and all 0 < " the set Ck" .u/ is
closed, we reduce to proving that there is an 0 < ".n;ƒ/ such that Cn�2.u/ \ B1=8.0/ �

Cn�2" .u/. Suppose that this containment is false. Then there would exist a sequence of
functions ui 2 A.n; ƒ/, points pi 2 Cn�2.ui / \ B1=8.0/, and scales 0 < ri � 1, such
that ui is .n � 1; 2�i ; pi ; ri /-symmetric. We rescale to the functions Tpi ;riui . By Lem-
mas 6.5 and 7.5, there exist a subsequence (also indexed by i ) and a .n � 1/-symmetric
function u1 such that Tpi ;riui ! u1 strongly inW 1;2.B1.0// and C 0.B1.0//. Note that
for all Q 2 @�1 and all Br .p/ � �1, N�1.Q; r; u1/ D N�1.p; r; u1/ D 1.

If Bı.0/ 2 �1, then for all sufficiently large i 2 N, N�i .pi ; ı=2ri ; ui / � 2. Letting
i ! 1, by Lemma 6.6, N�1.0; ı=2; u1/ � 2, which contradicts u1 being piecewise
linear.

If 0 2 @�1, then for each pi we letQi 2 @�i be such that jpi �Qi j D dist.pi ; @�i /.
By Lemma 9.1, there exists a 0 < ı.n; ƒ/ such that N�i .Qi ; 4jQi � pi j; ui / � 1 C ı
for all i 2 N. For sufficiently large i , 4jQi � pi j � ri , and so by Lemma 3.4, for suffi-
ciently large i , N�i .Qi ; ri ; ui / � 1C ı. Letting i !1, we obtain by Lemma 6.6 that
N�1.0; 1; u1/ > 1C ı. This is a contradiction. Thus, there exists an 0 < ".n; ƒ/ such
that Cn�2.u/ \� \ B1=8.0/ � Cn�2" .u/.

For proving (2.4), we note that if Q 2 Cn�2.u/\ @� n sing.@�/, then letting r ! 0,
we may extract a subsequence such that TQ;rj u! u1 in the sense of Lemma 5.4 and
Lemma 6.5. By the monotonicity of the Almgren frequency, Lemma 6.6, and by consider-
ing TQ;crj u for any 0 < c < 1, we see thatN�1.0; r; u1/� limr!0C N�.Q; r; u/. Thus,
Lemma 7.1 implies that u1 is a homogeneous function which is harmonic in �1. Since
Q 62 sing.@�/,�1 is a half-space and we may extend u1 to an entire, homogeneous har-
monic function by reflection. Since Q 2 Cn�2.u/, this polynomial must be a non-linear
homogeneous harmonic polynomial and limr!0C N�.Q; r; u/ � 2. By Lemma 3.4, then
N�.Q; r; u/ � 2 for all 0 < r � 1, and Lemma 9.2 gives the claim.
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A. Hölder continuity

In this appendix, we provide a proof of Lemma 5.1. First, some standard results.

Definition A.1. A bounded domain�� Rn is said to be of class S if there exist numbers
0 < c0 � 1 and 0 < r0 such that for all Q 2 @� and all 0 < r � r0,

Hn.Br .Q/ \�
c/ � c0Hn.Br .Q//:

Lemma A.2 (Bounding the supremum, Lemma 1.1.22 in [15]). Let � be a domain of
class S . Let Q 2 @� \ B1.0/ and 0 < r � 1=2. Let u be a function which is harmonic
in� such that u 2 C.B2r .Q/ \�/ and u� 0 on B2r .Q/\ @�. There exists a c.n/ such
that for any p 2 Br .Q/ \�,

max
Br .Q/\�

juj � c.n/
� «

B2r .Q/\�

u2 dx
�1=2

:

Lemma A.3 (Hölder continuity up to the boundary, Corollary 1.1.24 in [15]). Let � be a
domain of class S . Let Q 2 @� \ B1.0/ and 0 < r � 1=2. Let u be a function which is
harmonic in �, u 2 C.B2r .Q/ \�/, u � 0 on B2r .Q/ \ @�, and u � 0. There exist a
c.n/ and an exponent 0 < ˛.n/ � 1 such that for any p 2 Br .Q/ \�,

u.p/ � c.n/
�
jp �Qj

r

�˛
sup¹u.y/ W y 2 B2r .Q/º:

Theorem A.4 (Oscillation in the interior, Theorem 6.6 in [13]). Suppose that u is har-
monic in Q�. If 0 < r < R <1 are such that Br .x/ � BR.x0/ � z�, then

osc.u; Br .x0// � 2˛
� r
R

�˛
osc.u; BR.x0//;

where ˛ D ˛.n/ 2 .0; 1� only depends on n.

Theorem A.5 (Hölder continuity in B2.0/, Theorem 6.44 in [13]). Suppose that �1 is of
class S with constant c0 > 0 and 0 < r0 � 1. Let h 2 C 0.�1/ be a harmonic function
in �1. If there are constants M � 0 and 0 < ˛ � 1 such that

jh.x/ � h.y/j �M jx � yj˛

for all x; y 2 @�1, then

jh.x/ � h.y/j �M1jx � yj



for all x; y 2 �1. Moreover, 
 D 
.n; ˛; c0/ > 0 and one can choose the constant M1 to
be M1 D 80Mr�20 max¹1; 2diam.�1/º.

A.1. Proof of Lemma 5.1

Let u 2 A.n; ƒ/ with associated domain � 2 D.n/, and let Q0 2 @� \ B1.0/ and 0 <
r0 � 1=2. First, we claim that� «

B2.0/\�

.TQ0;r0u/
2 dx

�1=2
� C.n;ƒ/:
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By the Poincaré inequality,«
B2.0/

jTQ;ru � AvgB2.0/.TQ;ru/j
2 dx � C.n/ jB2.0/j

2=n
� «

B2.0/

jrTQ;ruj
2 dx

�
� C.n/C.ƒ; n/:

Furthermore, since Hn.�c \ B2.0// �
1
10

Hn.B2.0//, we estimate

jAvgB2.0/.TQ;ru/j
2 1

10
Hn.B2.0// � C.n/C.ƒ; n/:

Thus, j
ª
B2.0/

TQ;rudxj � C
0.n/

p
C.n;ƒ/.

Next, we claim that there exist a c.n/ and an exponent 0 < ˛.n/ � 1 such that, for
Q 2 TQ0;r0@� \ B1.0/ and p 2 TQ0;r0� \ B1=2.Q/,

jTQ0;r0u.p/j � C.n;ƒ/
�
jp �Qj

r

�˛
:

For any TQ0;r0u which changes sign in TQ0;r0� \ B1.Q/, we decompose TQ0;r0u D
TQ0;r0u

C � TQ0;r0u
�. Note that both TQ0;r0u

˙ are subharmonic. Let h˙ be the harmonic
extension of TQ0;r0u

˙ to B1.Q/ \ TQ0;r0�. Note that B1.Q/ \ TQ0;r0� is convex, and
so is of class S . Then, by Lemma A.3, and the maximum principle,

h˙.p/ � c.n/
�
jp �Qj

r

�˛
sup¹h˙.y/ W y 2 @.B1.Q/ \ TQ0;r0�/º:

By subharmonicity, TQ0;r0u
˙ � h˙, respectively. By construction, h˙ D TQ0;r0u

˙ on
@.B1.Q/ \ TQ0;r0�/ and by our first claim and Lemma A.2,

sup¹h˙.y/ W y 2 @.B1.Q/ \ TQ0;r0�/º � C.n;ƒ/:

Note that this gives uniform control on the oscillation in TQ0;r0� \ B2.0/. This uniform
control, together with Theorem A.4, implies that TQ0;r0u is locally Hölder on @B1.0/ \
TQ0;r0�.

Now, we claim that for all x; y 2 @.TQ0;r0� \ B1.0//,

jTQ0;r0u.x/ � TQ0;r0u.y/j � C.n;ƒ/ jx � yj
˛:

We argue by cases. Suppose that jx � yj < max¹dist.x; TQ0;r0@�/; dist.y; TQ0;r0@�/º.
Then, there is a ball Br .z/ � TQ0;r0� with jx � yj < r � 2jx � yj which contains both x
and y. By Theorem A.4 and the preceding paragraph, then we have the desired statement.

Suppose jx � yj �max¹dist.x;TQ0;r0@�/;dist.y;TQ0;r0@�/º. Let x0; y0 2 TQ0;r0@�
be points such that jx � x0j D dist.x; @�/ and jy � y0j D dist.y; @�/. Then

jT0;1u.x/ � T0;1u.y/j � jT0;1u.x/ � T0;1u.x0/j C jT0;1u.y/ � T0;1u.y0/j

� C.n;ƒ/ 2˛ jx � x0j
˛
C C.n;ƒ/ 2˛ jy � y0j

˛

� C.n;ƒ/ 2˛C1 .max¹dist.x; TQ0;r0@�/; dist.y; TQ0;r0@�/º/
˛

� C.n;ƒ/ jx � yj˛:
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This proves the claim. To obtain uniform interior Hölder continuity on the interior of
TQ0;r0� \ B1.0/, we invoke Theorem A.5 with �1 D TQ0;r0� \ B1.0/.
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