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Gibbs measures as unique KMS equilibrium states
of nonlinear Hamiltonian PDEs

Zied Ammari and Vedran Sohinger

Abstract. The classical Kubo–Martin–Schwinger (KMS) condition is a fundamental
property of statistical mechanics characterizing the equilibrium of infinite classical
mechanical systems. It was introduced in the seventies by G. Gallavotti and E. Ver-
boven as an alternative to the Dobrushin–Lanford–Ruelle (DLR) equation. In this
article, we consider this concept in the framework of nonlinear Hamiltonian PDEs
and discuss its relevance. In particular, we prove that Gibbs measures are the unique
KMS equilibrium states for such systems. Our proof is based on Malliavin calculus
and Gross–Sobolev spaces. The main feature of our work is the applicability of our
results to the general context of white noise, abstract Wiener spaces and Gaussian
probability spaces, as well as to fundamental examples of PDEs like the nonlinear
Schrödinger, Hartree, and wave (Klein–Gordon) equations.
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1. Introduction

The Kubo–Martin–Schwinger (KMS) condition emerged in quantum statistical mechanics
as a criterion characterizing the equilibrium states for infinite quantum systems [17, 39].
Ever since, the concept has been considered as a cornerstone in the study of quantum
dynamical systems and more generally in C � and W �-algebras topic, see e.g. [56]. In the
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seventies, G. Gallavotti and E. Verboven, suggested a classical analogue to the quantum
KMS condition suitable for classical mechanical systems and they analysed its relation-
ship with the Dobrushin–Lanford–Ruelle (DLR) equation, see [33] and also [1]. The work
of Gallavotti and Verboven generated interest in the study of KMS states for infinite clas-
sical systems (see for instance [26, 54] and the references therein). To the best of our
knowledge, only few results are concerned with nonlinear PDEs, namely [9, 24, 53].

On the other hand, Gibbs measures for nonlinear Hamiltonian systems have attracted
a lot of interest in the PDE community since [13–15, 42, 62], following on the analysis
of this problem in the constructive quantum field theory literature [36, 57]. Indeed, these
measures turn to be an effective tool in the study of almost sure existence of global solu-
tions with rough initial data since they provide conservation laws beyond the classical
energy spaces, see e.g. [20, 49, 51, 60, 61] and the references therein. In this approach, the
main ingredient is the invariance of the measure, rather than its statistical properties. In
principle any invariant measure would produce conceptually similar results. It is therefore
desirable to bridge the statistical and PDE points of view with the aim of obtaining a bet-
ter understanding of stability and ergodic theory for PDE dynamical systems. Moreover,
in light of recent progress made in quantum statistical mechanics it is quite tempting to
investigate thoroughly the structure of classical KMS states for such dynamical systems.
In particular, the KMS states are a convenient tool for the study of thermodynamic limits,
multi-phase behavior and ergodic properties.

The purpose of this article is to introduce the concept of KMS equilibrium states for
Hamiltonian PDEs and to study their main properties and general structure. In this respect,
one of the primary problems that we shall consider is the relationship between KMS states
and Gibbs measures. To answer such a question, we consider an abstract framework for
Hamiltonian PDEs within which it is possible to rigorously define a Gibbs measure. First,
we show that such a Gibbs measure is a KMS equilibrium state (Theorem 4.11). Second,
we show that, under additional assumptions, the Gibbs measure is the unique KMS equi-
librium state of the Hamiltonian PDE (Theorem 4.14). The general framework we consider
encloses several fundamental examples that include white noise, abstract Wiener spaces,
and Gaussian probability spaces, see Section 3. Our analysis applies to nonlinear PDEs
like the nonlinear Schrödinger, Hartree, and wave (Klein–Gordon) equations as illustrated
in Section 5.

Let us formally explain our setup. A dynamical system is described by a vector field
X W � ! � , defined as a mapping over a phase-space � , and a field equation,

Pu.t/ D X.u.t// ;

where uWR ! � is a solution satisfying a prescribed initial condition u.0/ D u0 2 � .
There are two general approaches for the study of the dynamics. A deterministic point of
view aims to establish local or global well-posedness results in different functional spaces
(i.e.: existence, uniqueness and stability in Hadamard’s sense). The main related questions
in this approach concern periodic and soliton solutions, blow-up solutions and scattering.
A second probabilistic point of view aims to study the dynamics of ensembles of initial
data rather that of a single point in the phase-space. This leads to the consideration of the
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Liouville equation,

(1.1)
d

dt

Z
�

F.u/�t .du/ D

Z
�

hrF.u/;X.u/i�t .du/;

where h�; �i denotes a given Euclidean structure on the phase-space � , rF is a gradient
of the smooth function F and t 2 R 7! �t is a probability measure solution with a pre-
scribed initial condition �0. The main questions within this approach are about existence,
uniqueness, asymptotic statistical stability of solutions and chaotic or ergodic behavior
of the dynamical system. In this context, probability measures on the phase-space � are
regarded as classical states of the dynamical system and the classical KMS condition is
a widely accepted criterion that singles out the equilibrium states among all possible sta-
tionary states of the Liouville equation (1.1), see [17]. In fact, we will say that � is a KMS
state at inverse temperature ˇ > 0 if and only if

(1.2)
Z

�

¹F;Gº.u/�.du/ D ˇ

Z
�

hrF.u/;X.u/iG.u/�.du/;

where F;GW � ! R are two smooth functions and ¹�; �º denotes a Poisson structure over
the phase-space � . By taking the function G � 1 one remarks that any KMS state is a
stationary solution of the Liouville equation.

The two approaches complement each other. The first is suitable when the nonlinear
effects are “weak” while the second is more adapted to “strong” nonlinear effects and tur-
bulence. Of course such a classification is heuristic and undermines the complexity and
the variety of dynamical systems. On other hand, the Liouville equation is at a crossroads
between dispersive PDE, kinetic theory, probability and statistical mechanics. It is there-
fore quite instructive to unify the different techniques from these fields towards a better
understanding of the dynamical behavior of some of the fundamental examples of PDEs
such as the nonlinear Schrödinger and wave equations. Indeed, the general aim of this
article is to study the Liouville equation from the following three perspectives.
• We prove that the nonlinear vector fields of these equations make sense as the Mallia-

vin derivative of energy functionals in the Gross–Sobolev spaces, thus highlighting the
fact that global stochastic analysis is a well fitted tool for the study of such determin-
istic dispersive PDEs.

• We prove that Gibbs measures are stationary solutions of the Liouville equation, which
indicates that the techniques of kinetic theory and measures transportation would be
fruitful in this problem, see e.g. [2] and [4].

• We show that the Gibbs measures are KMS equilibrium states of the dynamical system
and therefore it is very tempting to study the system near equilibrium and to investigate
its statistical stability and asymptotic properties.
Beyond the formal program sketched above, there are more precise motivations for

our present work. First, characterizing Gibbs measures through the KMS condition would
provide an alternative method for the derivation of Gibbs measures from many-body
quantum field theories, see [8] and [28–32, 43, 44, 55, 58]. Second, the Gibbs measure
as a KMS state and a stationary solution of the Liouville equation should generally yield
the existence of a global flow defined almost surely on the phase-space � , see [3–5]. These
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questions will be addressed elsewhere and here we focus on the more fundamental prop-
erties of the KMS condition.

For an illustration of our main results, consider the NLS equation on the 2-dimensional
torus T2 defined through its classical Hamiltonian,

H .u/ D
1

2

Z
T2

jruj2 C juj2 dx C
1

2m

Z
T2

W juj2m W dx ;

where W W denotes Wick ordering (see Section 5). Furthermore, we note that the nonlinear
functional hI WH�s.T2/! R, defined over the negative Sobolev space with s > 0 and
given by

hI .u/ D
1

2m

Z
T2

W juj2m W dx;

belongs to the Gross–Sobolev space D1;2.�ˇ;0/, where �ˇ;0 is a centered Gaussian meas-
ure with covariance operator ˇ�1.��C 1/�1 (see Definition 4.10 below). Moreover, we
prove that the Gibbs measure

�ˇ D z
�1
ˇ e�ˇh

I

�ˇ;0 ;

for zˇ D �ˇ;0.e�ˇh
I
/ a normalization constant, is the unique equilibrium KMS state of

the NLS dynamical system. In particular, �ˇ is a stationary solution of the corresponding
Liouville equation (1.1) with the vector field

X.u/ D �i.��uC uCrhI .u//;

where rhI is the Malliavin derivative of the nonlinear functional hI (see Lemma 4.9 for
the precise definition). The above statements are obtained as a consequence of a more
general result (Theorem 4.14). Indeed, consider a complex Hamiltonian system

h.u/ D h0.u/C h
I .u/

such that h0.u/ D 1
2
hu; Aui, with A a positive self-adjoint operator admitting a compact

resolvent such that for some ˛ � 1,

TrŒA�˛� <1 :

Moreover, assume that the nonlinear functional hI 2 D1;2.�ˇ;0/ and that e�ˇh
I
2

L2.�ˇ;0/, where�ˇ;0 is the centered Gaussian measure with covariance operator ˇ�1A�1.
So, we prove that if � is a KMS state for this dynamical system which is absolutely
continuous with respect to �ˇ;0 with a density % D d�

d�ˇ;0
2 D1;2.�ˇ;0/, then � is the

Gibbs measure �ˇ , i.e.,

� D �ˇ �
1

ke�ˇh
I
kL1.�ˇ;0/

e�ˇh
I

�ˇ;0 :

The proof of the above result is based on the derivation of a differential equation on the
density % given by

r%C ˇ%rhI D 0:
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To solve such an equation, one uses the Malliavin calculus in order to prove that ce�ˇh
I

are the only solutions of the above equation. Uniqueness is then obtained using the nor-
malization of the density %. The details of these arguments are given in Section 4. We note
that our latter result requires the absolute continuity of � with respect to the Gaussian
measure �ˇ;0. Therefore, strictly speaking, our result does not apply to the physically rel-
evant model ˆ43 of 3D cubic NLS. It would be interesting to remove this assumption of
absolute continuity or to extend the analysis to possibly other reference measures. For a
recent analysis of the ˆ43 model, we refer the reader to [10,11] and the references therein.
Another topic that we do not specifically address in this article is equilibrium states of
integrable infinite-dimensional Hamiltonian systems, see for instance [53]. In light of our
contribution, it would also be interesting to revisit this question.

Overview of the article. We define, in Section 2, the notion of KMS states and study
their main properties in a general framework. In particular, we establish a relationship
between Kirkwood–Salzburg type hierarchy equations and KMS states, and prove station-
arity, convexity and characteristic identities. In Section 3, fundamental examples of KMS
states are given in terms of Gaussian measures over countably Hilbert nuclear spaces and
canonical Gaussian measures on Wiener spaces and Gaussian probability spaces. Finally,
we prove the equivalence between KMS states and Gibbs measures in Section 4 for

• finite dimensional dynamical systems,
• linear complex Hamiltonian systems,
• nonlinear complex Hamiltonian systems.

To emphasize our main results and show their wide applicability, we consider in Sec-
tion 5 several examples of nonlinear PDEs such as the nonlinear Schrödinger (NLS),
Hartree and wave equations. When studying the NLS in 1D, we also address the problem
of the focusing nonlinearity. In this case, we prove that suitably localized invariant meas-
ures of Gibbs type satisfy a local KMS condition, see Section 5.3 for the precise definition.
In Appendix A, we provide a short review of Malliavin calculus. In Appendix B, we prove
some auxiliary facts about Sobolev embedding and discrete convolutions that we use in
Section 5.

2. KMS states and their main properties

In this section, we define classical KMS states in a general abstract framework and study
their main properties.

2.1. General framework

There are several possible settings for the notion of KMS states. We first give the definition
in the most general setting. In the sequel, we adapt this to the probability and PDE context.
So, we start with a rigged Hilbert space setting together with a compatible symplectic
structure. The latter allows us to define a Poisson structure on an appropriate algebra of
smooth cylindrical functions.
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Rigged Hilbert space. Consider a rigged Hilbert space ˆ � H � ˆ0, where .H; h�; �i/
is a real separable Hilbert space, ˆ is a dense subset of H equipped with the structure
of a topological vector space such that the natural embedding i Wˆ! H is continuous,
andˆ0 is the dual ofˆ with respect to the inner product ofH . Two standard examples are
S.Rd / � L2.Rd / � S0.Rd / and H s.Rd / � L2.Rd / � H�s.Rd /, where S.Rd / is the
Schwartz space and H s.Rd / is the Sobolev space with a non-negative exponent s � 0.

In all the sequel, B.ˆ0/ denotes the Borel � -algebra over ˆ0, where the latter space is
equipped with the weak-� topology. Moreover, P .ˆ0/ denotes the set of all Borel prob-
ability measures on ˆ0.

Symplectic structure. Assume further that the Hilbert spaceH is endowed with a non-
degenerate continuous symplectic structure � WH �H !R, i.e., � is a continuous bilinear
form satisfying �.u; v/D ��.v; u/ for all u; v 2H and if �.u; v/D 0 for all v 2H then
u D 0. Therefore, there exists a unique bounded linear operator J WH ! H such that

�.u; v/ D hu; J vi ; 8u; v 2 H :

In particular, the transpose operator of J is J T D�J . Suppose further that J maps contin-
uously ˆ to itself and consequently J extends uniquely and continuously to J Wˆ0 ! ˆ0.
For now there is no need to introduce a compatible complex structure. Such an assumption
will be required in Section 4.

Smooth cylindrical test functions. Let ¹enºn2N be a countable linearly independent
subset of ˆ such that spanR¹ej ; j 2 Nº is dense in H . One defines the spaces of smooth
cylindrical test functions, denoted respectively by C1c, cyl.ˆ

0/, Scyl.ˆ
0/ and C1b, cyl.ˆ

0/, as
the sets of all functions F Wˆ0! R such that there exist n 2 N and a function ' WRn! R
satisfying for all u 2 ˆ0,

(2.1) F.u/ D '.hu; e1i; : : : ; hu; eni/ ;

with ' 2 C1c .R
n/, ' 2 S.Rn/ or ' 2 C1b .R

n/ respectively. Here, we recall that the latter
space consists of smooth functions all of whose derivatives are bounded. Obviously, one
has the following inclusions

C1c, cyl.ˆ
0/ � Scyl.ˆ

0/ � C1b, cyl.ˆ
0/ :

We note that C1c, cyl.ˆ
0/ is stable under multiplication but not stable under addition of its

elements, while C1b, cyl.ˆ
0/ is a unital algebra over the field R. Although the representation

formula (2.1) may not be unique, these classes of smooth functions are quite convenient
for the analysis. Indeed, they are endowed with a nice differential calculus. In fact, all the
functions in C1b, cyl.ˆ

0/ are differentiable over ˆ0 in the direction of H . More precisely,
taking F Wˆ0 ! R as in (2.1), then for all v 2 H ,

(2.2) DF.u/Œv� D lim
v!0;v2H

F.uC v/ � F.u/

kvk
D

nX
jD1

@j'.hu; e1i; : : : ; hu; eni/ hej ; vi :

Furthermore, the differentialDF.u/ is regarded as a continuous R-linear form in L.H;R/
' H . In particular, the gradient of F is defined as

(2.3) rF.u/ WD

nX
jD1

@j'.hu; e1i; : : : ; hu; eni/ ej 2 ˆ;
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and the following product rule is true for all F;G 2 C1b, cyl.ˆ
0/ and u 2 ˆ0:

(2.4) r.FG/.u/ D rF.u/G.u/C F.u/rG.u/:

It is useful to write the gradient of a smooth cylindrical function using the Fourier trans-
form.

Lemma 2.1. For any F 2 Scyl.ˆ
0/ satisfying (2.1), for some n 2 N and ' 2 S.Rn/,

rF.u/ D �.2�/�n=2
nX

jD1

Z
Rn

tj ej

�
Re.y'/.t1; : : : ; tn/ sin

D nX
kD1

tkek ; u
E

C Im.y'/.t1; : : : ; tn/ cos
D nX
kD1

tkek ; u
E�
dt ;

where y' is the Fourier transform of '.

Proof. Using (2.3), one writes

hrF.u/; vi D

nX
jD1

@j'.hu; e1i; : : : ; hu; eni/ hej ; vi

D .2�/�n=2
nX

jD1

Z
Rn

b@j'.t1; : : : ; tn/ ei
Pn
kD1 tkhu;eki hej ; vi dt :

Since the left-hand side is real, then one shows

hrF.u/; vi D i.2�/�n=2
Z

Rn

y'.t1; : : : ; tn/ e
i
Pn
kD1 tkhu;eki

D nX
jD1

tj ej ; v
E
dt

D �.2�/�n=2
Z

Rn

�
Re.y'/.t1; : : : ; tn/ sin

D nX
kD1

tkek ; u
E

C Im.y'/.t1; : : : ; tn/ cos
D nX
kD1

tkek ; u
E� D nX

jD1

tj ej ; v
E
dt :

The last equality proves the claimed identity.

Poisson structure. The above differential calculus enables us to define a Poisson struc-
ture over the algebra C1b, cyl.ˆ

0/. In fact, in this framework we define the Poisson bracket
for all F;G 2 C1b, cyl.ˆ

0/ and all u 2 ˆ0 as

(2.5) ¹F;Gº.u/ D �.rF.u/;rG.u// D hrF.u/; JrG.u/i :

Using (2.3), one shows that ¹F; Gº belongs to the algebra C1b, cyl.ˆ
0/ and obviously the

bracket is bilinear and skew symmetric. Moreover, one checks that the Leibniz rule and
the Jacobi identity are satisfied for all F;G;R 2 C1b, cyl.ˆ

0/:
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• ¹R;FGº D ¹R;F ºG C ¹R;GºF ,
• ¹F; ¹G;Rºº C ¹G; ¹R;F ºº C ¹R; ¹F;Gºº D 0:

The Poisson structure is one of the main ingredients that enters in the definition of
KMS states. Similarly as in Lemma 2.1, one can express the Poisson bracket using the
Fourier transform.

Lemma 2.2. Assume that F;G 2 Scyl.ˆ
0/ are such that (2.1) is satisfied for both F andG

with n;m 2 N and ' 2 S.Rn/,  2 S.Rm/ respectively. Then

¹F;Gº.u/D�.2�/�.nCm/=2
Z

Rn

Z
Rm

y'.t1; : : : ; tn/ y .s1; : : : ; sm/
D nX
jD1

tj ej ;J

mX
kD1

skek

E
� ei

Pn
`D1 t`hu;e`iCi

Pm
rD1 sr hu;er i dt ds :

Proof. The claim follows from (2.5), using the identities

rF.u/ D i.2�/�n=2
nX

jD1

Z
Rn

y'.t1; : : : ; tn/ e
i
Pn
`D1 t`hu;e`i tj ej dt

and

rG.u/ D i.2�/�m=2
mX
kD1

Z
Rm

y .s1; : : : ; sm/ e
i
Pm
tD1 sr hu;er i sk ek ds :

2.2. KMS equilibrium states

Consider a Borel vector field X Wˆ0 ! ˆ0 defining a (formal) dynamical system given by
the differential equation

(2.6) @tu.t/ D X.u.t// ;

where t 2 R 7! u.t/ 2 ˆ0 is a curve with prescribed initial condition u.0/ D u0 2 ˆ
0.

The above equation may not make sense, and usually additional assumptions on the solu-
tions u.�/ or the vector field X are required. One can look at the field equation (2.6) from
a statistical point of view. So, instead of studying the initial value problem (2.6) for each
fixed data u0, one can consider the dynamical evolution of an ensemble of initial datum
given by a probability distribution. It turns out that the statistical dynamics related to the
vector field equation (2.6) are described by the Liouville (transport) equation

(2.7)
d

dt

Z
ˆ0
F.u/ d�t .u/ D

Z
ˆ0
hrF.u/;X.u/i d�t .u/;

for all F 2 C1c, cyl.ˆ
0/ and where t 2 R 7! �t 2 P .ˆ0/ is a curve of statistical solutions

with a prescribed initial condition �0 2 P .ˆ0/. Note that the definition of the Liouville
equation requires neither a symplectic nor a Poisson structure. We remark also that the
Liouville equation (2.7) may not make sense without further requirements on the vector
fieldX or on the solutions�t . Existence of solutions for the above Liouville equation (2.7)
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and its relationship with the original field equation (2.6) are studied in [4]. In this article,
we focus only on stationary solutions of the Liouville equation that represent dynam-
ical equilibrium. A Borel probability measure � on ˆ0 is a stationary solution of the
Liouville equation (2.7) if and only if for all F 2 C1c, cyl.ˆ

0/, the function hrF.�/; X.�/i is
�-integrable and

(2.8)
Z
ˆ0
hrF.u/;X.u/i d� D 0:

Not all stationary solutions correspond to a statistical equilibrium of the dynamical system.
The KMS condition that we shall define below is a widely accepted criterion that defines
the notion of statistical equilibrium and stability.

Kubo–Martin–Schwinger condition. The Kubo–Martin–Schwinger (KMS) condition,
given below in (2.9), is a dynamical characterization of equilibrium measures of the
Liouville equation (2.7) at an inverse positive temperature ˇ > 0. These equilibrium meas-
ures will be called KMS states and their definition is rigourously given below.

Definition 2.3 (KMS states). LetX Wˆ0!ˆ0 be a Borel vector field and let ˇ > 0. We say
that � 2 P .ˆ0/ is a .ˇ;X/-KMS state if and only if the function hf;X.�/i is �-integrable
for all f 2 ˆ, and for all F;G 2 C1c, cyl.ˆ

0/, we have

(2.9)
Z
ˆ0
¹F;Gº.u/ d� D ˇ

Z
ˆ0
hrF.u/;X.u/iG.u/ d�;

where the Poisson bracket ¹�; �º is defined in (2.5).

The existence and uniqueness of such KMS equilibrium states is in general a nontrivial
question, as one can see for instance in [33]. Despite this fact, it is useful to underline the
general properties of these measures.

Lemma 2.4. If � is a .ˇ; X/-KMS state, then the identity (2.9) is true for all F; G 2
C1b, cyl.ˆ

0/.

Proof. Using a standard pointwise approximation argument of functions ' 2 C1
b
.Rn/ by

sequences of functions in C1c .R
n/, the equality (2.9) extends by dominated convergence

to all F;G 2 C1b, cyl.ˆ
0/.

Not all stationary solutions of the Liouville equation (2.7) are KMS equilibrium states,
but the converse is true. We note that here the time invariance is formulated without
appealing to a flow for the field equation (2.6).

Proposition 2.5. Any .ˇ; X/-KMS state is a stationary solution of the Liouville equa-
tion (2.7).

Proof. Thanks to Lemma 2.4, it is enough to take in (2.9) the function G.�/ D 1, which
belongs to C1b, cyl.ˆ

0/, and hence obtaining (2.8).

One important geometric feature of the set of KMS states is convexity.

Proposition 2.6. The set of .ˇ;X/-KMS states is a convex subset of P .ˆ0/.
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A simple identification of the KMS states in terms of their characteristic functions is
provided below. We note that, in [24], the identity (2.10) is regarded as the definition of
KMS states.

Theorem 2.7. Let � 2 P .ˆ0/, X a Borel vector field on ˆ0 and ˇ > 0 be given. Then the
two following assertions are equivalent.

(i) � is a .ˇ;X/-KMS state.

(ii) For all '1; '2 2 ˆ, the function h'1; X.�/i is �-integrable and

(2.10) h'1; J'2i

Z
ˆ0
eihu;'2i d�C iˇ

Z
ˆ0
h'1; X.u/i e

ihu;'2i d� D 0:

Proof. Assume (i) true and take f; g 2 ˆ such that f D '1 and f C g D '2. Then

hJ'1; '2ie
ihu;'2i D �hf; Jgieihu;f ieihu;gi

D �¹sin.hf; ui/; sin.hg; ui/º C ¹cos.hf; ui/; cos.hg; ui/º
C i¹sin.hf; ui/; cos.hg; ui/º C i¹cos.hf; ui/; sin.hg; ui/º :

Hence, integrating the above equality with respect to � and using for each bracket the
KMS condition (2.9) and Lemma 2.4, one shows

hJ'1; '2i

Z
ˆ0
eihu;'2i d�

D ˇ

Z
ˆ0
hf;X.u/i

�
� coshf; ui sinhg; ui � sinhf; ui coshg; ui

C i coshf; ui coshg; ui � i sinhf; ui sinhg; ui
�
d�

D ˇ

Z
ˆ0
h'1; X.u/i

�
� sinhf C g; ui C i coshf C g; ui

�
d�

D iˇ

Z
ˆ0
h'1; X.u/i e

ihu;'2i d�:

Thus, (ii) is proved.
Conversely, suppose that (ii) holds true; then, as before, equation (2.10) gives for all

f; g 2 ˆ,

(2.11) hf; Jgi

Z
ˆ0
eihu;fCgi d� D �iˇ

Z
ˆ0
hf;X.u/i eihu;fCgi d�:

For F;G 2 C1c, cyl.ˆ
0/, there exist n;m 2 N and ' 2 C1c .R

n/ and  2 C1c .R
m/ satisfy-

ing (2.1), respectively. The inverse Fourier transform gives

F.u/ D .2�/�n=2
Z

Rn

y'.t1; : : : ; tn/ e
i
Pn
jD1 tj hu;ej i dt ;

G.u/ D .2�/�m=2
Z

Rm

y .s1; : : : ; sm/ e
i
Pm
jD1 sj hu;ej i ds ;
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where y' and y are the Fourier transforms of ' and  . By Lemma 2.2, one has

¹F;Gº.u/ D �.2�/�.nCm/=2
Z

Rn�Rm

y'.t1; : : : ; tn/ y .s1; : : : ; sm/

�

D nX
jD1

tj ej ; J

mX
kD1

skek

E
ei
Pn
`D1 t`hu;e`iCi

Pm
rD1 sr hu;er i dtds :

Hence, writing the identity (2.11) with f D
Pn
jD1 tj ej and g D

Pm
jD1 sj ej and multiply-

ing it by y'.t1; : : : ; tn/ � y .s1; : : : ; sm/ and then integrating with respect to tj and sj , one
obtains

(2.12)
Z
ˆ0
¹F;Gº.u/ d� D ˇ

Z
ˆ0
R.u/G.u/ d�;

where R.�/ is a real-valued function given by

R.u/ D i.2�/�n=2
Z

Rn

D nX
jD1

tj ej ; X.u/
E
y'.t1; : : : ; tn/ e

i
Pn
`D1 t`hu;e`i dt

D �.2�/�n=2
Z

Rn

D nX
jD1

tj ej ; X.u/
E �

Re.y'/.t1; : : : ; tn/ sin
D nX
`D1

t`e`; u
E

C Im.y'/.t1; : : : ; tn/ cos
D nX
`D1

t`e`; u
E�
dt

D hrF.u/;X.u/i :

The last equality follows by Lemma 2.1. Thus, the identity (2.12) yields the KMS condi-
tion (2.9).

The following statement may be interpreted as the passivity of the dynamical system
at equilibrium which means that the system is unable to perform mechanical work in a
cyclic process (see e.g. Section 5.4.4 in [17] for an analogy with quantum KMS states).

Corollary 2.8. If � is a .ˇ;X/-KMS state, then for all ' 2 ˆ and all F 2 C1b, cyl.ˆ
0/,Z

ˆ0
h';X.u/i d� D 0 and

Z
ˆ0
hrF.u/;X.u/iF.u/ d� D 0:

Proof. In order to obtain the first identity, we take '2 D 0 in (2.10). In order to obtain the
second identity, we take G D F in the KMS condition (2.9) and apply Lemma 2.4.

2.3. Stationary and equilibrium hierarchies

In the recent article [5], a duality is established between the Liouville equation (2.7) and
the Bose–Einstein hierarchy equation generalizing the Gross–Pitaevskii and Hartree hier-
archies studied for instance in [22, 23, 41, 59] and the references therein (see also [35,
38, 45] for similarity with the BBGKY hierarchy of classical mechanics). For a detailed
discussion, we refer the reader to [5] and [6, 7]. In this paragraph, we extend the above
duality to stationary and equilibrium states.
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Throughout, we assume that X is a Borel vector field on ˆ0.

Lemma 2.9. Let � 2 P .ˆ0/ be such that h';X.�/i is �-integrable for any ' 2 ˆ. Then �
is a stationary solution of the Liouville equation, i.e., it solves (2.8), if and only if for all
' 2 ˆ,

(2.13)
Z
ˆ0
h';X.u/i eihu;'i d� D 0:

Proof. Suppose that � is a stationary solution. Then the identity (2.8) extends to all F 2
C1b, cyl.ˆ

0/. In particular, taking F.�/ D cosh�; 'i and F.�/ D sinh�; 'i in C1b, cyl.ˆ
0/, one

obtains for any ' 2 span¹ej ; j 2 Nº,

(2.14)
Z
ˆ0

coshu; 'i h';X.u/i d� D
Z
ˆ0

sinhu; 'i h';X.u/i d� D 0:

Hence, the equality (2.13) is proved for all ' 2 ˆ by a density argument. Conversely, if
the identity (2.13) holds true, then taking real and imaginary parts one gets (2.14). Hence,
using Lemma 2.1 one recovers (2.8).

Lemma 2.10. Let � 2 P .ˆ0/ and assume that for any ' 2ˆ there exists 0 < C < 1 such
that for all k 2 N,

(2.15)
Z
ˆ0

ˇ̌
hu; 'ik h';X.u/i

ˇ̌
d� � C kC1kŠ :

Then � is a stationary solution of the Liouville equation (2.8) if and only if for all k 2 N
and ' 2 ˆ, Z

ˆ0
hu; 'ik h';X.u/i d� D 0:

Proof. Thanks to the hypothesis (2.15), the function

m W � 7!

Z
ˆ0
ei�hu;'i h';X.u/i d�

is analytic on the discD D ¹� 2C W j�j< C�1º. Hence, using Lemma 2.9, the measure �
is a stationary solution of the Liouville equation if and only if

dkm

d�k
.0/ D ik

Z
ˆ0
hu; 'ik h';X.u/i d� D 0:

Similarly, one proves the following result concerning the equilibrium KMS solutions
of the Liouville equation.

Lemma 2.11. Let � 2 P .ˆ0/ and assume that for any '1; '2 2 ˆ there exists 0 < C < 1

such that for all k 2 N,

(2.16)
Z
ˆ0

ˇ̌
hu; '2i

ˇ̌k
d� � C kC1kŠ and

Z
ˆ0

ˇ̌
hu; '2i

k
h'1; X.u/i

ˇ̌
d� � C kC1kŠ :
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Then � is a .ˇ;X/-KMS state if and only if for all k 2 N and '1; '2 2 ˆ,

(2.17) ˇ

Z
ˆ0
hu; '2i

k
h'1; X.u/i d� D k h'1; J'2i

Z
ˆ0
hu; '2i

k�1 d�

and

(2.18)
Z
ˆ0
h'1; X.u/i d� D 0:

Proof. Since the functions

m1 W � 7!

Z
ˆ0
ei�hu;'2i h'1; X.u/i d� and m2 W � 7!

Z
ˆ0
ei�hu;'2i d�

are analytic on the disc D D ¹� 2 C W j�j < C�1º, one can replace 'j by �'j for j D
1; 2, and expand the identity (2.10) as a �-power series on D to deduce a relation on the
coefficients. Indeed, one has

1X
kD0

ik

kŠ
�kC1

�
h'1;J'2i

Z
ˆ0
hu;'2i

k d�
�
C iˇ

1X
kD0

ik

kŠ
�k
�Z

ˆ0
hu;'2i

k
h'1;X.u/id�

�
D 0:

Such an equation yields the claimed equilibrium moment relations.

Assume further that the operator J defines a compatible complex structure over the
Hilbert space H , i.e., for all u; v 2 H ,
• J 2 D �1,
• �.Ju; u/ � 0,
• �.Ju; J v/ D �.u; v/.

In particular, H can be considered as a complex Hilbert space,

(2.19) .�C i�/u WD �u � � Ju;

endowed with the inner product

(2.20) hu; viHC D hu; vi C i�.u; v/:

We now state an equivalence between stationary solutions of the Liouville equation
and stationary hierarchy equations, given by (2.21) below.

Proposition 2.12. Assume that the Hilbert space H is endowed with a complex structure
as above, and suppose that X.ei�u/ D ei�X.u/ for all � 2 R and u 2 ˆ0. Consider � 2
P .ˆ0/ which is U.1/-invariant and satisfies the estimates (2.15). Then � solves (2.8) if
and only if the symmetric hierarchy equation
(2.21)
kX

jD1

Z
ˆ0

�
ju.j�1/ ˝X.u/˝ u.k�j /ihu˝kj C ju˝kihu.j�1/ ˝X.u/˝ u.k�j /j

�
d� D 0

holds for all k 2 N.
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Remark 2.13. We recall that � 2P .ˆ0/ is said to be U.1/-invariant if for anyB 2B.ˆ0/

and any � 2 R we have
�.¹ei�u; u 2 Bº/ D �.B/:

The identity (2.21) shall be understood in a weak sense, i.e.: for all  1;  2 2 Symk.ˆ/,
the integrals Z

ˆ0
h 1; u˝ � � � ˝X.u/˝ � � � ˝ uihu

˝k ;  2i d�

and Z
ˆ0
h 1; u

˝k
ihu˝ � � � ˝X.u/˝ � � � ˝ u; 2i d�

are well-defined, where Symk.ˆ/ is the k-fold algebraic symmetric tensor product of ˆ.
Moreover, the hierarchy equation (2.21) can be interpreted as a system of infinite coupled
equations for the k-densities ¹
 .k/ºk2N defined in the weak sense by


 .k/ D

Z
ˆ0
ju˝kihu˝kj d�;

as sesquilinear maps on Symk.ˆ/ � Symk.ˆ/. For more details on this formulation and
relationship with Gross–Pitaevskii hierarchies, we refer the reader to [5], Section 3.

Proof. Suppose that � is a stationary solution of the Liouville equation (2.8). According
to Lemma 2.10, one hasZ

ˆ0
.Rehu; 'iHC /

k Reh';X.u/iHC d� D 0:

Hence, the U.1/-invariance of � and a polynomial expansion yield,

0 D

kX
jD0

Z
ˆ0

�
k

j

�
h'; ei�ui

j
HC
hei�u; 'i

k�j
HC

�
h'; ei�X.u/iHC C he

i�X.u/; 'iHC

�
d�;

All the terms in the above sum are zero because of the U.1/-invariance, except the ones
obtained by taking 2j C 1 D k and 2j � 1 D k (k should be odd), which can be seen by
taking averages in � 2 Œ0; 2��. Therefore, one obtains that for all p 2 N,Z
ˆ0
h'; ui

p�1
HC
hu; 'i

p
HC
h';X.u/iHC d�C

Z
ˆ0
h'; ui

p
HC
hu; 'i

p�1
HC
hX.u/; 'iHC d� D 0;

so that

0 D

pX
jD1

Z
ˆ0
h'˝p; u˝.j�1/ ˝X.u/˝ u˝.p�j /iHC hu

˝p; '˝piHC

C h'˝p; u˝piHC hu
˝.j�1/

˝X.u/˝ u˝.p�j /; '˝piHC d�

D

D
'˝p;

pX
jD1

� Z
ˆ0
ju˝.j�1/ ˝X.u/˝ u˝.p�j /iHC hu

˝p
j

C ju˝piHC hu
˝.j�1/

˝X.u/˝ u˝.p�j /j d�
�
'˝p

E
HC

D h'˝p;Qp '
˝p
iHC ;
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where Qp denotes the sum in the previous line, interpreted as a quadratic form on the
p-fold algebraic symmetric tensor product space Symp.ˆ/. Thanks to the polarization
formula,

h�˝p;Qp �
˝p
iHC

D

Z 1

0

Z 1

0

˝
.e2i���C e2i�'�/˝p;Qp .e

2i���C e2i�'�/˝p
˛
HC

e2i�.p��p'/ d� d' ;

and the fact that any element in Symp.ˆ/ can be written as combination of ¹�˝p; � 2 ˆº,
one obtains the claimed hierarchy equation (2.21). The converse statement follows by
reversing the above arguments.

We end up this section with an equivalence result between KMS equilibrium states
and equilibrium hierarchies.

Theorem 2.14. Assume that the Hilbert space H is endowed with a complex structure
as above, and suppose that X.ei�u/ D ei�X.u/ for all � 2 R and u 2 ˆ0. Consider a
U.1/-invariant � 2 P .ˆ0/ satisfying the estimates (2.16). Then � is a .ˇ; X/-KMS state
if and only if for all '1; '2 2 ˆ and p 2 N we have that

(2.22)
ˇ

p C 1

Z
ˆ0
h'2; ui

pC1
HC
hu; '2i

p
HC
hX.u/; '1iHC d�

D 2ih'2; '1iHC

Z
ˆ0
h'2; ui

p
HC
hu; '2i

p
HC

d�:

Proof. Suppose that � is a .ˇ;X/-KMS state. By Lemma 2.11, we have that (2.17) holds.
By using the U.1/ invariance of X and �, we can rewrite this identity as

ˇ

2kC1

Z
ˆ0

�
e�i� hu; '2iHCCe

i�
h'2; uiHC

�k �
ei� h'1; X.u/iHCCe

�i�
hX.u/; '1iHC

�
d�

D
k

2k�1
Reh'1;�i'2iHC

Z
ˆ0

�
e�i� hu; '2iHC C e

i�
h'2; uiHC

�k�1
d�;(2.23)

for � 2 Œ0; 2��. We then take the average over � 2 Œ0; 2�� in (2.23) to deduce that both
sides vanish if k is even, and for k D 2pC 1 odd, by using the Newton binomial formula,
the above identity is equivalent to

ˇ

p C 1

h Z
ˆ0
h'2; ui

pC1
HC
hu; '2i

p
HC
hX.u/; '1iHC d�

C

Z
ˆ0
h'2; ui

p
HC
hu; '2i

pC1
HC
h'1; X.u/iHC d�

i
D 2

�
ih'2; '1iHC � ih'1; '2iHC

� Z
ˆ0
jh'2; uiHC j

2p d�:(2.24)

The identity (2.24) holds for all '1;'2 2ˆ. In particular, it holds if we replace '2 7! ei�'2
for any � 2 Œ0; 2��. We hence deduce (2.22). The converse follows by analogous argu-
ments. Note that the identity (2.18) is true thanks to the U.1/ invariance of the measure �
and the vector field X .
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Remark 2.15. We note that in the recent articles [47,48] a global Hamiltonian structure is
constructed for the Gross–Pitaevskii hierarchies such that their time evolution is described
by a Hamiltonian functional HGP , i.e.,

d

dt
�.t/ D XGP .�.t//;

where � is a GP hierarchy and XGP is the vector field defined by HGP according to
a given Poisson structure ¹¹�; �ºº. With this point of view and the above dualities, one
can formally interpret the stationary and equilibrium GP hierarchies as the � satisfying,
respectively,

¹¹HGP ; F ºº.�/ D 0 and ¹¹F;Gºº.�/ D ˇ¹¹HGP ; F ºº.�/G.�/;

for all F;G in a given subalgebra of observables.

3. Gaussian measures and KMS states

We show in this section that Gaussian measures in infinite dimensional spaces are funda-
mental examples of KMS equilibrium states. It is possible to study Gaussian measures
from different points of view. Here, we consider Gaussian measures on dual nuclear
spaces, abstract Wiener spaces and Gaussian probability spaces. Our aim is to outline
the fundamental aspects of KMS states and to emphasize their applicability in various
contexts.

3.1. Gaussian measures on countably Hilbert nuclear spaces

The general setting given in Subsection 2.1 will be restricted here, since we are going to
consider Gaussian measures on the dual space ˆ0. Therefore it is useful to require that ˆ
is a suitable nuclear space. Before proceeding further, we give the precise assumptions
on the spaces. We recall that H is always assumed to be a separable real Hilbert space
endowed with a symplectic structure � induced by the operator J (see Subsection 2.1)
satisfying Jˆ � ˆ, and that H is endowed with a Hilbert rigging

ˆ � H � ˆ0

such that ˆ is dense in H . Assume furthermore that ˆ is a countably Hilbert nuclear
space. This means that ˆ is a Fréchet space whose topology is given by an increasing
sequence of compatible Hilbertian norms ¹k � kn; n 2 Nº and such that taking Hn to be
the completion of ˆ with respect to the norm k � kn, one has the chain of embeddings

ˆ � � � � � Hn � Hn�1 � � � � H1 ;

satisfying for all n 2 N the existence of m 2 N, m � n, such that the embedding

im;n W .Hm; k � km/! .Hn; k � kn/
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defines a trace-class operator. Recall that the norms are said to be compatible if for any
sequence .xk/k in ˆ that is Cauchy for both k � kn and k � km, one has�

lim
k
xk D 0 in Hn

�
”

�
lim
k
xk D 0 in Hm

�
:

This shows in particular that im;n is a well-defined embedding and hence Hm can be
identified with a subset of Hn whenever n � m. Moreover, the space ˆ is identified with
the topological projective limit associated to the projective system .Hn; in;m/ such that

ˆ D
\
n2N

Hn D lim
 �

Hn :

For more details on nuclear spaces, see e.g. [34]. The main example for such a setting is
given by the rigging S.Rd /�L2.Rd /� S0.Rd /, where S.Rd / is a nuclear space endowed
for instance with the sequence of norms

k'kn D
� X
j˛j�n



.1C jxj2/n=2D˛'.x/


2
L2.Rd /

�1=2
:

In this framework, it is known that the Minlos theorem provides an elegant general-
ization of the Bochner theorem. The point is that the (canonical) Gaussian measures on
infinite dimensional Hilbert spaces are not � -additive measures on H , but only additive
cylindrical set measures. However, such cylindrical set measures extend to probability
measures by means of a radonifying embedding on a larger space. A convenient statement
of the Minlos theorem is given below. Recall that a normalized positive-definite functional
GWˆ! C is a map satisfying

(i) G.0/ D 1,
(ii) For all n 2 N, �j 2 C, uj 2 ˆ for j D 1; : : : ; n,

nX
j;kD1

N�j �k G.uj � uk/ � 0:

Theorem 3.1 (Minlos’ theorem). Assume that ˆ is a countably Hilbert nuclear space.
Then any continuous normalized positive definite functional G on ˆ is the characteristic
function of a unique � 2 P .ˆ0/ such that, for all w 2 ˆ,

G.w/ D

Z
ˆ0
eihu;wi d�:

For more details on the above theorem, we refer to Theorem 4.7 in [40] and Chapter IV
of [34].

Consider a positive symmetric (bounded or unbounded) operator AWD.A/ �H !H

such that A � c1 for some constant c > 0 and D.A/ � ˆ. In particular, A is invertible,
with A�1 being a bounded operator on H .

Corollary 3.2. Let ˇ > 0 be given. There exists a unique �ˇ;0 2 P .ˆ0/ such that its
characteristic function is given for all v 2 H by

y�ˇ;0.v/ D

Z
ˆ0
eihv;ui d�ˇ;0 D e

� 1
2ˇ
hv;A�1vi

:
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Recall the spaces of cylindrical smooth functions (2.1), the gradient (2.3) and Poisson
structure on Cb, cyl.ˆ

0/ (2.5), as well as the definition of KMS states in Definition 2.3 from
Subsection 2.1.

Theorem 3.3. The Gaussian measure �ˇ;0 provided by Corollary 3.2 is a .ˇ; X/-KMS
state for the linear dynamical system given by the vector field X D JA.

Proof. In order to prove that�ˇ;0 is a KMS state, we will use Theorem 2.7. Let '1;'2 2ˆ
be given. Then, using the Cauchy–Schwarz inequality one easily checks that the function
h'1; X.�/i is �ˇ;0-integrable:Z

ˆ0

ˇ̌
hAJ'1; ui

ˇ̌
d�ˇ;0 �

� Z
ˆ0
hAJ'1; ui

2 d�ˇ;0

�1=2
<1 ;

since AJ'1 2H and all the second moments of the Gaussian measure �ˇ;0 are finite (i.e.,
hf; �i 2 L2.�ˇ;0/ for all f 2 H , see Theorem 4.4 and Remark 4.5). Using Corollary 3.2,
observe that

i

Z
ˆ0
h'1; X.u/i e

ihu;'2i d�ˇ;0 D
d

ds

� Z
ˆ0
eihu;�sAJ'1C'2i d�ˇ;0

� ˇ̌
sD0

D
d

ds

�
e
� 1
2ˇ
h�sAJ'1C'2;A

�1.�sAJ'1C'2/i
� ˇ̌
sD0

D
1

ˇ
hJ'1; '2i e

� 1
2ˇ
h'2;A

�1'2i

D
1

ˇ
hJ'1; '2i

Z
ˆ0
eihu;'2i d�ˇ;0 :

This proves the identity (2.10) and hence �ˇ;0 is a .ˇ;X/-KMS state.

Remark 3.4 (White noise). An interesting example for the above Theorem 3.3 is the
so-called white noise measure. According to Minlos’ Theorem 3.1, there exists a unique
probability measure �wn on S0.R/ having the characteristic function

y�wn.u/ D

Z
S0.R/

eihu;wi d�wn.w/ D e
� 12 kuk

2

L2.R/ ;

named the canonical Gaussian measure or white noise measure on S0.R/ corresponding to
the choice ˇ D 1,ˆD S.R/, AD 1, and J being any operator inducing a non-degenerate
symplectic structure on L2.R/ such that JS.R/ � S.R/.

3.2. Wiener and Gaussian probability spaces

The result in Theorem 3.3 extends to abstract Wiener spaces and Gaussian probability
spaces. Indeed, one can prove that the canonical Gaussian measure in both cases is a
.ˇ;X/-KMS state for ˇ D 1 and for a given linear dynamical system.

Abstract Wiener space. Let B be a separable Banach space such that the Hilbert
space H is embedded into B through an injective continuous linear map i WH ! B.
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Assume that the map i radonifies1 the canonical Gaussian cylinder set measure on H .
Then .i; H; B/ is called an abstract Wiener space (see e.g. [37, 40]). This means that
there exists a Borel probability measure �ws on B such that its characteristic function is
given by

y�ws.u/ D

Z
B
eihu;wi d�ws.w/ D e

� 12 kuk
2

for all u 2 H . As in Theorem 3.3, one shows that the canonical Gaussian measure �ws
on B is a .ˇ; X/-KMS state for the dynamical system induced by the vector field X D J
with ˇ D 1 and J is any operator implementing a symplectic structure on H .

Gaussian probability space. It is a complete probability space .�;†;P / with a family
of centered Gaussian random variables W.f /W� ! R indexed by a separable Hilbert
space H such that, for all f; g 2 H ,

(3.1) E.W.f /W.g// D hf; gi :

In particular, the map f 2 H 7! W.f / 2 L2.�;P / is a linear isometry. For more details
on Gaussian probability spaces, we refer the reader to the book [50]. As before, we are
going to prove that the probability measure P is a .ˇ;X/-KMS state for a certain dynam-
ical system with an inverse temperature ˇ D 1. Let ¹ej º be an orthonormal basis ofH and
define the linear operator J as

(3.2) Je2j�1 D e2j ; Je2j D �e2j�1; 8j 2 N ;

Then, J induces a symplectic structure on H . Furthermore, consider . j̨ /j2N a sequence
of positive real numbers such that

(3.3)
1X
jD1

˛�1j <1 :

Using this sequence, one can define a Hilbert rigging HC � H � H� by taking

HC D
°
u 2 H

ˇ̌̌ 1X
jD1

j̨ hu; ej i
2 <1

±
as a Hilbert space endowed with the inner product given by

hu; viHC D

1X
jD1

j̨ hu; ej ihej ; vi

for any u;v 2HC, and consideringH� as the dual ofHC with respect to the inner product
of H . We note that the norm on H� is given by

kukH� D
� 1X
jD1

˛�1j hu; ej i
2
�1=2

:

We note the following analogue of Theorem 3.3 in the context of Gaussian spaces.

1It transforms a cylindrical measure on H into a Radon measure over B.
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Lemma 3.5. For all f; g 2 HC, we have

(3.4) hf; JgiE
�
eiW.g/

�
C i E

�
W.�Jf / eiW.g/

�
D 0:

Proof. The idea of the proof is similar to that of Theorem 3.3, except that now we do not
have a vector field at our disposal. Instead, we use the Gaussian structure. We start by
observing that for all f 2 H , we have

(3.5) E
�
eiW.f /

�
D e�

1
2 kf k

2

:

In order to deduce the identity (3.5), we note that by Wick’s rule and (3.1), we have that
for all k 2 N,

E
�
.W.f //k

�
D

´
.2n/Š
nŠ 2n
kf k2n if k D 2n is even,

0 if k is odd.

For f; g, we compute

(3.6)
d

ds
E
�
eiW.�sJfCg/

� ˇ̌
sD0
D iE

�
W.�Jf / eiW.g/

�
:

On the other hand, by using (3.5), we can rewrite (3.6) as

(3.7)
d

ds
e�

1
2 k�sJfCgk

2 ˇ̌
sD0
D hJf; giE

�
eiW.g/

�
:

The identity (3.4) follows from (3.6) and (3.7).

In order to see the above identity (3.4) as a KMS condition similar to (2.10), one needs
to introduce a vector field X that is interpreted as an element of the space L2.�;P IH�/
of square integrable H�-valued functions.

Lemma 3.6. Let Xn D
Pn
jD1W.ej / Jej 2 L

2.�; P IH/. Then the sequence .Xn/n2N

converges to an element X 2 L2.�;P IH�/, i.e.,

X D

1X
jD1

W.ej / Jej 2 L
2.�;P IH�/ :

Proof. It is enough to show that .Xn/n2N is a Cauchy sequence inL2.�;P IH�/. Indeed,
one has

kXn �Xmk
2
L2.�;P IH�/

D

Z
�

kXn �Xmk
2
H�

dP D

Z
�

1X
jD1

˛�1j hXn �Xm; ej i
2 dP :

Using the definition of Xn and applying (3.2), one notices that for j 2 N,

hXn �Xm; ej i D 1ŒmC2;nC1�\2N.j / W.ej�1/ � 1Œm;n�1�\2NC1.j / W.ejC1/ :

Thus, one concludes by (3.3),

kXn �Xmk
2
L2.�;P IH�/

D

nX
jDmC1

˛�1j E
�
W.ej /

2
�
�!

n;m!1
0:
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As in Subsection 2.1, one defines the class of smooth compactly supported cylindrical
functions F 2 C1c, cyl.�/ as all the functions F W�! R satisfying

F D '.W.e1/; : : : ;W.en//

for some n 2 N and ' 2 C1c .R
n/. Similarly, one can introduce a gradient for these func-

tions given as below:

rF D

nX
jD1

@j'.W.e1/; : : : ;W.en// ej 2 L
2.�;P IH/:

Hence, one can also introduce a Poisson bracket for any F;G 2 C1c, cyl.�/ as

¹F;Gº D hrF; JrGi 2 L2.�;P / :

Proposition 3.7. Let .�;†;P / be a Gaussian probability space with J and X defined as
before. Then P is a .1; X/-KMS state in the following sense: for all F;G 2 C1c, cyl.�/,

(3.8) E
�
¹F;Gº

�
D E

�
hrF;XiG

�
:

Proof. Since the map f 7! W.f / is a linear isometry from H to L2.�;P /, one checks
that for f 2 HC,

hf;Xi D lim
n

nX
jD1

hf; Jej iW.ej / D lim
n
W
� nX
jD1

h�Jf; ej iej

�
D W.�Jf /:

Therefore, the equality (3.4) reads

hf; JgiE
�
eiW.g/

�
C i E

�
hf;Xi eiW.g/

�
D 0:

Following the lines of the proof of Theorem 2.7, one proves the KMS condition (3.8).

Remark 3.8. The identity (3.8) can be regarded as a generalization of the KMS condi-
tion (2.9) to Gaussian probability spaces or more generally to stochastic processes.

4. The Gibbs–KMS equivalence

In this section, we address the problem of equivalence between Gibbs measures and
KMS states. It is quite instructive to first consider finite dimensional dynamical sys-
tems, since they provide significant insight into the problem. Afterwards, we consider in
Subsection 4.2 the case of complex linear infinite dimensional dynamical systems; while
nonlinear infinite dynamical systems are treated in the last Subsection 4.3.
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4.1. Finite dimensional dynamical systems

Let E be a Hermitian space of dimension n endowed with a scalar product h�; �i which is
anti-linear with respect to the left component. Fix an orthonormal basis ¹e1; : : : ; enº. One
can consider E as a Euclidean vector space with respect to the scalar product

h�; �iE;R WD Reh�; �i :

For convenience, we simply denote by ER the Euclidean vector space .E; h�; �iE;R/.
Notice that if we set fj D iej , for j D 1; : : : ; n, then ¹e1; : : : ; en; f1; : : : ; fnº is an
orthonormal basis of ER and we have the decomposition

(4.1) ER D K ˚ iK ;

where K D spanR¹e1; : : : ; enº. Moreover, ER is isomorphic to the direct sum K ˚ K

through the canonical R-linear mapping

(4.2) 8x; y 2 K; ER 3 x C iy • x ˚ y 2 K ˚K :

Within this isomorphism, the complex structure in E is implemented in K ˚ K by the
linear operator

J D

�
0 1

�1 0

�
such that J WK ˚ K ! K ˚ K and Ju ˚ v D v ˚ �u. In particular, J 2 D �1 and J
corresponds, via the above isomorphism, to the multiplication by the complex �i on E.
In the sequel, we will sometimes use the identification ER ' K ˚ K without making
reference to the isomorphism (4.2).

Symplectic structure. The Hermitian space E is naturally equipped with a canonical
non-degenerate symplectic form

�.�; �/ WD Imh�; �i :

In particular, the following relation holds true for all u; v 2 E:

(4.3) �.u; v/ D hiu; viE;R D hu; J viK˚K :

Moreover, since K D ¹u 2 E j �.u; v/ D 0 for all v 2 Kº, then K is a Lagrangian sub-
space2 and the isomorphism (4.2) provides a polarization of the phase-spaceE into canon-
ical position and momentum coordinates.

Poisson structure. Consider two smooth real-valued functions F; G 2 C1.E/. The
Poisson bracket is defined by

(4.4) ¹F;Gº.u/ WD

nX
jD1

@F

@ej
.u/

@G

@fj
.u/ �

@G

@ej
.u/

@F

@fj
.u/;

2We recall that this means that � restricts to zero on K and on its symplectic complement K? D ¹u 2 E j
�.u; v/ D 0 for all v 2 Kº:
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where the partial derivatives are given by

@F

@ej
.u/ D lim

�!0;�2R

F.uC �ej / � F.u/

�
;

@G

@fj
.u/ D lim

�!0;�2R

G.uC �fj / �G.u/

�
�

Such a bracket is skew symmetric and satisfies both the Leibniz rule and the Jacobi iden-
tity. It is sometimes useful to use the derivatives with respect to the complex coordinates.
For this, we define the Wirtinger derivatives3 by

(4.5)
@F

@zj
.u/ WD

@F

@ej
.u/ � i

@F

@fj
.u/ and

@F

@ Nzj
.u/ WD

@F

@ej
.u/C i

@F

@fj
.u/:

Hence, one can write the Poisson bracket as

¹F;Gº.u/ D
1

2i

nX
jD1

@F

@zj
.u/

@G

@ Nzj
.u/ �

@G

@zj
.u/

@F

@ Nzj
.u/:

One can also write the Poisson bracket using the symplectic form � in (4.3). In fact,
consider a differentiable function F WE ! R. Then its real differential is a R-linear form
given, for all v 2 K ˚K such that v D

Pn
jD1 vj ej ˚

Pn
jD1wj ej , by

rF.u/Œv� D

nX
jD1

vj
@F

@ej
.u/C wj

@F

@fj
.u/:

Hence, it can be identified with the following element of K ˚K ' ER:

(4.6) rF.u/ D

nX
jD1

@F

@ej
.u/ ej ˚

@F

@fj
.u/ ej :

Thus, one checks that for all Fréchet differentiable functions F;G W E ! R,

(4.7) ¹F;Gº.u/ D �.rF.u/;rG.u//:

Hamiltonian system. Consider a function hWER ' K ˚K ! R of class C1. Then as
above, the differential of h is given by

(4.8) rh.u/ D

nX
jD1

@h

@ej
.u/ ej C

@h

@fj
.u/ fj �

nX
jD1

@h

@ej
.u/ ej ˚

@h

@fj
.u/ ej :

Define the @ Nz operator as

@ NzF.u/ D

nX
jD1

@F

@ Nzj
.u/ ej :

Then, using the Wirtinger’s derivatives in (4.5), one remarks

�i@ Nzh.u/ � Jrh.u/:

3The standard definition has 1=2 in front of the derivatives, but here we overlook this factor.
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A Hamiltonian dynamical system on the phase-space E is then defined by means of
the energy functional h and the associated continuous vector field X WE! E given for all
u 2 E by

(4.9) X.u/ D �i@ Nzh.u/ � Jrh.u/:

Indeed, the Hamiltonian system is governed by the vector field equation

(4.10) Pu.t/ D X.u.t// ;

where uWI �R!E is a C1 curve and I is a time interval. The differential equation (4.10)
is complemented by an initial condition u.t0/D u0 2E at a fixed initial time t0 2 I . Since
the vector field X is only continuous, one cannot apply the Cauchy–Lipschitz theorem
and the existence of a smooth flow is not guaranteed. Nevertheless, the Peano existence
theorem provides at least the existence of local solutions for the equation (4.10).

Gibbs measure. In order to define the Gibbs measure for the above Hamiltonian sys-
tem, we assume that

(4.11) zˇ WD

Z
E

e�ˇh.u/ dL < C1 ;

for some ˇ > 0 and where dL is the Lebesgue measure on E. In this case, we define
the Gibbs measure of the Hamiltonian system (4.10), at inverse temperature ˇ > 0, as the
Borel probability measure given by

(4.12) �ˇ D
e�ˇh.�/ dLR
E
e�ˇh.u/ dL

�
1

zˇ
e�ˇh.�/ dL:

Notice that zˇ > 0. When the Hamiltonian system (4.10) admits a smooth global flow, we
know by the classical Liouville theorem that the Lebesgue and the Gibbs measures are
invariant with respect to this flow.

KMS states. The general framework presented in Section 2.1 is applicable in the
finite dimensional setting. We henceforth consider ˆ D ER D ˆ0 with the vector field
X WE ! E derived from the Hamiltonian functional hWE ! R as in (4.9) and consider
the KMS states as in Definition 2.3. Specifically, we say that � 2 P .E/ is a .ˇ;X/-KMS
state if and only if

(4.13)
Z
E

¹F;Gº.u/ d� D ˇ

Z
E

RehrF.u/;X.u/i G.u/ d�;

for any compactly supported smooth functions F; G 2 C1c .E/. The following lemma is
useful to express the above KMS condition in terms of the Poisson bracket.

Lemma 4.1. For any F 2 C1c .E/ and u 2 E, we have

RehrF.u/;X.u/i D ¹F; hº.u/:

Proof. Using the isomorphism (4.2) and the identity (4.8), the vector field (4.9) can be
written as

X.u/ D J

nX
jD1

@h

@ej
.u/ ej ˚

@h

@fj
.u/ ej D

nX
jD1

@h

@fj
.u/ ej ˚�

@h

@ej
.u/ ej :
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Similarly, using (4.6), one obtains

RehX.u/;rF.u/i D
nX

jD1

@F

@ej
.u/

@h

@fj
.u/ �

@h

@ej
.u/

@F

@fj
.u/ D ¹F; hº.u/:

Thus, by Lemma 4.1, the KMS condition (4.13) is equivalent to the identity

(4.14)
Z
E

¹F;Gº.u/ d� D ˇ

Z
E

¹F; hº.u/ G.u/ d�;

for any compactly supported smooth functions F;G 2 C1c .E/.

Theorem 4.2. Consider a function hWE ! R of class C1 on the phase-space E and
assume that (4.11) holds for some ˇ > 0. Then � 2 P .E/ satisfies the KMS condi-
tion (4.14) if and only if � is the Gibbs measure �ˇ in (4.12).

Proof. Let us check that the Gibbs measure�ˇ satisfies the KMS condition (4.14). Indeed,
using the Fubini theorem and an integration by parts, one showsZ

E

@F

@ej
.u/

@G

@fj
.u/ d�ˇ D �

1

zˇ

Z
E

G.u/
@

@fj

� @F
@ej

.u/ e�ˇh.u/
�
dL

D �

Z
E

G.u/
@2F

@fj @ej
.u/ d�ˇ C ˇ

Z
E

G.u/
@F

@ej
.u/

@h

@fj
.u/ d�ˇ ;

andZ
E

@G

@ej
.u/

@F

@fj
.u/ d�ˇ D �

1

zˇ

Z
E

G.u/
@

@ej

� @F
@fj

.u/ e�ˇh.u/
�
dL

D �

Z
E

G.u/
@2F

@ej @fj
.u/ d�ˇ C ˇ

Z
E

G.u/
@F

@fj
.u/

@h

@ej
.u/ d�ˇ :

Hence, by (4.4), we haveZ
E

¹F;Gº.u/ d� D ˇ

Z
E

¹F; hº.u/ G.u/ d�ˇ :

Conversely, consider a Borel probability measure � such that the KMS condition (4.14)
is satisfied. Then we note that for any F;G 2 C1c .E/, we have by the Leibniz rule that

¹F;Ge�ˇh.u/º D ¹F;Gº e�ˇh.u/ � ˇ¹F; hºG.u/e�ˇh.u/ :

Therefore,
¹F;Ge�ˇh.u/º eˇh.u/ D ¹F;Gº � ˇ ¹F; hºG.u/;

and notice that the above right-hand side is integrable with respect to the measure �.
Hence, the KMS condition (4.14) givesZ

E

¹F;Ge�ˇh.u/º eˇh.u/ d� D 0:
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Since eˇh.�/ is a positive Borel function, the map

B 7! �.B/ WD

Z
B

eˇh.u/d�;

defined for all Borel sets B of E, gives a Borel measure on E. So, one obtains that for any
F;G 2 C1c .E/, Z

E

¹F;Ge�ˇh.u/º.u/ d� D 0:

But since the classical Hamiltonian h is a C1-function, one obtains for all F 2 C1c .E/ and
G 2 C1c .E/, Z

E

¹F;Gº.u/ d� D 0:

This condition implies that � is a multiple of the Lebesgue measure. Indeed, take G.�/ D
Rehej ; �i'.�/ or G.�/ D Rehfj ; �i'.�/, with ' 2 C10 .E/ being equal to 1 on an open set
containing the support of F . Then the Poisson brackets give

¹F;Gº D �
@F

@fj
.u/ or ¹F;Gº D

@F

@ej
.u/:

So, in a distributional sense, the derivatives in all the directions of the measure � are zero
and therefore d� D c dL for some constant c > 0. Using the normalization condition
for �, one concludes that

c�1 D

Z
E

e�ˇh.u/ dL D zˇ ;

and consequently,

� D
1

zˇ
e�ˇh.�/ dL D �ˇ :

Remark 4.3. Later on we will see that the above Theorem 4.2 can be extended to non-
smooth vector fields. Indeed, one notes that Theorem 4.14 below applies with minor
modifications to the finite dimensional setting.

4.2. Linear infinite dimensional dynamical systems

For applications in PDEs, it is convenient to work in a more concrete setting than the one
from Section 3. In particular, we suppose that H is a separable complex Hilbert space.
Hence,H is naturally equipped with a natural symplectic structure �.�; �/D Imh�; �i, a real
scalar product h�; �iH;R WD Reh�; �i and a compatible complex structure. Note that H as a
real Hilbert space will be denoted by HR.

Complex linear Hamiltonian system. Consider a positive operatorAWD.A/�H !H

such that

(4.15) 9c > 0 W A � c 1 :

The linear Hamiltonian dynamical system is given by the quadratic energy functional

(4.16) h W D.A1=2/! R; h.u/ D
1

2
hu;Aui :
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So, the vector field in this case is the linear operator X0 WD.A/! H ,

X0.u/ D �iAu;

leading to the linear differential equation governing the dynamics of the system

(4.17) Pu.t/ D X0.u.t// D �iAu.t/ :

Compact resolvent. We suppose additionally that the operator A admits a compact
resolvent. Therefore, there exists an orthonormal basis of H composed of eigenvectors
¹ej ºj2N of A associated respectively to their eigenvalues ¹�j ºj2N such that for all j 2N,

(4.18) Aej D �j ej :

Furthermore, assume the following assumption:

(4.19) 9s � 0 W

1X
jD1

1

�1Csj

< C1:

We note that if we set fj D i ej for all j 2 N, then ¹ej ; fj ºj2N is an orthonormal basis
of HR.

Weighted Sobolev spaces. One can introduce weighted Sobolev spaces using the oper-
ator A as follows. For any r 2 R, define the inner product

8x; y 2 D.Ar=2/ ; hx; yiH r WD hAr=2x;Ar=2yi :

LetH s denote the Hilbert space .D.As=2/; h�; �iH s /, where s � 0 is the exponent in (4.19),
while H�s denotes the completion of the pre-Hilbert space .D.A�s=2/; h�; �iH�s /. Hence,
one has the canonical continuous and dense embeddings (Hilbert rigging)

(4.20) H s
� H � H�s :

We note that H�s identifies also with the dual space of H s relatively to the inner product
of H .

Cylindrical smooth functions. Using the orthonormal basis ¹ej ; fj ºj2N , one considers
the spaces of smooth cylindrical functions as in Subsection 2.1. More specifically, consider
for n 2 N the mapping �nWH�s ! R2n given by

(4.21) �n.x/ D .hx; e1iH;R; : : : ; hx; eniH;RI hx; f1iH;R; : : : ; hx; fniH;R/ :

Then we define C1c, cyl.H
�s/, respectively C1b, cyl.H

�s/, as the set of all functions F WH�s

! R such that

(4.22) F D ' ı �n

for some n 2 N and ' 2 C1c .R
2n/, respectively ' 2 C1

b
.R2n/. In particular, the gradient

of F at the point u 2 H�s is given by

(4.23) rF.u/ D

nX
jD1

@
.1/
j '.�n.u// ej C @

.2/
j '.�n.u// fj 2 H�s :
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where @.1/1 '; : : : ; @
.1/
n ' and @.2/1 '; : : : ; @

.2/
n ' are the partial derivatives of ' with respect to

the n first and n second coordinates, respectively. It also useful to introduce the following
mapping:

(4.24)

Pn W H
�s
! En

u 7!

nX
jD1

hej ; ui ej ;

where En D spanC¹e1; : : : ; enº a finite dimensional subspace of H�s . The Euclidean
structure of En is the canonical one such that ¹ej ; fj ºjD1:::;n is an orthonormal basis

Poisson structure. We now precisely describe the Poisson structure over the algebra of
smooth cylindrical functions C1b, cyl.H

�s/. Consider F;G 2 C1b, cyl.H
�s/ such that for all

u 2 H�s ,

(4.25) F.u/ D ' ı �n.u/ and G.u/ D  ı �m.u/;

where ' 2 C1
b
.R2n/ and  2 C1

b
.R2m/ for some n; m 2 N. Then, for all such F; G 2

C1b, cyl.H
�s/,

(4.26) ¹F;Gº.u/ WD
min.n;m/X
jD1

@
.1/
j '.�n.u// @

.2/
j  .�m.u// � @

.1/
j  .�m.u// @

.2/
j '.�n.u//:

Gibbs measure. The Hamiltonian system (4.16)–(4.17) admits a Gibbs measure at
inverse temperature ˇ > 0, formally given by

�ˇ;0 �
e�ˇh.�/ duR
e�ˇh.u/ du

;

and rigourously defined as a Gaussian measure on the Hilbert spaceH�s for the exponent
s � 0 such that the assumption (4.19) is satisfied. Recall that one says that m 2 H�s is
the mean-vector of � 2 P .H�s/ if for any f 2 H�s the function u 7! hf; uiH�s ;R is
�-integrable and

hf;miH�s ;R D

Z
H�s
hf; uiH�s ;R d�:

When m D 0, one says that � is a zero-mean or centered measure. Additionally, the
covariance operator of the Borel probability measure � on H�s is a linear operator
QWH�sR ! H�sR such that for any f; g 2 H�s the function u 7! hf; uiH�s ;R hu; giH�s ;R
is �-integrable and

hf;QgiH�s ;R D

Z
H�s
hf; u �miH�s ;R hu �m; giH�s ;R d�:

For more details on Gaussian measures over Hilbert spaces, we refer the reader to the
book by Bogachev [12], Chapter 2. In particular, the following result is well known.
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Theorem 4.4. Let ˇ > 0 and assume that the assumptions (4.15) and (4.19) are satisfied.
Then there exists a unique zero-mean Gaussian measure onH�s , denoted �ˇ;0, such that
its covariance operator is ˇ�1A�.1Cs/, i.e., for all f; g 2 H�s ,

(4.27)
1

ˇ
hf;A�.1Cs/giH�s ;R D

Z
H�s
hf; uiH�s ;R hu; giH�s ;R d�ˇ;0 ;

or equivalently for all f; g 2 H s ,

(4.28)
1

ˇ
hf;A�1giH;R D

Z
H�s
hf; uiH;R hu; giH;R d�ˇ;0 :

Moreover, the characteristic function of �ˇ;0 is given for any w 2 H s by

(4.29) y�ˇ;0.w/ D

Z
H�s

eihw;uiH;R d�ˇ;0 D e
� 1
2ˇ
hw;A�1wiH ;

or equivalently, for any v 2 H�s we have

(4.30)
Z
H�s

eihv;uiH�s ;R d�ˇ;0 D e
� 1
2ˇ
hv;A�.1Cs/viH�s :

Remark 4.5. The following observations are useful.
(i) The Gaussian measure �ˇ;0 given above coincides with the one provided by Corol-

lary 3.2 if one considers ˆ D \r>0D.Ar /. In particular, it is not difficult to prove that ˆ
is a countably Hilbert nuclear space and �ˇ;0.H�s/ D 1.

(ii) We note that in particular, one has

(4.31) TrHR Œˇ
�1A�.1Cs/� D

1X
jD1

1

ˇ�1Csj

D

Z
H�s
kuk2H�s d�ˇ;0 :

(iii) Note that, according to (4.28), the random variable hf; �iH;R 2 L2.�ˇ;0/ for all
f 2 H�1 in the sense that hf; �iH;R WD limnhfn; �iH;R in L2.�ˇ;0/ with .fn/n2N any
norm approximating sequence in H s of f 2 H�1.

It is convenient to characterize �ˇ;0 using a position and momentum coordinates sys-
tem. So, we define two sequences of image measures given by

�nˇ;0 WD .�n/]�ˇ;0 and �nˇ;0 WD .Pn/]�ˇ;0

respectively on R2n and En. Here, .�/] denotes the pushforward. We can explicitly com-
pute these measures.

Lemma 4.6. The Gaussian measure �ˇ;0 satisfies the following relations for all n 2 N :

�nˇ;0 D .�n/]�ˇ;0 D

nY
jD1

ˇ�j

2�
e�ˇ

�j
2 .x

2
j Cy

2
j / dxjdyj ;(4.32)

�nˇ;0 D .Pn/]�ˇ;0 D
e�

ˇ
2 h�;A�i dL2nR

En
e�

ˇ
2 hu;Aui dL2n

;(4.33)

where L2n is the Lebesgue measure on the Euclidean space En of dimension 2n.
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Proof. Let �n denote the measure in the right-hand side of (4.32). One easily computes
the characteristic function of �n,

y�n.�1; : : : ; �nI �1; : : : ; �n/ D

Z
R2n

ei
Pn
jD1.xj �jCyj �j / d�n D

nY
jD1

e
� 1
2�j ˇ

.�2j C�
2
j / :

On the other hand, by Theorem 4.4, one checks

y�nˇ;0.�1; : : : ; �nI �1; : : : ; �n/ D

Z
H�s

ei
Pn
jD1.hu;ej iH;R �jChu;fj iH;R �j / d�ˇ;0

D y�n.�1; : : : ; �nI �1; : : : ; �n/ :

This shows that �n D �nˇ;0. Similarly, to prove the second relation, it is enough to note that
the characteristic function of the right-hand side of (4.33) is given by

e�
1
2 hw;.ˇA/

�1wiH;R D y�nˇ;0.w/; 8w 2 En;

where the equality follows from (4.29).

Let inWEn ! H�s , in.u/ D u for all u 2 En, be the canonical embedding of En
into H�s . It is useful to introduce for any � 2 P .H�s/ the image measures on H�s

given by

(4.34) �n D .in ı Pn/]�:

Lemma 4.7. For any � 2 P .H�s/, the sequence .�n/n2N converges narrowly to � on
P .H�s/, i.e., limn

R
H�s

F.u/d�n D
R
H�s

F.u/d� for any continuous bounded function
F WH�s ! R.

Proof. We note that the maps in ıPn WH�s!H�s are linear and continuous. One checks
that for all u 2 H�s ,

kin ı Pn.u/ � uk
2
H�s D

1X
jDnC1

��sj .hu; ej i
2
H;R C hu; fj i

2
H;R/ :

Hence, this proves that the sequence .in ı Pn.u//n2N converges towards u in H�s . Con-
sequently, one shows that by dominated convergence, for any continuous bounded func-
tion F WH�s ! R, we have

lim
n

Z
H�s

F.u/ d�n D lim
n

Z
H�s

F.in ı Pn.u// d� D

Z
H�s

F.u/ d�:

Within the framework of this subsection, we prove a KMS–Gibbs equivalence result.
Before doing this, we remark that for all F 2 C1c, cyl.H

�s/ satisfying (4.22),

RehX0.u/;rF.u/i D
nX

jD1

@
.1/
j '.�n.u// h�iAu; ej iH;R C @

.2/
j '.�n.u// h�iAu; fj iH;R

is a well-defined continuous bounded function on H�s . Thus, the KMS condition (2.9) in
Definition 2.3 makes sense.
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Theorem 4.8. Suppose that assumptions (4.15) and (4.19) hold. LetX0 be the vector field
given by X0.u/ D �iAu and let ˇ > 0. Then � 2 P .H�s/ is a .ˇ;X0/-KMS state if and
only if � is the Gaussian measure �ˇ;0 provided by Theorem 4.4.

Proof. Let � 2 P .H�s/ satisfy the KMS condition (2.9). Consider the image measure
Q�n D .Pn/]� 2 P .En/. For F;G 2 C1c, cyl.H

�s/ as in (4.25) with n D m, one observes
that for any u 2 H�s ,

¹F;Gº.Pn.u//D ¹F;Gº.u/ and RehrF.Pn.u//;X0.Pn.u//i DRehrF.u/;X0.u/i :

Hence, the KMS condition (2.9) reads asZ
H�s
¹F;Gº.Pnu/ d� D ˇ

Z
H�s

RehrF.Pn.u//; X0.Pn.u//iG.Pn.u// d�;

and consequently,Z
En

¹F;Gº.w/ d Q�n D ˇ

Z
En

RehrF.w/;X0.w/iG.w/ d Q�n :

This means that the Borel probability measure Q�n on En satisfies the KMS condi-
tion (4.14) in finite dimensions with the continuous vector field X0;n.u/ D �iAu and
the C1 energy functional h0;n.u/ D 1

2
hu; Aui for u 2 En. So, by Theorem 4.2 one con-

cludes that

Q�n D
e�

ˇ
2 h�;A�i dL2n.�/R

En
e�

ˇ
2 hu;Aui dL2n.u/

�

Now, using Lemma 4.6 one obtains

(4.35) Q�n D �
n
ˇ;0 D .Pn/]�ˇ;0 :

Using (4.34) and (4.35), and applying Lemma 4.7 for the Borel probability measure �ˇ;0,
one obtains

�n D .in ı Pn/]� D .in/] Q�n D .in ı Pn/]�ˇ;0 �!
n!1

�ˇ;0 :

Since by Lemma 4.7, �n converges narrowly to �, we deduce that

� D �ˇ;0 :

Conversely, Theorem 3.3 and Remark 4.5 (i) show that �ˇ;0 is a .ˇ;X0/-KMS state. Note
that thanks to the complex structure onH , one has that J � �i and X0 D �iA� JA.

4.3. Nonlinear infinite dimensional dynamical systems

In this part we address the question of equilibrium (KMS) states for nonlinear Hamilto-
nian PDEs and their equivalence to Gibbs measures. We consider the same setting and
notation as in Subsection 4.2 above. In particular, �ˇ;0 is the Gaussian measure provided
by Theorem 4.4.
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In order to explicitly define an abstract nonlinear dynamical system that encloses the
most important examples of PDEs that we wish to explore, we use the framework of
Malliavin calculus and Gross–Sobolev spaces. First, we explain the main ideas behind
these concepts and refer the reader to the book [50] for further details. Note that the spaces
used here are slightly different from the ones in the above reference (we are using the
duality .H s;H�s/ instead of working with a single Hilbert space structure).

Lemma 4.9 (Malliavin derivative). For p 2 Œ1;1/, the linear operator r with domain
D D C1c, cyl.H

�s/ and

r W D � Lp.�ˇ;0/ �! Lp.�ˇ;0IH
�s/ ;

F 7�! rF

where rF is given by (4.23), is closable.

Proof. Let Fn 2 C1c, cyl.H
�s/, n 2 N, be a sequence such that Fn ! 0 in Lp.�ˇ;0/ and

rFn ! Y in Lp.�ˇ;0IH�s/. In order to prove that the operator r is closable, one needs
to show that Y D 0. Indeed, using4 Proposition A.1 one proves for any G 2 C1b, cyl.H

�s/,
' 2 spanR¹ej ; fj I j D 1; : : : ; kº and " > 0,Z
H�s

zG.u/hrFn.u/; 'id�ˇ;0 D

Z
H�s

Fn.u/
�
� hr zG.u/; 'i C ˇ zG.u/ hu;A'i

�
d�ˇ;0 ;

where zG D G e�"h�;A'i
2
2 C1b, cyl.H

�s/ satisfies zG h�; A'i 2 C1b, cyl.H
�s/ � Lq.�ˇ;0/,

with q the Hölder conjugate of p. Taking the limit n!1 of both sides and using the
Hölder inequality, one obtainsZ

H�s

zG.u/ hY; 'i d�ˇ;0 D 0:

Letting "! 0 and using the density of the space C1b, cyl.H
�s/ inLp.�ˇ;0/, one shows that,

for any ' 2 spanR¹ej ; fj I j D 1; : : : ; kº,

hY; 'i D 0; �ˇ;0-a.s:

Hence, using the separability ofH s and a density argument, one proves that Y D 0 almost
surely with respect to �ˇ;0.

In light of Lemma 4.9, one can introduce the following Gross–Sobolev spaces.

Definition 4.10 (Gross–Sobolev spaces). For p 2 Œ1;1/, we denote the closure domain
of the linear operator r from Lemma 4.9 by D1;p.�ˇ;0/. On D1;p.�ˇ;0/, we consider the
norm

(4.36) kF k
p

D1;p.�ˇ;0/
WD kF k

p

Lp.�ˇ;0/
C krF k

p

Lp.�ˇ;0IH
�s/
:

By Lemma 4.9, we obtain that D1;p.�ˇ;0/ endowed with the above graph norm (4.36)
is a Banach space. Furthermore, if p D 2, it is a Hilbert space with the inner product

hF;GiD1;2.�ˇ;0/
D hF;GiL2.�ˇ;0/ C hrF;rGiL2.�ˇ;0IH�s/ :

4Here, we are applying Proposition A.1 for functions in C1c, cyl.H
�s/ and C1b, cyl.H

�s/, for which the
norm (4.36) is finite. At this step, we do not need to apply the full strength of Proposition A.1.
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The abstract nonlinear dynamical system that we shall consider is defined as a pair
consisting of a linear operator A satisfying (4.15), (4.18)-(4.19) and a Borel nonlinear
energy functional hI WH�s ! R satisfying for some ˇ > 0 the following hypothesis:

e�ˇh
I . �/
2 L1.�ˇ;0/ and hI 2 D1;2.�ˇ;0/ :(4.37)

More specifically, the vector field of the system is given by

(4.38) X.u/ D �iAu � irhI .u/;

defining a field equation in the interaction representation given through the non-autono-
mous differential equation for v.t/ WD eitAu.t/,

Pv.t/ D eitAXI .e�itAv.t// ;

where XI D �irhI WH�s ! H�s is a Borel vector field belonging to L2.�ˇ;0IH�s/
and t 2 R! v.t/ 2 H�s is a stochastic process solution. We note that by the Cauchy–
Schwarz inequality, the assumption (4.37) implies that XI 2 L1.�ˇ;0IH�s/.

According to Definition 2.9, a Borel probability measure � on H�s is a .ˇ;X/-KMS
state of the dynamical system induced by the vector field X D �iA C XI , at inverse
temperature ˇ > 0, if and only if for all F;G 2 C1c, cyl.H

�s/,

(4.39)
Z
H�s
¹F;Gº.u/ d� D ˇ

Z
H�s

RehrF.u/;�iAuCXI .u/iG.u/ d�:

Theorem 4.11. Assume that the assumption (4.37) is true and, furthermore, that for any
' 2 H s the function hrhI ; 'ie�ˇh

I
2 L1.�ˇ;0/. Then the Gibbs measure

(4.40) �ˇ D
e�ˇh

I
�ˇ;0R

H�s
e�ˇh

I
d�ˇ;0

is a .ˇ;X/-KMS state satisfying (4.39), where X is the vector field given in (4.38).

Proof. Let F;G 2 C1
c;cyl

.H�s/ be such that for some p; q 2 N and ' 2 C1c .R
2p/;  2

C1c .R
2q/, we have

F.u/ D ' ı �p.u/ and G.u/ D  ı �q.u/;

where �p and �q are the mappings in (4.21). We assume without loss of generality that
p � q. Hence, according to (4.26) one writesZ

H�s
¹F;Gº d�ˇ D

pX
jD1

1

zˇ

Z
H�s

.@ejF @fjG � @ejG @fjF / e
�ˇhI d�ˇ;0 ;

where @ej and @fj are directional derivatives, and

(4.41) zˇ D

Z
H�s

e�ˇh
I

d�ˇ;0
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is the normalization constant in (4.40). We note that there exists a sequence of functions
�k 2 C1

b
.R/ such that �k.x/! e�ˇx and � 0

k
.x/! �ˇe�ˇx pointwise for all x 2 R with

(4.42) 0 � �k.x/ � e
�ˇx and j� 0k.x/j � ce

�ˇx ;

for some constant c > 0 and for all k large enough. Indeed, we can take �k.x/ D e�ˇx if
x ��k and �k.x/D arctan.�ˇeˇk.xC k//C eˇk if x <�k. By applying the dominated
convergence theorem and Proposition A.1 with ' D fj and ' D ej , respectively, we haveZ
H�s
¹F;Gº d�ˇ D lim

k

pX
jD1

1

zˇ

Z
H�s

.@ejF @fjG � @ejG @fjF / �k.h
I / d�ˇ;0

D lim
k

pX
jD1

1

zˇ

Z
H�s

G
�
� @fj .@ejF �k.h

I //C ˇhu;Afj ihrF; ej i �k.h
I /
�

CG
�
@ej .@fjF �k.h

I // � ˇhu;Aej ihrF; fj i �k.h
I /
�
d�ˇ;0 :

Note that we also used Lemma A.2 in order to deduce that �k.hI /, @ejF �k.h
I / and

@fjF �k.h
I / belong to D1;2.�ˇ;0/. Moreover, one observes that

pX
jD1

@ejF @fj h
I
� @fjF @ej h

I
D RehrF;�irhI i ;

pX
jD1

hu;Afj ihrF; ej i � hu;Aej ihrF; fj i D RehrF;�iAui ;

Thus, using the assumptions of the theorem and dominated convergence, one obtainsZ
H�s
¹F;Gº d�ˇ

D lim
k

1

zˇ

Z
H�s

G
�

RehrF; irhI i � 0k.h
I /C ˇ RehrF;�iAui �k.hI /

�
d�ˇ;0

D ˇ
1

zˇ

Z
H�s

G
�

RehrF;�irhI i C RehrF;�iAui
�
e�ˇh

I

d�ˇ;0 :

This proves the KMS condition (4.39) for the Gibbs measure �ˇ .

Our next main result shows that the dynamical system at hand admits a unique KMS
state which is the Gibbs measure �ˇ . But before stating such a result, we need to prove
some preliminary results.

Proposition 4.12. Assume (4.37) is true. Let � be a Borel probability measure on H�s

which is absolutely continuous with respect to�ˇ;0, i.e., there exists a non-negative density
% 2 L1.�ˇ;0/ such that for all Borel sets, we have

�.B/ D

Z
B

%.u/ d�ˇ;0 :
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Assume further that the density %2D1;2.�ˇ;0/. If � is a .ˇ; X/-KMS state satisfy-
ing (4.39), then the density % satisfies the equation

(4.43) r%C ˇ%rhI D 0

in L1.�ˇ;0IH�s/, where r is the Malliavin derivative from Lemma 4.9.

Proof. Consider � 2 P .H�s/ satisfying the KMS condition (4.39) and the above hypo-
thesis. There exists a sequence %n 2 C1b, cyl.H

�s/ such that %n ! %, @ej %n ! @ej % and
@fj %n! @fj % in L2.�ˇ;0/ for all j 2 N. Then using the Leibniz rule, one proves that for
F;G 2 C1c, cyl.H

�s/,

lim
n

Z
H�s
¹F;G%nº d�ˇ;0 D lim

n

Z
H�s
¹F;Gº %n d�ˇ;0 C

Z
H�s
¹F; %nºG d�ˇ;0

D

Z
H�s
¹F;Gº d�C

Z
H�s

RehrF;�ir%iG d�ˇ;0 :

On the other hand, the KMS condition satisfied by the measure �ˇ;0 yields

lim
n

Z
H�s
¹F;G%nº d�ˇ;0 D ˇ lim

n

Z
H�s

RehrF;X0iG%n d�ˇ;0

D ˇ

Z
H�s

RehrF;X0iG d�;

where X0.u/ D �iAu. Hence, the two above equalities give

ˇ

Z
H�s

RehrF;X0iG d� D
Z
H�s
¹F;Gº d�C

Z
H�s

RehrF;�ir%iG d�ˇ;0 :

Since � satisfies the KMS condition with the vector field X D X0 C XI , then one con-
cludes for all F;G 2 C1c, cyl.H

�s/,Z
H�s

RehrF; ˇ%XI � ir%iG d�ˇ;0 D 0:

We recall (4.38) and apply a standard density argument to deduce that

r%C ˇ%rhI D 0

�ˇ;0-almost surely and as an element of L1.�ˇ;0IH�s/.

Lemma 4.13. Assume (4.37) is true and e�ˇh
I
2 L2.�ˇ;0/. Let % be the density in Pro-

position 4.12, and take any convex combination,

(4.44) Q% D ˛%C
.1 � ˛/

ke�ˇh
I
kL1.�ˇ;0/

e�ˇh
I

;

with ˛ 2 .0; 1/. Then

log. Q%/ 2 D1;2.�ˇ;0/ and r log. Q%/ D
r Q%

Q%
�
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Proof. One checks that e�ˇh
I
2 D1;1.�ˇ;0/ and re�ˇh

I
C ˇe�ˇh

I
rhI D 0. Indeed,

take �k the same function as in the proof of Theorem 4.11. Then by dominated conver-
gence one has

lim
k
k�k.h

I / � e�ˇh
I

kL1.�ˇ;0/ D 0 and lim
k;k0
kr�k.h

I / � r�k0.h
I /kL1.�ˇ;0IH�s/ D 0:

Hence, the sequence �k.hI / converges to e�ˇh
I

in D1;1.�ˇ;0/. Thus, one concludes as a
consequence of Proposition 4.12 that

r Q%C ˇ Q%rhI D 0:

Since Q% > 0 then
r Q%

Q%
D �ˇrhI 2 L2.�ˇ;0IH

�s/ :

There exists a sequence of functions �k 2 C1
b
.R/ such that �n.x/! log.x/ and �0n.x/!

1=x pointwise for x > 0, and furthermore,

j�n.x/j � j log.x/j and j�0n.x/j �
c

jxj
;

for some constant c > 0 and all x > 0. Indeed, we can take �n.x/D log.x/ for 1=n�x�n,
�n.x/D�n=xC1C log.n/ for x>n and �n.x/Dnarctan.x�1=n/� log.n/ for x<1=n.
By Lemma A.2, one knows that �n. Q%/2D1;2.�ˇ;0/ andr�n. Q%/D �0n. Q%/r Q%. Hence, dom-
inated convergence yields

lim
n

Z
H�s
j�n. Q%/ � log. Q%/j2 d�ˇ;0 D lim

n

Z
H�s




�0n. Q%/r Q% � r Q%
Q%




2
H�s

d�ˇ;0 D 0:

Therefore, one concludes that log. Q%/ 2 D1;2.�ˇ;0/ and r log. Q%/ D r Q%= Q%.

Theorem 4.14. Assume that (4.37) is true and e�ˇh
I
2 L2.�ˇ;0/. Let � be a Borel prob-

ability measure on H�s which is absolutely continuous with respect to �ˇ;0, i.e., there
exists a non-negative density % 2 L1.�ˇ;0/ such that for all Borel sets,

�.B/ D

Z
B

%.u/ d�ˇ;0 :

Assume further that %� d�
d�ˇ;0

2 D1;2.�ˇ;0/. Then � is a .ˇ;X/-KMS state for the vector
field X in (4.38) if and only if � is equal to the Gibbs measure

�ˇ D
e�ˇh

I
�ˇ;0R

H�s
e�ˇh

I .u/d�ˇ;0
�

Proof. Sufficiency follows from Theorem 4.11. Take Q% the convex combination density in
Lemma 4.13 and note that Q% > 0. By Lemma 4.13 and the assumption (4.37), one knows
that the function

F D log. Q%/C ˇhI 2 D1;2.�ˇ;0/ :
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Moreover, one has

r
�

log. Q%/C ˇhI
�
D
r Q%

Q%
C ˇrhI D 0:

Hence, using Proposition A.4 one concludes that for some constant c 2 R,

log. Q%/C ˇhI D c

�ˇ;0-almost surely. Finally, using the normalization of the density % one shows that

% D
e�ˇh

I

ke�ˇh
I
kL1.�ˇ;0/

�

Remark 4.15 (Relative entropy). In statistical mechanics, it is common to characterize
the Gibbs measure �ˇ by means of relative entropy functional. So it is not surprising to
find a link between our analysis based on KMS states and the concept of entropy. In par-
ticular, note that the functional F.%/ D log.%/C ˇhI used in the proof of Theorem 4.14
is similar to the integrand that is found in the Gibbs variational principle. More precisely,
given � 2 P .H�s/, we define

(4.45) E�ˇ;0.�/D
Z
H�s

% log.%/d�ˇ;0Cˇ
Z
H�s

hId�D

Z
H�s

.log.%/CˇhI /%d�ˇ;0 ;

where % is the density satisfying � D %�ˇ;0. We note that

E�ˇ;0.�/ D E�ˇ .�/ � log.zˇ / ;

where

E�.�/ WD

Z
H�s

d�

d�
log
� d�
d�

�
d�

denotes the classical relative entropy of �; � 2 P .H�s/ and zˇ is given by (4.41). One
knows that E�ˇ .�/ is non-negative with E�ˇ .�/ D 0 if and only if � D �ˇ . In particular,
this means that �ˇ is the unique minimizer of (4.45).

5. Nonlinear PDEs

In this section, we apply the concept of KMS states to various examples of nonlinear
PDEs, namely to the nonlinear Schrödinger, Hartree, and wave (Klein–Gordon) equa-
tions. The construction of invariant Gibbs measures for such equations is well under-
stood. In particular, the analysis is based on probabilistic tools, truncation to a finite
number of Fourier modes, and nonlinear stability estimates (see e.g. [13,20,27,42,49,61]
and the references therein). Here we emphasize that the nonlinearities appearing in the
above equations belong to the Gross–Sobolev spaces. Thus, it is possible to appeal to the
Malliavin calculus and to apply our results.
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5.1. Nonlinear Schrödinger equations

Gibbs measures for NLS equations are well studied, due to the fact that they are useful
tools for establishing existence of global solutions and well posedness for rough datum,
see e.g. [14–16, 20, 51, 52] and the references therein.

Consider the Hilbert space H D L2.Td /, where Td D Rd=.2�Zd / is the flat d -di-
mensional torus, and define the Sobolev weighted spaces H�s , as in Subsection 4.2, by
means of the positive self-adjoint operator

(5.1) A D ��C 1 ;

where � is the Laplacian on Td . So, the family ¹ek D eikxºk2Zd forms an orthonormal
basis of eigenvectors for the operator A which admits a compact resolvent. Throughout
this section, we consider

(5.2) s >
d

2
� 1:

Note that (4.18)–(4.19) are satisfied for s as in (5.2). In particular, in the one dimensional
case we can take sD 0. Therefore, according to Subsection 4.2, the Gaussian measure�ˇ;0
given by Theorem 4.4 is a well-defined Borel probability measure on H�s and it is the
unique .ˇ; X0/-KMS state for the vector field X0 D �iA and for any inverse temper-
ature ˇ > 0. We now analyze the KMS-condition in the context of various nonlinear
Schrödinger-type equations, which we describe in detail below.

In the sequel, we write hxi D
p
1C jxj2 for the Japanese bracket. Furthermore, we

write A . B if there exists C > 0 such that A � CB . If C depends on the parameters
a1; : : : ; ak , we write A .a1;:::;ak B . We write A & B if B . A. Finally, if A . B and
B . A, we write A � B .

(1) The Hartree equation on T1. When d D 1, we consider V WT1 � T ! R a point-
wise nonnegative even L1 function. The Hartree nonlinear functional is given as

(5.3) hI .u/ D
1

4

Z
T

Z
T
ju.x/j2 V.x � y/ ju.y/j2 dx dy � 0:

(2) The Hartree equation on Td , d D 2; 3. When d D 2; 3, we need to renormalise
the interaction by means of Wick-ordering (see e.g. [15, 28, 58]). We summarise the con-
struction here. Given n 2 N, we recall the projection map in (4.24), that we take in our
case to be

Pn D
X
jkj�n

jekihekj ;

and define for x 2 Td ,

(5.4) �n;ˇ WD

Z
H�s
jPnu.x/j

2 d�ˇ;0 D
X
jkj�n

1

ˇ.jkj2 C 1/
�

´
logn=ˇ ; if d D 2;
n=ˇ ; if d D 3:

Note that �n;ˇ is independent of x. Let us henceforth use the shorthand

(5.5) un WD Pnu
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and consider the Wick ordering with respect to �ˇ;0:

(5.6) W junj
2
W D junj

2
� �n;ˇ :

We observe that the above construction depends on ˇ, but we suppress this in the notation.
We let

(5.7) hIn;ˇ .u/ WD
1

4

Z
Td

Z
Td

W jun.x/j
2
W V.x � y/ W jun.y/j

2
W dx dy :

Here and in the sequel, we write W jun.x/j2 W instead of W junj2 W .x/ for (5.6) evaluated
at x. We work with even V 2 L1.Td / such that there exist � > 0 and C > 0 with the
property that for all k 2 Zd the following estimates hold:

(5.8)

´
0 � yV .k/ � C=hki� if d D 2;
0 � yV .k/ � C=hki2C� if d D 3:

In particular, V is assumed to be of positive type (i.e., yV is pointwise nonnegative). Under
the assumptions (5.8), the arguments in [15] show that (5.7) converges in Lp.�ˇ;0/, for
all p � 1, to

(5.9) hI .u/ D lim
n
hIn;ˇ .u/ �

1

4

Z
Td

Z
Td

W ju.x/j2 W V.x � y/ W ju.y/j2 W dx dy:

Let us note that, in the recent work [25], the authors extend the result of [15] for d D 3
to potentials satisfying 0 � yV .k/ � C=hki1�� . We do not consider this extension in our
current paper.

We recall the details of the proof of (5.9) in Appendix B. We refer to (5.9) as the
Wick-ordered Hartree nonlinear functional. Since V is of positive type, we have that

(5.10) hI .u/ 2 Œ0;1/ �ˇ;0 -almost surely:

Note that (5.3) and (5.10) imply that e�ˇh
I
2 L2.�ˇ;0/ in dimension d D 1; 2; 3.

(3) The NLS equation on T . In the one dimensional case, the assumption (4.19) is
satisfied for s D 0, and the nonlinear functional is given by

(5.11) hI .u/ D
1

q

Z
T
ju.x/jq dx � 0

for q D 2r with r 2 N; r � 2.

(4) The NLS equation on T2. On T2, we consider the general Wick-ordered nonlin-
earity. Given r 2 N, and recalling (5.4), we define

(5.12) W junj
2r
W D .�1/rrŠ � rn;ˇ Lr

�
junj

2

�n;ˇ

�
;

where Lr is the r-th Laguerre polynomial. Note that this is a generalization of (5.6) since
L1.x/ D �x C 1. For a given s > 0, one can consider the nonlinear Borel functional
hI WH�s ! R defined as the following limit in L2.�ˇ;0/:

(5.13) hI .u/ D lim
n
hIn.u/ D lim

n

1

2r

Z
T2

W junj
2r
W dx �

1

2r

Z
T2

W juj2r W dx :

We refer the reader to [51] for a self-contained proof of (5.13).
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For the nonlinear functionals introduced above, the following statement holds true.

Proposition 5.1. The nonlinear Borel functionals hI .u/ given by (5.3), (5.9), (5.11)
and (5.13) belong to the Gross–Sobolev spaces D1;p.�ˇ;0/ for all 1 � p <1.

Proof. We prove each case separately.

(1) The Hartree equation on T .
It is well known that for V 2 L1.T /, we have that

(5.14) hI .u/ 2 Lp.�ˇ;0/:

We note that it suffices to prove (5.14) when p � 2, as the claim for p 2 Œ1; 2/ then fol-
lows from Hölder’s inequality. More precisely, by using the Cauchy–Schwarz inequality,
Young’s inequality, and the Sobolev embedding H � .T / ,! L4.T / for � 2 .1=4; 1=2/
in (5.3), we get that

0 � hI .u/ .� kV kL1 kuk4H � ;

and we deduce (5.14) by arguing similarly as for (4.31) above.
A direct calculation shows that

(5.15) rhI .u/ D
1

2
.V � juj2/ u:

For s 2 .�1=2;0/, let � WD �s 2 .0; 1=2/. By using (5.15) and by applying Lemma B.1
twice for sufficiently small ˛, we deduce that for some �0 2 .�; 1=2/,

krhI .u/kLp.�ˇ;0IH�s/ D


k.V � juj2/ ukH �




Lp.�ˇ;0/

.�;V;p


kuk3

H � 0




Lp.�ˇ;0/

D

� Z
kuk

3p

H � 0
d�ˇ;0

�1=p
<1 :(5.16)

In (5.16), we used the observation that kV � f kH � � k yV k`1 kf kH � � kV kL1 kf kH � .

(2) The Hartree equation on Td , d D 2; 3.
We note that (5.9) implies that hI .u/ 2 Lp.�ˇ;0/. As was noted earlier, (5.9) can be

deduced from the arguments of [15] under the assumptions given by (5.8). When d D 3,
a detailed proof of this fact is given in Lemma 1.4 (i) of [58]. Note that, here, one assumes
that V 2 Lq.T3/ for q > 3, which follows from (5.8) (see (29) in [15] and (1.44)–(1.45)
in [58]). When d D 2, this fact is shown in detail in Lemma 1.4 (ii) of [58] if, in addition to
satisfying (5.8), one assumes that V is pointwise nonnegative. In Appendix B, we present
the proof of (5.9) from [15] which does not require pointwise nonnegativity of V .

A direct calculation shows that

rhIn.u/ D
1

2
Pn

h� Z
V.� � y/ W jun.y/j

2
W dy

�
un

i
D
1

2
Pn
�
.V � W junj

2
W / un

�
:

As was noted earlier, it suffices to consider p � 2. For s as in (5.2), we want to show that
.hIn.u// is a Cauchy sequence in Lp.�ˇ;0IH�s/.
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By Minkowski’s inequality, we have

krhIn.u/kLp.�ˇ;0IH�s/ �



� X

k2Zd ;jkj�n

hki�2s
ˇ̌�
.V � W junj

2
W / un

�
y.k/

ˇ̌2�1=2



Lp.�ˇ;0/

�

� X
k2Zd ;jkj�n

hki�2s


�.V � W junj2 W / un�y.k/

2Lp.�ˇ;0/�1=2 :

Likewise, for n � m, we have

(5.17) krhIn.u/ � rh
I
m.u/kLp.�ˇ;0IH�s/

.
� X
k2Zd ;jkj�m

hki�2s


�.V � W junj2 W/ un�y.k/ � �.V � W jumj2 W/ um�y.k/

2Lp.�ˇ;0/�1=2

C

� X
k2Zd ;m<jkj�n

hki�2s


�.V � W junj2 W/ un�y.k/

2Lp.�ˇ;0/�1=2 :

In what follows, we view the Gaussian measure �ˇ;0 as the probability measure induced
by the map

(5.18) ! 2 � 7! �.x/ � �!ˇ .x/ D
1p
ˇ

X
k2Zd

gk.!/

hki
eik�x ;

where .gk/k2Zd is a sequence of independent standard complex Gaussian random vari-
ables (centred with variance equal to 1) on a probability space .�;†;P /. Recalling (5.17)
and (5.18), we consider for fixed k 2 Zd the expression

(5.19) kŒ.V � W junj
2
W / un�y.k/kLp.�ˇ;0/ D kŒ.V � W j�nj

2
W / �n�y.k/kLp.�/ ;

where �n � �!n;ˇ WD Pn�
!
ˇ

.
We recall the following estimate from Theorem I.22 in [57].

Lemma 5.2. Let the random variable  be a polynomial in .gj /j2Zd of degree m 2 N.
Then, for all p � 2, we have that

k kLp.�/ � .p � 1/
m=2
k kL2.�/ :

We note that .V � W j�nj2 W / �n�y.k/ is a polynomial in .gj /j2Zd of degree three.
Therefore, by Lemma 5.2, we have that

(5.20) (5.19) � .p � 1/3=2 kŒ.V � W j�nj2 W / �n�y.k/kL2.�/ :

Recalling (5.6) and (5.18), we have

. W j�nj
2
W /y.k/

D

� 1
ˇ

X
j`j�n

jg`.!/j
2�1

h`i2

�
1kD0 C

� 1
ˇ

X
j`1j�n;j`2j�n;`1�`2Dk

g`1.!/g`2.!/

h`1i h`2i

�
1k¤0 :(5.21)
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Therefore, by (5.21), we get that for k 2 Zd with jkj � n, we have

(5.22) Œ.V � W j�nj
2
W / �n�y.k/ D

yV .0/

ˇ3=2

� X
j`j�n

jg`.!/j
2 � 1

h`i2

� gk.!/
hki

C
1

ˇ3=2

X
j`1j�n;j`2j�n;j`3j�n

`1�`2C`3Dk;`1¤`2

yV .`1 � `2/
g`1.!/ g`2.!/ g`3.!/

h`1i h`2i h`3i
DW In.k/C IIn.k/:

We now analyse each of the terms In.k/ and IIn.k/ separately.

Analysis of In.k/.
By using Hölder’s inequality and Lemma 5.2, we have that

kIn.k/kL2.�/ .ˇ



 X
j`j�n

jg`.!/j
2 � 1

h`i2





L4.�/




gk.!/
hki





L4.�/

.



 X
j`j�n

jg`.!/j
2 � 1

h`i2





L2.�/




gk.!/
hki





L4.�/

;

which by using the fact that jgnj2 � 1 are independent and of mean zero is

(5.23) .
� X
j`j�n

1

h`i4

�1=2 1

hki
.

1

hki
�

By analogous arguments as for (5.23), we deduce that for n � m, we have

(5.24) kIn.k/ � Im.k/kL2.�/ .ˇ
� X
m<j`j�n

1

h`i4

�1=2 1

hki
.

1

hmi� hki
;

for some � > 0.

Analysis of IIn.k/.
Let us first compute

kIIn.k/k2L2.�/ D
1

ˇ3

Z X
j`1j�n;j`2j�n;j`3j�n

`1�`2C`3Dk;`1¤`2

X
j`01j�n;j`

0
2j�n;j`

0
3j�n

`01�`
0
2C`

0
3Dk;`

0
1¤`

0
2

yV .`1 � `2/ yV .`
0
1 � `

0
2/

�
g`1.!/ g`2.!/ g`3.!/

h`1i h`2i h`3i

g`01.!/ g`
0
2
.!/ g`03.!/

h`01i h`
0
2i h`

0
3i

d! :(5.25)

We can use Wick’s theorem to deduce that

(5.26) (5.25) � An.k/C Bn.k/C Cn.k/;
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where

An.k/ WD
1

ˇ3

X
j`1j�n;j`2j�n;j`3j�n

`1�`2C`3Dk;`1¤`2

�
yV .`1 � `2/

�2 1

h`1i2h`2i2h`3i2
;(5.27)

Bn.k/ WD
1

ˇ3

X
j`1j�n;j`2j�n;j`3j�n

`1�`2C`3Dk;`1¤`2

yV .`1 � `2/ yV .`2 � `3/
1

h`1i2h`2i2h`3i2
;(5.28)

Cn.k/ WD
1

ˇ3

X
j`2j�n;j`

0
2j�n

yV .k � `2/ yV .k � `
0
2/

1

hki2h`2i2h`
0
2i
2
�(5.29)

We now analyse the cases d D 2 and d D 3 separately.

Analysis of IIn.k/ when d D 2.
We have

An.k/ .ˇ
X
`3

� X
`1;`2

`1�`2Dk�`3

1

h`1i2h`2i2

� �
yV .k � `3/

�2 1

h`1i2

.
X
`3

log hk � `3i
hk � `3i2

�
yV .k � `3/

�2 1

h`3i2
.
X
`3

1

hk � `3i2h`3i2
.

log hki
hki2

�(5.30)

Here, we used Lemma B.2 with ı D 2 and M D � D 0 twice and we recalled (5.8).
Using

(5.31) yV .`1 � `2/ yV .`2 � `3/ �
1

2

��
yV .`1 � `2/

�2
C
�
yV .`2 � `3/

�2�
in (5.28) and arguing analogously as for (5.30), we get that

(5.32) Bn.k/ .ˇ
log hki
hki2

�

Finally, by (5.8) and Lemma B.2 with ı D � and M D � D 0, we have

(5.33) Cn.k/ .ˇ
1

hki2

�X
`

yV .k � `/
1

h`i2

�2
.

1

hki2

� log hki
hki�

�2
.

1

hki2
�

Using (5.26), (5.30), (5.32), and (5.33), we deduce that

(5.34) kIIn.k/kL2.�/ .
log1=2 hki
hki

�

Let n � m be given. We recall (5.22) and argue analogously as for (5.25) to write

kIIn.k/� IIm.k/k2L2.�/D
1

ˇ3

Z X
j`1j�n;j`2j�n;j`3j�n

max¹j`1j;j`2j;j`3jº>m
`1�`2C`3Dk;`1¤`2

X
j`01j�n;j`

0
2j�n;j`

0
3j�n

max¹j`01j;j`
0
2j;j`

0
3jº>m

`01�`
0
2C`

0
3Dk;`

0
1¤`

0
2

yV .`1�`2/ yV .`
0
1�`

0
2/

�
g`1.!/ g`2.!/ g`3.!/

h`1i h`2i h`3i

g`01.!/ g`
0
2
.!/ g`03.!/

h`01i h`
0
2i h`

0
3i

d! :(5.35)
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As in (5.26), we have

(5.36) (5.35) � An;m.k/C Bn;m.k/C Cn;m.k/;

where we modify (5.27), (5.28), and (5.29) as

An;m.k/ WD
1

ˇ3

X
j`1j�n;j`2j�n;j`3j�n

max¹j`1j;j`2j;j`3jº>m
`1�`2C`3Dk;`1¤`2

�
yV .`1 � `2/

�2 1

h`1i2h`2i2h`3i2
;(5.37)

Bn;m.k/ WD
1

ˇ3

X
j`1j�n;j`2j�n;j`3j�n

max¹j`1j;j`2j;j`3jº>m
`1�`2C`3Dk;`1¤`2

yV .`1 � `2/ yV .`2 � `3/
1

h`1i2h`2i2h`3i2
;(5.38)

Cn;m.k/ WD
1

ˇ3

X
j`2j�n;j`

0
2j�n

max¹jkj;j`2j;j`02jº>m

yV .k � `2/ yV .k � `
0
2/

1

hki2h`2i2h`
0
2i
2
�(5.39)

We observe that for any � 2 .0; 2/, we have

(5.40) An;m.k/ .ˇ;�
log hki
hki2��hmi�

�

In order to obtain (5.40), we argue similarly as for (5.30). If max¹j`1j; j`2jº > m, in our
first application of Lemma B.2, we takeM Dm. We then use (5.8) and argue as for (5.30).
If j`3j > m, we take M D 0 in the first application and M D m in the second application
of Lemma B.2.

Similarly, for any � 2 .0; 2/, we have

(5.41) Bn;m.k/ .ˇ;�
log hki
hki2��hmi�

�

Finally, for any � 2 .0; �/, we have

(5.42) Cn;m.k/ .ˇ;�
log hki
hki2��hmi�

�

In order to deduce (5.42), we need to consider the contributions max¹j`2j; j`02jº > m
and jkj > m separately.

In the case max¹j`2j; j`02jº > m, we argue as for (5.33), but in one of the applications
of Lemma B.2 we take M D m.

If jkj > m, then (5.42) follows from (5.33).
Using (5.36), (5.40), (5.41), and (5.42), it follows that for � > 0 sufficiently small,

(5.43) kIIn.k/ � IIm.k/kL2.�/ .ˇ;�
log1=2 hki
hki1�� hmi�

�
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Recalling (5.22) and using (5.18) followed by Lemma 5.2 in (5.17), we have that for
� > 0 sufficiently small,

(5.44) krhIn.u/ � rh
I
m.u/kLp.�ˇ;0IH�s/

.p
� X
k;jkj�m

hki�2s kIn.k/� In.k/k2L2.�/ C
X

k;jkj�m

hki�2s kIIn.k/ � IIm.k/k2L2.�/
�1=2

C

� X
k;m<jkj�n

hki�2s kIn.k/k2L2.�/ C
X

k;m<jkj�n

hki�2s kIIn.k/k2L2.�/
�1=2

.s;ˇ;�
1

hmi�
�

Here, we used (5.23), (5.24), (5.34), (5.43), and the assumption that s > 0. Therefore,
.hIn.u// is a Cauchy sequence in Lp.�ˇ;0IH�s/.

Analysis of IIn.k/ when d D 3.
We now show that for d D 3, (5.34) and (5.43) get replaced by

kIIn.k/kL2.�/ .ˇ
1

hki2C�
and(5.45)

kIIn.k/ � IIm.k/kL2.�/ .ˇ;�
1

hki2C��� hmi�
;(5.46)

for � 2 Œ0; 1=2/, whenever n � m. Using (5.23), (5.24), (5.45) and (5.46), the fact that
s > 1=2, and arguing as in (5.44), we indeed deduce that .hIn.u// is a Cauchy sequence in
Lp.�ˇ;0IH

�s/.
Our goal is now to show (5.45) and (5.46). With An.k/, Bn.k/ and Cn.k/ defined

as in (5.27), (5.28) and (5.29), we have the following estimates. By arguing similarly as
in (5.30), we have

(5.47) An.k/ .ˇ
X
`3

1

hk�`3i

�
yV .k�`3/

�2 1

h`3i2
.
X
`3

1

hk�`3i5C2�h`3i2
.

1

hki4C2�
�

We again use (5.31) in (5.28) and argue as in the proof of (5.47) to deduce that

(5.48) Bn.k/ .ˇ
1

hki4C2�
�

Here, we first used Lemma B.3 with ı D 0 and M D � D 0. Then, we recalled (5.8)
and we used Lemma B.3 with ı D 2C � and M D � D 0.

Similarly, when d D 3, (5.8) and Lemma B.3 with ı D � and M D � D 0 imply that

(5.49)
X
`

yV .k � `/
1

h`i2
.
X
`

1

hk � `i2C�h`i2
.

1

hki1C�
�

Using (5.49) and arguing as in (5.33), we get that

(5.50) Cn.k/ .ˇ
1

hki4C2�
�

We hence obtain (5.45) from (5.47), (5.48), and (5.50).
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We now show (5.46). With An;m.k/, Bn;m.k/ and Cn;m.k/ defined as in (5.37), (5.38)
and (5.39), we have the following estimates.

We observe that for any � 2 Œ0; 1/, we have

(5.51) An;m.k/ .ˇ;�
1

hki4C2���hmi�
�

Here, we argue as for (5.51). By analogous arguments, we have

(5.52) Bn;m.k/ .ˇ;�
1

hki4C2���hmi�
�

Finally, modifying the proof of (5.50) analogously as in (5.42), we get, for any � 2 Œ0; 1/,

(5.53) Cn;m.k/ .ˇ;�
1

hki4C2���hmi�
�

We hence obtain (5.46) from (5.51), (5.52), (5.53).

(3) The NLS equation on T .
We use the Sobolev embedding H � .T / ,! Lq.T / for � 2 .1=2� 1=q; 1=2/ in (5.11)

to deduce that
hI .u/ .� kukqH � :

We then deduce that hI .u/ 2 Lp.�ˇ;0/ as in part (1). A direct calculation shows that

rhI .u/ D jujq�2 u:

By using Lemma B.1 q � 1 times for sufficiently small ˛, and by arguing as in (5.16), we
get that for some �0 2 .�s; 1=2/

krhI .u/kLp.�ˇ;0IH�s/ .s;q;� 0
� Z
kuk

.q�1/p

H � 0
d�ˇ;0

�1=p
<1 :

We conclude that hI 2 D1;p.�ˇ;0/.

(4) The NLS equation on T2.
In case hI is given by (5.13), the result is a consequence of Proposition 1.1 in [51] and

Proposition 1.3 in [51]. Indeed, it is proved there that .hIn/n2N and .rhIn/n2N are Cauchy
sequences in Lp.�ˇ;0/ and Lp.�ˇ;0IH�s/ respectively. We omit the details

Thus, as a consequence of Theorems 4.11 and 4.14, one concludes that the above NLS
dynamical systems on the torus Td admit each a unique KMS state given by the Gibbs
measure �ˇ D z�1ˇ e�ˇh

I
�ˇ;0, with zˇ an appropriate normalization constant. Note that

uniqueness here is in the sense of Theorem 4.14, and it is among measures that are abso-
lutely continuous with respect to �ˇ;0 with a density % 2D1;2.�ˇ;0/. Finally, one remarks
that such a result suggests the study of general dynamical systems satisfying the condi-
tion hI 2 D1;2.�ˇ;0/ without relying on the precise form of hI . The above discussion is
summarized below.
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Corollary 5.3. Let ˇ > 0 and s >�1=2 satisfying (5.2). Consider hI to be one of the non-
linear Borel functionals hI WH�s!R of the Hartree or NLS equations given respectively
by (5.3), (5.9), (5.11) and (5.13). Then:

(i) The Gaussian measure �ˇ;0 is the unique .ˇ; X0/-KMS state of the vector field
X0 D �iA.

(ii) The nonlinear functionals hI 2 D1;p.�ˇ;0/ and e�ˇh
I
2 Lp.�ˇ;0/ for all 1 �

p <1.

(iii) The Gibbs measure

�ˇ D
e�ˇh

IR
H�s

e�ˇh
I
d�ˇ;0

�ˇ;0

is a stationary solution of the Liouville equation (2.8).
(iv) The Gibbs measure �ˇ is the unique .ˇ; X/-KMS state, for the vector field X D

�i.AC rhI /, among all the absolutely continuous measures � with respect to
�ˇ;0 such that d�

d�ˇ;0
2 D1;2.H�s/.

Remark 5.4. The previous corollary extends also to the NLS nonlinearity (5.13) on
2-dimensional compact Riemannian manifolds without boundary or on bounded domains
in R2 following Propositions 4.3, 4.5 and 4.6 in [51]. We omit the details.

5.2. Nonlinear wave (Klein–Gordon) equations

One can study Gibbs measures for nonlinear wave (Klein–Gordon) equations by means
of probabilistic and PDE methods, see e.g. [18–21, 27, 46, 52] and the references therein.
The nonlinearities that are usually considered are similar to the ones recalled in the above
Subsection 5.1. The main difference comes from the use of the real structure of fields
rather than the complex one. Specifically, we consider the nonlinear wave (Klein–Gordon)
equation on the torus Td , d D 1; 2; 3,

(5.54)

´
@2t uC u ��uCrh

I .u/ D 0;

ujtD0 D f0; @tujtD0 D f1;

where rhI is the Malliavin derivative of some functional hI that we will specify below.
Before proceeding, we explain how the nonlinear wave equation (5.54) fits within the
general framework of Subsection 4.3.

Framework for wave equations. Consider the Hilbert spaceH DL2R.T
d /˚L2R.T

d /,
where L2R stands for real-valued square integrable functions, and define the Sobolev
spaces for 
 2 R as

(5.55) H 

D H



R.T

d /˚H

�1
R .Td / :

The nonlinear wave equation (5.54) takes the form

@t

�
u

v

�
D X

�
u

v

�
D X0

�
u

v

�
C

�
0

�rhI .u/

�
;



Z. Ammari and V. Sohinger 76

with the vector field X0 given by

(5.56) X0 �

�
0 1

� � 1 0

�
D

J‚ …„ ƒ�
0 1
�1 0

� A‚ …„ ƒ�
��C 1 0

0 1

�
;

with J is a compatible complex structure on H and A is a positive linear operator. We
note that H is endowed with a canonical symplectic structure induced by J and given by

�.u˚ v; u0 ˚ v0/ D hu˚ v; Ju0 ˚ v0iL2R˚L
2
R
:

Moreover, H can be considered as a complex Hilbert space according to (2.19)–(2.20),
and the couple .J; A/ defines a complex linear Hamiltonian system as in (4.16)–(4.17).
Now, the vector field X can be written as

(5.57) X

�
u

v

�
D J

�
A

�
u

v

�
C

�
rhI .u/

0

��
:

Although the operator A does not have a compact resolvent, it still possible to do the same
analysis as before. Indeed, one uses the Sobolev spaces in (5.55) instead of the definition
given in Subsection 4.2.

Results for wave equations. The Gaussian Gibbs measure �ˇ;0 in this case is defined
as a product measure such that

d�ˇ;0.u; v/ D d�
1
ˇ;0.u/ d�

2
ˇ;0.v/;

with �1
ˇ;0

and �2
ˇ;0

are the Gaussian measures on the distribution space D0.Td / with cov-
ariance operators ˇ�1.��C 1/�1 and ˇ�11 respectively. The existence and uniqueness
of such measures follow from Corollary 3.2. According to Theorem 4.4, for s > �1=2
satisfying (5.2), the measure �ˇ;0 coincides with the centered Gaussian measure with
covariance operator

ˇ�1
�
.��C 1/�.1Cs/ 0

0 .��C 1/�.1Cs/

�
on the Sobolev spaceH�s given in (5.55). In particular, �ˇ;0 is a Borel probability meas-
ure over H�s . Therefore, Theorem 3.3 shows that �ˇ;0 is a .ˇ; X0/-KMS state with the
vector field X0 in (5.56). Moreover, using the arguments of Subsection 5.1 one can define
rigourously the Gibbs measure of the nonlinear wave equation as

�ˇ D
1

zˇ
e�ˇh

I

�1ˇ;0 ˝ �
2
ˇ;0 ;

where zˇ is a normalization constant and hI is one of the following possibilities:

(5.58) hI D

8̂<̂
:

(5.3) or (5.11) if d D 1;
(5.9) or (5.13) if d D 2;
(5.9) if d D 3:
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Note that since the fields are real, the Wick-ordered power nonlinearity W u2rn W in (5.12) is
defined in this case through Hermite polynomials Hr instead of Laguerre polynomials:

(5.59) W u2rn W D �
r=2

n;ˇ
Hr .�

�1=2

n;ˇ
un/ :

In particular, the nonlinearity hI depends only on the u variable. Furthermore, in (5.18),
we add the condition

(5.60) g�k D gk :

By arguing analogously as in the proof of Proposition 5.1, we deduce that hI belongs to
the Gross–Sobolev spaces D1;p.�1

ˇ;0
/ or D1;p.�ˇ;0/ for all 1 � p < 1 (note that the

additional condition (5.60) does not increase the Lp.�/ norms of the relevant quantit-
ies). Consequently, the Malliavin derivatives rhI are well-defined. Thus, we have at hand
all the ingredients to apply Theorems 4.11 and 4.14. So, all the statements (i)–(iv) of
Corollary 5.3 with the appropriate modifications hold true for the nonlinear wave equa-
tion (5.54) with the nonlinearities (5.58). In particular, we emphasize the following result,
where H�s is defined according to (5.55) and s satisfies (5.2).

Corollary 5.5. The Gibbs measure �ˇ D 1
zˇ
e�ˇh

I
�1
ˇ;0
˝�2

ˇ;0
is the unique .ˇ;X/-KMS

state, for the vector field X D JAC J.rhI ˚ 0/, among all the absolutely continuous
measures � with respect to �ˇ;0 such that d�

d�ˇ;0
2 D1;2.H�s/.

As in Remark 5.4, the above corollary extends to wave equations with the nonlinear-
ity (5.13) defined on 2-dimensional compact Riemannian manifolds without boundary or
on bounded domains in R2 following the discussion in Section 1.2 of [52].

5.3. The focusing NLS and the local KMS condition

Consider the focusing NLS equation on the one-dimensional torus T ,

i@tu D ��uC u � juj
p�2u;

for 4 � p � 6, where the nonlinear energy functional is given by

hI .u/ D �
1

p

Z
T
ju.x/jp dx ;

which is similar to (5.11) with a negative sign corresponding to a focusing nonlinearity.
Recall that here one has the same framework as in Subsection 5.1 with s D 0. Although it
is not possible to define a global Gibbs measure in this case because of the negative sign
in the front of the nonlinear term hI , it is proved in [13, 42] that the local Gibbs measure

(5.61)
Q�ˇ D

1

Qzˇ;R
e�ˇh

I .�/ 1Œ0;R�
�
k � k

2
L2.T/

�
�ˇ;0 ;

where Qzˇ;R WD

Z
L2.T/

e�ˇh
I .�/ 1Œ0;R�

�
k � k

2
L2.T/

�
d�ˇ;0;
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is well-defined for some arbitrary constant R > 0 if 4 � p < 6 or R > 0 sufficiently small
if p D 6. For our purposes, we modify (5.61) and consider, for an analogous choice of R

(5.62)
�ˇ D

1

zˇ;R
e�ˇh

I .�/ �R
�
k � k

2
L2.T/

�
�ˇ;0 ;

where zˇ;R WD

Z
L2.T/

e�ˇh
I .�/ �R

�
k � k

2
L2.T/

�
d�ˇ;0 ;

and where �RD�.�=R/ for �2C1c .R/ such that �.x/D1 if jxj�1, �.x/D0 if jxj�2.

Lemma 5.6. Let ˇ > 0 be given and let �R be given as above. Then the Radon–Nikodym
derivative of the measure �ˇ in (5.62) with respect to �ˇ;0 satisfies

d�ˇ

d�ˇ;0
2 D1;2.�ˇ;0/ :

Proof. Note that j�R.�/j � c1Œ0;2R�.�/ for some constant c > 0. Hence, the statement
G.�/ D e�ˇh

I .�/ �R.k � k
2
L2.T/

/ 2 Lq.�ˇ;0/ for all q � 1, is essentially proved in [13,42].
For an expository summary of the construction, we refer the reader to Appendix A of [55].
Using Lemma 5.1 and the approximation idea in Lemma 4.13, one shows

(5.63) rG.u/ D �ˇrhI .u/G.u/C 2e�ˇh
I .�/�0R.k � k

2
L2.T// u 2 L

2.�ˇ;0IL
2.T // :

In fact, take �k the same sequence of functions as in the proof of Theorem 4.11 and let

Gk.�/ D �k.h
I .�// �R.k � k

2
L2.T// :

Since we know by Lemma 5.1 that the functionals k � k2
L2.T/

and hI belong to D1;p.�ˇ;0/,
then using Lemma A.2 and the chain rule (2.4), one proves, in L2.�ˇ;0IL2.T //,

(5.64) rGk.u/ D � 0k.h
I .u//rhI .u/ �R.kuk

2
L2.T//C 2�k.h

I .u// �0R.kuk
2
L2.T// u:

Hence, dominated convergence with the estimates (4.42) give the following limits in
L4.�ˇ;0/ and L4.�ˇ;0IL2.T //, respectively:

lim
k
� 0k.h

I .�// �R.k � k
2
L2.T// D �ˇe

�ˇhI .�/ �R.k � k
2
L2.T// ;

and
lim
k
�k.h

I .u// �0R.kuk
2
L2.T// u D e

�ˇhI .�/ �0R.k � k
2
L2.T// u:

Thus, the above limits with the Hölder inequality yield the claimed identity (5.63) when
carrying k !1 in the equality (5.64).

We show here that such a measure �ˇ satisfies a local form of the KMS condition.

Proposition 5.7. Let ˇ > 0 be given and let�ˇ be the Borel measure defined in (5.62). Let
F 2 C2

b
.L2.T // be such that F.u/D 0 for all kuk2

L2.T/
> R0, with R0 2 .0;R/ arbitrary

and R the radius given in (5.62). Then we have for all G 2 C1c, cyl.L
2.T //,

(5.65)
Z
L2.T/

¹F;Gº d�ˇ D ˇ

Z
L2.T/

RehrF.u/; i�u� iu� irhI .u/iL2.T/G.u/ d�ˇ :
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Proof. It follows by applying the integration by parts formula in Proposition A.1. Since
G 2 C1c, cyl.L

2.T //, there exist n 2 N and  2 C1c .R
2n/ such that G.u/ D  .�nu/. So,

using the Poisson bracket formula (4.26) and the fact that @ejF.u/ D @fjF.u/ D 0 if
kuk2

L2.T/
> R, one showsZ

L2.T/
¹F;Gºd�ˇ D

1

zˇ;R

nX
jD1

Z
L2.T/

.@ejF.u/@fjG.u/�@ejG.u/@fjF.u//e
�ˇhI .u/d�ˇ;0:

Taking Q� 2 C1c .R/ such that Q�.x/ D 1 for all jxj � R0 and Q�.x/ D 0 for all jxj > R,
then we have Fe�ˇh

I
D F Q�.k � k2

L2.T/
/e�ˇh

I
. So, the boundedness of F and Lemma 5.6

show that Fe�ˇh
I
2 L2.�ˇ;0/. Moreover, the product rule yields

rŒFe�ˇh
I

� D rF Q�.k � k2
L2.T//e

�ˇhI
C F rŒ Q�.k � k2

L2.T//e
�ˇhI � 2 L2.�ˇ;0IL

2.T // :

Thus, one concludes that Fe�ˇh
I
2 D1;2.�ˇ;0/. Therefore, applying Proposition A.1

with the function G in (A.1) replaced by zFj D @ejF e�ˇh
I
2 D1;2.�ˇ;0/ and F by

G 2 C1c, cyl.L
2.T //, one obtainsZ

L2.T/
@ejF.u/ e

�ˇhI .u/
hrG.u/; fj i d�ˇ;0

D

Z
L2.T/

G.u/
�
� @fj

zF .u/C ˇ zFj .u/ hu;Afj i
�
d�ˇ;0 ;

and similarly,Z
L2.T/

@fjF.u/ e
�ˇhI .u/

hrG.u/; ej i d�ˇ;0

D

Z
L2.T/

G.u/
�
� @ej

MFj .u/C ˇ MFj .u/ hu;Aej i
�
d�ˇ;0 ;

where MFj D @fjF e
�ˇhI 2 D1;2.�ˇ;0/ and A is given by (5.1). We note that the proof of

Lemma 5.6 yields

@fj
zFj .u/ D �ˇ@fj h

I .u/ @ejF.u/ e
�ˇhI .u/

C @fj @ejF.u/ e
�ˇhI .u/ ;

@ej
MFj .u/ D �ˇ@ej h

I .u/ @fjF.u/ e
�ˇhI .u/

C @ej @fjF.u/ e
�ˇhI .u/ :

Hence, one concludesZ
L2.T/

¹F;Gº d�ˇ D
ˇ

zˇ;R

nX
jD1

Z
L2.T/

G.u/
�
@ejF.u/@fj h

I .u/ � @ej h
I .u/@fjF.u/

C @ejF.u/hAu; fj i � @fjF.u/hAu; ej i
�
e�ˇh

I .u/ d�ˇ;0

D
ˇ

zˇ;R

Z
L2.T/

G.u/
�˝
rF.u/;�irhI .u/

˛
C
˝
� iAu;rF.u/

˛�
e�ˇh

I .u/ d�ˇ;0 :

Thus, recalling that h�; �i D Reh�; �iL2.T/, one proves the local KMS condition.
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A. Malliavin calculus

For completeness, we give a short overview of some useful tools from Malliavin calculus.
In particular, the following integration by parts formula is useful.

Proposition A.1. Let F 2 C1b, cyl.H
�s/ andG 2 D1;2.�ˇ;0/, or F 2 D1;2.�ˇ;0/ andG 2

C1b, cyl.H
�s/. Then for any ' 2 H 1,

(A.1)
Z
H�s

G.u/hrF.u/; 'id�ˇ;0 D

Z
H�s

F.u/
�
�hrG.u/; 'iCˇG.u/hu;A'i

�
d�ˇ;0:

Proof. First, one proves that for anyR 2 C1b, cyl.H
�s/ and ' 2 spanR¹ej ; fj Ij D 1; : : : ; kº

for some k 2 N, we have

(A.2)
Z
H�s
hrR.u/; 'i d�ˇ;0 D ˇ

Z
H�s
hu;A'iR.u/ d�ˇ;0 :

Indeed, the above equality (A.2) follows from equation (4.32) in Lemma 4.6 and a stand-
ard integration by parts on R2k . On the one hand, taking R D  ı �n for some n 2 N
with n � k and  2 C1

b
.R2n/, and integrating by parts again, we haveZ

H�s
hrR.u/; 'i d�ˇ;0 D

nX
jD1

Z
R2n

�
hej ; 'i @

.1/
j  C hfj ; 'i @

.2/
j  

�
d�nˇ;0

D ˇ

Z
R2n

D nX
jD1

�j .xj ej C yjfj /; '
E
 .x1; : : : ; xnIy1; : : : ; yn/ d�

n
ˇ;0 ;(A.3)

where �n
ˇ;0

is the Gaussian measure in Lemma 4.6. On the other hand, we have

ˇ

Z
H�s
hu;A'iR.u/d�ˇ;0Dˇ

kX
jD1

Z
R2n

�j
�
hu; ej ihej ; 'iChu; fj ihfj ; 'i

�
 .�nu/d�ˇ;0

D ˇ

Z
R2n

D kX
jD1

�j .xj ej C yjfj /; '
E
 .x1; : : : ; xnIy1; : : : ; yn/ d�

n
ˇ;0 ;(A.4)

where �n is the mapping in (4.21). Since n � k, we have that

(A.5)
D nX
jD1

�j .xj ej C yjfj /; '
E
D

D kX
jD1

�j .xj ej C yjfj /; '
E
:

We hence deduce (A.2) from (A.3), (A.4), and (A.5). Now, the identity (A.2) extends to all
' 2H 1 thanks to a standard approximation argument and Remark 4.5 (iii). The integration
by parts formula (A.1), for any F; G 2 C1b, cyl.H

�s/, is a straightforward consequence
of (A.2) with R D FG 2 C1b, cyl.H

�s/ and the product rule (2.4). Finally, (A.1) extends
to all G 2 D1;2.�ˇ;0/ (respectively, F 2 D1;2.�ˇ;0/) by the density of C1b, cyl.H

�s/ in
D1;2.�ˇ;0/ with respect to its graph norm (4.36).
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Lemma A.2. Let �2C1
b
.R/ and F 2D1;p.�ˇ;0/, for p2 Œ1;1/. Then �.F /2D1;p.�ˇ;0/

and
r�.F / D �0.F /rF :

Proof. Suppose that we are given Fn 2 C1c, cyl.H
�s/, n 2N, a sequence such that Fn! F

in D1;p.�ˇ;0/. Then the chain rule yields

r�.Fn/ D �
0.Fn/rFn :

Since Fn ! F in Lp.�ˇ;0/, there exists a subsequence .Fnk /k such that Fnk ! F

�ˇ;0-almost everywhere. Therefore, one obtains

lim
k
�0.Fnk /rFnk D �

0.F /rF in Lp.�ˇ;0/,

and .�.Fnk //k is a Cauchy sequence in D1;p.�ˇ;0/, which is a Banach space.

The space P.H�s/ is defined as the set of smooth cylindrical functions F WH�s ! R
such that there exists n 2 N and F.u/ D '.hu; e1i; : : : ; hu; eniI hu; f1i; : : : ; hu; fni/ for
all u 2 H�s , where ' 2 C1.R2n/ is such that for all multi-indices ˛ 2 N2n, there exist
constants m˛; c˛ � 0 such that, for all x 2 R2n,

j@˛'.x/j � c˛ .1C jxj
2/m˛

Lemma A.3. The following inclusions hold true for all p 2 Œ1;1/:

C1b, cyl.H
�s/ � P.H�s/ � D1;p.�ˇ;0/ :

Proof. Recall the explicit form of the centered Gaussian measures �n
ˇ;0
D .�n/]�ˇ;0

defined over R2n and given in Lemma 4.6. Since all the moments of such measures are
finite, one concludes for all m � 0,

(A.6)
Z
H�s

�
1C

nX
jD1

hu;ej i
2
Chu;fj i

2
�m
d�ˇ;0D

Z
R2n

�
1C

nX
jD1

x2j Cy
2
j

�m
d�nˇ;0<1 :

Hence, P.H�s/ is included in all the spaces Lp.�ˇ;0/ for all p 2 Œ1;1/. Since the
gradient of F 2 P.H�s/ is also given by the identity (4.23), one obtains using the estim-
ates (A.6) that rF 2 Lp.�ˇ;0IH�s/ for all p 2 Œ1;1/.

The following well-known result asserts that a random variable whose Malliavin deriv-
ative is zero, is almost surely constant.

Proposition A.4. Let F 2 D1;2.�ˇ;0/ such that rF D 0 for �ˇ;0-almost surely. Then F
is constant �ˇ;0-almost surely.

Proof. It is a straightforward consequence of the Wiener chaos decomposition (see e.g.
Propositions 1.2.2 and 1.2.5 in [50]). In fact, consider Hn.�/ to be the n-th Hermite poly-
nomial and let

‰a;b.�/ D
p
aŠ bŠ

1Y
jD1

Haj .h�; Qej i/

1Y
jD1

Hbj .h�;
Qfj i/ ;
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with Qej D
p
ˇ�j ej ; Qfj D

p
ˇ�jfj and a D .aj /j2N ; b D .bj /j2N such that aj ; bj are

non-negative integers with aj D bj D 0 except for a finite number of indices. Then such a
family ¹‰a;bº forms an orthonormal basis of the space L2.�ˇ;0/. Furthermore, a standard
computation yields

(A.7)
˝
r‰a;b;r‰a0;b0

˛
L2.�ˇ;0IH

�s/
D ˇ ıa;a0 ıb;b0

1X
jD1

�1�sj .aj C bj / :

So, using the orthogonal decomposition with respect to the basis ¹‰a;bº and (A.7), one
proves

(A.8) krF k2
L2.�ˇ;0IH

�s/
D

X
a;b

hF;‰a;bi
2
� 1X
jD1

�1�sj .aj C bj /
�
;

for all F in the algebraic vector space spanned by ¹‰a;bº. Then a density argument
extends (A.8) to all F 2 D1;2.�ˇ;0/. Hence, rF D 0 almost surely implies that hF;‰a;bi
D 0 for all a ¤ 0 or b ¤ 0. Thus, one concludes that F.�/ D hF; ‰0;0i‰0;0.�/ D c for
some real constant c.

B. Proofs of auxiliary facts from Section 5

We note a product estimate in one-dimension. This is used in part (i) of the proof of
Proposition 5.1.

Lemma B.1. Let � 2 .0;1=2/ and ˛ 2 .0;1/ be given. The following estimate holds on T1 :

kfgkH � .�;˛ kf kH �C˛=2 kgkH .1�˛/=2 C kf kH .1�˛/=2 kgkH �C˛=2 :

Proof. Let D� denote the Fourier multiplier with symbol hki� , and let F �1 denote the
inverse Fourier transform. We note that

kfgkH � �




hki� X
k02Z

yf .k � k0/ yg.k0/




`2
k

�




hki� X
k02Z

j yf .k � k0/j jyg.k0/j




`2
k

.�



 X
k02Z

hk � k0i� j yf .k � k0/j jyg.k0/j




`2
k

C




 X
k02Z

j yf .k � k0/j hk0i� jyg.k0/j




`2
k

��



.D�F �1j yf j/F �1jygj



L2
C


F �1j yf j .D�F �1jygj/




L2
;

which by Hölder’s inequality is

(B.1) � kD�F �1j yf jkL2=.1�˛/ kF
�1
jygjkL2=˛ C kF

�1
j yf jkL2=˛ kD

�F �1jygjkL2=.1�˛/ :

By using the Sobolev embedding, we have

(B.2) H˛=2.T1/ ,! L2=.1�˛/.T1/ and H .1�˛/=2.T1/ ,! L2=˛.T1/ :

Substituting (B.2) into (B.1) and using the fact that L2-based Sobolev norms are invariant
under taking absolute values of the Fourier transform, we deduce the claim.
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Let us now prove two useful discrete convolution estimates. In the estimates below,
we are summing over elements in Zd (with appropriate constraints).

Lemma B.2. Let d D 2. Let ı 2 .0; 2� and M � 0 be given. For all n 2 Z2 and all
� 2 Œ0; ı/, we have

(B.3)
X

kC`Dn

max¹jkj;j`jº�M

1

hkiıh`i2
.ı;�

log hni
hniı��hM i�

�

Lemma B.3. Let d D 3. Let ı � 0 andM � 0 be given. For all n 2 Z3 and all � 2 Œ0; 1/,
we have X

kC`Dn

max¹jkj;j`jº�M

1

hki2Cıh`i2
.ı;�

1

hni1Cı��hM i�
�

Proof of Lemma B.2. We need to consider two cases, depending on the relative sizes of jkj
and j`j.

Case A: jkj � j`j.
In this case, we are estimating

(B.4)
X

`; jn�`j�M

1

hn � `iıh`i2
�

We now need to consider three subcases, depending on the size of j`j.
Subcase A1: j`j � jnj=2.
Note that in this case, by the triangle inequality, jn � `j � jnj=2. In particular, since

jn � `j �M , we have that

(B.5)
1

hn � `iı
.ı;�

1

hniı�� hM i�
�

Furthermore, we have

(B.6)
X

j`j� jnj=2

1

h`i2
. log hni :

Combining (B.5) and (B.6), we deduce that the contribution to (B.4) from this subcase
satisfies the bound in (B.3).

Subcase A2: jnj=2 < j`j < 2jnj.
In this subcase, we have j`j � jnj. Furthermore, we have M � jn� `j � 3jnj. Putting

everything together, we get that if ı 2 .0; 2/, the contribution to (B.4) is

(B.7) �

� X
`; jn�`j�3jnj

1

hn � `iı

� 1

hni2
.ı
hni2�ı

hni2
.ı;�

1

hniı�� hM i�
�
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If ı D 2, the upper bound gets modified to

(B.8)
log hni
hni2

.�
log hni

hni2��hM i�
�

Note that (B.7) and (B.8) are acceptable upper bounds.
Subcase A3: j`j � 2jnj.
We now have jn � `j � j`j & M . Therefore, the contribution to (B.4) is

.ı
X

`; j`j& max¹M;jnjº

1

h`i2Cı
.ı;�

1

hniı�� hM i�
;

which is an acceptable upper bound.

Case B: jkj � j`j.
Since k C ` D n, we have that j`j � jnj=2. Hence in this case, we are estimating

(B.9)
X

`; j`j�max¹M;jnj=2º

1

hn � `iıh`i2
�

We now need to consider two subcases, depending on the size of j`j.
Subcase B1: j`j � 2jnj.
In this case, we have that j`j � jnj&M and jn� `j � 3jnj. Therefore, the contribution

to (B.9) is

.
� X
`; jn�`j�3jnj

1

hn � `iı

� 1

hni2
.ı;�

log hni
hniı��hM i�

�

Here, we argued as in (B.7) and (B.8).
Subcase B2: j`j > 2jnj.
In this case, we have that jn � `j � j`j & M . Hence, the contribution to (B.9) is

.ı
X

`; j`j�max¹M;jnj=2º

1

h`i2Cı
.ı;�

1

hniı�� hM i�
�

Proof of Lemma B.3. The proof is similar to that of Lemma B.2. We just outline the main
differences.

Case A: jkj � j`j.
In this case, (B.4) gets replaced by

(B.10)
X

`; jn�`j�M

1

hn � `i2Cıh`i2
�

We consider three subcases as earlier.
Subcase A1: j`j � jnj=2.
Instead of (B.5) and (B.6), we use

1

hn � `i2Cı
.ı;�

1

hni2Cı�� hM i�
and

X
j`j�jnj=2

1

h`i2
. hni ;

which give us the desired bound.
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Subcase A2: jnj=2 < j`j < 2jnj.
Here, we note that

(B.11)
X

`; jn�`j�3jnj

1

hn � `i2Cı
.ı hni1�ı

and we argue similarly as in (B.7).
Subcase A3: j`j � 2jnj.
We argue as in Subcase A3 in the proof of Lemma B.2 and obtain that the contribution

to (B.10) is

.ı
X

`; j`j& max¹M;jnjº

1

h`i4Cı
.ı;�

1

hni1Cı�� hM i�
�

Case B: jkj � j`j.
Instead of (B.9), we need to estimate

(B.12)
X

`; j`j�max¹M;jnj=2º

1

hn � `i2Cıh`i2
�

We consider two subcases as earlier.
Subcase B1: j`j � 2jnj.
The contribution to (B.12) is

.
� X
`; jn�`j�3jnj

1

hn � `i2Cı

� 1

hni2
.ı;�

1

hni1Cı�� hM i�
�

Here, we recalled (B.11).
Subcase B2: j`j > 2jnj.
The contribution to (B.9) is

.ı
X

`; j`j�max¹M;jnj=2º

1

h`i4Cı
.ı;�

1

hni1Cı�� hM i�
�

We present the proof of (5.9) for d D 2 and V as in (5.8). Let us note that this proof
can be deduced from [15], and we just present it here for the convenience of the reader.

Proof of (5.9). We recall (5.6) and rewrite (5.7)

hIn.u/ � h
I
n;ˇ .u/ D

1

4
yV .0/

�
.W junj

2
W/y.0/

�2
C
1

4

X
k¤0

�
junj

2
�
y.k/

�
junj

2
�
y.�k/ yV .k/

DW hI;1n .u/C hI;2n .u/:(B.13)

We show that the sequences .hI;1n .u// and .hI;2n .u// are bounded in Lp.�ˇ;0/. By appro-
priately modifying the proof, using Lemma B.2 and the same arguments as in part (ii) of
the proof of Proposition 5.1, we get that these sequences are Cauchy in Lp.�ˇ;0/. We
omit the details of this step.
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Recalling (5.18) and (5.21), and using and Hölder’s inequality, we get that

khI;1n kLp.�ˇ;0/ .p;ˇ



� X
j`j�n

jg`.!/j
2 � 1

h`i2

�2



L2.�/

�




 X
j`j�n

jg`.!/j
2 � 1

h`i2




2
L4.�/

.



 X
j`j�n

jg`.!/j
2 � 1

h`i2




2
L2.�/

.
X
j`j�n

1

h`i4
. 1:(B.14)

Similarly,

(B.15) khI;2n k
2
Lp.�ˇ;0/

.p;ˇ
Z
�

X
j`1j�n;j`2j�n;j`3j�n;j`4j�n

`1�`2C`3�`4D0;`1¤`2

X
j`01j�n;j`

0
2j�n;j`

0
3j�n;j`

0
4j�n

`01�`
0
2C`

0
3�`

0
4D0;`

0
1¤`

0
2

yV .`1 � `2/ yV .`
0
1 � `

0
2/

�
g`1.!/ g`2.!/ g`3.!/ g`4.!/

h`1i h`2i h`3i h`4i

g`01.!/ g`
0
2
.!/ g`03.!/ g`

0
4
.!/

h`01i h`
0
2i h`

0
3i h`

0
4i

d! . X C Y ;

where

(B.16) X WD
� X
`1;`2

yV .`1 � `2/
1

h`1i2h`2i2

�2
and

(B.17) Y WD
X

`1�`2C`3�`4D0

yV .`1 � `2/
1

h`1i2h`2i2h`3i2h`4i2
�

In the last step, we used Wick’s theorem and we used (5.8) to bound yV . 1 for Y . We now
estimate the expressions (B.16) and (B.17).

By (5.8), we have

(B.18) X .
�X
`1

1

h`1i2

X
`2

1

h`1 � `2i�h`2i2

�2
.
�X
`1

log h`1i
h`1i2C�

�2
. 1:

Above, we used Lemma B.2 with ı D � and M D � D 0 to estimate the sum in `2.
Furthermore, we have

Y D
X
`1;`2

yV .`1 � `2/
1

h`1i2h`2i2

X
`3;`4

`3�`4D�`1C`2

1

h`3i2h`4i2
(B.19)

.
X
`1;`2

yV .`1 � `2/
1

h`1i2h`2i2
log h`1 � `2i
h`1 � `2i2

.
X
`1;`2

1

h`1i2h`2i2h`1 � `2i2
.
X
`1

log h`1i
h`1i4

. 1:



Gibbs measures as KMS equilibrium states 87

Above, we used Lemma B.2 with ı D 2 and M D � D 0 to estimate the sum in `3; `4
and in `2. We also used (5.8). The boundedness claim now follows from (B.13), (B.14),
(B.15), (B.18), and (B.19).
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