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Fully nonlinear singularly perturbed models with
non-homogeneous degeneracy

Elzon C. Bezerra Júnior, João Vitor da Silva and Gleydson C. Ricarte

Abstract. This work is devoted to studying non-variational, nonlinear singularly
perturbed elliptic models enjoying a double degeneracy character with prescribed
boundary value in a domain. In its simplest form, for each " > 0 fixed, we seek a
non-negative function u" satisfying´

Œjru"jp C a.x/jru"jq � �u" D �".x; u
"/ in �;

u".x/ D g.x/ on @�;

in the viscosity sense for suitable data p;q 2 .0;1/, a and g, where �" behaves singu-
larly as O."�1/ near "-level surfaces. In such a context, we establish the existence of
certain solutions. We also prove that solutions are locally (uniformly) Lipschitz con-
tinuous, and they grow in a linear fashion. Moreover, solutions and their free bound-
aries possess a sort of measure-theoretic and weak geometric properties. In particular,
for a restricted class of nonlinearities, we prove the finiteness of the .N � 1/-dimen-
sional Hausdorff measure of level sets. We also address a complete and in-deep
analysis concerning the asymptotic limit as "! 0C, which is related to one-phase
solutions of inhomogeneous nonlinear free boundary problems in flame propagation
and combustion theory. Finally, we present some fundamental regularity tools in the
theory of doubly degenerate fully nonlinear elliptic PDEs, which may have their own
mathematical interest.

1. Introduction

In this manuscript we shall develop an approach to study (locally) sharp and geometric
estimates of one-phase solutions to singularly perturbed problems having a non-homoge-
neous double degeneracy, whose mathematical model is given as follows: fixed a para-
meter " 2 .0; 1/, we would like to find

(1.1) u" � 0 viscosity solution to

´
H.x;ru"/F.x;D2u"/ D �".x; u

"/ in �;
u".x/ D g.x/ on @�;
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for a bounded and open set � � RN , where 0 � g 2 C 0.@�/, F is a second order, fully
nonlinear (uniformly elliptic) operator, i.e., nonlinear in its highest derivatives, .x; �/!
H.x; �/ is a continuos vector-valued function, satisfying a non-homogeneous degeneracy
in the second variable, and �" behaves singularly as O."�1/ close to "-level surfaces.

We will focus our attention to reaction-diffusion models with singular behavior of
order O."�1/ near "-level layers, i.e., ¹u" � "º. Furthermore, the diffusion process is
assumed to be anisotropic and doubly degenerate, thereby collapsing as jru"j � 0.

In a few words, under the appropriated hypothesis on data, we show that, for "! 0C,
the family of solutions ¹u"º">0 to (1.1) are asymptotic approximations to a one-phase
solution u0 of an inhomogeneous nonlinear free boundary problem (for short, FBP), which
arises in the mathematical formulation of some issues in flame propagation and combus-
tion theory (stationary setting, cf. [15], [47] and [67]).

1.1. Main assumptions

We will assume the following structural assumptions.
(A0) (Continuity and normalization condition)

Fixed � 3 x 7! F.x; �/ 2 C 0.Sym.N // and F.�;ON�N / D 0:

(A1) (Uniform ellipticity) For any pair of matrices X;Y 2 Sym.N /,

M��;ƒ.X � Y/ � F.x;X/ � F.x;Y/ �MC
�;ƒ

.X � Y/;

where M˙
�;ƒ

stand for the Pucci extremal operators given by

M��;ƒ.X/ WD �
X
ei>0

ei .X/Cƒ
X
ei<0

ei .X/ and MC
�;ƒ

.X/ WD ƒ
X
ei>0

ei .X/C�
X
ei<0

ei .X/

for ellipticity constants 0 < � � ƒ <1, where ¹ei .X/ºi are the eigenvalues of X.
Moreover, for our Lipschitz estimates, we must require some sort of continuity as-

sumption on coefficients:
(A2) (!-continuity of coefficients) There exist a uniform modulus of continuity !W Œ0;1/
! Œ0;1/ and a constant CF > 0 such that

� 3 x; x0 7! ‚F.x; x0/ WD sup
X2Sym .N/

X¤0

jF.x;X/ � F.x0;X/j
kXk

� CF !.jx � x0j/;

which measures the oscillation of the coefficients of F around x0. Finally, we define

kF kC!.�/ WD inf
°

CF > 0 W
‚F.x; x0/

!.jx � x0j/
� CF; 8x; x0 2 �; x ¤ x0

±
:

In our study, the diffusion properties of the model (1.1) degenerate along an a priori
unknown set of singular points of existing solutions:

S0.u;�
0/ WD ¹x 2 �0 b � W jru.x/j D 0º:
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For this reason, we will enforce that HW� �RN ! Œ0;1/ behaves as

(1.2) L1 �Kp;q;a.x; j�j/ � H.x; �/ � L2 �Kp;q;a.x; j�j/

for constants 0 < L1 � L2 <1, where

Kp;q;a.x; j�j/ WD j�j
p
C a.x/j�jq; for .x; �/ 2 � �RN :(N-HDeg)

In addition, for the non-homogeneous degeneracy (N-HDeg), we suppose that the
exponents p; q and the modulating function a.�/ fulfil

(1.3) 0 < p � q <1 and a 2 C 0.�; Œ0;1//:

Roughly speaking, H satisfies distinct growths at the origin and at infinity:

lim
j�j!0C

H.x; �/

j�jp.1C a.x//
2 .0;1/ and lim

j�j!C1

H.x; �/

j�jq.1C a.x//
2 Œ0;1/

uniformly in x 2 �. Moreover, for p ¤ q,

lim
j�j!0C

H.x; �/

j�jq
D C1 and lim

j�j!C1

H.x0; �/

j�jp
D

²
finite, if a.x0/ D 0;
C1; if a.x0/ > 0:

In turn, in our research, the reaction term, i.e., �"W� � RC ! RC, represents the
singular perturbation of the model. In this point, we are interested in a singular behaviour
of order O.1="/ along "-level layers ¹u" � "º. Hence, we are led to consider reaction terms
fulfilling

(1.4) B0 � �".x; t/ �
A

"
�.0;"/.t/CB; 8.x; t/ 2 � �RC;

for nonnegative constants A; B0; B � 0. Notice that �" � 0 satisfies (1.4). Nevertheless,
we shall also impose the following non-degeneracy assumption in order to ensure that
such a reaction term enjoys an authentic singular character:

(1.5) I WD inf
��Œt0;T0�

"�".x; "t/ > 0;

for some constants 0 � t0 < T0 < 1, where I does not depend on ". Intuitively, (1.5)
means that the singular term behaves as � 1

"
�.0;"/ plus a non-negative noise that remains

uniformly controlled. Indeed, simpler cases covered by our analysis are singular reaction
terms built up as a multiple of the approximation of unity plus a uniform bounded function,

(1.6) �".x; t/ WD Q.x/
1

"
�
� t
"

�
C f".x/:

For such approximations, 0<Q 2C 0.�/, 0� � 2C1.R/with supp�D Œ0;1�, and f" is a
non-negative continuous function bounded away from infinity. Finally, it is readily verifi-
able that the reaction term in (1.6) fulfills (1.4) and (1.5) with AD kQkL1.�/k�kL1.RC/,
B0 D inf� f".x/ and B D kf"kL1.�/.
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1.2. Statement of main results

To formulate our main results, we need to introduce some definitions. We will start with
the definition of the viscosity solution to

(1.7) G .x;ru;D2u/ WD H.x;ru/F.x;D2u/:

Definition 1.1 (Viscosity solution). A function u 2 C 0.�/ is called a viscosity sub-
solution (super-solution) of

G .x;ru.x/;D2u.x// D f .x; u.x// in �

if whenever ' 2 C 2.�/ and u � ' has a local maximum (minimum) at x0 2 �, there
holds

G .x;r'.x0/;D
2'.x0// � f .x0; '.x0// .respectively, � f .x0; '.x0///:

Finally, a function u is a viscosity solution when it is a simultaneously a viscosity sub-
and super-solution.

In order to prove some key geometric properties of solutions, it is essential to adopt
a more appropriate notion of viscosity solution. As a matter of fact, (1.1) has a lack of
comparison principle, thus uniqueness assertions might not be true. Therefore, we shall
make a particular election of solutions. For this reason, the least supersolution approach
takes place in our studies by way of Perron type solutions.

Definition 1.2 (Perron type solution). Throughout this manuscript we will work with
Perron type solutions to the singularly perturbed problem (1.1): given a viscosity sub-
solution u? and a viscosity super-solution u? to (1.1) such that u? � u? in �, the Perron
solution u" is given by

(1.8) u".x/ D inf
®
w.x/ such that w is a super-solution to (1.1); and u? � w � u?

¯
:

It is worth noting that for each " > 0 fixed, the existence of such a Perron solution
follows by sub/supersolutions methods, see e.g. [19], Theorem 4.1. Therefore, from now
on, by a solution u" to (1.1), we denote a Perron type solution built-up as in (1.8).

We establish the existence of Perron type solutions to (1.1) in our first result.

Theorem 1.3 (Existence of Perron solutions). Let � � RN be a bounded Lipschitz do-
main and let 0� g 2 C 0.@�/ be a boundary datum. Then, for each fixed " > 0 there exists
a non-negative viscosity solution u" 2 C 0.�/ to (1.1).

We prove uniform gradient estimates, which supply local compactness in the uniform
convergence topology, in our next result.

Theorem 1.4 (Optimal Lipschitz estimate). Let ¹u"º">0 be a family of solutions to (1.1).
Given �0 b �, there exists a constant C0, depending on the dimension, the ellipticity
constants and on �0, but independent of " > 0, such that

kru"kL1.�0/ � C0:
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Additionally, if ¹u"º">0 is a uniformly bounded family1, then it is pre-compact in the
Lipschitz topology.

We stress that a key ingredient in order to prove optimal Lipschitz regularity is theC 1;˛loc
estimates addressed in [24]. Other important pieces of information are the versions of the
Harnack inequality and an inhomogeneous Hopf type result adapted to our double degen-
erate context (see Appendix 8 for more details).

From now on, we will label the distance of a point in the non-coincidence set x0 2
� \ ¹u" > 0º to the approximating transition boundary, �", by

d".x0/ WD dist.x0; ¹u" � "º/:

Next, we prove that, inside ¹u" > "º, solutions grow in a linear fashion away from
"-level surfaces.

Theorem 1.5 (Linear growth). Let ¹u"º">0 be a Perron solution of (1.1). There exists
c.universal parameters/ > 0 such that, for x0 2 ¹u" > "º and 0 < "� d".x0/� 1, there
holds

u".x0/ � c � d".x0/:

The proof of the linear growth consists of combining the construction of an appropriate
barrier function with the minimality of Perron solutions. Such an instrumental idea was
first introduced in the last author’s works [3] and [59] for the fully nonlinear scenario.

From a free boundary point of view, it is important highlighting that viscosity solutions
of (1.1) develop two “distinct free boundaries”. The first one is the set of singular points
of existing solutions S0.u";�0/, and the second one is the so-named “physical transition”,
i.e., �" D ¹u" Ï "º ("-level surfaces). One of most the difficult tasks in our research con-
sists in showing that these two free boundaries do not intersect in measure. As a matter of
fact, we are able to obtain a uniform lower/upper control of u" in terms of dist.�; �"/:

dist.x0; �"/ . u".x0/ . dist.x0; �"/:

Next, we prove that Perron type solutions are strongly non-degenerate near "-level
surfaces. Summarily, the maximum of u" on the boundary of a ball Br .x0/, centered in
¹u" > "º, is of the order of r .

Theorem 1.6 (Strong non-degeneracy). Given �0 b �, there exists a positive constant
c.universal/ such that, for x0 2 ¹u" > "º, "� �� 1, there holds

c � � � sup
B�.x0/

u".x/ � c�1 � .�C u".x0//:

As a consequence of Theorem 1.4, we get the following result.

Theorem 1.7 (The limiting PDE). Let u" be a solution to (1.1). Then for any sequence
"k ! 0C, there exist a subsequence "kj ! 0C and u0 2 C

0;1
loc .�/ such that

(1) u"kj ! u0 locally uniformly in �;

1Such a bound will be universal, i.e., it will depend only on the data/parameters of the problem, namely, the
dimension, the elipticity constants, p, q, kakL1.�/, A, B0 and B. Moreover, this uniform bound is obtained
via the application of the Alexandroff–Bakelman–Pucci estimate adapted to our context.
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(2) u0 2 Œ0;K0� in � for some constant K0.universal/ > 0;
(3) G .x;ru0;D

2u0/ D f0.x/ in ¹u0 > 0º, with 0 � f0 2 L1.�/ \ C 0.�/.

Let us introduce the notation

F.u0;O/ WD @¹u0 > 0º \O:

Theorem 1.8 (Asymptotic behavior close free boundary). Let �0 b �. Fix x0 2 ¹u0 >
0º \�0 such that dist.x0;F.u0;�0//� 1

2
dist.�0; @�/. Then there exists a constant C>0,

independent of ", such that

(1.9) C�1 � dist.x0;F.u0; �0// � u0.x0/ � C � dist.x0;F.u0; �0//:

Finally, we will prove that the limiting free boundary F.u0;�
0/ has local finite HN�1-

Hausdorff measure. To this end, we must restrict our analysis to the class of operators
satisfying an asymptotic concavity property, which will be stated precisely in Section 6.

Theorem 1.9 (Hausdorff estimates). Given �0 b �, there exists a positive constant
C.�0; universal parameters/ such that, for x0 2 F.u0; �

0/,

HN�1.F.u0; �
0/ \ B�.x0// � C � �N�1:

Additionally, there exists a positive constant C1.�0; universal parameters/ such that, for
�� 1 and x0 2 F.u0; �

0/, there holds

C�11 � �
N�1
� HN�1.Fred.u0; �

0/ \ B�.x0// � C1 � �N�1

where Fred.u0; �
0/ WD @red¹u0 > 0º \�

0 is the reduced transition boundary2. In partic-
ular,

HN�1.F.u0; �
0/ nFred.u0; �

0// D 0:

In conclusion, our findings extend, regarding non-variational scenarios, former results
from [3,56,59,62], and to some extent, those from [20,36,52,54,55,64], concerning degen-
erate and variational models, by making using of different systematic approaches and
techniques adjusted to the framework of fully nonlinear models with non-homogeneous
degeneracy. Moreover, they are new even for the toy model

Œjru"jp C a.x/jru"jq� �u" D Q.x/
1

"
�
�u"
"

�
C f".x/ .with (1.3) and (1.6) in force/:

Lastly, it is noteworthy to point out that in order to establish our findings, we have
developed pivotal auxiliary tools which, according to our scientific knowledge, were not
available in the current literature for our model equations. Thereby they may have their
own mathematical interest. Among these, we must quote: weak and Harnack inequalities,
local maximum principle, Hölder regularity, ABP estimate and inhomogeneous Hopf type
results, just to mention a few (see Appendix 8 for more details).

2The reduced free boundary, i.e., @red¹u0 > 0º is a subset of @¹u0 > 0º where there exists, in the measure
theoretic sense, the normal vector, see the monograph [38] for a survey concerning geometric measure theory.
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1.3. Motivations and state-of-art

The mathematical theory of singular perturbation concerns a wide class of methods em-
ployed in several fields of mathematics, physics and their affine areas (see [39] for an intro-
ductory essay). As a matter of fact, penalization methods were pivotal in studying certain
discontinuous minimization problems in the theory of critical points of non-differentiable
functionals, where the Alt–Caffarelli seminal work [1] marks the genesis of such a theory
by carrying out the analysis of the minimization problem

(1.10) min
H1
0 .�/

vj@�Dg

Z
�

�1
2
jrvj2 CQ.x/�¹v>0º

�
dx for suitable data g � 0 and Q > 0:

Historically, such a variational problem (1.10) has appeared in the mathematical formu-
lation of a variety of relevant one-phase models: cavity type problems [36], jets problem
(see Chapter 1 in [18] and therein references), optimal design problems ([63], Chapter 6),
just to mention few of them. Note that the Euler–Lagrange equation associated to (1.10) is

�u0.x/ D Q.x/ı0.u0/ in �

in an appropriate distributional sense, addressed in [1]. Thereby, minimizers to (1.10) are
obtained as the uniform limit when "! 0C of the problem

�u".x/ D Q2.x/ ˇ".u
"/ in � .for ˇ" � "�1�.0;"//:

Therefore, the core idea of studying approximating solutions is that small perturb-
ations for certain elliptic problems propagate in a quantifiable fashion. Thus, analysing
perturbed solutions can be useful to establish regularity estimates for the desired minimal
solution of (1.10) and its free boundary.

Such an influential idea can also be employed in analysing over-determined problems
as follows: given a bounded and smooth domain��RN and functions 0� f;g 2 C 0.�/
and 0 < Q 2 C 0.�/, we would like to find a “compact hyper-surface” �0 WD @�0 � �
such that the inhomogeneous one-phase Bernoulli-type problem

(1.11)

8̂̂̂<̂
ˆ̂:

Lu.x/ D f .x/ in �n�0;
u.x/ D g.x/ on @�;
u.x/ D 0 on �0;
@u
@�
.x/ D Q.x/ on �0 .in a suitable sense/

admits a non-negative solution for a second order elliptic operator L (in divergence or
in non-divergence form) with suitable structure. As above, limiting solutions coming
from certain approximating regularized problems are natural profiles to solve (1.11) (in
an appropriate sense with �0 WD @¹u > 0º). This will motivate the next paragraph.

1.3.1. Modern developments in singular perturbation theory. Our impetus for current
investigations in this work also comes from their intrinsic connections with nonlinear
one-phase problems, which arise in the mathematical theory of combustion, as well as
in the study of flame propagation problems (stationary setting). Precisely, they appear in
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the description of laminar flames as an asymptotic limit for the nonlinear formulation of
high energy activation models with source terms (cf. [15], [20], [44], [47] and [67]). In
a general framework, such models corresponds to the limit as "! 0 in (1.1), i.e., a one-
phase inhomogeneous FBP, where the reaction-diffusion is driven by a doubly degenerate
operator (cf. [3, 56, 59]):8̂̂̂<̂

ˆ̂:
G .x;ru;D2u/ D f .x/ in ¹u > 0º .for f 2 C 0.�/ \ L1.�//;
u.x/ � 0 in �;
H.x; jru.x/j/ � T .x/ on @¹u > 0º .for 0 < T 2 C 0.�//

u.x/ D g.x/ on @�:

(I-FBP-NH)

The condition that H enforces on u is commonly referred to as free boundary condition.
The mathematical development of these regularized problems has yielded important

scientific breakthroughs in the free boundary theory. Historically, regularizing methods
in free boundary problems date back to Berestycki–Caffarelli–Nirenberg’s pioneering
work [5], where the linear elliptic scenario was addressed (cf. [64] for the analysis of
elliptic PDEs of the flame propagation type) via a variational treatment for the following
class of operators:

LŒu� WD

NX
i;jD1

aij .x/Diju.x/C

NX
iD1

bi .x/Diu.x/C c.x/u.x/ D ˇ".u/

for C 1 coefficients. Before presenting the recent progresses in the fully nonlinear scen-
ario, we must quote some fundamental contributions of several authors regarding homo-
geneous/inhomogeneous singular perturbation problems (one and two-phases and their
parabolic counterpart), as well as variational problems with uniformly elliptic and degen-
erate structure, see [16,17,20,44,48,49,52,54–56] for an extensive but incomplete list of
such investigations:

Lu".x/ WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

div.A.x/ru"/ D �.x/ˇ".u"/ uniformly elliptic operator;
div.jru"jp�2ru"/ D ˇ".u"/C f".x/ p-Laplacian;
div
�g.jru"j/
jru"j

ru"
�
D ˇ".u

"/ g-Laplacian in Orlicz–Sobolev spaces;

div.jru"jp".x/�2ru"/ D ˇ".u"/C f".x/ p.x/-Laplacian;
u" � 0 in �;
�u" D ˇ".u

"/C f".x/ two-phase problem for Laplacian;
�u" � u"t D ˇ".u

"/C f".x/ two-phase problem for heat operator;
div.jru"jp�2ru"/ D ˇ".u"/ two-phase problem for p-Laplacian:

In the last two decades, nonlinear FBPs like (I-FBP-NH) have been widely studied in
the literature via singular perturbation methods. In contrast with their variational counter-
part (cf. [1, 20, 52, 54, 55, 64]), the analysis of non-variational singularly perturbed PDEs
imposes significant challenging obstacles, mainly due to the lack of monotonicity formu-
lae (cf. [50,51]), energy estimates (cf. [20,44]) and a stable notion of “weak formulation”
of solutions (see [64]), just to cite a few.

In this scenario, Teixeira in [62] started the journey of investigation into fully nonlinear
elliptic singular PDEs as follows:

(1.12) F.x;D2u"/ D ˇ".u
"/ in � with u" � 0;
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where ˇ".u"/! ı0 (the Dirac delta measure). The author proves optimal Lipschitz reg-
ularity of solutions of (1.12), as well as H 1 compactness for Bellman’s singular PDEs.
Thereafter, in [59] the authors finish the analysis introduced in [62]. In effect, they prove,
among other analytic and geometric properties, that the free boundary condition is driven
by a new operator, namely F �, the recession profile, which arises via a blow-up argu-
ment on the family of elliptic equations generated by the original operator F (we recom-
mend [60] for the parabolic counterpart of such studies). Theorem 1.3 in [57] yields global
Lipschitz regularity estimates to

(1.13)

8̂<̂
:
F.x;ru";D2u"/ D ˇ".u

"/ in �;
u".x/ � 0 in �;
u".x/ D g.x/ on @�;

and [56] studied a FBP like (1.13) with an inhomogeneous forcing term like (1.6). Finally,
in [3], the authors prove similar existence, optimal regularity and geometric results for
the class of fully nonlinear, anisotropic degenerate elliptic FBPs (with (A0)–(A1), (1.4)
and (1.5) in force) as follows:

jru"jpF.D2u"/ D �".x; u
"/ in �; with p � 0 and u" � 0;

thereby summarizing the current researches on singular perturbation methods in non-
variational models.

1.3.2. Recent progresses on degenerate equations in non-divergence form. Now, we
turn our attention towards regularity features of our model operator in (1.1). Regularity
properties for fully nonlinear models with single degeneracy structure as follows:

(1.14) Gp.x;ru;D
2u/W D jrujpF.x;D2u/ with 0 < p <1;

have been an increasing focus of studies over the last decades due to their intrinsic connec-
tion to several qualitative/quantitative issues in pure mathematics (see [2, 6, 7, 9–12, 41]),
as well as a number of geometric and FBPs (see [3, 21, 27, 28]). Additionally, we also
refer the interested reader to [13, 14, 19, 23, 35, 37, 45, 46, 55, 57, 59, 61, 62, 65, 66] for an
incomplete list of corresponding results in the uniformly elliptic scenario.

In contrast with (1.14), one of the main characteristics of the model case

(1.15) u 7! Œjrujp C a.x/jrujq� �u .with (1.3) in force/

is its transition between two distinct degeneracy rates, which depends on the values of the
modulating function a.�/. For this reason, the diffusion process presents a non-uniformly
elliptic and doubly degenerate signature, which mixes up two different p-Laplacian type
operators in non-divergence form (cf. [2, 9–12, 41]). Such a prototype in (1.15) can be
understood as a non-variational extension of certain variational integrals of the calculus of
variations with .p; q/-growth conditions as follows:

.W
1;p
0 .�/Cg;Lm.�//3.w; f / 7! min

Z
�

� 1
p
jrwjpC

a.x/

q
jrwjq � f w

�
dx;(DPF)
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where a 2 C 0;˛.�; Œ0;1//, for some 0 < ˛ � 1 < p � q <1 andm 2 .N;1�. Finally,
notice that minimizers to (DPF) exhibits non-uniform and doubly degenerate ellipticity in
a model with a kind of .p; q/-structure:

div.A.x;ru/ru/ D f .x/ in �; where A.x; �/ WD j�jp�2 C a.x/ j�jq�2

We recommend [4, 31–34, 53] as interesting related works.
Now, let us come back to non-variational models like (1.15). Regarding regularity

estimates of fully nonlinear models with non-homogeneous degeneracy, the starting point
was De Filippis’ paper [30], where C 1;˛loc -regularity for viscosity solutions of

Œjrujp C a.x/jrujq� F .D2u/ D f 2 L1.�/; .with (A0)–(A1) and (1.3) in force/

was addressed, for some ˛ 2 .0; 1/ depending on universal parameters. Later on, [24]
established sharp gradient estimates to general models driven by (1.7), as well as a number
of applications of such estimates in geometric free boundary and related nonlinear elliptic
PDEs (cf. [21, 27]).

At this point, a natural question arises: which are the regularity and geometric features
of solutions and level surfaces in problems of the type (1.1)? In particular, we are inter-
ested in geometric properties that are independent of the regularization parameter and that
therefore can be carried over (in a uniform fashion) in the limit process.

To the best of the authors’ acknowledgment, few advances are known concerning the
regularity theory for inhomogeneous FBPs like (I-FBP-NH). As a matter of fact, many of
these are available in the context of linear operators (see [1, 50, 51]) and in the uniformly
elliptic scenario (cf. [59]). We must quote a recent work [35], where the authors deal with
an inhomogeneous two-phase FBP driven by fully nonlinear elliptic operators. Getting
further results on the limiting FBPs (I-FBP-NH), which include in particular the regularity
of the free boundary, are challenging and open issues in such a line of investigation.

A program for developing the theory of (I-FBP-NH) is summarized as follows:
X Existence, uniform/geometric regularity estimates for certain regularizing solu-

tions of (1.1).
X Existence and optimal regularity estimates of certain solutions of (I-FBP-NH),

e.g., viscosity solutions obtained as a limit of singular perturbation problems.
X Measure theoretic properties of the free boundary, such as finite perimeter and

density features for the positivity region.
X Strong regularity properties of the interfaces, e.g., Lipschitz or “flat” interfaces

becoming regular enough (in an appropriate sense). See Chapters 4 and 5 in [18];
see also [22].

2. Background results

In the sequel, we will state an essential tool we will make use of, namely the fundamental
estimate from Theorem 1.1 in [24] and Theorem 1 in [30]. Let us enunciate the statement
of this regularity estimate.
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Theorem 2.1 (C 1;˛loc -estimates). Let F be an operator satisfying (A0)–(A2). Suppose fur-
ther the assumptions (1.2) and (1.3) are in force. Let u be a bounded viscosity solution to

G .x;ru;D2u/ D f .x; u/ 2 L1.� �R/:

Then, u 2 C 1;˛loc .�/. Moreover, the following estimate holds true:

kukC 1;˛.�0/ � C �
�
kukL1.�/ C 1C kf k

1=.pC1/

L1.��R/

�
for universal constants ˛ 2 .0; 1/ and C > 0.

Remark 2.2. We now recall some basic estimates that we will use through this manu-
script. Assume that u is a non-negative viscosity solution to

(2.1) G .x;ru;D2u/ D f 2 C 0.�/

and that the assumptions (A0)–(A2), (1.2) and (1.3) hold. Then, we have:

(1) Harnack’s inequality: if f 2 Lm.B1/ \ C 0.B1/ with m > N , then

sup
B1=2

u.x/�C.N;�;ƒ;p;q;L1/ �
°

inf
B1=2

u.x/Cmax
° f

1C a

1=.pC1/
L1.B1/

;
 f

1C a

1=.qC1/
L1.B1/

±±
:

(2) Gradient estimates: if f 2 L1.B1/, then, u 2 C 1;˛loc .B1/ and

jru.0/j � C.N; �;ƒ; p; ˛;L1; L2; kF kC! ; kakL1/ �
�
kukL1.B1/ C 1C kf k

1=.pC1/

L1.B1/

�
:

We present now a kind of “cutting lemma”, which strongly relies on Lemma 6 in [41],
and is concerned with the homogeneous, doubly degenerate problem. The following result
can be inferred from Lemma 4.1 in [30] (see also Lemma 6 in [41]) by a careful inspection
of the proof.

Lemma 2.3 (Cutting lemma). Let F be an operator satisfying (A0)–(A2), (1.2) and (1.3),
and let u be a viscosity solution of

H.x;Du/F.x;D2u/ D 0 in B1.0/:

Then u is a viscosity solution of

F.x;D2u/ D 0 in B1.0/:

Now, let us present a useful comparison tool. For that purpose, we shall assume the
following: there exists a continuous function y!W Œ0;1/! Œ0;1/ with y!.0/D 0, such that
if X;Y 2 Sym.N / and & 2 .0;1/ satisfy

(2.2) �&

�
IdN 0

0 IdN

�
�

�
X 0

0 Y

�
� 4&

�
IdN �IdN
�IdN IdN

�
;

then

(2.3) G .x; &.x � y/;X/ � G .y; &.x � y/;�Y/ � y!.& jx � yj2/ 8x; y 2 RN ; x ¤ y:
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We stress that such a condition is not necessary when G does not depend on x-variable.
In this context, conditions (A0) and (A1) are sufficient to our purpose (cf. [19]).

Finally, we will assume the following: there exist a universal constant Ca > 0 and a
modulus of continuity O!aW Œ0;1/! Œ0;1/ such that

(2.4) jH.x; �/ �H.y; �/j � Ca O!a.jx � yj/ j�j
q
8.x; y; �/ 2 � �� �RN :

The proof of the following comparison principle is similar to those of Theorem 1.1
in [6], Theorem 1 in [7] and Theorem A.5 in [22]. For this reason, we will omit the proof.

Lemma 2.4 (Comparison principle). Assume that (A0)–(A1), (1.2), (1.3), (2.2) and (2.3)
hold. Let f 2 C 0. N�/ and let h be a continuous increasing function satisfying h.0/ D 0.
Suppose u1 and u2 are, respectively, a viscosity supersolution and subsolution of

G .x;rw;D2w/ D h.w/C f .x/ in �:

If u1 � u2 on @�, then u1 � u2 in �.
Furthermore, if h is nondecreasing .in particular, if h � 0/, the result holds if u1 is

a strict supersolution or vice versa, if u2 is a strict subsolution.

Finally, we present a qualitative property known as the ABP estimate (see [29, 43]).

Theorem 2.5 (Alexandroff–Bakelman–Pucci estimate). Assume that (A0)–(A2) hold.
Then there exists C DC.N;�;p;q;diam.�// > 0 such that, for any viscosity sub-solution
.respectively, super-solution/ u 2 C 0.�/ of (2.1) in ¹x 2 � W u.x/ > 0º .respectively, in
¹x 2 � W u.x/ < 0º/, there holds

sup
�

u.x/ � sup
@�

uC.x/C C � diam.�/max
° f �

1C a

1=.pC1/
LN .�C.uC//

;
 f �

1C a

1=.qC1/
LN .�C.uC//

±
�

resp., sup
�

u�.x/� sup
@�

u�.x/CC � diam.�/max
° f C
1Ca

1=.pC1/
LN .�C.u�//

;
 f C
1Ca

1=.qC1/
LN .�C.u�//

±�
;

where �C.u/W D ¹x 2 � W 9 � 2 RN such that u.y/ � u.x/C h�; y � xi 8y 2 �º.

Let us finish this section by commenting on how to construct viscosity solutions. The
idea is to obtain a solution of Perron type, the least super-solution. Our approach holds by
adapting the so-called method of sub-solutions and super-solutions to the viscosity theory
to produce a solution.

Given a regular boundary datum g, a pair of sub- and super-solutions can be obtained
by solving

(2.5) G .x;ru";D2u"/D sup
��Œ0;C1/

�".x; t/ and G .x;ru";D2u"/D inf
��Œ0;C1/

�".x; t/

satisfying u" D u" D g on @�. The existence of solutions of (2.5) follows, for instance,
from ideas in Propositions 2 and 3 of [8].

Finally, fixed a pair of sub-solution and super-solution solutions of the equation (1.1),
the following general procedure yields the existence of a Perron solution:
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Theorem 2.6. Let G be an elliptic fully nonlinear operator satisfying (A0)–(A2), (1.2)
and (1.3), and let h 2 C 0;1.�� Œ0;1// be a bounded, Lipschitz function in RN . Suppose
that the equation

G .x;ru;D2u/ D h.x; u/

admits u?; u? 2 C 0.�/, sub- and super-solution, respectively, such that u? � u? in �
and u? D u? D g 2 C 0.@�/. Define the set of functions

S WD ¹w 2C 0.�/I u? �w � u
? and w is a super-solution of G .x;ru;D2u/D h.x;u/º:

Then
v.x/W D inf

w2S
w.x/

is a continuous viscosity solution of´
G .x;ru;D2u/ D h.x; u/ in �;
u.x/ D g.x/ on @�:

By using [19] and Theorem 8.5, the proof follows the same lines as those of The-
orem 2.1 in [3]. For this reason, we will omit it.

3. Lipschitz regularity estimates

In this section, we derive uniform gradient estimates, which in particular provide com-
pactness in the local uniform convergence topology. In view of the results to be proven in
Section 4, such an estimate is indeed optimal.

Before starting the proof of the local Lipschitz estimate, we need to ensure the uniform
bound for non-negative solutions to (1.1). Such a statement is a direct consequence of the
Alexandroff–Bakelman–Pucci estimate (see Theorem 8.6).

Lemma 3.1. Let u" be a non-negative viscosity solution to (1.1). Then, there exists a
constant C.universal/ > 0 such that

ku"kL1.�/ � kgkL1.@�/ C C � diam.�/max
° B0

1C a

1=.pC1/
LN .�/

;
 B0

1C a

1=.qC1/
LN .�/

±
:

Proof. Define v".x/ WD u".x/ � kgkL1.@�/. Now, notice that

G .x;rv";D2v"/ � B0 in �

in the viscosity sense. Moreover v" � 0 on @�. Therefore, the Alexandrov–Bakelman–
Pucci estimate (Theorem 8.6) provides the desired estimate.

Proof of Theorem 1.4. First, we analyze the transition region ¹0 � u" � "º \�0. For " �
min

®
1; 1
2

dist.�0; @�/
¯
, fix x0 2 ¹0 � u" � "º \�0 and define the scaled function

v.x/ WD
1

"
u".x0 C "x/ in B1:
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It is straightforward to show that v fulfils, in the viscosity sense,

Gx0;".x;rv.x/;D
2v.x// D "�.x0 C "x; u

".x0 C "x// in B1;

where (see equation (1.7))8̂̂<̂
:̂
Fx0;".x;X/ WD "F.x0 C "x;

1
"

X/;
Hx0;".x; �/ WD H.x0 C "x; �/;

ax0;".x/ WD a.x0 C "x/;
fx0;".x/ WD "�.x0 C "x; u

".x0 C "x//:

Hence, it follows from the structural assumption (1.4) that

0 � fx0;".x/ � ACB WD C?:

Moreover, it is easy to check that the assumptions (A0)–(A2) and (1.2) and (1.3) are
satisfied by Fx0;", Hx0;" and ax0;" (with the same universal constants). Therefore, from
the C 1;˛loc regularity estimate (see Theorem 2.1 and Remark 2.2, item (2)), we have

(3.1) jrv.0/j � C �
®
kvkL1.B1=2/C 1CC?1=.pC1/

¯
.for a constant C.universal/ > 0/;

Additionally, since v.0/D 1
"
u".x0/� 1, by Harnack’s inequality (Theorem 8.3), we obtain

(3.2) kvkL1.B1=2/ � C0.N;�;ƒ;L1;a;p;q;C?/ .for some C0 > 0 independent of "/:

Finally, by combining (3.1) and (3.2) we get

(3.3) jru".x0/j D jrv.0/j � C1 .for some C1 > 0 independent of "/:

Now, we analyse the region ¹u" > "º \�0. Define

�" WD ¹x 2 �
0 such that u".x/ D "º;

and fix a point Ox0 2 ¹u" > "º \ �0. Let us call r0 WD dist. Ox0; �"/ the distance from Ox0
to �". Then, we define the re-normalized function v Ox0;r0 WB1 ! R as

v Ox0;r0.x/ WD
u". Ox0 C r0x/ � "

r0
�

It is easy to check that v Ox0;r0 satisfies, in the viscosity sense,

(3.4) G Ox0;r0.x;rv Ox0;r0.x/;D
2v Ox0;r0.x// D r0 �". Ox0 C r0x; u

". Ox0 C r0x//;

where, as before, 8̂̂<̂
:̂
F Ox0;r0.x;X/ WD r0F. Ox0 C r0x;

1
r0

X/;
H Ox0;r0.x; �/ WD H. Ox0 C r0x; �/;

a Ox0;r0.x/ WD a. Ox0 C r0x/;
f Ox0;r0.x/ W D r0 �. Ox0 C r0x; u

". Ox0 C r0x//:
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By construction, u". Ox0 C r0x/ > " for all x 2 B1. In particular,

(3.5) v Ox0;r0.x/ � 0 for every x 2 B1:

Hence, it follows from the assumption (1.4) that

kf Ox0;r0kL1.B1/ � C2.B; diam.�0//:

By making use of theC 1;˛loc regularity estimate (see Theorem 2.1 and Remark 2.2, item (2)),
we conclude that

(3.6) jru". Ox0/j D jrv Ox0;r0.0/j � C �
� 1
r0
ku" � "kL1.Br0=2. Ox0//

C 1C C1=.pC1/2

�
:

It remains to show a uniform control for the term 1
r0
ku" � "kL1.Br0=2. Ox0//

. For that pur-
pose, let z0 2 �" be a point that achieves distance, i.e., r0 D j Ox0 � z0j. Now, from the
Lipschitz estimate proven for points within ¹0 � u" � "º \�0, namely (3.3), we have

jru".z0/j � C0:

Hence,

(3.7)
@v Ox0;r0
@�

.y0/ � jru
".z0/j � C0 with v Ox0;r0.y0/ D 0 and y0 WD

z0 � Ox0

r0
�

Thus, from (3.4), (3.5) and (3.7) we are able to apply Lemma 8.7 and conclude that
there exists a constant c.universal/ > 0 such that

(3.8) v Ox0;r0.0/ � c:

Moreover, from Harnack’s inequality (see Theorem 8.3) we obtain (using (3.8))

1

r0
ku" � "kL1.Br0=2. Ox0//

D sup
B1=2.0/

v Ox0;r0.x/ � C0.N; �;ƒ; p; q; L1; a; c;B; diam.�0//

which finishes the proof of the theorem.

Remark 3.2. It is important to stress that for each " > 0 fixed, viscosity solutions u" are
in effect C 1;˛loc .�/. In particular, when F is concave/convex, it follows from Corollary 1.1
in [24] that u" 2 C 1;1=.pC1/loc .�/. At this point, on one hand, for any 0 < & � 1 small, near
"-layers, one obtains that

lim
"!0C

kru"kC 0;& .�0/ D C1:

On the other hand, Theorem 1.4 ensures that the Lipschitz norm of u" remains uniformly
controlled (independently of "). From such a point of view, our estimates are optimal.
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4. Geometric non-degeneracy

4.1. Building barriers

As explained in the introduction, one of the main intricacies in dealing with singularly
perturbed models with non-homogeneous degeneracy is to avoid that solutions degenerate
along their transition surfaces. For this reason, a decisive devise for overcoming such an
obstacle will be implementing a geometric non-degeneracy estimate.

In this section, we show that solutions grow in a linear fashion away from "-level
surfaces, inside ¹u" > "º. In particular, this implies that in measure the two free boundaries
do not intersect. The proof shall be based on building an appropriate barrier function. To
this end, we shall look at elliptic models with non-homogeneous degeneracy as follows:

(4.1) H.x;rw/MC
�;ƒ

.D2w/ D �.x; w/ in RN .with (1.2) and (1.3) in force/;

where the reaction term fulfils the non-degeneracy assumption (cf. (1.5))

(4.2) I� WD inf
RN�Œt0;T0�

�.x; t/ > 0;

Proposition 4.1 (Barrier). Let 0 < t0 < T0 < 1 be fixed. For a constant A0.universal/ > 0,
there exists a radially symmetric profile ‚LWRN ! R fulfilling

(1) ‚L 2 C
1;1
loc .R

N /;
(2) t0 � ‚L.x/ � T0;
(3) ‚L is a .point-wise/ super-solution to (4.1);
(4) for some �0.universal/ > 0,

(4.3) ‚L.x/ � �0 � 4L for jxj � 4L; where L � L0 WD
q

T0�t0
A0
�

Proof. For ˛.universal/ > 0 and A0.universal/ > 0 to be chosen a posteriori, let us define

(4.4) ‚L.x/ WD

8̂̂<̂
:̂
t0 for 0 � jxj < L;

A0 .jxj � L/2 C t0 for L � jxj < LC
q

T0�t0
A0

;

 .L/ � �.L/=jxj˛ for jxj � LC
q

T0�t0
A0

;

where

(4.5)

8̂<̂
:�.L/ WD

2
˛

p
.T0 � t0/A0

�
LC

q
T0�t0

A0

�1C˛
;

 .L/ WD T0 C �.L/
�

LC
q

T0�t0
A0

��˛
;

It is easy to check that ‚L 2 C
1;1
loc .R

N /. For this reason, we may compute the second
order derivatives of‚L a.e. Moreover, from definition, t0 �‚L.x/ � T0 is easily verified.

In the sequel, we are going to show that ‚L satisfies (point-wise) (4.1), as long as we
perform appropriate choices on the parameters ˛;A0 > 0.
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In effect, for 0 � jxj < L, the inequality in (4.1) (i.e., a viscosity supersolution) is
clearly satisfied (due to (4.2)).

In the annular region L � jxj < LC
p
.T0 � t0/=A0, we obtain

jr‚L.x/j D 2A0 .jxj � L/ � 2
p

A0 .T0 � t0/

and

D2‚L.x/ D 2A0
h� 1

jxj2
�
.jxj � L/
jxj3

�
x ˝ x C

.jxj � L/
jxj

IdN

i
� 4A0 � IdN:

Therefore, by using (1.2) and (1.3) we obtain

H.x;r‚L.x//M
C

�;ƒ
.D2‚L.x//

� 4A0NƒL2
��
2
p

A0.T0 � t0/
�p
C kakL1.�/

�
2
p

A0.T0 � t0/
�q�
:

Now, thanks to the assumption (4.2) we are able to choose a positive constant A0 D
A0.N;ƒ;L2; p; q; kakL1.�/;T0 � t0; I�/ such that

H.x;r‚L.x//M
C

�;ƒ
.D2‚L.x// � I�:

Thus, by using item (2) we conclude that

H.x;r‚L.x//M
C.D2‚L.x// � I� � �.x;‚L.x//:

Finally, let us analyse the region jxj � LC
p
.T0 � t0/=A0. Straightforward calcula-

tions give

D2‚L.x/ D ˛�.L/ jxj�.˛C2/
�
�
.˛ C 2/

jxj2
x ˝ x C IdN

�
:

Thus,
MC
�;ƒ

.D2‚L.x// � ˛�.L/ jxj�.˛C2/ Œ�.˛ C 1/�C .N � 1/ƒ� :

Therefore, selecting ˛ 2 Œ.N � 1/ƒ=� � 1; 1/, we get (using (4.2) and H.x; �/ � 0)

H.x;r‚L.x//M
C.D2‚L.x// � 0 � �.x;‚L.x//;

which ensures that ‚L fulfils (4.1), as desired.
We now show that the super-solution ‚L fulfils (4.3). From (4.5) (second line) we

have

jxj � 4L � 2.LC L0/ D 2
� �.L/
 .L/ � T0

�1=˛
:

Hence, for ˛ > 0,

‚L.x/ D  .L/ �
�.L/
jxj˛

�  .L/ �
1

2˛
. .L/ � T0/ >

1

2˛
. .L/ � T0/:

Therefore, by using (4.5),

‚L.x/ � �0 � 4L for �0 WD
˛�1

2˛C1

p
A0.T0 � t0/:
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4.2. Linear growth

To establish lower bounds on the growth of solutions to (1.1) inward the set ¹u" > "º, the
strategy will be to consider appropriate scaling versions of the universal barrier ‚L.

Proof of Theorem 1.5. Let us assume, without loss of generality, 0 2 ¹u" > "º. Now, we
set � WD d".0/=2 and consider the reaction term

�.z; t/ WD

²
"�"."x; "t/; if "x 2 �;
I� otherwise:

Given the barrier ‚L built-up previously, we define

‚".x/ WD " �‚ �
4"

�x
"

�
:

One can verify that the scaled barrier ‚" satisfies

G .x;r‚".x/;D
2‚".x// � �".x;‚".x//;

Moreover, by (4.3) and (4.4), we have that for 4L0"� �,

(4.6) ‚".0/ D t0 � " and ‚".x/ � �0 � � on @B�:

We claim that there exists a z0 2 @B� such that

(4.7) ‚".z0/ � u
".z0/:

Indeed, if we assume ‚" > u" everywhere in @B� , then

v".x/ WD min¹‚".x/; u".x/º

would be a super-solution to (1.1). However, v" is strictly below of u", which contradicts
the minimality of u". Therefore, by (4.6) and (4.7), we conclude

(4.8) sup
B�

u".x/ � u".z0/ > ‚".z0/ � �0 � �:

Furthermore, u" solves, in the viscosity sense,

B0 � G .x;ru";D2u"/ � B in B2�:

Therefore, by Harnack’s inequality (see Theorem 8.3 and Remark 8.4), we obtain

sup
B�

u" � C.N; �;ƒ; q; L1/ �
�
u".0/Cmax

®
.2�/

pC2
pC1B

1
pC1 ; .2�/

qC2
qC1B

1
qC1
¯�
:

Thus, by (4.8),

u".0/ �
�
C�1�0 � 2

qC2
qC1 max

®
B

1
pC1 �

1
pC1 ;B

1
qC1 �

1
qC1
¯�
�:

Finally, by taking

0 < � < min
°
B �

�
C�1�0 2

�
qC2
qC1
�pC1

;B �
�
C�1�02

�
qC2
qC1
�qC1

;
diam.�/

4

±
;

we have
u".0/ � c � �:

for some constant 0 < c.universal/ < C�1�0.
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5. Some important implications from Theorems 1.4 and 1.5

In this section, we discuss some implications of the sharp control of solutions, established
in Sections 3 and 4.2. As a consequence of Lipschitz regularity, i.e., Theorem 1.4, and
linear growth, i.e., Theorem 1.5, we obtain the complete control of u" in terms of d".x0/.

Corollary 5.1. Given �0 b �, there exists a constant C.�0; universal parameters/ > 0

such that for x0 2 ¹u" > "º \�0 and 0 < " � 1
2
d".x0/, there holds

C�1d".x0/ � u".x0/ � C d".x0/:

Proof. Take z0 2 @¹u" > "º, such that jz0 � x0j D d".x0/. Thus, it follows from The-
orem 1.4 that

u".x0/ � C0 d".x0/C u".z0/ � .C0 C 1/ d".x0/;

The first inequality is precisely the statement of Theorem 1.5.

Next we will prove that the Perron type solutions are strongly non-degenerate near "-
layers. This means that the supBr .x0/ u

" (for x0 2 ¹u" > "º \�0) is comparable to r . This
is an important piece of information about the growth rate of u" away from "-surfaces.
The proof is, to a certain extent, a consequence of the proof of Theorem 1.5.

Proof of Theorem 1.6. Firstly, the estimate from above follows directly from Lipschitz
regularity (Theorem 1.4). Now, as in the Theorem 1.5, we take ‚".x/ D "‚ �

4"
.x/. Thus,

u".z0/ > ‚".z0/;

for some point z0 2 @B�.x0/. Finally, we note that

sup
B�.x0/

u".x/ � u".z/ > ‚".z0/ � �0 � �:

Corollary 5.2. Given x0 2 ¹u" > "º \�0, "� � and �� 1 small enough .in a universal
way/, there exists a constant 0 < c0.universal/ < 1 such that

LN .B�.x0/ \ ¹u
" > "º/ � c0 �LN .B�.x0//

where LN .S/ is the Lebesgue measure of the set S � RN .

Proof. From strong non-degeneracy (Theorem 1.6), there exists y0 2 B�.x0/ such that

u".y0/ � c0�:

From Lipschitz regularity (Theorem 1.4), for z0 2 B��.y0/, we have

u".z0/ � C�� � u".y0/:

Thus, by previous estimates, it is possible to choose 0 < � � 1 small (in a universal way)
such that

z 2 B��.y0/ \ B�.x0/ and u".z/ > ":

Finally, there exists a portion ofB�.x0/with volume of order� �N within ¹u" > "º. Thus,

LN .B�.x0/ \ ¹u
" > "º/ � LN .B�.x0/ \ B��.y0// D c0 LN .B�.x0//;

for some constant 0 < c0.universal/� 1.
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Corollary 5.3. Given x0 2 ¹u" > "º \�0, "� � and �� 1 small enough .in a universal
way/, then

1

�

«
B�.x0/

u".x/ dx � c

for a constant c.universal/ > 0 also depending on ".

Proof. As in Corollary 5.2, there exists a constant 0 < �.universal/� 1 such that«
B�.x0/

u".x/dx � CN

«
B�.x0/\B��.y0/

u".x/ dx � c�

for a constant 0 < c.universal/� 1 and some y0 2 ¹u" > "º \�0.

5.1. A Harnack type inequality

For solutions of (1.1), a classical Harnack inequality is valid for balls that touch the free
boundary along the "-surfaces, i.e., @¹u" > "º \�0.

Theorem 5.4. Let u" be a solution of (1.1). Let also x0 2 ¹u" > "º and " � d WD d".x0/.
Then

sup
Bd=2.x0/

u".x/ � C � inf
Bd=2.x0/

u".x/

for a constant C.universal/ > 0 independent of ".

Proof. Let z1; z2 2 Bd=2.x0/ be points such that

inf
Bd=2.x0/

u".x/ D u".z1/ and sup
Bd=2.x0/

u".x/ D u".z2/:

Since d".z1/ � d=2, by Corollary 5.1,

(5.1) u".z1/ � C1 � d:

Moreover, by strong non-degeneracy (Theorem 1.6),

(5.2) u".z2/ � C2 �
�d
2
C u".x0/

�
:

Next, by taking y0 2 @¹u" > "º such that d D jx0 � y0j and z 2 Bd .y0/ \ ¹u" > "º,
we obtain from Corollary 5.1 and Theorem 1.6 that

(5.3) u".x0/ � sup
Bd .z/

u" � C2 � .d C u".z// � C3 � d:

In conclusion, by combining (5.1), (5.2) and (5.3), we obtain

sup
Bd=2.x0/

u".x/ � C � inf
Bd=2.x0/

u".x/:
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5.2. Porosity of the level surfaces

As a consequence of the growth rate and the non-degeneracy (Theorems 1.4 and 1.5), we
obtain the porosity of level sets.

Definition 5.5 (Porous set). A set S � RN is called porous with porosity ı > 0 if 9R > 0
such that

8x 2 S; 8r 2 .0;R/; 9y 2 RN such that Bır .y/ � Br .x/ n S:

A porous set of porosity ı has Hausdorff dimension not exceeding N � cıN , where
c D c.N / > 0 is a dimensional constant. In particular, a porous set has Lebesgue measure
zero (see [68]).

Theorem 5.6 (Porosity). Let u" be a solution of (1.1). Then the level sets @¹u" > "º \�0

are porous with porosity constant independent of ".

Proof. Let R > 0 and x0 2 �0 b � be such that B4R.x0/ � �.

Claim: The set @¹u" > "º \ BR.x0/ is porous.

Let x2@¹u">"º\BR.x0/ be fixed. For each r2.0;R/, we haveBr .x/�B2R.x0/��.
Now, let y 2 @Br .x/ be such that u".y/ D sup@Br .x/ u

".x/. From strong non-degeneracy
(Theorem 1.6),

(5.4) u".y/ � c � r:

On the other hand, we know (see Theorem 1.4) that near the free boundary,

(5.5) u".y/ � C � d".y/;

where d".y/ is the distance from y to the set B2R.x0/\ �". Next, from (5.4) and (5.5) we
get

(5.6) d".y/ � ır

for a positive constant ı 2 .0; 1/.
Let now y� 2 Œx; y� (straight line segment connecting the points x and y) be such that

jy � y�j D ır=2. Hence, we have that

(5.7) Bır=2.y
�/ � Bır .y/ \ Br .x/:

In effect, for each z 2 Bır=2.y�/,

jz � yj � jz � y�j C jy � y�j <
ır

2
C
ır

2
D ır;

and

jz � xj � jz � y�j C
�
jx � yj � jy� � yj

�
<
ır

2
C

�
r �

ır

2

�
D r;

so (5.7) follows.
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Now, from (5.6), Bır .y/ � Bd".y/.y/ � ¹u
" > "º, and thus

Bır .y/ \ Br .x/ � ¹u
" > "º;

which provides together with (5.7) the following:

Bır=2.y
�/ � Bır .y/ \ Br .x/ � Br .x/ n @¹u

" > "º � Br .x/ n .@¹u
" > "º \ BR.x0//;

thereby finishing the proof.

It is important to stress that for FBPs modeled by a merely uniformly elliptic operator,
one should not expect an improved Hausdorff estimate for the interface. In turn, when dif-
fusion is driven by the Laplacian operator, then the Alt–Caffarelli theory in [1] establishes
that cıN D 1. At this point, a natural issue is: what should be the minimum structural
assumption on F in order to obtain perimeter estimates for interfaces @¹u" > "º? We will
address an answer to such a question in the next section.

6. Hausdorff measure estimates

In this section, we establish Hausdorff measure estimates of the approximating level sur-
faces. A necessary condition for the study of such an estimate is to impose non-degeneracy
of the reaction term propagates up to the transition layer. Hereafter, in condition (1.5), we
shall take t0 D 0, i.e.,

I WD inf
��Œ0;T0�

"�".x; "t/ > 0

for some T0 > 0 to be enforced. A condition at infinity on the governing operator F , which
will be discussed soon, is also required in our analysis concerning Hausdorff estimates.

Next result states that, in measure, the Hessian of an approximating solution blows-up
near the transition layer as "! 0C. The proof follows the same lines as Proposition 6.1
in [3] and Proposition 5.1 in [58]. For this reason, we will omit it here.

Proposition 6.1. Fix�0 b�, C� 1 and � < dist.�0; @�/. There exists "0 > 0 such that,
for " � "0, there holds

(6.1)
Z
B�.x"/

.�".x; u
"/ � C/ dx � 0 for any x" 2 @¹u" > "º \�0:

Proposition 6.1 implies that near the transition layer, the governing operator F gets
evaluated at very large matrices. Such an insight motivates the following structural asymp-
totic condition on the nonlinearity.

Definition 6.2 (Asymptotic concavity). We say that a uniformly elliptic operator F W� �
Sym.N /! R satisfies the CF -asymptotic concavity property .respectively, the asymp-
totic convexity property/ if there exist A 2 A�;ƒ and a non-negative continuous function
C�F W�! R such that

F.x;X/ � tr.A.x/ �X/C C�F .x/ .respectively, F.x;X/ � � � � /;(ACP)

for all .x;X/ 2 � � Sym.N /, where

A�;ƒ WD ¹A 2 Sym.N / such that � IdN � A � ƒ IdN º :
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It is noteworthy that the condition (ACP) is weaker than the concavity (respectively,
convexity) condition, which for instance is required in Evans–Krylov–Trudinger’s C 2;˛loc
regularity theory (see [37], [45], [46], [65] and [66]). Indeed, it means a sort of concav-
ity (respectively, convexity) condition at the infinity of Sym.N / for F . Furthermore, the
concavity (respectively, convexity) assumption is precisely when CF D 0. From a geo-
metric point of view, such a condition means that for each x 2 � fixed, there exists a
hyperplane which decomposes R � Sym.N / in two semi-spaces such that the graph of
F.x; �/ is always below such a hyperplane (see [3], [58], [59] and references therein for
some motivations and other details).

In turn, if F fulfils (ACP), then its recession operator is a concave (respectively, con-
vex) operator; in other words,

F �.x;X/ D lim
�!0C

�F
�
x;
1

�
X
�
� lim
�!0C

�
tr.A.x/ �X/C �C�F .x/

�
D tr.A.x/ �X/ .respectively, � tr.A.x/ �X//:

Example 6.3. Let us consider a C 1 uniformly elliptic operator F W Sym.N /! R. Then,
its recession profile F � should be understood as the “limiting operator” for the natural
scaling on F . By way of illustration, for a number of operators, it is possible to verify the
existence of the following limit:

Aij WD lim
kXk!1

@F

@Xij
.X/;

In such a context, we obtain F �.X/ D tr.AijX/. An interesting example is the class of
Hessian type operators:

Fm.e1.D
2u/; : : : ; eN .D

2u// WD

NX
jD1

m

q
1C ej .D2u/m �N;

where m 2 N is an odd number. In this setting,

F �.X/ D

NX
jD1

ej .X/ .the Laplacian operator/:

We recommend the reader Example 2.4 in [23], Section 6.2 in [24], Example 3.6 in [27]
and Example 5 in [28] for a number of other illustrative examples.

Recently, [61] improved regularity estimates for viscosity solutions of asymptotically
concave equations were proven (see also [23] for global regularity results). Such operat-
ors play an essential role in establishing finiteness of the .N � 1/-Hausdorff measure in
several fully nonlinear singularly perturbed FBPs, whose Hessian of solutions blows-up
through the phase transition. For this reason, the limiting free boundary condition is ruled
by F � rather than by F (see [59] for an illustrating example).

Hereafter in this section, we assume the governing operator F has the asymptotically
concave property (ACP).



E. C. Bezerra Júnior, J. V. da Silva and G. C. Ricarte 146

Remark 6.4. Notice that if u" is a Perron’s solution to (1.1), then we have that, in the
viscosity sense,

F.x;D2u"/ D �".x; u
"/H .x;ru"/

�1 in ¹u" > "º \�0;

for any �0 b �. Hence, by Lipschitz regularity (Theorem 1.4) and (N-HDeg), one has

F.x;D2u"/ D �".x; u
"/H .x;ru"/

�1
� �".x; u

"/ L�12 .C
p
0 C kakL1.�/C

q
0 /
�1:

Therefore, by the (ACP) condition,Z
B�.x"/

Aij .x/Diju
".x/ dx �

Z
B�.x"/

�
�".x; u

"/H.x;ru"/�1 � C�F .x/
�
dx

� C�1p;q

Z
B�.x"/

�
�".x; u

"/ � kC�F kL1.�/ Cp;q
�
dx > 0;

where Cp;q WD L2.C
p
0 C kakL1.�/C

q
0 / and we have used Proposition 6.1.

In the next result, Remark 6.4 will allow us to adapt some arguments available for
elliptic linear problems (cf. [1]). The proof can be obtained following the same ideas as
those of Lemma 6.3 in [3] and Lemma 4.1 in [59].

Lemma 6.5. There exists a constant C.�0; universal parameters/ > 0 such that, for each
x" 2 @¹u

" > "º \�0 and �� 1, there holdsZ
B�.x"/\¹"�u"<�º

jru"j 2 dx � C��N�1:

Next, we recall some definitions and auxiliary results.

Definition 6.6 (ı-density). Given an open subset O�RN , we say that O has the ı-density
property in �, for 0 < ı < 1, if there exists � > 0 such that

LN .Bı.x/ \O/ � � �LN .Bı.x//:

Definition 6.7 (ı-neighborhood of a set). Given a measurable set S � RN and a positive
constant ı > 0, we denote

Nı.S/ WD ¹x 2 RN j dist.x;S/ < ıº;

the ı-neighborhood of S in Rd .

Next we will introduce the notion of Hj -Hausdorff measure.

Definition 6.8 (Hj -Hausdorff measure). Let r0 > 0 be given, let 0 < ı < r0 be fixed,
and let S � RN be a given Borel set. For an arbitrary j 2 N n ¹0º, we define the .ı; j /-
Hausdorff content of S as follows:

H
j

ı
.S/ WD inf

°X
i

r
j
i W S �

[
i

Bri .xi / such that ri < ı
±
;

where the infimum is taken over all covers ¹Bri .xi /ºi of S. The Hj -Hausdorff measure
of S is defined as

Hj .S/ WD lim
ı!0C

H
j

ı
.S/:
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Before establishing uniform bounds of the HN�1-Hausdorff measure of the level-
surfaces @¹u" > "º, let us recall a classical result from measure theory.

Lemma 6.9 (Density property). Let O b � be an open set.

(1) If there exists ı such that O has the ı-density property, then there exists a constant
C D C.�; N / such that

jNı.@O/ \ B�.x/j �
1

2N �
jNı.@O/ \ B�.x/ \Oj C Cı�N�1;

with x 2 @O \� and ı � �.

(2) If O has uniform density in � along O, then j@A \�j D 0.

Proof. Property (1) holds by using a covering argument, and (2) is a consequence of the
Lebesgue differentiation theorem (see [38]).

Next, we obtain an N -dimensional measure estimate on "-level layers, that is uniform
with respect to the parameter ". The proof holds the same lines as those of Lemma 6.5
in [3]. We omit it here.

Lemma 6.10. Fixed �0 b �, there exists a constant C�.�0; universal parameters/ > 0,
such that if C�� � 2�� dist.�0; @�/ then, for �; " > 0 small enough, and with 3C1" <
�� �, we have

LN
�
¹C1" < u" < �º \ B�.x"/

�
� C���N�1;

where x" 2 @¹u" > "º \�0, with d".x"/� dist.�0; @�/ and C1 > 1.

Finally, we are ready to establish the .N � 1/-Hausdorff estimate of approximating
level sets (uniform with respect to the parameter ").

Theorem 6.11. Fixed �0 b �, there exists a constant C�.�0; universal parameters/ > 0
such that

LN
�
N�.¹C1" < u"º/ \ B�.x"/

�
� C��N�1;

for C1 > 1, x" 2 @¹C1" < u"º \�0, d".x"/� dist.�0; @�/ and C1"� �. In particular,

HN�1.¹u" D C1"º \ B�.x0// � C � �N�1;

for constants C;C1 > 0 independent of ".

Proof. From Lipschitz regularity (Theorem 1.4), for z 2 @¹C1"<u"º and y 2Nı.@¹C1"<
u"º/ \ B�.x"/ \ ¹C1" < u"º, we obtain

u".y/ � u".z/C C jz � yj � �C Cı � ��;

for � D Cı and �.universal/ > 0. Therefore, the inclusion

(6.2) Nı.@¹C1" < u"º/ \ B�.x"/ \ ¹C1" < u"º � ¹C1" < u" < ��º \ B�.x"/

holds. On the other hand, by Corollary 5.2 and by taking ı as above, we verify that

LN .Bı.x/ \ ¹u
" > C1"º/ � c �LN .Bı.x// for x 2 @¹u" > "º:
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Hence, we conclude that @¹u">C1"º has the ı-density property. Thus, Lemma 6.9 ensures
the existence of a constant M.universal/ > 0 such that

LN .Nı.@¹C1" < u"º/ \ B�.x"//

� C2 LN .Nı.@¹C1" < u"º/ \ B�.x"/ \ ¹C1" < u"º/CMı�N�1:

Hence, by applying (6.2), we obtain

LN .Nı.@¹C1" < u"º/ \ B�.x"// � C2 LN .¹C1" < u" < ��º \ B�.x"//CMı�N�1;

for some constant C2.universal/ > 0. Finally, for �� �, Lemma 6.10 yields

LN
�
Nı.@¹C1" < u"º/ \ B�.x"/

�
� Cı�N�1 for some C > 0:

In order to conclude, we take a covering of @¹C1" < u"º \ B�.x"/ by balls ¹Brj ºj
centered at points along @¹C1" < u"º \ B�.x"/ with radius �� 1. Thus, we may write[

j

Brj � N�.¹C1" < u"º/ \ B�C�.x"/:

Therefore, there exist universal constants C3;C4 > 0 such that

HN�1
� .@¹C1" < u"º \ B�.x"// � C3

X
j

LN�1.@Brj / D
C3
�

X
j

L.Brj /

�
C4
�

LN .N�.¹C1" < u"º/ \ B�C�.x"// � C4C.�C �/N�1 D C4C�N�1 C o.1/:

We finish the proof of the theorem by letting �! 0C.

7. Limiting scenario as " ! 0C

We will now establish geometric and measure theoretic properties for a limiting profile
limj!1 u

"kj .x/, for a subsequence "kj ! 0. In effect, from Lipschitz regularity, the fam-
ily ¹u"k º is pre-compact in the C 0;1loc .�/-topology. Thus, up to a subsequence, there exists
a function u0 obtained as the uniform limit of u"kj , as "kj ! 0.

From now on, we will use the following definition when referring to u0:

u0.x/ WD lim
j!1

u
"kj .x/:

Furthermore, we see that such a limiting function satisfies
(1) u0 2 Œ0;K0� in � for some constant K0.universal/ > 0 (independent of ");
(2) u0 2 C

0;1
loc .�/;

(3) G .x;ru0;D
2u0/ D f0.x/ in ¹u0 > 0º, with 0 � f0 2 L1.�/ \ C 0.�/.
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Notice that by combining item (3) with the regularity estimate established in The-
orem 1.1 of [24], it follows that u0 2 C

1;˛
loc .¹u0 > 0º/: However, such an estimate degen-

erates as we approach F.u0;�
0/. Nevertheless, from item (2), the gradient remains under

control, even when dist.x0;F.u0; �0//! 0.
In the next proof, we show that at each point z0 2 F.u0; �

0/, there exists a cone with
vertex z0 that confines the graph of the limiting profile.

Proof of Theorem 1.8. Firstly, the upper estimate follows from the local Lipschitz con-
tinuity of u0. Next, from Corollary 5.1, there exists y" 2 ¹0� u" � "º \�� with d".x0/D
jx0 � y"j such that

u".x0/ � c � d".x/ D c jx0 � y"j;

for a constant c.universal/ > 0. Thus, up to a subsequence, y"! y0 2 ¹uD 0º, and hence

u0.x0/ � c jx0 � y0j � c � dist.x0;F.u0; �0//:

Theorem 7.1. Given�0 b�, there exist universal positive constants C0 and r0 such that

C�10 r � sup
Br .x0/

u0.x/ � C0 .r C u0.x0//

for any x0 2 ¹u0 > 0º \�0 with dist.x0; @¹u0 > 0º/ � 1
2

dist.x0; @�0/ and r � r0.

Proof. This is a consequence of passing to the limit as "! 0 in Theorem 1.6.

Our next result states that the set ¹u0 > 0º is the limit, in the Hausdorff distance, of
¹u" > "º as "! 0.

Theorem 7.2. Given C1 > 1, the inclusions

¹u0 > 0º \�
0
� Nı.¹u

"k > C1"kº/ \�0;
¹u"k > C1"kº \�0 � Nı.¹u0 > 0º/ \�

0

hold for ı � 1 and "k � ı.

Proof. We will just prove the first inclusion, since the second one is obtained similarly.
Let us suppose, for the sake of contradiction, that there exist a subsequence "k ! 0 and
points xk 2 ¹u0 > 0º \�0 such that

(7.1) dist.xk ; ¹u"k > C1"kº/ > ı:

From Theorem 7.1, and taking k � 1, we obtain

u"k .yk/ D sup
Bı=2.xk/

u"k .x/ �
1

2
� sup
Bı=2.xk/

u0.xk/ � c
ı

2
� C1"k

for some yk 2 Bı=2.xk/\ ¹u"k > C1"kº, which contradicts (7.1). This finishes the proof.
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Theorem 7.3. Given a sub-domain �0 b �, there exist constants C.universal/ > 0 and
�0.�

0; universal parameters/ > 0 such that, for any x0 2 F.u0; �
0/ and � � �0, there

holds

(7.2) C�1 �
1

�

«
@B�.x0/

u0.x/ dH
N�1
� C:

Proof. From Lipschitz regularity, the upper estimate is easily satisfied. To prove the other
inequality, we consider z" 2 @¹u" > 0º \�0 satisfying

jz" � x0j D dist.x0; @¹u" > 0º/:

From Theorem 7.2, we have z" ! x0. Thus, we may pass to the limit as "k ! 0 in the
thesis of Corollary 5.3, thereby finishing the proof of the theorem.

Remark 7.4. We will say that u0 is locally uniformly non-degenerate in F.u0;�
0/ prov-

ided condition (7.2) is satisfied. Such a condition is another way of saying that u0 enjoys
Lipschitz regularity and non-degeneracy property (in a integral sense).

Next, we see that the set ¹u0 > 0º has uniform density along F.u0; �
0/.

Theorem 7.5. Given �0 b �, there exists a constant c0.universal/ > 0 such that, for
x0 2 F.u0; �

0/, there holds

(7.3) LN .B�.x0/ \ ¹u0 > 0º/ � c0 �LN .B�.x0//;

for �� 1. In particular, LN .F.u0; �
0// D 0.

Proof. The estimate (7.3) follows as in the proof of Corollary 5.2. We conclude the
proof by making use of the Lebesgue differentiation theorem and a covering argument
(a Besicovitch–Vitali type result, see [38] for details).

Finally, we are in a position to establish the Hausdorff measure estimate of the limiting
free boundary.

Proof of Theorem 1.9. From Theorem 7.2, for k � 1 large enough, one has

Nı.F.u0; �
0// \ B�.x0/ � N4ı.@¹u

"k > C1"kº/ \ B2�.x0/:

Now, by assuming, "k � ı � � � dist.�0; @�/, the hypothesis of Theorem 6.11 are
verified, thereby implying the following estimate for the ı-neighborhood:

LN .Nı.F.u0; �
0// \ B�.x0// � C � ı�N�1:

Next, let ¹Brj ºj2N be a covering of F.u0;�
0/\B�.x0/ by balls with radii ı > 0 and

centered at free boundary points on F.u0; �
0/ \ B�.x0/. Hence,[

j2N

Brj � Nı.F.u0; �
0// \ B�Cı.x0/:
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Therefore, there exists a constant C.universal/ > 0 such that

HN�1
ı .F.u0; �

0/ \ B�.x0// � C
X
j

LN�1.@Brj / D N
C
ı

X
j

LN .Brj /

� N
C
ı

LN .Nı.F.u0; �
0// \ B�Cı.x0// � C.N /.�C ı/N�1 D C.N /�N�1Co.ı/:

Finally, by letting ı ! 0C we conclude the proof.

As a consequence of the previous statement, we conclude that F.u0; �
0/ has locally

finite perimeter (see [38] for a precise definition). Furthermore, the reduced free boundary,
i.e., Fred.u0; �

0/ WD @red¹u0 > 0º \�
0 has a total HN�1 measure in the sense that

HN�1.F.u0; �
0/ nFred.u0; �

0// D 0;

See Theorem 6.7 in [3] for a detailed proof. In particular, the limiting free boundary has
an outward vector for HN�1 a. e. in Fred.u0; �

0/ (see [38]).

7.1. Final comments: An ansatz on the free boundary condition

In the particular case coming from the homogeneous flame propagation theory,

�".t/ D
1

"
�
� t
"

�
;

where � is a continuous function supported in Œ0; 1�, then the limiting function satisfies

F.x;D2u/ D 0 in ¹u > 0º;

in view of the cutting lemma in [41], Lemma 6. In this case, even though the gradient
degeneracy is no longer present in the limiting equation, it does leave its signature on the
expected linear behavior along the limiting transition boundary.

Let us analyze one-dimensional profiles, i.e., the limiting configuration of the equation

.ju"xj
p
C �ju"xj

q/ � u"xx D �".u
"/ for � > 0:

By multiplying the above equation by u"xdx, we find the differential equality

(7.4) .ju"xj
pu"x C �ju

"
xj
qu"x/ � .u

"
xxdx/ D �".u

"/ � u"xdx:

However,

�".u
"/ � u"x dx D

d

dx
Z".u

"/;

where

Z".x/ WD

Z x="

0

�.s/ ds !

Z 1

0

�.s/ ds as "! 0C:

Performing a change of variables,

u"x.x/ D w.x/ H) u"xxdx D dw;
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we can write Z
.ju"xj

pu"x C �ju
"
xj
qu"x/ � u

"
xxdx D

Z
.jwjp C �jwjq/ wdw:

Thus, computing anti-derivatives in (7.4) and letting " ! 0, we obtain for the limiting
function u that

1

p C 2
ju0.x0/j

pC2
C

�

q C 2
ju0.x0/j

qC2
D

Z 1

0

�.s/ ds:

Therefore,

ju0.x0/j � min
²
pC2

s
.p C 2/

Z 1

0

�.s/ds;
qC2

s�q C 2
�

� Z 1

0

�.s/ds

³
:

In particular, by taking p D 0D �, we recover the classical free boundary condition in the
isotropic flame propagation theory, see [5].

8. Appendix

8.1. Harnack’s inequality

For the reader’s convenience, in this Appendix we gather the statements of two funda-
mental results in elliptic regularity, namely the weak Harnack inequality and the local
maximum principle. Such pivotal tools will provide a Harnack inequality (respectively,
local Hölder regularity) to viscosity solutions.

Theorem 8.1 (Weak Harnack’s inequality, [40], Theorem 2). Let u be a non-negative
continuous function such that

F0.x;ru;D
2u/ � 0 in B1

in the viscosity sense. Assume that F0 is uniformly elliptic in the X variable .see condi-
tion (A1)) and that F0 2 C 0.B1 � .RN n BMF/ � Sym.N // for some MF � 0. Further
assume that

(8.1) j�j � MF and F0.x; �; X/ � 0 H) M��;ƒ.X/ � �.x/j�j � f0.x/ � 0

for continuous functions f0 and � in B1. Then, for any q1 > N ,

kukLp0 .B1=4/ � C
°

inf
B1=2

uCmax
®
MF; kf0kLN .B1/

¯ ±
where p0 > 0 is universal and the constant C > 0 depends onN , q1, �,ƒ and k�kLq1 .B1/.

Theorem 8.2 (Local maximum principle, [40], Theorem 3). Let u be a continuous func-
tion satisfying

F0.x;ru;D
2u/ � 0 in B1
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in the viscosity sense. Assume that F0 is uniformly elliptic in the X variable and that
F0 2 C

0.B1 � .RN n BMF/ � Sym.N // for some MF � 0. Further assume that

(8.2) j�j � MF and F0.x; �; X/ � 0 H) MC
�;ƒ

.X/C �.x/j�j C f0.x/ � 0

for continuous functions f0 and � in B1. Then, for any p1 > 0 and q1 > N ,

sup
B1=4

u � C
®
kuCkLp1 .B1=2/ Cmax¹MF; kf0kLN .B1/º

¯
;

where C > 0 is a constant depending on N , q1, �, ƒ, k�kLq1 .B1/ and p1.

Let us recall that such results were proved by Imbert [40] by following the strategy of
the uniformly elliptic case, see [14], Section 4.2. Such a strategy is based on the so-called
L"-lemma, which establishes a polynomial decay for the measure of the super-level sets
of a non-negative super-solution for the Pucci extremal operator MC

�;ƒ
:

(8.3) LN .¹x 2 B1 W u.x/ > tº \ B1/ �
C

t"
�

Unfortunately, Imbert’s paper has a gap in the proof of (8.3). Such an error was
recently made up in a joint work with Silvestre, see [42], where an appropriateL"-estimate
was addressed. In fact, their proof holds for “Pucci extremal operators for large gradients”
defined, for a fixed � , by

zMC
�;ƒ

.D2u;ru/ WD

²
MC
�;ƒ

.D2u/Cƒjruj if jruj � �;
C1 otherwise ;

zM��;ƒ.D
2u;ru/ WD

²
M�
�;ƒ

.D2u/ �ƒjruj if jruj � �;
�1 otherwise.

The L"-estimate is proved to hold whenever � � "0 is universal (see Theorem 5.1 in [42]).
Moreover, notice that the ellipticity condition zM�

�;ƒ
is consistent with (8.1) if we take

�.x/�ƒ. More precisely, if (8.1) holds and u is a super-solution for F0.x;rw;D2w/D

0, then it is also a super-solution for zM�
�;ƒ

with right-hand side f0. An analogous reason-

ing is valid for zMC
�;ƒ

and (8.2).
Once the L"-estimate is derived, the proof of Theorem 8.1 is exactly as the one in [40]

which is, in turn, a modification of the uniformly elliptic case in Theorem 4.8a of [14].
As for Theorem 8.2, it also follows from (8.3) by assuming (in a fist moment) that the L"

norm of uC is small and by obtaining the general result by interpolation. Indeed, the
smallness of the L" norm readily implies (8.3), which in turn gives that u is bounded (see
Lemma 4.4 in [14], which is adapted in Section 7.2 of [40]).

Notice that our class of operators fits in this scenario by setting

F0.x;rv;D
2v/ WD H.x;rv/F.x;D2v/ � f .x/

and

f0.x/ WD
L�11 f

C.x/

"
p
0 C a.x/"

q
0

for suitable "0 > 0:
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In effect, we have that whenever

H.x;rv/F.x;D2v/ � f .x/ in B1

in the viscosity sense, then the ellipticity condition (A1) of F ensures that

M��;ƒ.D
2v/ � F.x;D2v/ �

f .x/

H.x;rv/
�

f C.x/

H.x;rv/

whenever jrvj � MF D "0 > 0, so that

M��;ƒ.D
2v/ �ƒjrvj � f0.x/ �

� 1

H.x;rv/
�

L�11
"
p
0 C a.x/"

q
0

�
f C.x/ � 0:

Recall that the constants obtained in [42] are monotone with respect to � and bounded
away from zero and infinity, so we get a uniform estimate as (8.3) for supersolutions of
G Œv� WD H.x;rv/F.x;D2v/.

Therefore, in such a situation we have (recall �.x/ � ƒ), from Theorem 8.1,

(8.4) kvkLp0 .B1=4/ � C
°

inf
B1=2

v C "0 C kf0kLN .B1/

±
� „0;

where, if "0 2 .0; 1�,

„0 D C
°

inf
B1=2

v Cmin
°
1;
h
.q C 1/ N

p
jB1jL

�1
1

 f C

1C a


L1.B1/

i1=.qC1/±±
and if "0 2 .1;1/,

„0 D C
°

inf
B1=2

v Cmin
°
1;
h
.p C 1/ N

p
jB1jL

�1
1

 f C

1C a


L1.B1/

i1=.pC1/±±
:

Notice that we have used in above inequalities that the function

.0;1/ 3 t 7! h.t/ D t C
1

t s

�
N
p
jB1jL

�1
1

 f C

1C a


L1.B1/

�
is optimized (i.e., it reaches its lowest upper bound) when

t� D
�
s N
p
jB1jL

�1
1

 f C

1C a


L1.B1/

�1=.sC1/
for s 2 .0;1/:

In conclusion, in any case, we obtain (since 0 < p � q <1)

kvkLp0 .B1=4/ � C
°

inf
B1=2

v C .q C 1/1=.qC1/…f C;a
p;q

±
;

where

…f C;a
p;q WD max

°h
N
p
jB1jL

�1
1

 f C

1C a


L1.B1/

i 1
pC1
;
h
N
p
jB1jL

�1
1

 f C

1C a


L1.B1/

i 1
qC1
±
:
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Similarly, from Theorem 8.2, if

H.x;rv/F.x;D2v/ � f .x/ in B1

in the viscosity sense, we again have

MC
�;ƒ

.D2v/ � F.x;D2v/ �
f .x/

H.x;rv/
� �

f �.x/

H.x;rv/
whenever "0 D MF � jruj;

and we can set, similarly as above,

f0.x/ WD
L�11 f

�.x/

"
p
0 C a.x/"

p
0

to get

MC
�;ƒ

.D2v/Cƒjrvj C f0.x/ �
� L�11
"
p
0 C a.x/"

p
0

�
1

H.x;rv/

�
f �.x/ � 0:

Therefore, in such a setting, we have from Theorem 8.2,

(8.5) sup
B1=2

v � kuCkLp1 .B1/ C "0 C kf0kLN .B1/ � „1;

where, as before, if "0 2 .0; 1�,

„1 D C
°
kvCkLp1 .B1/ Cmin

°
1;
h
.q C 1/ N

p
jB1jL

�1
1

 f �

1C a


L1.B1/

i1=.qC1/±±
;

and if "0 2 .1;1/;

„1 D C
°
kvCkLp1 .B1/ Cmin

°
1;
h
.p C 1/ N

p
jB1jL

�1
1

 f �

1C a


L1.B1/

i1=.pC1/±±
:

Therefore, in any case (since 0 < p � q <1),

sup
B1=2

v � C
®
kvCkLp1 .B1/ C .q C 1/

1=.qC1/…f �;a
p;q

¯
;

thereby finishing this analysis.
Finally, by combining (8.4) and (8.5), we obtain the following Harnack inequality for

viscosity solutions.

Theorem 8.3 (Harnack’s inequality). Let u be a non-negative viscosity solution to

F0.x;rv;D
2v/ D 0 in B1:

Then,
sup
B1=2

u.x/ � C �
°

inf
B1=2

u.x/C .q C 1/1=.qC1/…f;a
p;q

±
;

where C > 0 depends only on N , � and ƒ.
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Remark 8.4 (Harnack’s inequality, scaled version). For our purposes, it will be useful to
obtain a scaled version of the Harnack inequality. Indeed, let v be a non-negative viscosity
solution to

G .x;rv;D2v/ D f .x/ in Br for a fixed r 2 .0;1/;

where (A0)–(A2), (1.2) and (1.3) are in force. Then,

sup
Br=2

v.x/ � C �
°

inf
Br=2

v.x/C .q C 1/
1
qC1 max

®
r
pC2
pC1 ; r

qC2
pC1

¯
…f;a
p;q

±
;

where C.N; �;ƒ/ > 0.

Finally, from Harnack’s inequality (Theorem 8.3) and making use of arguments in
Proposition 4.10 of [14], we can obtain, in a standard way, the following interior Hölder
regularity result (cf. [30], Theorem 2).

Theorem 8.5 (Local Hölder estimate). Let u be a viscosity solution to

F0.x;rv;D
2v/ D 0 in B1;

where f is a continuous and bounded function. Then, u 2 C 0;˛loc .B1/ for some universal
˛ 2 .0; 1/. Moreover,

kukC 0;˛.B1=2/ � C �
®
kukL1.B1/ C .q C 1/

1=.qC1/…f
p;q

¯
;

where C > 0 depends only on N , � and ƒ.

8.2. An Alexandroff–Bakelman–Pucci type estimate

In the sequel, we will deliver an ABP estimate adapted to our context of fully nonlin-
ear models with non-homogeneous degeneracy (cf. Theorem 1 in [29] and Theorem 1.1
in [43]). Such an estimate is pivotal in order to obtain universal bounds for viscosity solu-
tions in terms of data of the problem.

Theorem 8.6 (Alexandroff–Bakelman–Pucci estimate). Assume (A0)–(A2) hold. Then
there exists C D C.N; �; p; q; diam.�// > 0 such that for any viscosity sub-solution
.respectively, super-solution/ u 2 C 0.�/ of (2.1) in ¹x 2 � W u.x/ > 0º .respectively, in
¹x 2 � W u.x/ < 0º/ satisfies

sup
�

uC.x/ � sup
@�

uC.x/C C � diam.�/max
° f �

1C a

1=.pC1/
LN .�C.uC//

;
 f �

1C a

1=.qC1/
LN .�C.uC//

±
.respectively,

sup
�

u�.x/ � sup
@�

u�.x/C C � diam.�/max
° f C

1C a

1=.pC1/
LN .�C.u�//

;
 f C

1C a

1=.qC1/
LN .�C.u�//

±�
where

�C.u/ WD
®
x 2 � W 9 � 2 RN such that u.y/ � u.x/C h�; y � xi 8y 2 �

¯
:

In particular,

kukL1.�/ � kukL1.@�/ C C � diam.�/max
° f

1C a

1=.pC1/
LN .�/

;
 f

1C a

1=.qC1/
LN .�/

±
:
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Proof. We just prove the first estimate; the second one follows by similar reasoning. In
the sequel, we will show that our class of operators fits into the framework of Theorem 1
in [40]. For that purpose, as before, let us consider

F0.x; �;X/ WD H.x; �/F.x;X/ � f .x/;

f0.x/ WD
L�11 f

C.x/

"
p
0 C a.x/"

q
0

for fixed "0 2 .0;1/:

Now, if we have (in the viscosity sense)

H.x;ru/F.x;D2u/ � f .x/ in B1;

then condition (A1) and by supposing jrvj � MF D "0 > 0 ensure that

M��;ƒ.D
2u/ � F.x;D2u/ �

f C.x/

H.x;ru/
�

Consequently,

M��;ƒ.D
2u/ �ƒjruj � f0.x/ �

� 1

H.x;ru/
�

L�11
"
p
0 C a.x/"

q
0

�
f C.x/ � 0:

Therefore, u is a viscosity super-solution of a uniformly elliptic problem with “large”
gradient. From ABP estimate in Theorem 1 of [40] we obtain that

sup
�

u�.x/ � sup
@�

u�.x/C C � diam.�/
�
"0 C kf0kLN .�C.u�//

�
:

We split the analysis into two cases. First, if "0 2 .0; 1�, then

sup
�

u�.x/ � sup
@�

u�.x/C C �diam.�/
�
"0 C L

�1
1

1

"
q
0

 f �

1C a


LN .�C.u�//

�
� sup

@�

u�.x/C C �diam.�/min
°
1;
�
.qC1/L�11

 f �
1Ca


LN .�C.u�//

�1=.qC1/±
(8.6)

On the other hand, if "0 2 .1;1/, then

sup
�

u�.x/ � sup
@�

u�.x/

C C � diam.�/min
°
1;
�
.p C 1/L�11

 f �

1C a


LN .�C.u�//

�1=.pC1/±
:(8.7)

Therefore, by combining inequalities (8.6) and (8.7) we conclude that

sup
�

u�.x/ � sup
@�

u�.x/C C.diam.�/; p; q; L1; ƒ/

�max
° f �
1Ca

1=.pC1/
LN .�C.u�//

;
 f �
1Ca

1=.qC1/
LN .�C.u�//

±
:
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8.3. An inhomogeneous Hopf type result

In this final part, we will present a pivotal tool in proving uniform Lipschitz estimates of
solutions, namely a quantitative version of the Hopf lemma, in the inhomogeneous setting
for fully nonlinear problems with non-homogeneous degeneracy (cf. Lemma 2.10 in [57]
for the uniformly elliptic and homogeneous case).

Lemma 8.7 (Inhomogeneous Hopf type lemma). Assume that (A0)–(A1) and (1.2) hold.
Let u be a positive viscosity solution to

G .x;ru;D2u/ D f .x/ in BR.z0/;

where f 2 L1.BR.z0//. Assume further that for some x0 2 @BR.z0/,

u.x0/ D 0 and
@u

@�
.x0/ � =;

where � is the inward normal direction at x0. Then, for any r 2 .0; 1/, there exists a
constant C0.universal/ > 0 such that

sup
BrR=2.z0/

u.x/�C0R �
®
r=Cmax

®
.rpC2R/1=.pC1/; .rpC2R/1=.qC1/

¯
…f;rp�qa.z0CrRx/
p;q

¯
:

Proof. First, it is sufficient to consider the scaled function vz0;RWB1 ! R given by

vz0;R.x/ WD
u.z0 C rRx/

R
;

for r 2 .0; 1/ to be determined a posteriori.
In effect, vz0;R is a non-negative viscosity solution of

Hz0;R.y;rvz0;R/Fz0;R.x;D
2vz0;R/ D fz0;R.x/ in B1;

where 8̂̂̂<̂
ˆ̂:
Fz0;R.x;X/ WD r

2RF
�
z0 C rRx;

1
r2R

X
�
;

Hz0;R.x; �/ WD r
pH

�
z0 C rRx;

1
r
�
�
;

az0;R.x/ WD r
p�q a.z0 C rRx/;

fz0;R.x/ WD r
pC2Rf .z C rRx/:

Moreover, Fz0;R;Hz0;R and az0;R satisfy the structural assumptions (A0)–(A2), (1.2)
and (1.3).

Now, let
A1=2;1 WD B1 n B1=2

and define a barrier function ˆWA1=2;1 ! RC given by

ˆ.x/ D �0 � .e
�ıjxj2

� e�ı/;

where �0; ı > 0 will be chosen later on. The gradient and the Hessian of ˆ in A1=2;1 are

rˆ.x/ D �2�0 ıxe
�ıjxj2 and D2ˆ.x/ D 2�0 ı e

�ıjxj2 .2ıx ˝ x � IdN/ :

Next, we will show that such a barrier is a viscosity solution to

(8.8) Hz0;R.x;rˆ/Fz0;R.x;D
2ˆ/ > fz0;R.x/ in A1=2;1

adjusting appropriately the values of �0; ı > 0 and r > 0.
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Notice that for ı > ƒ.N � 1/=.2�/, the barrier ˆ is a convex and decreasing function
in the annular region A1=2;1. This and the uniform ellipticity of Fz0;R (see (A1)) give

Fz0;R.x;D
2ˆ/ �M��;ƒ.D

2ˆ.x// D 2�0 ı e
�ıjxj2 Œ2ı� �ƒ.N � 1/�

� 2�0 ı e
�ı Œ2ı� �ƒ.N � 1/� in A1=2;1:

Assumption (1.2) further yields

Hz0;R.x;rˆ/ D r
pH

�
z0 C rRx;

1

r
rˆ

�
� rp

� 1
rp
jrˆjp C a.z0 C rRx/

1

rq
jrˆjq

�
� .2ı�0 e

�ı/p in A1=2;1

(recall q � p). These two inequalities together yield

Hz0;R.x;rˆ/Fz0;R.x;D
2ˆ/ � .2ı�0 e

�ı/pC1 Œ2ı� �ƒ.N � 1/�

> rpC2Rkf kL1.ArR=2;rR/;

which holds true provided we choose r � 1 small (depending on �0 and ı).
Therefore, ˆ is a strict subsolution.
Now, by choosing

�0 WD .e
�ı=4
� e�ı/�1 � inf

@B1=2

vz0;R.x/ > 0;

it follows that
ˆ.x/ � vz0;R.x/ on @A1=2;1:

Thus, by the comparison principle (see Lemma 2.4),

(8.9) ˆ.x/ � vz0;R.x/ in A1=2;1:

Therefore, if we write y0 WD .x0 � z0/=.rR/, and taking into account (8.9) and the
hypotheses u.x0/ D 0, we obtain concerning the normal derivatives in the direction �
at x0 the following:

�0 ı e
�ı
�
@ˆ.y0/

@�
�
@vz0;R.y0/

@�
� r=:

Thus,
inf
@B1=2

vz0;R.x/ � r=ı
�1
� .e�

3
4 ı � 1/:

On the other hand, by the Harnack inequality (see Theorem 8.3) we have that

sup
B1=2

vz0;R.x/ � C �
°

inf
B1=2

vz0;RC.qC1/
1
qC1 max

°
.rpC2R/

1
pC1 ; .rpC2R/

1
qC1

±
…
f;az0;R
p;q

±
� C �

°
inf
@B1=2

vz0;RC.qC1/
1
qC1 max

®
.rpC2R/

1
pC1 ; .rpC2R/

1
qC1
¯
…
f;az0;R
p;q

±
� C0 �

°
r=Cmax

®
.rpC2R/

1
pC1 ; .rpC2R/

1
qC1
¯
…
f;az0;R
p;q

±
;
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and by using the definition of vz0;R we conclude that

sup
BrR=2.z0/

u.x/ � C0R �
°
r=Cmax

®
.rpC2R/1=.pC1/; .rpC2R/1=.qC1/

¯
…
f;az0;R
p;q

±
:

Acknowledgements. This manuscript is part of the second author’s Ph. D. Thesis. He
would like to thank the Department of Mathematics at Universidade Federal do Ceará for
fostering a pleasant and productive scientific atmosphere, which has benefited a lot the
final outcome of this project. We are very grateful to the anonymous referee for her/his
careful reading of our manuscript.

Funding. This work was partially supported by Capes-Brazil and CNPq-Brazil. E. C.
Bezerra Júnior thanks Capes-Brazil (Doctoral Scholarship). J. V. da Silva and G. C. Ricarte
have been partially supported by CNPq-Brazil under Grants no. 310303/2019-2 and no.
303078/2018-9.

References

[1] Alt, H. W. and Caffarelli, L. A.: Existence and regularity for a minimum problem with free
boundary. J. Reine Angew. Math. 325 (1981), 105–144.

[2] Araújo, D. J., Ricarte, G. C. and Teixeira, E. V.: Geometric gradient estimates for solutions
to degenerate elliptic equations. Calc. Var. Partial Differential Equations 53 (2015), no. 3-4,
605–625.

[3] Araújo, D. J., Ricarte, G. C. and Teixeira, E. V.: Singularly perturbed equations of degenerate
type. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 3, 655–678.

[4] Baroni, P., Colombo, M. and Mingione, G.: Regularity for general functionals with double
phase. Calc. Var. Partial Differential Equations 57 (2018), no. 2, Art. 62, 48 pp.

[5] Berestycki, H., Caffarelli, L. A. and Nirenberg, L.: Uniform estimates for regularization of free
boundary problems. In Analysis and partial differential equations, pp. 567–619. Lecture Notes
in Pure and Appl. Math. 122, Dekker, New York, 1990.

[6] Birindelli, I. and Demengel, F.: Comparison principle and Liouville type results for singular
fully nonlinear operators. Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 2, 261–287.

[7] Birindelli, I. and Demengel, F.: Eigenvalue, maximum principle and regularity for fully non
linear homogeneous operators. Commun. Pure Appl. Anal. 6 (2007), no. 2, 335–366.

[8] Birindelli, I. and Demengel, F.: The Dirichlet problem for singular fully nonlinear operators.
In Dynamical systems and differential equations. Proceedings of the 6th AIMS International
Conference, pp. 110–121. Discrete Contin. Dyn. Syst. 2007, suppl.

[9] Birindelli, I. and Demengel, F.: Regularity for radial solutions of degenerate fully nonlinear
equations. Nonlinear Anal. 75 (2012), no. 17, 6237–6249.

[10] Birindelli, I. and Demengel, F.: C 1;ˇ regularity for Dirichlet problems associated to fully
nonlinear degenerate elliptic equations. ESAIM Control Optim. Calc. Var. 20 (2014), no. 4,
1009–1024.



Fully nonlinear singularly perturbed models with non-homogeneous degeneracy 161

[11] Birindelli, I. and Demengel, F.: Hölder regularity of the gradient for solutions of fully nonlin-
ear equations with sub linear first order term. In Geometric methods in PDE’s, pp. 257–268.
Springer INdAM Ser. 13, Springer, Cham, 2015.

[12] Birindelli, I., Demengel, F. and Leoni, F.: C 1; regularity for singular or degenerate fully non-
linear equations and applications. NoDEA Nonlinear Differential Equations Appl. 26 (2019),
no. 5, article no. 40, 13 pp.

[13] Caffarelli, L. A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. of
Math. (2) 130 (1989), no. 1, 189–213.

[14] Caffarelli, L. A. and Cabré, X.: Fully nonlinear elliptic equations. American Mathematical
Society Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.

[15] Caffarelli, L. A., Lee, K.-A. and Mellet, A.: Singular limit and homogenization for flame
propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172 (2004), no. 2, 153–190.

[16] Caffarelli, L. A., Lederman, C. and Wolanski, N.: Uniform estimates and limits for a two phase
parabolic singular perturbation problem. Indiana Univ. Math. J. 46 (1997), no. 2, 453–489.

[17] Caffarelli, L. A., Lederman, C. and Wolanski, N.: Pointwise and viscosity solutions for the
limit of a two phase parabolic singular perturbation problem. Indiana Univ. Math. J. 46 (1997),
no. 3, 719–740.

[18] Caffarelli, L. A. and Salsa, S.: A geometric approach to free boundary problems. Graduate
Studies in Mathematics 68, American Mathematical Society, Providence, RI, 2005.

[19] Crandall, M., Ishii, H. and Lions, P.-L.: User’s guide to viscosity solutions of second order
partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67.

[20] Danielli, D., Petrosyan, A. and Shahgholian, H.: A singular perturbation problem for the
p-Laplace operator. Indiana Univ. Math. J. 52 (2003), no. 2, 457–476.

[21] da Silva, J. V., Leitão, R. A. and Ricarte, G. C.: Geometric regularity estimates for fully non-
linear elliptic equations with free boundaries. Math. Nachr. 294 (2021), no. 1, 38–55.

[22] da Silva, J. V., Rampasso, G. C., Ricarte, G. C. and Vivas, H.: Free boundary regularity for a
class of one-phase problems with non-homogeneous degeneracy. To appear in Israel J. Math.,
DOI:10.1007/s11856-022-2392-5.

[23] da Silva, J. V. and Ricarte, G. C.: An asymptotic treatment for non-convex fully nonlinear
elliptic equations: global Sobolev and BMO type estimates. Commun. Contemp. Math. 21
(2019), no. 7, 1850053, 28 pp.

[24] da Silva, J. V. and Ricarte, G. C.: Geometric gradient estimates for fully nonlinear models with
non-homogeneous degeneracy and applications. Calc. Var. Partial Differential Equations 59
(2020), no. 5, article no. 161, 33 pp.

[25] da Silva, J. V., Rossi, J. D. and Salort, A.: Regularity properties for p-dead core problems and
their asymptotic limit as p !1. J. Lond. Math. Soc. (2) 99 (2019), no. 1, 69–96.

[26] da Silva, J. V. and Salort, A.: Sharp regularity estimates for quasi-linear elliptic dead core
problems and applications. Calc. Var. Partial Differential Equations 57 (2018), no. 3, article
no. 83, 24 pp.

[27] da Silva, J. V. and Vivas, H.: The obstacle problem for a class of degenerate fully nonlinear
operators. Rev. Mat. Iberoam. 37 (2021), no. 5, 1991–2020.

[28] da Silva, J. V. and Vivas, H.: Sharp regularity for degenerate obstacle type problems: a geo-
metric approach. Discrete Contin. Dyn. Syst. 41 (2021), no. 3, 1359–1385.

https://doi.org/10.1007/s11856-022-2392-5


E. C. Bezerra Júnior, J. V. da Silva and G. C. Ricarte 162

[29] Dávila, G., Felmer, P. and Quaas, A.: Alexandroff–Bakelman–Pucci estimate for singular
or degenerate fully nonlinear elliptic equations. C. R. Math. Acad. Sci. Paris 347 (2009),
no. 19-20, 1165–1168.

[30] De Filippis, C.: Regularity for solutions of fully nonlinear elliptic equations with nonhomo-
geneous degeneracy. Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 1, 110–132.

[31] De Filippis, C. and Mingione, G.: On the regularity of minima of non-autonomous functionals.
J. Geom. Anal. 30 (2020), no. 2, 1584–1626.

[32] De Filippis, C. and Mingione, G.: Manifold constrained non-uniformly elliptic problems.
J. Geom. Anal. 30 (2020), no. 2, 1661–1723.

[33] De Filippis, C. and Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch.
Ration. Mech. Anal. 242 (2021), no. 2, 973–1057.

[34] De Filippis, C. and Oh, J.: Regularity for multi-phase variational problems. J. Differential
Equations 267 (2019), no. 3, 1631–1670.

[35] De Silva, D., Ferrari, F. and Salsa, S.: Free boundary regularity for fully nonlinear non-
homogeneous two-phase problems. J. Math. Pures Appl. (9) 103 (2015), no. 3, 658–694.

[36] dos Prazeres, D. and Teixeira, E. V.: Cavity problems in discontinuous media. Calc. Var. Partial
Differential Equations 55 (2016), no. 1, Art. 10, 15 pp.

[37] Evans, L. C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations.
Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363.

[38] Evans, L. C. and Gariepy, L. C.: Measure theory and fine properties of functions. Studies in
Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[39] Holmes, M. H.: Introduction to perturbation methods. Second edition. Texts in Applied Math-
ematics 20, Springer, New York, 2013.

[40] Imbert, C.: Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degener-
ate/singular fully non-linear elliptic equations. J. Differential Equations 250 (2011), no. 3,
1553–1574.

[41] Imbert, C. and Silvestre, L.: C 1;˛ regularity of solutions of some degenerate fully non-linear
elliptic equations. Adv. Math. 233 (2013), 196–206.

[42] Imbert, C. and Silvestre, L.: Estimates on elliptic equations that hold only where the gradient
is large. J. Eur. Math. Soc. (JEMS) 18 (2016), no. 6, 1321–1338.

[43] Junges Miotto, T.: The Aleksandrov–Bakelman–Pucci estimates for singular fully nonlinear
operators. Commun. Contemp. Math. 12 (2010), no. 4, 607–627.

[44] Karakhanyan, A.: Regularity for the two phase singular perturbation problems. Proc. Lond.
Math. Soc. (3) 123 (2021), no. 5, 433–459.

[45] Krylov, N. V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk
SSSR Ser. Mat. 46 (1982), no. 3, 487–523, 670.

[46] Krylov, N. V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv.
Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75–108.

[47] Lederman, C., Vázquez, J. L. and Wolanski, N.: Uniqueness of solution to a free boundary
problem from combustion. Trans. Amer. Math. Soc. 353 (2001), no. 2, 655–692

[48] Lederman, C. and Wolanski, N.: Viscosity solutions and regularity of the free boundary for the
limit of an elliptic two phase singular perturbation problem. Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4) 27 (1998), no. 2, 253–288 (1999).



Fully nonlinear singularly perturbed models with non-homogeneous degeneracy 163

[49] Lederman, C. and Wolanski, N.: A two phase elliptic singular perturbation problem with a
forcing term. J. Math. Pures Appl. (9) 86 (2006), no. 6, 552–589.

[50] Lederman, C. and Wolanski, N.: A local monotonicity formula for an inhomogeneous singular
perturbation problem and applications. Ann. Mat. Pura Appl. (4) 187 (2008), no. 2, 197–220.

[51] Lederman, C. and Wolanski, N.: A local monotonicity formula for an inhomogeneous singular
perturbation problem and applications. II. Ann. Mat. Pura Appl. (4) 189 (2010), no. 1, 25–46.

[52] Lederman, C. and Wolanski, N.: An inhomogeneous singular perturbation problem for the
p.x/-Laplacian. Nonlinear Anal. 138 (2016), 300–325.

[53] Liu, W. and Dai, G.: Existence and multiplicity results for double phase problem. J. Differential
Equations 265 (2018), no. 9, 4311–4334.

[54] Martínez, S. and Wolanski, N.: A singular perturbation problem for a quasi-linear operator
satisfying the natural growth condition of Lieberman. SIAM J. Math. Anal. 41 (2009), no. 1,
318–359.

[55] Moreira, D. and Teixeira, E. V.: A singular perturbation free boundary problem for elliptic
equations in divergence form. Calc. Var. Partial Differential Equations 29 (2007), no. 2,
161–190.

[56] Moreira, D. and Wang, L.: Singular perturbation method for inhomogeneous nonlinear free
boundary problems. Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1237–1261.

[57] Ricarte, G. C. and Silva, J. V.: Regularity up to the boundary for singularly perturbed fully
nonlinear elliptic equations. Interfaces Free Bound. 17 (2015), no. 3, 317–332.

[58] Ricarte, G. C., Silva, J. V. and Teymurazyan, R.: Cavity type problems ruled by infinity Lapla-
cian operator. J. Differential Equations 262 (2017), no. 3, 2135–2157.

[59] Ricarte, G. C. and Teixeira, E. V.: Fully nonlinear singularly perturbed equations and asymp-
totic free boundaries. J. Funct. Anal. 261 (2011), no. 6, 1624–1673.

[60] Ricarte, G. C., Teymurazyan, R. and Urbano, J. M.: Singularly perturbed fully nonlinear para-
bolic problems and their asymptotic free boundaries. Rev. Mat. Iberoam. 35 (2019), no. 5,
1535–1558.

[61] Silvestre, L. and Teixeira, E. V.: Regularity estimates for fully non linear elliptic equations
which are asymptotically convex. In Contributions to nonlinear elliptic equations and systems,
pp. 425–438. Progr. Nonlinear Differential Equations Appl. 86, Birkhäuser/Springer, Cham,
2015.

[62] Teixeira, E. V.: Optimal regularity of viscosity solutions of fully nonlinear singular equations
and their limiting free boundary problems. XIV School on Differential Geometry (Portuguese).
Mat. Contemp. 30 (2006), 217–237.

[63] Teixeira, E. V.: Elliptic regularity and free boundary problems: an introduction. Publicações
Matemáticas do IMPA, 26o Colóquio Brasileiro de Matemática, Instituto Nacional de
Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2007.

[64] Teixeira, E. V.: A variational treatment for elliptic equations of the flame propagation type:
regularity of the free boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 4,
633–658.

[65] Trudinger, N. S.: Fully nonlinear, uniformly elliptic equations under natural structure condi-
tions. Trans. Amer. Math. Soc. 278 (1983), no. 2, 751–769.

[66] Trudinger, N. S.: Regularity of solutions of fully nonlinear elliptic equations. Boll. Un. Mat.
Ital. A (6) 3 (1984), no. 3, 421–430.



E. C. Bezerra Júnior, J. V. da Silva and G. C. Ricarte 164

[67] Weiss, G. S.: A singular limit arising in combustion theory: fine properties of the free bound-
ary. Calc. Var. Partial Differential Equations 17 (2003), no. 3, 311–340.

[68] Zajicek, L.: Porosity and � -porosity. Real Anal. Exchange 13 (1987/88), 314–350.

Received April 26, 2021. Published online January 18, 2022.

Elzon C. Bezerra Júnior
Departamento de Matemática, Universidade Federal do Ceará, UFC,
Fortaleza, CE, 60455-760, Brazil;
bezerraelzon@gmail.com

João Vitor da Silva
Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica,
Universidade Estadual de Campinas, UNICAMP, Cidade Universitária Zeferino Vaz,
Campinas, 13083-859 SP, Brazil;
jdasilva@unicamp.br

Gleydson C. Ricarte
Departamento de Matemática, Universidade Federal do Ceará, UFC,
Fortaleza, CE, 60455-760, Brazil;
ricarte@mat.ufc.br

mailto:bezerraelzon@gmail.com
mailto:jdasilva@unicamp.br
mailto:ricarte@mat.ufc.br

	1. Introduction
	2. Background results
	3. Lipschitz regularity estimates
	4. Geometric non-degeneracy
	5. Some important implications from Theorems 1.4 and 1.5
	6. Hausdorff measure estimates
	7. Limiting scenario as epsilon to 0+
	8. Appendix
	References

