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Cauchy’s surface area formula in the Heisenberg groups

Yen-Chang Huang

Abstract. We show an analogue of Cauchy’s surface area formula for the Heisen-
berg groups Hn for n� 1, which states that the p-area of any compact hypersurface†
in Hn with its p-normal vector defined almost everywhere on † is the average of its
projected p-areas onto the orthogonal complements of all p-normal vectors of the
Pansu spheres (up to a constant). The formula provides a geometric interpretation of
the p-areas defined by Cheng–Hwang–Malchiodi–Yang in H1 and Cheng–Hwang–
Yang in Hn for n � 2. We also characterize the projected areas for rotationally
symmetric domains in Hn; namely, for any rotationally symmetric domain with
boundary in Hn, its projected p-area onto the orthogonal complement of any normal
vector of the Pansu spheres is a constant, independent of the choice of the projected
directions.

1. Introduction

One of the most important problems in integral geometry is how to obtain geometric
information (for instance, lengths, surface areas, and volumes) of objects by lower dimen-
sional geometric quantities. Cauchy’s surface area formula in Rn provides one of the
solutions to this problem. It says that the surface area of any convex body in the n-
dimensional Euclidean space is equal to the average of the areas of its orthogonal pro-
jections onto all subspaces. By a convex body we mean a compact convex set in Rn with
non-empty interior. The formula was originally proved by Augustin Cauchy in 1841 [4] for
n D 2, and in 1850 [5] for n D 3. After that, the formula was generalized by Kubota [19],
Minkowski [23] and Bonnesen [3]. The literature on the formula and its applications to
other scientific fields is quite large; for instance, we refer the interested readers to [13,
18, 29, 30] for the viewpoints of integral geometry and convex geometry, and to [32]
and [22], p. 290, for the applications to the measurement of elementary particles in chem-
istry. Recently, a simple proof of the formula, that used as key observation an algebraic
property for the Minkowski sum of sets in Rn, was presented in [31].

Let K be any compact convex subset in Rn. If V is an .n � 1/-dimensional sub-
space of Rn, we denote by KjV the orthogonal projection of K onto V . Let !n�1 be the
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.n � 1/-dimensional volume of the unit ball in Rn�1. We first recall the classical result
derived by Cauchy.

Theorem 1.1 (Cauchy’s surface area formula, Theorem 5.5.2 in [18]). For any n-dimen-
sional compact convex subset K in Rn, if S.K/ denotes the surface area of K, we have

S.K/ D
1

2!n�1

Z
u2Sn�1

�n�1.Kju
?/ dSu;

where Sn�1 is the .n � 1/-dimensional standard unit sphere, dSu is the surface area ele-
ment at u 2 Sn�1, and �n�1.Kju?/ is the .n � 1/-dimensional volume of the orthogonal
projection of K onto the subspace u? D ¹v 2 RnI v is perpendicular to uº.

The term �n�1.Kju
?/ is the projected area of K onto the subspace in Rn perpendic-

ular to the vector u, and it can be explicitly represented by the integral formula

(1.1) �n�1.Kju
?/ D

Z
v2Sn�1

ju ? vj dSv;

where v is the outward unit normal vector to the surface of K, dSv is the surface area
element at v 2 Sn�1, and u ? v is the standard inner product of vectors u and v in Rn.
The identity (1.1) can be proved by applying the discrete form of the analogous identity
on an n-polygon and taking the limit as the value n goes to infinity. See [18], p. 56,
for details. In particular, when K D Sn�1, the following lemma shows that the surface
area of the orthogonal projection of the standard unit sphere is independent of the choice
of the projected direction. This natural property for Sn plays a key role in the proof of
Theorem 1.1. Basically, the proof of the main result (Theorem 1.5) is inspired by that of
Lemma 1.2.

Lemma 1.2 ([18], Lemma 5.5.1). For any u 2 Sn�1 � Rn,

(1.2) �n�1.S
n�1
ju?/ D

Z
v2Sn�1

ju ? vj dSv D 2!n�1:

Notice that since the projection of the sphere onto the .n�1/-dimensional subspace u?

is counted twice (from the “front” and the “back” of the subspace u?), the coefficient 1=2
comes in as shown in (1.2). Roughly speaking, the identities (1.1) and (1.2) precise the
following geometric intuition: since the integrand ju ? vj on the right-hand side of those
identities is the absolute value of the cosine of the angle between the vectors u and v, the
quantity ju ? vj dSv is the projected area of the infinitesimal area at v 2 Sn�1 onto the
plane u?.

We also mention that the reversed statement of Lemma 1.2 is not true in general. To
be precise, a convex body in Rn with equal projected areas along any direction is not
necessarily a sphere. For instance, a Reuleaux triangle in R2 is not a circle but a convex
body with constant width and equal projected area along any direction.

Here is the key observation for the proofs of Theorem 1.1 and Lemma 1.2. Both proofs
are based on the invariant translations in the homogeneous space Rn. Suppose u.0/ is the
direction that K (or Sn�1 for Lemma 1.2) is projected along. With the inner product
u ? v in (1.2) we mean that the value u.p/ ? v.p/ is taken at the boundary point p 2 @K
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of K in the tangent space TRnp of Rn at p by considering the parallel transport of the
vector u.0/ at the origin to the outward unit normal u.p/ on the boundary @K. Hence,
when considering the Euclidean space Rn as a Lie group with the natural left translation
Lpq WD p C q for any points p and q in Rn, we can write

(1.3) ju.p/ ? v.p/j D jLp�u.0/ ? v.p/j;

where Lp� is the pushforward of the left translation Lp . In the present work, we will
show the analogues of Theorem 1.1 and Lemma 1.2 for the Heisenberg groups, which
are regarded as flat models of pseudohermitian manifolds. The notion for parallel trans-
port in Rn shall be replaced by left invariant translations in the Heisenberg groups Hn

for n � 1. Instead of using the standard unit sphere Sn�1 in Rn to derive Cauchy’s sur-
face area formula (namely, Lemma 1.2), we shall use the Pansu spheres (defined in next
section, equation (2.4)), that seem to be a more natural model in Hn. See Remark 3.1 for
a geometric interpretation of this approach. We also mention that the approach of group
translations weaken the assumption of convexity of domains in the Euclidean spaces. Here
we only need that the boundary is of class C 2 and such that most of the p-normal vectors
can be defined on it. See the paragraph before Definition 1.3 below.

Now we give some background (see next section for more details). The Heisenberg
group Hn for n � 1 is defined as the Euclidean space R2nC1 with contact structure �
(also called distribution). At each point in Hn, there is a contact plane � of dimension 2n.
Suppose† is a hypersurface in Hn. The singular set of† is the set of points of† at which
the tangent plane of † coincides with the contact plane; otherwise, points on † are called
nonsingular points. At any nonsingular point, the intersection of the tangent plane T† and
the contact plane � is of dimension 2n � 1 and so there is a unique unit vector N (called
the p-normal vector) contained in � and perpendicular to the intersection T† \ � with
respect to the Levi metric. The volume and area elements in Hn are the usual Euclidean
volumes and the p-areas, respectively. The p-area, introduced by Cheng–Hwang–Yang [7]
for nD 1 and Cheng–Hwang–Malchiodi–Yang [9] for n� 2, comes from a variation of the
surface † in the normal direction fN for some suitable function f with compact support
on the regular points of †. Such invariant area measure in Hn coincides with the three
dimensional Hausdorff measure of†, considered in [12], [1], and [2]. Notice that although
the p-normal vectors are not defined at the singular points of †, the p-area element is
globally defined on † and vanishes at the singular points ([9], p. 135). Moreover, the
p-area element can be represented explicitly in a variety of forms, including differential
forms (see Appendix in [9] for Hn), local coordinates for graphs ([7], p. 261), and recently
for parametrized surfaces [16] by the author. These notions, especially in the framework
of geometric measure theory, have been used to study existence or regularity properties
of minimizers for the relative perimeter or extremizers of isoperimetric inequalities (see,
e.g., [11, 14, 17, 20, 21, 25, 26, 28]).

Recall [27] that the Pansu spheres P n
�

in Hn can be defined by rotating a (helix)
geodesic joining the points .0; : : : ; 0;˙ �

4�2
/ 2 R2nC1 (the “North” and “South” poles,

respectively) about the x2nC1-axis such that its “equator” is a standard sphere S2n�1
1=�

in R2n centered at the origin with radius 1=�. It is rotationally symmetric and topolo-
gically equivalent to the standard unit sphere S2n, and its parametrization can be exactly
expressed as in (2.4). In [24], Monti analyzed the symmetrization of P n

�
, and Cheng
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et al. [8] used a notion of umbilicity to characterize the Pansu spheres in Hn for n � 2.
There are only two singular points, at the North and South poles of P n

�
, and so the

p-normal vectors are well-defined globally on P n
�

except for the poles. In Theorem 1.5
and Proposition 1.6, we will show that, in Hn, the Pansu spheres are the natural analogues
of the standard unit spheres in the Euclidean space in Theorem 1.1 and Lemma 1.2.

We make a remark for the requirements of the hypersurfaces we are concerned with.
In Theorem B in [9], the authors assume that the surfaces † in H1 have C 2-regularity
with bounded p-mean curvatures, and obtain that the set of all singular points in † con-
sists of only isolated points and smooth curves. In both cases, the measure of the singular
set is zero in the sense of p-area elements, and so this set does not influence the results
of the integrals for the p-normal vectors even though the p-normals are not defined on
the singular sets (for example, the right-hand sides of (1.4) and (1.5)). Therefore, for our
purposes, whenever in the article we say “the normal vectors are defined on the hypersur-
face† a.e.”, it will mean that the normal vectors are globally defined on† except possibly
for a set of measure zero in the sense of p-area elements. Besides, the inner product of
vectors in Hn is always adopted with respect to the Levi metric, and we denote by QN.p/
(respectively, N.p/) the unit p-normal vector at p on the Pansu sphere P n

�
(respectively,

any hypersurface †) in Hn.
The following definition was motivated by Lemma 1.2 and the identity (1.3) for com-

pact hypersurfaces in the Heisenberg groups Hn.

Definition 1.3. Let † be any compact hypersurface in the Heisenberg group Hn, n � 1,
with the p-normal vectors defined a.e. on†. Given a unit p-normal vector QN.p/ at p on the
Pansu sphere P n

�
, the projected p-area of † onto the orthogonal complement QN.p/? WD

¹u 2 TpHn I u � QN.p/ D 0º is defined by

(1.4) A.†j QN?.p// D

Z
q2†

jLqp�1� QN.p/ �N.q/j d†q;

where Lqp�1� is the pushforward of the left translation Lqp�1 WD Lq ı Lp�1 in Hn and
N.q/ is the unit p-normal vector of † at q 2 †.

In Definition 1.3 we only consider the projected p-areas of the surface † onto the
p-normal vectors of the Pansu spheres P n

�
. There are two reasons: first, by applying the

pushforward Lp�1� of the left translation Lp�1 on the unit p-normal vector QN.p/ of P n
�

,
it is clear that the set ¹Lp�1� QN.p/j all p 2 P n

�
º D S2n�1 � R2n � Hn, and hence the

directions that the projection is along with are not full of all possible positions in Hn

(namely, S2n). This raises the question of considering the projected p-areas along any
direction, that is, along any vector u 2 S2n. However, Proposition 1.4 below shows that
for n D 1, when † is a rotationally symmetric surface and we consider the projections
of † along arbitrary directions u in H1, the projected p-areas of † depend on the choice
of the projected directions. As a result, the projected p-areas of both the Pansu spheres and
the standard unit sphere S2 will not be constant if the projected directions are in S2n. This
observation suggests that using the p-normal vectors of the Pansu spheres as projected
vectors would be better than the usual Euclidean normal vectors. Secondly, the projected
p-area of the Pansu spheres along its p-normal vectors is a constant, independent of the
choice of the projected directions, and the value can be exactly obtained (Proposition 1.6),
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but that of the spheres S2n involve an integral which does not seem to have the closed
form (3.2). Therefore, considering the p-normal vectors of the Pansu spheres is a natural
generalization of projected p-areas in the Heisenberg groups.

Next result shows that the projected p-areas of any rotationally symmetric compact
surface depend on the projected directions if we consider arbitrary directions in S2 �H1.

Proposition 1.4. Let † be any rotationally symmetric compact hypersurface in the Heis-
enberg group H1 with the p-normal vectors defined a.e. on †. Suppose † D †C [ †�

can be represented by

†˙ W .r; �/! .r cos �; r sin �; h˙.r//;

for some functions hC � 0, h� � 0, and for 0 � � � 2� , 0 � r � R, where R is some
positive number. If hC and h� satisfy any of the following conditions:

(1) dhC

dr
or dh

�

dr
is continuous on the interval Œ0; R�,

(2) jdh
C

dr
j or jdh

�

dr
j is bounded by r=

p
R2 � r2 on the interval Œ0; R/,

then for any vector u.0/ WD .sin˛ cosˇ; sin˛ sinˇ; cos˛/ in S2, 0 � ˛ � �; 0 � ˇ � 2� ,
the projected p-area of † onto the subspace u.0/? perpendicular to u.0/ is given by

(1.5) A.†ju.0/?/ D

Z
q2†

jLq�u.0/ �N.q/j d†q D j sin˛jC;

where N.q/ is the unit p-normal vector at q 2 † and C is a constant independent of the
choices of the vector u.0/. In particular, when ˛ D �=2, the identity (1.5) becomes (1.8)
for n D 1.

Notice that in Proposition 1.4, the sharp case, namely hr D r=
p
R2 � r2, occurs if

and only if the compact hypersurface† is the standard sphere S2.R/ with radiusR in H1.
Similarly, the sharp case in Theorem 1.7 occurs for†D S2n.R/, the standard sphere with
radius R in Hn.

Our main result is an analogue of Theorem 1.1 for the Heisenberg groups, and shows
that the p-area A.†/ of any compact convex surface† �Hn is the average of the projec-
ted p-areas onto the orthogonal complements of all unit p-normal vectors in P n

�
over the

volume of the .2n � 1/-dimensional Euclidean sphere.

Theorem 1.5. Let † be any compact hypersurface in the Heisenberg group Hn, n � 1,
with the p-normal vectors defined a.e. on †. Let QN.p/ be a unit p-normal vector at p
on the Pansu sphere P n

�
, and let A.†j QN.p/?/ be the projected p-area of † onto the

orthogonal complement QN.p/?. Then the p-area of † is given by

(1.6) A.†/ D
1

2Cn!2n�1

Z
p2P n

�

A.†j QN.p/?/ d†p;

where Cn D
p
�

�2nC1
�.nC1=2/
�.nC1/

is a dimensional constant, �.x/ is the Gamma function, and
!2n�1 is the volume of the .2n � 1/-dimensional Euclidean sphere. Moreover, the p-area
of the surface † can be represented by the average projected p-areas of † along all the
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p-normal vectors of the Pansu sphere, namely,

(1.7) A.†/ D
S2n�1

2!2n�1A.P
n
�
/

Z
p2P n

�

A.†j QN.p/?/ d†p;

where S2n�1 is the .Euclidean/ surface area of the .2n � 1/-sphere in R2n.

The proof of Theorem 1.5 is based on the observation that the projected p-area of the
Pansu sphere P n

�
in Hn along its p-normal vectors is a constant; it is a property analogous

to that of Lemma 1.2 for spheres in Rn.

Proposition 1.6. Given the Pansu sphere P n
�

in Hn, n � 1, defined by (2.4) and any
p-normal vector QN.p/ for some fixed p 2 P n

�
, denote by QN.q/ and Lqp�1� QN.p/, respect-

ively, the unit p-normal vector at q 2P n
�

and the pushforward of the left translationLqp�1
operated on QN.p/. Then the projected p-area of the Pansu sphere along QN.p/ is a dimen-
sional constant, namely,

A.P n
� j
QN.p/?/ D

Z
q2P n

�

jLqp�1� QN.p/ � QN.q/j d†q D 2Cn!2n�1;

where Cn is the constant defined in Theorem 1.5.

In fact, Proposition 1.6 can be generalized to any rotationally symmetric surfaces about
the x2nC1-axis in Hn. This also shows that the reversed statement of Proposition 1.6 is
not true in general, which is a result similar to that of Rn, as we have mentioned in the
paragraph after Lemma 1.2 that there exist subsets which are not spheres in Rn with
constant width (e.g., the Reuleaux triangles).

Theorem 1.7. Let † D †C [ †� be a rotationally symmetric compact hypersurface
in Hn obtained by rotating a hypersurface in R2n about the x2nC1-axis, where †C D
¹x2nC1 D h

C � 0º and†� D ¹x2nC1 D h� � 0º for some functions h˙ D h˙.r/ defined
on Œ0; R� for some R > 0. If hC and h� satisfy any of the following conditions:

(1) dhC

dr
or dh

�

dr
is continuous on the interval Œ0; R�,

(2) jdh
C

dr
j or jdh

�

dr
j is bounded by rp

R2�r2
on the interval Œ0; R/,

and denoting by QN.p/ any unit p-normal vector at p in the Pansu sphere P n
�

defined
by (2.4), then the projected p-area of † onto QN.p/? is given by

(1.8) A.†j QN.p/?/ D

Z
q2†

jLqp�1� QN.p/ �N.q/j d†q D C;

where N.q/ is the unit p-normal vector at q 2 † and C is a constant independent of the
choice of QN.p/. In particular, if † D P n

�
, then the projected p-area is exactly the same

as that of Proposition 1.6.

Since the p-areas for Pansu sphere P n
�

can be obtained by equation (2.8) below, we
get, as an immediate application of Theorem 1.5, that the expected value of the function
F QN.p/.†/ WD A.†j QN.p/?/ can be written as

Exp.F QN.p// WD
1

A.P n
�
/

Z
p2P n

�

A.†j QN.p/?/ d†p D A.†/!2n�1S2n�1:
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Roughly speaking, the number Exp.F QN.p/.†// is the average of the projected p-areas of
the surface † onto a randomly-chosen plane QN.p/?.

This paper is organized as follows. In Section 2 we recall some fundamental back-
ground about the Heisenberg groups regarded as pseudohermitian manifolds. The precise
expressions for the Pansu spheres, the p-normal vectors for rotationally symmetric sur-
faces, and the p-areas will also be derived. Section 3 contains the proofs of our results and
the explanation of the geometric meanings of Proposition 1.6 in Remark 3.1.

2. Preliminaries

Let .M;J;‚/ be a .2nC 1/-dimensional pseudohermitian manifold with an integrable CR
structure J and a global contact form ‚ such that the bilinear form G WD 1

2
d‚.�; J �/

is positive definite on the contact bundle � WD ker‚. The metric G is usually called
the Levi metric. Consider a hypersurface † � M . A point p 2 † is called singular
if � coincides with T† at p. Otherwise, p is called nonsingular and V WD � \ T† is
.2n � 1/-dimensional in this case. There is a unique (up to a sign) unit vector N 2 � that
is perpendicular to V with respect to the Levi metric G. We call N the Legendrian nor-
mal or the p-normal vector (“p” stands for “pseudohermitian”). Suppose that † bounds
a domain D in M . In [7], the authors defined the p-area 2n-form d† by computing the
first variation, away from the singular set, of the standard volume ‚ ^ .d‚/n along the
p-normal vector N :

ıfN

Z
D

‚ ^ .d‚/n D c.n/

Z
†

f d†;

where f is a C1-smooth function on † with compact support away from the singular
points, and c.n/ D 2nnŠ is a normalization constant. The sign of N is determined by
requiring that d† is positive with respect to the induced orientation on †. Notice that the
p-area 2n-form can be continuously extended to the set of singular points and vanishes on
the set, so that we can talk about the p-area of † by integrating d† over † ([9], p. 135).

One of the most interesting examples of pseudohermitian manifolds is the n-dimen-
sional Heisenberg group Hn, which can be regarded as a flat pseudohermitian manifold
.R2nC1;‚0; J0/. Two survey articles [6,33] gave some recent developments on geometric
analysis in Hn. Here‚0 WD dzC

Pn
jD1.xjdyj � yjdxj / at a point . EX;z/ WD .x;y; z/ WD

.x1; y1; : : : ; xn; yn; z/ 2 R2nC1 and J0. Vexj / D Veyj , J0. Veyj / D �Vexj , where

Vexj D
@

@xj
C yj

@

@z
; Veyj D

@

@yj
� xj

@

@z

for j D 1; : : : ; n, span the contact plane �0 WD ker‚0. Notice that the Vexj and the Veyj form
an orthonormal basis with respect to the Levi metric G0 WD .

Pn
jD1 dxj ^ dyj /.�; J0�/.

The group Hn is also a Lie group with the natural left translation defined by

L
. EX;z/

. EX 0; z0/ WD L.x1;y1;:::;xn;yn;z/.x
0
1; y
0
1; : : : ; x

0
n; y
0
n; z
0/

D

�
x1 C x

0
1; y1 C y

0
1; : : : ; xn C x

0
n; yn C y

0
n; z C z

0
C

nX
iD1

.yix
0
i � xiy

0
i /
�
:
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Recall that the p-area form d†p at the point p D .x1; y1; : : : ; xn; yn; z/ 2 Hn for the
graph z D f .x; y/ (see equation (2.7) in [7]) is given by

(2.1) d†p D D.p/dx1dy1 � � � dxndyn;

where

(2.2) D.p/ D
h nX
jD1

.fxj � yj /
2
C .fyj C xj /

2
i1=2

:

In general (see [7], p. 260), the p-normal vector N.p/ for any graph z D f .x; y/ at the
point p D .x1; y1; : : : ; xn; yn; z/ is defined by

(2.3) N.p/ D
�1

D.p/

nX
jD1

�
.fxj � yj / Vexj .p/C .fyj C xj / Veyj .p/

�
:

We also recall [27] that the Pansu sphere P n
�

with radius 1=� in Hn is the union of the
graphs of the functions f and �f , where

(2.4) f .x; y/ D
1

2�2

�
�
p
x2 C y2

p
1 � �2.x2 C y2/C cos�1 �

p
x2 C y2

�
;

where
p
x2 C y2 � 1=�, x WD .x1; : : : ;xn/;y WD .y1; : : : ;yn/, x2 WD

Pn
jD1 x

2
j , and y2 WDPn

jD1 y
2
j . Note that the intersection of the Pansu sphere P n

�
and the plane ¹z D 0º is the

standard sphere S2n�1
1=�

centered at the origin with radius 1=�. Denote r D
p
x2 C y2 DqPn

jD1.x
2
j C y

2
j /. Clearly, if we take the partial derivatives with respect to xj and yj for

j D 1; : : : ; n, we have, respectively,

(2.5) fxj WD
@f

@xj
.x; y/ D

��xj r
p
1 � �2r2

and fyj WD
@f

@yj
.x; y/ D

��yj r
p
1 � �2r2

�

When the graph is a Pansu sphere P n
�

, by substituting (2.5) into (2.2), we have

(2.6) D.p/ D
r

p
1 � �2r2

;

and so by (2.6), (2.3) and (2.5), the p-normal vector at the point p in P n
�

can be written in
terms of r , namely,

(2.7) QN.p/ D
nX

jD1

h�
�xj C

p
1 � �2r2

r
yj

�
Vexj .p/C

�
�yj �

p
1 � �2r2

r
xj

�
Veyj .p/

i
:

By (2.1), (2.6) and (2.4), and using spherical coordinates on R2n, a straight computation
shows that the p-area of the Pansu sphere in Hn is given by

A.P n� / D

Z
p2P n

�

D.p/ dx1dy1 � � � dxndyn(2.8)

D 2

Z 1=�

0

Z
S2n�1

r2n
p
1 � �2r2

dS2n�1dr D S2n�1

p
� �.nC 1=2/

�2nC1�.nC 1/
;
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where S2n�1 is the (Euclidean) surface area of the .2n � 1/-sphere in R2n, and �.x/ is
the Gamma function. In particular, when n D 1, A.P 1

�
/ D �2=�3. The last integral with

respect to r can be obtained by setting �r D sin � . Then we haveZ 1=�

0

r2n
p
1 � �2r2

dr D
1

�2nC1

Z �=2

0

sin2n � d�:

To deal with the integral of power 2n of sine function, we set In D
R �=2
0

sin2n �d� and
use integration by parts to have the reduction formula In D 2n�1

2n
In�1. By induction, one

gets

In D
�

2

.2n � 1/ŠŠ

.2n/ŠŠ
;

where the double factorials are defined by

.2n � 1/ŠŠ D .2n � 1/.2n � 3/.2n � 5/ � � � � 3 � 1;

.2n/ŠŠ D .2n/.2n � 2/.2n � 4/.2n � 6/ � � � 4 � 2:

Then

In D
�

2

.2n � 1/ŠŠ

.2n/ŠŠ
D
�

2

.2n � 1/ŠŠ

2nnŠ
D

p
�

2

� .2n�1/ŠŠ
2n

p
�

nŠ

�
D

p
�

2

�.nC 1=2/

�.nC 1/
�

3. The proofs

Proof of Proposition 1.4. We point out that although the proof below is only for n D 1;
the same argument can be applied to higher dimensional Heisenberg groups.

Let q D .r cos �; r sin �; h.r// be a point on †. Denote by hC and h� the graphs of
¹h� 0º and ¹h < 0º respectively, and let h˙r WD

dh˙

dr
. Using (2.1), (2.2) and (2.3) for nD 1

and setting � WD cos˛ � r sin � sin˛ cosˇ C r cos � sin˛ sinˇ, we have

jLq�u.0/ �N.q/j d†q

D

ˇ̌̌�
sin˛ cosˇ Ve1.q/C sin˛ sinˇ Ve2.q/C �T .q/

�
�
�1

D.q/

�
.hCr cos � � r sin �/ Ve1.q/C .hCr sin � C r cos �/ Ve2.q/

�ˇ̌̌
D.q/r drd�

D r j sin˛j jhCr cos.� � ˇ/ � r sin.� � ˇ/jdrd�

D r j sin˛j
q
.hCr /2 C r2

ˇ̌̌� hCrq
.hCr /2Cr2

cos.��ˇ/ �
rq

.hCr /2Cr2
sin.��ˇ/

�ˇ̌̌
drd�

D r j sin˛j
q
.hCr /2 C r2

ˇ̌
cos.� � ˇ C �/

ˇ̌
drd�;

where cos� D hCr =
p
h2r � r

2. We have a similar result for the function h�.
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Since the angles � and ˇ are both independent of the angle � , by the continuity of hCr
and h�r the projected p-area of † is given by

A.†ju.0/?/ D

“
q2†

jLq�u.0/ �N.q/j d†q

D j sin˛j
Z R

0

r

q
.hCr /2 C r2

Z 2�

0

j cos.� � ˇ C �/jd�dr

C j sin˛j
Z R

0

r

q
.h�r /

2 C r2
Z 2�

0

j cos.� � ˇ C �/jd�dr

D 4 j sin˛j
� Z R

0

r

q
.hCr /2 C r2 dr C

Z R

0

r

q
.h�r /

2 C r2 dr
�
:(3.1)

If the functions hCr and h�r are continuous on Œ0; R�, then both integrals on the right-hand
side of (3.1) are finite, and so A.†ju.0/?/ D C j sin ˛j for some constant C , depend-
ing only on hC.r/ and h�.r/. Otherwise, if any of jhC.r/j and jh�.r/j is bounded by
r=
p
R2 � r2 on the interval Œ0; R/, say hC.r/, then we may choose a positive number

M >
p
1CR2 such that the following estimate holds:Z R

0

r

q
.hCr /2 C r2 dr �

Z R

0

r

r
r2

R2 � r2
C r2 dr D

Z R

0

r2

r
1CR2 � r2

R2 � r2
dr

< R2M

Z R

0

r
1

R2 � r2
dr D R2M lim

a!R�
tan�1

� r
p
R2 � r2

�ˇ̌̌a
0

D
R2M�

2
<1:(3.2)

Therefore, by the assumptions for hC.r/; h�.r/, and (3.1), we conclude that the projected
p-area satisfies A.†ju.0/?/ < C j sin ˛j, for some constant C only depending on the
function h˙.r/.

When ˛ D �=2, the vector u.0/ is a unit vector on the xy-plane, which is the push-
forward of a p-normal vector QN.p/ for some point p on the Pansu sphere P 1

�
. Thus, we

have u.0/ D Lp�1� QN.p/, and the result follows immediately.

In the following calculations, p will always stand for a fixed point on the Pansu
sphere P n

�
and q will be an arbitrary point on P n

�
. Notice that since the p-normal vec-

tor QN.p/ of P n
�

is on the contact plane �p at p, QN.p/ can be carried parallel to the vector
Lqp�1�

QN.p/ 2 �q by the pushforward Lqp�1� of the left translation Lqp�1 WD Lq ıLp�1 .

Proof of Proposition 1.6. First, we calculate the inner product

Lqp�1�
QN.p/ � QN.q/

at a point q 2 P n
�

with respect to the Levi metric. Write p D .xj ; yj ; f .xj ; yj // and q D
. Nxj ; Nyj ; f . Nxj ; Nyj //, where f is the function defined by (2.4). Without loss of generality,
we may assume that q is on the upper half ¹f � 0º of P n

�
. Let r (respectively, Nr/ denote

the radius of the spherical coordinates of the points .x1; y1; : : : ; xn; yn/ (respectively,
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. Nx1; Ny1; : : : ; Nxn; Nyn/) of R2n. Since ¹ Vexj .p/; Veyj .p/º is an orthonormal basis in the contact
plane �p for any p 2 Hn, by (2.7) and (2.6), we have

(3.3) jLqp�1� QN.p/ � QN.q/jD.q/

D

ˇ̌̌ nX
jD1

h�
�xj C

p
1 � �2r2

r
yj

�
Vexj .q/C

�
�yj �

p
1 � �2r2

r
xj

�
Veyj .q/

i
�

nX
jD1

h�
� Nxj C

p
1��2 Nr2

Nr
Nyj

�
Ve Nxj .q/C

�
� Nyj �

p
1��2 Nr2

Nr
Nxj

�
Ve Nyj .q/

iˇ̌̌
�

Nr
p
1��2 Nr2

D

ˇ̌̌ nX
jD1

h�
�xj C

p
1 � �2r2

r
yj

��
� Nxj C

p
1 � �2 Nr2

Nr
Nyj

�
C

�
�yj �

p
1 � �2r2

r
xj

��
� Nyj �

p
1 � �2 Nr2

Nr
Nxj

�iˇ̌̌
�

Nr
p
1 � �2 Nr2

D

ˇ̌̌ nX
jD1

h� �2 Nr
p
1 � �2 Nr2

C

p
1 � �2r2

r

�
.xj Nxj C yj Nyj /

C

�
�
� Nr

r

p
1 � �2r2
p
1 � �2 Nr2

C �
�
.xj Nyj � yj Nxj /

iˇ̌̌
:

Observe that in spherical coordinates, each component xj can be represented as

xj D .radial distance/ � .product of sine and cosine functions/

for j D 1; : : : ; n. Thus, one can write the components xj D raj for some product aj of
trigonometric functions. Similarly, one has yj D rbj , Nxj D Nr Naj , and Nyj D Nr Nbj . Notice that
the points .a; b/ D .a1; b1; : : : ; an; bn/ and . Na; Nb/ D . Na1; Nb1; : : : ; Nan; Nbn/ are both on the
unit sphere S2n�1 � R2n. Next, substituting xj , yj , Nxj , Nyj by r , Nr , aj , bj , Naj , Nbj in the
last equation of (3.3), we get

(3.4) jLqp�1�
QN.p/ � QN.q/jD.q/ D

ˇ̌̌ nX
jD1

�
A.aj Naj C bj Nbj /C B.aj Nbj � bj Naj /

�ˇ̌̌
;

where

A D
�2 Nr2r
p
1 � �2 Nr2

C Nr
p

1 � �2r2 and B D �
� Nr2
p
1 � �2r2

p
1 � �2 Nr2

C �r Nr:

We emphasize the key observation that

(3.5) A2 C B2 D
Nr2

1 � �2 Nr2
;

which is independent of the choice of the point p.
Now consider the unit vectors u D .a1; b1; : : : ; an; bn/ and Nv D . Na1; Nb2; : : : ; Nan; Nbn/

in R2n with respect to the usual Euclidean norm. Let J WR2n ! R2n be the canonical
almost complex structure defined by J.u/ D .�b1; a1; : : : ;�bn; an/. If � is the angle
between two unit vectors u and Nv (in the usual Euclidean norm), and we denote by u ? Nv
the Euclidean inner product of u and Nv, then we have u? NvD cos� and J.u/ ? NvD˙sin� .
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The sign depends on the chosen orientation of R2n. Therefore, the right-hand side of (3.4)
can be represented as

(3.6)
ˇ̌̌ nX
jD1

�
A.aj Naj C bj Nbj /C B.aj Nbj � bj Naj /

�ˇ̌̌
D jA.u ? Nv/C B.J.u/ ? Nv/j

D

p
A2 C B2

ˇ̌̌ A
p
A2 C B2

cos �q ˙
B

p
A2 C B2

sin �q
ˇ̌̌

(3.5)
D

Nr
p
1 � �2 Nr2

j cos.�q � ˛/j

for some value ˛ D ˛.r; Nr; �/ such that cos.˛/ D A=
p
A2 C B2. We add the subscript �q

to indicate that the angle � is a function of the point q.
Recall that the p-area form d†q at the point q in Hn for any graph z D f .x; y/ is

d†q D D.q/dx1dy1 � � � dxndyn (see equation (2.7) in [7]). Finally, combine (3.4), (3.6)
and use the integral for spherical coordinates, one hasZ

q2P n
�

jLqp�1�
QN.p/ � QN.q/j d†q

D

Z
q2P n

�

jLqp�1�
QN.p/ � QN.q/jD.q/ dx1dy1 � � � dxndyn

D

Z
p2P n

�

ˇ̌̌ nX
jD1

�
A.aj Naj C bj Nbj /C B.aj Nbj � bj Naj /

�ˇ̌̌
dx1dy1 � � � dxndyn

D 2

Z 1=�

0

Z 2�

0

Nr � Nr2n�1
p
1 � �2 Nr2

j cos.�q � ˛/j dSq d Nr

D 2

Z 1=�

0

Nr2n
p
1 � �2 Nr2

Z 2�

0

j cos.�q � ˛/j dSq d Nr

.�/
D 4!2n�1

Z 1=�

0

Nr2n
p
1 � �2 Nr2

d Nr D 2

p
�!2n�1

�2nC1
�.nC 1=2/

�.nC 1/
;

where dSq is the .2n � 1/-dimensional (Euclidean) surface area element at q and !2n�1
is the volume of the unit .2n � 1/-ball in R2n�1. Note that in .�/ above, for any fixed
Nr 2 .0; 1=�� (equivalently, ˛ is a constant with respect to q), Lemma 1.2 implies that the
integral

R 2�
0
j cos.�q � ˛/jdSq D 2!2n�1, the projected area of the .2n� 1/-dimensional

sphere onto the .2n� 1/-subspace in R2n. The last integral can be obtained from (2.8).

Remark 3.1. In the Euclidean space, the projected area ofK onto the subspace u? can be
represented as the integral of the inner product u ? v as shown in (1.1). Suppose the unit
vector u is based at the origin and ends at somewhere on Sn�1. The proof of Lemma 1.2
uses the fact that, by parallel transport in Rn, the base point of u is parallel moved to
any point p 2 Sn�1 and makes the inner product with the unit outward normal vectors
v.p/ at p. Similarly, in Hn the integral of jLqp�1� QN.p/ � QN.q/j over P n

�
in Propos-

ition 1.6 can be regarded as the projected p-area of P n
�

onto the subspace QN.p/? WD
¹u 2 TpHnj u � N.p/ D 0 with respect to the Levi metricº. For instance, in H1, we have
the orthonormal basis ¹e1.p/; N.p/; T º for e1.p/ 2 Tp† \ �p , N.p/ D J.e1.p// 2 �p ,
and T .p/ D @

@z
jp . Then N.p/? D spanp¹e1.p/; T .p/º. Geometrically, N.p/? is a plane

(Euclidean) perpendicular to the xy-plane.
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The next lemma shows that the map Lp�1� is surjective.

Lemma 3.2. Let P n
�

be the Pansu sphere in the Heisenberg group Hn defined by (2.4)
and denote by �0 the contact plane at the origin in Hn. For any p 2 P n

�
, the map

p 7! N.0/ WD Lp�1�.
QN.p// � S2n�1 � �0

which assigns to any unit p-normal vector QN.p/ at p 2 P n
�

a unit p-normal vector N.0/
in S2n�1, is surjective.

Proof. For any unit vector N.0/ on S2n�1 � �0 in Hn, one may assume that N.0/ D
.x1; y1; : : : ; xn; yn; 0/ with

Pn
jD1.x

2
j C y

2
j / D 1. Set p D 1

�
N.0/. Then the point p is in

the intersection P n
�
\ ¹z D 0º. Construct the unit p-normal QN.p/ by replacing the xj and

the yj on right-hand side of (2.7) by 1
�
xj and 1

�
yj , respectively. It is clear that the vector

QN.p/ is the p-normal vector at p 2 P n
�

satisfying Lp�1�
QN.p/ D N.0/.

The map in Lemma 3.2 is a generalization of the Gauss map defined by Chiu–Ho [10]
in H1. In that paper, the authors studied the degree of the Gauss map for horizontally
regular curves with some topological properties (see Theorems 1.6 and 2.1 in [10]).

Proof of Theorem 1.5. For any p-normal vectorN.q/ at q 2†, one has thatLq�1�N.q/�
S2n�1. Moreover, Lemma 3.2 implies that there exists a p-normal vector QN.q0/ at some
q0 2 P n

�
such that Lq0q�1�N.q/ D QN.q

0/; equivalently,

Lq�1�N.q/ D Lq0�1�
QN.q0/:

Thus, for any fixed p-normal vector QN.p/ at p 2 P n
�

we have

jLqp�1� QN.p/ �N.q/j D jLp�1�
QN.p/ � Lq�1�N.q/j(3.7)

D jLp�1�
QN.p/ � Lq0�1�

QN.q0/j D jLq0p�1�
QN.p/ � QN.q0/j:

Finally, using (3.7) and Proposition 1.6, one getsZ
p2P n

�

A.†j QN.p/?/ d†p D

Z
p2P n

�

Z
q2†

jLqp�1� QN.p/ �N.q/j d†qd†p

D

Z
q2†

Z
p2P n

�

jLqp�1� QN.p/ �N.q/j d†p d†q

D

Z
q2†

Z
p2P n

�

jLq0p�1�
QN.p/ � QN.q0/j d†p d†q

D 2Cn!2n�1

Z
q2†

d†q D 2Cn!2n�1A.†/:

This completes the proof of (1.6). The second result (1.7) can be immediately obtained
using (2.8) and (1.6).

We now prove Theorem 1.7. For simplicity, we shall just prove the case H1; the proof
for higher dimensions is the same. When n � 2, the constant C in Theorem 1.7 depends
only on the dimension n of Hn.
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Proof of Theorem 1.7 for n D 1. Let † be any rotationally symmetric compact surface
in H1 defined by .r; �/ ! .r cos �; r sin �; h.r//, for 0 � r � R for some real num-
ber R and 0 � � � 2� . Let P 1

�
be the Pansu sphere in H1 defined by (2.4) and let p

be a fixed point on P 1
�

. Denote by hC and h� the graphs of †C WD ¹h � 0º and †� WD
¹h < 0º, respectively. By using (2.1), (2.2), (2.3) and (2.7) for n D 1, and writing p D
. Qr cos �; Qr sin �; hC.r//, one has

jLqp�1�
QN.p/ �N.q/j d†q

D

ˇ̌̌
Lqp�1�

�
.� Qr cos � C

p

1 � �2 Qr2 sin �/ Ve1.p/C .� Qr sin � �
p

1 � �2 Qr2 cos �/ Ve2.p/
�

�
�1

D.q/

�
.hCr cos� � r sin�/ Ve1.q/C .hCr sin� C r cos�/ Ve2.q/

�ˇ̌̌
D.q/r dr d�

D

ˇ̌̌�
.� Qr cos � C

p

1 � �2 Qr2 sin �/ Ve1.q/C .� Qr sin � �
p

1 � �2 Qr2 cos �/ Ve2.q/
�

�
�
.hCr cos� � r sin�/ Ve1.q/C .hCr sin� C r cos�/ Ve2.q/

�ˇ̌̌
r dr d�

D j.�hCr Qr � r
p

1 � �2 Qr2 / cos.� � �/C .�r Qr C hCr
p

1 � �2 Qr2 / sin.� � �/jr dr d�

Set A WD�hCr Qr�r
p
1 � �2 Qr2 and B WD �r QrChCr

p
1 � �2 Qr2, so A2CB2 D .hCr /

2Cr2.
We point out that the term A2 C B2 does not involve any terms with Qr and � , that is,
it is independent of the choice of the p-normal QN.p/ of the Pansu sphere. Now we set
cos  D A=

p
A2 C B2 and sin  D B=

p
A2 C B2, and notice that the angle  does

not depend on the angle �, and so, when taking the integral with respect to the angle �,
the angle � can be regarded as a constant. Then one has the following formula for the
projected p-area:

A.†Cj QN.p/?/ D

“
q2†

jLqp�1�
QN.p/ �N.q/j d†q

D

“
q2†

r
p
A2CB2

ˇ̌̌ A
p
A2 C B2

cos.� � �/C
B

p
A2 C B2

sin.� � �/
ˇ̌̌
dr d�

WD

“
q2†

r

q
.hCr /2Cr2

ˇ̌
cos cos.� � �/C sin sin.� � �/

ˇ̌
dr d�

D

Z R

0

r

q
.hCr /2Cr2

� Z 2�

0

j cos.���� /jd�
�
dr DC

Z R

0

r

q
.hCr /2Cr2 dr(3.8)

for some constant C . Here we have used the fact that the angles  and � are independent
of �. By using the assumptions for the functions h˙.r/ and applying the same argu-
ment as in Proposition 1.4 (below equation (3.1)), we conclude that the projected p-area
A.†j QN.p/?/ D A.†Cj QN.p/?/CA.†�j QN.p/?/ is a constant, as desired. This com-
pletes the proof of Theorem 1.7.

As we have seen, Cauchy’s surface area formula in Rn gives the measure of codi-
mension one for convex subsets, and it can be generalized to the measures of any higher
codimensions. The related notion in integral geometry is called quermassintegral, see [29].
Recently, the author showed several results of integral geometry in Rn to Hn (see [15]
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for Crofton’s formula and the containment problems, and [16]). However, it is still not
clear if we can have a natural concept for quermassintegral inHn, n � 1, to deal with
higher-codimension measure for subsets. It is also not clear if numerous concepts (e.g.,
the support functions and the intrinsic volumes for convex bodies) in convex geometry
can possibly be developed in Hn. Those might be the interesting topics worth to study for
future research.
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