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Strictly singular non-compact operators
between Lp spaces

Francisco L. Hernández, Evgeny M. Semenov and Pedro Tradacete

Abstract. We study the structure of strictly singular non-compact operators bet-
ween Lp spaces. Answering a question raised in earlier work on interpolation prop-
erties of strictly singular operators, it is shown that there exist operators T , for which
the set of points .1=p;1=q/ 2 .0; 1/� .0; 1/ such that T WLp!Lq is strictly singular
but not compact contains a line segment in the triangle ¹.1=p;1=q/ W 1 < p < q <1º
of any positive slope. This will be achieved by means of Riesz potential operators
between metric measure spaces with different Hausdorff dimension. The relation
between compactness and strict singularity of regular (i.e., difference of positive)
operators defined on subspaces of Lp is also explored.

1. Introduction

The purpose of this paper is to obtain better understanding of the relation between strict
singularity and compactness for operators defined on the scale of Lp spaces, and in partic-
ular, to answer a question raised in [17] concerning the shape of the so-called V -charac-
teristic set of an operator, which consists of those points .1=p; 1=q/ 2 .0; 1/ � .0; 1/ such
that an operator T WLp ! Lq is strictly singular but not compact.

Recall that an operator between Banach spaces is strictly singular provided it is not
invertible when restricted to any (closed) infinite dimensional subspace. The class of
strictly singular operators forms a closed two-sided operator ideal, containing that of com-
pact operators, and was introduced by T. Kato [20] in connection with the perturbation
theory of Fredholm operators. Although strict singularity is a purely infinite-dimensional
notion, the spectral theory for this class of operators coincides with that for compact oper-
ators (cf. [1]). On the other hand, strictly singular operators exhibit in general a different
behaviour concerning duality [34] and interpolation properties [7, 15].

J. Calkin [8] noted that on Hilbert spaces there is only one non-trivial closed ideal,
hence for an operator T WL2 ! L2, strict singularity is equivalent to compactness. This
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fact was later extended by H. R. Pitt for operators T W p̀! `q for 1� q � p <1 (cf. Pro-
position 2.c.3 in [24]). Among the simplest examples of strictly singular non-compact
operators, one should mention the formal inclusion

ip;q W p̀ ,! `q

when 1� p < q �1. For a general Banach space, exhibiting instances of strictly singular
non-compact operators can be very non-trivial (cf. [3]).

In this paper, we will deal with operators defined on Lp spaces over finite measure
spaces. Given 1 � p; q � 1, let us denote by L.Lp; Lq/ the space of bounded linear
operators T WLp! Lq , and byK.Lp;Lq/ (respectively, S.Lp;Lq/ ) the ideal of compact
(respectively, strictly singular) operators. For an operator T WL1 ! L1, let us consider
the characteristic sets

L.T / D
°� 1
p
;
1

q

�
2 .0; 1/ � .0; 1/ W T 2 L.Lp; Lq/

±
.L-characteristic/;

K.T / D
°� 1
p
;
1

q

�
2 .0; 1/ � .0; 1/ W T 2 K.Lp; Lq/

±
.K-characteristic/:

These sets were introduced by M. A. Krasnoselskii and P. Zabreiko in [35] and thoroughly
analyzed in the monograph [22].

It is easy to see that L.T / and K.T / are monotone sets, in the sense that if a point
.˛0; ˇ0/ belongs to the set, then the upper-left region

¹.˛; ˇ/ W 0 < ˛ � ˛0; ˇ0 � ˇ < 1º

is also contained in the set.
The classical Riesz–Thorin interpolation theorem tells us that L.T / is a convex set,

while Krasnoselskii’s interpolation theorem [21] yields that K.T / is convex as well.
S. Riemenschneider showed in [30] that L.T / is always an F� set, and in fact, charac-
terized the class of sets arising as the characteristic set L.T / for some operator T , as
being precisely the convex, monotone F� subsets of .0; 1/ � .0; 1/.

In [17], motivated by the study of the interpolation properties of strictly singular oper-
ators on Lp spaces, we focused on the S -characteristic set

S.T / D
°� 1
p
;
1

q

�
2 .0; 1/ � .0; 1/ W T 2 S.Lp; Lq/

±
;

and in particular, on the set
V.T / D S.T /nK.T /;

which we will call the V -characteristic set of the operator T . Note that S -characteristic
sets are also monotone and convex (this follows from Theorem 21 in [17], see also The-
orem 2.1 below).

For all known examples where V.T / has been described, it consisted of (possibly
degenerate) line segments in .0; 1/ � .0; 1/ which were vertical, horizontal or parallel to
the diagonal. It was left as an open question in [17] whether this was always the case.
One of the purposes of this paper is to answer this question in the negative by exhibiting
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examples of operators whose corresponding set V.T / can contain a line segment with any
positive slope. It is relevant to note that the operators T considered in [30], which allow
to construct all possible L-characteristic sets, have the property that K.T / D L.T /, and
thus V.T / D ;. The examples that will be used here will be constructed by means of
certain Riesz potential integral operators acting on Lp spaces over Ahlfors regular metric
measure spaces of different Hausdorff dimensions.

The paper is organized as follows. After some preliminaries on strictly singular and
compact operators on Lp spaces and more general Banach lattices, together with some
facts about interpolation properties and geometric measure theory, in Section 3 we will
construct examples of operators with a variety of V -characteristic sets. In particular, we
will show that if the V -characteristic set intersects the upper triangle ¹.˛; ˇ/ W 0 < ˛ <

ˇ < 1º, then it must do so in a vertical or horizontal segment (see Proposition 3.1), and that
for any line segment ` having positive slope and contained in the lower triangle ¹.˛; ˇ/ W
0 < ˇ < ˛ < 1º, there is an operator whose V -characteristic set contains ` (Theorem 3.4).
Finally, motivated by the fact that positive strictly singular endomorphisms on Lp are
necessarily compact [9], in the final section of the paper we will consider the case of
regular operators defined on subspaces of Lp .

2. Preliminaries

Before we analyze the structure of V -characteristic sets, let us begin recalling some gen-
eral facts related to strict singularity and compactness for operators on Banach lattices
which will be helpful in our context. We refer to [2, 24–26] for general background on
Banach spaces and Banach lattices.

Let E be a Banach lattice, X a Banach space, and let T WE ! X be an operator. We
say T is AM-compact when T Œ�x; x� is a relatively compact set for every x 2 EC, where

Œ�x; x� D ¹y 2 E W �x � y � xº

denotes the order interval generated by x. An operator T WE ! X is called M -weakly
compact when kT xnk ! 0 for every sequence .xn/ of pairwise disjoint normalized vec-
tors in E. Finally, we will say that an operator T WE ! X is disjointly strictly singular if
for any sequence .xn/ of pairwise disjoint vectors in E, the restriction

T jŒxn� W Œxn�! X

is not topologically invertible (here, with Œxn� we denote the closed linear span of the
sequence .xn/).

It is well known that an operator on a Banach lattice T WE ! X is compact if and
only if it is both AM-compact and M-weakly compact (cf. Proposition 3.7.4 in [26]). On
the other hand, if E is a Banach lattice with finite cotype, then an operator T WE ! X

is strictly singular if and only if it is both AM-compact and disjointly strictly singular,
see [14], Theorem 2.4. In other words, in order to distinguish compactness from strict
singularity on Banach lattices, one can reduce the focus to the behavior of pairwise disjoint
sequences of vectors.
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Throughout, unless otherwise stated,Lp will denoteLp.0; 1/ equipped with Lebesgue
measure. For endomorphisms onLp spaces, the above characterization of strict singularity
can also be expressed as follows: given Banach spaces X;Y;Z, let us say that an operator
T WX ! Y is Z-singular if it is never invertible when restricted to a subspace of X iso-
morphic to Z; for 1 < p <1, an operator T WLp ! Lp is strictly singular if and only if
it is both `2-singular and p̀-singular [28, 33].

To sum up this discussion, let us mention the following result, given in Proposition 8
of [17] (see also Lemma 3.2 in [16] for the case p D q). Suppose that T W Lp ! Lq
for 2 < q � p <1 is strictly singular and not compact. Then there exists a normalized
sequence .yk/ in Lp , which is equivalent to the unit vector basis of `2, whose span Œyk � is
complemented, and such that .Tyk/ is equivalent to the unit vector basis of `q .

The fact that the inclusion
Ip;q W Lp ,! Lq

is continuous for q < p, together with the ideal property, yield that L.T /,K.T / and S.T /
are monotone subsets of .0; 1/ � .0; 1/.

The convexity of S.T / is equivalent to the interpolation property of strictly singular
operators between Lp spaces given in Theorem 21 of [17]. In order to recall this result,
let us introduce the following notation, which will be of relevance throughout this paper:
given 1 � p0; p1; q0; q1 � 1, for each � 2 .0; 1/ let

1

p�
D

�

p0
C
1 � �

p1
and

1

q�
D

�

q0
C
1 � �

q1
�

Theorem 2.1. Let 1�p0;p1;q0;q1<1. If an operator T WLp0!Lq0 is strictly singular
and T WLp1 ! Lq1 is bounded, then T WLp� ! Lq� is strictly singular for each � 2 .0; 1/.

Note that the assumption that the indices are finite in Theorem 2.1 is essential: take
the formal inclusion operator which satisfies that T WL1 ! L2 is strictly singular (by
Grothendieck’s theorem), and T WL1 ! L1 is bounded, but

T W Lp ! L 2p
pC1

is not strictly singular for any 1 < p <1 (because of Khintchine’s inequality).
Under some extra assumptions on the position of the interpolation segment°

�
� 1
p0
;
1

q0

�
C .1 � �/

� 1
p1
;
1

q1

�
W � 2 Œ0; 1�

±
in .0; 1/� .0; 1/, one actually obtains a stronger property for the interpolated operator. We
refer to this as a compact extrapolation result (see Theorem 13 in [17]):

Theorem 2.2. Let 1 < pi ; qi <1 for i D 0; 1 with q0 ¤ q1 and p0 ¤ p1. Suppose

• either min¹q0=p0; q1=p1º � 1,

• or min¹q0=p0; q1=p1º > 1 and .q1 � q0/=.p1 � p0/ < 0.

If T is a bounded operator from Lpi to Lqi for i D 0; 1, and T 2 S.Lp� ; Lq� / for
some 0 < � < 1, then T 2 K.Lp� ; Lq� / for every � 2 .0; 1/.

These interpolation results can be useful in studying the rigidity of composition and
Volterra-type operators in Hardy Hp spaces (see [23, 27]).



Strictly singular non-compact operators between Lp spaces 185

It should be noted that K.T / and S.T / could be empty sets when L.T / is not empty:
take for instance the formal inclusion J WL1 ,! L1, for which

L.J / D
°� 1
p
;
1

q

�
W 1 < q � p <1

±
:

More generally, if g 2 Lr and we define the multiplication operator Tg WL1 ! L1 given
by Tg.f / D fg, it is easy to check that

L.Tg/ D
°� 1
p
;
1

q

�
W
1

q
�
1

p
C
1

r

±
;

while
K.Tg/ D S.Tg/ D ;:

In our previous work (see Theorem 18 in [17]), it is shown that for ˛ 2 .0; 1/, the
averaging operator of the form

S˛f D
X
k2N

�
�.Ak/

˛�1

Z
Ak

f d�
�
�Ak ;

where .Ak/k2N is a sequence of pairwise disjoint measurable sets in .0; 1/ with Lebesgue
measure �.Ak/ > 0, satisfies that

V.S˛/ D
°� 1
p
;
1

q

�
W
1

q
D
1

p
� ˛ > 0; 1 < p <1

±
:

Similarly, for the Riemann–Liouville integral operator R˛ , for 0 < ˛ < 1, defined by

R˛f .t/ D
1

�.˛/

Z t

0

f .u/.t � u/˛�1 du;

it can be checked (cf. [5]) that V.R˛/ coincides with a line segment parallel to the diag-
onal:

V.R˛/ D
°� 1
p
;
1

q

�
W
1

q
D
1

p
� ˛ > 0; 1 < p <1

±
:

In our search for operators with V -characteristic sets containing line segments which
are not parallel to the diagonal, we will need to consider a different approach.

As a consequence of Theorems 2.1 and 2.2, one easily gets the following.

Corollary 2.3. If S.T / 6D ;, then S.T /, K.T / and L.T / have the same interior.

In particular, we have

(2.1) V.T / � @L.T /

(cf. Theorem 9 in [17]), where @L.T / denotes the boundary of L.T / in .0; 1/ � .0; 1/. A
similar fact holds in the particular case when T is an integral operator, in which case one
has L.T /nK.T / � @L.T /, see Theorem 5.14 in [22].
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The fact mentioned above that, for endomorphisms on L2, compactness is the same as
strict singularity, can be extended to operators T WLp!Lq as long as 1 < q � 2� p <1,
see Theorem 5 in [17]. In other words, we have that

(2.2) V.T / \
®
.˛; ˇ/ W 0 < ˛ � 1=2 � ˇ < 1

¯
D ;:

Finally, let us recall the following symmetric property of the V -characteristic set. Let
�W .0; 1/ � .0; 1/! .0; 1/ � .0; 1/ be the involution given by

�.˛; ˇ/ D .1 � ˇ; 1 � ˛/:

This map is related to duality by the following property: for any operator T WL1 ! L1
we have .˛; ˇ/ 2 L.T / if and only if �.˛; ˇ/ 2 L.T �/. Let

R D ¹.˛; ˇ/ 2 .0; 1/ � .0; 1/ W ˛ < ˇ < 1=2º:

From Theorem 7 in [17], one can deduce that

(2.3) �.V.T / \ ..0; 1/ � .0; 1/nR// � V.T �/:

The following interpolation result due to E. Stein and G. Weiss (cf. Theorem IV.5.5
in [6]) will be particularly useful in the next section. Recall that for 1 � p <1, the space
Lp;1.�/ consists of all measurable functions for which the following expression is finite:

kf kp;1 D sup
�>0

�
�
�.¹x W jf .x/j � �º/

�1=p
:

Theorem 2.4. Let 1 � p0 � q0 � 1, 1 � p1 � q1 � 1, p0 ¤ p1, q0 ¤ q1, and let
T WL1.�/! L1.�/ be an operator such that for some C0; C1 > 0,

kT�Akqi ;1 � Ci�.A/
1=pi ;

for every measurable set A, and for i D 0; 1. Then for each � 2 .0; 1/, the operator
T WLp� .�/! Lq� .�/ is bounded.

Let us recall the definition of Hausdorff measure in a metric space .X; d/. For A � X ,
let jAj D sup¹d.x; y/ W x; y 2 Aº denote the diameter of A. Given s > 0, for B � X and
ı > 0, let

(2.4) H s
ı .B/ D inf

° 1X
iD1

jAi j
s
W B �

1[
iD1

Ai ; 0 < jAi j � ı
±
:

Let us denote

(2.5) H s.B/ D lim
ı!0

H s
ı .B/ D sup

ı>0

H s
ı .B/;

which always exists, though it could be infinite, and which defines an outer measure.
The restriction of H s to the � -algebra of H s-measurable subsets, which contains the
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Borel sets, is the Hausdorff s-dimensional measure (cf. [11], Chapter 1). Moreover, the
Hausdorff dimension of B is the unique number dimH .B/ such that

H s.B/ D

´
1 if 0 � s < dimH .B/;

0 if s > dimH .B/:

Recall that given s > 0, a metric space .X; d/ is said to be Ahlfors s-regular if its
Hausdorff dimension equals s, and if H s denotes the corresponding Hausdorff measure,
then there are constants c; C > 0 such that for every x 2 X and r > 0 we have

(2.6) crs � HQ.B.x; r// � Crs;

where B.x; r/ D ¹y 2 X W d.x; y/ < rº.
In particular, we will be using the fact that for every 0 < ˛ < 1, there exist a sub-

set�˛ � .0;1/which equipped with the ˛-dimensional Hausdorff measure and the Euclid-
ean metric is an Ahlfors ˛-regular space (cf. [11], Section 8.3). This fact has been extended
in [18] (see also [4]), where it is shown that any Ahlfors s-regular metric space .X;d/ con-
tains, for every 0 < ˛ < s, a closed subset Y˛ � X such that .Y˛; d / is Ahlfors ˛-regular.

Lemma 2.5. For every 0 < ˛ < 1, .�˛;H˛/ is an atomless separable measure space.

Proof. For every x 2 �˛ , we have that

H˛.¹xº/ � inf
r>0

H˛.B.x; r// � C inf
r>0

r˛ D 0:

Thus, since the measure H˛ is regular Borel, it follows that .�˛;H˛/ contains no atoms.
Now, take a countable set .xk/1kD1 � �˛ which is dense in �˛ . Consider †Q, the

� -algebra generated by closed balls (intervals) in�˛ , with center in some xk and rational
radius. We claim that for every H˛-measurable subset E of �˛ , there is S 2 †Q such
that E � S and H˛.E/ D H˛.S/. Separability will follow.

Indeed, note first that in the definition of Hausdorff measure, the infimum in (2.4) can
be computed only with Ai being closed/open convex sets, that is, real intervals inter-
sected with �˛ . We follow a similar approach as in Theorem 1.6 of [11]. Given an
H˛-measurable subset E of �˛ , for i 2 N we can choose a collection of open convex
sets .Uij /j2N such that jUij j < 1=i for each j 2 N, E �

S
j2N Uij , andX

j2N

jUij j
˛ < H˛

1=i .E/C
1

i
�

For each i; j2N we can consider xk.i;j / and rij2Q such that the closed ballB.xk.i;j /; rij /
satisfies

Uij � B.xk.i;j /; rij / and jB.xk.i;j /; rij /j < jUij j C
1

.i2j /1=˛
�

Let
S D

\
i2N

[
j2N

B.xk.i;j /; rij / 2 †Q:
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It follows that E � S and S �
S
j2N B.xk.i;j /; rij /, with

rij <
1

2

�
jUij j C

1

.i2j /1=˛

�
<
1

2i
C

1

2.2i/1=˛
�

Thus, if we set ıi D 1=i C 1=.2i/1=˛ , it follows that

H˛
ıi
.S/ �

X
j2N

jB.xk.i;j /; rij /j
˛ <

X
j2N

�
jUij j C

1

.i2j /1=˛

�˛
�

X
j2N

jUij j
˛
C
1

i
< H˛

1=i .E/C
2

i
�

Letting i !1, we get H˛.S/ D H˛.E/, as claimed.

3. The V -characteristic set of an operator

Let us see next that if the V -characteristic set intersects the upper triangle ¹.˛; ˇ/ W 0 <
˛ < ˇ < 1º, then this intersection must be a vertical or horizontal segment (or in other
words, with slope in ¹0;1º).

Proposition 3.1. Let T WL1 ! L1 be an operator.

(1) If there is ˛0 < ˇ0 � 1=2 such that .˛0; ˇ0/ 2 V.T /, then

¹.˛; ˇ0/ W 0 < ˛ � ˛0º � V.T /:

(2) If there is 1=2 � ˛0 < ˇ0 such that .˛0; ˇ0/ 2 V.T /, then

¹.˛0; ˇ/ W ˇ0 � ˇ < 1º � V.T /:

Proof. Suppose that ˛0 < ˇ0 � 1=2 and let p D 1=˛0, q D 1=ˇ0, so that 2� q < p <1.
Note that for this range of p and q, every operator T WLp ! Lq is M-weakly compact.
Indeed, suppose otherwise that there exists a disjoint sequence .xn/ in the ball of Lp
such that kT xnkq � ˛ > 0. In particular, .xn/ is equivalent to the unit vector basis of p̀ .
By [19], there is a subsequence of .xn/, not relabelled, such that .T xn/ is either equivalent
to the unit vector basis of `q or `2. In either case, we would have

n1=q .



 nX
iD1

T xi




 � kT k


 nX
iD1

xi




 . n1=p;

which is a contradiction for large n with q < p.
Now if .˛0; ˇ0/ 2 V.T / for some T WL1 ! L1, we have that T WLp ! Lq is strictly

singular and not compact. Since strictly singular operators form an ideal, for every r 2
Œp;1� it follows that

T W Lr ,! Lp ! Lq

is strictly singular. Suppose that for some r 2 Œp;1�, the operator T WLr ! Lq were
compact. We claim that in this case T WLp ! Lq must be AM-compact: indeed, if for
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some r 2 Œp;1� T WLr ! Lq is compact, then so is T WL1 ! Lq . Now, for arbitrary
f 2 Lp , and any " > 0, taking M" 2 RC such that k.jf j �M"/Ckp � " we have that

Œ�jf j; jf j� � Œ�M";M"�C "BLp :

Since T Œ�M"; M"� is relatively compact, it follows that T Œ�jf j; jf j� is also relatively
compact in Lq . Thus, T is AM-compact, as claimed.

Therefore, by Proposition 3.7.4 in [26], T WLp ! Lq is compact, being AM-compact
and M-weakly compact. This contradiction shows that for every r > p, T WLr ! Lq is
not compact, so

¹.˛; ˇ0/ W 0 < ˛ � ˛0º D
°�1
r
;
1

q

�
W r � p

±
� V.T /:

Finally, the case when 1=2 � ˛0 < ˇ0 follows from the previous one using duality
arguments together with (2.3).

Remark 3.2. As a consequence of Theorem 9 in [17], in part (1) above it holds that T is
not bounded from Lr to Ls for any 1 < r <1, s > q; while in part (2), T is not bounded
from Lr to Ls for any 1 < s <1 and r < p.

Definition 3.3. Let us denote by L the set of all affine lines ` with slope k.`/ 2 Œ0;1�,
intersected with the square .0; 1/ � .0; 1/ such that

(1) either k.`/ D 0;1 and ` \ ¹.˛; ˇ/ W 0 < ˛ � 1=2 � ˇ < 1º D ;;
(2) or k.`/ > 0 and ` lies entirely below the diagonal ¹.˛; ˛/ W ˛ 2 .0; 1/º.

Note each ` 2 L decomposes the square .0; 1/ � .0; 1/ into three disjoint regions L`,
R` and `, where L` denotes the region to the left of `, that is, the one containing the set
¹.˛; ˇ/ W 0 < ˛ � 1=2 � ˇ < 1º.

Theorem 3.4. For each ` 2 L, there is an operator T WL1 ! L1 such that

(1) L.T / D S.T / D L` [ `,
(2) K.T / D L`,
(3) V.T / D `.

For the proof of this result, we will make use of Riesz potential integral operators
between different measure spaces. We refer to Chapter 8 in [22] for background and details
on these operators.

Consider the real segment .0;1/ equipped with its standard metric and Lebesgue meas-
ure. For each Borel set A � .0; 1/, let �.A/ denote its Lebesgue measure. Let 0 < ˛ < 1.
According to [18], we can take a closed Ahlfors ˛-regular subset �˛ � .0; 1/, and we
denote the corresponding ˛-dimensional Hausdorff measure as H˛ . Given 0 < � < 1, we
consider the Riesz potential integral operator T�WL1.0; 1/! L1.�˛;H

˛/ defined by

(3.1) T�f .t/ D

Z 1

0

f .u/

jt � uj�
du; t 2 �˛ � .0; 1/:
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Theorem 3.5. Let 0 < �; ˛ < 1. The operator T�WL1.0; 1/! L1.�˛/ given in (3.1)
satisfies that

V.T�/ D
°�
x ;

1

˛
.x � 1C �/

�
W 1 � � < x < min

°
1;
1 � �

1 � ˛

±±
:

Proof. The proof follows the ideas of Section 8 in [22]. For the sake of simplicity, let
T D T�. In particular, we have that the argument in the proof of Theorem 8.3 in [22]
yields that for some constant C� > 0 and every Borel set A � .0; 1/ we have

(3.2) jT�A.t/j � C��.A/
1��:

Suppose that ˛ < � (in case we have the converse inequality, the argument will be
similar). Given x 2 .1 � �; 1��

1�˛
/, let

q1 D
˛

x � 1C �
�

We claim that there is Cx > 0 such that for every Borel set A � .0; 1/ we have

(3.3) kT�Akq1;1 � Cx�.A/
x :

To prove this inequality, note first that as x < 1��
1�˛

, we have 1
˛
.x � 1C �/ < x. Hence,

we can take � 2 . 1
˛
.x � 1C �/; x/, and applying Holder’s inequality we have

jT�A.t/j D

Z
A

jt � uj�� du D

Z
A

jt � uj1�x jt � uj�.x�1C�/ du

�

� Z
A

jt � uj.1�x/=.1��/ du
�1��� Z

A

jt � uj�.x�1C�/=� du
��
:

Now, arguing again as in the proof of Theorem 8.3 in [22], for some C > 0, if r D
�.A/=2 we have thatZ

A

jt � uj.1�x/=.1��/ du �

Z
B.t;r/

jt � uj.1�x/=.1��/ du D C �.A/.x��/=.1��/:

Therefore, we get

(3.4) jT�A.t/j � C
1�� �.A/x��

� Z
A

jt � uj�.x�1C�/=� du
��
:

For each u 2 A, let gu.t/ D jt � uj�.x�1C�/=� for t 2 �˛ . Then, we have that

kguk�q1;1 D sup
h>0

h
�
H˛.¹t 2 �˛ W gu.t/ � hº/

� 1
�q1(3.5)

D sup
h>0

h
�
H˛.B.u; h�

�
x�1C� //

� 1
�q1 � C˛;

where C˛ is a constant arising from the fact that H˛ is Ahlfors ˛-regular.
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Note that, due to our choice of � , it follows that �q1 > 1, so in particular the expression
k � k�q1;1 is equivalent to a norm (cf. Lemma IV.4.5 in [6]). This fact, together with (3.4)
and (3.5), implies that

kT�Akq1;1 � C
1�� �.A/x��




� Z
A

jt � uj�.x�1C�/=� du
��




q1;1

D C 1�� �.A/x��



 Z

A

jt � uj�.x�1C�/=� du



�
�q1;1

� C 1�� �.A/x��
� Z

A

kguk�q1;1 du
��
� C 1�� C �˛ �.A/

x ;

as we wanted to show.
Therefore, putting together (3.2) and (3.3), we can apply Theorem 2.4 with p0 D

1=.1 � �/, q0 D1, p1 D 1=x and q1 D ˛=.x � 1C �/, to conclude that T WLp.0; 1/!
Lq.�˛/ is bounded for every

1 � � <
1

p
<
1 � �

1 � ˛
;

1

q
D
1

˛

� 1
p
� 1C �

�
:

Moreover, since p ¤ q and T is a positive integral operator, Proposition 2.6 in [12]
yields that T 2 S.Lp.0; 1/; Lq.�˛//.

Finally, let us see that T … K.Lp.0; 1/; Lq.�˛//. Let t0 2 �˛ . We have, for large
enough k0 2 N, that Bk D .t0 � 1

2k
; t0 C

1
2k
/ � .0; 1/ for every k � k0. Let

fk D
�Bk

�.Bk/1=p
D k1=p�Bk :

Then, for t 2 �˛ we have

Tfk.t/ D k
1=p

Z
Bk

jt � uj�� du:

Let us see that the set .T�fk/1kDk0 is not uniformly q-integrable. Indeed, let B 0
k
D Bk \

�˛ . For u 2 Bk and t 2 B 0
k

, we have jt � uj � 1=k, hence

Tfk.t/ � k
�C1=p�1:

Therefore, using that H˛ is Ahlfors ˛-regular there exists c˛ > 0 such that

k.T�fk/�B 0
k
kq � kk

�C1=p�1�B 0
k
kq D k

�C1=p�1 H˛.B 0k/
1=q
� c˛ > 0:

Since this holds for every k � k0, it follows that .Tfk/1kDk0 is not uniformly q-integrable,
and so T … K.Lp.0; 1/; Lq.�˛// as claimed (cf. [22], p. 49).

Remark 3.6. Note that the above proof leaves open the question whether the operator T� W
L.1�s/=.1��/.0; 1/! L.1�˛/=.1��/.�˛/ is actually bounded. Even in case it were, we do
not know if it would be strictly singular. However, it can be deduced from Proposition 3.1
that T WLp.0; 1/! Lp.�˛/ cannot be bounded for any p < .1 � ˛/=.1 � �/.
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.1��; 0/

.0; 1/

b� 1� �
1� ˛

;
1� �

1� ˛

�

>1=p

^1=q

Figure 1. The V -characteristic set of the operator T� in Theorem 3.5.

Proof of Theorem 3.4. We will consider four separate cases depending on the slope k.`/
of the line segment ` 2 L.

Case k.`/ D 0. Since we must have

` \ ¹.˛; ˇ/ W 0 < ˛ � 1=2 � ˇ < 1º D ;;

then ` is the horizontal line of equation ˇ D ˇ0 with ˇ0 < 1=2. Let q0 D 1=ˇ0, and
consider the operator T WLp ! Lq0 given by

T .f / D

1X
nD1

Z 1

0

f .t/rn.t/ dt fn;

where .rn/ denotes the sequence of Rademacher functions, and .fn/ is any sequence of
normalized pairwise disjoint functions in Lq0 . It is clear that T admits the factorization

Lp

Prad

��

T // Lq0

`2
� �

i2;q0

// `q0

J

OO

where Prad is the projection onto the closed linear span of the Rademacher functions,
and J is the isometric embedding via the sequence .fn/ of disjointly supported functions
in Lq0 . It follows easily that T has the required properties.

Case k.`/D1. In this case, we must have that ` is the vertical line of equation ˛D ˛0
with ˛0 > 1=2. Let p0 D 1=˛0 and consider the operator T WLp0 ! Lq given by

T .f / D

1X
nD1

Z 1

0

f .t/gn.t/ dt rn;
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where .rn/ also denote the Rademacher functions and .gn/ is any sequence of normalized
pairwise disjoint functions in L�p0 . It is clear that T admits the factorization

Lp0

P

��

T // Lq

p̀0
� �

ip0;2

// `2

Jrad

OO

where P is a projection onto the closed linear span of a sequence .fn/ of disjointly sup-
ported functions in Lp0 satisfying Z 1

0

fngn D 1;

and Jrad is the embedding via the Rademacher functions. It follows easily that T has the
required properties.

Case 1 � k.`/ <1. Let s D k.`/�1 � 1 and let �s � .0; 1/ be the Ahlfors s-regular
subset considered in Theorem 3.5. Note that by Carathéodory’s isomorphism theorem
(cf. Theorem 2 in Chapter 15 of [31]) and Lemma 2.5, Lp.0; 1/ is lattice isometric to
Lp.�˛;H

˛/. Now, for 0 < � � s, the Riesz potential operator

T D T� W L1.0; 1/! L1.�˛/

given in (3.1) satisfies the required properties by Theorem 3.5.
Case 0 < k.`/ < 1. Let `0 D �.`/ denote the conjugate line segment to `. Since

k.`0/ > 1, we can apply the previous argument to construct an operator T such that
V.T /D `0 and L.T /D L`0 [ `0. Hence, by the duality property given in (2.3), we get that
the adjoint operator satisfies V.T �/ D ` and L.T �/ D S.T �/ D L` [ `, as required.

Remark 3.7. In the case when the slope of the line segment is rational and greater than
one, say n=m with m � n, one can consider the n-dimensional Riesz potential operator

T�f .t/ D

Z
�

f .s/

kt � sk�
d�.s/; t 2 �;

as an operator T�W L1.�/ ! L1.�
0/. Here � denotes the Euclidean unit ball in Rn

centered at the origin, 0 < � < n, k � k denotes the Euclidean norm in Rn, � is the corres-
ponding Lebesgue measure, and

�0 D ¹.x; 0/ 2 Rm �Rn�m W kxk � 1º

is the m-dimensional unit ball embedded in Rn. In this case, Theorem 3.4 can also be
deduced with similar reasonings as above and using also Theorems 8.3 and 8.9 in [22].

Recall that if T1; T2WL1 ! L1 are positive operators, then

L.T1 C T2/ D L.T1/ \ L.T2/:

Let us note that the operators exhibited in the proof of Theorem 3.4 for k.`/ 2 .0;1/
are instances of positive integral operators. In particular, these can be combined to con-
struct operators with a more elaborate V -characteristic set as follows.
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Proposition 3.8. Let .Tn/n2N � L.L1; L1/ be a sequence of positive operators such
that

sup
°
kTnkL.Lp ;Lq/ W n 2 N;

� 1
p
;
1

q

�
2

\
k2N

L.Tk/
±
<1:

Then the operator T D
P
n2N 2

�nTn satisfies

V.T / D
� [
n2N

V.Tn/
�
\

� \
n2N

S.Tn/
�
:

Proof. Let 1 < p; q <1. First note that the series
P
n 2
�nTn converges to T in the norm

of L.Lp; Lq/ for each � 1
p
;
1

q

�
2

\
k2N

L.Tk/:

Suppose first that .1=p; 1=q/ 2 V.T /, or equivalently, T 2 S.Lp; Lq/nK.Lp; Lq/. In
this case, as 0 � Tn � T WLp ! Lq , the domination property of strictly singular operators
(see [13]) yields that Tn 2 S.Lp; Lq/ for every n 2 N.

On the other hand, if Tn 2 K.Lp; Lq/ for every n 2 N, then so would be T . Hence,
there must be some n 2 N such that .1=p; 1=q/ 2 V.Tn/.

Conversely, let us assume that the point� 1
p
;
1

q

�
2

� [
n2N

V.Tn/
�
\

� \
n2N

S.Tn/
�
:

In particular, we have that Tn 2 S.Lp; Lq/ for every n 2 N, which implies that T 2
S.Lp;Lq/. Suppose T 2K.Lp;Lq/. Then, by the domination property of compact operat-
ors (see [10]), we would have that for every n2N, Tn 2K.Lp;Lq/. This is a contradiction
which finishes the proof.

From Theorem 3.4 and Proposition 3.8, we get the following.

Corollary 3.9. Given line segments `1; `2; : : : ; `n in L, with slopes 0 < k.`1/ < k.`2/ <
� � � < k.`n/ <1, the set

P D

n\
iD1

L`i

is a monotone convex polygon of .0; 1/ � .0; 1/, and there is a positive integral operator
T WL1 ! L1 such that V.T / D @P (the boundary of P relative to .0; 1/ � .0; 1//.

Proof. By Theorem 3.4, for every 1 � i � n we can consider an operator Ti W L1 ! L1
such that V.Ti /D `i . Let T D

Pn
iD1 2

�iTi .The conclusion follows from Proposition 3.8.

A similar argument can be used to build V -characteristic sets for polygons with hori-
zontal and vertical segments, the only difference is that we must also consider non-integral
operators:
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������
�
�
�
�
��

�
�
�
��

>
1=p

^1=q

`1

`2

`3

����
�
�
�
�
�
�
�
��

>
1=p

^1=q

`1
`2

`3

`4

`5

Figure 2. The V -characteristic sets of the operators in Corollaries 3.9 and 3.10.

Corollary 3.10. Given line segments `1; `2; : : : ; `n in L, with slopes 0D k.`1/ < k.`2/ <
: : : < k.`n/ D1, the set

P D

n\
iD1

L`i

is a monotone convex polygon of .0; 1/ � .0; 1/, and there is an operator T WL1 ! L1
such that V.T / D @P .

Proof. We proceed as in Example 20 of [17], decomposing the underlying measure space
in three disjoint parts and considering, for the horizontal and vertical segments, the oper-
ators T1 and Tn as defined in the proof of Theorem 3.4, cases (1) and (2).

Example 3.11. Given any function ' W .0; 1/! .0; 1/, let

E' D ¹.s; t/ W 0 < s < 1; '.s/ � t < 1º;

C' D ¹.t; '.t// W t 2 .0; 1/º:

If 'W .0; 1/! .0; 1/ is a convex piecewise differentiable function such that '.t/ < t , then
there is a positive integral operator T WL1 ! L1 so that

(1) L.T / D E' .
(2) S.T / D E' .
(3) V.T / is a dense subset of the curve C' .

Indeed, we can take .xn/ a dense set of .0; 1/ such that '0.xn/ is well defined and
positive. For each n 2 N, let `n be the line segment on .0; 1/ � .0; 1/ which goes through
the point .xn; '.xn// with slope k.`n/ D '0.xn/. By Theorem 3.4, there is a positive
operator TnWL1 ! L1 such that L.Tn/ D S.Tn/ D L`n [ `n and V.Tn/ D `n. From
convexity it follows that

E' D
\
n2N

L`n [ `n:
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>
1=p

^1=q

Figure 3. The V -characteristic set of an operator as in Example 3.11.

Taking T D
P
n2N 2

�nTn, we have that

L.T / D
\
n2N

L.Tn/ D E' :

Also, since T is a positive integral operator, and C' \ ¹.t; t/ W t 2 .0; 1/º D ;, Proposi-
tion 2.6 in [12] yields that C' � S.T /, so by Corollary 2.3 we get

S.T / D L.T /:

Finally, Proposition 3.8 yields that

V.T / D
� [
n2N

`n

�
\E' D ¹.xn; '.xn// W n 2 Nº � C' :

4. Regular operators on subspaces of Lp

It is well known that in the case of regular operators (i.e., those which can be written as
a difference of two positive operators) strict singularity is closer to compactness. More
precisely, it was shown in [9] (see also Theorem 12 in [17]) that for 1 < q � p < 1,
every strictly singular regular operator T WLp ! Lq must be compact. On the other hand,
there exist simple examples of regular strictly singular operators T WLp ! Lq which are
not compact when p < q.

In this section, we will explore this question for operators defined on a subspace ofLp .
There is a natural definition of regularity which can be extended for operators defined on
subspaces of a Banach lattice due to G. Pisier [29]: given a subspace X � Lp , an operator
T WX ! Lq is regular if there is C � 0 such that for all finite sequences .xi /niD1 � X ,

(4.1)



 sup
1�i�n

jT xi j




q
� C




 sup
1�i�n

jxi j




p
:
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We refer the reader to [32] for a more recent account on this and the closely related notions
of .p; q/-regularity.

Remark 4.1. The proof of Theorem 5 in [17] actually yields that if p � 2 � q, every
strictly singular operator from a subspace X of Lp into Lq must be compact (regularity is
not even necessary in this case).

Proposition 4.2. Let 2 < q < p and let X be a subspace of Lp . If T WX ! Lq is regular
and strictly singular, then T is compact.

Proof. Let T WX ! Lq be a regular and strictly singular operator, and suppose that T
is not compact. Hence, there exists a normalized weakly null sequence .xn/ � X such
that kT xnk � ˛ > 0 for every n 2 N. Using the Kadec–Pelczynski alternative [19] both
for .xn/ and .T xn/, together with the fact that 2 < q < p, it follows that necessarily .xn/
must be equivalent to the unit vector basis of `2 while .T xn/ must be equivalent to the
unit vector basis of `q . In particular, without loss of generality we can assume .T xn/ are
pairwise disjoint, and then using the regularity of T we get

˛n1=q �



� nX

iD1

jT xi j
q
�1=q




q
D




 sup
1�i�n

jT xi j




q

� C



 sup
1�i�n

jxi j




p
� C




� nX
iD1

jxi j
p
�1=p




p
� Cn1=p;

which is a contradiction for large n.

We will see next by means of particular examples that in all remaining cases, the
result of [17] (see Theorem 12) cannot be extended for operators defined on an arbitrary
subspace of Lp . One reason for the difference of this behavior is the well-known fact that
for 1 � p < s � 2, `s embeds as a subspace of Lp via s-stable random variables, whereas
this is not possible for p > 2.

Proposition 4.3. Given q � p � s < 2, there is a subspace X � Lp isomorphic to `s and
a regular strictly singular operator T WX ! Lq which is not compact.

Proof. If p < s < 2, then let .gn/ be a sequence of independent identically distributed
s-stable random variables supported on Œ0; 1=2�, while if s D p, then let .gn/ be a normal-
ized pairwise disjoint sequence supported on Œ0; 1=2�. Let .rn/ be a sequence of Radema-
cher random variables supported on Œ1=2; 1�. Let xn D gn C rn. Since .gn/ is equivalent
to the unit vector basis of `s , and .rn/ is equivalent to the unit vector basis of `2, we have


 mX

nD1

anxn





p
D

�


 mX
nD1

angn




p
p
C




 mX
nD1

an rn




p
p

�1=p
� max

°


 mX
nD1

angn





p
;



 mX
nD1

an rn





p

±
�

� mX
nD1

janj
s
�1=s

:

Here, the last equivalence follows from the fact that s < 2. LetX be the closed linear span
of .xn/ in Lp , which is isomorphic to `s .
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Let now consider the operator T WX ! Lq given by Tf D f�Œ1=2;1�. Clearly, T is a
regular operator. Moreover, as T xn D rn, where .rn/ is equivalent to the unit vector basis
of `2 and s < 2, it follows that T is strictly singular but not compact.

Proposition 4.4. Given p > 2, there is a subspaceX �Lp isomorphic to `2 and a regular
strictly singular operator T WX ! Lp which is not compact.

Proof. Let .hn/ be a sequence of normalized pairwise disjoint functions in Lp whose
support is contained in Œ0; 1=2�. Let .rn/ be a sequence of Rademacher random variables
supported on Œ1=2; 1�. Let xn D hn C rn. Since .hn/ is equivalent to the unit vector basis
of p̀ , and .rn/ is equivalent to the unit vector basis of `2, we have


 mX

nD1

anxn





p
D

�


 mX
nD1

anhn




p
p
C




 mX
nD1

an rn




p
p

�1=p
� max

°


 mX
nD1

anhn





p
;



 mX
nD1

an rn





p

±
�

� mX
nD1

a2n

�1=2
:

Here, the last equivalence follows from the fact that p > 2. Let X be the closed linear
span of .xn/ in Lp , which is isomorphic to `2.

Let now consider the operator T WX ! Lp given by Tf D f�Œ0;1=2�. Clearly, T is a
regular operator. Now, since T xn D hn, with .hn/ equivalent to the unit vector basis of p̀

and p > 2, it follows that T is strictly singular but not compact.
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