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Holomorphic semigroups and Sarason’s
characterization of vanishing mean oscillation

Nikolaos Chalmoukis and Vassilis Daskalogiannis

Abstract. It is a classical theorem of Sarason that an analytic function of bounded
mean oscillation (BMOA) is of vanishing mean oscillation if and only if its rotations
converge in norm to the original function as the angle of the rotation tends to zero.
In a series of two papers, Blasco et al. have raised the problem of characterizing all
semigroups of holomorphic functions .'t / that can replace the semigroup of rota-
tions in Sarason’s theorem. We give a complete answer to this question, in terms
of a logarithmic vanishing oscillation condition on the infinitesimal generator of the
semigroup .'t /. In addition, we confirm the conjecture of Blasco et al. that all such
semigroups are elliptic. We also investigate the analogous question for the Bloch
and the little Bloch spaces, and surprisingly enough, we find that the semigroups for
which the Bloch version of Sarason’s theorem holds are exactly the same as in the
BMOA case.

1. Introduction and main results

A semigroup of analytic self maps of the unit disc D is the flow of a (unique) holomorphic
vector field G on D which is defined for all positive times t � 0. In other words it is the
solution .'t W D 7! D/t�0 of the Cauchy problem

(1.1)

8<:G.'t .z// D @'t .z/

@t
;

'0.z/ � z;

when this exists. In particular, G is called the infinitesimal generator of the semigroup.
From the dynamical viewpoint, the continuous version of Denjoy–Wolff’s theorem (see
Theorem 8.3.1 in [11]) guarantees the existence of a unique point � 2 D, which is called
the Denjoy–Wolff point of .'t /, and 't converges to � uniformly on compact sets as
t !C1, except when .'t / consists of elliptic automorphisms of D. This allows for
a first classification of semigroups: the elliptic ones, when � 2 D, and the non-elliptic,
when j� j D 1.
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There has been an increasing amount of literature on semigroups of analytic functions
studying both the dynamical features of semigroups, such as slopes of orbits [7, 11], rates
of convergence to the Denjoy–Wolff point [8] and boundary fixed points [13] to name a
few, but also studying holomorphic semigroups in the context of (holomorphic) function
spaces. This approach was pioneered by Berkson and Porta [6]. In this paper we will focus
on some questions regarding this latter aspect.

Let H .D/ be the Frechét space of holomorphic functions in the unit disc. In [6],
Berkson and Porta considered the semigroup of composition operators

Ct .f / WD f ı 't ; f 2 H .D/;

associated to a semigroup .'t /. They proved that each .'t / induces a strongly continu-
ous semigroup of operators [17], Section 34, on the classical Hardy space of analytic
functions Hp , p > 0, i.e., that each operator Ct is a bounded linear operator on Hp ,
the semigroup identity is satisfied, Ct ı Cs D CtCs , and furthermore Ct converges to the
identity operator in the strong operator topology as t& 0. Their work has been quite influ-
ential, and has naturally led to analogous considerations in a variety of spaces of analytic
functions in the unit disc, among them the classical weighted Bergman spaces [22] and the
Dirichlet space [23]. It turns out that the original results of Berkson and Porta continue to
hold in these different settings virtually invariable. That is, the composition operators Ct
associated to any given semigroup of analytic functions .'t / form a strongly continuous
semigroup of composition operators in all these spaces.

A different phenomenon arises when one considers some of the most well known non-
separable spaces of analytic functions. The first one to notice this, although not in the
language of semigroup theory, was Sarason [21], in the setting of BMOA; the space of
analytic functions of bounded mean oscillation. For more background on these spaces, the
reader is referred to Section 2.

Theorem A (Sarason’s theorem). Let �t .z/ D eitz, t � 0, be the family of rotations in
the unit disc. Then for a function f 2 BMOA,

lim
t&0
kf ı �t � f kBMOA D 0

if and only if f is of vanishing mean oscillation .VMOA/.

As a matter of fact, the rotations .�t /t�0 form a semigroup of analytic functions, and
Sarason’s theorem shows that the composition semigroup induced by .�t / is not strongly
continuous, rather there exists a maximal closed subspace of BMOA on which rotations
induce a strongly continuous composition semigroup. We should mention here that Sara-
son formulates his theorem in the space of functions of bounded mean oscillation in the
real line, but as he notices [21], p. 1, the result reported here is an equivalent reformulation
of his.

Motivated by this observation, in a series of two papers [9, 10], Blasco, Contreras,
Díaz-Madrigal, Martínez, Papadimitrakis and Siskakis studied composition semigroups in
BMOA and in the Bloch space B as long as in their “little-oh” versions, VMOA and B0.
It turns out that strong continuity depends on the characteristics of each specific semig-
roup .'t /, which led the authors to introduce the maximal subspace of strong continuity:

Œ't ; X� WD ¹f 2 X W limt&0 kCt .f / � f kX D 0º ;
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i.e., the maximal linear subspace on which .'t / induces a strongly continuous compos-
ition semigroup. It can be proven that when X D BMOA or B, for all semigroups this
is a closed subspace of X , see Proposition 1 in [10]. Furthermore, each .'t / generates a
strongly continuous semigroup .Ct / in VMOA and B0, hence in general we have

(1.2) X0 � Œ't ; X� � X;

where X0 D VMOA or B0.1

In view of Sarason’s theorem, it is quite natural to ask about those .'t / for which the
maximal subspace of strong continuity is minimal, in the sense of equation (1.2). In other
words we want to find a characterization of semigroups for which Œ't ; X� D X0.

Blasco et al. [10] prove that the following “logarithmic vanishing Bloch” condition on
the infinitesimal generator:

lim
jzj%1

1 � jzj2

G.z/
log

1

1 � jzj2
D 0;(LVB)

is sufficient so that Œ't ;B� D B0 holds. On the opposite direction, they prove that Œ't ;B�
D B0 implies (LVB) under the a priori hypothesis

(1.3) lim sup
jzj%1

1 � jzj2

jG.z/j
log

1

1 � jzj2
< C1:

It should be noted that non-elliptic semigroups always fail to satisfy (1.3), therefore the
theorem provides no information on the non-elliptic case. Furthermore, there exist non
trivial elliptic semigroups that also fail to satisfy (1.3).

In the same work, the authors also investigate the case Œ't ;BMOA� D VMOA. The
sufficient condition they obtain is a variation of the logarithmic vanishing Bloch condi-
tion adapted to the nature of BMOA. For obvious reasons, we shall call it a “logarithmic
vanishing mean oscillation” condition:

lim
jaj%1

�
log

e

1 � jaj2

�2 Z
D

1 � j�a.z/j
2

jG.z/j2
dm.z/ D 0;(LVMO)

where �a.z/ WD .a � z/=.1 � Naz/ and dm is the normalized Lebesgue measure on D.
Similarly to the Bloch case, the necessity of this condition is proved under the assumption
that

(1.4) lim sup
jaj%1

�
log

e

1 � jaj2

�2 Z
D

1 � j�a.z/j
2

jG.z/j2
dm.z/ < C1:

It is known, and quite straightforward to verify, that (LVMO)) (LVB), hence the suffi-
cient condition in the BMOA case is apparently stronger than the one for the Bloch space,
and analogously (1.4)) (1.3). Hence, a fortiori, all non-elliptic semigroups and some
elliptic ones fail to satisfy (1.4).

1In the rest of the paper we shall use the shorthand X and X0 to mean that X is the Bloch space or BMOA
and X0 is either the little Bloch space or VMOA, respectively.
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In view of the above results, it is unclear whether there exist non-elliptic semigroups
such that the maximal subspace is minimal (either in the Bloch space or in BMOA). This
problem has been already posed as a question in [9], Question 2. In this direction, the
authors in [9] provide some necessary conditions for the minimality of the maximal sub-
space. Suppose that .'t / is a non-elliptic semigroup with Denjoy–Wolff point � . Then
Berkson–Porta’s formula [11], Theorem 10.1.10, gives the following representation of G:

G.z/ D .z � �/. N�z � 1/p.z/;

where p is a holomorphic function of non-negative real part. Therefore p has a Herglotz
representation by some non-negative Borel measure �, supported on @D. In Corollary 5
of [9], the authors prove that if Œ't ;X�DX0, then� has no atoms, i.e.,�¹�ºD 0;8� 2 @D.
Furthermore, they prove ([9], Corollary 6) that if .'t / is non-elliptic and Œ't ; X� D X0,
then the Koenigs function h satisfies

(1.5) h 2
� \
p<1

Hp
�
n BMOA;

where Hp is the classical Hardy space.
We have been able to answer these questions, providing a complete characterization

of the semigroups for which Œ't ; X� D X0.

Theorem 1.1. Let .'t / be a semigroup of analytic functions with infinitesimal gener-
ator G. The following are equivalent.

(a) Œ't ;B� D B0,

(b) Œ't ;BMOA� D VMOA,

(c) .'t / is an elliptic semigroup and G satisfies the logarithmic vanishing Bloch condi-
tion (LVB),

(d) .'t / is an elliptic semigroup and G satisfies the logarithmic vanishing mean oscilla-
tion condition (LVMO).

The surprising aspect of this theorem is that not only the sufficient conditions of Blasco
et al. are also necessary for the minimality of the maximal subspace under no further
assumptions, but quite unexpectedly, the two conditions are equivalent. Hence the class of
holomorphic semigroups which can replace the rotations in Sarason’s theorem is exactly
the same for the Bloch space and for BMOA. In particular, the implications (a)) (c)
and (b)) (d) answer in the affirmative the question of Blasco et al. [9], i.e., that no non-
elliptic semigroup has maximal subspace which coincides with either B0 or VMOA.

Plan of the paper

In Section 2 we give a quick overview of the concepts that will go into the proof of the
main theorem. In particular, we discuss in more detail semigroups of analytic functions
and the spaces BMOA and B, as well as some weighted versions of them. In Section 3 we
prove the main theorem. In fact, the central part of the proof is a construction presented in
Proposition 3.5.
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2. Background

In this section we shall discuss some of the background material and introduce some
notation that we are going to use later. In the unit disc D, we denote by ı the hyperbolic
distance,

ı.a; z/ WD
1

2
log

1C j�a.z/j

1 � j�a.z/j
; where �a.z/ WD

a � z

1 � Naz
; a; z 2 D:

This is the distance corresponding to the hyperbolic Riemannian metric ds=.1 � s2/. The
metric space .D; ı/ is a model of the hyperbolic plane usually called the Poincaré disc. The
functions �a are isometric automorphisms of the Poincaré disc and are also involutions
(��1a D �a).

For a holomorphic function f defined on D, we define its hyperbolic translation fa
with respect to a 2 D as

fa.z/ WD f .�a.z// � f .a/:

Another fact that is going to be used repeatedly is the following approximation for the
hyperbolic distance of a point z 2 D to the origin:

1C ı.0; z/ � log
e

1 � jzj2
�

Let us now take a closer look to holomorphic semigroups. An equivalent way to define
a holomorphic semigroup .'t / is as a family ¹'t W t � 0º of analytic self maps of the unit
disc 't WD ! D such that
(1) '0.z/ � z,
(2) 't ı 's D 'tCs; t; s � 0,
(3) 't .z/! z uniformly on compact subsets of D, as t & 0.

It turns out that if .'t / is a semigroup then each 't is univalent, see Theorem 8.1.17
in [11]. In addition, for all members of a semigroup .'t / (other than the hyperbolic rota-
tions), there exists a common “fixed point” � 2 D for which

lim
t!1

't .z/ D �; z 2 D ;

usually called the Denjoy–Wolff point of .'t /. The concept of Denjoy–Wolff point of a
semigroup plays a key role in the semigroup theory, and we can classify semigroups with
respect to their Denjoy–Wolff point, � , as follows (see Theorem 8.3.1 in [11]):
(1) If � 2 D, then there exists � 2 C n ¹0º with <.�/ � 0 such that

'0t .�/ D e
��t ; t � 0:

In addition, we either have j'0t .�/j D 1 for every t > 0, or j'0t .�/j< 1 for every t > 0.
(2) If � 2 @D, then there exists � � 0 such that

† lim
z!�

'0t .�/ D e
��t ; t � 0:
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The number � is called the spectral value of the semigroup. We say that .'t / is elliptic
if � 2 D, parabolic if � 2 @D with spectral value � D 0, and hyperbolic if � 2 @D with
spectral value � > 0. The semigroup is called non-elliptic if it is either parabolic or hyper-
bolic.

If .'t / is a semigroup, then the limit

G.z/ D lim
t&0

't .z/ � z

t

exists uniformly on compact subsets of D. The function G 2 H .D/ is the infinitesimal
generator of .'t / and characterizes the semigroup in a unique way. In addition,G satisfies
the following relations:

(2.1) G.'t .z// D
@'t .z/

@t
D G.z/

@'t .z/

@z
; z 2 D; t � 0:

Due to the Berkson–Porta formula [6], we can represent the infinitesimal generator G in
terms of the Denjoy–Wolff point � of the semigroup as

(2.2) G.z/ D . N� z � 1/.z � �/p.z/; z 2 D ;

where � 2 D and p 2H .D/ with<.p.z// � 0 for all z 2 D. Conversely, every function
of this form is the infinitesimal generator of a holomorphic semigroup.

A geometric description of all holomorphic semigroups is provided by the so called
Koenigs function, a conformal map which conjugates a given semigroup .'t / to a model
semigroup.

When .'t / is an elliptic semigroup, with Denjoy–Wolff point � 2 D, the function h is
the unique conformal map such that h.�/ D 0, h0.�/ D 1 and

h.�t .z// D e
��t h.z/; z 2 D; t � 0:

In addition, we have that h0.z/=h.z/ D ��=G.z/. In the non-elliptic case, h is the unique
conformal map such that h.0/ D 0 and

h.�t .z// D h.z/C i t; z 2 D; t � 0:

In this case, we have that h0.z/ D i=G.z/.
For a semigroup .'t / with infinitesimal generator G and Denjoy–Wolff point � , fol-

lowing the notation used in [9], Definition 4, we consider the function  WD ! C, which
we will call the associated  -symbol of .'t /. This function is defined as follows: if � 2 D,
then

.z/ WD

Z z

�

� � �

G.�/
d� ;

while if � 2 @D, then

.z/ WD

Z z

0

i

G.�/
d� :

In the case where � 2 @D, then  coincides with h, while if � 2D, then  0.z/D� z��
�

h0.z/
h.z/
�
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The maximal subspace of strong continuity, for a semigroup of composition operat-
ors .Ct /, can also be described in terms of the infinitesimal generator G, see Theorem 1
in [9]. If .Ct / acts on a Banach space X of analytic functions in the unit disc which
contains the constant functions, and in addition we have that supt�1 kCtkX < 1, then

(2.3) Œ't ; X� D ¹f 2 X W Gf 0 2 Xº:

This description already indicates a connection between the maximal subspace and the
so called generalized Volterra operator, defined for an analytic symbol g as

Tg.f /.z/ WD

Z z

0

f .�/g0.�/ d� ; f 2 H .D/:

This operator was first introduced by Pommerenke [19], who studied its boundedness
properties on the Hardy spaceH 2 in connection to the analytic John–Nirenberg inequality.
Since then, several authors studied these operators focusing on conditions on the symbol g
under which Tg is bounded or compact. The survey papers [1, 24] contain much more
information on the generalized Volterra operator.

It turns out that if X is Banach space of analytic functions, and g is the associated
 -symbol of .'t /, under mild additional assumptions on X, we have the following char-
acterization for the maximal subspace of strong continuity (see Proposition 2 in [9]):

(2.4) Œ't ; X� D X \ .T .X/˚ C/ ;

where C is the set of all constant functions.
Finally, we introduce some definitions and we recall some theorems regarding the

Banach spaces of analytic functions we are interested in. The space BMOA is the space
of all analytic functions in the Hardy space H 2 which have bounded mean oscillation.
Having to choose between many equivalent descriptions, we will use a description in
terms of Carleson measures. We say that f 2 BMOA if and only if

kf k2� WD sup
I�@D

1

jI j

Z
S.I/

jf 0.z/j2.1 � jzj2/ dm.z/ < 1 ;

where I is any arc on @D and jI j is its length. Also, S.I / is the so called Carleson box,
which for us will be the closed hyperbolic halfplane in the Poincaré disc which has I as its
boundary. There exist more “square” versions of Carleson boxes, but the invariant nature
of this definition will simplify some of our computations.

The space BMOA is a Banach space, equipped with the norm

kf kBMOA WD jf .0/j C kf k� :

The closure of all polynomials in BMOA is the space VMOA, which has an equivalent
description in terms of the following vanishing Carleson condition:

lim
jI j&0

1

jI j

Z
S.I/

jf 0.z/j2.1 � jzj2/ dm.z/ D 0:

The space BMOA is a subspace of the well-known Bloch space, denoted by B. We
say that a function f 2 H .D/ belongs to B if and only if

sup
z2D
jf 0.z/j .1 � jzj2/ < 1:
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The closure of polynomials in the Bloch norm is called the little Bloch space, denoted
by B0. Equivalently, f 2 B0 if and only if

lim
jzj!1

jf 0.z/j .1 � jzj2/ D 0:

The spaces B and B0 are Banach spaces equipped with the norm

kf kB WD jf .0/j C sup
z2D
jf 0.z/j .1 � jzj2/:

For more information on these spaces, see [26].
In Definition 3 of [9], the authors consider some weighted versions of BMOA and B

which are closely related to the conditions (LVMO) and (LVB). Let f 2 H .D/. Then we
say that f belongs to BMOAlog if and only if

(2.5) sup
I�@D

�
log

e

jI j

�2
jI j

Z
S.I/

jf 0.z/j2.1 � jzj2/ dm.z/ < 1 ;

and f 2 VMOAlog if and only if

(2.6) lim
jI j!0

�
log

e

jI j

�2
jI j

Z
S.I/

jf 0.z/j2.1 � jzj2/ dm.z/ D 0:

Respectively, we say that f belongs to Blog if and only if

(2.7) sup
z2D
jf 0.z/j .1 � jzj2/

�
log

e

1 � jzj2

�
< 1 ;

and f 2 Blog; 0 if and only if

(2.8) lim
jzj!1

jf 0.z/j
�

log
e

1 � jzj2

�
.1 � jzj2/ D 0:

These spaces naturally appeared in the study of multipliers for BMOA and the Bloch
space. A function g is a pointwise multiplier of B, i.e., gf 2 B for all f 2 B, if and
only if g 2H1 \Blog, [12], whereH1 is the space of bounded analytic functions in the
unit disc. An analogous result holds for BMOA: g is a multiplier for BMOA if and only
if g 2 H1 \ BMOAlog, [18]. For our purposes, these spaces are interesting because they
characterize the boundedness and compactness of Tg on BMOA and B, see Theorems 5
and 6 in [9], and [16, 25].

Theorem B. The operator Tg WBMOA!BMOA is bounded if and only if g 2BMOAlog.
Furthermore, the following are equivalent:

(i) Tg WBMOA! BMOA is compact,

(ii) g 2 VMOAlog,

(iii) Tg WBMOA! BMOA is weakly compact.
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An analogous result holds for the Bloch space. The operator Tg WB ! B is bounded
if and only if g 2 Blog. Furthermore, the following are equivalent:
(I) Tg WB ! B is compact,

(II) g 2 Blog;0,

(III) Tg WB ! B is weakly compact.

In addition, Gantmacher’s theorem [3], Theorem 5.23, implies that Tg WX ! X is
weakly compact if and only if Tg.X/ � X0.

Notation

For two quantities A and B depending on a number of parameters, we shall write A . B

if there exists some positive constant C > 0 not depending on the parameters such that
A � CB . The set of parameters in question should be clear from the context. Similarly,
we shall write A � B if A . B and B . A.

3. Proof of main results

We can now turn towards the proof of Theorem 1.1, which can be divided on a macro-
scopic scale in two main parts. The first one regards the equivalence of parts (c) and (d) of
Theorem 1.1. This equivalence is actually another manifestation of the rigidity properties
of univalent functions.

The idea that we employ already appeared in [20], and was further refined in [5]. Here
we shall adapt it in the weighted setting relevant to our problem. Although we could do
all calculations for the logarithmic weight, we prefer to work with a more general class
of weights since we think that this renders more clearly the idea of the proof. Let ! be a
strictly positive weight of the class C 1.D/. We assume the following regularity condition
on !:

(3.1) .1 � jzj2/jr!.z/j � C! !.z/; 8z 2 D;

for some C! > 0.

Lemma 3.1. Suppose that ! is a weight which satisfies (3.1) with some constant C! < 1:
Let also f 2 H .D/ be such that

jf 0.z/j.1 � jzj2/!.z/ � K; 8z 2 D;

where K > 0. Then, Z 1

0

sup
a2D;jzj�r

.!.a/ jfa.z/j/
2 dr < C1:

Proof. Let us start with a local oscillation estimate on !. Let z D rei� . We have

log
!.z/

!.0/
�

Z r

0

jr!.sei� /j

!.sei� /
ds � C! ı.0; z/:
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Since condition (3.1) is invariant under composition with Möbius transformations, see
Proposition 3.1 in [2], we have that

!.z/ � eC! ı.z;w/ !.w/; z; w 2 D:

We proceed now with an estimate of the quantity that appears in the lemma. For z 2 D,
we have

jf 0a.z/j.1 � jzj
2/ D jf 0.�a.z//j.1 � j�a.z/j

2/ � K!.�a.z//
�1:

Hence for z D rei� we have

!.a/ jfa.z/j � K

Z r

0

!.a/

!.�a.tei� //

dt

1 � t2
� K sup

¹w W ı.a;w/�ı.0;r/º

!.a/

!.w/
ı.0; r/

� K eC! ı.0;r/ ı.0; r/:

The lemma follows from the fact that the function

e2C!ı.0;r/ ı.0; r/2 D
�1C r
1 � r

�C!�1
2

log
1C r

1 � r

�2
is integrable in .0; 1/ if C! < 1.

The next proposition is a weighted version of Pommerenke’s result [20].

Proposition 3.2. Let f WD ! C be univalent and let ! be a weight as in Lemma 3.1.
Suppose also that

(3.2) lim
jzj%1

jf 0.z/j.1 � jzj2/ !.z/ D 0:

Then,

(3.3) lim
jaj%1

!.a/2
Z

D
jf 0.z/j2 .1 � j�0a.z/j

2/ dm.z/ D 0:

Proof. Let f be such a function. Setting Dr D ¹z 2 D W jzj � rº; r 2 Œ0; 1/, we have

!.a/2
Z

D
jf 0.w/j2 .1 � j�a.w/j

2/ dm.w/ D !.a/2
Z 1

0

Z
Dr

jf 0a.z/j
2 dm.z/ dr

D !.a/2
Z R

0

Z
Dr

jf 0a.z/j
2 dm.z/ dr C !.a/2

Z 1

R

Z
Dr

jf 0a.z/j
2 dm.z/ dr

DW I C II:

Since fa is univalent, the inner integral is the normalized area of the image fa.Dr /, henceZ
Dr

jf 0a.z/j
2 dm.z/ � sup

z2Dr

jfa.z/j
2 :
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Let now " > 0. By Lemma 3.1, there exists some R0 < 1 such that

II � !.a/2
Z 1

R0

sup
z2Dr

jfa.z/j
2 dr < "; 8a 2 D:

In order to estimate the integral I, notice first that the oscillation estimate in the proof
of Lemma 3.1, for z � R0, gives

!.a/

!.�a.z//
� eC!ı.0;R0/; a 2 D:

Hence we have

I D !.a/2
Z R0

0

Z
Dr

�
jf 0.�a.z//j.1 � j�a.z/j

2/

1 � jzj2

�2
dm.z/ dr

D

Z R0

0

Z
Dr

� !.a/

!.�a.z//

�2� jf 0.�a.z//j.1 � j�a.z/j2/!.�a.z//
1 � jzj2

�2
dm.z/ dr

� e2C!ı.0;R0/
Z R0

0

1

.1 � r2/2

Z
Dr

jf 0.�a.z//j
2.1 � j�a.z/j

2/2!.�a.z//
2 dm.z/ dr:

Now, since f satisfies (3.2), we can find R1 < 1 such that

!.w/.1 � jwj2/ jf 0.w/j � e�C!ı.0;R0/ .1 �R20/
p
"; 8w W R1 < jwj < 1:

Finally, there exists some ı > 0 such that j�a.z/j > R1, if jzj � R0 and jaj > 1 � ı:
This gives

I � .1 �R20/
2

Z R0

0

1

.1 � r2/2
dr " � ":

Therefore we have proved that for each " > 0, we can find ı > 0 such that for jaj > 1� ı,

!.a/2
Z

D
jf 0.w/j2 .1 � j�a.w/j

2/ dm.w/ � 2":

Corollary 3.3. If f is univalent, then

f 2 Blog;0 if and only if f 2 VMOAlog:

Proof. It is sufficient to prove the direct implication. Consider the weight !K.z/ WD
log K

1�jzj2
. For some K > 0 large enough, !K satisfies the hypothesis of Lemma 3.1.

Then f 2 Blog;0 is equivalent to (3.2), hence it satisfies (3.3), which is equivalent to
f 2 VMOAlog.

We now turn to the second part of the proof. Roughly speaking, the characterization
of the maximal subspace of strong continuity as .T .X/˚ C/ \X by Blasco et al. [9]
allows us to approach the problem of studying the maximal subspace of strong continuity
purely by functional analytic methods. The central part of the proof will therefore follow
from a construction of a function in the range of Tg under some technical assumptions
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on g. The construction turns out to be quite explicit by pasting together some holomorphic
“building blocks”. These so called building blocks behave much like the logarithmic func-
tion `w.z/ WD log. e

1� Nwz
/ in the sense that at a prescribed point (in this casew) achieves the

biggest possible growth while keeping the BMOA or Bloch norm below a fixed threshold.
Our construction requires some improved decay properties away from the point w. The
exact definition of these functions is presented in the next lemma.

Lemma 3.4. For a point w 2 D, we denote by w� the hyperbolic midpoint between 0
and w. Let also Iw be the closed arc in the unit circle such that w is the point in S.Iw/
closest to the origin (see Figure 1). Then the function

ˇw.z/ WD log
e

1 � �w�.z/w

satisfies the following properties:
(i) kˇwkB . kˇwk� . 1,

(ii) <ˇw � 0,

(iii) j=ˇw j � �=2,

(iv) <ˇw.z/ � log e
1�jwj2

for z 2 S.Iw/,

(v) if z 62 S.Iw�/, then jˇw.z/j � c0, where c0 is an absolute constant. In particular,
for all ı > 0 there exists ı0 > 0 such that if 1 � jwj � ı0 and 1 � jzj � ı, then
jˇw.z/j � c0:

Proof. To prove part (i), notice that the Möbius invariant part of the norm does not change
after composing the function log e

1�wz
with the Möbius transformation �w� . Also,

ˇw.0/ D log
e

1C w�w
� 1:

Parts (ii) and (iii) follow by the definition of the logarithm. To see (iv), notice that �w�
preserves the diameter passing through w, it maps w� at 0, and it leaves invariant the
hyperbolic distances, therefore it should map S.Iw/ to S.Iw�/. Hence, if z 2 S.Iw/ and
we define y WD �w�.z/ 2 S.Iw�/,

<ˇw.z/ D log
e

j1 � ywj
& log

e

1 � jw�j2
� log

e

1 � jwj2
�

A similar geometric reasoning as before shows that �w�.D n S.Iw�// is the half
disc which contains �w and defined by the diameter perpendicular to the radius passing
from w. Let therefore z 2 D in this half plane, or equivalently <.zw/ � 0. Hence,ˇ̌̌

log
e

1 � zw

ˇ̌̌
� log

e

j1 � zwj
C
�

2
� 1C

�

2
� 3:

To verify the second part of property (v), it remains only to notice that for every ı > 0
there exists ı0 > 0 such that if 1 � jwj � ı0, then the disc ¹jzj � 1 � ıº is contained in
D n S.Iw�/.

The next proposition is the main technical tool in the proof of our main theorem.
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Figure 1. The construction in Lemma 3.4.

Proposition 3.5. Let g 2 BMOA n VMOAlog. Then there exists a function F 2 BMOA
such that TgF 2 BMOA n VMOA.

Proof. First note that if g 2 BMOA n VMOA, then the function F � 1 satisfies the
required properties. On the other hand, if g 2 BMOAlog n VMOAlog, then by Theorem B
we have that Tg.BMOA/ � BMOA but Tg.BMOA/ 6� VMOA; therefore, we can find a
function F as claimed in the thesis of the theorem. We have therefore reduced the problem
to the case g 2 VMOA n BMOAlog.

In order to reduce the number of constants in the proof, we assume without loss of
generality that Z

D
jg0.z/j2 .1 � jzj2/ dm.z/ D 1 � kgk�:

Basic reduction of the problem. The basic step of the proof is the construction of a
sequence of arcs ¹Inº and a sequence of functions Fn of the form

Fn.z/ D

nX
kD0

ak ˇwk .z/;

for some wk 2 D such that
(1) the coefficients ¹akº satisfy 0 � ak � 2�k ,
(2) for all n 2 N it holds

1

jInj

Z
S.In/

.<Fn.z//
2
jg0.z/j2.1 � jzj2/ dm.z/ � 1;

(3) for all n 2N we have kTgFnk� �max¹kTgFn�1k�C 2�nC.g/;C.g/º, where C.g/
is a positive constant which depends only on g.

Suppose now that we can construct such a sequence of functions. Then we can finish
the proof as follows: we have that

1X
kD0

ak.kˇwkk� C jˇwk .0/j/ .
1X
kD0

ak < C1:
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Figure 2. The n-th step in the construction.

Therefore

F WD

1X
kD0

akˇwk 2 BMOA:

Applying repeatedly property (3), we find that

kTgFnk� � max
°
kTgF0k� C

nX
rD1

2�rC.g/; C.g/
±
� kgk� C C.g/:

There is a slight subtlety in the fact that since Tg is not continuous we cannot directly infer
from .3/ that TgF 2 BMOA. But this problem is easily overcome. It suffices to prove
that j=F.z/g0.z/j2.1 � jz2j/ dm.z/ and .<F.z//2jg0.z/j2.1 � jzj2/ dm.z/ are Carleson
measures for the Hardy space. The first one is clearly a Carleson measure, since the ima-
ginary part of F is bounded. Let I � @D. By the monotone convergence theorem, we have

1

jI j

Z
S.I/

.<F.z//2jg0.z/j2.1 � jzj2/ dm.z/

D lim
n!1

1

jI j

Z
S.I/

.<Fn.z//
2
jg0.z/j2.1 � jzj2/ dm.z/ � lim

n!1
kTgFnk

2
� � C.g/

2:

Finally, we should prove that TgF 62 VMOA. This is a simple consequence of (2):

1

jInj

Z
S.In/

jF.z/g0.z/j2 .1 � jzj2/ dm.z/

�
1

jInj

Z
S.In/

.<Fn.z//
2
jg0.z/j2 .1 � jzj2/ dm.z/ � 1:

Therefore it remains only to construct such a sequence of functions. This will be done
in a recursive way.

Recursive definition Let I0D @D;w0D 0 and a0D 1. Consequently F0� 1 and con-
ditions (1)–(3) are automatically satisfied. For the recursive step, suppose that I0; : : : ;In�1,
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w0; : : : wn�1 and a1; : : : an�1 are defined and we want to proceed our construction. Since
g 2 VMOA and Fn�1 is bounded, we can find some ın > 0 such that

(3.4) sup
jI j�ın

1

jI j

Z
S.I/

jFn�1.z/g
0.z/j2 .1 � jzj2/ dm.z/ � 1:

By part (v) of Lemma 3.4, there also exists some ı0n < ın such that for any pair of complex
numbers z; w 2 D such that 1 � jwj � ı0n and 1 � jzj � ın, then jˇw.z/j � 3. We might
also choose ı0n such that

p
ı0n � 2

�2n ın:

Furthermore, by Lemma 3.4 (iv), since g 62 BMOAlog, there exists somewn 2D which
satisfies 1 � jwnj � ı0n such that

(3.5)
1

jIwn j

Z
Iwn

<.ˇwn.z//
2
jg0.z/j2 .1 � jzj2/ dm.z/ � 22n:

Notice furthermore that because g is of vanishing mean oscillation, the supremum

(3.6) M 2
n WD sup

jI j�ın

1

jI j

Z
S.I/

<.ˇwn.z//
2
jg0.z/j2 .1 � jzj2/ dm.z/ � 22n

is in fact a maximum which is attained for some interval In � @D, jInj � ın. We claim
that the function Fn WD Fn�1 CM

�1
n ˇwn satisfies the required properties. We start by

proving properties .1/ and .2/. By equation (3.6), it is clear that

an WDM
�1
n � 2

�n:

Also, since ˇw has positive real part,

1

jInj

Z
S.In/

jFn.z/g
0.z/j2.1 � jzj2/ dm.z/

�
M�2n
jInj

Z
S.In/

j<.ˇwn.z//
2
jg0.z/j2.1 � jzj2/ dm.z/ D 1:

Finally, we need to proved the claimed estimate on kTgFnk�. To obtain this, we con-
sider two cases. First suppose that jI j � ın. We start with a preliminary estimate:

1

jI j

Z
S.I/

jˇwn.z/g
0.z/j2.1 � jzj2/ dm.z/

�
jIw�n j

jI j

1

jIw�n j

Z
S.Iw�n

/

jˇwn.z/g
0.z/j2.1 � jzj2/ dm.z/

C
1

jI j

Z
S.I/nS.Iw�n

/

jˇwn.z/g
0.z/j2.1 � jzj2/ dm.z/

.
1 � jw�n j

ın
M 2
n C kgk

2
� .

.1 � jwnj/
1=2

ın
M 2
n C kgk

2
�

.
ı
01=2
n

ın
M 2
n C kgk

2
� � 2

�2nM 2
n C kgk

2
� :
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In this estimate we have used the fact that jIw� j � 1 � jw�n j � .1 � jwnj/
1=2. Now the

induction hypothesis together with the above calculation permit us to estimate as follows:� 1
jI j

Z
S.I/

jFn.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
�M�1n

� 1
jI j

Z
S.I/

jˇwn.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
C

� 1
jI j

Z
S.I/

jFn�1.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
. 2�n CM�1n kgk� C kTgFn�1k� � 2

�nC.g/C kTgFn�1k�;

where C.g/ is a positive constant depending only on g and not on n.
It remains to consider the case jI j � ın. In this case, equation (3.4) allows us to argue

as follows:� 1
jI j

Z
S.I/

jFn.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
�

�M�1n

� 1
jI j

Z
S.I/

jˇwn.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
C

� 1
jI j

Z
S.I/

jFn�1.z/g
0.z/j2 .1 � jzj2/ dm.z/

�1=2
. M�1n sup

jI j�ın

� 1
jI j

Z
S.I/

<.ˇwn.z//
2
jg0.z/j2 .1 � jzj2/ dm.z/

�1=2
C kgk� C 1

� C.g/:

We have proved that

kTgFnk� � max¹kTgFn�1k� C 2�nC.g/; C.g/º;

which completes the induction step and the proof is complete.

We also need the Bloch version of Proposition 3.5.

Proposition 3.6. Let g 2B nBlog;0. Then there exists a function F 2B such that TgF 2
B nB0.

Proof. The proof of this proposition is very similar to the proof of Proposition 3.5, and in
fact a bit simpler, therefore we shall give only a rough sketch of it. A similar argument as
the one used in the proof of Proposition 3.5 allows us to reduce the problem to the case
g 2 B0 nBlog.

We shall construct inductively two sequences of points ¹znº and ¹wkº in the unit disc
such that the functions

Fn.z/ D

nX
kD0

ak ˇwk .z/

satisfy:
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(1) the coefficients ¹akº satisfy 0 � ak � 2�k ,
(2) for all n 2 N, there holds

<.Fn.zn// jg
0.zn/j.1 � jznj

2/ � 1;

(3) for all n 2 N, we have kTgFnkB � C.g/; where C.g/ is a constant depending only
on g.

Given this construction, we can complete the proof as in the case of functions of
bounded mean oscillation.

Assume without loss of generality that g0.0/ D 1. Then set z0 D w0 D 0 and a0 D 1.
For the inductive step, assume that the parameters are defined up to level n � 1. We can
find ın > 0 such that

(3.7) sup
jzj�1�ım

jFn�1.z/g
0.z/j.1 � jzj2/ � 1:

Choose ı0n > 0 as in Lemma 3.4 (v). Moreover, since g 62 Blog; there exists some wn 2 D,
1 � jwnj � ı

0
n such that

(3.8) <ˇwn.wn/ jg
0.wn/j.1 � jwnj

2/ � 2n:

Finally, let zn be a point, 1 � jznj � ın, where the supremum

Mn WD sup
1�jzj�ın

<.ˇwn.z// jg
0.z/j.1 � jzj2/

is attained. We finish the recursive step by setting an D M�1n : It remains to verify the
properties (1)–(3). This is done in a similar way as in the proof of Proposition 3.5, and the
details are left to the reader.

We can now assemble all pieces in order to prove our main result. We shall first prove
all equivalences for elliptic semigroups, and then we shall prove that no non-elliptic semig-
roup satisfies (a) or (b) of Theorem 1.1.

Proof of Theorem 1.1. We start by proving the equivalence of (c) and (d). Recall that if
we assume that � D 0, then

 0.z/ D
z

G.z/
D �

1

p.z/
;

but since <.p/ � 0, from the Alexander–Noshiro–Warschawski criterion it follows that 
is a univalent function in B, hence in BMOA. Notice that (c) is equivalent to  2 Blog;0
and that (d) is equivalent to  2 VMOAlog, hence the proof is a direct consequence of
Corollary 3.3 and the fact that  is univalent.

We proceed now to the proof of the equivalences (a), (c) and (b), (d). The strategy
is quite similar for both, so we prove in detail that (b), (d), and we sketch the proof for
the other implication.

Let .'t / be an elliptic semigroup such that Œ't ; BMOA� D VMOA. We will show
that  must be in VMOAlog. To prove this, suppose that  2 BMOA n VMOAlog. From
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Proposition 3.5, we can find a function F 2 BMOA such that T .F / 2 BMOA nVMOA.
From (2.4) we know that

BMOA \
�
T .BMOA/˚ C

�
� Œ't ; BMOA�:

But this means that the function T .F / 2 Œ't ; BMOA�, which is equal to VMOA by our
assumption, and this is a contradiction.

Conversely, suppose that (d) holds, i.e., that the infinitesimal generator G satisfies
(LVMO), which also implies (1.4). Then the result follows from Corollary 2 in [9].

For the equivalence of (a) and (c), one needs to follow the exact same reasoning as
before. To be more specific, assuming that (a) holds, use Proposition 3.6 together with the
fact that

B \
�
T .B/˚ C

�
� Œ't ; B�

to ensure that  2 Blog;0 by contradiction, and for the converse implication apply Corol-
lary 2 in [9] as before.

It remains to prove that non-elliptic semigroups cannot satisfy Œ't ;BMOA� D VMOA
or Œ't ;B� D B0. The argument is identical for both BMOA and B, so we shall only deal
with the Bloch space. Assume that .'t / is a non-elliptic semigroup such that Œ't ;B�DB0.
Without loss of generality, we consider � D 1. Let also h be the associated Koenigs func-
tion and let H.z/ D h.z/=z. Then the classical Koebe distortion theorem implies that
logH 2 B (in fact, by Remark 2 on p. 87 of [9], we know that logH 2 B0, but we shall
not need this extra information). Then we distinguish two cases. If logH 2 Blog;0, then
we know from Theorem B that the operator

TlogH W B ! B

is compact. Then if � ¤ 0 is a point in the spectrum of TlogH , by the spectral theorem
for compact operators [17], Section 21.2, it must be an eigenvalue. But this is impossible
since TlogHf D �f implies that f � 0 (see Proposition 5.1 in [2]). Therefore TlogH has
trivial spectrum. In particular, there exists f 2 B such that

f .z/ � TlogHf .z/ � 1:

Solving this first order ODE we find that f DH , which implies that h2B, or equivalently
by Pommerenke’s theorem [20], that h 2 BMOA. This contradicts (1.5).

This leaves only the possibility that logH 2 B n Blog;0. Then we are again in a
situation where we can apply Proposition 3.6. Therefore there exists F 2 B such that
TlogHF 2 B nB0: Notice that this is equivalent to the fact that the function

Th

� F
H

�
.z/ D

Z z

0

tF .t/h0.t/

h.t/
dt

belongs to B nB0. Since in this case h is the  -symbol of the semigroup, it remains to
prove that the function F=H is a Bloch function in order to arrive at a contradiction.

We haveˇ̌̌� F
H

�0
.z/
ˇ̌̌
.1 � jzj2/ �

jF 0.z/j.1 � jzj2/

jH.z/j
C
jF.z/H 0.z/j.1 � jzj2/

jH.z/j2

� kH�1kH1
�
kF kB C kTlogHF kB

�
<1:
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In other words, we have shown that the function Th.F=H/ 2 B and at the same time it
belongs to the range T .B/, hence by (2.4) in Œ't ;B�DB0, and this is a contradiction.

Further remarks

We believe that the techniques that we have employed can be used to prove similar char-
acterizations in other kind of spaces. In particular, recent studies investigated the maximal
subspace of holomorphic semigroups in BMOA-type spaces [14], in the analytic Morrey
spaces [15] and in the setting of mixed norm spaces [4]. It would be interesting to know
whether a similar characterization of the minimality of the maximal subspace is possible
in these settings, too.
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