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Minimal Mahler measures for generators of some fields

Arturas Dubickas

Abstract. We prove that for each odd integer d > 3 there are infinitely many number
fields K of degree d such that each generator & of K has Mahler measure greater
than or equal to d —d |A K|%, where Ag is the discriminant of the field K.
This, combined with an earlier result of Vaaler and Widmer for composite ¢, answers
negatively a question of Ruppert raised in 1998 about ‘small’ algebraic generators for
every d > 3. We also show that for each d > 2 and any & > 0, there exist infinitely
many number fields K of degree d such that every algebraic integer generator o
of K has Mahler measure greater than (1 — ¢)|A K|1/ 4_On the other hand, every
such field K contains an algebraic integer generator o with Mahler measure smaller
that |A K|l/ 4 This generalizes the corresponding bounds recently established by
Eldredge and Petersen for d = 3.

1. Introduction

Throughout the paper, let K be a number field of degree d > 2, and let Ok be its ring of
integers. Set
M(K) :=inf{M(x) : @ € K, Qo) = K}

and

M(Ok) ;= inf{M(x) : @ € Ok, Qo) = K},
where M(a) = M(f') is the Mahler measure of the minimal polynomial f € Z[x] of «.
(Recall that for any f(x) = a ]_[le(x — o) € CJx], its Mahler measure is defined by

M(f) := |a| ]_[?:l max{1, |o;|}.) Note that the infima in the definitions of M(K) and
M (0Ok) are attained. Indeed, by the inequalities

(1.1) 27“H(a) < M(2) < H@)vd + 1

(see, e.g., [18]), where H(«) stands for the naive height (the maximal modulus of the
coefficients of the minimal polynomial f € Z[x] of &), there are only finitely many irre-
ducible integer polynomials of degree d whose Mahler measures are bounded above by a
constant.
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Recall that for an algebraic integer o, with minimal monic polynomial f € Z[x], and
K = Q(«), we have

(1.2) A(f) = g*Ak.

Here, A(f) is the discriminant of the polynomial f, Ak is the discriminant of the field K,
and g = [Ok : Z[«]] is a positive integer which is the index of the Z-module Z[«] in Og
(see, e.g., Proposition 4.4.4 in [4] or Proposition 2.13 in [19]).

In [16], Mahler showed that

IA(f)] < dIM(f)*2

for any f € C[x] of degree d. This inequality applied to the minimal polynomial f of
o € O satisfying K = Q(«) in tandem with (1.2) implies that

(13) d=CA2 | AR VA7) < M(Ok).
By a more general result of Silverman (Theorem 2 in [25]), we have
(1.4) d=4/QA=2) | A |V @42 < pp(K),

Clearly, (1.4) implies (1.3) in view of Ox C K. Since M (o) > 1 for any algebraic num-
ber o, the bounds (1.3) and (1.4) are nontrivial for number fields K satisfying

|Ak| > d?.
In [23], Ruppert gave one more proof of the inequality
A [V < M(K),

which is a version of (1.4) with a different constant implied in <. (Here and below, the
constants in < depend on d only.) He also observed that for each d > 2, the exponent
1/(2d — 2) in the power of |Ag| in (1.4) is best possible, namely,

M(K) < |Ag|"/?42)

for infinitely many fields K of degree d. It is easy to see that this holds for K = Q(«),
where p and g are primes satisfying p < g < 2p and o = (—q/p)l/d. (See also Propos-
ition 1 in [22] due to Masser.)

In [23], Ruppert asked if for every d > 2 there is a constant «(d) such that for every
number field K of degree d > 2,

(1.5) M(K) < «(d) |Ag|YC772).

(To be precise, he asked this in terms of the naive height, but the question is the same
by (1.1).) The case d = 2 has been settled by Ruppert himself. He showed that the inequal-
ity M(K) < |Ak|'/? holds for every imaginary quadratic field K, and that

M(K) < M(Ok) < |Ag|/?
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for every real quadratic field K. Later, in [3] it was shown that the inequalities
1
S 18kl < M(K) < |Ak|'?

hold for all real quadratic fields K.
In [23], Ruppert also established the inequality

M(Ok) < |Ag|'?

for all totally real number fields K of prime degree d. Then, in [26], Vaaler and Widmer
proved the inequality
M(K) < |Ag|"?

for all not totally complex number fields K of degree d, and also for all number fields K
of degree d under assumption of the generalized Riemann hypothesis. In [27], they also
showed that for each composite d there is a constant y(d ), which is given explicitly and is
strictly greater than 1/(2d — 2), such that for each positive number ¢ there exist infinitely
many number fields K of degree d such that

(1.6) M(K) > |Ag |7 @D,

This answers Ruppert’s question related to «(d) in (1.5) negatively for each composite d .
For d = 5, the answer is also negative by a combination of the results of Vaaler and
Widmer [27] and Bhargava [2]. (See the end of Section 1 in [27].)

The next theorem implies that the answer to Ruppert’s question is negative for each
prime number d > 3 too.

Theorem 1. Let d > 3 be an odd integer. Then, for infinitely many number fields K of
degree d we have

(17) M(K) > d~|Ag| a5

In particular, Theorem 1 answers Ruppert’s question negatively for d = 3 (as the
authors say in [27] their method sheds no light on the cubic case), gives a much simpler
proof for d = 5 (without involving deep methods of [2]), and, combined with the results
of [27], answers Ruppert’s question negatively for each d > 3.

We remark that for d odd, but not a prime number, the exponent y(d) obtained in [27]
is greater than the exponent (d + 1)/(d(2d — 2)) in (1.7), so inequality (1.6) is stronger
than (1.7) for those d. The constant ¢ can be improved by a slightly more technical
argument, but this constant is not very important in the estimate (1.7) (the important one
is the exponent of |Ag|), so we have chosen it for the sake of simplicity.

The related quantity M(Og) for cubic fields has been recently investigated, see [8],
by Eldredge and Petersen. In particular, they showed that there are infinitely many cubic
number fields K such that

1 4
(1.8) 3018k < M(0k) < S 1Ak,

This implies that the exponent 1/(2d — 2) of |Ag| in (1.3) is not sharp for some cubic
fields (as 1/(2d —2) = 1/4 < 1/3 for d = 3). The proof of the lower bound in (1.8)
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is based on application of the so-called Minkowski embedding, which to each ¢ € K,
where K is a field with signature (s, ), assigns the vector

(01(@), ..., 05 (@), R(0o511(@)), I(O54+1(@)), - - -, R(0Os11 (@), I(Ts44 (@0)))

in R§+27 = R4, Here, 01, ..., 05 are the s real embeddings of K, and o054 j, 05, for
j =1,...,1, are the ¢ pairs of complex conjugate embeddings. The Euclidean norm of
such vector has been recently investigated in [6] and [7]. In [8], the authors perform the
Gram—Schmidt algorithm to determine an orthogonal basis consisting of certain vectors
of a cubic field K and then derive the lower bound in (1.8) (see Section 3.1 in [8]).

In this paper, by a different method, we generalize the inequalities (1.8) to arbitrary
integer d > 2.

Theorem 2. For each ¢ > 0 and each integer d > 2, there are infinitely many number
fields K of degree d such that

(1 - o)Ak < M(Ok) < |Ag |V,

This implies that for any d > 3, the exponent 1/(2d — 2) of |Ag| in (1.3) is not sharp
for infinitely many fields of degree d. Note that in the cubic case the constants 1 — ¢ and 1
in Theorem 2 are better than those in (1.8) (respectively, 1/30 and 4/3). In terms of [27],
Section 5, our Theorem 2 implies that 1/d is a cluster point of the set

log M(Ok)
{— : [K:Q]:d},
log |Ak]|
which means that for any ¢ > 0 there are infinitely many number fields K of degree d

such that
1 logM(Ok)

d log |Ak|
In fact, the fields K which we consider in Theorems 1 and 2 are the same. So, combining
both theorems for d = 3, we obtain

1
o7 18k1'? = M(K) = M(Ox) < | Ak,

Accordingly, 1/3 is a cluster point of the set

log M(K) ) B
{m : [K.Q]_3}.

In the next section we give some results on monogenic fields of the form Q(a'?),
where d > 2 is an integer and a runs over the prime numbers. In Section 3 we prove
several auxiliary results, and then complete the proofs of Theorems 1 and 2 in Sections 4
and 5, respectively.

A crucial observation in the proof of Theorem 1 is that, for any algebraic generator «
of the field K = Q(a'/?) of degree d, either « itself or its reciprocal @ ! can be written as
a Q-linear form in 1, a4, . . a™ withm > [d/2] and a nonzero coefficient for amd,
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Accordingly, the Mahler measure of M («) (or M(a~!) which equals M (x)) turns out to
be ‘large’ and gives the exponent of |Ag| in (1.7) at least
m . 1d/2
did—1) —dd-1)’

which is (d + 1)/(d(2d — 2)) for d odd and 1/(2d — 2) for d even. Thus, our approach
gives no improvement of (1.4) for d even.

2. Monogenic fields of the form Q(a'/¢)

Recall that the field K is called monogenic if it contains an algebraic integer « such that
Ok = Z[a]. In particular, if for @ = a'/¢  where a € N, with minimal polynomial

f(x) =x?—a,

the field K = Q(a) = Q(a'/?) is monogenic and O = Z[«] then, by |A(f)| = d%a%~!
(see, e.g., Example 1.3.7 in [21]) and (1.2) with g = 1, we must have

2.1 |Ak| = d%a? .
We first prove the next lemma.

Lemma 3. For each d > 2, there are infinitely many prime numbers a for which the field
K = Q(a'/?) is monogenic, |Ax| = d%a?!, and Ok = Z[a'/?].

Proof. Tn Theorem 1.1 of [10], Gassert showed that the field K = Q(a'/?) is monogenic
for d > 2 and squarefree integer a if p? does not divide a? — a for all primes p divid-
ing d. (As observed in [5], it should be an additional assumption that x? — a is irreducible
over Q.) The same statement asserting that 1, al/d, o a@=1/d g an integral basis of K
was also recently proved independently in Corollary 1.3 of [13]. (See also [12, 14, 15] for
some related work.)

In Proposition 2.5 of [10], Gassert also observed that the condition

P’ | (@ —a)
is satisfied only if @ belongs to one of p distinct equivalence classes modulo p?, namely,
0,1,27,37 ..., (p— DP.

In particular, for each prime p dividing d and each squarefree integer ¢ > 1 of the
form

(2.2) a=p*u+up,

where u € N and u, € {0, 1, ..., p? — 1} satisfies u, # i? (mod p?) for each i =
0,1,..., p—1and, in addition, u, # p,2p,...,(p — 1) p, we have

P>t (@” —a).
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Note that there are p? equivalence classes for possible u p.and weremove p + p—1 =
2p — 1 of them, which is less than p2. Consequently, we can select any of

PP-QCp-1)=(p-17

remaining possibilities in the set {0, 1, ..., p? — 1} as u,.
Put
0:=][]r
rld

Then, by the Chinese remainder theorem, there exists v € N such that for each a=Q2%s+v,
s =1,2,...,satisfying (2.2) for every prime p | d, we have p? } (a? — a). Furthermore,
by the choice of u,, we have gcd(p, u,) = 1, and hence

ged(Q?,v) = 1.

So, by Dirichlet’s theorem on arithmetic progressions, there are infinitely many prime
numbers a of the form

(2.3) a= 0%+,

with s € N.

This completes the proof of the lemma for each of those (infinitely many) prime num-
bers a by Theorem 1.1 in [10] or Corollary 1.3 in [13], the irreducibility of x4 —q (see,
e.g., [24], p. 92) and (2.1). [

In [1], Bardestani showed that for each prime number d there are ‘many’ prime
numbers a (with lower density at least 1 — 1/d among all primes) for which the field
K = Q(a'/%) is monogenic. In this context, Lemma 3 implies the following generaliza-
tion of the main result of [1].

Corollary 4. For each d > 2, we have

. #p < x:Q(pY?) is monogenic)  @(rad(d))
lim inf >
X—00 w(x) rad(d)

where p denotes the prime numbers, w(x) is the prime counting function, ¢ is the Euler
totient function, and rad(d) stands for the radical of d (i.e., the product of its distinct
prime divisors).

Proof. Set Q = rad(d) and write each prime number a greater than 02 in the form
a= st + w,

where s = 1,2,...and w € {0, 1, ..., 0% — 1}. Clearly, there are ¢(Q?) choices for w.
By the construction of v as in (2.3) and Lemma 3, there are at least ]_[p| 40— 1)2 choices

for w when for the corresponding prime number « the field Q(a'/?) is monogenic. Since

[Tpa(p =12 _ [Tpa(p —1)? _ [[utp—1 _ 9(Q) _ ¢(rad(d))
@(0?) Olla(p—1 0 0 rad(d)

we get the inequality for the lower density as claimed. ]
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3. Auxiliary results

The following lemma will be used in proving an upper bound for M(Ok) in Theorem 2.

Lemma 5. For each d > 2 and each sufficiently large a € N, which is not a pth power
of an integer for some prime number p dividing d, the number

3.1 a::al/d—Lal/dJ
is an algebraic integer of degree d and has Mahler measure less than da‘@=1/4

Proof. Sett := |a'/?|. The minimal polynomial of a'/4 = o + ¢ over Q is

fx) = x4 —a.

Indeed, f(a'/?) = 0 and f is irreducible by Capelli’s theorem (see, e.g., [24], p. 92).
Thus, @ = a'/? — ¢ is an algebraic integer of degree d over Q, and the d conjugates of «

over QQ are

a; = alld 2HU=DId _y

where j =1,...,d.
Note that = a7 € (0, 1), and ||, .. ., |@g| > 1 for each sufficiently large a. Hence,
inviewof 0 <t < al/d, we obtain

d d—1 d
. la —t%]
M) = [ Tleyl = [T la" e —1] = s
j=2 j=1
=g@d-V/d 4 gd=2/dy 4 4 d-1 <da(a’—1)/d’

which completes the proof of the lemma. ]
We also record the following simple inequality.
Lemma 6. For any real numbers y1, ..., yr > 1 we have
i+t yesk—1l4yi-
Proof. Setzj :=y; —1for j =1,...,k.Then, z; > 0 for each j. From the inequality
Atz (I+zg) =T +z1+ -+ 2z

we derive that y; -+ yx = (1 4+ z1)--- (1 4 z) is greater than orequal to 1 + z; + --- +
Zx = y1 + -+ + Yk — k + 1, which is the inequality of the lemma. ]

The next lemma will be used in the proof of Theorem 1 and in the proof of the lower
bound for M (Ok) in Theorem 2.

Lemma7. Letd >3, me{1,2,....d — 1}, ¢t = €2/ and F = Q(&). Then, for any
integers ky, ..., kpy1 satisfying 1 <k, <--- < kyyy1 < d, the linear system

(3.2) X1 é‘(kl—l)j + oot X é’(km+1—1)j =68, j=0,....m,
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where §g = -+ = 8—1 = 0 and §,, = 1, has a unique nonzero solution Xy, ..., Xym41 € F.
Moreover, we have d™ X; € Of and
X< ——
= (2 sin(%))m

forj=1,....m+1.

Proof. Fix any k1 < --- < ky, 41 satisfying the assumptions of the lemma. The (m + 1) x

(m + 1) determinant ||Z%1=17 ||, where ] = 1,...,m + 1and j =0, ...,m, is the Van-
dermonde determinant, so it is nonzero. Consequently, by Cramer’s rule, the linear sys-
tem (3.2) has a unique solution X1,..., X, 1, where X; € F foreach j =1,...,m + 1.

Evidently, in view of §,, = 1, at least one X is nonzero.
In fact, setting

g(x) = (x =M = gl (o = fRmnh,
we can express X; explicitly by the formula
1 1
Xj=—%1= K1 _ sky—1
gl [l (€971 =gk
(see, for instance, Problem 67 in Chapter 6 of [20]). Hence, as ¢ d — 1, each X; can be

written as ¢, with ¢ € {0,...,d — 1}, multiplied by a product of m factors of the form
(Z® — 1)71, with not necessarily distinct b € {1,...,d — 1}. Note that £? — 1 is a root of

e —1
GADT=l oy (d)x""2+ (d)xd‘3 ot (d)x+d.
X 1 2 2

Consequently, d(¢? —1)~! € @, which implies d™X; e O foreachj =1,....m+ 1.
Also, |2 — 1| = 2sin(”7b) > 2sin(%), which yields the upper bound on | X} | as claimed.
[

Finally, by Theorem 10.2 in [9], the following is true.

Lemma 8. If « is an algebraic number of degree d with conjugates o, ..., o4, and
T € N is the leading coefficient of its minimal polynomial in Z[x], then T l_[jel a; is an
algebraic integer for each I C {1,...,d}.

4. Proof of Theorem 1

Let d > 3 be an odd integer. Consider the field K = Q(a'/¢), where a is one of the prime
numbers satisfying the conditions of Lemma 3. (Corollary 4 implies that there are ‘many’
such prime numbers a in terms of density.) In view of (2.1), we have

|Ag|TCD = 4335 o5
so for the proof of (1.7) it suffices to show that
@.1) M(@) > d~9+5d% 58

for any a € K of degree d.
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Write
4.2) a=by+bia’ ... 4 byam?,

where m € {1,...,d — 1}, by, ..., by, € Q and b,, # 0. Without loss of generality we
may assume that

“4.3) m >

Indeed, in the case m < (d + 1)/2 we have m < (d — 1)/2. So, using M () = M(a™ 1),
we can simply replace « by its reciprocal

-1

a ' =co+cra'

+...+Csas/d’

where s € {1,...,d — 1}, co,...,cs € Q, ¢cs #0and s > (d + 1)/2. To see this, just
observe that, by the linear independence of 1,a'/?, ... a'¥=1/4 oyer Q, from

0=aa ' —1=boco—1+ (boc1 + blco)al/d + ot by cga™T/d
and b, cs # 0, it follows that m + s > d. Hence,

d—1 d+1
szd—mzd——:;-
2 2
Assume that the leading coefficient of the minimal polynomial of @ (in Z[x]) defined

in (4.2) with m satisfying (4.3) is T € N. The d distinct conjugates of « are of the form

m
(4.4) aj =Y bea®t Uk =1,
k=0

where ¢ = e27/4 Select X1, ..., Xm41 € F as in Lemma 7 applied to
(kl,kz,...,km+1) = (1,2,...,m + 1)

Then, by (3.2) and (4.4), it follows that

X1+ 4+ X1 = bmam/d~
By Lemma 7, we have d" X; € Of for j = 1,...,m + 1. Also, Te; is an algebraic
integer for every j by Lemma 8. Thus, each product d”TX;«; is an algebraic integer,
and so must be their sum

(4.5) d"T (X101 + -+ Xmg1Oma1) = d" Thya™?.

We claim that d™T b, is a nonzero integer. Indeed, we know that this is a nonzero
rational number, say d™Tb,, = Do/D, where Dy € Z, D € N and gcd(Dy, D) = 1.
Assume that D > 1. Then, as Doa™? /D and a@="/4 both are algebraic integers, so is
their product Dga/D. But a is a prime, so D = a is the only possibility. However, then
Doa™4 /D = Dya™=9/4 is not an algebraic integer, since m —d < 0 and a is a prime
number which does not divide Dy, a contradiction.
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Consequently, using the upper bound on | X;| from Lemma 7 and (4.5), we get

(m+1)d™ T maxi<j<m+1 |0

a™® < d"T|by|a™? <
- 1B (2 sin(%))m

’

which implies

(2 sin(%))mam/d .

d
4.6) M) =T []max(l.|ej) =T | max o | > o+ D"

Jj=1
Recall that m > (d 4+ 1)/2 by (4.3) and m < d — 1. Clearly, if m > (d + 1)/2,

then (4.6) immediately implies (4.1) for each sufficiently large a. Assume that m =
(d + 1)/2. Then, (4.6) becomes

LA
@7 (251n(d))1 > g-d+its
e
for d > 3 odd. Indeed, for each d > 7 we have
2sin(E % 2sin(Z diz1 4 dzi1 d+1
(2sin(7)) - (2sin(7)) (@) _2 44+
PESHEE d+3 Z T im T gavz o o
%d 2 d 2 d 2 d

For d = 3 and d = 5, the inequality (4.7) is verified directly. (In fact, for d = 3 we have
equality in (4.7).)

5. Proof of Theorem 2

Consider the field K = Q(a'/?), where d > 2 and a is one of sufficiently large prime
numbers satisfying the conditions of Lemma 3. Then, by Lemma 5, the Mahler measure of
o € Ok of degree d defined as in (3.1) is less than da@=1/4  Since da@ =1/ = |Ag |14,
this yields M () < |Ag|'/4, and hence

M(Ok) < |Ag]"4

for each of those fields K.

To prove the desired lower bound on M (Ok) in Theorem 2, we assume that the num-
ber a € O is of degree d . Then, due to the fact that the field K = Q(a'/¢) is monogenic
and O = Z[a'/?], we can write

(5.1) a=ay+ara’? +-- +a,am"?,
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where m € {1,...,d — 1}, ap,ay,...,am € Z and a,, # 0. Accordingly, the d distinct
conjugates of o over Q can be written as

m
(5.2) a; ZZakak/dé'(j_l)k, j=1,...,d,
k=0
with § = e27i/d,
Fix any ¢ in the interval (0, 1) and recall that a is one of the sufficiently large prime
numbers satisfying the conditions of Lemma 3. In all what follows we will consider three

cases, m =d —1,m € {2,...,d — 2}, m = 1, and show that in each of these cases the
inequality
(5.3) M(a) > (1 —g)da@ V% = (1 —¢)|Ag|V?

holds for all « as defined in (5.1).
We first examine the case m = d — 1. From (5.2) it follows that

d d-1 d—1 d
o+ Cay + o+ g = Zé‘j_l Zakak/dg(f—l)k = Zakak/d Zg(j_l)(kﬂ)'
j=1 k=0 k=0 i=1

Note that the sum Z_;l=1 ¢U=DE+D equals d fork =d — 1, while fork € {0,1,...,d —2}
it vanishes:

d _ pdk+1)
3 (U - 1-¢ —0
1 — ¢k+1
j=1
Consequently,
o+ las+ o+ 0 oy = daga@mV,
and hence

d d
da =V < dlag_y|a D/ = ‘Z%‘ Ej_l‘ <> eyl
j=1 Jj=1

Suppose there are k indices j € {1,...,d} for which |a;| > 1. Then, k > 1 and the
product of those |o;| is M (). Estimating the sum of those |a;| by k — 1 + M(c) (see
Lemma 6) and each of the d — k remaining |o;| by 1, we derive that

d
da“=V4 <N o <k —1+ M@ +d—k=d -1+ M(@).
ji=1
This yields
M(a) = da¥ D/ _ g 41,
which implies (5.3) for each sufficiently large a.
We now turn to the case when 2 < m < d — 2 (which occurs only for d > 4). We

claim that then there is a constant C(d) that depends on d only such that at most m of the
conjugates of « lie in the disc

(5.4) lz| < C(d)a™*.
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Indeed, suppose ok, ..., Qk,,,,» where 1 < k| <.+ <kyyy <d, all liein |z] <
C(d)am/d. Select X1,..., Xm+1 € F asin Lemma 7. Then, by (3.2) and (5.2), it follows
that

Xiag, + -+ X1k, =ama™?.

From |a,;| > 1 and Lemma 7 we derive that at least one of the numbers |, |, . .., |k, |
is greater than or equal to

am/d . (2sin(§))"am/¢
(m 4+ D) max;<;j<m+1 | Xj| ~ (m+1)

This proves (5.4) with the constant

(2 sin(%))m

C@d = 25m§)d(—2 (m+1)

Now, by (5.4), at least d — m conjugates of o have absolute values at least C(d)a™/¢.

Consequently,
M(Ol) > C(d)d_m Cl(d_m)m/d )

which implies (5.3) in view of (d —m)m > d — 1.
It remains to investigate the case m = 1. Fix § € (0, 1) satisfying

(5.5) (1-841=1-¢
and put
LT
(5.6) 7 := 28 sin (3).
Without loss of generality we may assume that
(5.7 loj| < ta'/?
for some j € {1,...,d}. Indeed, otherwise |o;;| > ra'/? for all j, which implies M (cr) >

t%a, which is better than (5.3) for each sufficiently large a.
Using (5.2) with m = 1, for any

ked:={1,....d}\{j}

we obtain
1/d j—1 k—1
o —ax = ara'/ (@I =g,

Combining this with (5.6), (5.7) and |a;| > 1 we deduce that

i —k
26 sin (%)al/d + log| > |oj —og| > 2‘ sin (%)‘al/‘i.

sn(7) = [sn (V7))

Since
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for k € J, this further implies

x| > 2(1 ) sin (”(jT_k))‘aI/d

for each of those k. Consequently,

M(@) = [ ley| > 297 1 =841 a D4 [ ‘Sin(”(j —k))‘.

d
keJ keJ

Observe that

. d-1
T s (") = T on (%) = 52

where the last identity can be found, e.g., in 1.392 of [11], p. 41. (See also [17] for its
several proofs.) Therefore,

M(a) > (1 —38)?"1dq@—b/a,

which yields (5.3) by (5.5).

Acknowledgements. I thank the referees for pointing out some inacurracies.
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