Rev. Mat. Iberoam. 39 (2023), no. 2, 397437
DOI 10.4171/RMI/1403

©2023 Real Sociedad Matemética Espaiiola
Published by EMS Press and licensed under a CC BY 4.0 license

Tridiagonal kernels and left-invertible operators with
applications to Aluthge transforms

Susmita Das and Jaydeb Sarkar

Abstract. Given scalars a, (# 0) and by, n > 0, the tridiagonal kernel or band kernel
with bandwidth 1 is the positive definite kernel k on the open unit disc D defined by

e ¢]

k(z.w) =" ((an +bn2)2")((@n + ba®)B") (z.w € D).
n=0

This defines a reproducing kernel Hilbert space Jfk (known as tridiagonal space)
of analytic functions on D with {(an + bnz)z"}02 as an orthonormal basis. We
consider shift operators M on #, and prove that M is left-invertible if and only
if {|an/an+1|}n=0 is bounded away from zero. We find that, unlike the case of
weighted shifts, Shimorin models for left-invertible operators fail to bring to the
foreground the tridiagonal structure of shifts. In fact, the tridiagonal structure of
a kernel k, as above, is preserved under Shimorin models if and only if b9 = 0
or that M is a weighted shift. We prove concrete classification results concerning
invariance of tridiagonality of kernels, Shimorin models, and positive operators. We
also develop a computational approach to Aluthge transforms of shifts. Curiously, in
contrast to direct kernel space techniques, often Shimorin models fail to yield tridi-
agonal Aluthge transforms of shifts defined on tridiagonal spaces.
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1. Introduction

The theory of left-invertible weighted shifts or multiplication operators M, on “diagonal”
reproducing kernel Hilbert spaces is one of the most useful in operator theory, function
theory, and operator algebras (see the classic by Shields [15]). Given a bounded sequence
of positive real numbers o = {0, }n>0, and an orthonormal basis {e, },>0 of an infinite-
dimensional Hilbert space # (complex separable), the operator Sy, defined by

(1.1) San =pent1 (n=0),

is called a weighted shift with weights {o, }»>0. In this case, Sy is bounded (Sy € B(H) in
short) and ||Sy || = sup,, o, If the sequence {o, }»>0 is bounded away from zero, then S,
is a left-invertible but non-invertible operator. Note that the multiplication operator M, on
(most of the) diagonal reproducing kernel Hilbert spaces is the function theoretic counter-
part of left-invertible weighted shifts which includes the Dirichlet shift, the Hardy shift,
and the weighted and unweighted Bergman shifts, etc.

The main focus of this article is to study shifts on the “next best” concrete analytic ker-
nels, namely, tridiagonal kernels. This notion was introduced by Adams and McGuire [2]
in 2001 (see also the motivating paper by Adams, McGuire and Paulsen [3]). However,
in spite of its natural appearance and potential applications, far less attention has been
paid to the use of tridiagonal kernels in the aforementioned subjects. On the other hand,
Shimorin [17] developed the idea of analytic models of left-invertible operators at about
the same time as Adams and McGuire, which has been put forth as a key model for left-
invertible operators by a number of researchers [6,7, 10, 13].

In the present paper we consider the next level of shifts on tridiagonal spaces, namely,
left-invertible shifts on tridiagonal spaces. We also discuss the pending and inevitable
comparisons between Shimorin’s analytic models of left-invertible operators and Adams
and McGuire’s theory of left-invertible shifts on tridiagonal spaces. In particular (and
curiously enough), we find that, unlike the case of weighted shifts, Shimorin models fail
to bring to the foreground the tridiagonal structure of shifts. We resolve this dilemma
by presenting a complete classification of tridiagonal kernels that are preserved under
Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on
tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal
operators, rank-one perturbations of left inverses, a computational approach to Aluthge
transforms of shifts, etc. Again, curiously enough, some of our definite computations in
the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert space
technique is somewhat more powerful than Shimorin models. We also provide a family of
instructive examples and supporting counterexamples.

To demonstrate the main contribution of this paper, it is now necessary to disambiguate
central concepts. Needless to say, the theory of reproducing kernel Hilbert spaces will play
a central role in this paper. Briefly stated, the essential idea of reproducing kernel Hilbert
space [5] is to single out the role of positive definiteness of inner products, multipliers and
bounded point evaluations of function Hilbert spaces. We denoteby D = {z € C : |z| < 1}
the open unit disc in C. Let & be a Hilbert space. A function k: D x D — B(&) is called
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an analytic kernel if k is positive definite, that is,

n

> (k(ziozj)ny. mide = 0,

i,j=1

for all {z;}7_, €D, {n;}/_, € € and n € N, and k analytic in the first variable. In
this case, there exists a Hilbert space Hj, which we call analytic reproducing kernel
Hilbert space (analytic Hilbert space, in short), of &-valued analytic functions on D
such that {k(-,w)n : w € D, n € &} is a total set in H; with the reproducing property
(fik(-,w)n) 5, = (f(w),n)g forall f € Hy,weD and n € &. The shift operator on H,
is the multiplication operator M, (which will be assumed to be bounded) defined by

(M f)(w) =wf(w) (f € He,weD).
Note that there exist Cy,, € B(8) such that k(z,w) = > o7 Cmnz™w", z,w € D. We

m,n=0
say that # is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel) if
Cmn = 0 for all |m — n| > 1. We say that k is a tridiagonal kernel (or band kernel with

bandwidth 1) if
(1.2) Cnn =0 (Jm—n|=2).

In this case, we say that J#j is a tridiagonal space. Now let {a, }n>0 and {b,},>0 be a
sequences of scalars. In this paper, we will always assume that a,, # 0 for alln > 0. Set

Ja(2) = (an + bp2)z" (n>0).

Assume that { f;, },>0 is an orthonormal basis of an analytic Hilbert space #. Then
is a tridiagonal space, as the well known fact from the reproducing kernel theory implies
that

(1.3) k(z,w) =Y fa@) fuw) (z,w D).

n=0

We now turn to Shimorin’s analytic model of left-invertible operators [17], which
says that if 7 € B(K) is left-invertible and analytic (that is, (,—, 7" H = {0}), then
there exists an analytic Hilbert space #;(C @ (D, W)) such that T and M, on J; are
unitarily equivalent, where W = ker T* = # © T K is the wandering subspace of T,
and @ (D, W) is the set of ‘W-valued analytic functions on D. The Shimorin kernel k is
explicit (see (2.11)) and involves the Shimorin left inverse of T

(1.4) Ly = (T*T)"'T*,

The representation of the Shimorin kernel is useful in studying wandering subspaces of
invariant subspaces of weighted shifts [16, 17]. See Chapter 6 of [9] and [14] in the context
of the wandering subspace problem, and [13] and the extensive list of references therein
for recent developments and implementations of Shimorin models.

We prove the following set of results. In Section 2, we present basic properties and
constructions of tridiagonal spaces and Shimorin models. We introduce the core concept
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of this paper: An analytic tridiagonal kernel is a scalar kernel k as in (1.3) such that
Clz] € Hi.

sup ‘ < oo and limsup ‘ <1
n=0'dn+1 n>0 !dn+1
(which ensures that M, on J is bounded), and {| lljil [}n>0 is bounded away from zero.

An analytic Hilbert space is called analytic tridiagonal space if the kernel function is an
analytic tridiagonal kernel. In Proposition 2.7, we prove (a well-known fact) that weighted
shifts behave well under Shimorin’s analytic models.

In Section 3, we prove that {| a:il |}n>0 is bounded away is equivalent to the fact
that M, on J is left-invertible (see Theorems 3.2 and 3.5). We compute representations
of Shimorin left inverses of shifts on analytic tridiagonal spaces (see Proposition 3.1 and
Theorem 3.4).

Section 4 starts with Example 4.1, which shows that Shimorin kernels do not neces-
sarily preserve the tridiagonal structure of kernels. We are nevertheless able to prove in
Theorem 4.2 that it does for a kernel k of the form (1.3) if and only if M, on J is a
weighted shift or by = 0.

The main result of Section 5 classifies positive operators P on a tridiagonal space
such that K(z, w) := (Pk(-,w), k(-,z)) s, defines a tridiagonal kernel on ID. More spe-
cifically, if

Coo Co1 Co2 Co3
Co1 €11 C12 C13
P=1|coa Ci2 ¢ c23

Co3 C13 C23 €33

denote the matrix representation of P with respect to the basis {(a, + b,z) z" }n>0 of Ky,
then the kernel K is tridiagonal if and only if (see Theorem 5.2)

by++-bp_q

Con=(—1)n_]f601, n>2,
azn--an
and _ _
o bpatr by
Cmn = (=) lfﬂr—?cm,mﬂ foralll <m <n-—2.
am+2---an

Section 6 deals with quasinormal shifts. Suppose M is non-normal on an analytic
tridiagonal space #;. Denote by Pc s, the orthogonal projection of #j onto C fo. In
Theorem 6.2, we prove that M, is quasinormal if and only if there exists r > 0 such that

MM, — M,M} = rPcy,.

In Section 7, we compute Aluthge transforms of shifts. The notion of Aluthge trans-
forms was introduced by Aluthge [4] in his study of p-hyponormal operators. Let J be
a Hilbert space, T € B(J), and let T = U|T| be the polar decomposition of 7". Here,
and throughout this note, |T'| = (T*T)"/2 and U is the unique partial isometry such that
ker U = ker T'. The Aluthge transform of T is the bounded linear operator

T = |T|"?U|T|"2.
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The Aluthge transform of T turns T into a more “normal” operator while keeping intact
the basic spectral properties of 7', see [11]. Evidently, the main difficulty associated with T
is to compute or represent the positive part |T'|. This is certainly not true for weighted
shifts: Since |S,| = diag(ag, @1, &2, . . .) (cf. Proposition 2.7), it follows that Sy = Sﬁ,

where
Vo= {(Jagar, Jara, ...

Therefore, S’a is also a weighted shift, namely, S,/z. Here we consider the next natural
step, which is the computation of M., where M. is a left-invertible shift on some ana-
lytic Hilbert space (. We prove that M, is also a left-invertible shift on some analytic
Hilbert space J{;. The kernel k can be obtained either via Shimorin’s model (see The-
orem 7.3), which we call the Shimorin—-Aluthge kernel of M., or by a direct approach
(see Theorem 7.7), which we call the standard Aluthge kernel of M. In Theorem 7.5, we
prove that if C[z] C #; € O(D), then Ly, and L 4z, are similar up to the perturbation of
an operator of rank at most one. Moreover, in this setting Shimorin—Aluthge kernels are
somewhat more explicit (see Theorem 7.6).

In Section 8 we consider truncated spaces (subclass of analytic tridiagonal spaces) in
order to pinpoint more definite results, instructive examples, and counterexamples. A trun-
cated space of order r(> 2) is an analytic tridiagonal space #} with k as in (1.3) such
that

by =0 (n#2,3,...,1).

The computational advantage of a truncated space is that it annihilates a rank one oper-
ator (see (7.3)) associated with Lps, of the shift M. As a result, in this case we are able
to prove a complete classification of tridiagonal Shimorin—Aluthge kernels of shifts. This
is the content of Theorem 8.3. Curiously, the classification criterion of Theorem 8.3 is
also the classification criterion of tridiagonality of standard Aluthge kernels (see Corol-
lary 8.4).

In Section 9, we comment on the assumptions in the definition of truncated kernels.
We point out, at the other extreme, if one considers a (non-truncated) tridiagonal kernel k
with

b0=b1=1 or b():l,
and all other b;’s are equal to 0, then the standard Aluthge kernel of M is a tridiagonal
but the Shimorin—Aluthge kernel of M, is not. This is the main content of Example 9.1.
We conclude the paper by two observations concerning tridiagonal structures of standard
Aluthge kernels and kernels of the form (z, w) > {|M,|72k(-, w), k(-, z)).

We remark that some of the observations outlined in Sections 7 and 8 are based on
several more general results that have an independent interest in broader operator theory
and function theoretic contexts.

2. Preparatory results and examples

In this section, we set up some definitions, collect some known facts about tridiagonal
reproducing kernel Hilbert spaces and Shimorin analytic models, and observe some aux-
iliary results which are needed throughout the paper. We also explain the idea of Shimorin
with the example of diagonal kernels (or, equivalently, weighted shifts).
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We start with tridiagonal spaces. Here we avoid finer technicalities [2] and introduce
only the necessary features of tridiagonal spaces. Let & be a Hilbert space, let k be a 8(&)-
valued analytic kernel on D, and let # € O (D, &) be the corresponding reproducing
kernel Hilbert space. Then there exists a sequence {Cpp }m.n>0 S B(E) such that

o0
k(zow)= Y Cuuz™0" (z.w€D).

m,n=0

Recall that (see (1.2)) k is a tridiagonal kernel if Cp,,, = 0, |m — n| > 2. We say that H#, is
a tridiagonal space if k is tridiagonal. We now single out two natural tridiagonal spaces.

Definition 2.1. A tridiagonal space # is called semi-analytic tridiagonal space if C[z] C
Hr < O(D), and there exist scalars {a, }n>0 and {b, }n>0, With a,, # 0 for all n > 0, such
that

by

2.1 sup

n>0

‘ < oo and limsup
n>0

‘<1,

an+1 an+1

and { f, }n>o0 is an orthonormal basis of #;, where
(2.2) fn(z) = (an + byz)z"  (n > 0).

Note that the conditions in (2.1) ensure that the shift M is a bounded linear operator
on J, see Theorem 5 of [2]. We refer the reader to Theorem 2 of [2] on the containment
of polynomials.

Definition 2.2. A semi-analytic tridiagonal space #j is said to be analytic tridiagonal
space if the sequence {] aaL |}n>0 is bounded away from zero, that is, there exists ¢ > 0
such that

(2.3)

‘ >¢ (n>0).
An+1

A scalar kernel k is called semi-analytic (analytic) tridiagonal kernel if the corres-
ponding reproducing kernel Hilbert space # is a semi-analytic (an analytic) tridiagonal
space.

It is important to note that (2.3) is essential for left invertibility of M. As we will see in
Theorem 3.5, if #; (2 C[z]) is a tridiagonal space corresponding to the orthonormal basis
{fn}n>0 asin (2.2), and if {a, }»>0 and {b, }n>0 satisty the conditions in (2.1), then condi-
tion (2.3) is equivalent to the left invertibility of M, on J. Also recall that the weighted
shift S, with weights {o, }n>0 (see (1.1)) is bounded if and only if sup,, o &r < 00. In this
case, S, is left-invertible if and only if {o, },>¢ is bounded away from zero (cf. Proposi-
tion 2.7). By translating this into the setting of analytic Hilbert spaces, see Proposition 7
of [15], it is clear that the conditions in Definition 2.2 are natural. For instance, if b, = 0,
n > 0, then (2.3) is a necessary and sufficient condition for left invertibility of shifts on
diagonal kernels.

Suppose k is a semi-analytic tridiagonal kernel. Note that k(z, w) =Y pe o fn (2) fu(w)
(see (1.3)). Now fix n > 0, and write z"* = anozo U fm for some o, € C, m > 0. Then

o0
2" = agap + E (m—1bm—1 + tmam) z™.

m=1
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Thus, comparing coefficients, we have ¢ = o3 = -+ = o—; = 0, and o, = ai as the
n
a;’s are non-zero scalars. Since

Untj—1bntj-1 + Wtjanij =0,

_ %t lbn+j 1

it follows that o, 1 j = oy , and thus
-1/ b, b cerbya i
Untj = ( ) ntn+1 n+j—1 (] > 1)'
An Ap+1 - dp+j
This implies
m 1 +i
= n
2.4) =—§}1WQ———Jﬁﬂm (n>0),
H] =0 An+j+1

where ]—[j_:lo Xn+j := 1. With this, we now proceed to compute M, see Section 3 of [2].
Letn > 0. Then M, f, = a,z"*' + b,z"*2 implies that

+ (bn _n bn+1)zn+2
An+1

dp
szn =
dn+1

a b a b +1
= — Jnt1 +an+2( — - = )Z"+2,
an+1 an+2  dp+1 An+2
that is,
(2.5) szn = fn+l + an42Cn Zn+27
an+1
where
a b b 1
2.6) n = —”(—" - i) (n > 0).
an+2 An+1

Then (2.4) implies that

)fn+1 + cn Z( l)m<m)fn+z+m (n > 0),

l_[] An+3+j

2.7 %ﬁ=<

and hence, with respect to the orthonormal basis { f, }»>0, we have (see also [2], p. 729)

B 0 0 0 0 ...
ao
%0 0 0 0
a
Co @ 0 0
b
(2.8) M;]=| -2 e 2 0
cobabs _cabs as
asas as ¢2 as
_ Cob2b3b4 Clb3b4 _ Czb4 ¢
aszasas asas as 3
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The matrix representation of the conjugate of M is going to be useful in what follows:

0 & o Ak abk ]

00 & g -4k
(2.9) MI]=|0o 0o 0 & ‘s

00 0 0 Z

In particular, M, is a weighted shift if and only if ¢, = 0 for all n > 0. Also, by (2.6), we
have ¢,, = 0 if and only if fﬁ = 2—2, n > 0. Therefore, we have the following observation.

Lemma 2.3. The shift M, on a semi-analytic tridiagonal space ¥ is a weighted shift
corresponding to the basis { f, }n>0 if and only if ¢, = 0 for all n > 0, or, equivalently,
{bn/an}n>o is a constant sequence.

The proof of the following lemma uses the assumption that C[z] € J.

Lemma 2.4. If #, is a semi-analytic tridiagonal space, then ker M} = C fo.

Proof. Clearly, (2.9) implies fy € ker M. On the other hand, from C[z] C J#}, we deduce
that f, = M, (a, z" ' 4 b, z") eran M, for all n > 1, and thus span{ f,, :n > 1} Cran M.
The result now follows from the fact that C fo = (span{f, : n > 1})* D ker M}. L]

Now we briefly describe the construction of Shimorin’s analytic models of left-inver-
tible operators. Let J be a Hilbert space, and let T € B(H). We say that T is left-
invertible if there exists X € B(H) such that XT = Ig. It is easy to check that this
equivalently means that 7" is bounded below, which is also equivalent to the invertibility
of T*T. Following Shimorin, a bounded linear operator X € B(H) is analytic if

(2.10) () X" = {0}.
n=0

Note that from the viewpoint of analytic Hilbert spaces, shifts are always analytic. Indeed,
let #x € O(L2,8), where Q C C is a domain, and suppose the shift M, is bounded on .
If fe ﬂ;’lozo M] ¥y, then for each n > 0, there exists g, € # such that f = z"g,. Since
€ is a domain and f is analytic on €2, we see that f = 0, that is, (\peo M Hx = {0}.
Now let T € B(H) be a bounded below operator. We call Ly := (T*T)~'T* the
Shimorin left inverse, to distinguish it from other left inverses of T (see (1.4)). Set

W=kerT*=HSTH,
andQ ={zeC:|z] < ﬁ}, where r (L) is the spectral radius of L. Then
(2.11) kr(z,w) = Pw(I —zL7) "I —wL3) Hyw (z.w e Q)

defines a B('W)-valued analytic kernel k7: Q2 x Q — B(W), which we call the Shimorin
kernel of T (see Corollary 2.14 of [17]). We lose no generality by assuming, as we shall
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do, that Q = D. If, in addition, T is analytic, then the unitary U: # — H}, defined by

o0

(2.12) Uf)2) =Y (PwLyf)z" (f €H.z€D).

n=0
satisfies UT = M, U, see [17]. More precisely, we have the following result.

Theorem 2.5 ([17]). Let T € B(H) be an analytic left-invertible operator. Then T on JH
and M; on Hy, are unitarily equivalent.

Denote by P the orthogonal projection of # onto 'W = ker T*. It follows that
(2.13) Pyw=13—-TLrt.

This plays an important role (in the sense of Wold decomposition of left-invertible operat-
ors) in the proof of the above theorem. The following equality will be very useful in what
follows.

Lemma 2.6. If T is a left-invertible operator on ¥, then L L% = |T|72.
Proof. This follows from the fact that Ly L} = (T*T)"'T*T(T*T)™' = (T*T)™'. =

In the case of left-invertible weighted shifts S, (see (1.1)), it is known that the shift M,
on Hyg corresponding to the Shimorin kernel ks, is also a weighted shift (for instance,
see Example 5.2 of [13] in the context of bilateral weighted shifts). Nonetheless, we sketch
the proof here for the sake of completeness.

Proposition 2.7. Let Sy be the weighted shift with weights {otn }n>0. If {0n}n>0 is boun-
ded away from zero, then Sy is left-invertible, and the Shimorin kernel ks, is diagonal.

Proof. Let {e,}n>0 be an orthonormal basis of a Hilbert space #, and let Sye, = oy €541
forall n > 0. Observe that Sye, = ay—1€4—1,n > 1,and Sjeq = 0. Then W =ker Sy =
Cegp, and

SkSyen =ale, (n>0).

Since Sy Sy is a diagonal operator and {&y},>0 is bounded away from zero, it follows
that S; S, is invertible, and hence S, is left-invertible. Then the Shimorin left inverse
Ls, = (S¥Sqy)~1S is given by

0 if = Os
(2.14) Ls,en = { 1 n

1 1 >
@ en—1 ifn > 1.

Therefore, L, is the backward shift, and for all m > 1,
0 ifm > n,
(2.15) L% ey = L__¢g ifm=n,

en—m 1fm<n.

Op—1"QCn—m

Moreover,

1

LSa en = €ntm,
Oplp41 - Opnt+m—1
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foralln > 0 and m > 1. In particular,
1

*m
Lsa eg=—"—"—/e, ([Mm=1),
Qo1 * - Um—1

and thus, for each (m, n) # (0, 0), we have clearly

if m # n,

0
P Lm L*n —
WSy 850 { ifm=n.

1
@o-an_1)2 €0

This immediately gives
(e e)
ks, (z.w) =Y (PwLls LY |w)(z0)" (z.w € D),
n=0

where ‘W = Cey. In particular, the Shimorin kernel kg, is a diagonal kernel. Finally,
identifying W with C and setting 8, = — n > 1, we get

o otp—1’

o0
.
ks,(z,w)=1+ Z E (zw)* (z,w € D). L]
n=1"n
Notice in the above that the Shimorin left inverse Lg, is the backward shift corres-
ponding to the weight sequence {1/, }»>0, that is,

1
0 & 0 0
1
00 & 0
Ls,=|0 0 0 &
0 0 0 0

In the setting of Proposition 2.7, we now turn to the unitary map U: J€ — g , where
His, € O(D, W), and

o

Uf)z) =Y (PwLs, )",

n=0
forall f € # and z € D (see (2.12)). Set f,, = Ue,, n > 0. Since W = Cey, (2.14) yields
fo = Ueg = Pweg = ep. On the other hand, if n > 1, then (2.15) implies that

1 .
-eog ifm=n,
PywL? e, =14 P
S« .
0 otherwise,
and hence f, = L z7¢,. Therefore, {eo} U {ﬁi z"eg}n>1 is the orthonormal basis of Hs,

corresponding to U. Moreover, for each n > 1, we have

1 1 1 1
M(—Z”e)——zn+le =« _Zn+1
z 0 ,Bn 0 n ,Bn—i-l

,Bn ,Bn-i-l

and hence M; on JHy  is also a weighted shift with the same weights {o; }n>0-

z”+1eo),

€o =an(
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3. Tridiagonal spaces and left-invertibility

The main contribution of this section is the left invertibility and representations of Shimo-
rin left inverses of shifts on tridiagonal reproducing kernel Hilbert spaces. Recall that the
conditions in (2.1) ensures that the shift M, is bounded on the semi-analytic tridiagonal
space Jx. Here we use the remaining condition (2.3) to prove that M is left-invertible.

Before we state and prove the result, we need to construct a specific bounded linear
operator. The choice of this operator is not accidental, as we will see in Theorem 3.4 that
it is nothing but the Shimorin left inverse of M. For each n > 1, set

bn bn—l

3.1 dp = — — .
dnp an—1

Proposition 3.1. Let k be an analytic tridiagonal kernel corresponding to the orthonor-
mal basis { fn}n>0, where fn(z) = (an + bz2)z", n > 0. Then the linear operator L,
represented by

— ar -
o 4 0 0o 0
0 dy Z—f 0 0
_dib as
. 0 it dy @
- O dlblbz _dzbz d aq
azas as 3 as
_dibibybs  dybybs  _ d3bs
0 arasag azay as d4

with respect to the orthonormal basis { fn }n>0, defines a bounded linear operator on HKy.

Proof. Foreachn > 1, we have clearly

by bp—1 an+1 by an bu—
dn = — — = - s

dp ap—1 dp  dp+1 dp—1 dp

and hence b b
an+1 n an n—1
ldn| < +
dp An+1 ap—1 dap
Since {| aail [}n>0 is bounded away from zero (see (2.3)), we have that sup,,-o| “2*| < oc.
n - = n

This and the second assumption then imply that {d,,} is a bounded sequence.

Let S denote the matrix obtained from [L] by deleting all but the superdiagonal ele-
ments of [L]. Similarly, let Lo denote the matrix obtained from [L] by deleting all but
the diagonal elements of [L], and in general, assume that L; denotes the matrix obtained
from [L] by deleting all but the i-th subdiagonal of [L],i = 0,1,2.... Since

L=S+Y L.

i>0

it clearly suffices to prove that S and {L; };>¢ are bounded, and S + Zizo L; is absolutely
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convergent. Note that

an+1
IS]| = sup ‘<oo.
n>0' dp
Moreover, our assumption
lim sup ‘ <1
n>0 !dn+1

implies that there exist r < 1 and n¢ € N such that

b
z ‘<r (n > ny).
An+1
Set
by
M=sup{ ,|d,,|}.
n>1 'dp+1

Then ||L;|| < M+ foralli =0,...,ng,and
L] < MTmotLpizno (i > pg),

from which it follows that

An+1
ISU+ D ILill = sup | ==+ 30 Ll + D L]
i>0 n=0 n 0<i<ng i>no+1
a .
< sup n+1 + Z ||L1|| + Mn0+1( Z rt—no)
n=01 dn 0<i<ng i>ng+1
An+1 r
<sup | Y L]+ M —,
n=0! an 0<izno lL—r
and this completes the proof of the theorem. |

We are now ready to prove that M is left-invertible.
Theorem 3.2. In the setting of Proposition 3.1, we have LM, = lg,.

Proof. We consider the matrix representations of M, and L as in (2.8) and Proposi-
tion 3.1, respectively. Let [L][M;] = (&tmn)m.n>0. Clearly, it suffices to prove that o, , =
Omn. It is easy to see that ., ;1 = O for all k > 1. Now, by (2.6) and (3.1), we have

dp

(3.2 Cn = — dpy1 (n=0).

an+2

Note that the n-th column, n > 0, of [M,] is the transpose of

a Cnbnia
(0.0, ¢, — 222,
—— dn+1 an+3

n+1
...,(_J)m—n—zCnbn+2"'bm—l’(_d)m—n—1 Cnbuyz by ...)’

an+3°:"dm an+3 - dm+1
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and the m-th row, m > 0, of [L] is given by

_ diby by oy dabr by _3d3b3- by
0. (—ym-t Q01 Omot | pymep 920270 Omt 3 430300 Dmot
( ( ) Ay Ay ( ) as---dpy ( ) ag- Ay
..,—d’”‘lb'"‘l,dm,a’”“,o,o,...).
am am

Now, if n < (m — 2), then the a,,, (the (m, n)-th entry of [L][M.]) is given by

n = ( l)m_n_l dnt1bnt1-bm—1  an
mn —

Ap+2°°-dm an+1
—n— dn+2bn+2"‘bm—l
+ (_])m n—2

Cn
Ap+3 -+ Amy
+ (_l)m—n—3 dn+3bn+3 . "bmfl (—C bn+2>
An+4- dm " dnt3
4+t (__dm_lbm_l )(_l)m—n—3 n bpt2 -+ bm—2
am Apy3 - Apm—1

b veeh, a b ... h
—p—2 n+2 m—1 m+1 —n—1 n+2 m
+dm (=1)"""" " en + (=l 22 Tm
ap+3 - Am am an+3 - Amdm+1

and hence, using (3.2), we obtain

anb coeby—
m—n—1 ntn+1 m—1
Umn = (=1) dp1 ———
Apn+14n+2***Am

n dpiobpio by
+(—1)m_n_2<— ? dn+1) T2 t2 -

an+2 ap+3 - dm
+(_1)m—n—z(_ An dn+1)(bn+2>(dn+3bn+3"'bm—l>
an+2 an+3 An+4 - Am
+”_+(_1)m—n—2<_ an d, l)dm—lanrz"'bm—l
an+2 an+3-"-Am
+ (_l)m—n—Z(_ dn dn l)dmbn-‘rZ"'bm—l
an+2 an+3 - Adm
a b b
+(—1)m_n_l(— z dn+1)(—n+2 rzn)
an+2 An+3 - Ay
anb, cooby apb coby—
= ()T g (S Ly St T el
An+14n+2**Am An+20n+3 - Am
anb corbp_ anb cooby_
n¥n+2 m 1dn+3+"'+ ntn+2 m ldm_1
An420p+3 - Adm An+20p+3 - dm

Apbpiz--bm Anbpio-- by
+ dm — .
An+20n+3 - Am Ap+20p+3 - Ay
—n— Anbpio - by
T
Ap420p+3 - dm

b b
X ( Pl 4 (dng2 4 duts + o+ dmet + di) — —m>
An+1 am
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Recall from (3.1) that d, = Z— - f;—jn > 1. Then

Umn = (=1 Ny Gnbuta by ((bnﬂ - b—m> + (b—m — bn—“)) =0.

Ap+20p+3 - Am N \dp+1 am dm  An+1

For the case n = m — 1, we have

s = (L) 225 = (L) S )

m m am

and finally, oy, = (“"’*1 )( afn’jr -) = 1 completes the proof. L]

In view of Theorem 3.2, let us point out, in particular (see the discussion follow-
ing (2.10)), that shifts on analytic tridiagonal spaces are always analytic:

Proposition 3.3. If k is an analytic tridiagonal kernel, then M is an analytic left-inver-
tible operator on Hy.

Now let # be an analytic tridiagonal space. Our aim is to compute the Shimorin
left inverse Lp, = (M¥M,)"'M} of M, on J. What we prove in fact is that L in
Proposition 3.1 is the Shimorin left inverse of M. First note that

(3.3) Ly, z"=2""1 (m=>1).
Indeed,
Ly,z2" = (MIM) "MAM, 2"t = (MM, (M M) 2"

Therefore, Ly, is the backward shift on #) (a well known fact about Shimorin left
inverses). On the other hand, by Lemma 2.4, we have

Ly, fo = (MIMz)"'M? fo =0,
and hence Ly, fo = 0, which in particular yields

b
(3.4) Ly 1=—-2.
ao

Letn > 1. Using (3.1), we have Ly, f = L, (anz" + bpz" ) = a,z" ! + b, 2", which
implies

fn—l +dpa,z",

by—
dp (an_lzn—l +bn_1Zn) + (bn _ apbp I)Zn —

LAQJ%:Z
ap—1 an—1

an—1

2" 4+ bz — d, b,z 1. By (2.4), we have

(Z( l)m o br fn+1+m)-

} oan+1+j

and hence Ly, fn =

An
Lkbfh::
apn—1

This is precisely the left inverse L of M, in Proposition 3.1. Whence the next statement.



Tridiagonal kernels, left-invertible operators and Aluthge transforms 411

Theorem 3.4. Let K} be an analytic tridiagonal space. If L is as in Proposition 3.1, then
the Shimorin left inverse Ly, of M is given by Ly, = L. In particular, Ly, fo = 0, and

1_[;'”=0 bn+j

m
H_/:o An+1+j

a
Lszn = z

fn—l + dnfn - dn( Z(_l)m fn+1+m> (n>1),
m=0

ap—1

where d, = by /ay — by—1/an—1 for all n > 1. Moreover, the matrix representation of
Ly, with respect to the orthonormal basis { f, }n>0 is given by

N ar

0 o 0 0 0
0 dq Z—f 0 0

_diby as
Lop ] = 0 2 d> ” 0
M1 = 0 dibi1by _daby d as
aszas as 3 as

_dibibybs  dybybs  _ d3bs

0 arazas aszay a, dy

Next we verify that the bounded away assumption of {|a,/an+1|}n>0 in (2.3) is also
a necessary condition for left-invertible shifts.

Theorem 3.5. Let H; be a semi-analytic tridiagonal space corresponding to the ortho-
normal basis { f }n>0, where f,(2) = (an + byz)z", n > 0. Then M; is left-invertible if
and only if {|an /an+1|}n>0 is bounded away from zero or, equivalently, ¥y is an analytic
tridiagonal space.

Proof. In view of Theorem 3.2 we only need to prove the necessary part. Consider the
Shimorin left inverse Ly, = (M}M;)~'M}. Using the fact that C[z] C J, one can
show, along the similar line of computation preceding Theorem 3.4 (note that, by assump-
tion, Lps, is bounded), that the matrix representation of Lz, with respect to the orthonor-
mal basis { f, }n>0 is precisely given by the one in Theorem 3.4. Then for each n > 0, we
have

- - An+1
(MM M || g = (MMM fullge, = |—

)

n

which implies that
1

| - ,
[(M;M:)~I M} g3,)

an+1

and hence the sequence is bounded away from zero. ]

4. Tridiagonal Shimorin models

As emphasized already in Proposition 2.7, if k is a diagonal kernel, then ks, is also a
diagonal kernel. However, as we will see in the example below, Shimorin kernels are
not compatible with tridiagonal kernels. This consequently motivates one to ask: How
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to determine whether or not the Shimorin kernel ks, of a tridiagonal kernel k is also
tridiagonal? We have a complete answer to this question: kjy, is tridiagonal if and only if
by = 0 or M, is a weighted shift on #. This is the main content of this section.

Example 4.1. Leta, = 1foralln > 0,letby = 1/2,and let b, = 0 forall n > 1. Let J;
denote the analytic tridiagonal space corresponding to the orthonormal basis { f; }»>o0,
where f, = (a, + bpz)z" foralln > 0. Since fo =1+ %z and f, = z" foralln > 1,
by (2.8), we have

000 0
1 00 0
M]=|4 1 0 0
001 0

By Theorem 3.4, the Shimorin left inverse Ly, = (M} M,)~! M} is given by

0 1 00 0
1
0o -1 10 o0
Ly.={0 0 0 1 0
0 0 00 1

Recall, in this case, that W = C fy. It is easy to see that Ly, f1 = fo — %fl LX'IZ fo=fi,
L;;zfl = _%fl + f2,and Lszz = f3. Then

1 1 1
Ly fo = —ELLZfl + Ly, fo= Zfl - Efz + f3,

and hence PWLMZLX;Zfo = iPW(LMZf1)7 as PwLy, f;j = Oforall j # 1. Thus,

1
PwLu.Lii. fo = 7 fo # 0.
which implies that the Shimorin kernel kjs,, as defined in (2.11), is not a tridiagonal
kernel.

Throughout this section, #; will be an analytic tridiagonal space corresponding to the
orthonormal basis { f, }»>0, Where f,(z) = (an + b,z)z", n > 0. Recall that the Shimorin
kernel kpr,: D x D — B(W) is given by (see (2.11) and also Theorem 2.5)

km,(z.w) = Pw(I —zLp,) (I — 0Ly ) 'lw  (z,w € D).

Here, of course, W = C f; is the one-dimensional space generated by the vector fy. So
one may regard ks, as a scalar kernel. We are now ready for the main result of this section.
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Theorem 4.2. The Shimorin kernel kpr, of M is tridiagonal if and only if M, on Ky is
a weighted shift or by = 0.

Proof. We split the proof into several steps.
Step 1. We first denote Ly, = L and
Xmn = PwL™ L™ |w (m,n >0),

for simplicity. First observe that Theorem 3.4 implies that L™ fo = 0, m > 1, and hence
Xmo =0 =X, = Xom for all m > 1. Then the formal matrix representation of the
Shimorin kernel kjy, is given by

Iw 0 0 0
0 X1 Xi2 Xis

(4.1) ka]=1] 0 X0 Xoo Xo3
0 X’ X5 Xis

Clearly, in view of the above, kjy, is tridiagonal if and only if X, fo = O forall m,n # 0
and [m —n| > 2.

Step 2. In this step we aim to compute matrix representations of L? and L*?, p > 1, with
respect to the orthonormal basis { f;, }»>0. The matrix representation of [L] in Theorem 3.4
is instructive. It also follows that

0 0 0 0 0
a g _diby dibiby  _dibibybs
ao 1 az azas anasas
i g &b N
0 ﬁ d2 - 232 1%3343
“2) =0 o & 4 -hk
. _— as a4
0O o0 0 g—;‘ ds
0O O 0 0 Z—i

Here we redo the construction taking into account the general p > 1, and proceed as in the
proof of Theorem 3.4. However, the proof is by no means the same, and the general case is
quite involved. Assume that n > 1. We need to consider two cases: n > pandn < p — 1.
Suppose n > p. By (3.3) and (3.4), we have

L? fy = apLPz" + b, LP 2"t = q, 2" P 4+ b,z P T,

which implies

an - —p+1 an —p+1
L? fy = (an—pzn P4 bn—pzn pt )+ (bn - _bn—p)zn Pt
an—p An—p
Aan

= fop +dP)zmmPHL
dn—p
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where

(4.3) d\P =p, —

b, — > p).
np n—p (1 >p)

Hence, by (2 4),

L? fn = Jn—p
an—p
d” b—p1 bn—p+1bnp+2
. (fn—p+l - ==£ fn—p+2 + an—p+3 -
An—p+1 an—p+2 An—p+2Adn—p+3
that is,
» an a» & m m_ S bu—ptjti
L? fy = Jn—p + Z( 1) (—)fn—p+m+la
dn—p dn—p+1 .=, l_[] =0 n—p+j+2
for all n > p. Here and in what follows, we define Hj_=0 xj =1
We now let p = 1 and n = 1. Then, by Theorem 3.4, we have
aq d1b1 dlb b2
(4.4) Lflza—f0+d1f1+<—a )f2 ( )f+
0 2

Finally,let 1 <n < p — 1. Then p > 1, and again by (3.3) and (3.4), we have
L? f, = LP(ayz" + bnzn+1) =a,LP™"1 + anp—n—ll

and hence L? f, = an(;—l;")p_"_l[z—z - 2—2]. We set

by, b

4.5) Bp=——-—— (n=>1)
an [n)
and
—bg\p—n—1
(4.6) BY =an(—2)" " B (=n=p-1.
ao
Then L? £, = B and (2.4) implies that
3 i 720 bj
LP(fy) = )" () fon
ao = 1_[;"=01 aj+1
foralll <n < p—1. Then
— ,3(2) -
0 I ao o 0
5D e
0 —Zar ar e 0
27 ﬂ(Z)bObl d(z)bl d(z)
@.7) [L7T=10 aloa1az - azlaz ¢13_2 Z_: ’
0 — Pbobiby  dPbibs  dPby  dP

apaiazas aijazas azas as
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and in general, for each p > 2, we have

(») (p) (p)
0 B By ﬂp;l ap 0 0
ag ag ag ag
(p)
R S R U S TS U
agay agay agay ay ay
() ()
(4.8) [LP] = B bob BPbobr - BDibobt_afPh R aps
agaraz agajaz agaraz ajay ay ap
(p) () (p)
_ﬂfp)boblbz _ﬂép)boblbz . BpTibobiby a$Pb by _dpaba dyyy -
agajazaz agajazaz agajazay ajazaz azay a3

Hence, for each p > 2, we have

0 0 0 0
BP Bk Bk B Pbebibs
é() ﬁoﬁ] ﬁoﬁ]éz é0515253
BP _BPby B bobi B bobibs
ao aopai apaiaz aopaiazas
(4 9) [L*p] — Bp(f)l _5;5)150 E,Eli)]l;ol;l _655)1505152
’ aop aopa apaiaz apaiazas
i 4P AP dPhb
ao a ayaz ayaas
_ 7(p) 7(p)
0 ap+1 dp+l _dp+lb2
a a azas
_ aw»
0 0 aEJrZ p+2
az as

Step 3. We now identify condition on the sequence { ﬂ,({’H)},,zl implied by the require-
ment that X, m+y2 = 0, m > 1. Before proceeding further, we record here the following

crucial observation: Suppose ﬂ,(,p ) = 0 for some pandn suchthat 1 <n < p — 1. Then,
by (4.6), we have
(4.10) B’ =0 (q=p)

Now assume m > 1. The matrix representation in (4.9) implies

@.11) L2 fy = (Bimﬂ)fl + B£m+2)f2 +ee B,(nm++12)fm+1 + Am+2 fm+2)-

1
ao
Observe that, by Theorem 3.4, we have
4 f ifi =1,
PwL(f;) =4 9

wLUD =00 i,

Let us now assume that m > 2. Then (4.8) implies

" :
p fo ifl<i<m-—1,

(4.12) PwL™(f) =1 fo  ifi = m,

ap

0 ifi >m+ 1.
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Since X mt2 = PwLmL*m+2|w, this yields

(4.13) Xonmaz fo = . |2 (ﬁ§m+2)ﬂ§m) + ﬁ(m+2)ﬂ(m)
4ot ﬁ(m+2)13(m)1 + Ey(nm+2)am)f0-
In particular, if m = 1, then we have
1 a
X13 fo = _—( 3 l)fo,
ao
and hence X135 = 0 if and only if ,3(3) = 0. By (4.13), applied with m = 2, we have

Xa4 fo = PAE (ﬂ§4)/3(2) +B¥az) fo.

Assume that 8 ® — . By (4.10), we have ,3 = 0, and, consequently,

a
Xaafo = B @ 2|2 Jfo.

Hence we obtain X,4 = 0 if and only if ,3§4) = 0. Therefore, if X, 42 =0forallm > 1,
(m+2)
Brm

then by induction, it follows that = 0 for all m > 1. The converse also follows from

the above computation.
Thus, we have proved that

Xpmmiz = Oforallm > 1 ifand only if S = 0 forallm > 1.
Step 4. Our aim is to prove the following claim:

Suppose X j42 =0 foralli =1,...,m,andm > 1.
Then X,y =0 foralln =m+3,m+4,...,andm > 1.

To this end, let » = m + j and j > 3. Then the matrix representation in (4.9) (or the

equality (4.11)) implies
e L oam 2(n) 7 (n)
Jo Zo (B i+ B ot oo+ By fumt + an fn).

and then

PyL™L*" fy = Z,B(")PwLm(f) + —PwL’"fn = Zﬁ‘")PwL’”(fz)

0,21 0i=1

since PwL™ f; = 0,i > m, which follows from the matrix representation of L™ in (4.8).
Hence, by (4.12) (or directly from (4.8)), we have

PWLmL*nf — | |2 (,Bgn)ﬁ(m) +B§n)ﬁ£m) +. +'3(") :B(m) +an, ,B(n))f

Now note that X; ; 1, = 0, that s, ﬂi(l+2) =0,i =1,...,m,by assumption. Since i + 2 <
m+ jforalli =1,...,m, by (4.10), we have

:31'(n) — ,B(m+/) 0 (l =1,. )

4

Hence, PwL™L*" fo = 0, thatis, X m+i = 0, fori = 3,4, ..., which proves the claim.



Tridiagonal kernels, left-invertible operators and Aluthge transforms 417

Step 5. So far all we have proved is that X,,, = 0 for all |m — n| > 2 if and only if
m+2) — 0 for all m > 1. Now, by (4.6) and (4.5), we have

r(zn+2) =dan <_b_0)ﬂn,

where 8, = Ia’" b° for all n > 1. Thus, ,3(”+2) = 0 forall n > 1 if and only if by = 0
or B, = 0 for all n > 1. On the other hand, Lemma 2.3 implies that 8, = 0 for all n > 1
if and only if M, is a weighted shift.

Finally, by Proposition 2.7, we know that if M is a left-invertible weighted shift, then

the Shimorin kernel is also a diagonal kernel. This completes the proof of Theorem 4.2. m

In fact, we have proved the following general statement (see the matrix representa-
tion (4.1)): The Shimorin kernel kps, of M, on an analytic tridiagonal space is (2] +1)-
diagonal for any finite j > 1 if and only if M, is a weighted shift or by = 0. As a result,
the Shimorin kernel of M on an analytic tridiagonal space is either tridiagonal or cannot
be (2j + 1)-diagonal for any finite j > 1. We are thankful to Professor Indranil Biswas
for bringing this to our attention.

5. Positive operators and tridiagonal kernels

Our aim is to classify positive operators P on a tridiagonal space #} such that
DxD >3 (z,w) = (Pk(-,w),k(-,2)) 5,

is also a tridiagonal kernel. While this problem is of independent interest, the motivation
for our interest in this question also comes from Theorem 7.7 (also see the paragraph
preceding Corollary 9.2). We start with a simple example.

Example 5.1. We consider the same example as in Example 4.1. Note that M is left-
invertible and not a weighted shift with respect to the orthonormal basis { f, }n>0 of K.
Then, by Lemma 2.6, we have

1 -1 0 0 ..
4 300
IM| 2 =Ly, Ly, =0 0 1 0
0 0 01
Let

e B0 0 ...

B v 0 0
IM,”'=1]0 0 1 0 ,

0 0 0 1
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where [g g ] is the positive square root of [_11 /2 _51/42 ]. A straightforward calculation shows

that 5 + B # 0. Define K: D x D — C by
K(z,w) = (IMz| k(- w), k(- 2)) 3¢, (z,w € D).

A simple computation then shows that
Kz, w)=a+ (% —i—ﬂ)u_) + (% +/3)z + (% + B8+ y)zu_) —l—ngzz"u_)”,

that is, K is also a tridiagonal kernel.

The following is a complete classification of positive operators P for which (z, w)
(Pk(-,w),k(-,2))s, defines a tridiagonal kernel.

Theorem 5.2. Let ¥} be a tridiagonal space corresponding to the orthonormal basis

Ju(2) = (an + byz) 2", n > 0. Let P be a positive operator on Hy, with matrix represent-
ation

Coo Co1 Co2 Co3

Co1 €11 C12 €13
P=|cop Ci2 ¢22 €23 -,

Co3 C13 C23 €33

with respect to the basis { fn}n>0. Then the positive definite scalar kernel K, defined by
K(z,w) = (Pk(-,w),k(-,2))5, (z,weD),
is tridiagonal if and only if

by--b,_
con = (=T (> 2)
az..-an

and

b cooh,
Cmp = (=1 2L ol el (1<m <n—2).
Am+2 - dn
Equivalently, K is tridiagonal if and only if

b bib ]
Coo cot —&C01 G
Co1 c11 C12 —52C12
_ by = ~
P = —icm C12 C22 €23
biby = b= =
aras €01 a; €12 €23 €33

Proof. Note that for each w € D, by (1.3), we have k(-, w) = Y o> fm(w) fm, and thus

(o] m—1 00

Pk(-,w) = Z ( Z Cnm fn(W) + Cmnfn(w))fm,

m=0 *n=0 n=
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where Y71 x, := 0. Then

m—1 o}

(PG k2t = 3 o) X ean o1 + 3 e Fol) )

m=0 n=0 n=m

0o m—1 oo
1 T I I e ~on o oontl
= Z(amzm + mem+ )( am (@ W" +bnwn+ ) + Z Cmn (@pw" +bnwn+ ))
m=0 n=0 n=m
= Z Umn 2" W",
m,n>0

where o,,, denotes the coefficient of z™w”, m,n > 0. Our interest here is to compute
Umn, |m —n| > 2. Clearly, &, = Qpm forall m,n > 0, and

(5.1) on = ao(@n Con + bu—1Con-1) (1 =2)
and
(5.2) Umn = am(c_ln Cmn + I;n—l Cm,n—l)

+ bm—1(an Cm-1n + 5n—lcm—l,n—l) (I <m<n).

Suppose n > 2_ By (5.1), @g, = 0if and only if ¢y, = —b:_;;l co,n—1- In particular, if n = 2,
then cgr = —g—; co1, and hence, by (5.1) again, we have
n—1 1
P b
Con = (-U"A% co1 (n=2).

[lisai

Therefore, ag, = 0 for all n > 2 if and only if the above identity holds for all n > 2.
Next we want to consider the case m,n # 0 and |m — n| > 2. Assume that n > 3.
Then (5.2), along with (5.1), implies

O1p = aq (&n Cin + bnr Cl,n—l) + by (C_ln con + bu_1 CO,n—l)

_ - bo
=ai(@ncin +bp_1c1,n—1) + - ton-
0

Therefore, if ag, = 0 forall n > 3, then a1, = a1(@pc1n + 15,,_161,,,_1). Hence, o1, =0
if and only if a,c1, + by—1¢1,,—1 = 0, which is equivalent to
[;n—l

— C1,n—1-
dap

Cin = —

Therefore, under the assumption that «;, = 0 and n > 4, (5.2) along with (5.1) implies

Oop = Az (&n Con + bn—lc2,n—1) + b (an Cin + bn—lcl,n—l)

=as(@ncan + bu—1c2,.n-1).

Then oy, =0,n >4, ifand only if ¢, = — Bg; c2,n—1. Consequently, by induction, for all

m,n # 0 and |m — n| > 2, we have that o,, = 0 if and only if @pcmn + bp—1¢mpn—1 =0
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or, equivalently,

b_n—l
Cmn = ——— Cm,n—1
n
Finally, observe that
bbb
Cmn = (_l)n—m—l M Cm,m+1
an P am+2
for all 1 < m < n — 2. This completes the proof of the theorem. [

We will return to this in Theorem 8.3 and Corollary 8.4.

6. Quasinormal operators

A bounded linear operator 7 € B(J) is said to be quasinormal if T*T and T commutes,
that is,
[T*,T|T =0,

where [T*,T] = T*T — T T* is the commutator of 7. In this section, we present a com-
plete classification of quasinormality of M, on analytic tridiagonal spaces. Here, however,
we do not need to assume that M, is left-invertible.

To motivate our result on quasinormality, we first consider the known case of weighted
shifts. Recall that the weighted shift S, corresponding to the weight sequence (of positive
real numbers) {ot; }n>0 is given by Sye, = apen41 for all n > 0. Then (see the proof of
Proposition 2.7)

SaSaent1 = o enti,

and hence (S; Sy — SoS;)Se = 0if and only if (SySq — SaSa)Seen = 0foralln > 0,
which is equivalent to

an gy —0y) =0
for all n. Thus, we have proved Problem 139 of [8]:

Lemma 6.1 ([8]). The weighted shift Sy is quasinormal if and only if the weight sequence
{otn }n>0 is a constant sequence.

Now we turn to M, on a semi-analytic tridiagonal space #. Suppose [M}, M;] =
rPy,, where r is a non-negative real number and Py, denotes the orthogonal projection
of #} onto the one-dimensional space C fy. Then [M}, M ]M, = rPs, M, implies that

([Mz*» M M) fn = rPfo(an)-
Now, by (2.7), we have
=Y Bifi.
i=n+1

for some scalars 8; € C,i > n + 1. Notice that 8,41 = an/an+1 # 0. This shows that
Ps,(zfn) = 0, and hence

([Mz*v M:IM;)fn =0 (n=0),
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that is, M is quasinormal. Conversely, assume that M is a non-normal and quasinormal
operator. Then [M}, M;]M,; = 0 implies that ran M, C ker[M}, M.], and therefore, by
Lemma 2.4, we have

C fo = ker M} D ran[M}, M,].

Clearly this implies [M}, M;] = rPy, for some non-zero scalar r. Then

rll foll® = (rPy, fo. fo)se. = (M, Mz] fo. fo)se, = 1Mz foll” — I M fol” = | M: foll®,
as M} fo = 0, which implies
_ 1Mol
Il foll?

Thus, we have proved the following theorem.

> 0.

Theorem 6.2. Let #; be a semi-analytic tridiagonal space. Assume that M, is a non-
normal operator on Hy.. Then M, is quasinormal if and only if there exists a positive real
number r such that

MM, — MM} = rPy,,

where Py, denotes the orthogonal projection of H#y onto the one-dimensional space C fy.

In more algebraic terms, this result can be formulated as follows: First we recall the
matrix representation of M, (see (2.8))

0 0 0 0
ao
% 0 0 0
Co Z—; 0 0
_ _cob a
[MZ] - as €1 as O
cobabs _cbs as
aszag aa (:2 asg
_ Cob2b3b4 C]b3b4 _ Czb4 c
asasas agas as 3

For each n > 0, we denote by R, and C,, the n-th row and n-th column, respectively,
of [M]. We then identify each of these column and row vectors with elements in .
Then R,, C,, € #x,n > 0. Using the matrix representation [M ] (see (2.9)) and [M;], we
get

(RO! Rn)(%k - Oa
for all n > 0, and consequently
(Co,Co) e, (C1,Co) 3¢, (C2,Co) ¢,
. (Co,C1)ge, (C1,C1)ge, —(R1,R1) 3¢, (C2,Cr)ge, —(R1,R2) 3¢,
(M Me]] = | (oot (C1Coda—(RauR ), (C2iCaae, —(RosRa) sy

Therefore, the following corollary holds.
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Corollary 6.3. Let Hy be a semi-analytic tridiagonal space. Then M, on Hy, is quas-
inormal if and only if

(Co.Co)ge, = 1. (Co.Ci)ge, =0 (i =1),
and
(Ch, Ci)ge, — (Rm, Rp)3e, =0 foralll <m =<n.

It is easy to see that a quasinormal operator is always subnormal [8]. However, a
complete classification of subnormality of M, on tridiagonal spaces is rather more subtle
and not quite as clear-cut as in the quasinormal situation. In fact, the general classification
of subnormality of M, on tridiagonal spaces is not known (however, see [1]).

7. Aluthge transforms of shifts

Recall that the Aluthge transform of an operator T € B(H) is the bounded linear operator
T = |T|"?U|T|'/>.

In this section, we prove that the Aluthge transform of a left-invertible shift on an analytic
Hilbert space is again an explicit shift on some analytic Hilbert space. We present two
approaches to this problem, one based on Shimorin’s analytic models of left-invertible
operators and one is based on rather direct reproducing kernel Hilbert space techniques.

We begin with the following simple fact concerning Aluthge transforms of left-inver-
tible operators.

Lemma 7.1. If T is a left-invertible operator on ¥, then
T =11">1T|T|7"/2,
and ker T* = |T|~Y2ker T*. In particular, T is similar to T.

Proof. Indeed, T = |T|V2U|T|V? = |T|V2U|T)|T|"V2 = |T|V2T|T|"V2, as T*T
is invertible. The second equality follows from the first. ]

Suppose in addition that 7" is a shift on an analytic Hilbert space. In Theorem 7.3
(under an additional assumption that 7" is analytic), and then in Theorem 7.7 again, we
prove that T, up to unitary equivalence, is also a shift on an explicit analytic Hilbert space.
In connection with Lemma 2.6, we now prove the following proposition.

Proposition 7.2. If T is a left-invertible operator on J, then the Shimorin left inverse
L of the Aluthge transform T is given by
Lz = TI"2((Lr|TIT)™ L) T2 = |T| 2T\ 7T~ )| T2,

Proof. By Lemma 7.1, we know that 7 = |T'|"/2T|T|~"/2. Since |T|'/? is invertible and
LT = I, we have 3

\T|"2Lr|T|7V2T =1,
which implies that T is left-invertible, and hence (T*T)_l exists. By Lemma 7.1 again,
we have

T*T = (\T|7V2T*|T|V>)(T)V2T|T|7V?) = |T|7V2(T*|T|T)|T| 7"/
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Since (T*T) and |T|~Y/2 both are invertible, we conclude that 7*|T|T is invertible.
Moreover, the above equality implies

(T*T)™' = |T|V2(T*|T|T)~ " |T |2
Then

Ly = (T*D)7'T* = (T2 T|D)7 T[T |21 7|2

= [T|"2((r*|T\T)~ )| T2,
On the other hand, since T* = |T|>Lt, we have T*|T|T = |T|?>L7|T|T, and hence

(T*|T|T)™" = (Lr|TIT) T[>
Therefore, (T*T)~! = |T|V2(L¢|T|T)~!|T|~3/2, which gives
Ly = (T*D)7 T = |T|"2(Lr|TIT) T |1 T
= T|V2(Lr|T|T)" Ly |T|"2,

and this completes the proof. ]

Then the above, along with Theorem 2.5 and Lemma 7.1 implies the following.

Theorem 7.3. Let & be a Hilbert space, and let k:ID x D — B(&) be an analytic kernel.
Suppose M is left-invertible on Hy. Then the Aluthge transform M is unitarily equival-
ent to the shift M, on Jf,; C (D, W), where

k(z,w) = Pu(I —zL)y ' (I —wL*) Y5 (z,w € D),

W = ker M} = |M,|""/?*ker M},

L = |M:|"?((Lag, |Mz|M2) ™" Lag,) | Mz |2,

Definition 7.4. The kernel & is called the Shimorin—-Aluthge kernel of M.

Under some additional assumptions on scalar-valued analytic kernels, we now prove
that, up to similarity and a perturbation of an operator of rank at most one, L; and
Ly, are the same. As far as concrete examples are concerned, these assumptions are
indispensable and natural (cf. Lemma 2.4).

Theorem 7.5. Let k:1D x D — C be an analytic kernel, C[z] C Hy, and let { f,} € C|z]
be an orthonormal basis of Hy. Assume that M, on Hy is left-invertible, ker M} = C f
and

fo €span{z” :m >1} (n>1).

Then L i, and Lpy, are similar up to the perturbation of an operator of rank at most one.

Proof. Since ker M} = C fy, Ly, fo = 0and Ly, z" = LMZMZ(Z”_I) = z""1 by the
definition of Ly, . This implies Ly, z" = z"" !, n > 1 (see also (3.3)). In particular,
Ly, fu € C[z] for all n > 0. Moreover, for each n > 1, we have

Lz (\M:|"22") = | M| ((Lag IM2IM2) ™" Lag,) | M |2"
= |M "2 (Lag, M IM2) ™ (L, | Mz | M)z
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thatis, Ly (|M;|"/?z") = |[M|"/2z"~". Therefore, we have
(IM72L g M|V 2" = Lag,2" =271 (> 1).
Then (|M.|"" /2Ly |M;|"/? = Las,) fo = O for all n > 1, which gives

(M |72 L g IM:A"? = Lag) lspamt fyen=1y = 0.
Finally, we have clearly
(1M7L \M|Y? = Lag) fo = (IM| V2L |M:(2) fo.
and hence
(7.1) F =MLy [M|'/? = Ly,

is of rank at most one, and consequently L 7 M, |12 = |MZ|1/2(LMZ + F). This com-
pletes the proof of the theorem. ]

The following analysis of F, defined as in (7.1), will be useful in what follows. Note
that

(7.2) Ly \M|"? = M |"*(Ly, + F).
Let g € Hj. Clearly, since Ly, fo = 0, we have

Fg = (g. fo)ae, (M7 2Lz |M.|'2 fo).

Then Lemma 2.6 implies that

(7.3) Fg = (g, fo)ae, (MM |M.) "M} M, | fo) (g € Hx).

As we will see in Section 8, the appearance of the finite rank operator F' causes severe
computational difficulties for Shimorin—Aluthge kernels of shifts. On the other hand, com-
bining Theorem 2.5, Proposition 7.2 and (7.2), we have the following theorem.

Theorem 7.6. In the setting of Theorem 7.5, the Aluthge transform M, of M, on Hy is
unitarily equivalent to the shift M; on Jp, where

k(z.w) = Pw(I —zL)™' (I —=®L*)" |,

W= M| ker M = C(M:|7' fo),

L= |M:|"?(Ly, + F)IM:| 712,

Fg = (g, fo)a, (M} |M;|M;)" M} |M;|fo) (g € #).

We now revisit Theorem 7.3 from a direct reproducing kernel Hilbert space standpoint.
Indeed, there is a rather more concrete proof of Theorem 7.3 which avoids using the
analytic model of left-invertible operators. In this case, also, the reproducing kernel of the
corresponding Aluthge transform is explicit. Part of the proof follows the same line of
argumentation as the proof of the reproducing kernel property of range spaces (cf. [3]).
To the reader’s benefit, we include all necessary details.
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Theorem 7.7. Let & be a Hilbert space, and let k:1D x D — B(&) be an analytic kernel.
Assume that the shift M is left-invertible on H}. Then

(k(z.w)n.8)e = (M7 (k(-.w)n). k(. 2)))se,  (z.w €D, 7. ¢ € E)
defines a kernel k:DxD — B(&). Moreover, the shift M; on ¥} defines a bounded

linear operator, and there exists a unitary U: Hy — Hj; such that UM, = M,U.

Proof. Define # = |M,|~Y/23,. Then # (= Hy) is an €-valued function Hilbert space
endowed with the inner product (|M;|7V/2 £, |M;|712g) 5 = (f.g) 3, forall f. g € Hy.
Foreach f € #, w € D and n € &, we have

(M 712 LM K Gow)m) g = (oI ME] 72 (R Cw)) g,
= (M7 [k (- w)) e
and hence, by the reproducing property of F#y, it follows that
(74) (M2 LM K Gowi) g = (M= H)w).n)e.

This says that {| M|~ (k(-,w)n):w eD,n € € } reproduces the values of functions in H,
and furthermore, the evaluation operator evy,: #/ — & is continuous. Indeed,

[{evw (IM=|72 £).n)el = ((IM|71 f)(w). n)e|
= [{|M7V2 £ M7 R ow) ) g
< M2 £ 1M e w))ll
= IM72 Fll g 1M~ 2 e w)n) e -
Since
k(. wnl3, = (k(-.w)n. k(- w)n)ge, = (k(w.w)n. ne = Ilk(w,w)' /5|2,
it follows that
M7 2 owym e, < 1Mz |21 g e (- w)llge,
= IIM:17"2 ]| g (s llk(w. w)?n]g
< 1M1 2 g0y 1kw, w) 2| 5 Inlle.

which implies that
{evw (IMz|72 ) m)el < (1M 17V g e Ik (w, w) /2 | g @) IIM:1" 2 f 11 7 Inlle.

Therefore, J is an &-valued reproducing kernel Hilbert space corresponding to the kernel
function 3
k(z,w) =ev;o0ev, (z,weD).

Clearly, (7.4) implies that evin = |M;|"Y(k(-,w)n) for all w € D and n € &. Since
(k(z,w)n,t)e = (evyn, evil)e, it follows that
(k(z,wn, e = (IMz|7 (ke (-, w)n), Mz (k(-, 2)0))
= (1M "2k Cown), [ Mz T2 (K (- 2)0)) g2,
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that is, (lg(z,w)n,é‘)g = (|M |7 k(- w)n), k(. 2)0)) 5., z, w € D, 7, ¢ € E. Therefore,
as a reproducing kernel Hilbert space corresponding to the kernel k, we have J; = JC.
Define the unitary map U: # — H by

Uh=|M:""2h (b € J0),

and recall from Lemma 7.1 that M} = |M,|"Y2M*|M,|'/?. Let f € H;, w € D, and
let n € &. Then

(UMU*(\M|7'2 ) (). n)e = (UM U*(IM| 2 £). | M| (k- w)n)) e,
= (M U*(IM:|7"2 ) IM |72 (k (- w)m)) g,
= (f. M| M7 2 (k (- w)n) g,
= (£ |M| "2 ME (K (- w)m)) e -

But since M (k(-, w)n) = wk(-, w)n, we have

(UM U*(IM |72 f))(w). e = w{fs M2 k(- w)n)) g6,
= (w(IM: |72 f))(w). n)e.

which implies that
UM UM f) = 2(IM: 72 ) (f € ).
Thus, the shift M, on Jflg is a bounded linear operator and U MZ =M,U. [

Definition 7.8. The kernel & is called the standard Aluthge kernel of M.
In particular, if k is a scalar-valued kernel, then k(- w) = U(|M,|"V2k(-, w)) and

k(z,w) = (Mo 7'k (- w), k(. 2)) g, (z,w € D).

Therefore, if the shift on a tridiagonal space Jy is left-invertible, then there are two ways
to compute the Aluthge kernel k: use Theorem 7.3, or use the one above. However, we
note that from a general computational point of view, neither approach is completely sat-
isfactory and definite. On the other hand, often the standard Aluthge kernel approach (and
sometimes both standard Aluthge kernel and Shimorin—Aluthge kernel methods) lead to
satisfactory results. We will discuss this in the following section.

8. Truncated tridiagonal kernels

In this section, we introduce a (perhaps both deliberate and accidental) class of analytic
tridiagonal kernels from a computational point of view. Let #; be an analytic tridiagonal
space corresponding to the kernel

k(zow) =Y fu(2) fuw) (z.w e D),

n=0
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where f, = (a, + bpz)z", n > 0. Suppose r > 2 is a natural number. We say that k is a
truncated tridiagonal kernel of order r (in short, truncated kernel of order r) if

by =0 (n#2.3,....1).

We say that an analytic tridiagonal space # is a truncated space of order r if k is a
truncated kernel of order r. Note that there are no restrictions imposed on the scalars
ba, ..., by.

Let #} be a truncated space of order r. Then M, is unitarily equivalent to M, on H;,
where £ is either the Shimorin—Aluthge kernel or the standard Aluthge kernel of M, as
in Theorem 7.3 and Theorem 7.7, respectively. Here our aim is to compute the Shimorin—
Aluthge kernel of M. More specifically, we classify all truncated kernels k such that the
Shimorin—-Aluthge kernel k of M, is tridiagonal. We begin by computing |M,|~!.

Lemma 8.1. If Hy is a truncated space of order r, then

(148 0 0 0 0 0 ]
0 c11 Cl12 tr Clr41l 0 0
0 C12 €22ttt Capdd 0 0
(0.1 = : _ : _ : : : : |
0  Cir41 Cord1 ' Crelr+1 0 0 .
0o 0 0 0 |ER|
0 0 0o - 0 0 g

with respect to the orthonormal basis { f, }n>o0-

Proof. For each n > 1, by the definition of d, from (3.1), we have d, = 2—2 — 22—:1, and
hence dy = dy4+; = 0,i = 2,3,.... Then Theorem 3.4 tells us that
0 Z—l 0 0 0 0 0 o]
0
0 0 Z—Z 0 0 0 0
1
0 0 d> 0 0 0 0
(La.] = 2 dybyby
0 0 (=1 Lhadiol d, "a—jl 0 0
—1 _dabb, dr by ar
0 0 (=1 pre sl v dr+1 ﬁ 0
0 0 0 0 0 0 Z’—”
r+2
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Now, by Lemma 2.6, |M,|™2 = Ly, Lx,lz , which implies

@p 0 o

[|Mz|_2] = 0 4, 0],
0 0 D?
where
D2 zdiag( re3 | |drs 2)
ar421 larys

and A2 41 is a positive definite matrix of order r + 1. Using this, one easily completes the
proof. ]

From the computational point of view, it is useful to observe that A% =L ,+1L;‘ 1
where

a
a 0 0 0 0
as
d> o 0 0 0
Lyyr = : :
r—2dabybr_1 _\r=3d3b3b—1 . art1
(cly2dbebn  (Cpyddibeho omm
_1\r—1 _dabrb;, _1\r—2 _d3b3-b, ar+2
_( 1) az-araryy =D a4-ararg dr+1 ar+1

In other words, 42 11 admits a lower-upper triangular factorization. This is closely related
to the Cholesky factorizations/decompositions of positive-definite matrices in the setting
of infinite-dimensional Hilbert spaces (see [3] and [12]).

We recall from Theorem 7.6 that the Shimorin—Aluthge kernel of M, is given by

k(zow) = Pyp(I —zLg )" —wL% )M (zoweD),
where W = |M,|~"/2 ker M,
(8.1) Ly =MLy, + F)| M|/,

and
Fg = (g, fo)ge, (MM |M;)"' M} |M;| fo) (g € Hp).
We now come to the key point.

Lemma 8.2. If k is a truncated kernel, then F = 0 and L |M, V2% = |M,|V2 Ly,

Proof. The matrix representation of |M,|~! in Lemma 8.1 implies that | M| fo = |Z—‘1)| fos

and hence do
MZIM: | fo = |22 M2 fo =0,
1

by Lemma 2.4. Therefore, the proof follows from the definition of F and (8.1). ]

We are finally ready to state and prove the result we are aiming for.
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Theorem 8.3. Let #j be a truncated space of order r. Then the Shimorin—Aluthge kernel
is tridiagonal if and only if

bn—l

b
Con = (=1)" 1 ImA1"" " Un—l

- — Cm,m+1,
am+2 .a'an

foralll <m <n—2and3 <n <r + 1, where c;,, are the entries of the middle block
submatrix of order r + 1 of [|M;|™'] in Lemma 8.1.

Proof. We split the proof into several steps.

Step 1. First observe that lg(z, w) = ano,nzo Xunz™ ", where X,pn = PWL';IZLHZ -

for all m,n > 0. Now Lemma 8.2 implies that
L7 Ly =MLY M7 L | M|,
and Py = I — MLy by (2.13). Since
M, = M|\ M,|M,|~"?  and Ly = \M V2 Ly | M7V,
we have
Py = |M:|"2(I = Mo Lp,)|M: |72 = | M |2 Py | M| 712,
that is, Pyy|M;|'/? = |M|'/2 Py, which implies
(8.2) Xoun = Mz Py Ly IMz| 7 Ly 1w (m,n 2 0).

As a passing remark, we note that the above equality holds so long as the finite rank
operator F' = 0 (this observation will be also used in Example 9.1).

Step 2. Now we compute the matrix representation of Lf(lz, p > 1. By Theorem 3.4, we
have

0 Z—(‘) 0 0 o

0 o0 Z—f 0 o

[Lm,]=10 O do Z—; 0

dab
0 0 —%b g
In particular, this yields
wfo ifj =1
PwL ;=4 4o

whu. J; {0 otherwise.

Now we let p > 2. Recall from (4.6) the definition B = a,(Z22)?~"~1g,, for all n =

— bn
an

(p) bp—l bo
,3_ =a_1ﬂ_1=a_1( ——),
p—1 p P 4 dp_1 a0

1,...,p—1, where 8, —%.Sincebozo,wehaveﬁ,(,p):0,1§n<p—l,and
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that is, ,31(,1:)1 = bp— for all p > 2. In particular, since b; = 0, we have ﬁgz) =b; =0.
Also recall from (4.3) the definition d,&") = b, — - b,_p,n > p. Therefore, by (4.7),

an—p

the matrix representation of Lﬁflz is given by

0 0 Z_(Z) 0 0
00 ﬁ 43 0
[LIZM]: “ a(lz) ’
: 0 0 47
a az
and in general, by (4.8), we have
i by— a ]
0o --- 0 ZOI ﬁ 0 0
d(P) a
0o --- 0 0 5—1 ’;—Jlr‘ 0
p _ d(P) a .
®3)  [Lyl=|o0o -0 o o 2 22 4 (p=22)
d(p)bz d(P)
o --- 0 0 0 —% Z—:z
Then
0 0 0 0 T
0 0 0 0
by .
(8.4) L= |% 0 0 0 -l (p =)
a J(p) X
2 % 0 o
o e A ik
a as aas

Step 3. We prove that Xo, = |M|"/? Pyw|M_|'L}} | = 0 for all n > 1. In what fol-

lows, the above matrix representations and the one of | M, |~! in Lemma 8.1 will be used
ai

repeatedly. By (4.2), we have LXJZ fo = %+ f1, and hence

ao
Xo1fo = |Mz|1/2PW|Mz|71LX42f0
a; _
= |Mz|1/2PW(aTl[C11fl + i fo+ ]) =0.
0

On the other hand, if n > 2, then
b

n—1 &n
Lif fo= "= fam1 + =" fu.
0 0

a
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and hence M|~ fo L LI’[,;’Z fo- This implies that Xon = O for all n > 2. Therefore, all
entries in the first row (and hence, also in the first column) of the formal matrix represent-
ation of k(z, w) are zero except the (0, 0)-th entry (which is /). Hence (see also (4.1)),

[y 00 0 0 ]
0 Xn Xi2 X3
kzw)]=]0 X5 Xn X
0 X5 X5 X3

Step 4. Our only interest here is to analyze the finite rank (of rank at most one) operator
Xmm+k>m > 1,k > 2. The matrix representation in (8.4) implies

I - _
(8.5) Lyt fo = d_(bm+k—1fm+k—1 + Amtk fm+k)
0
and hence
_ 1 - - _ _
B.6) Mo LI fo = = Bkt Mz | fontmr + G M7 fog).
0

There are three cases to be considered.
Case I (im + k = r + 2). Note that b, 1 = 0. Then

_ [P -
| M| IL;;;—ZfO = %(ar+2|Mz| 1fr+2),

by (8.6), and thus

ar42

_ ar+2 _
L;\nflz|MZ| 1L1T/;z+2f0 = :—l_OLAm/[lez| 1fr+2 =

ar+3
1 s

ap lar42

By (8.3), we have PWLT,IZ fr42 = PWLT,IZ fm+x = 0 (note that k > 2), and hence
Py Ly |Mz| "' Ly % fo = 0,

that is, X,,, 4, = 0. It is easy to check that the equality also holds for m = 1.
Case Il (m + k —1 > r 4 2). In this case, by, +x—1 = 0 and

- Am+k+1
|Mz| 1fm+k = ‘m—‘fm+k-
Am+k

Again, by (8.3), we have PWLX’,IZ fm+k =0, k > 2, and thus in this case also )Zm’m+k =0.
Again, it is easy to check that the equality holds for m = 1.

Case Il (im + k <r + 2). We again stress that m > 1 and k > 2. It is useful to observe,
by virtue of (8.3) (also see (4.12)), that

b e
ao‘fo if j =m—1,

PwLﬂzsz ‘Z—’(’)‘fo if j =m,
0 otherwise.
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Now set s = m + k — 1. The matrix representation of |M,|~! in Lemma 8.1 implies that

|MZ|_1fS = Clel + C2Sf2 +ee 4+ Cssfs + C-s,s+1fs+1 + et C-s,r+1fr+1-
By (8.3) and the above equality, we have

_ bm— a
8.7) PwLyy M, f; = (cm_l’s MLy s —”’)fo.
aop ao

Next, set t = m + k. Again, the matrix representation of M|~

that

in Lemma 8.1 implies

|Mz|_1ft =cufitceufot o eufr 1 fivr + oo+ Cortt fres

and, again, by (8.3) and the above equality, we have

- bm— a
(8.8) PwLiy, IMo ™" fy = (emo1e =2 + emi =) fo.
ao ao

It is easy to see that the equalities (8.7) and (8.8) also hold for m = 1. The equality in (8.5)
becomes

_ 1 - _ - _
ML fo = — (bl M |7 fs 4 @ M= o),
0

and hence, the one in (8.6) implies

_ I -
PWLTJZ|MZ| IL;\(Z+kf0 = |a |2 [bs(cm—l,s bm—1 + Cm,s am)
0
+ at(cm—l,t bm—1 + Cm.t am)] fo.
This shows that Py Ly |M; |_1L;Z’+kf0 = 0 if and only if
5s(cm—1,s bm—1 + Cm,s am) + at(cm—l,t bm—1 + Cm,t am) = 0.

Step 5. So far all we have proved is that k is tridiagonal if and only if

(8.9) bin—1(Bm-tk—1 Cm—1.m+k—1 + Gm-+k Cm—1.m+k)

+ am(bmsk—1 Cmmtk—1 + Amik Cmm+k) = 0,

forallm > 1,k >2andm + k <r + 2.

If m = 1, then using the fact that by = 0, we have ¢ x4+1 = _&?-]:—k 1. 25k<r+1,
and hence |-
n—
o b;
Cin = (—l)n_z%clz B=n=r+1).
[Ti=s ai
Similarly, if m = 2, then (8.9) together with the assumption that b; = 0 implies that
n—1
P b
(8.10) can = (=1)"3 % c23 (4<n<r+1).

Hi=4 a
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Next, if m = 3, then (8.9) again implies

b2(5k+2 Coky2 + ary3Crka3) + a3(5k+2 C3kt2 +arg3c3pe3) =0 (k<r—1).

On the other hand, by (8.10), we have ¢ k43 = —i_”:rz 2 k+2. and hence

bi42 C3 k42 + k433443 =0,

which implies

bi+2
C3.k+3 = “Zres Grr2 (k<r—1).
+

Now, evidently the recursive situation is exactly the same as that of the proof of The-
orem 5.2 (more specifically, see (5.2)). This completes the proof of the theorem. [

As is clear by now, by virtue of Theorem 5.2, the classification criterion of the above
theorem is also a classification criterion of tridiagonality of standard Aluthge kernels.
Therefore, we have the following corollary.

Corollary 8.4. If H}. is a truncated space, then the Shimorin-Aluthge kernel of M is
tridiagonal if and only if the standard Aluthge kernel of M, is tridiagonal.

9. Final comments and results

First we comment on the assumptions in the definition of truncated kernels (see Section 8).
The main advantage of the truncated space corresponding to a truncated kernel is that
F =0, where F is the finite rank operator as in (7.3). In this case, as already pointed out,
we have Ly = |M|'/2 Ly, |M,|~V/2. This brings a big cut down in computation. On
the other hand, quite curiously, if

b():bl:l or b():l,

and all other b;’s are equal to 0, then the corresponding standard Aluthge kernel of M,
is tridiagonal kernel but the corresponding Shimorin—Aluthge kernel of M is not a tridi-
agonal kernel. Since computations are rather complicated in the presence of F', we only
present the result for the following (convincing) case.

Example 9.1. Let a, = by = by =1 and b,, = 0 for all n > 0 and m > 2. Let
denote the tridiagonal space corresponding to the basis {(a,, + b,z)z" }n>0. By (2.8) and
Theorem 3.4, we have

0 0 0 0 0 7] - _
01 0 00 0
1 0 0 0 O
00 1 00 0
01 0 0 O
[M;] = . [Ly,]=]0 0 -1 1 0 0 ,
0110 0
0O 0 O o011 0
0001 0
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respectively. Hence, applying Ly, L}“‘,Iz = |M,|72 (see Lemma 2.6) to this, we obtain

1 o0 0 0 O

0 1 -1 0 0
IM,|2=]0 -1 2 0 0
00 0 1 0

Suppose o = 3+2*/§ and § = 3_2*@. It is useful to observe that (1 —a)(1 — ) +1 = 0.
Set

a bl _[1 -17"?
b oc|T|-1 2|

where
a= Vo -p)= VA1 -al. b=—l-va+ VA,
¢ = vl —a)+ VB - )
Clearly,
1 0 0 O
_ 0 a b O
M = 0 b ¢ 0
0O 0 0 1[I

From this it follows that | M| fo = fo, and hence the finite rank operator F, as in (7.3), is
given by

Fg = (g, fo)ae, (M} |Mz|M2)"'MZ Mz | fo) =0 (g € Hp).

Then F = 0, and hence (7.2) implies that Ly = |[M;|"/? Ly, |M;|7'/2. By (8.2) (see
also Step 1 in the proof of Theorem 8.3), the coefficient of z”w” of the Shimorin—Aluthge
kernel k is given by X, = |Mz|1/2PWLZ",,z|Mz|_1LX,Z|W, m,n > 0. We compute the
coefficient of zw3 as
PywLa, IM:7 L} fo = PwLy IM:|"'L3; fi

= PwLn, M7 Ly f

= Pyl Mz (= fo + /3)

= PwLpy, (=bfi —cfa+ f3)

= PwLm, (—=bf1)

= —bfo.

But b = %[—\/5 + \/E] # 0, and hence X3 # 0. This implies that the Shimorin—

Aluthge kernel is not tridiagonal. On the other hand, the matrix representation of |M,|™!
implies right away that the standard Aluthge kernel is tridiagonal (see Theorem 5.2).
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Now we return to standard Aluthge kernels of shifts (see the definition following The-
orem 7.7). Let #; € @ (D) be a reproducing kernel Hilbert space. Suppose M, on J
is left-invertible. Then Theorem 7.7 says that M, and M, on H (S O(D)) are unitarily
equivalent, where

k(z,w) i= (|Mz| 7 k(- w), k(- 2)) g, = (IMz| 7Tk (-, w))(2),

for all z, w € D. In the following, as a direct application of Theorem 5.2, we address the
issue of tridiagonal representation of the shift M, on .

Corollary 9.2. In the setting of Theorem 7.7, assume in addition that & = C and ¥,
is a tridiagonal space with respect to the orthonormal basis { fn}n>0, where f,(z) =
(an + byz)z", n > 0. Then Hy, is a tridiagonal space if and only if

_ 5 5.6, _
€00 Co1 & €01 g,q, o1 .-
- _ b
Co1 c11 C12 —ZC12
* __ by = ~ .
UM |U" = —a Co1 C12 c22 €23 -
biby ~ _ by~ ~
aza; €01 2, €12 €23 €33

with respect to the basis { fn}n>o0.

Proof. Recall from Theorem 7.7 that J;; = M|~ 2H and Uh = | M|~ 2h, h € Hy,
defines the intertwining unitary. Set P := U|M;|U*. Then P € B(J) is a positive
operator, and for any z, w € D, we have

(Pk(-,w). k(- 2)) e, = (IM|U*k(-,w), Uk (-, 2)) 5,
= (IM|M |7 2k (- w), | M7k, 2)) g,
= (k(-, w), k(-,2)) 7,

as U(IM |72k (-, w)) = k(-, w). Hence, k(z, w) = (Pk(-,w). k(-.2))s, z.w € D.
The result now follows from Theorem 5.2. [

In particular, if kisa tridiagonal kernel, then for k to be a tridiagonal kernel, it is
necessary (as well as sufficient) that U |M,|U™ is of the form as in the above statement.

We conclude this paper with the following curious observation which stems from the
matrix representations of Shimorin left inverses of shifts on analytic tridiagonal spaces
(see Theorem 3.4). Let J be an analytic tridiagonal space. Recall that Ljs, denotes
the Shimorin left inverse of M. By Lemma 2.6, we have |M;|™2 = Ly, L;[,Iz. From the
matrix representation of Lz, in Theorem 3.4, one can check that the matrix representation
of |M,|™2 satisfies the conclusion of Theorem 5.2. Consequently, the positive definite
scalar kernel

K(z,w) = (IMz|72k(-, w), k(-,2)) g, (z,w € D),

is a tridiagonal kernel. On the other hand, consider

2 ifn=2, 1 ifn =2,
an = ] and b, = .
1 otherwise, 0 otherwise.
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Then the shift M, on the analytic tridiagonal space J{ corresponding to the orthonormal
basis { f }n>0, Where f,(z) = (an + bnz)z", n > 0, is left-invertible. However, a mod-
erate computation reveals that the matrix representation of |M,|~! does not satisfy the
conclusion of Theorem 5.2. In other words, the positive definite scalar kernel

K(z,w) = (IM:["'k(- w). k(- 2)) g, (z,w € D)
is not a tridiagonal kernel.
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