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Stability estimates in inverse problems for the
Schrödinger and wave equations with trapping

Víctor Arnaiz and Colin Guillarmou

Abstract. For a class of Riemannian manifolds with boundary that includes all neg-
atively curved manifolds with strictly convex boundary, we establish Hölder type
stability estimates in the geometric inverse problem of determining the electric poten-
tial or the conformal factor from the Dirichlet-to-Neumann map associated with the
Schrödinger equation and the wave equation. The novelty in this result lies in the
fact that we allow some geodesics to be trapped inside the manifold and have infinite
length.

Dedicated to the memory of Slava Kurylev.

1. Introduction

In this article we study a geometric inverse problem associated with the anisotropic Schrö-
dinger equation and the wave equation on a compact Riemannian manifold .M; g/ with
boundary @M .

Let �g be the non-negative Laplace–Beltrami operator associated with the metric g,
we consider two initial-value-problems. First, we consider the Schrödinger equation for
finite time of propagation and with Dirichlet conditions:

(1.1)

8<: .i@t ��g C q.x//u.t; x/ D 0; in .t; x/ 2 I �M;
u.0; �/ D 0; in x 2M;
u.t; x/ D f .t; x/; on .t; x/ 2 I � @M;

where I D .0; T / for T > 0 fixed. Secondly, we consider the wave equation for infinite
time of propagation and with Dirichlet conditions:

(1.2)

8<: .@2t C�g C q.x//u.t; x/ D 0; in .t; x/ 2 I �M;
u.0; �/ D 0; @tu.0; �/ D 0; in x 2M;
u.t; x/ D f .t; x/; on .t; x/ 2 I � @M;

where I D .0; T / and T can be equal toC1.
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We aim at studying the problem of the stable recovery of the potential q, or alternat-
ively conformal factor in a conformal class of a metric g, from the Dirichlet-to-Neumann
map associated with (1.1) and (1.2). The Dirichlet-to-Neumann map (DN map in short) is
the operator defined, for each T <1, by

ƒSg;q W H
1
0 .Œ0; T / � @M/! L2..0; T / � @M/; ƒSg;qf WD �@nu

S
j.0;T /�@M ;

ƒWg;q W H
1
0 .Œ0; T / � @M/! L2..0; T / � @M/; ƒWg;qf WD �@nu

W
j.0;T /�@M ;

where uS solves (1.1), uW solves (1.2), and @n is the unit inward normal derivative at @M .
Here H 1

0 .Œ0; T / � @M/ denotes the closed subspace of functions in H 1.Œ0; T / � @M/

vanishing at t D 0. For the wave equation, we shall need to consider the case T D1, and
we will show that there is �0 � 0 depending only on kqkL1 so that for all � � �0,

ƒWg;q W e
�tH 1

0 .RC � @M/! e�tL2.RC � @M/

is bounded.
By a stability estimate, we mean that there is a constant C > 0, possibly depending on

some a priori bound on kqj kH s.M/ for some s � 0, such that an estimate of the following
form holds:

kq1 � q2kL2.M/ � CF.kƒ
S=W
g;q1
�ƒS=Wg;q2

k�;�/;

where the used norm for the Schrödinger/wave DN map are, respectively,

k � k� D k � kH1.I�@M/!L2.I�@M/ and k � k�;� D k � ke�tH1
0 .I�@M/!e�tL2.I�@M/

and F is a continuous function satisfying F.0/ D 0; we shall write simply k � k� for the
wave case when I D Œ0; T � with T <1, and � D 0. We say that the stability is of Hölder
type if F.x/ D xˇ for some ˇ > 0, and it is said of log-type if F.x/ D log.1=x/�ˇ for
some ˇ >0. More generally, one can ask if there is a stability for the problem of recovering
the metric, i.e.,

kg1 �  
�g2kL2.M/ � CF.kƒ

S=W
g1;0
�ƒ

S=W
g2;0
k�/

for some diffeomorphism  (depending on g1 and g2). Here we have used the L2 norm
onM to measure q1 � q2, but one could also ask the same question for Sobolev or Hölder
norms. Assuming a priori bounds on q in some large enough Sobolev spaces H s0.M/

allows to deduce (by interpolation) bounds on kq1 � q2kH s for s < s0 if one has bounds
on kq1 � q2kL2 (and similarly for g1 � g2).

The problem of determination of the metric g or the potential q fromƒWg;q was solved
in general by Belishev–Kurylev [3] (see also [10]), but the stability estimates in the general
setting appeared only recently in the work of Burago–Ivanov–Lassas–Lu [6] and are of
log log type (i.e., F.x/D j log j logxj j�ˇ ) for the case with no potential. When gD geucl is
the Euclidean metric on a domainM �Rn, a Hölder type stability was proved by Sun [19]
and Alessandrini–Sun–Sylvester [1] for the determination of the potential q fromƒWgeucl;q

.
In the case of non-Euclidean metrics, but close to the Euclidean metric on a ball in Rn,
Stefanov–Uhlmann [16] obtained Hölder estimates for the metric recovery (with no poten-
tial involved), and they extended this result in [17] to Riemannian metrics close to a simple
metric g0 with injective X-ray transform on symmetric 2-tensors. Such simple metrics are
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dense among simple metrics. We recall that simple metrics are Riemannian metrics with
no conjugate points on a ball B in Rn with strictly convex boundary; in particular, all
geodesics in B for such a metric have finite length with endpoints on the boundary @B .
If g0 is a fixed simple metric, Bellassoued and Dos Santos Ferreira [4, 5] proved Hölder
stability of the inverse problem for both kƒSg0;q1 � ƒ

S
g0;q2
k� and kƒWg0;q1 � ƒ

W
g0;q2
k�.

When g is close to a fixed simple metric g0 with injective X-ray transform on 2-tensors,
Montalto [14] extended the previous result to the recovery of the pair .g; q/ (and a mag-
netic potential term in addition) in a Hölder stable way. For non-simple metrics, we are
aware of only two results showing strong stability: the first by Bao–Zhang [2], who prove
for a non-trapping metric g D c.x/2geucl, conformal to the Euclidean metric, and sat-
isfying certain assumptions on their conjugate points, that if kƒW

c2geucl
� ƒW

Qc2geucl
k� is

small enough then the conformal factors agree c D Qc; the second, by Stefanov–Uhlmann–
Vasy [18], is of the same kind but under the assumption that geucl is replaced by a metric g0
so that the manifold .M; g0/ can be foliated by strictly convex hypersurfaces. In all these
results, the time interval I D .0; T / can be taken with T > 0 finite but large enough for
the wave case (depending on the diameter of the domain), while for the Schrödinger case
it can be taken finite and small using infinite speed of propagation.

All these mentioned results, where Hölder stability results hold, assume no trapped
geodesic rays for the Riemannian manifold .M; g/, i.e., geodesics staying inside the
interior M ı of M for infinite time. Existence of trapped geodesics means that some
regions of the phase space are not accessible from the boundary by geodesic rays, and
some waves can possibly stay (microlocally) trapped for a long time near these trapped
rays, so that a part of the information can not be read off microlocally from the DN map
at the boundary. It is thus an open question to understand how stable is the recovery of
the coefficients of the wave equation or the Schrödinger equation when the metric is not
simple. The difficulty to obtain such Hölder estimates lies in the fact that one usually
reduces the inverse problem for the DN map to some X-ray tomography problem using
wave packets or WKB solutions of the wave/Schrödinger equations that concentrate near
single geodesics going from a point of the boundary to another point. It is likely that
under general assumptions, no Hölder stability estimates hold but log stability estimates
do; we mention the recent work of Koch–Rüland–Salo [11] about this question. Our pur-
pose in this work is to address this stability question in a family of cases where the trapped
set is sufficiently filamentary, the typical example being that of a non-simply connected
Riemannian metric with negative curvature and strictly convex boundary.

Our main geometric assumptions are the hyperbolicity of the trapped set for the geo-
desic flow and the absence of conjugate points. We notice that these two assumptions are
satisfied if .M; g/ is negatively curved. Let us recall the precise definition of hyperbolic
trapped set. Let 't WSM ! SM be the geodesic flow for t 2 R, where SM D ¹.x; v/ 2
TM W jvjg.x/ D 1º is the unit tangent bundle. We call, for every z D .x; v/ 2 SM , the
escape time of SM in positive (C) and negative (�) times,

�C.z/ WD sup ¹t � 0 j 8s < t; 's.z/ 2 SM ıº 2 Œ0;C1�;
��.z/ WD inf ¹t � 0 j 8s > t; 's.z/ 2 SM ıº 2 Œ�1; 0�:

In other words,˙�˙.z/ is the time needed for the geodesic .'˙t .z//jt�0 to reach @˙SM
[@0SM .
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The incoming (�) and outgoing (C) tails in SM are defined by

�� D ¹z 2 SM j �˙.z/ D ˙1º;

and the trapped set for the flow on SM is the set K WD �C \ ��. If @M is strictly convex
for .M; g/ (i.e., the second fundamental form of @M is positive), the trapped set K is a
compact flow-invariant subset of the interior SM ı of SM . We say that the trapped set
K � SM is a hyperbolic set if there exist C > 0 and � > 0 so that there is a continuous
flow-invariant splitting over K,

(1.3) TK.SM/ D RX ˚Eu ˚Es;

where X is the geodesic vector field on SM , and Es , Eu are vector subspaces satisfying
for all z 2 K,

kd't .z/wk � Ce��tkwk; 8t > 0; 8w 2 Es.z/;(1.4)

kd't .z/wk � Ce��jt jkwk; 8t < 0; 8w 2 Eu.z/;(1.5)

with respect to any fixed metric on SM . The notion of conjugate points can be defined as
follows. If �0W SM ! M is the projection and V WD ker d�0 � T .SM/ is the vertical
bundle of the fibration, we say that there is no conjugate point if d't .V/ \ V D ¹0º for
all t 6D 0, where ¹0º denotes the 0-section of T .SM/.

1.1. The case of the Schrödinger equation

The DN map associated with (1.1) is bounded (see Theorem 1 in [4]) as an operator from
H 1..0; T / � @M/ to L2..0; T / � @M/. Our first goal is to a obtain a Hölder stability
estimate of the form

(1.6) kq1 � q2kL2.M/ � Ckƒg;q1 �ƒg;q2k
ˇ
� ;

for some ˇ > 0 for the Schrödinger equation on a bounded time interval .0; T /. Here we
assume that q1 and q2 belong to the family of admissible electrical potentials,

(1.7) Q.N0/ WD ¹q 2 W
1;1.M/ j kqkW 1;1.M/ � N0º;

with N0 > 0 fixed, and that q1 and q2 coincide on the boundary @M . It is known that the
estimate (1.6) holds on simple manifolds [4] with ˇD 1=8. Our aim is to extend this result
to the case of hyperbolic trapped set of the geodesic flow and no conjugate points.

Our first result gives the stable determination of the potential q from the DN map.

Theorem 1. Let .M; g/ be a compact Riemannian manifold of dimension d � 2 with
strictly convex boundary. Let T;N0 > 0 fixed. Assume that the trapped setK is hyperbolic
and there are no conjugate points. Then, there exists a constant C D C.M; g; T;N0/ > 0
such that, for any q1; q2 2 Q.N0/ with q1 D q2 on @M ,

(1.8) kq1 � q2kL2.M/ � Ckƒ
S
g;q1
�ƒSg;q2k

ˇ
� ;

for some ˇ > 0 depending only on .M; g/.
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We notice from our proof that the constant ˇ can be expressed in terms of the volume
entropy and dynamical quantities on the geodesic flow of .M; g/, more precisely, the
pressure of the unstable Jacobian of the geodesic flow on the trapped set and the maximal
expansion rate of the flow.

In order to obtain a stability estimate for the conformal factor of the metric, we con-
sider the family of admissible conformal factors given by

(1.9) C .N0; k; "/ WD ¹c 2 C1.M/ j c > 0 in M; k1� ckC0.M/ � "; kckCk.M/ � N0º:

Our second result gives the stable determination of the conformal factor.

Theorem 2. Let .M; g/ be a compact Riemannian manifold of dimension d � 2 with
strictly convex boundary, hyperbolic trapped setK and no conjugate points. Let T;N0 > 0
be fixed. Then, there exist k�1 depending only on dim.M/, ">0 depending on .M;g;N0/
and a constant C D C.M; g; T; N0/ > 0 such that, for any c 2 C .N0; k; "/ with c D 1
near @M ,

(1.10) k1 � ckL2.M/ � Ckƒ
S
g;0 �ƒ

S
cg;0k

ˇ
� ;

for some ˇ > 0 depending only on .M; g/.

As far as we know, these two results are the first Hölder stability results for the Schrö-
dinger equation when the principal symbol of the operator has trapped bicharacteristic
rays.

1.2. The case of the wave equation

The DN map associated with (1.2) with I D .0; T / is bounded as an operator mapping
H 1
0 ..0;T /� @M/ toL2..0;T /� @M/ (see [12,13]). In the case I D .0;1/, it is necessary

to introduce a exponential weight in the time as T ! C1 to obtain boundedness of
the DN map. For our result, due to the fact that some geodesics have infinite length (those
that are trapped), we need to consider the wave equation for all positive time.

For k; ` 2 N0, let � > 0. We define the weighted Sobolev space e�tH k.I IH `.M//

as the space of functions f 2 H k.I IH `.M//, with finite norm

kf ke�tHk.I IH `.M// WD

kX
jD0

� Z 1
0

e�2�tk@
j
t f .t; �/k

2
H `.M/

dt
�1=2

:

In particular, we denote e�tH k.I � M/ WD e�tH k.I IH k.M//. Similarly, we define
the weighted Sobolev spaces e�tH k.I IH `.@M// on the boundary @M , and we denote
e�tH k.I � @M/ WD e�tH k.I IH k.@M//.

The DN map associated with (1.2) is continuous from e�tH 1
0 .I � @M/ to e�tL2.I �

@M/ for every � � �0: this follows from Theorems 6.10 and 7.1 in [7], and can be checked
that �0 � 0 depends only on kqkL1 , as we show in Lemma 4.3 and the comment that
follows. We denote

(1.11) kƒWg;qk�;� WD kƒ
W
g;qkL.e�tH1

0 .I�@M/Ie�tL2.I�@M//:

We next state our main result on the stable determination of the electric potential from
the DN map.
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Theorem 3. Let .M; g/ be a compact Riemannian manifold of dimension n � 2 with
strictly convex boundary, hyperbolic trapped set and no conjugate points. Let N0 > 0 be
fixed. There is �0 depending only on N0 such that for every � > �0, there exists C > 0

such that, for any q1; q2 2 Q.N0/ with q1 D q2 on @M ,

(1.12) kq1 � q2kL2.M/ � Ckƒ
W
g;q1
�ƒWg;q2k

ˇ
�;� ;

for some ˇ > 0 depending only on .M; g/ and �.

We finally state our main result on the stable recovery of the conformal factor.

Theorem 4. Let .M; g/ be a compact Riemannian manifold of dimension d � 2 with
strictly convex boundary, hyperbolic trapped set and no conjugate points. Let N0 > 0

be fixed. Then, there exist �0 > 0, k � 1 depending only on d , and " > 0 depending on
.M; g; N0/, such that for all � > �0, there is C depending on .M; g; N0; �/ so that, for
any c 2 C .N0; k; "/ with c D 1 near @M ,

(1.13) k1 � ckL2.M/ � Ckƒ
W
g;0 �ƒ

W
cg;0k

ˇ
�;� ;

for some ˇ > 0 depending only on .M; g/ and �.

1.3. Method of proof

To obtain the stability results, we use the general method of [4,5,17] of reducing the prob-
lem to some estimate on X-ray transform of q1 � q2. We however need to perform several
important modifications due to trapping. Ultimately, we rely on some results of the second
author [9] on the injectivity and stability estimates of the X-ray transform for the class of
manifold under study, but it is not a simple reduction to that problem, as we now explain.
We first follow the well-known route of constructing WKB solutions u of the Schrödin-
ger/wave equation concentrating on each geodesic  of length less or equal to T0 > 0 with
endpoints on the boundary. We use the universal covering of M to construct u since M
is not assumed simply connected. We can then bound the integral of q1 � q2 along these
geodesics by a constant times kƒS=Wg;q1 � ƒ

S=W
g;q2 k�;� . The non-simple metric assumption

complicates that step compared to the simple metric case, due to the fact that geodesics
self intersect. In the Schrödinger equation, using the infinite speed of propagation, we can
take T0 as large as we want by taking WKB solutions with frequencies �� T0=T , while
for the wave equation we need to know the DN map on time Œ0;1/ to be able to let T0 be
arbitrarily large. We then use some estimate on the volume of the set of geodesics stay-
ing in M ı for time � T0: this volume decays exponentially in T0. We deduce that the
transform I �0 I0.q1 � q2/ of q WD q1 � q2 can be controled in L2 by

(1.14) C eC0T0 kƒS=Wg;q1
�ƒS=Wg;q2

k
1=4
�;� kqk

1=2

W 1;1 C C e
�"T0 kqkL1

for some C0 > 0;C > 0; " > 0 independent of T0. Here I0 WL1.M/! L2loc.@SM n ��/

is the X-ray transform defined by

I0q.z/ WD

Z �C.z/

0

q.�0.'t .z/// dt;
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that extends continuously to L1.M/ ! L2.@SM/ by [9]; here, �0 W SM ! M is the
projection on the base. For simple metrics, it is well known (see [15]) that the normal
operator…0 WD I

�
0 I0 is an elliptic pseudo-differential operator of order�1, thus satisfying

k…0f kH s �Cskf kH s�1 for all s � 0 andCs > 0 depending on s. In [9], using anisotropic
Sobolev spaces an Fredholm theory for vector fields generating Axiom A flows [8], it is
shown that the same properties hold on…0 for metrics with no conjugate points and hyper-
bolic trapping. We can then bound the norm of kq1 � q2k by a constant times some norm
k…0.q1 � q2/k, which in turn is bounded by (1.14). Taking T0 large enough (depending
on kƒS=Wg;q1 � ƒ

S=W
g;q2 k�;�) and using interpolation estimates, we can then show that the

second term of (1.14) can be absorbed into the first term, and we obtain the desired sta-
bility bound. The case of the recovery of the conformal factor is addressed using a similar
type of arguments.

We make a final comment about the assumption q1 D q2 on @M (respectively, c D 1
near @M ): this assumption could be removed by standard arguments provided the poten-
tials qi (respectively, for c) have uniform bounds in Ck.M/ for k large enough. Since this
amounts to construct geometrical optics solutions concentrated on very short geodesics
almost tangent to @M , the proof is basically the same as in Section 3 of [17] and The-
orem 2 in [14] in the case of the wave equation, and a slight variation in the case of the
Schrödinger equation. We write this short argument in an Appendix, where qj 2 C4.M/

(respectively, qj 2 C8.M/) is sufficient for the wave (respectively, Schrödinger) equation.

Notations. In what follows, we shall use the notational convention of writing C > 0 for
constants appearing in upper/lower bounds, where these constants may change from line
to line, and we shall indicate its dependence on the parameters of our problem when this
is important.

2. Geometric setting and dynamical properties of the geodesic flow

In this section we recall, for a Riemannian manifold .M;g/ with strictly convex boundary,
some notions about the geometry of the unit tangent bundle SM WD ¹.x;v/2TM jgx.v;v/
D 1º and the dynamics of the geodesic flow on SM . Let

�0 W SM !M; �0.x; v/ D x;

be the natural projection on the base. We will denote by X the geodesic vector field on
SM defined byXf .x; v/D @tf ..x;v/.t/; P.x;v/.t//jtD0, where .x;v/.t/ is the unit speed
geodesic with initial condition ..x;v/.0/; P.x;v/.0//D .x;v/. We will denote by 't .x;v/D
..x;v/.t/; P.x;v/.t// the geodesic flow, which in turn is the flow of the vector field X .

The incoming (�) and outgoing (C) boundaries of the unit tangent bundle of M are
defined by

@˙SM WD ¹.x; v/ 2 SM j x 2 @M; �gx.v; n/ > 0º;

where n is the inward pointing unit normal vector field to @M . For any .x; v/ 2 SM ,
define the forward and backward escaping times by

�C.x; v/ D sup ¹t � 0 j't .x; v/ 2 @SM or 8s 2 .0; t/; 's.x; v/ 2 SM ıº 2 Œ0;C1�;
��.x; v/ WD ��C.x;�v/ 2 Œ�1; 0�;
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where �C satisfiesX�CD�1 in SM with �Cj@CSM D 0. For .x;v/2 @�SM , the geodesic
.x;v/ with initial point x and tangent vector v either has infinite length (i.e., �C.x; v/ D
C1) or it intersects @M at a boundary point x0 2 @M with tangent vector v0 with .x0; v0/2
@CSM . The incoming (�) and outgoing (C) tails in SM are defined by

�� D ¹z 2 SM j �˙.z/ D ˙1º;

and the trapped set for the flow on SM is the set

K WD �C \ ��:

This is a compact subset of SM ı that is flow invariant ([9]). We define the subset TC.t/�

SM given by the points .x; v/ 2 SM for which the orbit of the geodesic flow issued from
.x; v/ remains in SM after time t :

TC.t/ WD ¹.x; v/ 2 SM j �C.x; v/ � tº:

We define the non-escaping mass function V.t/ as

V.t/ WD Vol.TC.t//;

where Vol is the volume with respect to the Liouville measure � on SM . Let us also
denote

(2.1) T @SM
C .t/ WD TC.t/ \ @�SM:

The escape rate Q � 0 measures the exponential rate of decay of V.t/. It is given by

(2.2) Q WD lim sup
t!C1

1

t
logV.t/:

By Proposition 2.4 in [9], if the trapped set K is hyperbolic, then Q D Pr.�Ju/ is the
topological pressure of (minus) the unstable Jacobian Ju WD @t det.d't jEu/jtD0 of the
geodesic flow on the trapped set K, and it satisfies

Q D Pr.�Ju/ < 0:

Let d�n be the measure on @SM defined by

d�n.x; v/ WD jgx.v; n/j ��jd�.x; v/j;

where jd�j is the Liouville density, and � W @SM ! SM is the inclusion map. When
Vol.�� [ �C/ D 0, then Vol@SM .�˙ \ @˙SM/ D 0 and one can use Santaló’s formula
([9], Section 2.5) to integrate functions in SM : for all f 2 L1.SM/,

(2.3)
Z
SM

f d� D
Z
@�SMn��

Z �C.x;v/

0

f ı 't .x; v/ dt d�n.x; v/:

It is convenient to view .M; g/ as a strictly convex region of a larger smooth manifold
.Me; ge/ with strictly convex boundary so that each geodesic in Me nM has finite length
with endpoints on @Me [ @M . The existence of such extension is proved in [9], Section 2.1
and Lemma 2.3. Moreover, if .M; g/ has hyperbolic trapped set and no conjugate points,
one can choose .Me; ge/ with the same properties as .M; g/, as is shown in Lemma 2.3
of [9]. The vector field X and the flow 't are extended in SMe and we define the function
�e
˙

on SMe just as we did for �C on SM . The trapped set of the flow in SMe is still K �
SM ı, the incoming tail �e

˙
on SMe is �e

˙
D[t�0'˙t .�˙/\ SMe and �e

˙
\ SM D �˙.
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3. The X-ray transform

In this section we recall from [9] the main properties of the X-ray transform acting on
functions in our geometric setting. Let .M;g/ be a smooth compact Riemannian manifold
with strictly convex boundary and let Me be a small extension with the same property.

The X-ray transform I is defined as the map

I W C1c .SM n .�� [�C//! C1c .@�SM n��/; If .x;v/ WD

Z �C.x;v/

0

f ı 't .x;v/dt:

The X-ray transform can be extended to more general spaces. If Vol.K/ D 0, then San-
taló’s formula implies that the operator I extends as a bounded operator

I W L1.SM/! L1.@�SM I d�n/:

When moreover the escape rateQ of (2.2) satisfiesQ < 0 then, by Lemma 5.1 in [9], one
has that

(3.1) 8p > 2; I W Lp.SM/! L2.@�SM; d�n/:

For our purposes to extend the results of [4], it is more convenient to deal with the X-ray
transform acting on functions in C1.M/. The projection �0 W SMe ! Me on the base
induces a pullback map

��0 W C
1
c .M

ı
e /! C1c .SM

ı
e /; ��0 f WD f ı �0;

and a pushforward map �0� defined by duality:

�0� W D
0.SM ıe /! D 0.M ıe /; h�0�u; f i WD hu; �

�
0 f i:

When acting on L1 functions, the pushforward �0� acts as

�0�f .x/ WD

Z
SxM

f .x; v/ d!x.v/:

where d!x is the measure on SxM induced by g. The pullback by �0 gives a bounded
operator ��0 WL

p.M/! Lp.SM/ for all p 2 .1;1/. We define the X-ray transform on
functions by

I0 D I�
�
0 :

If Q < 0, then I0 extends as a bounded operator

(3.2) I0 WD I�
�
0 W L

p.M/! L2.@�SM; d�n/;

for any p >2. The adjoint I �0 WL
2.@�SM;d�n/!Lp

0

.M/ is bounded for 1=p0C1=pD1,
and it is given precisely by I �0 D �0�I

�. The operator …0 is defined as the bounded self-
adjoint operator

…0 W I
�
0 I0 D �0�I

�I��0 W L
p.M/! Lp

0

.M/;
1

p
C
1

p0
D 1; p > 2:

Similarly, we define the extended X-ray transform I e0 associated with Me , and

(3.3) …e
0 D I

e
0
�
I e0 W L

p.M/! Lp
0

.M/;
1

p
C
1

p0
D 1; p > 2:
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Lemma 3.1 (Proposition 5.7 in [9]). Assume that .M; g/ has strictly convex boundary,
no conjugate points and hyperbolic trapped set, and let .Me; ge/ be an extension with the
same properties, and with the same trapped set. The operator …0, respectively …e

0, is an
injective elliptic pseudo-differential operator of order �1 in M ı, respectively M ıe , with
principal symbol �.…e

0/.x; �/ D Cd j�j
�1
g for some constant Cd > 0 depending only on

d D dimM . For each k 2 Z and each compact subset � � M ıe with smooth boundary,
there exist C1; C2 > 0 such that for all f 2 C1c .�/,

(3.4) C1 kf kHk.Me/
� k…e

0f kHkC1.Me/
� C2 kf kHk.Me/

:

Moreover, a direct calculation yields, for z 62 �eC [ �
e
�,

I e
�
.I e0f /.z/ D

Z �eC.z/

�e�.z/

��0 f .'t .z// dt; I �.I0f /.z/ D

Z �C.z/

��.z/

��0 f .'t .z// dt;

and thus if f 2 Lp.Me/ satisfies suppf �M , we have I e�.I e0f / D I
�.I0f / on SM n

.�C [ ��/. In particular, this implies that

(3.5) .…e
0f /jM D …0f:

Since pseudo-differential operators of order �1 map W s;p
comp.M

ı
e / to W sC1;p

loc .M ıe / bound-
edly for all .s; p/ 2 R � .1;1/ (see Theorem 0.11.A in [20]), (3.5) implies that

(3.6)
f 2 W

s;p
0 .M/ H) …0f 2 W

sC1;p.M/;

f 2 W
s;p
0 .Me/ H) …e

0f 2 W
sC1;p.Me/;

where W s;p.M/ denotes the Sobolev space (with s derivatives in Lp) on the manifold
with boundary M , W s;p

0 .M/ is the closure of C1c .M
ı/ for the W s;p.M/ topology, and

similarly on Me .

4. Geometrical optics solutions

We will assume along this section that .M; g/ is a smooth compact Riemannian manifold
with boundary such that
• the boundary @M is strictly convex,
• the metric g has no pairs of conjugate points,
• the trapped set K is hyperbolic.
We shall take an extension .Me; ge/ of .M;g/ with the same properties, and for notational
simplicity, we will write g instead of ge for the extended metric on Me .

4.1. Geometrical optics for the Schrödinger equation

In this section we generalize the geometrical optics solutions given in Section 4 of [4] for
simple manifolds to our geometric setting. Since the map exp�1x .M/!M , with x 2M ,
is no longer a diffeomorphism, but the exponential map behaves well on the universal
cover of M , we then make the construction in the universal cover of M , periodize it with
respect to the fundamental group �1.M/, and then project it down to M .
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We first recall the following.

Lemma 4.1 (Lemma 3.2 and equation (3.5) in [4]). Let T > 0 and q 2 L1.M/. Assume
that F 2 W 1;1.Œ0; T �IL2.M// is such that F.0; �/ � 0. Then the unique solution v to8<: .i@t ��g C q.x//v.t; x/ D F.t; x/ in .0; T / �M;

v.0; x/ D 0 in M;
v.t; x/ D 0 on .0; T / � @M;

satisfies
v 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M/ \H 1

0 .M//:

In addition, there is a C > 0 depending on .M; g/; T and kqkL1 such that for any � > 0
small and t 2 Œ0; T �,

kv.t; �/kL2.M/ � C

Z T

0

kF.s; �/kL2.M/ ds;(4.1)

kv.t; �/kH1
0 .M/ � C

�
�k@tF kL1.Œ0;T �IL2.M// C �

�1
kF kL1.Œ0;T �IL2.M//

�
:(4.2)

Let us consider extensionsM bMe bMee of the manifoldM and extend the metric g
smoothly in a way that .Me; ge/ has the same properties as .M; g/. The potentials q1
and q2 may also be extended to Mee , and their W 1;1.M/ norms may be bounded by N0.
Since q1 and q2 coincide on the boundary, their extension outside M can be taken so that
q1 D q2 in Mee nM .

We first recall the construction, following [4], Section 4, of a geometric optics solution
for simple manifolds and we will explain how to extend it to our setting. If .M; g/ is a
simple manifold, a geometric optics solution u 2 C1.Œ0;T �IL2.M//\C.Œ0;T �IH 2.M//

for the Schrödinger equation

(4.3)
.i@t ��g C q.x//u D 0; in .0; T / �M;

u.0; x/ D 0;

can be constructed in terms of a function  2 C2.M/ satisfying the eikonal equation

jr
g .x/jg D 1; 8x 2M;

and a function a 2 H 1.RIH 2.M// solving the transport equation

(4.4)
@a

@t
C da.rg / �

1

2
.�g y/a D 0; 8t 2 R; x 2M;

with a.t; x/ D 0; 8x 2M; and t � 0; or t � T0;

for some T0 > 0 sufficiently large (which in the simple case is taken to satisfy T0 > 1C
Diam.Me/, where Diam.Me/ is the g-diameter of Me), and da is the exterior derivative
of a. More precisely, if @Me is chosen close enough to @M so that .Me; g/ is a simple
manifold, one can define, for any fixed y 2 @Me ,

 .x/ D  y.x/ WD dg.y; x/; x 2Me:
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Using geodesic polar coordinates we can write each x 2Me as

x D expy.r.x/v.x//; r.x/ D dg.y; x/; v.x/ 2 SyMe

where expy W TMe ! Me denotes the exponential map at y for the metric g. One defines
a solution to the transport equation a 2 H 1.RIH 2.M// in polar coordinates as

a.t; x/ WD ˛�1=4 .r.x/; v.x// �.t � r.x// b.y; v.x//;

where ˛D ˛.r;v/D jdet.gij .r; v//j denotes the square of the volume element in geodesic
polar coordinates, � 2 C1c .R/ satisfies supp� � .0; "0/ for "0 > 0 small, and b is a fixed
initial data in H 2.@�SMe/.

A geometrical optics solution u 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M// for (4.3)
is then defined by u.t; x/ D G�.t; x/C v�.t; x/, where

G�.t; x/ WD a.2�t; x/ e
i�. y.x/��t/;

and the remainder v� satisfies (see Lemma 4.1 in [4])

v�.t; x/ D 0; 8.t; x/ 2 .0; T / � @M;

v�.0; x/ D 0:

Moreover, there exists C > 0 such that, for all � � T0=.2T /,

kv�.t; �/kHk.M/ � C�
k�1
kakH1.Œ0;T0�IH2.M//; k D 0; 1:

The constant C depends only on T and .M; g/. One can also construct a geometrical
optics solution u.t; x/ if the initial condition u.0; x/D 0 is replaced by the final condition
u.T; x/ D 0 provided � � T0=2T ; in this case, v� satisfies v�.T; x/ D 0.

In our setting, that is, assuming that the trapped set K is hyperbolic and that g has
no conjugate points, the construction is a bit more subtle, since the exponential map
expy W exp�1y .M/!M is no longer a diffeomorphism. We work on the universal cover zM
of M , which is a non-compact manifold with boundary (the boundary has infinitely many
connected components), whose interior is diffeomorphic to a ball. One has

M D zM=�1.M/;

where the fundamental group �1.M/ is identified with the group of deck transformations
on zM , that is, the set of homeomorphisms f W zM ! zM such that � ı f D � , with the com-
position, where � W zM !M is the covering map. The metric g lifts to a smooth metric Qg
on zM satisfying � Qg D Qg for all  2 �1.M/. More generally, we denote by z� the lifted
objects to the universal cover. If .M; g/ is assumed to have no pair of conjugate points, zg
does not have pairs of conjugate points. Thus, for each y 2 zM the exponential map

eexpy W Uy � T zM ! zM

is a diffeomorphism for some simply connected set Uy . Similarly, we define the universal
cover zMe ofMe , and note that �1.M/D �1.Me/ so that each deck transformation  of zM
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extends naturally as a deck transformation on zMe . Let us fix y 2 @Me and lift this point
to Qy 2 @ zMe . We can choose a fundamental domain F � zM , so that M D F =�1.M/ via
identification of the points of the boundary of F by the action of the elements of �1.M/.
Note that F has two types of boundary components, the boundary components @iF in the
interior zM ı of zM which are identified by elements of �1.M/, and the boundary compon-
ents F \��1.@M/. Similarly, we choose a fundamental domain Fe for �1.Me/'�1.M/

in zMe extending F , and denote by @iFe the interior boundary of Fe . We can freely assume
that Qy 2 Fe does not belong to the closure of @iFe . Recall the definition of the volume
entropy of M :

(4.5) h.M; g/ WD lim sup
R!1

1

R
log Volg.Bg. QyIR//;

where Bg. QyIR/ � zMg is the Qg-geodesic ball centered at Qy of radius R. Since M is com-
pact, one has h.M; g/ <1 (for instance, by the Bishop–Gromov comparison theorem)
and h.M; g/ is not depending on the choice of Qy.

We define on zM the solution to the “lifted” eikonal equation jr Qg Qy j D 1 given by

 Qy. Qx/ WD dzg. Qy; Qx/; Qx 2 zM;

where d Qg denotes the distance associated to the lifted metric Qg on zM . Notice that  Qy is
well defined and smooth outside Qx D Qy since Qg has no conjugate points (for any Qx 2 zM ,
there is a unique geodesic joining Qy with Qx and realizing d Qg. Qy; Qx/). Let

@�S Qy zMe WD ¹v 2 S Qy zMe j hv; �. Qy/i > 0º:

Using geodesic polar coordinates on zM , we can write each x 2 zMe as

x Deexp Qy.r.x/v.x//; r.x/ D  Qy.x/; v.x/ 2 S Qy zMe:

Fix T0 > 1 C Diam.Me/. For any given b 2 H 2.@�SMe/ with bj
T @SM
C .T0/

D 0 (recall

definition (2.1)), we denote by Qb its lift to @�SFe . Let � 2 C1c .R/ with supp� � .0; "0/,
for "0 > 0 small. We define

(4.6) a.t; x/ WD ˛�1=4 .r.x/; v.x// �.t � r.x// Qb. Qy; v.x//;

where ˛.r; v/ D j det.gij .r; v//j denotes the square of the volume element of zMe in
geodesic polar coordinates. We introduce the norm kak� on functions on Œ0; T0� � zM
given by

kak� WD kakH1.Œ0;T0�IH2. zM//:

For any � > 0, we set

(4.7) G�.t; x/ WD
X

2�1.M/

a.2�t; .x// ei�. Qy..x//��t/; t 2 .0; T /; x 2 zMe;

where .x/ denotes the lift of the point �.x/ 2Me to the fundamental domain .Fe/.
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Notice that this definition does not depend on the choice of the lift Qy but on the base
point y, and since supp.a.2�t; �// is contained in a fixed compact set of zMe for t 2 Œ0; T �,
the sum in  2 �1.M/ is locally finite. Notice also that the condition T0 > 1CDiam.Me/

together with bj
T @SM
C .T0/

D 0 ensures thatG�.t; x/ vanishes on .0;T /� @M provided that
2�T � T0, since the solution to the transport equation crosses the whole manifold Me in
time T . Moreover, as G�.t; x/ D G�.t; x/, the function G� descends to Me (and will
also be denoted G� downstair), and satisfies G� 2 H 1.Œ0; T �IH 2.Me//.

Lemma 4.2. Let q 2 L1.M/. For T0 > 0 and T > 0, the Schrödinger equation

.i@t ��g C q.x//u D 0; in .0; T / �M;

u.0; �/ D 0; in M;

has a solution of the form

u.t; x/ D G�.t; x/C v�.t; x/;

with G� given by (4.7), such that

u 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M//;

where v�.t; x/ satisfies, for � � T0=.2T /,

v�.t; x/ D 0; 8.t; x/ 2 .0; T / � @M;

v�.0; x/ D 0; x 2M:

Furthermore, for each " > 0 there exists C > 0 depending only on .";M; g; kqkL1 ; T /,
but not on T0 or y, such that, for any � � T0=.2T /, the following estimate holds true:

(4.8) kv�.t; �/kHk.M/ � C e
.hC"/T0 �k�1kak�; k D 0; 1;

where h D h.M; g/ denotes the volume entropy of .M; g/. The result remains valid after
replacing the initial condition u.0; �/ D 0 by the final condition u.T; �/ D 0.

Proof. We prove the lemma with initial condition u.0; �/ D 0, the proof for u.T; �/ D 0
being analogous. As in the proof of Lemma 4.1 in [4], we consider for x 2Me ,

k.t; x/ D �
X

2�1.M/

.i@t �� Qg C Qq/
�
a.2�t; . Qx// ei�. Qy.. Qx//��t/

�
;

where Qx 2 zMe is a lift of x. Let v� be the solution, given by Lemma 4.1, to the homogen-
eous boundary value problem8̂<̂

:
.i@t ��g C q/v�.t; x/ D k.t; x/ in .0; T / �M;
v�.0; x/ D 0; in M;
v�.t; x/ D 0 on .0; T / � @M:



Stability estimates in inverse problems for the Schrödinger and wave equations with trapping 509

We shall show that v� satisfies the estimate (4.8). A computation gives

�k.t; x/ D
X

2�1.M/

ei�. Qy.. Qx//��t/.�� Qg C Qq.. Qx/// a.2�t; . Qx//

C 2i�
X

2�1.M/

ei�. Qy.. Qx//��t/
�
@t QaC da.r Qg Qy/ �

a

2
� Qg Qy

�
.2�t; . Qx//

C �2
X

2�1.M/

a.2�t; . Qx// ei�. Qy .. Qx//��t/
�
1 � jr Qg Qy j

2
Qg

�
:

Using that a solves the transport equation, that Qy solves the eikonal equation, and that� Qg
commutes with � (since  are isometries of Qg), we obtain

�k.t; x/ D
X

2�1.M/

ei�. Qy.. Qx//��t/ .�� QgaC Qqa/.2�t; . Qx//

DW

X
2�1.M/

ei�. Qy.. Qx//��t/ k0.2�t; . Qx//:

Notice that k0 2H 1
0 .Œ0; T �IL

2.M// for � � T0=.2T / and that k0.s; �/j zM D 0 for s > T0.
Then, using Lemma 4.1 we get

v� 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M/ \H 1
0 .M//:

Moreover, using (4.1), there exists C > 0 depending on .M; g/; T > 0, and kqkL1 such
that

kv�.t; �/kL2.M/ � C
X

2�1.M/

Z T

0

kk0.2�t; �/kL2..F // dt

�
C

�

X
2�1.M/

Z T0

0

kk0.s; �/kL2..F // ds �
C.1C kqkL1/T

1=2
0 N.T0/

�
kak�;

where N.T0/ denotes the number of fundamental domains which intersect the geodesic
ball B. Qy; T0/ of center Qy and radius T0 in QM , that is,

N.T0/ D #¹ 2 �1.M/ j 9x 2 F ; d Qg..x/; Qy/ � T0º

� #
®
 2 �1.M/ j max

x2F
d Qg..x/; Qy/ � T0 C Diam.M/

¯
:

Clearly, N.T0/Vol.M/ � Vol.B. Qy; T0 CDiam.M///, and therefore for each " > 0, there
is C > 0 (depending on Diam.M/ and Vol.M/) such that for all T0 > 0 large enough,

N.T0/ � Ce
.hC"/T0 ;

where h D h.M; g/ is the volume entropy of .M; g/ defined in (4.5). We notice that the
constantsC >0 above can be chosen independently of y and that h is in fact not depending
on y.
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Finally, by Lemma 4.1, there is C > 0 (depending on .M; g; T; kqkL1 )) such that for
each � > 0,

kr
gv�.t; �/kL2.M/

� C�
X

2�1.M/

Z T

0

�
�2 kk0.2�t; �/kL2..F // C �k@tk0.2�t; �/kL2..F //

�
dt

C C��1
X

2�1.M/

Z T

0

kk0.2�t; �/kL2..F // dt:

Choosing � D ��1, for each " > 0 there is C > 0 such that for all � � T0=.2T /,

kr
gv�.t; �/kL2.M/

� C
X

2�1.M/

� Z T0

0

kk0.s; �/kL2..F // dsC
Z T0

0

k@tk0.s; �/kL2..F // ds
�
�Ce.hC"/T0kak�:

This concludes the proof.

4.2. Geometrical optics for the wave equation

In this section we give the construction of geometric optics solutions for the wave equation
with hyperbolic trapped set. First we use the following.

Lemma 4.3. Let q 2 L1.M/. Then there exist a constant C > 0, depending only on
.M; g; kqkL1/, and a constant �0 � 0, depending only on kqkL1 , such that for all
0 < t � T and all F 2 L2..0; T / �M/, there is a unique solution v to

(4.9)

8<: .@2t C�g C q.x//v.t; x/ D F.t; x/ in Œ0; T � �M;
v.0; x/ D 0; @tv.0; x/ D 0 in M;
v.t; x/ D 0 on Œ0; T � � @M;

in C1.Œ0; T �IL2.M// \ C0.Œ0; T �IH 1
0 .M// satisfying for each � � �0,

(4.10)

kv.t; �/k2
L2.M/

C k@tv.t; �/k
2
L2.M/

C kr
gv.t; �/k2

L2.M/
� C

Z t

0

e�.t�s/kF.s; �/k2
L2.M/

ds;

ke��t=2 @nvkL2..0;T /�@M/ � Cke
��t=2F kL2..0;T /�M/;

where C depends only on kqkL1 and �.
There is C > 0 as above such that for each f 2 H 1.Œ0; T � � @M/ with f .0; �/ D

@tf .0; �/ D 0, there is a unique solution u 2 C1.Œ0; T �IL2.M// \ C0.Œ0; T �IH 1
0 .M//

such that

(4.11)

8<: .@2t C�g C q.x//u.t; x/ D 0 in Œ0; T � �M;
u.0; x/ D 0; @tu.0; x/ D 0 in M;
u.t; x/ D f .t; x/ on Œ0; T � � @M;
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and u satisfies

ke��t=2 @nukL2.Œ0;T ��@M/ � Cke
��t=2f kH1.Œ0;T ��@M/:

As a consequence, the operator ƒWq W e
�t=2H 1

0 .RC � @M/ ! e�t=2L2.RC � @M/ is
bounded with norm depending only on .M; g/, kqkL1 and �.

Proof. The uniqueness and existence is done in [12], Chapter 3, Section 8 and 9, and
is based on energy estimates. Here we want a uniform estimate in time involving the
exponent �0, in particular for what concerns its dependence in q. Let v be a solution
to (4.9). Then, for any � � 0, v�.t; x/D e��t=2v.t; x/ satisfies the damped-wave equation

(4.12)

8<: .@2t C�g C �
2=4C q.x/C �@t /v�.t; x/ D F�.t; x/ in Œ0; T � �M;

v�.0; x/ D 0; @tv�.0; x/ D 0 in M;
v�.t; x/ D 0 on Œ0; T � � @M;

where F�.t; x/D e��t=2F.t; x/. Similarly, let u be the solution to (4.11). Then u�.t; x/D
e��t=2u.t; x/ solves the boundary-value problem

(4.13)

8<: .@2t C�g C �
2=4C q.x/C �@t /u�.t; x/ D 0 in Œ0; T � �M;

u�.0; x/ D 0; @tu�.0; x/ D 0 in M;
u�.t; x/ D f�.t; x/ on Œ0; T � � @M;

where f�.t; x/ D e��=2tf .t; x/. First, multiply equation (4.12) by Nv� and integrate in
Œ0; t � �M to get

�

Z t

0

Z
M

j@sv� j
2 dvg ds C

Z t

0

Z
M

jr
gv� j

2 dvg ds C
Z t

0

Z
M

��2
4
C q

�
jv� j

2 dvg ds

D �

Z
M

@tv� v� dvg � �
Z t

0

Z
M

@sv� Nv� dvg ds C
Z t

0

Z
M

F� Nv� dvg ds:

Then, we obtainZ t

0

Z
M

jr
gv� j

2 dvg ds C
�2

4

Z t

0

Z
M

jv� j
2 dvg ds

�
1

2

Z
M

j@tv�.t/j
2 dvg C

1

2

Z
M

jv�.t/j
2 dvg C

�

2

Z t

0

Z
M

.j@sv� j
2
C jv� j

2/ dvg ds

C

�
kqkL1 C

1

2

� Z t

0

Z
M

jv� j
2 dvg ds C

1

2

Z t

0

Z
M

jF� j
2 dvg ds

and we get, for C� D �2=4 � �=2 � kqkL1 � 1=2,

(4.14)
Z t

0

kr
gv�.s/k

2
L2.M/

ds C C�

Z t

0

kv�.s/k
2 ds

�
1

2
k@tv�.t/k

2
L2.M/

C
1

2
kv�.t/k

2
L2.M/

C
�

2

Z t

0

k@sv�k
2
L2.M/

C
1

2

Z t

0

kF�.s/k
2
L2.M/

:
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We next multiply equation (4.12) by @t Nv� , integrate in Œ0; t � �M , take the real part and
integrate by parts to obtain

�2

4
kv�.t/k

2
L2.M/

C k@tv�.t/k
2
L2.M/

C kr
gv�.t/k

2
L2.M/

� 2

Z t

0

.kF�.s/kL2.M/k@sv.s/kL2.M// ds C kqkL1
Z t

0

kv�.s/k
2
L2.M/

ds

C .kqkL1 � �/

Z t

0

k@sv�.s/k
2
L2.M/

ds

�

Z t

0

kF�.s/k
2
L2.M/

ds C kqkL1
Z t

0

kv�.s/k
2
L2.M/

ds

C .1C kqkL1 � �/

Z t

0

k@sv�.s/k
2
L2.M/

ds:

Defining ˆv� .t/ WD k@tv�.t/k
2
L2
C kv�.t/k

2
L2
C krgv�.t/k

2
L2

, using (4.14) and taking
� > 2 large enough depending only on kqkL1 , we obtain

1

2
ˆv� .t/ �

3

2

Z t

0

kF�.s; �/k
2
L2.M/

ds C .kqkL1 � C�/
Z t

0

kv�.s/k
2
L2.M/

ds

C .1C kqkL1 � �/

Z t

0

k@sv�.s/k
2
L2.M/

ds �
Z t

0

kr
gv�.s/k

2
L2.M/

ds:

Take � large enough so that C� � kqkL1 > 1 and � > 2C kqkL1 ; we then get

(4.15) ˆv� .t/C

Z t

0

ˆv� .s/ ds � 3
Z t

0

kF�.s/k
2
L2.M/

ds:

Since
ˆv� .t/ �

2

�2 C 1
e��t k@tvk

2
L2.M/

C
1

2
e��t kv.t/k2

L2.M/
;

this shows in particular the first estimate of (4.10). Next, let N be a smooth vector field
equal to n the inward normal vector field on @M . Multiplying equation (4.12) by hN;rg Nvi
D d Nv�.N /, one hasZ t

0

Z
M

F�.s; �/ d Nv.N / dvg ds

D

Z t

0

Z
M

@2sv� d Nv�.N / dvg ds C
Z t

0

Z
M

�gv� d Nv�.N / dvg ds

C

Z t

0

Z
M

��2
4
C q

�
v� d Nv�.N / dvg ds C �

Z t

0

Z
M

@sv� d Nv�.N / dvg ds

D I1 C I2 C I3 C I4:

Using integration by parts in s,

2Re.I1 C I4/ D 2Re.h@tv� ; d Nv�.N /iL2.M// �

Z t

0

hN; .rg j@sv� j
2
g/iL2.M/ ds

C 2� Re
� Z t

0

h@sv� ; dv�.N /iL2.M/ ds
�
;
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which gives, after integrating by parts in x 2M the second term, using @svD 0 on .0; t/�
@M and the estimates (4.15) (for someC�;kqkL1 >0 depending only on .M;g/;�;kqkL1 ),

j2Re.I1 C I4/j � C�;kqkL1 kF�k
2
L2..0;t/�M/

:

For the I2 term, one gets by integration by parts,

2Re.I2/ D 2
Z t

0

Z
@M

j@nv� j
2 dv@M ds C 2Re

Z t

0

hr
gv� ;r

g.dv�.N //iL2.M/ ds;

and an easy computation shows

hr
gv� ;r

g.dv�.N //iL2.M/

D

Z
M

�
.rgNrgv� ;r

g
Nv�/C

1

2
div.jrgv� j2N/ �

1

2
jr
gv� j

2 div.N /
�

dvg

D

Z
M

�
.rgNrgv� ;r

g
Nv�/ �

1

2
jr
gvj2div.N /

�
dvg �

1

2

Z
@M

jr
gv� j

2 dv@M ;

thus, using jrgv� j2 D j@nv� j
2 (since v� D 0 on @M ), we obtain, by (4.15),ˇ̌̌

2Re.I2/ �
Z t

0

Z
@M

j@nv� j
2 dv@M ds

ˇ̌̌
� C�;kqkL1 kF�k

2
L2..0;t/;L2.M//

:

Finally, (4.15) directly gives jI3j � C�;kqkL1 kF�k
2
L2..0;t/�M/

, and we conclude that

(4.16)
Z t

0

Z
@M

j@nv� j
2 dv@M ds � C�;kqkL1 kF�k

2
L2..0;t/;L2.M//

:

The same results apply for solutions of the equation (4.12) on Œ0; T � �M with �
replaced by �� and with boundary condition v��.T / D @tv��.T / D 0.

Notice that if u� solves (4.13), then for any F�� 2L2..0;T /�M/, one has, by duality
with (4.12),

`.F��/ WD

Z T

0

Z
M

u�.t; x/F��.t; x/ dvg dt D
Z T

0

Z
@M

f�.t; x/ @nv��.t; x/ dv@M dt;

where v�� is the solution to (4.12) with � replaced by �� and with boundary condition
v��.T / D @tv��.T / D 0 rather than v�.0/ D @tv�.0/ D 0. By (4.16), there is C > 0

depending only on .M; g/ so that

j`.F��/j � Ckf�kL2..0;T /�@M/ kF��kL2..0;T /�M/:

Therefore,
ku�kL2..0;T /�M// � Ckf�kL2..0;T /�@M/:

Moreover, if f� 2 H 1..0; T / �M/, then w� D @tu� solves the equation8̂<̂
:
.@2t C�g C

�2

4
q C �@t /w�.t; x/ D 0; in Œ0; T � �M

w�.0; x/ D @tw�.0; x/ D 0; in M
w�.x; t/ D @tf�.t; x/; on @M:
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This implies that w� D @tu� 2 L2..0; T / �M/ by the uniqueness result (see Chapter 3,
Section 8 and 9, in [12]), and with bound kw�kL2..0;T /�M// �Ck@tf�kL2..0;T /�@M/. Note
that @tw� D @2t u� D �.�g C �

2=4C q C �@t /u� 2 L
2..0; T /IH�2.M// and

k@tw�kL2..0;T /;H�2.M// � C�;kqkL1 kf�kH1.Œ0;T ��@M/

for some constant C�;kqkL1 depending only on kqkL1 ; � and .M; g/. On the other hand,
@2tw� D �.�g C �

2=4C q C �@t /w� 2 L
2..0; T /IH�2.M// with norm

k@tw�kL2..0;T /;H�2.M// � C�;kqkL1 kf�kH1.Œ0;T ��@M/

for some constant as above, thus by interpolation with w� 2 L2..0; T /IL2.M//, we also
have @tw� 2 L2..0; T /IH�1.M// ([12], Proposition 2.2) with bound

k@tw�kL2..0;T /IH�1.M// � C�;kqkL1 kf�kH1.Œ0;T ��@M/:

In particular, we obtain

ku�kL2..0;T /�M/ C k@tu�kL2..0;T /�M/ C k@
2
t u�kL2..0;T /IH�1.M/

� C�;kqkL1 kf�kH1..0;T /�@M/:

We next observe that´
�gu� D �@

2
t u� � .�

2
0=4C q/u� � �@tu� DW  � in M;

u� D f� on @M:

Then, by elliptic regularity and since @2t u� ; @tu� 2 L
2..0; T /IH�1.M//, there is C > 0

depending only on .M; g/ so that

ku�.t; �/kH1.M/ � C
�
kf�.t; �/kH1.@M/ C k �.t; �/kH�1.M/

�
:

Therefore, we obtain

ku�kL2..0;T /�M/ C k@tu�kL2..0;T /�M/ C kr
gu�kL2..0;T /�M/(4.17)

� C�;kqkL1 kf�kH1..0;T /�@M/:

Next, multiplying equation (4.13) by hN; Nu�i D d Nu.N / and applying the same reas-
oning as we did above for v� and equation (4.12), it is direct to obtain the bound

(4.18)
Z T

0

Z
@M

j@nu�.t/j
2 dv@M dt � C�;kqkL1 kf�k

2
H1..0;T /�@M/

:

This concludes the proof.

Given T > 0, let b 2 H 2.@SM/ with bj
T @SM
C .T / D 0. Let a.t; Qx/ be a solution to the

lifted transport equation defined by (4.6). We extend a to RC � zM by zero and denote

kak� WD kake�tW 1;1.RCIH2. zM// C kake�tW 3;1.RCIL2. zM//:(4.19)
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For y 2 @Me , we use the function  Qy D d Qg. Qy; �/ on zMe defined above and define, for any
� > 0,

(4.20) G�.t; x/ WD
X

2�1.M/

a.t; .x// ei�. Qy..x//�t/:

The sum is locally finite and this function is �1.M/ invariant, and thus descends to Me .

Lemma 4.4. Let q 2 L1.M/ and �0 � 0 be as defined in Lemma 4.3. For any � > 0 and
T > 0, the equation ´

.@2t C�g C q.x//u D 0; in RC �M;

u.0; x/ D @tu.0; x/ D 0; x 2M;

has a solution of the form

u.t; x/ D G�.t; x/C v�.t; x/

such that, for every � > �0,

u 2 e�tH 1.RCIL
2.M// \ e�tL2.RCIH

1.M//;

and where v�.t; x/ satisfies

v�.t; x/ D 0; 8.t; x/ 2 RC � @M;

v�.0; x/ D 0; @tv�.0; x/ D 0; x 2M;

and for all " > 0, there is C > 0 depending only on M , g, kqkL1 , �, " so that
(4.21)
�kv�ke�tL2.RC�M/Ck@tv�ke�tL2.RC�M/Ckr

gv�ke�tL2.RC�M/�Ce
.hC"/T

kak�;

where h D h.M; g/ denotes the volume entropy. The result remains valid if one replaces
the initial condition u.0;x/D @tu.0;x/D 0 by the final condition u.t; x/D @tu.t; x/D 0
for t � T . In this case, v� satisfies

v�.t; x/ D 0; @tv�.t; x/ D 0; t � T; x 2M:

Proof. We prove the lemma with initial condition u.0; �/ D @tu.0; �/ D 0. The proof for
u.T; �/ D @tu.T; �/ D 0 is analogous. As in the proof of Lemma 4.1 in [5], we consider

k.t; x/ D �
X

2�1.M/

.@2t C� Qg C Qq/
�
a.t; .x// ei�. Qy..x//�t/

�
:

Let v� be the solution, given by Lemma 4.3, to the boundary value problem

(4.22)

8̂<̂
:
.@2t C�g C q/v�.t; x/ D k.t; x/ in RC �M;

v�.0; x/ D @tv�.0; x/ D 0; in M;
v�.t; x/ D 0; on RC � @M:
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To prove the claim it is sufficient to show that v� satisfies the estimate (4.21). A computa-
tion yields

�k.t; x/ D
X

2�1.M/

ei�. Qy..x//�t/ ..@2t C� Qg C Qq/a/.t; .x//

� 2i�
X

2�1.M/

ei�. Qy..x//�t/
�
@taC da.r Qg Qy/ �

a

2
� Qg Qy

�
.t; .x//

� �2
X

2�1.M/

a.t; .x// ei�. Qy..x//�t/.1 � jr Qg Qy j
2/:

Using that a solves the transport equation and  Qy solves the eikonal equation, we obtain

�k.t; x/ D
X

2�1.M/

ei�. Qy..x//�t/ ..@2t C�zg C Qq/a/.t; .x//

DW

X
2�1.M/

ei�. Qy..x//�t/ k0.t; .x//:

Notice that k0 2 H 1
0 .Œ0; T �IL

2. zM//. Extending k0 to I by zero, we obtain

kk0ke�tL1.I IL2. zM// C k@tk0ke�tL1.I IL2. zM// � Ckak�:

Moreover, the function

w�.t; x/ WD

Z t

0

v�.s; x/ ds

solves the mixed hyperbolic problem (4.22) with right-hand side k1.t; x/ D
R t
0
k.s; x/ds.

For t � T , this is equal to

k1.t; x/ D
1

i�

X
2�1.M/

Z t

0

k0.s; .x// @s.e
i�. ..x//�s// ds

D �
1

i�

X
2�1.M/

Z t

0

@sk0.s; .x// e
i�. z ..x//�s/ ds:

Then, by Lemma 4.3, we obtain for �0 defined in Lemma 4.3,

kv�.t; �/kL2.M/ � C

Z t

0

e�0.t�s/ kk1.s; �/kL2.M/ ds

�
C

�

X
2�1.M/

Z t

0

e�0.t�s/
Z s

0

k@rk0.r; �/kL2..F // dr ds

�
CN.T /

�

Z t

0

e�0.t�s/
Z s

0

k@rk0.r; �/kL2. zM/ dr ds:
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So using thatN.T /�Ce.hC"/T and Minkowski’s integral inequality, we obtain for � > �0,

kv� ke�tL2.I�M/

�
Ce.hC"/T

�

� Z 1
0

� Z t

0

Z s

0

e�.���0/t e��0s k@rk0.r; �/kL2. zM/ dr ds
�2

dt
�1=2

�
Ce.hC"/T

�

Z 1
0

Z 1
r

� Z 1
s

e�2.���0/.t�s/ e�2�sk@rk0.r; �/k
2

L2. zM/
dt
�1=2

ds dr

�
Ce.hC"/T

�

Z 1
0

Z 1
r

e��.s�r/ e��rk@rk0.r; �/kL2. zM/ ds dr

�
Ce.hC"/T

�

Z 1
0

e��rk@rk0.r; �/kL2. zM/ dr �
Ce.hC"/T

�
kak�

for some constants C independent of .T;�/ (but depending on � � �0). On the other hand,
using again Lemma 4.3 for v�, we obtain

k@tv�.t; �/kL2.M/ C kr
gv�.t; �/kL2.M/ � C

X
2�1.M/

Z t

0

e�.t�s/ kk0.s; �/kL2..F // ds

� Ce.hC"/T
Z t

0

e�.t�s/ kk0.s; �/kL2. zM/ ds:

Repeating the previous argument, we get:

k@tv�ke�tL2.RC�M/ C kr
gv�.t; �/ke�tL2.RC�M/ � Ce

.hC"/T
kak�:

5. Stable determination of the electrical potential for the Schrödinger
equation

In this section we shall prove Theorem 1, i.e., the stability estimate for the Schrödin-
ger equation. The main idea relies in using geometric optics solutions with initial data
b 2 H 2.@�SMe/ with bj

T @SM
C .T0/

D 0, where T0 > 0 is taken large. These solutions are
concentrating on geodesics with endpoints on the boundary and with length at most T0;
when T0 !1, these geodesics will cover a set of full measure in M . Using these solu-
tions, one can control the L2 to norm of …e

0q by the difference of the DN maps for q1
and q2, with a remainder term coming from L2 estimates of the X-ray transform of q
and …e

0q on T @SM
C .T0/; here …e

0 D I
e
0
�I e0 is the normal operator associated to the X-ray

transform on Me introduced in (3.3). As we shall see, using the estimate (3.4), this is
enough to obtain our stability estimate since, due to the hyperbolicity of the trapped set,
the volume of TC.T0/ decays exponentially as T0 !1 and this remainder term can be
absorbed in the stability estimate for T0 sufficiently large.

5.1. Preliminary estimates

We first reformulate Lemmas 5.1 and 5.2 from [4] in our setting. Let qD q1 � q2 extended
toMe by q D 0 inMe nM . Recall thatƒSg;q is the Dirichlet-to-Neumann map associated
with the Schrödinger equation (1.1).
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Lemma 5.1. Let q1; q2 2 W 1;1.M/ with q1j@M D q2j@M and set q WD q1 � q2. There
existC >0 depending only on .M;g;kqkW 1;1/ andC0>0 depending only on .M;g/ such
that for any T0 > 0, any a1; a2 2 H 1.RIH 2. zM// satisfying the transport equation (4.4)
on zMe . for the same solution  Qy to the eikonal equation jrzg Qy j D 1/ with condition
aj j@�S zM D ��bj for b1; b2 2 H 2.@�SM/ satisfying b1jT @SM

C .T0//
D b2jT @SM

C .T0/
D 0,

the following estimate holds true:ˇ̌̌ Z T

0

Z
zM

Qq.x/ a1.2�t; x/ a2.2�t; x/ dv Qg.x/ dt
ˇ̌̌

� CeC0T0
�
��2 C kƒSg;q1 �ƒ

S
g;q2
k�

�
ka1k� ka2k�;

for any � � T0=.2T /, where Qq D ��q 2 W 1;1. zM/ is the lift of q.

Proof. By Lemma 4.2, one can construct a2,  Qy , such that for � � T0=.2T / and G2;�
defined as in (4.7), the solution

u2.t; x/ D G2;�.t; x/C v2;�.t; x/

to the Schrödinger equation corresponding to the potential q2,´
.i@t ��g C q2.x//u.t; x/ D 0; in .0; T / �M;
u.0; �/ D 0; in M;

satisfies v2;�.t; x/ D 0 for all .t; x/ 2 .0; T / � @M , and

�kv2;�.t; �/kL2.M/ C krv2;�.t; �/kL2.M/ � Ce
.hC"/T0k Qa2k�:(5.1)

Moreover,
u2 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M//:

We next denote by f� the restriction of G2;� on .0; T � � @M

f�.t; x/ WD G2;�.t; x/ D
X

2�1.M/

a2.2�t; .x// e
i�. ..x//��t/:

Let v be the solution to the non-homogeneous boundary value problem8̂<̂
:
.i@t ��g C q1/v.t; x/ D 0; .t; x/ 2 .0; T / �M;

v.0; x/ D 0; x 2M;

v.t; x/ D u2.t; x/ D f�.t; x/; .t; x/ 2 .0; T / � @M;

and denote w D v � u2. Notice that w solves the following homogeneous boundary value
problem for the Schrödinger equation:8̂<̂

:
.i@t ��g C q1/w.t; x/ D q.x/u2.t; x/; .t; x/ 2 .0; T / �M;

w.0; x/ D 0; x 2M;

w.t; x/ D 0; .t; x/ 2 .0; T / � @M:
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Since q.x/u2 2 W 1;1.Œ0; T �IL2.M// with u2.0; �/ � 0, by Lemma 4.1 we obtain that

w 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M/ \H 1
0 .M//:

On the other hand, using Lemma 4.2, we construct a special solution

u1 2 C1.Œ0; T �IL2.M// \ C.Œ0; T �IH 2.M//

to the backward Schrödinger equation´
.i@t ��g C q1.x//u1.t; x/ D 0; .t; x/ 2 .0; T / �M;

u1.T; x/ D 0; x 2M;

having the special form

u1.t; x/ D
X

2�1.M/

a1.2�t; .x// e
i�. Qy..x//��t/ C v1;�.t; x/;

which corresponds to the electric potential Nq1, where v1;� vanishes on .0; T / � @M , sat-
isfies v1;�.T; �/ D 0, and

(5.2) 8t 2 Œ0; T �; �kv1;�.t; �/kL2.M/ C kr
gv1;�.t; �/kL2.M/ � Ce

.hC"/T0ka1k�:

By integration by parts and Green’s formula, we obtainZ T

0

Z
M

.i@t ��g C q1/wu1 dvg dt D
Z T

0

Z
M

qu2u1 dvg dt

D �

Z T

0

Z
@M

@nw u1 dvgj@M dt:

We then obtainZ T

0

Z
M

qu2u1 dvg dt D �
Z T

0

Z
@M

.ƒSg;q1 �ƒ
S
g;q2

/.f�/.t; x/ g�.t; x/ dvgj@M .x/ dt;

where the boundary data g� is given by

g�.t; x/ WD
X

2�1.M/

a1.2�t; .x// e
i�. Qy..x//��t/; .t; x/ 2 .0; T / � @M:

Using the definition of u1 and u2, we getX
1;22�1.M/

Z T

0

Z
F

Qq.x/ a2.2�t; 1.x// a1.2�t; 2.x// e
i�. Qy.1.x//� Qy.2.x/// dv Qg.x/ dt

D �

Z T

0

Z
@M

g�.ƒ
S
g;q1
�ƒSg;q2/f� dvgj@M dt �

Z T

0

Z
M

qv2;�v1;� dvg dt

�

Z T

0

Z
M

qf�v1;� dvg dt �
Z T

0

Z
M

qv2;� g� dvg dt:
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By (5.2), there is C > 0 depending on kqkL1 ; T and " > 0 so thatˇ̌̌ Z T

0

Z
M

qf�v1;� dvg dt
ˇ̌̌
� kqkL1

X
2�1.M/

Z T

0

ka2.2�t; �/kL2..F //kv1;�.t; �/kL2.M/ dt

� Ce2.hC"/T0��2ka2k�ka1k� ;

where k � k� D k � kH1.Œ0;T0�IH2. zM// as before, and the second ��1 comes from the change
of variables in t . With the same argument, using (5.1) and (5.2),ˇ̌̌ Z T

0

Z
M

qv2;�g� dvg dt
ˇ̌̌
C

ˇ̌̌ Z T

0

Z
M

qv2;�v1;� dvg dt
ˇ̌̌
� Ce2.hC"/T0 ��2ka2k�ka1k�:

Finally, using the trace theorem, we getˇ̌̌ Z T

0

Z
@M

..ƒSg;q1 �ƒ
S
g;q2

/f�/g� dvgj@M dt
ˇ̌̌

� CkƒSg;q1 �ƒ
S
g;q2
k� kf�kH1..0;T /�@M/ kg�kL2..0;T /�@M/

� Ce2.hC"/T0 ka1k� ka2k� kƒ
S
g;q1
�ƒSg;q2k�:

The diagonal term gives, using that 1 and 2 are isometries of Qg and preserve dv Qg ,X
2�1.M/

Z T

0

Z
F

Qq.x/ a2.2�t; .x// a1.2�t; .x// dv Qg.x/ dt

D

Z T

0

Z
zM

Qq.x/ a2.2�t; x/ a1.2�t; x/ dv Qg.x/ dt:

The last point consists in bounding the off-diagonal termsˇ̌̌ X
1 6D2

Z T

0

Z
F

Qq.x/ a2.2�t; 1.x// a1.2�t; 2.x// e
i�. Qy.1.x//� Qy.2.x/// dv Qg.x/ dt

ˇ̌̌
D

ˇ̌̌ X
 6DId

Z T

0

Z
zM

Qq.x/ a2.2�t; x/ a1.2�t; .x// e
i�. Qy.x/� Qy..x/// dv Qg.x/ dt

ˇ̌̌
;(5.3)

We will apply non-stationary phase: to that aim, we need to bound below the norm

jr
Qg. Qy.�/ �  Qy..�//j D jr

Qgd Qg.�; Qy/ � .d/�1r Qgd Qg.�; Qy/ ı  j:

This corresponds to bounding below the distance between two vectors v1 D d�r Qg Qy.x/
and v2 D d�.d/�1.r Qg Qy/..x// 2 TxMe tangent to two geodesics ˛1 and ˛2 of length
� T0 in Me , starting at y 2 @Me and with endpoints x 2 Me , and ˛1; ˛2 being in two
different homotopy classes. On the other hand, if injrad.Mee; g/ is the injectivity radius
of .Mee; g/, then for 0 < ı < injrad.Mee; g/ and any C 1 curves ˛1 W Œ0; 1� ! Me and
˛2 W Œ0; 1�!Me so that

˛1.0/ D ˛2.0/; ˛1.1/ D ˛2.1/; ˛2.Œ0; 1�/ � ¹z 2Me j dg.z; ˛1.Œ0; 1�// < ıº;
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there is a homotopy h W Œ0; 1� �Me ! Me so that h.0; ˛1.t// D ˛1.t/ and h.1; ˛2.t// D
˛2.t/. However by a standard estimate on flows of smooth vector fields, there is C0 > 0
independent of y; x 2Me (C0 depends on the C1 norm of the geodesic vector field Xg0 )
such that

dg.˛2.Œ0; 1�/; ˛1.Œ0; 1�// � jv1 � v2jg e
C0T0 :

We then deduce that
jv1 � v2jzg � ı e

�C0T0 ;

and therefore we can apply one integration by parts in the second line of (5.3) and the
usual change of coordinates t D s=� to obtainˇ̌̌ X

2�1.M/nId

Z T

0

Z
zM

Qq.x/ a2.2�t; x/ a1.2�t; .x// e
i�. Qy.x/� Qy..x/// dv Qg.x/ dt

ˇ̌̌
� ��2 Ce.2hC"CC0/T0 ka2k� ka1k� ;

where C > 0 now depends on the kqkW 1;1.M/ norm instead of kqkL1 .

Notice that C0 > 0 above depends only the maximal expansion rate of the flow defined
as the smallest constant � > 0 such that for each " > 0 there is C > 0 such that for all t
large enough,

(5.4) kd'tk � Ce.�C"/jt j:

Next, we show the following lemma which is key to relate the X-ray transform of q to
the DN map of the Schrödinger equation.

Lemma 5.2. Let q1; q2 2W 1;1.M/ with q1j@M D q2j@M and set q WD q1 � q2. There are
C0 > 0 depending only on .M; g/ and C > 0 depending on .M; g; kq1kW 1;1 ; kq2kW 1;1/

such that for any T0 > 0 and any b 2H 2.@�SMe/ such that bj
T @SM
C .T0/

D 0, the estimate

ˇ̌̌ Z
@�SyMe

Z �eC.y;v/

0

q.expy.sv// b.y; v/�.y; v/ ds d!y.v/
ˇ̌̌

� CeC0T0kƒSg;q1 �ƒ
S
g;q2
k
1=2
� kb.y; �/kH2.@�SyMe/

holds uniformly for any y 2 @Me , where �.y; v/ D g.ny ; v/, with ny the inward unit
normal of @Me at y.

Proof. We take two solutions a1; a2 to the transport equation on the universal cover zMe

defined as before by

a1.t; x/ D ˛
�1=4 �.t � r.x// Qb. Qy; v.x//;

a2.t; x/ D ˛
�1=4 �.t � r.x// Q�. Qy; v.x// �T0.�

e
C.y; v.x///;

where r.x/D d Qg.x; Qy/, eexp Qy.r.x/v.x//D x, �T0 2 C1c .RC/ is supported in Œ0; T0 C 1�
and is equal to 1 in Œ0; T0�, and Q�; Qb are lifts of �; b to S zMe as before. Here we have used
the natural identification S Qy zMe ' SyMe to define �eC.y; v.x//. We write using geodesic
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polar coordinates x Deexp Qy.rv/ with v 2 @�S Qy zMe ,Z T

0

Z
zM

Qq.x/ a1.2�t; x/ a2.2�t; x/ dvg.x/ dt

D

Z T

0

Z
@�S Qy zMe

Z �eC.y;v/

0

Qq.r; v/ a1.2�t; r; v/ a2.2�t; r; v/ ˛
1=2 dr d! Qy.v/ dt

D

Z T

0

Z
@�SyMe

Z �eC.y;v/

0

q.expy.rv// �
2.2�t � r/ b.y; v/ �.y; v/ dr d!y.v/ dt

D
1

2�

Z 2�T

0

Z
@�SyMe

Z �eC.y;v/

0

q.expy.rv// �
2.t � r/ b.y; v/ �.y; �/ dr d!y.v/ dt:

By Lemma 5.1, we obtain the bound (using that r � T0 � 2�T by our assumption)ˇ̌̌ Z 1
0

Z
@�SyMe

Z �eC.y;v/

0

q.expy.rv// �
2.t � r/ b.y; v/ �.y; v/ dr d!y.v/ dt

ˇ̌̌
� C eC0T0

�
��1 C �kƒSg;q1 �ƒ

S
g;q2
k�

�
k�k2

H3.R/ kb.y; �/kH2.S�y Me/:

Moreover, using the properties of the function �, we also haveZ 1
0

Z
@�SyMe

Z �eC.y;v/

0

q.expy.rv// �
2.t � r/ b.y; v/ �.y; v/ dr d!y.v/ dt

D

� Z 1
�1

�2.t/ dt
� Z

@�SyMe

Z �eC.y;v/

0

q.expy.rv// b.y; v/ �.y; v/ dr d!y.v/:

Finally, to prove the lemma it suffices to take

� D
T0

2T
�

� 2ı.N0/

kƒSg;q1 �ƒ
S
g;q2
k
�

�1=2
;

where ı.N0/ WD supq2Q.N0/
kƒSg;qk� is finite by Theorem 1 in [4].

5.2. Proof of the stability estimate

By Lemma 5.2 we have, for any y 2 @Me and b 2H 2.@�SMe/ such that bj
T @SM
C .T0/

D 0,

ˇ̌̌ Z
@�SyMe

Z �eC.y;v/

0

q.expy.sv// ds b.y; v/ �.y; v/ d!y.v/
ˇ̌̌

� CeC0T0 kƒSg;q1 �ƒ
S
g;q2
k
1=2
� kb.y; �/kH2.@�SyMe/;

where C;C0 are uniform in y;T0. Now we take a bump function �T0 2 C1c .R/ supported
in the interval Œ0; T0/ and equal to 1 on Œ0; T0 � 1�, for T0 � 1, and set

(5.5) b.y; v/ WD �T0.�
e
C.y; v// I

e
0 .…

e
0q/.y; v/:
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Since …e
0 is a pseudo-differential operator of order �1 on Me ([9], Proposition 5.7) and

q D 0 inMe nM ,…e
0q 2W

2;p.Me/ for all p <1. Integrating with respect to y 2 @Me ,
we obtain ˇ̌̌ Z

@�SMe

I e0 .q/.y; v/ I
e
0 .…

e
0q/.y; v/ d�n.y; v/

ˇ̌̌
(5.6)

� C eC0T0 kƒSg;q1 �ƒ
S
g;q2
k
1=2
� kbkH2.@�SMe/

C

ˇ̌̌ Z
T @SM
C .T0/

I e0 q.y; v/ I
e
0 .…

e
0q/.y; v/ d�n.y; v/

ˇ̌̌
:

Moreover, we can write

(5.7) I e0 .…
e
0q/.y; v/ D

Z �eC.y;v/

0

��0 .…
e
0q/ ı 't .y; v/ dt; .y; v/ 2 @�SMe n ��:

By the Cauchy–Schwarz inequality,ˇ̌̌ Z
T @SM
C .T0/

I e0 q.y; �/ I
e
0 .…

e
0q/.y; �/ d�n.y; �/

ˇ̌̌
�

� Z
T @SM
C .T0/

jI e0 q.y; �/j
2 d�n.y; �/

�1=2� Z
T @SM
C .T0/

jI e0 .…
e
0q/.y; �/j

2 d�n.y; �/
�1=2

:

Since q 2 W 1;1.M/ � H 1.M/, then by Proposition 5.7 in [9, ], …e
0q 2 H

2.M/. By the
Sobolev embedding theorem, we also have that

��0 q; �
�
0…

e
0q 2 L

p.SM/;

for some p > 2. Let us now give an estimate on the L2-norm of the X-ray transform of an
Lp-function in T @SM

C .T0/.

Lemma 5.3. LetQ < 0 be the escape rate defined by (2.2) and let p 2 .2;1�. Then there
exists C D C.Q;p; dimM/ > 0 such that for all f 2 Lp.M/ and T0 � 1 large,Z

T @SM
C .T0/

jI e0f .y; v/j
2 d�n.y; v/ � Ce

QT0=2 kf k2Lp.M/:

Proof. We follow the argument in Lemma 5.1 of [9]. Using Hölder’s inequality, with
1=p C 1=p0 D 1 and r=p0 D .p � 1/=.p � 2/ > 1, and Santaló’s formula, we have

kI e0f k
2

L2.T @SM
C .T0//

D

Z
T @SM
C .T0/

ˇ̌̌ Z �eC.y;v/

0

��0 f .'t .y; v// dt
ˇ̌̌2
d�n

�

Z
T @SM
C .T0/

� Z �eC.y;v/

0

j��0 f .'t .y; v//j
p dt

�2=p
�eC.y; v/

2=p0 d�n

�

� Z
T @SM
C .T0/

Z �eC.y;v/

0

j��0 f .'t .y; v//j
p dt d�n

�2=p
k�eCk

2=p0

L2r=p
0
.T @SM
C .T0//

� Ckf k2Lp.M/

� Z 1
T0�L�1

.t C LC 1/2r=p
0�1V.t/ dt

�1=r
� C kf k2Lp.M/e

QT0=2;
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with C depending only on .Q;p;M/ and L some fixed constant satisfying �C CL � �eC
(thus depending only on M ). In the third inequality, we have used equation (4.13) in [9],
which states that for L > 0 as above and for all T � L,Z

@�SM

1ŒT;1/.�eC/ d�� � 2V.T � L � 1/

and then the Cavalieri principle gives (by definition of V.t/)Z
T @SM
C .T0/

.�eC.x; v//
2r=p0d��.x; v/ � C

Z 1
T0�L�1

.t C LC 1/2r=p
0�1V.t/ dt:

Notice that as p ! C1 we have r ! 1, and that C.Q; p; dimM/ can be taken
uniform in p.

Lemma 5.4. There are C > 0 and � > 0 such that for all b 2H 2.@�SMe/ given by (5.5),

kbkH2.@�SM/ � Ce
�T0 kqkW 1;1.M/:

Proof. First, by the implicit function theorem, �eCW@�SMe nT
@SM
C .T0/!RC is a smooth

function. We shall compute its C2-norm. Let � be a boundary defining function of Me so
that jd�jg D 1 near @Me and d.��0 �/.X/ D �g.v; n/ at @CSMe . The function �eC is
defined by the implicit equation

��0 �.'�eC.x;v/.x; v// D 0:

Therefore, denoting S.x; v/ WD '�eC.x;v/.x; v/ one has, on @�SMe n ��,

(5.8) d�eC.x; v/ D
d.��0 �/S.x;v/:d'�eC.x;v/

g.S.x; v/; n/
�

From standard estimates on flows of autonomous C 2-vector fields, there are C; � > 0

depending on kXkC 2 such that for all t 2 R for which the flow is defined,

k'tkC 2 � Ce
� jt j:

Using this, and the fact that g.S.x; v/; n/ > c0 > 0 for some c0 if �C.x; v/ > 1, we see
from the expression (5.8) and its derivative that there are C > 0, � > 0 independent of T0
such that

(5.9) sup
.x;v/2@TC.T0/; �

e
C.x;v/>1

kr�eC.x; v/k C kr
2�eC.x; v/k � Ce

2�T0 ;

where r is any fixed Riemannian connection on @SMe (for example that given by the
Sasaki metric). First, by (3.2) and Lemma 3.1, for each p > 2 we have (using Sobolev
embedding)

(5.10) kbkL2.@�SMe/ � Ck…
e
0qkLp.Me/ � CkqkL2.M/:
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Next we compute db. Let f WD…e
0q. Since supp.q/�M , one can use (3.6) to deduce

that f 2 W 2;p.Me/ for all p <1 and that f 2 C1.Me nM/. For z 2 @�SMe ,

db.z/ D d�eC.z/ �
0
T0
.�eC.z//.I

e
0f /.z/

C �T0.�
e
C.z//

�
d�eC.z/ �

�
0 f .S.z//C

Z �eC.z/

0

d.��0 f /:d't .z/ dt
�

and therefore by (5.9) and (3.2), there are C > 0; � > 0 independent of T0; q such that

(5.11) kdbkL2 � CT0 e
�T0 kqkW 1;1.M/:

Finally, we compute another derivative of b, and write

r
2b.z/ D r2�eC.z/ �

0
T0
.�eC.z//.I

e
0f /.z/C .d�

e
C ˝ d�eC/.z/ �

00
T0
.�eC.z//.I

e
0f /.z/

C 2�0T0.�
e
C.z// d�eC.z/˝

�
d�eC.z/ �

�
0 f .S.z//C

Z �eC.z/

0

d.��0 f /:d't .z/ dt
�

C �T0 .�
e
C.z//.r

2�eC.z/ �
�
0 f .S.z//C 2d�eC.z/˝ .d.�

�
0 f /:dS.z///

C �T0.�
e
C.z//

Z �eC.z/

0

r.'�t d.�
�
0 f // dt:

Since ��0 f is smooth near @�SMe and since the bounds (5.9) hold and I e0f 2 L
2, we

obtain that there are C > 0; � > 0 independent of T0; q such that

(5.12) kr
2bkL2 � CT0 e

2�T0 kqkW 1;1.M/:

Combining (5.12), (5.11) and (5.10), we get the desired result.

Proof of Theorem 1. By (5.6), Lemma 5.3, Lemma 5.4, and using that k…e
0qkLp.Me/ �

CkqkL1.M/ for each p 2 .2;1/, we have that there are C0 > 0 depending only on .M;g/
and C depending on .M; g; kqkW 1;1/ such that

(5.13)
Z
Me

j…e
0.q/j

2 dvg � CeC0T0 kƒSg;q1 �ƒ
S
g;q2
k
1=2
� C Ce

QT0=2:

Then, defining ˛ WD e�QT0=2 and m WD �2C0=Q > 0, we deduce from (5.13) that

k…e
0qk

2
L2.Me/

� C
�
˛mkƒSg;q1 �ƒ

S
g;q2
k
1=2
� C ˛

�1
�
:

We next take T0 sufficiently large so that ˛ D kƒSg;q1 � ƒ
S
g;q2
k
�1=.2.mC1//
� . With this

choice, we obtain

(5.14) k…e
0qk

2
L2.Me/

� CkƒSg;q1 �ƒ
S
g;q2
k
1=.2.mC1//
� :

This holds in the regime

T0 D
2

Q
log

�
kƒSg;q1 �ƒ

S
g;q2
k
1=.2.mC1//
�

�
:
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Finally, by (3.4), there is C > 0 depending only on .M; g/ such that

(5.15) kqkL2.M/ � Ck…
e
0qkH1.Me/; k…

e
0qkH2.Me/ � CkqkH1.M/:

Using this, an interpolation estimate, and (5.14), we obtain

k…e
0qk

2
H1.Me/

�Ck…e
0qkL2.Me/k…

e
0qkH2.Me/ � Ckƒ

S
g;q1
�ƒSg;q2k

1=.4.mC1//
� kqkH1.M/:

Finally, by the first bound of (5.15), we conclude that for q1; q2 2 Q.N0/,

kqk2
L2.M/

� CkƒSg;q1 �ƒ
S
g;q2
k
1=.4.mC1//
� N0:

This concludes the proof.

6. Stable determination of the electrical potential for the wave
equation

In this section, we shall prove Theorem 3.

6.1. Preliminary estimates

We start with a lemma very similar to Lemma 5.1, but now in the context of the wave
equation. Its proof follows the lines of that of Lemma 5.1.

Lemma 6.1. Let q1; q2 2 W 1;1.M/ with q1j@M D q2j@M and set q WD q1 � q2 There
exist C > 0 depending only on .M; g; kqikW 1;1.M//, � > 0 depending only on kqikL1
and C0 � 0 depending only on .M; g; �/ such that for any T > 0; � > 1, and for a1; a2 2
H 1
0 .Œ0; T �; H

2. zM// the functions constructed in (4.6) with function b given respectively
by b1; b2 2 H 2.@�SM/ satisfying b1jT @SM

C .T / D b2jT @SM
C .T / D 0, the following estimate

holds true:ˇ̌̌ Z T

0

Z
zM

Qq.x/ a1.t; x/ a2.t; x/ dv Qg.x/ dt
ˇ̌̌

� C eC0T
�
��1C�kƒWg;q1 �ƒ

W
g;q2
k�;�

�
ka1k� ka2k�

where Qq is the lift of q to zM .

Proof. We shall proceed as for the Schrödinger equation. Let � > 0. By Lemma 4.4, there
exist a2,  Qy as in (4.6), such that for the G2;�.t; x/ given by (4.20) with a D a2, the
solution

u2.t; x/ D G2;�.t; x/C v2;�.t; x/

to the wave equation corresponding to the potential q2²
.@2t C�g C q2.x//u.t; x/ D 0; in I �M;
u.0; �/ D 0; @tu.0; �/ D 0; in M;
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satisfies v2;�.t; x/ D 0 for all .t; x/ 2 .0; T / � @M , and (for " > 0 small)

�kv2;�ke�tL2.I�M/ C kr
gv2;�ke�tL2.I�M/ � Ce

.hC"/T
ka2k�:(6.1)

We next denote by f� the restriction of G2;� to Œ0; T � � @M ,

f�.t; x/ WD G2;�.t; x/ D
X

2�1.M/

a2.t; .x// e
i�. Qy..x//�t/:

Let v be the solution to the boundary value problem8<: .@2t C�g C q1/v.t; x/ D 0; .t; x/ 2 I �M;

v.0; x/ D 0; @tv.0; x/ D 0; x 2M;

v.t; x/ D u2.t; x/ WD f�.t; x/; .t; x/ 2 I � @M;

and denote w D v � u2. Notice that w solves the following homogeneous boundary value
problem for the wave equation:8<: .@2t C�g C q1/w.t; x/ D q.x/u2.t; x/; .t; x/ 2 I �M;

w.0; x/ D 0; @tw.0; x/ D 0; x 2M;

w.t; x/ D 0; .t; x/ 2 I � @M:

Since q.x/u2 2 C.Œ0; T �IL2.M// with u2.0; �/ � 0, by Lemma 4.3, we obtain that

w 2 C1.I IL2.M// \ C.I IH 1
0 .M//:

On the other hand, we construct a special solution

u1 2 e
�tH 1.I IL2.M// \ e�tL2.I IH 1.M//

to the backward wave equation²
.@2t C�g C Nq1.x//u1.t; x/ D 0; .t; x/ 2 .0; T / �M;

u1.T; x/ D 0; @tu1.T; x/ D 0; x 2M;

having the special form

u1.t; x/ D
X

2�1.M/

a1.t; .x// e
i�. Qy..x//�t/ C v1;�.t; x/;

which corresponds to the electric potential q1, where v1;� satisfies v1;�.T; �/D @tv1;�.T; �/
D 0, and for each " > 0 there is C independent of T; � such that

(6.2) �kv1;�ke�tL2.I�M/ C kr
gv1;�ke�tL2.I�M/ � Ce

.hC"/T
ka1k�:

By integration by parts and Green’s formula, we obtainZ T

0

Z
M

.@2t C�g C q1/wu1 dvg dt D
Z 1
0

Z
M

qu2u1 dvg dt D�
Z T

0

Z
@M

@nwu1 dvgj@M dt:
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We therefore obtainZ T

0

qu2u1 dvg dt D
Z T

0

Z
@M

.ƒWg;q1 �ƒ
W
g;q2

/.f�/ g� dvgj@M dt;

where the boundary data g� is given by

g�.t; x/ WD
X

2�1.M/

a1.t; .x// e
i�. Qy..x//�t/; .t; x/ 2 .0; T / � @M:

Using the definition of u1 and u2, we getX
1;22�1.M/

Z T

0

Z
F

Qq.x/a2.t; 1.x//a1.t; 2.x// dv Qg.x/dt

D

Z T

0

Z
@M

g�.ƒ
W
g;q1
�ƒWg;q2/f� dvgj@M dt �

Z T

0

Z
M

qv2;�v1;� dvg dt

�

X
2�1.M/

Z T

0

Z
F

q ei�. Qy..�//�t/ a2.t; .�// v1;� dv Qg dt

�

X
2�1.M/

Z T

0

Z
F

qv2;� e
�i�. Qy..�//�t/ a1.t; .�// dv Qg dt:

By (6.1) and (6.2), for each " > 0 small, there is C > 0 depending on g; kqkL1 ; " such
that for all T; �,X

2�1.M/

� ˇ̌̌ Z T

0

Z
F

q ei�. ı�t/ a2.t; .�// v1;� dv Qg dt
ˇ̌̌

C

ˇ̌̌ Z T

0

Z
F

q ei�. ı�t/ a1.t; .�// v2;� dv Qg dt
ˇ̌̌ �

� C
X

2�1.M/

Z T

0

ka2.t; �/kL2..F // kv1;�.t; �/kL2.M/ dt

� C e2.hC�C"/T ��1ka2k� ka1k�

and ˇ̌̌ Z T

0

Z
M

qv2;�v1;� dvg dt
ˇ̌̌
� Ce2.hC�C"/T ��2 ka1k� ka2k�:

We also have, using that for all " > 0,

kf�kH1.Œ0;T ��@M � C�e
.hC"/T

ka2k� and kg�kL2.Œ0;T ��@M � Ce
.hC"/T

ka1k�

for some C > 0 depending only on the metric g and ", thatˇ̌̌ Z T

0

Z
@M

.ƒWg;q1 �ƒ
W
g;q2

/.f�/ g� dvgj@M dt
ˇ̌̌

� Ce2.hC�C"/T � ka1k� ka2k� kƒ
W
g;q1
�ƒWg;q2k�;� :
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Finally, using thatX
2�1.M/

Z T

0

Z
F

Qq.x/ a2.t; .x// a1.t; .x// dv Qg.x/ dt

D

Z T

0

Z
zM

Qq.x/ a2.t; x/ a1.t; x/ dv Qg.x/ dt;

and bounding the off-diagonal terms as in (5.3), the lemma holds.

We then obtain the following Lemma comparable to Lemma 5.2:

Lemma 6.2. There exist C > 0 depending only on .M; g; kq1kW 1;1 ; kq2kW 1;1/, � de-
pending on .kq1kL1 ; kq2kL1/ and C0 > 0 depending on .M; g; �/ such that, for any
T > 1, b 2 H 2.@�SMe/ such that bj

T @SM
C .T / D 0, one has that the inequality

ˇ̌̌ Z
@�SyMe

Z �eC.y;v/

0

q.expy.sv// b.y; v/ �.y; v/ ds d!y.v/
ˇ̌̌

� CeC0T0 kƒWg;q1 �ƒ
W
g;q2
k
1=2
�;� kb.y; �/kH2.@�SyMe/

holds uniformly for any y 2 @Me , where �.y; v/ D g.ny ; v/.

Proof. Take a1; a2 solutions to the transport equation on the universal cover zM as before.
Then, as in the proof of Lemma 5.2, we obtainZ T

0

Z
zM

Qqa1a2 dv Qg dt

D

Z T

0

Z
@�Sy.Me/

Z �eC.y;v/

0

q.expy.rv// �
2.t � r/b.y; v/�.y; v/ dr d!y.v/ dt

D k�k2
L2.R/

Z
@�Sy.Me/

Z �eC.y;v/

0

q.expy.rv//b.y; v/�.y; v/ dr d!y.v/:

Combining this with Lemma 6.1 and choosing � D kƒWg;q1 � ƒ
W
g;q2
k
�1=2
�;� yields the de-

sired result.

6.2. Proof of the stability estimate

Using Lemma 6.2, there is C > 0 such that for any y 2 @M and b 2 H 2.@�SMe/ such
that bj

T @SM
C .T // D 0,

ˇ̌̌ Z
@�Sy.Me/

Z �C.y;v/

0

I e0 .q/.y; v/b.y; v/ d��.y; v/
ˇ̌̌

(6.3)

� CeC0T kƒWg;q1 �ƒ
W
g;q2
k
1=2
� kb.y; �/kH2.@�Sy.Me//:

Now we take a bump function �T 2C1c .R/ as in Section 5.2 and choose b by (5.5) with T
instead of T0
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Proof of Theorem 3. The proof is then almost the same as the proof of Theorem 1; we then
just briefly describe it. From (6.3), the same as (5.6) holds with ƒSg;q1 � ƒ

S
g;q2

replaced
by ƒWg;q1 �ƒ

W
g;q2

. Then using Lemmas 5.3 and 5.4 with k…e
0qkLp.Me/ � kqkL1.M/, we

obtainZ
Me

j…e
0.q/j

2 dvg � CeC0T0kƒWg;q1 �ƒ
W
g;q2
k
1=2
�;� kqkW 1;1.M/ C Ce

QT=2
kqk2L1.M/:

The last part of the proof is exactly the same as for Theorem 1 by choosing T so that
e�QT=2 D kƒWg;q1 �ƒ

W
g;q2
k
�1=.2.mC1//
�;� with m D �2C0=Q.

7. Stable determination of the conformal factor for the Schrödinger
equation

In this section we prove Theorem 2. The proof follows the argument of Theorem 3 in [4],
and we indicate the main modifications. Let c 2 C .N0; k; "/ be such that c D 1 near the
boundary @M . We denote

(7.1)
�0.x/ WD 1 � c.x/; �1.x/ WD c

d=2.x/ � 1; �2.x/ WD c
d=2�1.x/ � 1;

�.x/ WD �2.x/ � �1.x/ D c
d=2�1.x/.1 � c.x//;

where recall that d D dim.M/. We modify the construction of geometric optics solutions
(see Section 6.1 in [4]) in our geometrical setting similarly to what was discussed in previ-
ous sections, using the universal cover zM . We consider two solutions z 1; z 2, respectively
to the lifted eikonal equations jr Qg z 1j D 1 and jr zcg z 2j D 1, a solution a2 to the lifted
transport equation

(7.2) @ta2 C da2.r Qg z 1/ �
a2

2
� Qg z 1 D 0;

given in geodesical polar coordinates with respect to g, as in (4.6), by

a2.t; x/ D ˛
�1=4 �.t � r.x// Qb. Qy; v.x//; Qy 2 @SMe;

for some b 2H 2.@�SM/ satisfying that bj
T @SM
C .T0/

D 0, and � 2 C1c .R/ with supp� �
.0; "0/, "0 > 0 small, and a solution a3 to the lifted transport equation

@ta3 C da3.r
zcg z 2/ �

a3

2
� zcg z 2 D �

1

2i
a2.t; x/

�
1 �

1

Qc

�
ei�.

z 1�z 2/

which satisfies (analogously to (6.10) in [4]) the bound

(7.3) ka3k� � C�
2
k1 � ckC2.M/ ka2k�;

for some C > 0 depending on .M;g/ (it does not depend on T0, notice that the derivatives
of the difference between z 1 and z 2 can be bounded in terms of derivatives of c), where
k � k� D k � kH1.Œ0;T0�IH2. zM//. Then, Lemma 6.2 in [4] becomes in our setting:
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Lemma 7.1. The equation²
.i@t ��cg/u D 0; in .0; T / �M;
u.0; x/ D 0; in M;

has a solution of the form

u2.t; x/ D
X

2�1.M/

� 1
�
a2.2�t; .x//e

i�. z 1..x//��t/ C a3.2�t; .x/I�/e
i�. z 2..x//��t/

�
C v2;�.t; x/;

which satisfies, for � � T0=.2T /,

�kv2;�.t; �/kL2.M/ C kr
gv2;�.t; �/kL2.M/ C �

�1
k@tv2;�.t; �/kL2.M/

� CeC0T0
�
�2k�0kC2.M/ C �

�1
�
ka2k�

for C > 0 depending on .M; g;N0/ and C0 > 0 depending on .M; g/.

The constant C0 above can be written in terms of the max of the volume entropies of
the metrics cg for jc � 1jC1.M/ � 1=2 (this can be bounded by a uniform constant times
the volume entropy of .M; g/).

Moreover, reasoning as in previous sections, Lemma 6.3 in [4] becomes in our setting:

Lemma 7.2. There exist constants C > 0 depending on .M;g;N0/ and C0 > 0 depending
on .M; g/ such that, for any a1; a2 2 H 1.Œ0; T0�IH

2. zM// solving (7.2) associated to
b1; b2 2 H

2.@�SMe/ with b1jT @SM
C .T0/

D b2jT @SM
C .T0/

D 0, the estimateˇ̌̌ X
2�1.M/

Z T

0

Z
M

�.x/ a1.2�t; .x// a2.2�t; .x// dvg.x/ dt
ˇ̌̌

� C��1eC0T0
�
k�0kC1.M/ .�

�1
C �3k�0kC2.M//C �kƒ

S
g �ƒ

S
cgk�

�
ka1k�ka2k�

holds for any � � T0=.2T /.

Finally, Lemma 6.4 in [4] becomes in our setting:

Lemma 7.3. There exist C > 0 and C0 > 0 as in the previous lemma such that, for any
b 2 H 2.@�SMe/ with bj

T @SM
C .T0/

D 0 the estimateˇ̌̌ Z
@�SMe

I e0 .�/.y; v/ b.y; v/ d�n.y; v/
ˇ̌̌

� CeC0T0
�
.��1 C �3k�0kC2.M//k�0kC1.M/ C �kƒ

S
g �ƒ

S
cgk�

�
kbkH2.@�SM/

holds for any � � T0=.2T /. Here, I e0 is the X-ray transform for g on functions on Me .

Proof of Theorem 2. We take b as in (5.5) with q replaced by �. By Lemmas 7.3, 5.3
and 5.4, there are C > 0;C0 > 0 depending on .M; g;N0; "/ such that

k…e
0�k

2
L2.Me/

� CeC0T0
�
.��1C�3k�0kC2.M//k�0kC1.M/C�kƒ

S
g�ƒ

S
cgk�

�
k�kW 1;p.M/

C CeQT0=2 k�k2Lp.M/
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for some p > 2. By interpolation,

k…e
0�k

2
H1.Me/

� C k…e
0�kL2.Me/ k…

e
0�kH2.Me/

� CeC0T0=2
�
.��1 C �3k�0kC2.M//k�0kC1.M/ C �kƒ

S
g �ƒ

S
cgk�

�1=2
� k�k

1=2

W 1;p.M/
k�kH1.M/ C Ce

QT0=4 k�kLp.M/k�kH1.M/:

We use (3.4) to deduce the bound

k�k2
L2.M/

� CeC0T0=2 .��1 C �3k�0kC2.M//
1=2
k�0k

1=2

C1.M/
k�k

1=2

W 1;p.M/
k�kH1.M/

C CeC0T0=2�1=2k�0k
3=2

C1.M/
kƒSg�ƒ

S
cgk

1=2
� CCe

QT0=4k�kLp.M/k�kH1.M/:

Taking

� D
T0

2T
�

�k�0kC2.M/

2N0

��1=4
;

we obtain for T0 > 0 large,

k�k2
L2.M/

� CeC0T0
�
k�0k

17=8

C2.M/
C k�0k

11=8

C2.M/
kƒSg �ƒ

S
cgk

1=2
�

�
C CeQT0=4k�kLp.M/k�kH1.M/

� CeC0T0
�
"`k�0k

33=16

C2.M/
C kƒSg �ƒ

S
cgk

1=2
�

�
C CeQT0=4 k�kLp.M/ k�kH1.M/;

where C depends on N0, ` D 1
16
.1 � 2=k/, and we have used the interpolation estimate

k�0kC2.M/ � C k�0k
1�2=k

C.M/
� C"1�2=k :

By interpolation, choosing k > max.s; s0/ large enough, we have for some ı; ı0 > 0 small,

k�0kC2.M/ � Ck�0kHd=2C2Cı .M/ � Ck�0k
32=33Cı

L2.M/
k�0k

1=33�ı

H s.M/
� Ck�0k

32=33Cı

L2.M/
;(7.4)

k�kH1.M/ � k�k
1�ı 0

L2.M/
k�kı

0

H s0 .M/
� Ck�k1�ı

0

L2.M/
;(7.5)

k�kLp.M/ � k�k
1�ı 0

L2.M/
k�kı

0

Lp
0
.M/
� Ck�k1�ı

0

L2.M/
;(7.6)

where C > 0 depends on N0. Thus, using that

C�1k�0kL2 � k�kL2 � Ck�0kL2 ;

we see that there are C > 0 depending on .M; g;N0; k/ and C0 > 0 depending on .M; g/
such that

k�0k
2
L2.M/

� CeC0T0 "` k�0k
2Cı
L2.M/

C CeC0T0 kƒSg �ƒ
S
cgk

1=2
� C Ce

QT0=4 k�0k
2�2ı 0

L2.M/
:

We finally take T0 sufficiently large so that

CeQT0=4 <
1

2
k�0k

2ı 0

L2
:
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This allows us to absorb the third term of the right-hand side into the left-hand side:

k�0k
2
L2.M/

� C"` k�0k
�2mı 0

L2.M/
k�0k

2Cı
L2.M/

C C k�0k
�2mı 0

L2.M/
kƒSg �ƒ

S
cgk

1=2
� ;

form D 4C0=jQj > 0. Choosing ı > 2mı0 and taking " sufficiently small, we can absorb
the first term of the right-hand side into the left-hand side. Therefore, there exist ˇ > 0

depending on .M; g/ and C > 0 depending on .M; g;N0; k; "/ such that

k�0kL2.M/ � Ckƒ
S
g �ƒ

S
cgk

ˇ
� ;

and the proof is complete.

8. Stable determination of the conformal factor for the wave equation

In this section we sketch the proof of Theorem 4. We just indicate the modifications with
respect to the proof of Theorem 2 in [5]. We will assume that the conformal factor satisfies
c 2C .N0;k;"/ and is such that cD 1 near the boundary @M , and we use the notation (7.1).
First, Lemma 6.2 in [5] becomes in our setting:

Lemma 8.1. The equation²
.@2t C�cg/u D 0; in .0; T / �M;
u.0; x/ D 0; in M;

has a solution of the form

u2.t; x/ D
X

2�1.M/

� 1
�
a2.t; .x// e

i�. 1..x//�t/ C a3.t; .x/I�/ e
i�. 2..x//�t/

�
C v2;�.t; x/

such that there is �0 > 0 .given by Lemma 4.3/ so that for all � > �0, 9C > 0 depending
only on .M; g;N0; �/, and C0 > 0 depending only on .M; g; �/ so that 8� > 1,

�kv2;�ke�tL2.RC�M/ C kr
gv2;�ke�tL2.RC�M/ C �

�1
k@tv2;�ke�tL2.RC�M/

� CeC0T
�
k�0kC2.M/ �

2
C ��1

�
ka2k�:

Moreover, Lemma 6.3 in [5] is replaced by:

Lemma 8.2. There exist constants C0 > 0 depending on .M; g; �/ and C > 0 depending
on .M; g;N0; �/ such that, for any a1; a2 2 H 1.Œ0; T �IH 2. zM// solving (7.2) associated
to b1; b2 2 H 2.@�SMe/ with b1jT @SM

C .T / D b2jT @SM
C .T / D 0, the estimateˇ̌̌ X

2�1.M/

Z T

0

Z
M

�.x/ a1.t; .x// a2.t; .x// dvg.x/ dt
ˇ̌̌

� CeC0T k�0kC1.M/

�
��1 C �3 k�0kC2.M/

�
ka1k� ka2k�

C CeC0T �kƒWg �ƒ
W
cgk�;� ka1k� ka2k�;

holds for all � > 1.
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Finally, Lemma 6.4 in [5] is replaced by:

Lemma 8.3. There exist C > 0 depending on .M; g; N0; �/ and C0 > 0 depending on
.M; g; �/ such that, for any b 2 H 2.@�SMe/ with bj

T @SM
C .T / D 0, the estimateˇ̌̌ Z

@�SMe

I e0 .�/.y; v/ b.y; v/ d��.y; v/
ˇ̌̌

� CeC0T
�
.��1 C �3 k�0kC2.M//k�0kC1.M/ C �kƒ

W
g �ƒ

W
cgk�;�

�
kbkH2.@�SM/

holds for all � > 1.

Proof of Theorem 4. We take b as in (5.5) with q replaced by �. By Lemmas 7.3, 5.3
and 5.4, there are C > 0 depending on .M; g; N0; �/ and C0 > 0 depending on .M; g/
such that

k…e
0�k

2
L2.Me/

� CeC0T
�� 1
�
C �3 k�0kC2.M/

�
k�0kC1.M/ C �kƒ

W
g �ƒ

W
cgk�;�

�
� k�kW 1;p.M/ C Ce

QT=2
k�k2Lp.M/

for some p > 2. By interpolation,

k…e
0�k

2
H1.Me/

� Ck…e
0�kL2.Me/k…

e
0�kH2.Me/

� CeC0T =2
�� 1
�
C �3 k�0kC2.M/

�
k�0kC1.M/ C �kƒ

W
g �ƒ

W
cgk�;�

�1=2
k�k

3=2

C1.M/

C CeQT=4 k�kLp.M/ k�kH1.M/:

We use (3.4) to deduce the bound

k�k2
L2.M/

� CeC0T =2.��1 C �3 k�0kC2.M//
1=2
k�0k

1=2

C1.M/
k�k

3=2

C1.M/

C CeC0T =2�1=2k�0k
3=2

C1.M/
kƒWg �ƒ

W
cgk

1=2
�;� CCe

QT=4
k�kLp.M/k�kH1.M/:

Taking � D k�0k
�1=4

C2.M/
, we obtain, for T > 0 large,

k�k2
L2.M/

� CeC0T
�
k�0k

17=8

C2.M/
C k�0k

11=8

C2.M/
kƒWg �ƒ

W
cgk

1=2
�;�

�
C CeQT=4 k�kLp.M/ k�kH1.M/

� CeC0T
�
"`k�0k

33=16

C2.M/
C kƒWg �ƒ

W
cgk

1=2
�;�

�
C CeQT=4k�kLp.M/k�kH1.M/;

where `D 1
16
.1� 2=k/. Choosing k >max.s; s0/ large enough as in the previous section,

we have for some ı; ı0 > 0 small the interpolation estimates (7.4), (7.5), and (7.6). Thus
we get that there are C > 0 depending on .M; g;N0; k/ and C0 > 0 depending on .M; g/
such that

k�0k
2
L2.M/

� CeC0T "` k�0k
2Cı
L2.M/

C CeC0T kƒWg �ƒ
W
cgk

1=2
�;� C Ce

QT=4
k�0k

2�2ı 0

L2.M/
:

We finally take T sufficiently large so that

CeQT=4 <
1

2
k�k2ı

0

L2
:
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This allows us to absorb the third term of the right-hand side into the left-hand side:

k�0k
2
L2.M/

� C "` k�0k
�2mı 0

L2
k�0k

2Cı
L2
C Ck�0k

�2mı 0

L2
kƒWg �ƒ

W
cgk

1=2
�;� ;

for m D 4C0=jQj > 0. Choosing ı > 2mı0 and taking " sufficiently small (depending
only on k1 � ckL2 ), we can absorb the first term of the right-hand side into the left-
hand side. Therefore, there exist ˇ > 0 depending on .M; g; �/ and C > 0 depending
on .M; g;N0; k; "/ such that

k�0kL2.M/ � Ckƒ
W
g �ƒ

W
cgk

ˇ
�;� ;

and the proof is complete.

9. Appendix

In this appendix, we discuss how to remove the boundary condition q1 D q2 on @M in
Theorems 1 and 3, at the cost of assuming more regularity on qj .

9.1. Boundary stability: the wave case

We follow the argument of [14], Section 3. Assuming that q1; q2 2 C4.M/, one can con-
struct two geometrical optics solutions .@2t C �g C qj /uj D 0 concentrated on a small
geodesic close to a boundary point x0 2 @M :

uj D e
i�.t� /.a0 C �

�1a
j
1 C �

�2a
j
2 /C vj DW u

1
j C vj ;

where  is a suitable solution to the eikonal equation jrg j D 1 with  jU\@M D x0: !
for some ! 2 Tx0@M ' Rn�1 satisfying j!0j < 1 (but close to 1), a0 solves a transport
equation involving only the metric and some derivatives of  , a0j@M D � 2 C1c ..0;T

0/�

@M IRC/ is some cutoff function equal to 1 near .t0; x0/, and aj1 ; a
j
2 solve the transport

equation

(9.1) i
�
2@t C 2r

g ��g 
�
a
j

k
D �.@2t C�g C qj /a

j

k�1
; a

j

k
j@M D 0:

By Lemma 4.3, one can construct the remainder term vj so that k@nvj kC0.Œ0;T 0�IL2.@M// D

O.��2/ for some small T 0 > 0, with uniform dependence with respect to kqj kC4.M/

and vj j.0;T 0/�@M D 0. Using that

ƒWg;qj .uj j@M / D e
it�.t� /

�
i�.@xn /a0 � @xna0 � �

�1@xna1
�
CO.��2/;

that ku1j kH1.Œ0;T 0��@M/ �C�, and choosing �� kƒWg;q1 �ƒ
W
g;q2
k
�1=3
� , one gets the bound@xna11 � @xna21L2.Œ0;T 0��@M/

� CkƒWg;q1 �ƒ
W
g;q2
k
1=3
� :

This implies 2j@xna
1
1 � @xna

2
1j D j.q1 � q2/�j by restricting (9.1) to .0; T 0/� @M . There-

fore, there is an open neighborhood V �U \ @M of x0 of uniform size andC >0 uniform
in kqj kC4 such that

kq1 � q2kL2.V / � Ckƒ
W
g;q1
�ƒWg;q2k

1=3
� :
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By interpolation and Sobolev embeddings, we get

kq1 � q2kC1.@M/ � Ckƒ
W
g;q1
�ƒWg;q2k

�
�

for some � > 0. We finally replace q2 by

Qq2 D q2 C �.kƒ
W
g;q1
�ƒWg;q2k

��=2
� dg.�; @M//.q1 � q2/

in Theorem 3 for some � 2 C1c .Œ0; 1// equal to 1 near 0 so that Qq2 D q1 on @M .

9.2. Boundary stability: the Schrödinger case

We use a similar argument for the Schrödinger equation. Assume that qj 2 C8.M/. We
construct a geometric optic solution of the form

uj .t; x/ D e
i�. .t;x/��t/

� 4X
kD0

a
j

k
.2�t; x/ ��k

�
C vj .t; x/ DW u

1
j .t; x/C vj .t; x/;

where aj0 .s; x/ solves the same transport equation as for the wave equation (thus not
depending on qj ) with aj0 j@M D �, and aj

k
for k � 1 solves

(9.2) i
�
2@t C 2r

g ��g 
�
a
j

k
.t; x/ D .�g � qj /a

j

k�1
.t; x/; a

j

k
j@M D 0;

and the remainder can be estimated by k@nvj kL2..0;T /�@M/ D O.��3/ using Lemma 3.2
in [4] and the fact that

k��4ei�. ��t/..�g � qj /a
j
4 /.2��; �//kH1.Œ0;T �IL2.M/ D O.��3/

(we loose �2 from the @t derivative but gain one ��1 from the change of variable t 7! t=�

in the dt integral as aj
k

are supported in time interval of size O.��1/). We then obtain

ƒSg;qj .uj j@M / D e
i�. ��t/

�
i�.@xn /a0 � @xna0 � �

�1@xna1
�
.2�t; x/COL2.�

�3/

Proceeding as for the wave equation, we deduce that@xna11 � @xna21L2.Œ0;T ��@M/
� CkƒWg;q1 �ƒ

W
g;q2
k
1=3
� ;

and the end of the proof is the same as for the wave equation.
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