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Local well-posedness for the gKdV equation on the
background of a bounded function

José Manuel Palacios

Abstract. We prove the local well-posedness for the generalized Korteweg–de Vries
equation in H s.R/, s > 1=2, under general assumptions on the nonlinearity f .x/,
on the background of an L1t;x-function ‰.t; x/, with ‰.t; x/ satisfying some suit-
able conditions. As a consequence of our estimates, we also obtain the unconditional
uniqueness of the solution in H s.R/. This result not only gives us a framework to
solve the gKdV equation around a Kink, for example, but also around a periodic solu-
tion, that is, to consider localized non-periodic perturbations of a periodic solution.
As a direct corollary, we obtain the unconditional uniqueness of the gKdV equation
in H s.R/ for s > 1=2. We also prove global existence in the energy space H1.R/,
in the case where the nonlinearity satisfies jf 00.x/j . 1.

1. Introduction

1.1. The model

The initial value problem for the k-Korteweg–de Vries equation (k-KdV)

(1.1)

´
@tuC @

3
xu˙ u

k@xu D 0; t 2 R; x 2 R; k 2 ZC;

u.0; x/ D u0.x/;

has been extensively studied in the last five decades and is one of the most famous equa-
tions in the context of dispersive PDEs. This family of equations includes the celebrated
Korteweg–de Vries (KdV) equation (case k D 1), which was derived as a model for
the unidirectional propagation of nonlinear dispersive long waves [30], and subsequently
found in the study of collision-free hydro-magnetic waves [14]. Nowadays, the KdV equa-
tion has shown applications to several physical situations, such as, for example, in plasma
physics, for the study of ion-acoustic waves in cold plasma [4, 49], as well as some rela-
tionships with the Fermi–Pasta–Ulam problem [31, 50–52]. Moreover, some connections
with algebraic geometry were given in [9] (see also [36] and the references therein). On
the other hand, in [48] it has been shown that this equation also describes pressure waves
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in a liquid-gas bubble mixture, as well as waves in elastic rods (see [45]). We refer to [36]
for a more extensive description of all of these (and more) physical applications.

In the case where k D 2, we find another fairly celebrated equation, the so-called
modified KdV equation, which also models the propagation of weak nonlinear dispersive
waves. In this regard, a large class of hyperbolic models has been reduced to the latter two
equations. It is worth to notice that there is a deep relationship between these two models
given by the Miura transformation [35].

These two cases (k D 1; 2) correspond to completely integrable systems, in terms of
the existence of a Lax-pair, and both of them have been solved via inverse scattering. An
interesting property of (1.1) is that these are the only two cases on which this equation
corresponds to a completely integrable system (see [12, 13]).

One of the most important features of equation (1.1) is the existence of solitary wave
solutions of both types, localized solitary waves and kink solutions. In the completely
integrable cases, these solutions correspond to soliton solutions, that is, they preserve their
shape and speed after collision with objects of the same type.

In this work we seek to study the initial value problem associated with the following
generalization of the k-KdV equation (1.1):

(1.2)

´
@tv C @x.@

2
xv C f .v// D 0;

v.0; x/ D ˆ.x/;

where v D v.t; x/ stands for a real-valued function, the nonlinearity f is also real-valued,
and t; x 2 R. Motivated by the study of Kink solutions, here we do not intend to assume
any decay of the initial data ˆ.x/ but, for the moment, only that ˆ 2 L1.R/. Instead, we
decompose the solution v.t; x/ in the following fashion:

(1.3) v.t; x/ D u.t; x/C‰.t; x/;

where we assume that ‰ 2 L1.R2IR/ is a given function (see (1.7) below for the spe-
cific hypotheses on ‰) and we seek for u.t/ 2 H s.R/. Then it is natural to rewrite the
above IVP in terms of the Cauchy problem associated with the generalized Korteweg–
de Vries (gKdV) equation

(1.4)

´
@tuC @t‰ C @x

�
@2xuC @

2
x‰ C f .uC‰/

�
D 0;

u.0; x/ D u0.x/ 2 H
s.R/:

We stress that equation (1.4) is nothing else than equation (1.2) once replacing the decom-
position given in (1.3). In the case where f .x/D x2 and‰ D ‰.x/ is a time-independent
function belonging to the so-called Zhidkov class

Z.R/ WD
®
‰ 2 D 0.R/ W ‰ 2 L1.R/; ‰0 2 H1.R/

¯
;

this equations has been used to model the evolution of bores on the surface of a channel,
incorporating nonlinear and dispersive effects intrinsic to such propagation [5].

Important. In this work we only assume that f WR! R is a real-analytic function
satisfying that its Taylor expansion around zero has infinite radius of convergence, that is,
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there exists a family ¹akºk2N � R such that, for all x 2 R, the nonlinearity f .x/ can be
represented as

(1.5) f .x/ D

1X
kD0

akx
k ; with lim sup

k!C1

k
p
jakj D 0:

Notice that any polynomial p.x/ satisfies the previous hypothesis, as well as exp.x/,
sinh.x/, cosh.x/, sin.x/, cos.x/, p.sin.x//, etc.

It is worth to notice that, since equation (1.4) can be regarded as a perturbation of
the gKdV equation (1.2) with initial data v.0; � / 2 H s.R/, one might think that, in order
to prove local well-posedness for equation (1.4), it is reasonable to proceed by using the
contraction principle as in [24]. However, it seems that this does not even hold in the case
where f .x/ D x2, due to the occurrence of the term ‰@xu, since ‰ is not integrable,
which makes this problem more involved even for the KdV case.

As mentioned before, one of our main motivations comes from studying Kink solu-
tions. For instance, we can consider the defocusing modified Korteweg–de Vries (mKdV)
equation, that is, f .u/D �u3, as well as the Gardner equation, that is, f .u/D u2 � ˇu3.
Both equations are well known to have Kink solutions given by (respectively, see [17])

‰mKdV;c.t; x/ D ˙
p
c tanh

�rc

2
.x C ct/

�
; c > 0;

‰Gardner;c.t; x/ D
1

3ˇ
˙

1p
ˇ
ˆmKdV;c

�
t; x �

t

3ˇ

�
; ˇ > 0:

Moreover, at the same time we also seek to give a framework to study localized non-
periodic perturbations of periodic solutions for the generalized model (1.4), such as, for
example, the famous cnoidal and dnoidal wave solutions of the KdV and the mKdV equa-
tions (respectively)

(1.6) ‰cn;c.t; x/ WD ˛ C ˇcn2..x � ct/; �/; ‰dn;c.t; x/ WD ˇdn..x � ct/; �/;

with c > 0 and .˛; ˇ; ; �/ 2 R4 satisfying some suitable conditions, where cn. � ; � / and
dn. � ; � / stand for the Jacobi elliptic cnoidal and dnoidal functions, respectively (see [30]).

It is important to mention that the gKdV equation (1.2) enjoys (at least formally)
several conservation laws, such as the conservations of the mean, the mass and the energy,
which are given by (respectively)

I1.v.t// WD

Z
R
v.t; x/ dx D I1.v0/;

I2.v.t// WD

Z
R
v2.t; x/ dx D I2.v0/;

I3.v.t// WD

Z
R

�
v2x.t; x/ � F.v.t; x//

�
dx D I3.v0/;

where F. �/ stands for a primitive of f . �/. However, due to the presence of ‰.t; x/, none
of these quantities are well-defined for solutions of equation (1.4). Although, a suitable
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modification of the energy functional I3 shall play a key role in proving global well-
posedness in H 1.R/ when f .x/ grows at most as x2 (see Theorem 1.8 below).

Important. In the sequel we shall always assume that the given function ‰.t; x/ sat-
isfies the following hypotheses:

(1.7)

8̂<̂
:
@t‰ 2 L

1.R2/;

‰ 2 L1.R; W sC1C;1.R//;

.@t‰ C @
3
x‰ C @xf .‰// 2 L

1.R;H sC.R//:

Remark 1.1. Note that any function ‰ D ‰.x/ 2 L1.R/ such that ‰0 2 H1.R/, for
example, ‰ being a Kink, satisfies all the conditions in (1.7). Hence, equation (1.4)
together with conditions (1.7) contain as particular cases all the frameworks considered
in [5, 11, 18, 53]. However, we do not require that ‰.t; x/ has well-defined limits at ˙1
as in those previous works. For instance, if ‰ D ‰.t; x/ solves the gKdV equation (1.2),
then the latter expression in (1.7) is identically zero, and hence the third hypothesis is
immediately satisfied. In particular, we can consider ‰.t; x/ being a periodic solution of
the gKdV equation. Nevertheless, ‰.t; x/ does not need to be a solution, neither to have a
smallH sC-norm once replaced in the equation. For example, we can solve equation (1.4)
with ‰ being

‰.t; x/ D 1C 4 tanh.x C t /C cos.log.1C x2 C t2//:

Notice that this function does not have symmetries (neither odd nor even), nor well-defined
limits at˙1; also, none of its derivatives has exponential decay. Clearly, it does not solve
the equation either, whereas it satisfies all the conditions in (1.7) for any s > 1=2 (for
example).

1.2. Unconditional uniqueness

The generalized Korteweg–de Vries equation (1.2) has been proven to be locally well-
posed (LWP) for regular localized initial data in [1, 6, 21, 46]. Since then, considerable
effort has been devoted to understand the Cauchy problem (1.1) with rough data. In the
seminal work of Kenig, Ponce and Vega, LWP for equation (1.1) has been established
in H s-spaces, for all k 2 ZC, with s moving in a range that depends on k. In the case
where k � 4, these results are sharp, in the sense that they reach the critical index given
by the scaling invariance [24]. This proof relies on Strichartz estimates, along with local
smoothing effect and maximal estimates. Then a normed functional space is constructed
based on these estimates, which allows them to solve (1.1) via a fixed point argument. The
solutions obtained in this way are obviously unique in such a resolution space. However,
as explained in [43], the question of whether this uniqueness holds for solutions that do
not belong to these resolution spaces turns out to be far from trivial at this level of regu-
larity. This type of question was first raised by Kato in [22] in the context of Schrödinger
equations. We refer to such uniqueness in L1..0; T /;H s.R//, without intersecting with
any other auxiliary functional space as unconditional uniqueness. This type of uniqueness
has been shown to be useful, for example, to pass to the limit in perturbative analysis when
one of the coefficients of the equation tends to zero (see [38] for instance).



Local well-posedness for the gKdV equation on the background of a bounded function 345

1.3. Main results

In the remainder of this work, we focus on studying the Cauchy problem associated
with (1.4). Before going further, let us give a precise definition of what we mean by a
solution.

Definition 1.2. Let T >0 and s>1=2, both being fixed. Consider u2L1..0;T /;H s.R//.
We say that u.t; x/ is a solution to (1.4) emanating from the initial data u0 2 H s.R/
if u.t; x/ satisfies (1.4) in the distributional sense, that is, for any test function � 2
C10 ..�T; T / �R/, we haveZ 1

0

Z
R

�
.�t C �xxx/uC �x.f .uC‰/ � f .‰//

�
dxdt C

Z
R
�.0; x/u0.x/ dx(1.8)

D �

Z 1
0

Z
R

�
.�t C �xxx/‰ C �xf .‰/

�
dxdt �

Z
R
�.0; x/‰.0; x/ dx:

Remark 1.3. Notice that, for u 2 L1..0; T /;H s.R// with s > 1=2, we have that up is
well defined for all p 2 N, which, along with (1.5) and (1.7), implies that

f .uC‰/ � f .‰/ 2 L1..0; T /;H s.R//:

Thus, relation (1.8) and the hypotheses in (1.7) forces that ut 2L1..0; T /; H s�3.R//,
and hence (1.4) is satisfied in L1..0; T /;H s�3.R//. In particular, we infer that

(1.9) u 2 C.Œ0; T �;H s�3.R//:

Moreover, from hypotheses (1.7), we infer that ‰ 2 C.Œ0; T �; L1.R//, which in turn,
together with (1.8) and (1.9), forces the initial condition u.0/ D u0. On the other hand,
notice that we also have u 2 Cw.Œ0; T �;H s.R// and u 2 C.Œ0; T �;H � .R// for all � < s.
Finally, we stress that the above relations also ensure that u satisfies the Duhamel formula
associated with (1.4) in C.Œ0; T �;H s�3.R//.

Our first main result give us the (unconditional) local well-posedness for (1.4).

Theorem 1.4 (Local well-posedness). Let s > 1=2 be fixed. Consider f WR! R to be
any real-analytic function such that its Taylor expansion around zero has infinite radius
of convergence. Consider also ‰.t; x/ satisfying the conditions in (1.7). Then, for any
u0 2 H

s.R/, there exist T D T .ku0kH s / > 0 and a solution u to the IVP (1.4) such that

u 2 C.Œ0; T �;H s.R// \ L2TW
s�;1
x \X

s�1;1
T :

Furthermore, the solution is unique in the class

u 2 L1..0; T /;H s.R//:

Also, the data-to-solution mapˆWu0 7!u is continuous fromH s.R/ intoC.Œ0;T �;H s.R//.

Remark 1.5. We refer to the next section for a definition of Bourgain spaces X s;b and
their corresponding time-restricted versions X s;bT .
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Remark 1.6. Notice that the previous theorem allows us both to take f .x/ being any
polynomial but also to consider f .x/D ex . In particular, if f .x/D x2 or f .x/D x3, the
previous theorem allows us to take ‰.t; x/ being, for instance, a periodic solution such as
the cnoidal or dnoidal wave solutions (or any other traveling wave solution) given in (1.6),
respectively.

As a direct corollary of the previous theorem, by considering ‰ � 0, we infer the
unconditional uniqueness for the gKdV equation (1.2), for initial data v0 2 H s.R/ with
s > 1=2.

Theorem 1.7. The Cauchy problem associated with (1.2) is unconditionally locally well-
posed in H s.R/ for s > 1=2.

Finally, under some extra conditions on the growth of f .x/, we prove global well-
posedness (GWP) for equation (1.4).

Theorem 1.8 (GWP in H 1.R/). Assume further that f WR! R satisfies

jf 00.x/j . 1 for all x 2 R:

If the initial data u0 2 H s.R/, with s � 1, then the local solution u.t/ provided by Theo-
rem 1.4 can be extended for any T > 0.

Remark 1.9. Note that the previous theorem gives the GWP, in particular, for f .x/D x2

but also for f .x/ D sin.x/ or f .x/ D cos.x/ as nonlinearities.

Remark 1.10. We stress that Theorems 1.4 and 1.8 give us the local and global well-
posedness for H s.R/-perturbations, s > 1=2 and s � 1, respectively, of regular periodic
solutions of the KdV equation, in particular, forH s.R/-perturbations of periodic traveling
waves solutions.

From the above results we are able to deduce local well-posedness for equation (1.2)
on Zhidkov spaces. To this end, we introduce Zs.R/ as the function space given by

Zs.R/ WD
®
‰ 2 D 0.R/ W ‰ 2 L1.R/; ‰0 2 H s�1.R/

¯
;

endowed with the natural norm k‰kZs WD k‰kL1 C k‰0kH s�1 .

Theorem 1.11. Let s > 1=2. Consider f WR! R to be any real-analytic function such
that its Taylor expansion around zero has infinite radius of convergence. Then, for any
v0 2 Zs.R/, there exist T D T .kv0kZs / > 0 and a solution v to the IVP (1.2) such that

v 2 C.Œ0; T �;Zs.R// \ L2T W
s�;1
x and v � v0 2 C.Œ0; T �;H

s.R//:

Furthermore, the solution is unique in the class

v.t/ � v0 2 L
1..0; T /;H s.R//:

Also, the data-to-solution mapˆWv0 7!v.t/ is continuous from Zs.R/ intoC.Œ0;T �;Zs.R//.
Moreover, if s � 1 and f .x/ satisfies jf 00.x/j . 1 for all x 2 R, then the solution v.t/
can be extended for all times T > 0.
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Our method of proof relies in the improvements of the energy method, recently devel-
oped in [39, 40, 43], along with symmetrization arguments previously used in [8], for
example. However, due to the presence of ‰.t; x/ (which breaks the symmetry) and the
general nonlinearity, the present analysis shall be more involved than the previous cases.

At this point it is important to remark that local well-posedness in such a general
framework has never been established for equation (1.4) before. However, the smooth
case is by no means a new result, but rather a suitable rewriting of the previous proofs
(see [1,18] for example). For the sake of completeness, we prefer to state this theorem and
give a brief proof of its most important parts (see Section 5). In fact, the key point to prove
LWP for equation (1.2) in the smooth case are the commutator estimates which, in the
case of equation (1.4), can be performed with almost no changes (with respect to [1, 18])
thanks to our hypothesis on ‰.

1.4. Previous literature

Concerning the local well-posedness of equation (1.1), there exists a vast literature for
each case of k 2 ZC. In the case where k D 1, Kenig, Ponce and Vega [25] showed the
LWP inH s.R/ for s >�3=4 via the contraction principle. Later, Guo and Kishimoto inde-
pendently proved GWP for s D �3=4 (see [16, 28]). This result is sharp [7], in the sense
that the flow map fails to be uniformly continuous in H s.R/ for s < �3=4. Then GWP
was proved for s > �3=4 by using the I -method [8]. Without asking for the uniform con-
tinuity but just continuity of the data-to-solution map, by using the complete integrability
of the equation, Killip and Visan [27] showed GWP inH�1.R/, which is the lowest index
one can obtain due to the result of Molinet [37], which ensures that this map cannot be
continuous belowH�1.R/. On the other hand, Zhou [54] demonstrated the unconditional
uniqueness in L2.R/. In the periodic case, LWP was proved in H s.T / for s � �1=2 by
Kenig, Ponce and Vega [25]. These local-in-time solutions are also shown to exist on an
arbitrary time interval. Moreover, the unconditional uniqueness in L2.T / was established
in [3]. In this case the best result is due to Kappeler and Topalov [20] in H�1.T /.

Concerning the mKdV case, that is when k D 2, the result of Kenig, Ponce and Vega
ensures the LWP for s � 1=4 on the line [24]. It has been proven that this result is sharp, in
the sense that the flow map fails to be uniformly continuous inH s.R/ as soon as s < 1=4,
for both the focusing mKdV [26] and the defocusing one [7]. Then GWP was shown for
s > 1=4 in [8] by using the I -method (see also [10]). Moreover, unconditional uniqueness
inH s.R/ for s > 1=3 was established by Molinet et al. in [40], and recently improved for
s > 1=4 by Kwon et al. in [32]. On the other hand, in the periodic case, unconditional LWP
for s � 1=3 was proved by Molinet et al. in [41], by using the improved energy method
developed in [43] together with the construction of modified energies (see also [44]).
Furthermore, global well-posedness has been shown in H s.T / for s � 1=2 in [8].

In the case where k D 3, we refer to [15] for the LWP in H s.R/ for s � �1=6, and to
[24] for the local well-posedness in the case where k � 4, up to the critical index given by
the scaling invariance (inclusive). These results do not address unconditional uniqueness.

Regarding equation (1.4), as far as we know this equation has never been treated
in such a general framework, and hence there is no abundant specific literature for it.
However, in the case of the KdV equation, i.e., f .x/ D x2, with ‰ D ‰.x/ being a time-
independent function belonging to the Zhidkov class, we find the result of Iorio et al. [18]
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for regular data (see also [5]). To the best of our knowledge, the best result to date (in the
previously mentioned framework) is given by Gallo [11], where LWP was established for
the KdV case for s > 1 under the same hypothesis on‰.x/ as in the work of Iorio et al [18].
Note that Theorem 1.11 extends both results [11, 18] to the whole range s 2 .1=2; 1� and
also provides the GWP in the case s � 1. On the other hand, in the case of general nonlin-
earity f .x/, under some extra conditions concerning the values of ‰.x/ at ˙1 and the
value of the integral of f .x/ on the region Œ‰.�1/; ‰.C1/�, Zhidkov [53] established
local well-posedness for data in H 2.R/. In the same work, he also proved the H 1.R/
orbital stability of Kinks of equation (1.4) for H 2 solutions. Then, by using this stability
property, he showed the global existence of H 2 solutions for small H 1-perturbations of
such Kinks. In order to prove these results, Zhidkov assumed, among other hypotheses,
that ‰0.x/ > 0 for all x 2 R, and that ‰.x/ converges exponentially fast to its limits
at ˙1. As we already mentioned, Theorem 1.4 contains (and improves) the results in
[5, 11, 18, 53]. In particular, notice that Theorem 1.11 allows us to extend the existence
and the stability result of Zhidkov by only considering H 1-solutions which are H 1-close
to those Kinks. Finally, we point out that, in the case f .x/D x2, Theorem 1.4 is related to
the existence problem for the KdV equation with variable coefficients, which has recently
been treated by a similar approach in [42].

During the review process of this work the author found out that, simultaneously, in the
specific case of the KdV equation, T. Laurens proved global well-posedness in H�1.R/
on the background of a smooth step-like function (see [33, 34]).

1.5. Organization of this paper

This paper is organized as follows. In Section 2 we introduce all the notations that we
shall use in the sequel, and then we state a series of preliminary results needed in our
analysis. In Section 3 we prove the main a priori energy estimates for solutions and for
the difference of solutions. In Section 4 we establish Theorem 1.4. Then in Section 5
we sketch the proof of the LWP in the smooth case (see Theorem 5.1 below). Finally, in
Section 6 we prove the global well-posedness result, i.e., Theorem 1.8.

2. Preliminaries

2.1. Basic notations

For any pair of positive numbers a and b, the notation a . b means that there exists a
positive constant c such that a � cb. We also denote by a � b when a . b and b . a.
Moreover, for ˛ 2R, we denote by ˛C, respectively ˛�, a number slightly greater, respec-
tively lesser, than ˛. Furthermore, we shall occasionally use the notation F.x/ to denote
a primitive of the nonlinearity f .x/, that is, F.s/ D

R s
0
f .s0/ds0.

Now, for u.t; x/ 2 � 0.R2/, F u D Ou shall denote its space Fourier transform, whereas
Ftu, respectively Ft;xu, shall denote its time Fourier transform, respectively space-time
Fourier transform. Additionally, for s 2 R, we introduce the Bessel and Riesz potentials
of order �s, namely, J sx and Ds

x , given by (respectively)

J sxu WD F �1
�
.1C j�j2/s=2F u

�
and Ds

xu WD F �1.j�jsF u/:
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We also denote by U.t/ the unitary group associated with the linear part of (1.1), that is,
the Airy group

U.t/g WD e�@
3
xg D F �1.eit�

3

F g/:

On the other hand, throughout this work we consider a fixed smooth cutoff function �
satisfying

(2.1) � 2 C10 .R/; 0 � � � 1; �jŒ�1;1� D 1 and supp � � Œ�2; 2�:

We define �.�/ WD �.�/ � �.2�/ and, for ` 2 Z, we denote by �2` the function given by

�2`.�/ WD �.2
�`�/:

Additionally, we shall denote by  2` the function given by

 2`.�; �/ WD �2`.� � �
3/ for ` 2 N n ¹0º;  1.�; �/ WD �.� � �

3/:

Any summations over capitalized variables such as N , L, K or M are presumed to be
dyadic. Unless stated otherwise, we work with homogeneous dyadic decomposition for
the space-frequency and time-frequency variables, and nonhomogeneous decompositions
for modulation variables, i.e., these variables range over numbers of the form ¹2` W ` 2 Zº
and ¹2` W ` 2Nº, respectively. We denote these sets by D and Dnh, respectively. Then with
the previous notations and definitions, we have thatX

N2D

�N .�/ D 1 for all � 2 R n ¹0º; supp�N �
°1
2
N � j�j � 2N

±
:

In the same fashion, X
L2Dnh

 L.�; �/ D 1 for all .�; �/ 2 R2:

We define the Littlewood–Paley multipliers by the following identities:

(2.2) PNu WD F �1x .�NF u/; RKu WD F �1t .�KFtu/ QLu WD F �1t;x . LFt;xu/:

With these definitions at hand, we introduce the operators

P�N WD
X
M�N

PM ; P�N WD
X
M�N

PM ; Q�L WD
X
QL�L

Q QL; Q
� QL WD

X
QL�L

Q QL:

In addition, we borrow some notations from [47]. For a natural number k � 2 and � 2 R,
we denote the .k � 1/-dimensional affine-hyperplane of Rk by

�k.�/ WD
®
.�1; : : : ; �k/ 2 Rk W �1 C � � � C �k D �

¯
;

endowed with the natural measureZ
�k.�/

F.�1; : : : ; �k/ d�
k.�/ WD

Z
Rk

F.�1; : : : ; �k�1; � � �1 � � � � � �k�1/ d�1 � � � d�k�1;
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for any function F W�k.�/! C. Moreover, when � D 0 we shall simply denote by �k D
�k.0/ with the obvious modifications.

To finish this first subsection, we introduce the notation for the pseudoproduct oper-
ator that we shall repeatedly use in the sequel. Let � be a (possibly complex-valued)
measurable bounded function on R2. We define the operator … D …� on �.R/2 by the
expression

(2.3) F .….f; g//.�/ WD

Z
R

Of .�1/ Og.� � �1/�.�; �1/ d�1:

This bilinear operator behaves as a product operator in the sense that it satisfies the fol-
lowing properties:

….f; g/ D fg when � � 1 and
Z
…�.f; g/h D

Z
f …�1.g; h/ D

Z
…�2.f; h/g;

where �1.�; �1/ D x�.�1; �/ and �2.�; �1/ D x�.� � �1; �/ for all trio of functions f; g; h 2
�.R/. Throughout this paper we shall also use pseudoproduct operators with k-entries,
which are defined as in (2.3) with the obvious modifications.

2.2. Function spaces

For s; b 2 R, we define the Bourgain space X s;b associated with the linear part of (1.1) as
the completion of the Schwarz space �.R2/ under the norm

kuk2
Xs;b
WD

Z
R2

.1C j� � �3j/2b.1C j�j/2sjFt;x Œu�.�; �/j
2d� d�:

We recall that these spaces satisfy

kukXs;b � kU.�t /ukH s;b
t;x
; where kuk

H
s;b
t;x
WD kJ sx J

b
t ukL2t;x

:

Additionally, we define the frequency-enveloped spaces associated with H s.R/ as fol-
lows: Let s 2 R and � > 1 be fixed. Consider a sequence ¹!N ºN2D of positive real
numbers satisfying !N �!2N � 2"!N , for some "> 0 such that "<min¹ı1; ı2º, where ı1
and ı2 are the small numbers associated with the choices we make in the hypotheses

(2.4) ‰ 2 L1t W
sC1C;1
x and .@t‰ C @

3
x‰ C @xf .‰// 2 L

1
t H

sC

x :

In other words, if we assume (2.4) for some ı1; ı2 > 0 small, then we assume, in particular,
that !N satisfies

!N

N ı�

N!C1
�����! 0; ı� WD min¹ı1; ı2º:

Furthermore, we also assume that !N ! 1 as N ! 0. Then we define the space H s
!.R/

associated with ¹!N º as the completion of the Schwartz space �.R/ under the norm

kf k2H s
!
WD

X
N

!2N kPNf k
2
H s �

X
N

!2NN
2s
kPNf k

2
L2
:
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Of course, by definition, we have H s
!.R/ � H

s.R/. Moreover, if !N D 1 for all N 2 D,
then H s

! D H
s . The goal we seek by introducing these frequency-enveloped spaces is to

be able to prove the continuity part in Theorem 1.4.
Finally, we define the restriction-in-time version of all of the above spaces. Let T > 0

be fixed, and consider F to be any normed space of space-time functions. We define its
restriction in time version FT as the space of functions uW Œ0; T � �R! R satisfying

kukFT WD inf
®
k QukF j QuWR �R! R; with Qu D u on Œ0; T � �R

¯
< C1:

2.3. Extension operator

In this subsection we introduce the extension operator that we shall use in the sequel.
We borrow this definition from [40]. The key property of this operator is that it defines a
bounded operator from L1T H

s
! \ X

s�1;1
T \ L2TW

r;1
x into L1t H

s
! \ X

s�1;1 \ L2tW
r;1
x

with r < s.

Definition 2.1. Given T 2 .0; 2/ and uW Œ0; T � � R! R, we define the extension opera-
tor �T by the following identity:

(2.5) �T Œu�.t/ WD U.t/ �.t/ U.��T .t// u.�T .t//;

where � corresponds to the function given in (2.1) and �T is the continuous function

�T .t/ WD

8̂<̂
:
0 if t � 0;
t if t 2 .0; T /;
T if t � T:

Remark 2.2. Notice that, directly from the definition, we have �T Œu�.t; x/ D u.t; x/ for
all .t; x/ 2 Œ0; T � �R.

The next lemma give us the main properties of this operator (see [40]).

Lemma 2.3. Let T 2 .0;2/ be fixed. Consider .s; r; �; b/ 2R4 with r < s and b 2 .1=2;1�.
Then the following holds:

�T WL
1
T H

s
! \X

�;b
T \ L2TW

r;1
x 7! L1t H

s
! \X

�;b
\ L2tW

r;1
x :

In other words, we have the following inequality:

k�T Œu�kL1t H s
!
C k�T Œu�kX�;b C k�T Œu�kL2tW

r;1
x

. kukL1T H s
!
C kuk

X
�;b
T

C kukL2TW
r;1
x
:

Moreover, the implicit constant involved in the latter inequality can be chosen independent
of .T; s; r; �; b/.

2.4. Resolution space

From now on, for any s 2 R and any sequence ¹!N ºN2D satisfying the hypotheses in
Section 2.2, we define the resolution space

Ms
! WD L

1
t H

s
! \X

s�1;1;
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endowed with the natural norm

(2.6) kukMs
!
WD kukL1t H s

!
C kukXs�1;1 :

When !N � 1, we simply write Ms DMs
! . Before going further we recall the following

basic lemma concerning Sobolev spaces.

Lemma 2.4 (See [2] for example). Let a; b; c 2 R be a triplet of real numbers satisfying

a � c; b � c; aC b � 0 and aC b � c >
n

2
�

Then the map .f; g/ 7! f � g is a continuous bilinear form from H a.Rn/ � H b.Rn/
into H c.Rn/.

The following lemma ensures us that L1T H
s
!-solutions also belong to Ms

!;T , whereas
the difference of two solutions in L1T H

s
x take place in Ms�1

T .

Lemma 2.5. Let s > 1=2 and T 2 .0; 2/ be given. Let u 2 L1..0; T /; H s
!.R// be a

solution to equation (1.4) with initial data u0 2H s
!.R/. Then u 2Ms

!;T and the following
inequality holds:

kukMs
!;T

.
�
1C T 1=2F1.kukL1T H

s
x
; k‰k

L1T W
sC;1
x

/
�
kukL1T H

s
!

(2.7)

C T 1=2k@t‰ C @
3
x‰ C @xf .‰/kL1T H

s�1
x
;

where F1WR2 ! RC is a smooth function. Also, for any pair u; v 2 L1..0; T /;H s.R//
of solutions to equation (1.4) associated with initial data u0; v0 2 H s.R/, the following
holds:

(2.8) ku�vkMs�1
T

.
�
1CT 1=2F2.kukL1T H

s
x
; kvkL1T H

s
x
; k‰k

L1T W
sC;1
x

/
�
ku�vkL1T H

s�1
x
;

for some smooth function F2WR3 ! RC.

Proof. First of all, we have to extend the functions u.t/ and v.t/ from .0; T / to the whole
line R. Hence, we benefit from the extension operator �T defined in (2.5), which we use
to take extensions Qu WD �T Œu�, Qv WD �T Œv� defined on R2, both supported in .�2; 2/. For
the sake of notation, we drop the tilde in the sequel.

Once we have extended (in time) both solutions, comparing inequality (2.7) with the
definition of the Ms

T norm in (2.6), it is clear that it is enough to estimate theX s�1;1-norm.
In fact, let us start out by writing the solution in its Duhamel form

u.t/ D U.t/u0 C c

Z t

0

U.t � t 0/
�
@t‰ C @

3
x‰ C @xf .uC‰/

�
dt 0:

Then, by using standard linear estimates in Bourgain spaces, we obtain

kuk
X
s�1;1
T

. kukL1T H s�1
x
C k@t‰ C @

3
x‰ C @xf .‰/kXs�1;0T

(2.9)

C k@x.f .uC‰/ � f .‰//kXs�1;0T

. kukL1T H s�1
x
C T 1=2k@t‰ C @

3
x‰ C @xf .‰/kL1T H

s�1
x

C T 1=2kf .uC‰/ � f .‰/kL1T H
s
x
:
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Now, from the classical Sobolev estimates for products, it is not difficult to see that there
exists a constant c > 0 such that, for k;m 2 N, with k � m,

(2.10) kgk�mhmkH s � ckkgkk�mH s khk
m

W sC;1
; s > 1=2:

Then, to control the contribution of the latter term in (2.9), it is enough to use the Taylor
expansion to get

kf .uC‰/ � f .‰/kL1T H
s
x

.
1X
kD1

k�1X
mD0

ckjakj

�
k

m

�
kukk�mL1T H

s
x
k‰km

L1T W
sC;1
x

. kukL1T H s
x

1X
kD1

kckjakj
�
kukL1T H

s
x
C k‰k

L1T W
sC;1
x

�k�1
:

This concludes inequality (2.7) thanks to the hypothesis on the coefficients ak in (1.5).
Now we turn to show (2.8). In order to do so, let us define w WD u� v. Notice that w.t; x/
solves the following equation:

@tw C @x
�
@2xw C f .uC‰/ � f .v C‰/

�
D 0:

Thus, writing w.t; x/ in its Duhamel form, and then using standard linear estimates for
Bourgain spaces, we get

kwk
X
s�2;1
T

. kwkL1T H s�2
x
C T 1=2kf .uC‰/ � f .v C‰/kL1T H

s�1
x
:

Then, by using Taylor expansion, proceeding in a similar fashion as above, it is not difficult
to see that

kf .uC‰/ � f .v C‰/kL1T H
s�1
x

. kwkL1T H s�1
x

1X
kD1

k ck jakj
�
kukL1T H

s
x
C kvkL1T H

s
x
C k‰k

L1T W
sC;1
x

�k�1
;

where we have used again (2.10), as well as Lemma 2.4. The proof is complete.

2.5. Preliminary lemmas

For T > 0 fixed, we consider 1T .t/, the characteristic function on Œ0;T �. Then, for � given
in (2.1) and R > 0, we decompose 1T .t/ as

(2.11) 1T .t/ D 1low
T;R.t/C 1high

T;R.t/; where Ft .1low
T;R/.�/ D �

� �
R

�
Ft .1T /.�/:

The following lemma gives us some basic estimates that shall be particularly convenient
to take advantage of the above decomposition along with Bourgain spaces.

Lemma 2.6 (See [43]). For any R > 0, T > 0 and q � 1, the following bounds hold:

(2.12) k1high
T;RkL

q . min¹T;R�1º1=q and k1low
T;RkL1 . 1:



J. M. Palacios 354

Moreover, if L� R, then for all u 2 L2.R2/, the following inequality holds:

kQL.1low
T;Ru/kL2 . kQ�LukL2 :

Furthermore, for any s 2 R and any p 2 Œ1;1�, the operator Q�L is bounded in Lpt H
s
x

uniformly in L.

Proof. We point out that the only part which is not strictly contained in [43] is given by
the first inequality in (2.12). However, this proof follows very similar lines, except for one
straightforward step, and hence we shall be brief. In fact, a direct computation yields

k1high
T;RkL

q D

� Z
R

ˇ̌̌ Z
R

�
1T .t/ � 1T

�
t �

s

R

��
F �1�.s/ ds

ˇ̌̌q
dt
�1=q

�

Z
R

� Z
R

ˇ̌̌
1T .t/ � 1T

�
t �

s

R

�ˇ̌̌q
jF �1�.s/jq dt

�1=q
ds

.
Z

R
min

°
T;
jsj

R

±1=q
jF �1�.s/j ds . min¹T;R�1º1=q;

where to obtain the first inequality, we have used Minkowski integral inequality. The proof
is complete.

Lemma 2.7 ([43]). Let k � 3 be a fixed parameter, and consider L1; : : : ; Lk � 1 and
N1; : : : ; Nk > 0 to be a list of 2k dyadic numbers. Consider also ¹uiºkiD1 � � 0.R2/, all
of them being real-valued, and let � 2 L1.R2IC/. Additionally, assume that N1 � N2 �
N3 � 2

9kmax¹N4; : : : ; Nkº.1 Then the following identity holds:Z
R2

…�.QL1PN1u1;QL2PN2u/

kY
iD3

QLiPNiu D 0;

unless Lmax � .2
9k/�1N1N2N3, where Lmax WD max¹L1; : : : ; Lkº.

Finally, we prove some basic lemmas concerning the application of Hölder’s inequality
with some particular instances of pseudo-product operators that shall appear in the next
section.

Lemma 2.8. Let k � 2 be a fixed natural number. Consider k functions u1; : : : ; uk 2
L2.R/ such that each of them is supported in the annulus ¹j�i j � Niº. Additionally, con-
sider a continuous function a 2 C.Rk/. Then the following inequality holds:

ˇ̌̌ Z
�k
a.�1; : : : ; �k/u1.�1/ : : : uk.�k/ d�

k
ˇ̌̌

. .N3 : : : Nk/
1=2
kakL1.�k/

kY
iD1

kuikL2 ;

where
�k WD

®
.�1; : : : ; �k/ 2 �

k
W 8i D 1; : : : ; k; �i 2 suppui

¯
:

1If k D 3, we omit the last inequality.
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Proof. Let us start by assuming that k � 3, since the case k D 2 is direct. In fact, first of
all we get rid of a.�1; : : : ; �k/ simply by bounding as follows:ˇ̌̌ Z

�k
a.�1; : : : ; �k/u1.�1/ : : : uk.�k/ d�

k
ˇ̌̌
� kakL1.�k/

Z
�k
ju1.�1/ : : : uk.�k/j d�

k :

Then it is enough notice that we can bound the latter integral in the above inequality byZ
�k
ju1.�1/ � � �uk.�k/jd�

k
� sup
�3;:::;�k

Z
R
ju1.��2 � � � � � �k/u2.�2/jd�2 �

kY
iD3

Z
R
jui .�/jd�:

Finally, by the Cauchy–Schwarz inequality and the supports hypotheses, we haveZ
R
jui .�/jd� .N

1=2
i kuikL2 and

ˇ̌̌ Z
R
u1.��2 � � � � � �k/u2.�2/ d�2

ˇ̌̌
. ku1kL2ku2kL2 :

The proof is complete.

Lemma 2.9. Let k � 2 and m 2 Œ2; k C 1� be two fixed natural numbers. Additionally,
consider a family of dyadic numbers ¹NiºkC2iD1 , all of them being fixed. Let u1; : : : ; ukC1 2
L2.R/ be such that each of them has Fourier transform supported on the ball ¹j�i j � Niº,
respectively. Furthermore, assume that M D max¹N3; : : : ; NkC1º. Then the following
holds:ˇ̌̌ Z

�kC1
a.�1; : : : ; �k/ Ou1.�1/ : : : OukC1.�kC1/ d�

kC1
ˇ̌̌

. Mku1kL2ku2kL2

kC1Y
iD3

kuikL1 ;

where the implicit constant depends polynomially on k and a.�1; : : : ; �k/ stands for the
following quantity:

(2.13) a.�1; : : : ; �k/ WD

mX
iD1

�2NkC2.�i /�i ; where �kC1 D ��1 � � � � � �k :

Proof. In fact, first of all notice that, except for the terms associated with i D 1; 2 in
the definition of a.�1; : : : ; �k/, the proof follows directly from Plancherel’s theorem and
Hölder’s inequality. Indeed, going back to physical-variables and then using Hölder’s
inequality as well as Bernstein inequalities, we obtainˇ̌̌ Z

�kC1

�
a.�1; : : : ; �k/ � �

2
NkC2

.�1/�1 � �
2
NkC2

.�2/�2
�
Ou1.�1/ � � � OukC1.�kC1/ d�

kC1
ˇ̌̌

. ku1kL2ku2kL2
mX
jD3

k@xP
2
NkC2

uj kL1

kC1Y
iD3;i¤j

kuikL1

. Mku1kL2ku2kL2

kC1Y
iD3

kuikL1 :
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Thus, we can restrict ourselves to study the above integral when replacing a.�1; : : : ; �k/
with the symbol

za.�1; : : : ; �k/ WD �
2
NkC2

.�1/�1 C �
2
NkC2

.�2/�2:

Next, we split this symbol into two parts as follows:

za.�1; : : : ; �k/ D �
2
NkC2

.�1/.�1 C �2/ � .�
2
NkC2

.�1/ � �
2
NkC2

.�2//�2

DW za1.�1; : : : ; �k/C za2.�1; : : : ; �k/:

Notice now that due to the additional restriction imposed by �kC1 (that is, �1 C � � � C
�kC1 D 0), in this domain we can rewrite za1.�1; : : : ; �k/ as

za1.�1; : : : ; �k/ D ��
2
NkC2

.�1/.�3 C � � � C �kC1/:

Hence, this case also follows from the above analysis. Therefore, it only remains to con-
sider the case of za2. For the sake of clarity, we shall assume now that k D 2, the proof
for the general case shall be clear from this one. In fact, by using Plancherel’s theorem,
integration by parts and then Hölder’s inequality, we immediately obtain thatˇ̌̌ Z

�3
za2.�1; �2/ Ou1.�1/ Ou2.�2/ Ou3.�3/ d�

3
ˇ̌̌

D

ˇ̌̌ Z
R
.u2;xP

2
NkC2

u1 � u1P
2
NkC2

u2;x/u3 dx
ˇ̌̌

D

ˇ̌̌ Z
R
u2@x.u3P

2
NkC2

u1 � P
2
NkC2

.u1u3// dx
ˇ̌̌

. ku1kL2ku2kL2k@xu3kL1 C ku2kL2kŒP 2NkC2@x ; u3�u1kL2 :

Then, since k@xu3kL1 . Mku3kL1 , it only remains to control the latter factor of the
above inequality. In order to do that, first notice that by direct computations, we can write

ŒP 2NkC2@x ; u3�u1.x/ D

Z
R
K.x; y/u1.y/ dy;

where the kernel K.x; y/ can be written as

K.x; y/ D icNkC2
2

Z
R
eiNkC2.x�y/���2.�/.u3.y/ � u3.x// d�;

for some constant c 2 R. Thus, as an application of the mean value theorem, it is not
difficult to see that there exists a function g 2 L1.R/ such that

jK.x; y/j . NkC2 k@xu3kL1 g.NkC2.x � y//:

Notice that the latter inequality implies, in particular, the following uniform bound:

sup
y2R

Z
R
jK.x; y/j dx C sup

x2R

Z
R
jK.x; y/j dy . k@xu3kL1 ;

where the implicit constant does not depends on NkC2. Therefore, applying Schur’s lem-
ma, and then Bernstein’s inequality in the resulting right-hand side, we obtain that

kŒP 2NkC2@x ; u3�u1kL2 . ku1kL2k@xu3kL1 . M ku1kL2 ku3kL1 ;

which concludes the proof of the lemma.
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2.6. Strichartz estimates

In this subsection we seek to prove a refined Strichartz estimate for solutions to the linear
Airy equation with a general source term. The proof we present here is just a slight modi-
fication of the arguments already used in [29,39,40]. Before getting into the details, let us
recall the classical smoothing effect derived in [23] that shall be useful in the sequel:

(2.14) ke�t@
3
xD1=4

x u0kL4tL1x
. ku0kL2x :

Now we are ready to state our refined Strichartz estimate.

Lemma 2.10. Let T 2 .0; 1� and consider ı � 0 to be a fixed parameter. Let u.t; x/ be
any solution defined on Œ0; T � to the following linear equation:

(2.15) @tuC @
3
xu D F:

Then there exist �1; �2 > 0 such that, for any � > 0, the following inequality holds:

(2.16) kukL2TL
1
x

. T �1kJ
� 14 .1�ı/C�
x ukL1T L

2
x
C T �2kJ

� 14 .1C3ı/C�
x F kL2TL

2
x
:

Proof. Let u.t; x/ be a solution to equation (2.15) defined on Œ0; T �. We use a nonhomo-
geneous Littlewood–Paley decomposition for the solution, that is, we write u D

P
N uN ,

where uN D PNu, and N is a nonhomogeneous dyadic number. In the sequel we shall
also use the notation FN for PNF . At this point it is important to notice that, on the one
hand, from Minkowski’s inequality, we know that

kukL2TL
1
x
�

X
N

kuN kL2TL
1
x

. sup
N

N �
kuN kL2TL

1
x
;

for any � > 0. While on the other hand, by using the low-frequency projector P�1, from
the Hölder and Bernstein inequalities, we see that

kP�1ukL2TL
1
x

. T 1=2kP�1ukL1T L
2
x
:

Then, from the inequalities above, we infer that it is enough to show that for any ı > 0
and any N > 1 dyadic number, the following holds:

(2.17) kuN kL2TL
1
x

. T �1
D� 14 .1�ı/x uN


L1T L

2
x
C T �2

D� 14 .1C3ı/x FN

L2TL

2
x
:

Now, in order to prove (2.17), we chop the time-interval Œ0;T � into several pieces of length
T �N�ı , where � 2 Œ1;2/ stands for a small number that shall be fixed later. In other words,
we have

Œ0; T � D
[
j2J

Ij ; where Ij WD Œaj ; bj �; jIj j � T �N�ı and #J � T 1��N ı :

On the other hand, notice that uN .t/ solves the integral equation

uN .t/ D e
�.t�aj /@

3
x uN .aj /C

Z t

aj

e�.t�t
0/@3xFN .t

0/ dt 0 for all t 2 Ij .
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Therefore, by using the classical Strichartz estimate (2.14), as well as the Hölder and
Bernstein inequalities, we obtain

kuN kL2TL
1
x
D

�X
j

kuN k
2
L2Ij

L1x

�1=2
� .T �N�ı/1=4

�X
j

kuN k
2
L4Ij

L1x

�1=2
. .T �N�ı/1=4

�X
j

kD�1=4x uN .aj /k
2
L2x

�1=2
C .T �N�ı/1=4

�X
j

 Z t

aj

e�.t�t
0/@3xFN .t

0/ dt 0
2
L4Ij

L1x

�1=2
. .T �N�ı/1=4 .T 1��N ı/1=2kD�1=4x uN kL1T L

2
x

C .T �N�ı/1=4
�X

j

T �N�ı
Z
Ij

kD�1=4x FN k
2
L2x
dt
�1=2

. T 1=2��=4kD�1=4Cı=4x uN kL1T L
2
x
C T 3�=4kD�1=4�3ı=4x FN kL2TL

2
x
;

which concludes the proof of (2.16) by choosing, for example, � D 1.

3. Energy estimates

3.1. A priori estimates for solutions

The goal of this section is to prove the following proposition that give us the key improved
energy estimate for smooth solutions of (1.4).

Proposition 3.1. Let s > 1=2 and T 2 .0; 2/ be fixed. Consider u 2 L1..0; T /;H s
!.R//

to be a solution to equation (1.4) associated with initial data u0 2 H s
!.R/. Then the

following inequality holds:

kuk2L1T H
s
!

.ku0k2H s
!
CT kukL1T H

s
!
k@t‰C@

3
x‰C@xf .‰/kL1T H

sC
x
CT 1=4kuk2L1T H

s
!

(3.1)

�Q�
�
kuk

L1T H
1=2C

x

; k‰k
L1T W

sC1C;1
x

; k@t‰kL1t;x ; k@t‰ C @
3
x‰ C @xf .‰/kL1T H

�1=2C

x

�
;

where Q�WR4 ! RC is a smooth function.

Proof. First of all, in order to take advantage of Bourgain spaces, we have to extend the
function u.t/ from .0; T / to the whole line R. Hence, we benefit from the extension
operator �T defined in (2.5), which we use to take an extension Qu WD �T Œu�, defined on R2,
such that k QukM � 2kukMT

. For the sake of notation, we drop the tilde in the sequel.
Now we seek to prove (3.1). We begin by applying the frequency projector PN to

equation (1.4), with N > 0 dyadic but arbitrary. Notice that, on account of Remark 1.3,
we have

PNu 2 C.Œ0; T �;H
1/ and @tPNu 2 L

1..0; T /;H1/:
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Therefore, taking the L2x-scalar product of the resulting equation against PNu, multiply-
ing the result by !2N hN i

2s and then integrating on .0; t/ with 0 < t < T , we obtain

!2N hN i
2s
kPNu.t/k

2
L2
D !2N hN i

2s
kPNu0k

2
L2

� !2N hN i
2s

Z t

0

Z
R
PN

�
@t‰ C @

3
x‰ C @xf .uC‰/

�
PNu:

Thus, by applying Bernstein’s inequality, we are lead to

kPNu.t/k
2
H s
!

. kPNu0k2H s
!

C !2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
PN

�
@t‰ C @

3
x‰ C @xf .uC‰/

�
PNu

ˇ̌̌
:

Thus, from the previous computation, we infer that, in order to conclude the proof of the
proposition, we need to control the sum over all N > 0 dyadic of the second term in
the latter inequality. We divide the analysis into several steps, each of which dedicated to
bound one of the following integrals:

(3.2)

I WD
X
N>0

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
@xPN .f .uC‰/ � f .‰//PNu

ˇ̌̌
;

II WD
X
N>0

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
PN .@t‰ C @

3
x‰ C @xf .‰//PNu

ˇ̌̌
:

Before going further we recall that due to the analyticity hypothesis (1.5), we can write

f .u.t;x/C‰.t;x//D

1X
kD0

ak.u.t;x/C‰.t;x//
k and f .‰.t;x//D

1X
kD0

ak‰
k.t; x/:

With this in mind, from now on, for any n;m 2 N, we shall denote by Iun and Iun‰m the
quantity I above once f .uC‰/ is replaced by uk and uk‰m, respectively, that is,

Iuk WD
X
N>0

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
@xPN .u

k/PNu
ˇ̌̌
;(3.3)

Iuk‰m WD
X
N>0

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
@xPN .u

k‰m/PNu
ˇ̌̌
:(3.4)

We point out that, in the sequel, we shall systematically omit most of the factors depending
on k by hiding them in a .k-sign. This sign is defined exactly as “.” in Section 2 but
allowing the constant c to depend on k. Notice that, in order to make sense of the sum
(in k) of all the following bounds, we only need to be careful that the final implicit constant
depends at most as ck for some constant c > 0.

Step 1. We begin by controlling II right away. In fact, by using hypothesis (1.7), we
infer that it is enough to use the Cauchy–Schwarz and Bernstein inequalities to obtain

II .
Z T

0

X
N>0

!2N hN i
2s
kPN .@t‰ C @

3
x‰ C @xf .‰//kL2xkPNu.s; � /kL2x ds

. T kukL1T H
s
!
k@t‰ C @

3
x‰ C @xf .‰/kL1T H

sC
x
;
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where we have used the hypotheses made on !N in Section 2.2. This concludes the proof
of the first case.

Step 2. Now we aim to control the general case for Iuk in (3.3) for all k � 1, that is,
we aim to control the following quantity:

Iuk D
X
N>0

!2N hN i
2s(3.5)

� sup
t2.0;T /

ˇ̌̌ Z t

0

Z
�kC1

ak.�1; : : : ; �kC1/ Ou.s; �1/ : : : Ou.s; �kC1/ d�
kC1ds

ˇ̌̌
;

where the symbol ak.�1; : : : ; �kC1/ is explicitly given by

ak.�1; : : : ; �kC1/ WD i�
2
N .�kC1/�kC1:

We point out that in the previous identity (3.5), we have used both the fact that u.t; � / is
real-valued as well as the fact that �N is even. Then, in order to deal with this case, we
symmetrize the multiplier a.�1; : : : ; �kC1/, that is, from now on we consider

zak.�1; : : : ; �kC1/ WD Œak.�1; : : : ; �kC1/�sym D
i

k C 1

kC1X
iD1

�2N .�i /�i :

Notice that, since �2N .�1/�1C �
2
N .�2/�2� 0 on �2, the case kD 1 immediately vanishes,

and hence, from now on we can assume that k � 2. Thus, by using frequency decompo-
sition and the above symmetrization, the problem of bounding (3.5) is reduced to control
the following quantity:X

N>0

!2N hN i
2s(3.6)

� sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;:::;NkC1

Z
�kC1
zak.�1; : : : ; �kC1/

kC1Y
iD1

�Ni .�i / Ou.t
0; �i / d�

kC1dt 0
ˇ̌̌
:

Moreover, by symmetry, without loss of generality we can always assume that2

N1 � N2 � N3 � N4 D max¹N4; : : : ; NkC1º:

Before going further, note that the case N . 1 can be treated right away. In fact, from
Lemma 2.9 and Bernstein’s inequality, we see that3X
N.1

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;:::;NkC1

Z
�kC1
zak.�1; : : : ; �kC1/

kC1Y
iD1

�Ni .�i / Ou.t
0; �i /d�

kC1dt 0
ˇ̌̌

.k
Z T

0

X
N.1

!2N hN i
2s

X
N1;:::;NkC1

ˇ̌̌ Z
�kC1
zak.�1; : : : ; �kC1/

kC1Y
iD1

�Ni .�i / Ou.t
0; �i / d�

kC1
ˇ̌̌
dt 0

2If k D 2, we only assume N1 � N2 � N3. Notice also that this assumption shall introduce a factor k4 into
the following estimates.

3Notice that here, and in all of the bounds below, we obtain a constant ck�1 coming from using Sobolev’s
embedding k � 1 times.
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.k
Z T

0

X
N1;:::;NkC1

!2NN3kPN1u.t
0; � /kL2xkPN2u.t

0; � /kL2x

kC1Y
iD3

N
1=2
i kPNiu.t

0; � /kL2x dt
0

.k
Z T

0

ku.t 0; � /k2H s
!
ku.t 0; � /kk�1

H
1=2C

x

dt 0 .k T kuk2L1T H s
!
kukk�1

L1T H
1=2C

x

:

Therefore, in the sequel we just need to consider the sum over frequencies N � 1. More
precisely, from now on we assume that N � 88k. On the other hand, from the explicit
form of zak , it is not difficult to see that zak � 0, unless N1 � 1

2
N . Furthermore, due to the

additional constraint4 imposed by �kC1, we must also have that N2 � 1
2k
N1. Therefore,

roughly (up to a constant involving k), we have that N1 � N2 with N1 � 1
2
N .5 Then we

split the analysis into three possible cases. First, we divide the space into two regions,
namely, either

(3.7) N3 � 2
9kN4 or N3 < 2

9kN4:

Then, only for the second case, we split the space again into two regions, namely,

(3.8) N1 < 8kN and N1 � 8kN:

The only reason why we separate both cases in (3.8) is to be able to justify how we sum
over the set N � 1; they can certainly be treated simultaneously though. We choose to
separate them for the sake of clarity.

Before getting into the details, let us introduce some notation for each of the regions
under study. From now on we set6

N1 WD
®
.N1; : : : ; NkC1/ 2 DkC1

W N3 � 2
9kN4

¯
;

N2 WD
®
.N1; : : : ; NkC1/ 2 DkC1

W N1 < 8kN and N3 < 29kN4
¯
;

N3 WD
®
.N1; : : : ; NkC1/ 2 DkC1

W N1 � 8kN and N3 < 29kN4
¯
;

and denote by G1, G2 and G3, the corresponding contribution of (3.6) associated with each
of these regions, respectively.7

Notice that all of the above regions require that k � 3 to be well defined. However, we
point out that the case k D 2 shall follow directly from the analysis that we shall carry out
to deal with the first region above, that is, the region N1.8

Step 2.1. In this first sub-step we seek to deal with the first case in (3.7), that is, to
control the contribution of the region N3 � 29kN4. We aim to take advantage of classical

4By this we mean the condition �1 C � � � C �kC1 D 0. In the sequel, each time we mention “the constraint
imposed by �k”, we refer to the previous condition with k frequencies.

5Notice that, in the sequel, we shall repeatedly use these relations to absorb factors like hN is with
kPN2ukL2 , in the sense that we shall write hN iskPN2ukL2 .k kPN2ukH s . Due to the above relations, in
the worst case this type of bounds shall involve a factor ks due to the use of N2 � N .

6Recall that we are also assuming that N1 � N2 � N3 � N4 D max¹N4; : : : ; NkC1º.
7That is, the quantity obtained once restricting the inner sum in (3.6) to N1 and N2, respectively.
8In other words, roughly speaking, when k D 2, we could think of N4 as being equal to 0, and hence the

relation that defines N1 is always satisfied. Hence, if k D 2, we only have one case, which corresponds to N1.
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Bourgain estimates. In order to do so, we begin using the decomposition given in (2.11),
from which we infer that it is enough to control the following quantities:

G
high
1;R WD

X
N�1

X
N1
!2N hN i

2s sup
t2.0;T /

ˇ̌̌ Z
R2

…zak
�
1high
t;RPN1u; 1tPN2u; : : : ; PNku

�
PNkC1u

ˇ̌̌
;

G
low;high
1;R WD

X
N�1

X
N1
!2N hN i

2s

� sup
t2.0;T /

ˇ̌̌ Z
R2

…zak
�
1low
t;RPN1u; 1

high
t;RPN2u; PN3u; : : : ; PNku

�
PNkC1u

ˇ̌̌
;

G
low;low
1;R WD

X
N�1

X
N1
!2N hN i

2s

� sup
t2.0;T /

ˇ̌̌ Z
R2

…zak
�
1low
t;RPN1u; 1

low
t;RPN2u; PN3u; : : : ; PNku

�
PNkC1u

ˇ̌̌
;

where R stands for a large real number that shall be fixed later. For the sake of clarity, we
split the analysis into two steps. Before getting into it, let us recall the definition of the
resonant relation for .k C 1/-terms, which is given by

�k.�1; : : : ; �kC1/ D �
3
1 C � � � C �

3
kC1:

We emphasize that, as an abuse of notation, sometimes we also write �k with only k
entries. However, in that case, �k is given by �31 C � � � C �

3
k
� .�1 C � � � C �k/

3. Notice
that both definitions are equivalent due to the constraint imposed by �k .

Step 2.1.1. We begin by considering the case of G
high
1;R . The idea is to take advantage

of the operator 1high
t;R using Lemma 2.6. In fact, by choosing

(3.9) R.N;N1; : : : ; NkC1/ WD N1N3;

we can bound G high
1;R using the first inequality in Lemma 2.6, Lemma 2.9, as well as

Sobolev’s embedding, in the following fashion:

G
high
1;R .k

X
N�1

X
N1
T 1=4!2N hN i

2s
k1high
T;RkL4=3

 Z
R
…zak .PN1u; : : : ; PNku/PNkC1u


L1

.k
X
N�1

X
N1
T 1=4!2N hN i

2sN3R
�3=4
kPN1ukL1t L2x

kPN2ukL1t L2x

kC1Y
iD3

kPNiukL1t;x

.k
X
N�1

X
N1
T 1=4N

�1=2
1 kPN1ukL1t H s

!
kPN2ukL1t H s

!

�

kC1Y
iD3

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T 1=4kuk2L1t H s
!
kukk�1

L1t H
1=2C

x

;

where we have used the fact that !N =!Ni . 1, i D 1; 2, thanks to the hypothesis on !N
in Section 2.2. To finish this first case, we point out that, thanks to the operator 1high

t;R acting
on the factor PN2u, the same estimates also hold for G low;high

1;R .
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Step 2.1.2. Now we consider the last term in the decomposition, that is, G
low;low
1;R . In

fact, first of all, for the sake of notation, let us define the following functional

I.u1; : : : ; ukC1/ WD
X
N�1

X
N1
!2N hN i

2s sup
t2.0;T /

ˇ̌̌ Z
R2

…zak .u1; : : : ; uk/ukC1

ˇ̌̌
:

Then we claim that, due to the relationship between the frequencies belonging to N1, the
resonant relation satisfies

j�k.�1; : : : ; �k/j � N1N2N3:

In fact, let us start by recalling that, due to the additional constraint imposed by �kC1, we
have the relation �1 C � � � C �kC1 D 0. Then, by using the boundN3 > 29kN4, we deduce

j�k.�1; : : : ; �k/j D j�
3
1 C �

3
2 C �

3
3 C � � � C �

3
kC1j(3.10)

D j�32 C �
3
3 � .�2 C �3 C � � � C �kC1/

3
j CO.N 3

4 /

D 3j.�2 C �3/�2�3j CO.N
2
1N4/

D 3j�1�2�3j CO.N
2
1N4/ � N1N2N3:

Therefore, taking advantage of the above relation, we can now decompose G
low;low
1;R with

respect to modulation variables in the following fashion:

jG
low;low
1;R j � I

�
Q&N�1low

t;RPN1u; 1
low
t;RPN2u; PN3u; : : : ; PNkC1u

�
C I

�
Q�N�1low

t;RPN1u;Q&N�1low
t;RPN2u; PN3u; : : : ; PNkC1u

�
C I

�
Q�N�1low

t;RPN1u;Q�N�1
low
t;RPN2u;Q&N�PN3u; : : : ; PNkC1u

�
:::
C I

�
Q�N�1low

t;RPN1u;Q�N�1
low
t;RPN2u;Q�N�PN3u; : : : ;Q&N�PNkC1u

�
DW I1 C � � � C IkC1;

where N � stands for N � WD N1N2N3. At this point it is important to notice that, since
in this case we have N2 � 1

8
N1, then we must also have that N � � N1N3 D R, which

allows us to use the last inequality in Lemma 2.6. Thus, bounding in a similar fashion as
before, by using the Hölder and Bernstein inequalities, as well as Lemma 2.6, Lemma 2.9
and the classical Bourgain estimates, we obtain

I1 .k
X
N�1

X
N1
!2N hN i

2sN3kQ&N�1low
T;RPN1ukL2tL2x

k1low
T;RPN2ukL2tL2x

kC1Y
iD3

kPNiukL1t L1x

.k
X
N�1

X
N1
N
.�1/C

2 kQ&N�1low
T;RPN1ukXs�1;1k1

low
T;RkL2

� kPN2ukL1t H s
x

kC1Y
iD3

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T 1=2kukXs�1;1kukL1t H s
x
kukk�1

L1t H
1=2C

x

:
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Notice that, we have absorbed !N with N�"2 thanks to the assumptions made in Sec-
tion 2.2. Moreover, it is not difficult to see that, by following the same lines (up to trivial
modifications), we can also bound I2, obtaining the same bound. On the other hand, to
control I3, we use again both Lemma 2.6 and 2.9, as well as the Hölder and Bernstein
inequalities to obtain

I3 .k
X
N�1

X
N1
!2N hN i

2sN3kQ�N�1low
T;RPN1ukL2tL2x

� kQ�N�1low
T;RPN2ukL1t L2x

kQ&N�PN3ukL2tL1x

kC1Y
iD4

kPNiukL1t L1x

.k
X
N�1

X
N1
N
.�1/C

2 k1low
T;RkL2

PN1uL1t H s
x
kPN2ukL1t H s

x
min¹N 1�

3 N�11 ; N
�.0C/
3 º

� kQ&N�PN3ukX .�1=2/C;1

kC1Y
iD4

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T 1=2kuk2L1t H s
x
kuk

X .�1=2/
C;1kuk

k�2

L1t H
1=2C

x

:

Notice that all the remaining cases Ii , i D 4; : : : ; k C 1, follow very similar lines to the
latter case (up to trivial modifications), and they provide exactly the same bound. We omit
the proof of these cases.

Step 2.2. Now we aim to deal with the region N1 < 8kN . In fact, in this case, it
is enough to notice that, combining both the hypotheses and the additional constraint
imposed by �kC1, we can write9

N1 2 Œ
1
2
N; 4kN � and N2 2 Œ

1
2k
N1; N1�:

Therefore, up to a factor k, we deduce that N1 � N and N2 � N . Hence, by using the
Hölder and Bernstein inequalities, as well as Lemma 2.9, we get that

jG2j .k
Z T

0

X
N�1

X
N2
!2N hN i

2s

ˇ̌̌̌ Z
�kC1
zak.�1; : : : ; �kC1/

kC1Y
iD1

�Ni .�i / Ou.s; �i / d�
kC1

ˇ̌̌̌
ds

.k
Z T

0

X
N�1

X
N2

min¹N3; N
�.0C/
3 ºkPN1u.s; �/kH s

!
kPN2u.s; �/kH s

!
kJ 1=2

C

x PN3u.s; �/kL1x

� kJ 1=2
C

x PN4u.s; � /kL1x

kC1Y
iD5

min¹N 1=2
i ; N

�.0C/
i ºkPNiu.s; � /kH1=2C

x

ds

.k kuk2L1T H s
!
kJ 1=2

C

x uk2
L2TL

1
x
kukk�3

L1T H
1=2C

x

:

We emphasize that, in this case, to sum over N � 1 we have used the fact that, for any
function f 2 H s

!.R/, the sequence ¹kP2nf kH s
!
ºn2Z belongs to `2.Z/.

9Notice that this shall introduce a factor k into the following estimates.
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Step 2.3. Finally, it only remains to consider the case where N1 � 8kN . In fact, in
this case, note that inequality N1 � 8kN implies, in particular, that N2 � 4N , and hence
we must also have N3 � 1

2
N , otherwise zak � 0. Then we can proceed similarly as in the

latter step but using the factor N�3 to sum over N � 1. Note that, in this case, we also
have to use the fact that kPN1u.s; � /kH s

!
and kPN2u.s; � /kH s

!
are both square summable.

The proof of Step 3 is finished.
Step 3: Finally, we consider the general case Iuk‰m , where k; m � 1. As we have

mentioned before, for small frequencies N . 1 we can directly bound the sum by simply
using Hölder’s inequality as follows:X

N.1

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
@xPN .u

k‰m/PNu
ˇ̌̌

(3.11)

.k T kuk2L1t H s
!
kukk�1

L1t H
1=2C

x

k‰kmL1 :

Therefore, in the sequel we only consider the case where N � k.10 On the other hand,
notice that, by using Plancherel’s theorem, we can rewrite the remaining quantity as

X
N�1

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

Z
�kC2

ak.�1; : : : ; �kC2/ Ou.�1/ � � � Ou.�kC1/b‰m.�kC2/ d�kC2 ˇ̌̌;
(3.12)

where the symbol ak.�1; : : : ; �kC2/ is explicitly given by

ak.�1; : : : ; �kC2/ WD i�2N .�kC1/�kC1:

In the same spirit as for Steps 2, in order to deal with this case, we perform a symmetriza-
tion argument. Indeed, by symmetrizing the symbol we are led to consider

Qak.�1; : : : ; �kC2/ D Œak.�1; : : : ; �kC2/�sym WD
i

k C 1

kC1X
iD1

�2N .�i /�i :

Then, by using frequency decomposition, the problem of bounding (3.12) is reduced to
control the following quantity:X

N�1

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;:::;NkC2

Z
�kC2
Qak.�1; : : : ; �kC2/�NkC2.�kC2/(3.13)

� �‰m.�kC2/ kC1Y
iD1

�Ni .�i / Ou.�i /
ˇ̌̌
:

Hence, by symmetry, without loss of generality, from now on we assume that N1 �
N2 � N3 � N4 D max¹N4; : : : ; NkC1º.11 We point out that, in this case, we consider
NkC2 2 Dnh.12 Before going further, notice that there is an important case that can be

10Notice that this introduces another factor k into inequality (3.11) coming from the use of N . 1 when
controlling the operator @x .

11For the cases k D 1; 2 we only assume that N1 � N2 and N1 � N2 � N3, respectively. Once again, notice
that these assumptions introduces a factor k4 into the following estimates.

12Since NkC2 2 Dnh, when NkC2 D 1 we consider �.�kC2/ instead of �NkC2 .�kC2/ in (3.13), where �. � /
is defined in (2.1).
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treated without any further decomposition. In fact, let us consider the region 89kNkC2�N.
We begin by restricting ourselves to the caseN2 � 1. Let us denote the set of indexes asso-
ciated with all the above constraints by NkC2. Then, by using Plancherel’s theorem to go
back to physical variables, taking advantage of the fact that ‰ 2 W .sC1/C;1

x , we can con-
trol Iuk‰m , in this region, by13X

N�1

!2N hN i
2s sup
t2.0;T /

ˇ̌̌̌ Z t

0

X
NkC2

Z
�kC2
Qak.�1; : : : ; �kC2/�NkC2.�kC2/

� �‰m.�kC2/ kC1Y
iD1

�Ni .�i / Ou.�i /

ˇ̌̌̌
.k

Z T

0

X
N�1

X
NkC2

!2N hN i
2sNN

�.sC1/C

kC2
kPN1u.t

0; � /kL2x

� kPN2u.t
0; � /kL2xkPNkC2.‰

m.t 0; � //k
W
.sC1/C;1
x

kC1Y
iD3

kPNiu.t
0; � /kL1x dt

0

.k T kuk2L1T H s
!
kukk�1

L1T H
1=2C

x

k‰km
L1T W

.sC1/C;1
x

:

Here, we have absorbed one of the factors !N with N�"
kC1

, thanks to the hypotheses made
in Section 2.2. Notice that, to deal with the caseN2 � 1, it is enough to sum overN2 inside
the absolute value (before using Hölder’s inequality), so that we obtain a factor kP.1ukL2

in the right-hand side (without any series in N2). Therefore, in the sequel, we can assume
that 89kNkC2 < N . Also, in this region, we have �N .�kC2/ � 0, and hence we can write

Qak.�1; : : : ; �kC2/ D
i

k C 1

kC2X
iD1

�2N .�i /�i :

This is somehow important since it shall allow us to use Lemma 2.9 with no problems.
Now, in the same spirit as in Step 2, we split the analysis into several cases, namely,
(1) N3 < 88kNkC2,
(2) N3 � 88kNkC2 and N3 � 29kN4,
(3) N3 � 88kNkC2 and N3 < 29kN4.

Before getting into the details, let us introduce the notation for each of these regions.
From now on, we denote by N1, N2 and N3 the set of indexes associated with each of
these regions,14 and by G1, G2 and G3, the corresponding contribution of (3.13) associated
with each one of them, respectively.

In the same spirit as in Step 2, notice that all of the above regions require that k � 3 to
be well defined. However, the case k D 1 shall follow directly from the analysis we shall
carry out to deal with the first region above, that is, the region N1. On the other hand, the
case k D 2 shall follow from the analysis associated with cases (1) and (2) above.15

13Notice that here we obtain another factor ksC1C coming from the relation 89kNkC2 � N .
14Recall we are also assuming that N1 � N2 � N3 � N4 D max¹N4; : : : ; NkC1º and 99kNkC2 < N .
15In other words, roughly speaking, when k D 1, we could think of N3 as being equal to 0, and hence the

inequality of the first case is always satisfied, while when k D 2, we could think of N4 being zero, and hence we
still have two cases, namely, (1) and (2).
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Step 3.1. We begin by studying the contribution of Iuk‰m in the region N1. In fact,
notice that, in this case, due to the hypotheses ‰ 2 W .sC1/C;1 as well as the fact that
NkC2 & N3 � max¹N4; : : : ; NkC1º, we can control the whole sum G1 directly from
Lemma 2.9 and then use Bernstein inequalities to get the bound

jG1j .k
Z T

0

X
N�1

X
N1

!2N hN i
2sNkC2.N3 : : : :NkC1/

1=2
kPN1u.t

0; � /kL2x

� kPN2u.t
0; � /kL2xkPNkC2.‰

m.t 0; � //kL1x

kC1Y
iD3

kPNiu.t
0; � /kL2x dt

0

.k
Z T

0

X
N�1

X
N1

N
�.0C/

kC2
kPN1u.t

0; � /kH s
!
kPN2u.t

0; � /kH s
!

� kPNkC2.‰
m.t 0; � //k

W
1C;1
x

kC1Y
iD3

min¹N 1=2
i ; N

�.0C/
i ºkPNiu.t

0; � /k
H
1=2C

x

dt 0

.k T kuk2L1T H s
!
kukk�1

L1T H
1=2C

x

k‰mk
L1t W

1C;1
x

:

We point out that, in the estimates above, to sum over the indexes N , N1 and N2, we have
used the fact that N1 2 Œ12N; 4kN � and N2 2 Œ 12kN1; N1�.

16

Step 3.2. Now we seek to control the contribution of (3.13) in the region N2: We aim
to take advantage of classical Bourgain estimates. Similarly, as in the previous steps, we
begin using the decomposition given in (2.11), from which we infer that it is enough to
control the following quantities:

Ghigh
2;R WD

X
N�1

X
N 2

!2N hN i
2s

� sup
t2.0;T /

ˇ̌̌ Z
R2

…Qak
�
1high
t;RPN1u; 1tPN2u; PN3u; : : : ; PNkC1u

�
PNkC2‰

ˇ̌̌
;

Glow;high
2;R WD

X
N�1

X
N 2

!2N hN i
2s

� sup
t2.0;T /

ˇ̌̌ Z
R2

…Qak
�
1low
t;RPN1u; 1

high
t;RPN2u; PN3u; : : : ; PNkC1u

�
PNkC2‰

ˇ̌̌
;

Glow;low
2;R WD

X
N�1

X
N 2

!2N hN i
2s

� sup
t2.0;T /

ˇ̌̌ Z
R2

…Qak
�
1low
t;RPN1u; 1

low
t;RPN2u; PN3u; : : : ; PNkC1u

�
PNkC2‰

ˇ̌̌
;

where R stands for a large real number to be fixed. We split the analysis into two steps.

Step 3.2.1. We start by bounding Ghigh
2;R. We shall proceed in a similar fashion as in

Step 2.1.1. In fact, we define again R.N; N1; : : : ; NkC2/ WD N1N3. Then, by using the

16Once again, this introduces a factor k into the previous estimates. We stress that to avoid repeating argu-
ments. In the sequel we shall no longer point out these dependencies.
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first inequality in Lemma 2.6, Lemma 2.9, as well as Sobolev’s embedding, we obtain

Ghigh
2;R .k

X
N�1

X
N 2

T 1=4!2N hN i
2s
k1high
T;RkL4=3

 Z
R
…Qak .PN1u; : : : ; PNkC1u/PNkC2‰


L1

.k
X
N�1

X
N 2

T 1=4!2N hN i
2sN

�1=2
2 kPN1ukL1t L2x

kPN2ukL1t L2x

� kPNkC2‰kL1

kC1Y
iD3

kPNiukL1t;x

.k T 1=4kuk2L1t H s
!
kukk�1

L1t H
1=2C

x

k‰kL1T L
1
x
:

To finish this first case, we point out that, thanks to the operator 1high
t;R acting on the factor

PN2u, the same estimates also hold for Glow;high
2;R .

Step 3.2.2. To conclude the proof of Step 3:2 it only remains to consider G
low;low
1;R .

As before, we begin by introducing some useful notation. We denote by I the functional
given by

I.u1; : : : ; ukC2/ WD
X
N�1

X
N 2

!2N hN i
2s sup
t2.0;T /

ˇ̌̌ Z
R2

…Qak .u1; : : : ; ukC1/ukC2

ˇ̌̌
:

Now notice that, proceeding in the exact same fashion as in (3.10), together with the fact
that, in this case, N3 � max¹88kNkC2; 29kN4º, provides the relation

j�kC1.�1; : : : ; �kC2/j � N1N2N3:

Thus, in order to take advantage of the above relation, we decompose Glow;low
2;R with respect

to modulation variables in the following fashion:

jGlow;low
2;R j � I

�
Q&N�1low

t;RPN1u; 1
low
t;RPN2u; PN3u; : : : ; PNkC1u; PNkC2‰

�
C I

�
Q�N�1low

t;RPN1u;Q&N�1low
t;RPN2u; PN3u; : : : ; PNkC1u; PNkC2‰

�
C I

�
Q�N�1low

t;RPN1u;Q�N�1
low
t;RPN2u;Q&N�PN3u; : : : ; PNkC1u; PNkC2‰

�
:::
C I

�
Q�N�1low

t;RPN1u;Q�N�1
low
t;RPN2u;Q�N�PN3u; : : : ;Q&N�PNkC1u; PNkC2‰

�
C I

�
Q�N�1low

t;RPN1u;Q�N�1
low
t;RPN2u;Q�N�PN3u; : : : ;Q�N�PNkC1u; PNkC2‰

�
DW I1 C � � � C IkC2;

where once againN � WD N1N2N3. At this point it is important to notice that, since in this
case we have N2 � 1

8
N � 1, then we must also have N � � N1N3 D R, which allows

us to use the last inequality in Lemma 2.6. Thus, bounding in a similar fashion as before,
by using the Hölder and Bernstein inequalities, as well as Lemma 2.6, Lemma 2.9 and the
classical Bourgain estimates, we obtain

I1 .k
X
N�1

X
N 2

!2N hN i
2sN3kQ&N�1low

T;RPN1ukL2tL2x
k1low
T;RPN2ukL2tL2x

� kPNkC2.‰
m/kL1t;x

kC1Y
iD3

kPNiukL1t;x



Local well-posedness for the gKdV equation on the background of a bounded function 369

.k
X
N�1

X
N 2

N
.�1/C

2 kQ&N�1low
T;RPN1ukXs�1;1k1

low
T;RkL2kPN2ukL1t H s

x

� kPNkC2.‰
m/kL1t;x

kC1Y
iD3

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T 1=2kukXs�1;1kukL1t H s
x
kukk�1

L1t H
1=2C

x

k‰kmL1t;x
:

It is not difficult to see that, by following the same lines (up to trivial modifications), we
can also bound I2, obtaining the same bound. On the other hand, to control I3, we use
again both Lemma 2.6 and 2.9, as well as the Hölder and Bernstein inequalities, to obtain

I3 .k
X
N�1

X
N 2

!2N hN i
2sN3kQ�N�1low

T;RPN1ukL2tL2x
kQ�N�1low

T;RPN2ukL1t L2x

� kQ&N�PN3ukL2tL1x
kPNkC2.‰

m/kL1t;x

kC1Y
iD4

kPNiukL1t L1x

.k
X
N�1

X
N 2

N
.�1/C

2 k1low
T;RkL2kPN1ukL1t H s

x
kPN2ukL1t H s

x

�min¹N 1�

3 N�11 ; N
�.0C/
3 ºkQ&N�PN3ukX .�1=2/C;1kPNkC2.‰

m/kL1t;x

�

kC1Y
iD4

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T 1=2kuk2L1t H s
x
kuk

X .�1=2/
C;1kuk

k�2

L1t H
1=2C

x

k‰kmL1t;x
:

Notice that all the remaining cases Ii , i D 4; : : : ; k C 1, follow very similar lines to
the latter case (up to trivial modifications), and hence we omit them. Finally, to con-
trol IkC2, notice that, since all factors PNiu have an operator Q�N� in front of them,
the factor PNkC2.‰

m/ is forced to be resonant, and hence in this case we can write
Q&N�PNkC2.‰

m/ D PNkC2.‰
m/, otherwise IkC2 D 0 thanks to Lemma 2.7. Moreover,

notice also that in the region N 2, we have, in particular,N1N2N3�N 3
kC2, and hence we

infer that j�kC2 � �3kC2j � j�kC2j, thus we actually havePNkC2.‰
m/DR&N�PNkC2.‰

m/.
Therefore, by using Lemmas 2.6 and 2.9, as well as Bernstein’s inequality and the above
properties, we obtain

IkC2 .k
X
N�1

X
N 2

.N1N2/
.�1/C

k1low
T;Rk

2
L2
kPN1ukL1t H s

x
kPN2ukL1t H s

x

� k@tR&N�PNkC2.‰
m/kL1t;x

kC1Y
iD3

min¹N 1=2
i ; N

�.0C/
i ºkPNiukL1t H

1=2C

x

.k T kuk2L1t H s
x
kukk�1

L1t H
1=2C

x

k@t‰kL1t;xk‰k
m�1
L1t;x

:

Step 3.3. To finish this step it only remains to consider G3. In this case it is enough to
proceed in the same fashion as in Steps 2:2 and 2:3. In fact, note that

N3 � 8
8.k C 1/NkC2 H) N2 2 Œ

1
2k
N1; N1�:
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Therefore, by using the Hölder and Bernstein inequalities, as well as Lemma 2.9, we get

jG3j .k
Z T

0

X
N�1

X
N 3

hN i2s.N1N2/
�s min¹N3; N

�.0C/
3 ºkPN1u.t

0; � /kH s
!

� kPN2u.t
0; � /kH s

!
kJ 1=2

C

x PN3u.t
0; � /kL1x kJ

1=2C

x PN4u.t
0; � /kL1x

� kPNkC2.‰
m.t 0; � //kL1x

kC1Y
iD5

min¹N 1=2
i ; N

�.0C/
i ºkPNiu.t

0; � /k
H
1=2C

x

dt 0

.k kuk2L1T H s
!
kJ 1=2

C

x uk2
L2TL

1
x
kukk�3

L1T H
1=2C

x

k‰kmL1t;x
:

We emphasize that to sum over the indexes N , N1, N2 and N3 in the case N3 � N2, we
have used the fact that kPN1u.s; � /kH s and kPN2u.s; � /kH s are both square summable,
as well as the factor N�3 , as in the proof of Steps 2:2 and 2:3. The proof of Step 3 is
complete.

Now we explain how we control the contribution of the L2TL
1
x terms. To this end, we

use the Strichartz estimate (2.16) with ı D 1, from which we obtainJ 1=2Cx ukL2TL
1
x

. T 1=4kuk
L1T H

1=2C

x

C T 3=4k@t‰ C @
3
x‰ C @xf .‰/kL1T H

�1=2C

x

C T 3=4kuk
L1T H

1=2C

x

1X
kD1

kckjakj
�
kuk

L1T H
1=2C

x

C k‰k
L1T W

1=2C;1
x

�k�1
:

Gathering all the above estimates, and then using Lemma 2.5, we conclude the proof of
the proposition.

3.2. A priori estimates for the difference of two solutions

In this subsection we seek to establish the key a priori estimate at the regularity level s � 1
for the difference of two solutions. In the sequel, we explicitly consider !N D 1 for all
N 2 D, and hence H s

!.R/ D H
s.R/.

Proposition 3.2. Let s > 1=2 and T 2 .0; 2/ be fixed. Let u; v 2 L1..0; T /; H s.R//
be two solutions to equation (1.4) associated with initial data u0; v0 2 H s.R/. Then the
following inequality holds:

ku � vk2
L1T H

s�1
x

. ku0 � v0k2H s�1 C T
1=4
ku � vk2

L1T H
s�1
x

�Q�
�
kukL1T H

s
x
; kvkL1T H

s
x
; k‰k

L1t W
sC1;1
x

; k@t‰kL1t;x
�
;

where Q�WR4 ! RC is a smooth function.

Proof. As before, in order to take advantage of Bourgain spaces, we have to extend the
functions u and v from .0;T / to the whole line R. Hence, by using the extension operator,
we take extensions Qu WD �T Œu� and Qv WD �T Œv�, supported in .�2; 2/. For the sake of
notation, we drop the tilde in the sequel. On the other hand, we point out that in the sequel
we assume that s 2 .1=2; 1�. The case s > 1 is simpler and follows very similar arguments.
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Now, let w WD u � v. Then w.t; x/ satisfies the equation

(3.14) @tw C @x
�
@2xw C f .uC‰/ � f .v C‰/

�
D 0:

We proceed as in the previous proposition, taking the frequency projector PN to (3.14)
with N > 0 dyadic, then taking the L2x-scalar product of the resulting equation against
PNw and multiplying the result by hN i2s�2. Finally, integrating in time on .0; t/ for
0 < t < T , and then applying Bernstein’s inequality, we are lead to

kPNw.t/k
2
H s�1
x

. kPNw0k2H s�1

C hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
PN

�
f .uC‰/ � f .v C‰/

�
@xPNw

ˇ̌̌
:

As before, we split the analysis in several steps, each of which is devoted to different
ranges of .k; i/. Notice that the philosophy behind the estimates below is the same one
from the proof of the last proposition. However, since in this case we have more (differ-
ent) functions, we must have several more cases as well, since we cannot order all the
frequencies appearing in PN .uk�ivi�1‰w/, as we did in the previous proposition when
there was only uk .

As we shall see, the estimates above do not depend of how many uk�i or vi�1 we
have. Thus, to simplify the notation we shall writeX

N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
PN .z3 : : : zk‰

mw/@xPNw
ˇ̌̌
;

for some k � 3 and m � 0, where each zi denotes either u or v (not necessarily all being
the same).

Step 1. Let us start by considering the case where we only have products of zi , that is,
where no power of‰ is involved. In other words, we seek to bound the following quantity:

(3.15)
X
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

Z
R
PN .z3 : : : zkw/@xPNw

ˇ̌̌
;

where k � 3. Before going further, we emphasize once again that in the sequel we assume
s 2 .1=2; 1�. Then, in the same fashion as in the previous proposition, we begin by sym-
metrizing the underlying symbol in (3.15), which allows us to reduce the problem to
studying the symbol

(3.16) dk.�1; : : : ; �k/ WD
i

2
�2N .�1/�1 C

i

2
�2N .�2/�2;

where �1 and �2 denote the frequencies of each of the occurrences of w in (3.15), respec-
tively. Hence, by frequency decomposition, it is enough to control the following quantity:X

N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;:::;Nk

Z
�k
dk.�1; : : : ; �k/(3.17)

�

2Y
iD1

�Ni .�i / Ow.�i /

kY
jD3

�Nj .�j / Ozj .�j /
ˇ̌̌
:
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Note that, by symmetry, we can always assumeN1�N2,N3�N4Dmax¹N4; : : : ;NkC1º.
Now, for the sake of simplicity, let us denote by I the following functional:

I.N1; : : : ; Nk ; u1; : : : ; uk/ WD
Z
�k
dk.�1; : : : ; �k/�N1.�1/u1.�1/ : : : �Nk .�k/uk.�k/ d�

k :

Then, with this notation at hand, we define the set of admissible indexes

Nk WD Dk
n
®
.N1; : : : ; Nk/ 2 Dk

W 8.u1; : : : ; uk/ 2 H
1.R/k ;(3.18)

I.N1; : : : ; Nk ; u1; : : : ; uk/ D 0
¯
:

Before going further, let us rule out right away the case N2 . 1. In fact, if we set N2
k
WD

Nk \ ¹N2 < 88kº, then, from Lemma 2.9, Plancherel’s theorem and the Hölder and Bern-
stein inequalities, we obtainX
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N2
k

Z
�k
dk.�1; : : : ; �k/

2Y
iD1

�Ni .�i / Ow.t
0; �i /

kY
jD3

�Nj .�j / Ozj .t
0; �j /

ˇ̌̌

.k
Z T

0

X
N>0

X
N2
k

hN i2s�2
ˇ̌̌ Z
�k
dk.�1; : : : ; �k/

2Y
iD1

�Ni .�i / Ow.t
0; �i /

kY
jD3

�Nj .�j / Ozj .t
0; �j /

ˇ̌̌
.k

Z T

0

X
N>0

X
N2
k

hN i2s�2 min¹N;N3ºkPN1w1.t
0; � /kL2x

� kPN2w2.t
0; � /kL1x kPN3z3.t

0; � /kL2x

kY
jD4

kPNj zj .t
0; � /kL1x dt

0

.k
Z T

0

X
N>0

X
N2
k

hN i2s�2hN1i
1�s
hN3i

�sN
1=2
2 min¹N;N3ºkPN1w1.t

0; � /kH s�1
x

� kPN2w2.t
0; � /kH s�1

x
kPN3z3.t

0; � /kH s
x

kY
jD4

min¹N 1=2
j ; N�j ºkPNj zj .t

0; � /k
H
1=2C

x

dt 0

.k T kwk2L1T H s�1
x
kz3kL1T H

s
x

kY
iD4

kzik
L1T H

1=2C

x

:

Here, we have used the fact that eitherN . 1, and then there is nothing to proof, orN � 1,
and then, roughly speaking, we have ¹N1 � N and N3 & N1º. In fact, if N � 89k, then,
thanks to both facts, the explicit form of the symbol dk and the definition of �k , we must
have thatN1 2 Œ12N;2N � andN3 � 1

2k
N1. Besides, in the caseN4�N3, we have used the

fact that kPN1w.t; � /kH s�1
x

and kPN3z3.t; � /kH s
x

are both square summable. Notice lastly
that, in particular, the previous computations allows us to rule out the case N � 87k.

Now, in order to deal with the remaining region, we split the analysis into three cases,
namely,

N1 WD
®
.N1; : : : ; Nk/ 2 Dk

W N2 � 8
8k; N3 < 2

9kN4
¯
\ Nk ;

N2 WD
®
.N1; : : : ; Nk/ 2 Dk

W N2 � 8
8k; N3 � 2

9kN4; N2 < 2
9kN4

¯
\ Nk ;(3.19)

N3 WD
®
.N1; : : : ; Nk/ 2 Dk

W N2 � 8
8k; N3 � 2

9kN4; N2 � 2
9kN4

¯
\ Nk :
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We denote the contribution of (3.15) associated with each of these regions by D1;D2;D3,
respectively. Notice that the case k D 3 shall follow directly from the bound exposed
for N3, while N1 and N2 only concern the cases k � 4.

Step 1.1. Let us begin by considering the contribution of (3.17) associated with N1.
We recall once again thatN > 87k. In fact, in this case we can proceed directly from Lem-
ma 2.9, Plancherel’s theorem, as well as the Hölder and Bernstein inequalities, to obtain

D1 .k
Z T

0

X
N�1

X
N1
hN i2s�2

ˇ̌̌Z
�k

dk.�1; : : : ; �k/

2Y
iD1

�Ni .�i / Ow.t
0; �i /

kY
jD3

�Nj .�j / Ozj .t
0; �j /

ˇ̌̌
dt 0

.k
Z T

0

X
N�1

X
N1
hN i2s�2 min¹N;N3ºkPN1w.t

0; � /kL2xkPN2w.t
0; � /kL2x

� kPN3z3.t
0; � /kL1x kPN4z4.t

0; � /kL1x

kY
jD5

kPNj zj .t
0; � /kL1x dt

0

.k
Z T

0

X
N�1

X
N1
hN is�1hN1i

1�s min¹N;N3ºkPN1w.t
0; � /kH s�1

x
kPN2w.t

0; � /kH s�1
x

� hN3i
�.1C/

kJ 1=2
C

x PN3z3.t
0; � /kL1x kJ

1=2C

x PN4z4.t
0; � /kL1x

kY
jD5

kPNj zj .t
0; � /kL1x dt

0

.k kwk2L1T H s�1
x
kJ 1=2

C

x z3kL2TL
1
x
kJ 1=2

C

x z4kL2TL
1
x

kY
jD5

kzj k
L1T H

1=2C

x

:

Here, we have used the fact that s 2 .1=2; 1� so that hN is�1hN2i1�s . 1, and that, on N1,
the following inequalities hold: hN ishN1i�s . 1 and hN i�1hN1imin¹N;N3º .k N3:

Step 1.2. Now we consider the case of N2. Indeed, in a similar fashion as above,
recalling that s 2 .1=2; 1� and that N > 87k, then, by using Lemma 2.9, Plancherel’s
theorem as well as the Hölder and Bernstein inequalities, we infer that

D2 .k
Z T

0

X
N�1

X
N2
hN i2s�2

ˇ̌̌Z
�k

dk.�1; : : : ; �k/

2Y
iD1

�Ni .�i / Ow.t
0; �i /

kY
jD3

�Nj .�j / Ozj .t
0; �j /

ˇ̌̌
dt 0

.k
Z T

0

X
N�1

X
N2
hN i2s�2 min¹N;N3ºkPN1w.t

0; � /kL2xkPN2w.t
0; � /kL1x

� kPN3z3.t
0; � /kL2xkPN4z4.t

0; � /kL1x

kY
jD5

kPNj zj .t
0; � /kL1x dt

0

.k
Z T

0

X
N�1

X
N2
hN i2s�2hN1i

1�s
hN3i

�sN�2 N
�
4 min¹N;N3ºkPN1wkH s�1

x

� kJ .�1=2/
C

x PN2wkL1x kPN3z3kH s
x
kJ 1=2

C

x PN4z4kL1x

kY
jD5

kPNj zj kL1x dt
0

.k kwkL1T H s�1
x
kJ .�1=2/

C

x wkL2TL
1
x
kz3kL1T H

s
x
kJ 1=2

C

x z4kL2TL
1
x

kY
jD5

kzj k
L1T H

1=2C

x

:
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Here we have used that, due to our current hypotheses, we always have that N3 & N . In
fact, if N2 � 1

16
N , and since N4 � N3, due to the explicit form of dk and the definition

of �k , we infer that

N1 2 Œ
1
2
N; 2N � and N3 2 Œ

1
4
N1; 4N1�:

On the other hand, ifN2 � 1
8
N , then, sinceN3 �N4 &N2, we obtain the desired relation.

Step 1.3. Finally, we are ready to treat the remaining case in (3.19), that is, we now deal
with the region N3. In order to do so, we begin using the decomposition given in (2.11),
from which we infer that it is enough to control the following quantities:

D
high
3;R WD

X
N�1

X
N3
hN i2s�2 sup

t2.0;T /

ˇ̌̌ Z
R2

…dk .1
high
t;RPN1w; 1tPN2w/PN3z3 � � �PNkzk

ˇ̌̌
;

D
low;high
3;R WD

X
N�1

X
N3
hN i2s�2 sup

t2.0;T /

ˇ̌̌ Z
R2

…dk .1
low
t;RPN1w; 1

high
t;RPN2w/PN3z3 � � �PNkzk

ˇ̌̌
;

D
low;low
3;R WD

X
N�1

X
N3
hN i2s�2 sup

t2.0;T /

ˇ̌̌ Z
R2

…dk .1
low
t;RPN1w; 1

low
t;RPN2w/PN3z3 � � �PNkzk

ˇ̌̌
;

where R stands for a large real number that shall be fixed later. For the sake of clarity we
split the analysis into two steps.

Step 1.3.1. We begin by considering the case of D
high
3;R . Once again, the idea is to

take advantage of the operator 1high
t;R by using Lemma 2.6. In fact, thanks to our current

hypothesis, we see that we can choose once againR being equal toR WDN1N3. Moreover,
due to the definition of �k again, since min¹N2; N3º � 29kN4, we infer that N3 � 8N1,
and hence either we have

(3.20)
®
N1 � 16N and N3 2 Œ12N1; 2N1�

¯
or

®
N1 2 Œ

1
2
N; 8N � and N3 � 8N1

¯
:

Therefore, we can then bound G
high
3;R by using the first inequality in Lemma 2.6, Lem-

mas 2.8 and 2.9, as well as Sobolev’s embedding, in the following fashion:

D
high
3;R .k

X
N�1

X
N3
T 1=4hN i2s�2k1high

T;RkL4=3

�

 Z
R
…dk .1

high
t;RPN1w; 1tPN2w/PN3z3 � � �PNkzk


L1t

.k
X
N�1

X
N3
T 1=4hN i2s�2 min¹N;N3ºR�3=4

� kPN1wkL1t L2x
kPN2wkL1t L2x

kY
jD3

N
1=2
j kPNj zj kL1t L2x

.k
X
N�1

X
N3
T 1=4hN is�1hN1i

1�s.N1N3/
�3=4 min¹N;N3º

� kPN1ukL1t H s�1
x
kPN2wkL1t H s�1

x

kY
jD3

min¹N 1=2
j ; N

�.0C/
j ºkPNj zj kL1t H

1=2C

x

.k T 1=4kwk2L1t H s�1
x

kY
jD3

kzj k
L1t H

1=2C

x

:
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As before, notice that we have used the fact that s 2 .1=2; 1� so that we have the following
inequality hN is�1hN2i1�s . 1. To finish this first case, we point out that, thanks to the
operator 1high

t;R acting on the factor PN2w, the same estimates also hold for D
low;high
3;R .

Step 1.3.2. Now we consider the last term in the decomposition, that is, D
low;low
3;R . In

fact, first of all, let us recall the notation introduced in the proof of the previous proposition
(adapted to the current symbol):

Ik.u1; : : : ; uk/ WD
X
N�1

X
N3
hN i2s�2 sup

t2.0;T /

ˇ̌̌ Z
R2

…dk .u1; u2/u3 � � �uk

ˇ̌̌
:

Then, by using the hypothesis min¹N2; N3º � 29kN4, following the same computations
as in (3.10), we infer that the resonant relation satisfies

j�k.�1; : : : ; �k/j � N1N2N3:

Thus, we are in a proper setting to take advantage of Bourgain spaces. In order to do so,
we decompose D low;low

3;R with respect to modulation variables in the following fashion:

D
low;low
3;R � I

�
Q&N�1low

t;RPN1w; 1
low
t;RPN2w;PN3z3; : : : ; PNkzk

�
C I

�
Q�N�1low

t;RPN1w;Q&N�1low
t;RPN2w;PN3z3; : : : ; PNkzk

�
C I

�
Q�N�1low

t;RPN1w;Q�N�1
low
t;RPN2w;Q&N�PN3z3; : : : ; PNkzk

�
:::
C I

�
Q�N�1low

t;RPN1w;Q�N�1
low
t;RPN2w;Q�N�PN3z3; : : : ;Q&N�PNkzk

�
DW I1 C � � � C Ik ;

where N � stands for N � WD N1N2N3. At this point it is important to recall that, since
N2 � 8

9k, we also have thatN �� N1N3 D R, which allows us to use the last inequality
in Lemma 2.6. Thus, bounding in a similar fashion as before, by using the Hölder and
Bernstein inequalities, as well as Lemmas 2.6, 2.8 and 2.9, and the classical Bourgain
estimates, we obtain

Ik .k
X
N�1

X
N3
hN i2s�2 min¹N;N3ºkQ&N�1low

T;RPN1wkL2tL2x

� k1low
T;RPN2wkL2tL2x

kY
jD3

N
1=2
j kPNj zj kL1t L2x

.k
X
N�1

X
N3
hN is�1hN1i

1�sN�12 N�13 min¹N;N3ºkQ&N�1low
T;RPN1wkXs�2;1

� k1low
T;RkL2kPN2wkL1t H s�1

x

kC1Y
jD3

min¹N 1=2
j ; N

�.0C/
j ºkPNj zj kL1t H

1=2C

x

.k T 1=2kwkXs�2;1kwkL1t H s�1
x

kY
jD3

kzj k
L1t H

1=2C

x

;
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where we have used again (3.20), the fact that N > 87k and that s 2 .1=2; 1�, so that
we have hN is�1hN2i1�s . 1.17 Moreover, it is not difficult to see that, by following the
same lines (up to trivial modifications), we can also bound I2, obtaining exactly the same
bound. On the other hand, to control I3, we use again Lemmas 2.6, 2.8 and 2.9, as well as
the Hölder and Bernstein inequalities, to obtain

I3 .k
X
N�1

X
N3
hN i2s�2N

1=2
3 min¹N;N3ºkQ�N�1low

T;RPN1wkL2tL2x

� kQ�N�1low
T;RPN2wkL1t L2x

kQ&N�PN3z3kL2tL2x

kY
jD4

N
1=2
j kPNj zj kL1t L2x

.k
X
N�1

X
N3
hN is�1hN1i

�s
hN3i

1=2�N�12 N
�1=2
3 min¹N;N3ºk1low

T;RkL2kPN1wkL1t H s�1
x

� kPN2wkL1t H s�1
x
kQ&N�PN3z3kX .�1=2/C;1

kC1Y
jD4

min¹N 1=2
j ; N

�.0C/
j ºkPNj zj kL1t H

1=2C

x

.k T 1=2kwk2L1t H s�1
x
kz3kX .�1=2/C;1

kY
jD4

kzj k
L1t H

1=2C

x

:

Notice that all the remaining cases Ii , i D 4; : : : ; k, follow very similar lines to the latter
case above (up to trivial modifications), and they provide exactly the same bound. Hence,
in order to avoid over-repeated computations, we omit the proof of these cases.

Step 2. Now we seek to bound the case where we only have powers of‰. In particular,
no zi is involved. More concretely, in this step we seek to study the following quantity:

(3.21)
X
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;N2;N3

Z
R
…d3.PN1w;PN2w/PN3.‰

m/
ˇ̌̌
;

where d3.�1; �2; �3/ stands for the symbol given in (3.16), where �1 and �2 denote the
frequencies of each of the occurrences of w in (3.21), respectively.

Now notice that, by symmetry, we can always assume N1 � N2. Moreover, it is not
difficult to see that, due to the additional constraint18 given by �3, in this case, we have
that max¹N2;N3º � 1

4
N1 andN3 � 8N1, and hence, either we haveN2 �N1 orN3 �N1,

or both. By similar reasons, ifN3 � 16N , then we must haveN1 2 Œ14N3; 4N3�, otherwise
the inner integral in (3.21) vanishes.

On the other hand, following the same lines of the previous step, we can directly
bound the case N23 WD N3 \ ¹N2 . 1º, where N3 is the set defined in (3.18). In fact, from
Lemma 2.9, Plancherel’s theorem and Hölder’s inequality, we obtainX
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N23

Z
�3

d.�1; �2; �3/�N1.�1/ Ow.�1/�N2.�2/ Ow.�2/�N3.�3/
�‰m.�3/ˇ̌̌

.k T kwk2L1T H s�1
x
k‰mk

L1T W
1C;1
x

;

17We point out that, in order to avoid over-repeated sentences, in what follows we shall no longer emphasize
that s 2 .1=2; 1� and that N > 87k.

18We recall that, with this phrase we are referring to the condition �1 C �2 C �3 D 0.
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and hence in the sequel we can assume that N2 � 88k. Now, let us consider the region
N� WD N3 \ ¹N3 � 16N º. Then, by using Plancherel’s theorem and then the Hölder and
Bernstein inequalities, we getX
N�1

hN i2s�2 sup
t2.0;T /

ˇ̌̌̌ Z t

0

X
N�

Z
�3

d.�1; �2; �3/�N1.�1/ Ow.�1/�N2.�2/ Ow.�2/�N3.�3/
�‰m.�3/ˇ̌̌̌

.k
Z T

0

X
N�1

X
N�

hN3i
�.0C/

kPN1w.t
0; �/kH s�1

x
kPN2w.t

0; �/kH s�1
x
kPN3.‰

m.t 0; �//k
W
1C;1
x

dt 0

.k T kwk2L1T H s�1
x
k‰mk

L1T W
1C;1
x

:

Hence, from now on we assume that N3 � 8N , which in turn forces N1 2 Œ14N; 32N �
thanks to the additional constraint given by �3. Then, denoting this remaining region
by N�, recalling that max¹N2;N3º � 1

4
N1, we can bound the remaining portion of (3.21)

from Lemma 2.9 and Bernstein’s inequality as follows:X
N�1

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N�

Z
�3

d.�1; �2; �3/�N1.�1/ Ow.�1/�N2.�2/ Ow.�2/�N3.�3/
�‰m.�3/ˇ̌̌

.k
Z T

0

X
N�1

X
N�

min¹N3; N
�.0C/
3 ºkPN1wkH s�1

x
kPN2wkH s�1

x
kPN3.‰

m/k
W
1C;1
x

.k T kwk2L1T H s�1
x
k‰mk

L1T W
1C;1
x

;

where, in this case, we have used the fact that kPN1w.t; � /kH s�1
x

and kPN2w.t; � /kH s�1
x

are both square summable to sum over the region N3 � N .
Step 3. Finally, it only remains to bound the “crossed terms”. More specifically, in this

step we aim to estimate the contribution of the following quantity:

X
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
N1;:::;NkC1

Z
R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰

m/
ˇ̌̌
;

(3.22)

where we assume k � 3 and dkC1 is the symbol given in (3.16). We emphasize that, as in
the previous proposition, we consider NkC1 2 Dnh.19 Now notice that, by symmetry, we
can always assume thatN1 �N2 andN3 �N4Dmax¹N4; : : : ;Nkº. Moreover, in contrast
with Step 1, in this case, by using either Lemma 2.9 or Plancherel’s theorem together with
Hölder’s inequality, the factor coming from the symbol dkC1 shall be of order

min¹N;Nmaxº instead of min¹N;N3º;

as in the previous case, where we have adopted the notation Nmax WD max¹N3;NkC1º. On
the other hand, due to the definition of �kC1, we infer that

max¹N2; N3; NkC1º �
1

2k
N1:

19Hence, when NkC1 D 1, we consider �.�kC1/ instead of �NkC1 .�kC1/ in (3.22).
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In fact, more generally, we have

max¹N1; N2; N3; N4; NkC1º n ¹max¹N1; N3; NkC1ºº �
1

2k
max¹N1; N3; NkC1º:

Therefore, roughly speaking, the two largest frequencies are always equivalent (up to a
factor depending on k). Now, let us start by ruling out the case N2 < 99k. Indeed, letting
Nk

.
WDNkC1 \ ¹N2 . 1º, from Lemma 2.9, Plancherel’s theorem and Hölder’s inequality,

we getX
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
Nk

.

Z
R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰

m/
ˇ̌̌

.k
Z T

0

X
N>0

X
Nk

.

hN i2s�2hN1i
1�s
hN3i

�sN
1=2
2 N

�.1C/

kC1
min¹N;NmaxºkPN1wkH s�1

x

� kPN2wkH s�1
x
kPN3z3kH s

x
kPNkC1.‰

m/k
W
1C;1
x

kY
jD4

min¹N 1=2
j ; N�j ºkPNj zj kH1=2C

x

dt 0

.k T kwk2L1T H s�1
x
kz3kL1T H

s
x
k‰mk

L1T W
1C;1
x

kY
jD4

kzj k
L1T H

1=2C

x

;

where we have used the fact that, if N � 1, then N1 2 Œ12N; 2N �, as well as the fact that
kPN1w.t; � /kH s�1

x
and kPN3z3.t; � /kH s

x
are both square summable. Once again, notice

that the previous bound allows us to assume in the sequel that N � 98k. Now, it is not
difficult to see that, in the remaining region, we can further assume that N3 � 88k. In
fact, let us assume that N3 < 88k. Then, in this case, either we have NkC1 � N1 or
¹NkC1 � N1 and N1 � N2 � N º. Hence, denoting this region by Nk;3� , then, by using
the Hölder and Bernstein inequalities, we haveX
N>0

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
Nk;3�

Z
R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰

m/
ˇ̌̌

.k
Z T

0

X
N>0

X
Nk;3�

hN i2s�2hN1i
1�s
hN2i

1�sN
�.1C/

kC1
min¹N;NmaxºkPN1wkH s�1

x

� kPN2wkH s�1
x
kPNkC1.‰

m/k
W
1C;1
x

kY
jD3

min¹N 1=2
j ; N�j ºkPNj zj kH1=2C

x

dt 0

.k T kwk2L1T H s�1
x
k‰mk

L1T W
1C;1
x

kY
jD3

kzj k
L1T H

1=2C

x

;

where, to sum over the region ¹NkC1 � N and N1 � N2 � N º, we have used the fact
that kPN1w.s; � /kH s�1

x
and kPN2w.s; � /kH s�1

x
are both square summable. Moreover, there

is another important case that can be directly treated. Let us define the set

Nk;1� WD NkC1 \ ¹N2 � 99kº \ ¹N3 � 88kº \
®
29kNkC1 > min¹N1; N3º

¯
:
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The latter constraint implies, up to a factor k, that min¹N1;N3º .k NkC1. Then, proceed-
ing in a similar fashion as above, noticing that min¹N;Nmaxº .k min¹N;NkC1º, from the
Hölder and Bernstein inequalities, we obtainX
N�1

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
Nk;1�

Z
R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰

m/
ˇ̌̌

.k
Z T

0

X
N�1

X
Nk;1�

hN i2s�2hN1i
1�s
hN2i

1�sN
�.0C/
3 N

�.1C/

kC1
min¹N;NmaxºkPN1wkH s�1

x

� kPN2wkH s�1
x
kPN3z3kH1=2C

x

kPNkC1.‰
m/k

W
1C;1
x

kY
jD4

min¹N 1=2
j ; N�j ºkPNj zj kH1=2C

x

dt 0

.k T kwk2L1T H s�1
x
k‰mk

L1T W
1C;1
x

kY
jD3

kzj k
L1T H

1=2C

x

:

Having dealt with the above cases, we can now easily deal with the region 29kNkC1 >N2.
Indeed, denoting this region by Nk;2� , from the Hölder and Bernstein inequalities, we see
thatX
N�1

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z t

0

X
Nk;2�

Z
R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰
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ˇ̌̌

.k
Z T
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X
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X
Nk;2�

hN i2s�2hN1i
1�s
hN2i

1�sN
1=2
2 N�s3 N

�.1C/

kC1
min¹N;N3ºkPN1wkH s�1

x

� kPN2wkH s�1
x
kPN3z3kH s

x
kPNkC1.‰

m/k
W
1C;1
x

kY
jD4

min¹N 1=2
j ; N�j ºkPNj zj kH1=2C

x

dt 0

.k T kwk2L1T H s�1
x
kz3kL1T H

s
x
k‰mk

L1T W
1C;1
x

kY
jD4

kzj k
L1T H

1=2C

x

:

Here, we have used the fact that kPN1w.s; � /kH s�1
x

and kPN3z3.s; � /kH s
x

are both square
summable, so that we are able to re-sum in the region N1 � N3 � max¹N2; N4; NkC1º.
Therefore, in the sequel we can assume that min¹N1;N2;N3º � 29kNkC1. This concludes
all the straightforward cases. Now, in order to deal with the remaining region, we split the
analysis into three cases, namely,

N1k WD
®
.N1; : : : ; NkC1/ 2 Dk

�Dnh W N2 � 9
9k; N3 � 8

8k;

min¹N1; N2; N3º � 29kNkC1; N3 < 29kN4
¯
\ NkC1;

N2k WD
®
.N1; : : : ; NkC1/ 2 Dk

�Dnh W N2 � 9
9k; N3 � 8

8k;

min¹N1; N2; N3º � 29kNkC1; N3 � 29kN4; N2 < 29kN4
¯
\ NkC1;

N3k WD
®
.N1; : : : ; NkC1/ 2 Dk

�Dnh W N2 � 9
9k; N3 � 8

8k;

min¹N1; N2; N3º � 29kNkC1; N3 � 29kN4; N2 � 29kN4
¯
\ NkC1:
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We denote by D1;D2;D3 the contribution of (3.22) associated with each of these regions,
respectively. Notice that the case k D 3 shall follow directly from the bound exposed
for N3

k
, while N1

k
and N2

k
only concern the cases k � 4.

Step 3.1. Let us begin by considering the case of N1
k

. In fact, in this case, by using
Lemma 2.9, Plancherel’s theorem as well as the Hölder and Bernstein inequalities, we get

D1 .k
Z T

0

X
N�1

X
N1
k

hN i2s�2
ˇ̌̌ Z

R
…dkC1.PN1w;PN2w/PN3z3 � � �PNkzkPNkC1.‰

m/
ˇ̌̌
dt 0

.k
Z T
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X
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N1
k

hN i2s�2hN1i
1�s
hN2i

1�sN
�.1C/
3 N

�.1C/
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min¹N;N3ºkPN1wkH s�1

x
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kJ 1=2

C

x PN3z3kL1x kJ
1=2C

x PN4z4kL1x kPNkC1.‰
m/k

W
1C;1
x

kY
jD5

kPNj zj kL1x

.k kwk2L1T H s�1
x
kJ 1=2

C

x z3kL2TL
1
x
kJ 1=2

C

x z4kL2TL
1
x
k‰mk

W
1C;1
x

kY
jD5

kzj k
L1T H

1=2C

x

;

where, to sum over the region ¹N3 � N and N1 � N2 � N º, we have used the fact
that kPN1w.s; � /kH s�1

x
and kPN2w.s; � /kH s�1

x
are both square summable, while the case

N3 & N follows directly thanks to the factor N�3 .
Step 3.2. Now we consider the contribution of (3.22) associated with N2

k
. Indeed,

proceeding similarly as above, by using Lemma 2.9, Plancherel’s theorem as well as the
Hölder and Bernstein inequalities, we infer that

D2 .k
Z T

0

X
N�1

X
N2
k

hN i2s�2
ˇ̌̌ Z
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Z T
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X
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N2
k

hN i2s�2 min¹N;N3ºkPN1w.t
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� kPN3z3.t
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0; � /kL1x kPNkC1.‰
m/kL1t;x

kY
jD5

kPNj zj .t
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0

.k
Z T
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X
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N2
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1�s
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�sN�2 N
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4 N
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kC1 min¹N;N3ºkPN1wkH s�1

x

� kJ .�1=2/
C

x PN2wkL1x kPN3z3kH s
x
kJ 1=2

C

x PN4z4kL1x

� kPNkC1.‰
m/k

W
1;1
x

kY
jD5

kPNj zj kL1x dt
0

.k kwkL1T H s�1
x
kJ .�1=2/

C

x wkL2TL
1
x
kz3kL1T H

s
x
kJ 1=2

C

x z4kL2TL
1
x

� k‰km
L1t W

1;1
x

kY
jD5

kzj k
L1T H

1=2C

x

:
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Here we have used the fact that, due to our current hypotheses, we always have that
N3 & N . In fact, if N2 � 1

16
N , since N4� N3 and NkC1� min¹N1; N2; N3º, by using

the explicit form of dkC1, we infer that

N1 2 Œ
1
2
N; 2N � and N3 2 Œ

1
4
N1; 4N1�:

On the other hand, ifN2 � 1
8
N , then, sinceN3 �N4 &N2, we obtain the desired relation.

Step 3.3. Finally, we are ready to treat the remaining case, that is, we now deal with
the region N3

k
. In order to do so, we begin using the decomposition given in (2.11), from

which we infer that it is enough to control the following quantities:

D
high
3;R WD

X
N�1

X
N3
k

hN i2s�2

� sup
t2.0;T /

ˇ̌̌ Z
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…dkC1.1
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t;RPN1w; 1tPN2w/PNkC1.‰

m/

kY
jD3

PNj zj

ˇ̌̌
;

D
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X
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X
N3
k

hN i2s�2
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t2.0;T /

ˇ̌̌ Z
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…dkC1.1
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m/
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jD3

PNj zj
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;

D
low;low
3;R WD

X
N�1

X
N3
k

hN i2s�2

� sup
t2.0;T /

ˇ̌̌ Z
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…dk .1
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t;RPN1w; 1
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t;RPN2w/PNkC1.‰

m/

kY
jD3

PNj zj

ˇ̌̌
;

where R stands for R WD N1N3, as in the previous cases. For the sake of clarity we split
the analysis into two steps.

Step 3.3.1. We begin by considering the case of D
high
3;R . Once again, the idea is to take

advantage of the operator 1high
t;R by using Lemma 2.6. Notice that, since in this case we

have N3 � 8N1, then, roughly speaking, either we have

(3.23) ¹N1 � N; N2 � N and N1 � N3º or ¹N1 � N and max¹N2; N3º � N1º:

We can then bound G
high
3;R by using the first inequality in Lemma 2.6, Lemma 2.9, as well

as Sobolev’s embedding, in the following fashion:

D
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3;R .k

X
N�1

X
N3
k

T 1=4hN i2s�2k1high
T;RkL4=3

�

 Z
R
…dkC1.1

high
t;RPN1w; 1tPN2w/PNkC1.‰

m/

kY
jD3

PNj zj


L1t

.k
X
N�1

X
N3
k

T 1=4hNi2s�2hN1i
1�s
hN2i

1�s.N1N3/
�3=4min¹N;N3ºkPN1wkL1t H s�1

x

� kPN2wkL1t H s�1
x
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.k T 1=4kwk2L1t H s�1
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L1t H
1=2C

x

:
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Once again, notice that thanks to the operator 1high
t;R acting on the factor PN2w, the same

estimates also hold for D
low;high
3;R .

Step 3.3.2. Now we consider the last term in the decomposition, that is, D
low;low
3;R . First

of all, let us recall the notation introduced in the proof of the previous proposition (adapted
to the current symbol)

Ik.u1; : : : ; ukC1/ WD
X
N�1

X
N3
k

hN i2s�2 sup
t2.0;T /

ˇ̌̌ Z
R2

…dkC1.u1; u2/u3 � � �ukC1

ˇ̌̌
:

Then, by using the hypothesis min¹N2; N3º � 29kN4 and following the same computa-
tions as in (3.10), we infer that the resonant relation satisfies

j�k.�1; : : : ; �k/j � N1N2N3:

Therefore, taking advantage of the above relation, we can now decompose D
low;low
3;R with

respect to modulation variables in the following fashion:

D
low;low
3;R � I

�
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t;RPN1w; 1
low
t;RPN2w;PN3z3; : : : ; PNkzk ; PNkC1.‰
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�
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m/
�

DW I1 C � � � C IkC1;

where N � stands for N � WD N1N2N3. At this point it is important to recall that, since
N2 � 9

9k, we also have that N � � N1N3 D R, which allows us to use the last inequal-
ity in Lemma 2.6. Thus, bounding in a similar fashion as before, by using the Hölder
and Bernstein inequalities, as well as Lemmas 2.6 and 2.9, and the classical Bourgain
estimates, we obtain
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where we have used again (3.23). Moreover, it is not difficult to see that, by following the
same lines (up to trivial modifications), we can also bound I2, obtaining the same bound.
On the other hand, to control I3, we use again Lemmas 2.6 and 2.9, as well as the Hölder
and Bernstein inequalities to get that
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:

Notice that all the remaining cases Ii , i D 4; : : : ; k, follow very similar lines to the latter
case (up to trivial modifications), and they provide exactly the same bound as above, and
hence we omit their proof. Finally, to control IkC1 notice that, since all factors PNiu have
an operator Q�N� in front of them, then the factor PNkC1.‰

m/ is forced to be resonant,
and hence in this case we can writeQ&N�PNkC1.‰

m/DPNkC1.‰
m/, otherwise IkC1D 0

thanks to Lemma 2.7. Moreover, notice also that, in the region N3
k

, we have in particular
that N1N2N3 � N 3

kC1
, and hence we infer that j�kC1 � �3kC1j � j�kC1j, thus we can

write PNkC2.‰
m/ D R&N�PNkC2.‰

m/. Therefore, by using Lemmas 2.6 and 2.9, as well
as Bernstein’s inequality and the above properties, we infer that
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:

Now we explain how we control the contribution of the L2TL
1
x terms. To this end,

recalling the equation solved by w.t; x/, we use the Strichartz estimate (2.16) with ı D 1,
from which we obtain

kJ .�1=2/
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x wkL2TL
1
x
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Thus, gathering all the above estimate, and then using Lemma 2.5, we conclude the proof
of the proposition. The proof is complete.

4. Unconditional well-posedness in H s for s > 1=2

4.1. Existence and unconditional uniqueness

In this section we shall assume Theorem 5.1 hold, that is, we assume equation (1.4) is
locally well-posed in H 3=2C.R/. In the next section we shall sketch the main ideas of its
proof (see [1] for further details, for example).

Before going further, for the sake of simplicity and by abusing the notation, recalling
that ‰ is a given function, from now on we let

jjj‰jjjr WD k@t‰ C @
3
x‰ C @xf .‰/kL1t H r

x
;

Q�.kuk
L1T H

1=2C

x

/ WD Q�
�
kuk

L1T H
1=2C

x

; k‰k
L1t W

sC1C;1
x

; k@t‰kL1t;x ; jjj‰jjjsC
�
:

Now, consider a sequence ¹‰nºn2N � L
1.R2/ satisfying the hypotheses in (1.7) with

s0 D 3=2C for all n 2 N, such that

k@t‰n � @t‰kL1t;x C k‰n �‰kL1t W
sC1C;1
x

C jjj‰n �‰jjjsC
n!C1
�����! 0:

Let u 2 C.Œ0; T0�; H1.R// be a smooth solution to equation (1.4) associated with ‰n,
with minimal existence time

T ? D T ?.ku0kH3=2C ; jjj‰njjj3=2C ; k‰nkL1t W
5=2;1
x

/ > 0;

emanating from initial data u0 2 H1.R/. Then, according to Proposition 3.1, there exist
a constant c > 0 such that, after an application of the Cauchy–Schwarz inequality, we have

kuk2L1T H
s
!
� ku0k

2
H s
!
C cT kuk2L1T H

s
!
C cT jjj‰njjj

2
sC

(4.1)

C cT 1=4kuk2L1T H
s
!

Q�.kuk
L1T H

1=2C

x

/;

for all 0 < T �min¹1;T0º. We stress that Q� only involves norms of‰n associated with s
and not with s0 D 3=2C. Notice also that they do not depend on T either. Thus, we can
consider the function

F.T / WD cT C cT 1=4Q�
�
kuk

L1T H
1=2C

x

�
; T 2 Œ0; T0�:

At this point it is important to recall that kukL1T H s
!
!ku0kH s

!
as T ! 0. Moreover, notice

that F.0/ D 0, and hence, thanks to the continuity of T 7! F.T /, we infer the existence
of T� D T�.ku0kH s

!
/ > 0 small enough such that

F.T 0/ < 1=2 for all T 0 < T�:

In particular, the above inequality along with (4.1) implies that

(4.2) kukL1
T 0
H s
!

. ku0kH s
!
C jjj‰jjjsC for all T 0 < T�:
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Note that, from (4.2), we infer that the minimal existence time20 can be chosen only
depending on ku0kH s

!
and jjj‰jjjsC . On the other hand, by using Proposition 3.2, we have

ku � vk2
L1T H

s�1
x

. ku0 � v0k2H s�1 C T
1=4
ku � vk2

L1T H
s�1
x

Q�.kukL1T H
s
x
; kvkL1T H

s
x
/;

where, as above, by an abuse of notation, we are letting

Q�.kukL1T H
s
x
; kvkL1T H

s
x
/ WD Q�.kukL1T H

s
x
; kvkL1T H

s
x
; k‰k

L1t W
sC1;1
x

; k@t‰kL1t;x
�
:

Therefore, a similar continuity argument as before yield us to the existence of a positive
time QT� D QT�.ku0kH s ; kv0kH s / > 0 such that

(4.3) ku � vkL1
QT 0
H s�1 . ku0 � v0kH s�1 for all QT 0 < QT�:

Now, let us consider an initial data u0 2H s.R/with s > 1=2. Consider a smooth sequence
of functions ¹u0;nºn2N strongly converging to u0 in H s.R/. Let un.t/ be the solution to
equation (1.4) associated with ‰n, with initial data u0;n. Note that the above analysis
assures us that we can define the whole family of solutions ¹unº in a common exis-
tence time interval Œ0; T ��, for some T � > 0 only depending on ku0kH s and jjj‰jjjsC .
Then, thanks to estimate (4.2) with !N � 1, ¹unºn2N defines a bounded sequence in
C.Œ0;T ��;H s.R//, and hence we can extract a subsequence (still denoted by un) converg-
ing in the weak-? topology of L1T �H

s
x to some limit u. Moreover, from this latter conver-

gence we also infer that @xf .unC‰n/ converges in a distributional sense to @xf .uC‰/.
Therefore, the limit object u solves equation (1.4) with ‰, in a distributional sense. Fur-
thermore, from (4.3), we get that ¹unº defines a Cauchy sequence inC.Œ0;T ��;H s�1.R//,
and hence ¹unºn2N strongly converges to u in L1..0; T �/; H s�1.R//. By the same
reasons, from estimate (4.3), we conclude that this solution is the only one in the class
L1..0; T /;H s.R//. On the other hand, the above results ensure that the map

Œ0; T �� 3 t 7! u.t/ 2 H s.R/

is weakly continuous. In fact, let ' 2 H s arbitrary, and consider Q' 2 H sC1 to be any
function satisfying k' � Q'kH s � "=kukL1

T�
H s
x
. Then, for all t; t 0 2 .0; T �/, we have

jhu.t/ � u.t 0/; 'ijH s � "C jhJ s�1x .u.t/ � u.t 0//; J sC1 Q'iH s j

� "C2kun�ukL1T H
s�1
x
k Q'kH sC1 C kun.t/�un.t

0/kH s�1
x
k Q'kH sC1 :

Then, choosing n sufficiently large and using the strong convergence result in H s�1,
we deduce that we can control the right-hand side of the above inequality by 3", and
hence u.t/ is weakly continuous from Œ0; T �� into H s.R/. Moreover, recalling that, due
to (4.3), ¹unº defines a Cauchy sequence in C.Œ0; T ��; H s�1.R//, we infer in particular
that u 2 C.Œ0; T ��;H s�1.R//.

20By this we mean the quantity T < T�, that we can choose, with which we know that the solution must exist
at least on the interval Œ0;T�. That is, the solution is guaranteed to exist at least up to time T.
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4.2. Continuity of the flow map

We are finally ready to prove both, the continuity of the flow map and the continuity
of u.t/ with values in H s.R/. Before getting into the details, let us recall the following
standard lemma.

Lemma 4.1 ([29]). Let ¹fnºn2N � H
s.R/ satisfying fn ! f in H s.R/. Then there

exists an increasing sequence ¹!N ºN2D �R of positive numbers satisfying !N � !2N �
2C!N , with

¹!N %C1 as N !C1º and ¹!N ! 1 as N ! 0º;

such that
sup
n2N

X
N>0

!2N hN i
2s
kPNfnk

2
L2
<1:

With this in mind, let ¹unºn2N be a sequence of solutions in L1.Œ0; T �; H s.R//
associated with initial datum un.0/ satisfying un.0/ ! u.0/ in H s.R/. Now, we use
the previous lemma with fn D un.0/ and f D u.0/. Consider ¹!N ºN2D given by the
previous lemma. Then it follows from Proposition 3.1 and estimate (4.2) that

(4.4) sup
n2N

sup
t2.0;T /

.kun.t/kH s
!
C ku.t/kH s

!
/ < C1:

Note that the strong continuity in C.Œ0; T �; H s�1.R//, together with the boundedness
inH s

! implies, in particular, the strong continuity of the map Œ0; T � 3 t 7! u.t/ inH s.R/.
In fact, first notice that it is enough to prove the continuity at t D 0. Thus, interpolating21

the H s.R/-norm, we obtain that

ku.t/ � u.0/kH s.R/ . ku.t/ � u.0/k�
H s�1.R/ku.t/ � u.0/k

1��
H s
!.R/

;

for some � 2 .0; 1/. Then, noticing that the first term on the right-hand side of the latter
inequality goes to zero as t goes to zero, and since the second term is bounded on Œ0; T �,
we conclude the strong continuity of the map Œ0; T � 3 t 7! u.t/ in H s.R/.

Finally, to complete the proof of Theorem 1.4, it only remains to show the continuity
of the flow map. Consider ¹unº and u as above. We intend to control kun � ukL1T H s

x
. First

of all, by using the triangular inequality, we have

kun�ukL1T H
s
x
� kun�P�NunkL1T H

s
x
CkP�Nun�P�NukL1T H

s
x
CkP�Nu�ukL1T H

s
x
;

for any N 2 D. Then, take " 2 .0; 1/ arbitrary but fixed. We claim that, as a particular
consequence of (4.4), there exists N� � 1 dyadic, such that for all t 2 Œ0; T �, we have

sup
n2N
kun.t/ � P�N�un.t/kH s

x
C ku.t/ � P�N�u.t/kH s

x
<
1

2
":

In fact, it is enough to notice that

sup
n2N

sup
t2.0;T /

kun.t/ � P�N�un.t/kH s
x
C ku.t/ � P�N�u.t/kH s

x

. sup
n2N

sup
t2.0;T /

1

!N�

� X
N>N�

!2N hN i
2s
�
kun.t/k

2
L2x
C ku.t/k2

L2x

��1=2
:

21Recall that, due to Lemma 4.1, we know that ¹!N ºN is a non-trivial weight, in the sense that !N %C1.
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Therefore, since !N % C1 as N ! C1, we conclude the proof of the claim. On the
other hand, from the strong convergence in C.Œ0; T �; H s�1.R// deduced in the previous
subsection, we infer the existence of n� such that, for all n � n� and all t 2 .0; T /, we
have

kP�N�un.t/ � P�N�u.t/kH s
x
� 2N�kP�N�un.t/ � P�N�u.t/kH s�1

x
<
1

2
":

Gathering the last two estimates, we conclude the proof of the continuity of the flow map,
and hence, the proof of Theorem 1.4.

4.3. Proof of Theorem 1.11

The proof of Theorem 1.11 is a direct consequence of Theorem 1.4 along with the follow-
ing lemma, proved in [11, 18].

Lemma 4.2. Letˆ 2 Zs.R/ for s > 1=2. Then there exist‰ 2 C1
b

and v 2H s such that

ˆ D uC‰; with ‰0 2 H1.R/:

Moreover, the mapsˆ 7! ‰ andˆ 7! u can be defined as linear maps such that for every
Qs > 1=2, the following holds: the mapˆ 7! ‰ is continuous from Zs into ZQs , whereas the
map ˆ 7! v is continuous from Zs into H s .

Proof. As we already mentioned, the proof follows almost the same lines as the corre-
sponding versions in [11, 18]. However, due to the hypothesis s > 1=2, we need a slight
modification of the argument. In fact, we shall actually explicitly define the function ‰.
Indeed, let us consider

‰.x/ WD .k �ˆ/.x/; where k.x/ WD
1

.4�/1=2
e�x

2=4:

Then it immediately follows that‰ 2 C1
b
.R/ and that‰0 2H1.R/. Therefore,ˆ�‰ 2

L1 � � 0. Now, by direct computations, we obtain

F .ˆ�‰/D .1�e��
2

/�̂.�/D .1C j�j2/1=4�1�e��2
�

�
� �.1C j�j2/�1=4 �̂.�/DW I� II:

Then it is enough to notice that I 2 L1 and that, due to hypothesis ˆ 2 Zs.R/, we get
II2L2. It is not difficult to see that from the above computation, we have u WDˆ�‰2H s .
Finally, to obtain the continuity part of the statement, it is enough to notice that

k‰0k2
H Qs�1

� kˆ0k2
H s�1 sup

�2R

�
.1C �2/Qs�se�2�

2� . kˆ0k2
H s�1 :

On the other hand, by straightforward computations from the definition of ‰, we also
obtain that k‰kL1 � kˆkL1 , which give us the continuity of the map ˆ 7! ‰ from Zs

into ZQs . Furthermore, proceeding similarly as above, we also get that

kuk2H s � kˆ
0
k
2
H s�1 sup

�2R

� .1C �2/.1 � e��2/2
�2

�
. kˆ0k2

H s�1 ;

which give us the continuity ofˆ 7! u from Zs.R/ intoH s.R/. The proof is complete.
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Therefore, by using the above lemma, we can decompose the initial data v.0; � / asso-
ciated with the IVP (1.2) into two functions u0 2 H s.R/ and ‰ 2 Z1.R/. Hence, it is
enough to write (1.2) in terms of the Cauchy problem (1.4), with ‰ D ‰.x/ being a time-
independent function belonging to ‰ 2 Z1.R/. Notice that ‰ satisfies all the hypotheses
in (1.7). Thus, Theorem 1.11 follows by using Theorem 1.4 with the above decomposition.

5. Local well-posedness in H 3=2C

.R/

This section is devoted to show the following result, that gives us the LWP for smooth
initial data.

Theorem 5.1 (LWP for smooth data). The Cauchy problem associated with (1.4) is locally
well-posed in H s.R/ for s > 3=2, with minimal existence time

T D T
�
ku0kH s

x
; k‰k

L1t W
sC1C;1
x

; jjj‰jjjs
�
> 0:

To establish the existence and uniqueness of smooth solutions to the IVP (1.4), we
use the parabolic regularization method, that is, we consider solutions to the following
equation:

(5.1) @tuC @
3
xu � �@

2
xu D �.@t‰ C @

3
x‰ C @xf .‰// � @x.f .uC‰/ � f .‰//;

for � > 0. Roughly, the idea is to start by showing LWP of the above equation, and then
take the limit �! 0. Since these ideas are (nowadays) fairly standard and have been used
multiple times in many different contexts, we shall be brief and only sketch their main
estimates. We refer to [1] and [18] for further details.

Before going further, let us recall some preliminary lemmas needed to prove The-
orem 1.8. The following lemma give us the main estimate to prove the LWP of (5.1)
(see [19]).

Lemma 5.2. Let � > 0 be fixed. LetW�.t/ to be the free group associated with the linear
part of (5.1), that is,

W�.t/ WD exp..�@2x � @
3
x/t/:

Then, for all s 2 R, r � 0 and all f 2 H s.R/, the following holds:

kW�.t/f kH sCr .r
�
1C

1

.2�t/r

�1=2
kf kH s :

As a direct consequence of the previous property, we have the following result.

Lemma 5.3. Let � > 0 be fixed. Consider u0 2 H s.R/ with s > 3=2. Then there exist
T D T .ku0kH s ; �/ > 0 and a unique solution u�.t/ to equation (5.1) satisfying

u� 2 C.Œ0; T �;H
s.R// \ C..0; T �;H1.R//:

The previous lemma can be proven by writing u�.t/ in its equivalent Duhamel form,
and then proceeding by standard fixed point arguments, using Lemma 5.2. We omit its
proof.

In the sequel we shall need the following lemma that combines commutator estimates
with Sobolev inequalities.
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Lemma 5.4 ([21]). Let s > 3=2 and r > 1. Then, for all f;g 2 �.R/, the following holds:

jhfgx ; giH s j . kfxkH r�1kgk2H s C kfxkH s�1kgkH skgkH r ;

where the implicit constant only depends on s and r .

The next step is to show that the previously found solution u�.t/ can be extended to
an interval of existence independent of � > 0.

Lemma 5.5. Let � > 0 be fixed. Let u� 2 C.Œ0; T �; H s.R// be the solution to equa-
tion (5.1) given by the previous lemma, with initial data u0 2 H s.R/ with s > 3=2. Then
u�.t/ can be extended to an interval T 0 D T 0.ku0kH s / > 0 independent of �. Moreover,
there exists a continuous function �W Œ0; T 0�! R such that

ku�.t/k
2
H s
x
� �.t/; with �.0/ D ku0k2H s :

Proof. In fact, directly taking the derivative of the H s-norm, using (5.1), after suitable
integration by parts, we obtain

d

dt
ku�.t/k

2
H s
x
� �2hu�; @x.f .uC‰/ � f .‰//iH s

x
(5.2)

� 2hu�; @t‰ C @
3
x‰ C @xf .‰/iH s

x

For the latter term above, from Cauchy–Schwarz, we can see that

jhu�; @t‰ C @
3
x‰ C @xf .‰/iH s

x
j � ku�.t/k

2
H s
x
C k@t‰ C @

3
x‰ C @xf .‰/k

2
L1t H

s
x
:

On the other hand, to estimate the first term in the right-hand side of (5.2), we write

@x.f .u� C‰/ � f .‰// D u�;x

1X
kD1

k�1X
mD0

ak.k �m/

�
k

m

�
uk�m�1� ‰m

C‰x

1X
kD1

k�1X
mD1

akm

�
k

m

�
uk�m� ‰m�1 DW IC II:

Then, by the classical Sobolev estimates for products as well as Lemma 5.4, we infer that
there exists a constant c1 > 0 such that

jhu�; IijH s
x

. ku�k2H s
x

1X
kD1

k jakjc
k
1

�
ku�kH s

x
C k‰k

L1t W
sC;1
x

�k�1
:

In a similar fashion, there exists another constant c2 > 0 such that

jhu�; IIiH s
x
j . ku�k2H s

x

1X
kD1

k2 jakjc
k
2

�
ku�kH s

x
C k‰k

L1t W
sC1C;1
x

�k�1
:

Therefore, gathering the above estimates, recalling that ‰ is given, we infer that there
exists a smooth function F�WR! RC such that

d

dt
ku�.t/k

2
H s
x

. k@t‰ C @3x‰ C @xf .‰/k
2
L1t H

s
x
C ku�.t/k

2
H s
x
F�.ku�.t/kH s

x
/:
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Then, denoting by C‰ the first term in the right-hand side above, it is enough to consider
�.t/ to be the solution of the equation

P�.t/ D C‰ C �.t/F�.�
1=2.t//; �.0/ D ku0k

2
H s :

Notice that the solution exists thanks to the Cauchy–Lipschitz theorem. Taking T� > 0 to
be the maximal existence time of �.t/, we conclude ku�.t/k2H s

x
� �.t/ for all t � T�.

5.1. Proof of Theorem 5.1

By using the latter lemma we can now take a sequence of initial data u0;� 2 H s.R/
strongly converging to some u0 in H s.R/. Then, by the uniform (in �) bound we infer
that, up to a subsequence, we can pass to the limit in the sequence of solutions u�.t/,
which converge in the weak-? topology of L1..0; T /;H s.R// to some limit object u.t/.
It is not difficult to see, reasoning similarly as in the previous section, that u.t/ solves
the equation in the distributional sense and the map Œ0; T � 3 t 7! u.t/ 2H s.R/ is weakly
continuous. Let us now consider the uniqueness of the solution. To this end, let us consider
w WD u � v, with u and v solutions of the equation. Recall that then w solves

@tw C @x
�
@2xw C f .uC‰/ � f .v C‰/

�
D 0:

Then, taking the L2-scalar product of the above equation with against w, we obtain

d

dt
kwk2

L2x
D �hw; @x.f .uC‰/ � f .v C‰//iL2x

. kwk2
L2x

1X
kD1

ckjakj
�
kukH1

x
C kvkH1

x
C k‰k

L1t W
1C;1
x

�k�1
:

Thus, a direct application of Grönwall’s inequality, recalling that ku.t/k2
H s
x
Ckv.t/k2

H s
x
�

2�.t/, implies the uniqueness.
The strong continuity of the solution with values in H s.R/, as well as the continuity

of the flow-map can be proven by classical Bona–Smith arguments. We omit this proof.

6. Proof of Theorem 1.8

In this section we seek to prove the global well-posedness, Theorem 1.8. We recall that in
this case we assume that

(6.1) jf 00.x/j . 1 for all x 2 R;

which shall allow us to use Grönwall’s inequality. We emphasize once again that, due to
the presence of ‰.t; x/, equation (1.4) has no evident conservation laws. Our first lemma
states that the L2-norm of the solution grows at most exponentially fast in time.

Lemma 6.1. Let u.t/ 2 C.Œ0; T �;H 1.R// be a solution to equation (1.4) emanating from
initial data u0 2 H 1.R/. Then, for all t 2 Œ0; T �, we have

(6.2) ku.t/k2
L2x
� Cu0;‰ exp.C‰t /;

where C‰ > 0 is a positive constant that only depends on ‰, while Cu0;‰ > 0 depends
on ‰ and u0.
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Proof. In fact, multiplying equation (1.4) by u.t/ and then integrating in space, we obtain

1

2

d

dt

Z
R
u2.t; x/ dx D �

Z
u@x.f .uC‰/ � f .‰// �

Z
u.@t‰ C @

3
x‰ C @xf .‰//

DW IC II:

Notice that, thanks to our hypotheses on‰, we can immediately bound II by using Young’s
inequality for products:

jIIj � ku.t/k2
L2x
C k@t‰ C @

3
x‰ C @xf .‰/k

2
L1t L

2
x
:

Now, the estimate for I is more delicate, since we require to integrate by parts. Also, we
must be careful while splitting the integral into several integrals, since there might be
terms that do not integrate (due to ‰). Hence, in this case we can proceed as follows:

jIj D lim
R1;R2!C1

ˇ̌̌ Z R1

�R2

ux.f .uC‰/ � f .‰//
ˇ̌̌

D lim
R1;R2!C1

ˇ̌̌ Z R1

�R2

.ux C‰x/f .uC‰/ �‰xf .uC‰/ �‰xf .‰/

C‰xf .‰/ � uxf .‰/ �‰x uf
0.‰/C‰x uf

0.‰/
ˇ̌̌

� lim sup
R1;R2!C1

ˇ̌̌ Z R1

�R2

.ux C‰x/f .uC‰/ �‰xf .‰/
ˇ̌̌

C lim sup
R1;R2!C1

ˇ̌̌ Z R1

�R2

uxf .‰/C‰x uf
0.‰/

ˇ̌̌
C lim sup
R1;R2!C1

ˇ̌̌ Z R1

�R2

‰xf .uC‰/ �‰xf .‰/ �‰x uf
0.‰/

ˇ̌̌
DW I1 C I2 C I3:

Now, for I1, notice that we can write the integrand as a full derivative, and hence we have

I1 D lim sup
R1;R2!C1

ˇ̌̌ Z R1

�R2

@x.F.uC‰/ � F.‰//
ˇ̌̌

� lim sup
R1!C1

jF.uC‰/ � F.‰/j.R1/C lim sup
R2!C1

jF.uC‰/ � F.‰/j.�R2/ D 0;

where in the last equality we have used the fact that F is smooth and that u.t/ 2 H 1.R/,
so, in particular, u.t/! 0 as x ! ˙1 for all t 2 Œ0; T �. On the other hand, for I2, we
integrate by parts to obtain

I2 � lim sup
R1!C1

juf .‰/j.R1/C lim sup
R2!C1

juf .‰/j.�R2/ D 0;

since u.t/ 2 H 1.R/, ‰ 2 L1.R2/ and f is smooth. Then, gathering all the above esti-
mates, and then using Hölder’s inequality along with hypothesis (6.1), we deduce that

jIj .
ˇ̌̌ Z

R
‰x
�
f .uC‰/ � f .‰/ � uf 0.‰/

�ˇ̌̌
. k‰xkL1t;x ku.t/k

2
L2x
:

Therefore, Grönwall’s inequality provides (6.2). The proof is complete.
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Now, in order to control the H 1-norm, we consider the following modified energy
functional

E.u.t// WD
1

2

Z
R
u2x.t; x/ dx

�

Z
R

�
F.u.t; x/C‰.t; x// � F.‰.t; x// � u.t; x/f .‰.t; x//

�
dx:

It is worth to notice that the previous functional is well defined for all times t 2 Œ0; T �.
The following lemma give us the desired control on the growth of the H 1-norm of the
solution u.t/, and hence it finishes the proof of Theorem 1.8.

Lemma 6.2. Let u.t/ 2 C.Œ0; T �;H 1.R// be a solution to equation (1.4) emanating from
initial data u0 2 H 1.R/. Then, for all t 2 Œ0; T �, we have

ku.t/kH1
x

. C �u0;‰ exp.C �‰t /:

where C �‰ > 0 is a positive constants that only depends on ‰, while C �u0;‰ > 0 depends
on ‰ and u0.

Proof. First of all, by using the continuity of the flow with respect to the initial data,
given by Theorem 1.4, we can assume u.t/ is sufficiently smooth so that all the following
computations hold. Now, let us begin by explicitly computing the time derivative of the
energy functional. In fact, by using equation (1.4), after suitable integration by parts, we
obtain

d

dt
E D �

Z
uxxut �

Z
ut .f .uC‰/ � f .‰// �

Z
‰t
�
f .uC‰/ � f .‰/ � uf 0.‰/

�
D

Z
uxx@x.f .uC‰/ � f .‰//C

Z
u@2x.‰t C @

3
x‰ C @xf .‰//

C

Z
uxxx.f .uC‰/ � f .‰//C

Z
.f .uC‰/ � f .‰//@x.f .uC‰/ � f .‰//

C

Z
.f .uC‰/ � f .‰//.‰t C @

3
x‰ C @xf .‰//

�

Z
‰t
�
f .uC‰/ � f .‰/ � uf 0.‰/

�
D

Z
u@2x.‰t C @

3
x‰ C @xf .‰//C

Z
.f .uC‰/ � f .‰//.‰t C @

3
x‰ C @xf .‰//

�

Z
‰t
�
f .uC‰/ � f .‰/ � uf 0.‰/

�
.
�
1C k‰tkL1t;x C k‰k

2
L1t;x
C k@t‰ C @

3
x‰ C @xf .‰/kL1t;x

�
ku.t/k2

L2x

C k‰t C @
3
x‰ C @xf .‰/k

2
L1t H

2
x
:

(6.3)

On the other hand, by using the Gagliardo–Nirenberg interpolation inequality, and then
applying Young’s inequality for products, we haveˇ̌̌ Z

R
u3.t; x/ dx

ˇ̌̌
� Ckuxk

1=2

L2x
ku.t/k

5=2

L2x
�
"4

4
kux.t/k

2
L2x
C

3

4"4=3
ku.t/k

10=3

L2x
:
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Thus, by using the above inequality together with our current hypothesis on f .x/, we
deduce ˇ̌̌ Z �

F.uC‰/ � F.‰/ � uf .‰/
�ˇ̌̌

. k‰kL1t;xku.t/k
2
L2x
C ku.t/k3

L3x

. k‰kL1t;xku.t/k
2
L2x
C
"4

4
kux.t/k

2
L2x
C

3

4"4=3
C ku.t/k

10=3

L2x
:

Therefore, integrating (6.3) on Œ0; T �, and then plugging the latter inequality in the result-
ing right-hand side, together with the conclusion of Lemma 6.1, letting C" WD 1 � 1

4
"4,

we infer that

C"

Z
R
u2x.t; x/ dx .

Z
u20;x �

Z �
F.u0 C‰0/ � F.‰0/ � u0f .‰0/

�
C Cu0;‰

�
1C k‰tkL1t;x C k‰k

2
L1t;x
C k@t‰ C @

3
x‰ C @xf .‰/kL1t;x

�
e10C‰t=3;

where Cu0;‰ and C‰ are the constants founded in the previous lemma. Then, choosing
" > 0 small, we conclude the proof of the lemma.
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