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Decoupling for two quadratic forms in three variables:
a complete characterization

Shaoming Guo, Changkeun Oh, Joris Roos, Po-Lam Yung and
Pavel Zorin-Kranich

Abstract. We prove sharp decoupling inequalities for all degenerate surfaces of
codimension two in R5 given by two quadratic forms in three variables. Together
with previous work by Demeter, Guo, and Shi in the non-degenerate case, this pro-
vides a classification of decoupling inequalities for pairs of quadratic forms in three
variables.

1. Introduction

We begin by recalling the definition of decoupling constants. Let d; n � 1 be integers. For
real quadratic forms Q1; : : : ;Qn in d variables, consider the surface

(1.1) �0 D ¹.t;Q1.t/; : : : ;Qn.t// j t 2 Œ0; 1�d º:

For a dyadic cube�� Œ0; 1�d with side length ı, we will use f� to denote a function with

(1.2) supp. yf�/ � ¹.t;Q1.t/C ı.1/; : : : ;Qn.t/C ı.n// j t 2 �; jı.1/j; : : : ; jı.n/j � ı2º:

For 2 � p <1 and a dyadic number ı 2 .0; 1/, the decoupling constant D�0.ı; p/ is the
smallest constant A such that the inequality

(1.3)
 X

�2P .ı/

f�


Lp.RdCn/

� A
� X

�2P .ı/

kf�k
p

Lp.RdCn/

�1=p
;

where P .ı/ is the partition of Œ0; 1�d into dyadic cubes with side length ı, holds for every
choice of functions f� satisfying (1.2); replacing the `pLp norm on the right-hand side
of (1.3) by `1L1 gives the definition when p D1.

In this article we are interested in the case d D 3, n D 2. We will also use existing
results for smaller values of d and n, which necessitates defining (1.3) in more generality.
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We will denote by .P;Q/ a pair of real quadratic forms in three variables, and by � the
surface

(1.4) � WD ¹.r; s; t; P.r; s; t/;Q.r; s; t// j .r; s; t/ 2 Œ0; 1�3º:

Our goal is to prove, for every 2 � p <1, an essentially sharp bound on DP;Q.ı; p/ WD

D� .ı; p/ as ı ! 0. In order to formulate our results in a concise way, we introduce the
sharp decoupling exponent

P;Q.p/ WD inf¹ � 0 jDP;Q.ı; p/ . ı�º:

In other words, P;Q.p/ is the smallest exponent  such that, for every " > 0, we have

(1.5) DP;Q.ı; p/ ." ı��" for every ı 2 .0; 1/:

1.1. Previous results

The case of linearly dependent P and Q is equivalent to the case n D 1 of (1.1). In
this case, sharp decoupling inequalities were proved by Bourgain and Demeter in [4],
Theorem 1.1. Henceforth, we assume that P and Q are linearly independent.

Moreover, we assume that there is no linear change of variables in .r; s; t/ such that P
and Q both omit one of the variables, as otherwise we can reduce to the case d D n D 2
that was considered by Bourgain and Demeter in [3].

We say that the pair .P;Q/ is non-degenerate if both of the following conditions hold:

det.rP;rQ;u/ 6� 0 for all u 2 R3 n ¹0º;(1.6)
P and Q do not share a common linear real factor.(1.7)

Examples show that, for any pair .P;Q/ of quadratic polynomials in 3 variables, the
sharp decoupling exponent satisfies

(1.8) P;Q.p/ �

´
3.1=2 � 1=p/ if 2 � p � 14=3;

3 � 10=p if 14=3 � p � 1;

see (6.4). In the non-degenerate case, Demeter, Shi, and the first author [9] (see also [15]
for a simplified proof) proved that, in fact,

(1.9) P;Q.p/ D

´
3.1=2 � 1=p/ if 2 � p � 14=3;

3 � 10=p if 14=3 � p � 1:

Therefore, it is a natural question to find the minimal requirements for P and Q such
that the decoupling inequality (1.5) holds with the smallest possible sharp decoupling
exponent (1.9).

It was pointed out in [9] that (1.7) is a necessary condition for (1.9) to hold: if P andQ
share a common linear factor, then the surface � given by (1.4) is flat on the hyperplane
determined by that common linear factor, and therefore we cannot expect any satisfactory
decoupling inequality like (1.9). For a more precise argument, see (6.5).
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It was also observed in [9], Appendix, that (1.6) is necessary for the multilinear
approach to proving (1.9), which originates in [2, 7], to work. More precisely, if (1.9)
fails, then no collection of tangent spaces to the surface � can satisfy the transversal-
ity conditions in Theorem 1.15 (c) of [1] that characterize validity of the Brascamp–Lieb
inequalities, on which the multilinear approach relies crucially. However, the question
whether the assumption (1.6) is necessary for (1.9) was left open.

In the current paper, we will give an affirmative answer to the above question, that is,
we will prove that (1.9) holds if and only if P and Q satisfy (1.6) and (1.7). To this end,
we will find the sharp decoupling exponents for every degenerate pair .P; Q/. We will
see that, for any degenerate pair .P;Q/, the sharp decoupling exponents are strictly larger
than (1.9) in some range of p’s.

1.2. Classification of pairs .P; Q/

We say that two pairs of quadratic forms .P;Q/ and .P 0;Q0/ are equivalent if there exist
two invertible real matrices L1 2M3�3 and L2 2M2�2 such that

(1.10) .P 0.r; s; t/;Q0.r; s; t// D L2 � .P.L1 � .r; s; t//;Q.L1 � .r; s; t///:

This defines an equivalence relation, which we denote by

.P;Q/ � .P 0;Q0/:

By changing coordinates, it is easy to see that

DP;Q.ı; p/ � DP 0;Q0.ı; p/;

with an implicit constant depending only onL1 andL2 in (1.10), and in particular P;Q.p/
D P 0;Q0.p/. The following result describes all possible sharp decoupling exponents for
two quadratic forms in three variables that do not omit any variable.

Theorem 1.1. Let .P;Q/ be a pair of linearly independent quadratic forms. Assume that
there is no linear change of variables in .r; s; t/ after which P andQ both omit one of the
variables. Then exactly one of the following alternatives holds.

(1) .P;Q/ is non-degenerate, that is, both (1.6) and (1.7) hold. In this case, the sharp
decoupling exponent is given by (1.9).

(2) (1.6) holds, but (1.7) fails. In this case, .P;Q/ � .rs; rt/, and

(1.11) P;Q.p/ D

´
2 � 4=p if 2 � p � 6;

3 � 10=p if 6 � p � 1:

(3) (1.6) fails, but (1.7) holds. In this case, either .P;Q/� .r2; s2˙ t2/, or .P;Q/�
.r2; s2 C rt/. In both subcases,

(1.12) P;Q.p/ D

8̂<̂
:
3.1=2 � 1=p/ if 2 � p � 4;

5=2 � 7=p if 4 � p � 6;

3 � 10=p if 6 � p � 1:

Theorem 1.1 combines several results. Our main result is the bound � in (1.12) in the
case .P;Q/� .r2; s2 C rt/, which we repeat in Theorem 1.2 and discuss in detail below.
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The classification of pairs of quadratic forms is the content of Proposition 2.1. The
upper bound � in (1.11) in the case .P;Q/ � .rs; rt/ is the content of Proposition 3.1.
The upper bound � in (1.12) in the case .P;Q/ � .r2; s2 ˙ t2/ follows directly from the
corresponding inequalities for the parabola .r; r2/, see [2], and the surfaces .s; t; s2 ˙ t2/,
see Theorem 1.1 in [4]. Finally, examples that show the lower bounds � in (1.9), (1.11),
and (1.12) are discussed in Section 6.

For a pair of linearly independent quadratic forms .P;Q/ in three variables that omit
at least one variable (possibly after a linear change of variables), the sharp decoupling
exponent is also given by (1.11). The upper bound follows from flat decoupling (A.4) and
the decoupling inequality for two quadratic forms in two variables that was proved in [3],
similarly to the proof of Proposition 3.1. The lower bound follows from Proposition 6.1
with d 0 D n0 D 2 when 2 � p � 6 (and from (1.8) when 6 � p � 1).

1.3. The main decoupling inequality

Let us state the main new part of Theorem 1.1 more explicitly.

Theorem 1.2. Let � be the surface given by .r; s; t; r2; s2 C rt/. Then, for every " > 0,
we have

(1.13) D� .ı; p/ .";p

8̂<̂
:
ı�3.1=2�1=p/�" if 2 � p � 4;

ı�.5=2�7=p/�" if 4 � p � 6;

ı�.3�10=p/�" if 6 � p � 1:

It is well known that, for an integer s � 1, the study of the decoupling constant
D� .ı; p/ with p D 2s is closely related to the problem of counting integer solutions
to the Diophantine system

x1 C � � � C xs D xsC1 C � � � C x2s;

y1 C � � � C ys D ysC1 C � � � C y2s;

z1 C � � � C zs D zsC1 C � � � C z2s;

(1.14)

P.x1; y1; z1/C � � � C P.xs; ys; zs/ D P.xsC1; ysC1; zsC1/C � � � C P.x2s; y2s; z2s/;

Q.x1; y1; z1/C � � � CQ.xs; ys; zs/ D Q.xsC1; ysC1; zsC1/C � � � CQ.x2s; y2s; z2s/:

Indeed, let J�;s.N / denote the number of integral solutions of (1.14), where all vari-
ables xi ; yi ; zi with 1 � i � 2s, take values in ¹0; 1; : : : ; N º. Then, by the argument in
Corollary 4.2 of [7], we have

(1.15) J�;s.N / . N 3D� .N
�1; 2s/2s :

Theorem 1.1 implies sharp estimates on J�;s.N / for every N and every s � 1. For in-
stance, if we take P D r2 and Q D s2 C rt , then Theorem 1.2 implies that

J�;s.N / .s;" N 3sC"
CN 5s�4C"

CN 6s�7C";

for every " > 0. In particular, when s D 2 (which corresponds to p D 4), we have that
J�;2.N / ." N 6C". Notice that if we set xi D xiC2, yi D yiC2 and zi D ziC2 for every
i D 1; 2, then we obtain a trivial lower bound J�;2.N / � N

6. In this sense, the number of
integral solutions to the system (1.14) still shows diagonal behavior when s D 2.
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In Section 4, we will present a simple direct proof of the bound J�;2.N /." N 6C" that
relies on elementary counting methods, rather than decoupling inequalities. Such a bound
on J�;s usually cannot be used to derive a sharp decoupling inequality, that is, a sharp
bound on D� .ı; p/. Nevertheless, some features of the counting argument in Section 4
remain visible in our proof of Theorem 1.2. We discuss this in more detail in Remark 4.2.

It is a bit surprising that the decoupling theory for the surface in Theorem 1.2 admits
three different regimes. This is not reflected by the lower bounds for J�;s obtained by Par-
sell, Prendiville, and Wooley [20], since there is no even integer in the interval .4; 6/ � R.
For this reason, we discuss lower bounds directly for decoupling inequalities in Section 6.

In Theorem 1.1, we see that there are several different regimes for sharp decoupling
exponents, and in case (3) of that theorem we see that equal decoupling exponents can
arise in different ways. This can be seen as another indication that defining “curvature” (for
instance in the spirit of the rotational curvature of Phong and Stein [21, 22]) for surfaces
of co-dimension two may be a very challenging problem. Currently, defining a curvature
in this context seems still to be at the stage of considering concrete examples, see for
instance Oberlin [18], Gressman [11] and the references therein.

1.4. Novelty of the proof

To our knowledge, Theorem 1.2 is the first instance of a sharp decoupling inequality
proved despite the failure of the BCCT transversality condition of Theorem 1.15 (c) in [1].

The importance of the BCCT condition for decoupling inequalities was emphasized
for instance in Conjecture 1.3 of [6], and it was verified for large classes of monomial
surfaces in [7,14,16], and for certain classes of polynomial surfaces of low co-dimensions
in [9, 12, 15, 19].

In our case .P;Q/ D .r2; s2 C rt/, the BCCT transversality condition would require

(1.16) dim�r;s;tV �
3
5

dimV

for every linear subspace V � R5 and almost surely in the sense of the Lebesgue measure
in .r; s; t/ 2 Œ0; 1�3, where �r;s;t denotes the orthogonal projection onto the tangent space
to the surface � above the point .r; s; t/. This tangent space equals

V.r; s; t/ D lin¹.1; 0; 0; 2r; t/; .0; 1; 0; 0; 2s/; .0; 0; 1; 0; r/º;

and one sees that the condition (1.16) is violated for V D R � ¹0º � ¹0º �R � ¹0º.
We deal with the failure of the BCCT condition by decoupling alternatingly in the

coordinates r; t and in s. Roughly speaking, at certain stages of the proof, we will pick
the scales of r and t carefully, so that the surface � behaves like a curve .s; s2/; at other
stages, we will pick the scale of s carefully, so that � behaves like the surface .r; t; r2; rt/.

How to pick these scales is crucial to the proof. Let us briefly describe the idea here.
Let � < 1 be small but much bigger than ı. Consider a frequency region where .r; t/ takes
values in a square of side length � . Without loss of generality, assume .r; t/ 2 Œ0; ��2.
Then, on a spatial ball of radius ��2 in R5, by the uncertainty principle, the surface
.r; s; t; r2; s2 C rt/ has essentially the same behavior as .r; s; t; 0; s2/. Then one can apply
a “small cap” (which may also be referred to as “small ball” depending on the context)
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decoupling inequality for the parabola .s; s2/ (Theorem 5.4) to decouple the frequency
domain of s into small intervals of length �2.

Next, we fix a frequency interval of s, say Œ0; �2�, and try to decouple in r and t . It is
natural to proceed in the following way: consider a spatial ball in R5 of radius ��4. In this
ball, by the uncertainly principle, the surface .r; s; t; r2; s2 C rt/ has the same behavior
as .r; 0; t; r2; rt/. If we had a small cap decoupling inequality, analogous to that for the
parabola, that would allow us to decouple in r and t into an even smaller scale, say ��4,
then we would be able to iterate this argument until we reach frequency scale ı, and obtain
the desired decoupling inequality in L4.

Unfortunately, such a small cap decoupling inequality for the surface .r; t; r2; rt/ is not
available, see Example 5.6. Instead, we will apply a decoupling inequality associated with
certain spatial rectangular slabs (Theorem 5.7). The use of rectangular slabs is crucial, and
to our knowledge, has not previously appeared in the literature.

2. Classification of pairs of quadratic forms in three variables

In this section we prove the classification part of Theorem 1.1.

Proposition 2.1. Let .P;Q/ be a degenerate pair of linearly independent quadratic forms.
Moreover, assume that there is no linear change of variables in .r; s; t/ after which P
andQ both omit one of the variables. Then exactly one of the following alternatives holds.

(1) .P;Q/ � .rs; rt/,
(2) .P;Q/ � .r2; s2 ˙ t2/, or

(3) .P;Q/ � .r2; s2 C rt/.

The key step of proving Proposition 2.1 is the following result.

Lemma 2.2. For two general quadratic formsP andQ in three variables, Condition (1.6)
is equivalent to

no non-trivial linear combination of P and Q is a complete square.

Proof of Proposition 2.1 assuming Lemma 2.2. The hypothesis that .P;Q/ is a degener-
ate pair means that at least one of the conditions (1.7), (1.6) fails.

Assume that (1.7) fails, that is, that the two quadratic forms P andQ share a common
real linear factor. Without loss of generality, we may assume that the common factor is r .
Then, up to a linear change of variables, there are two cases, .P;Q/D .r2; rs/ or .P;Q/D
.rs; rt/. Here we used the assumption that P and Q are linearly independent. The former
case is not admissible, as the t variable is omitted.

Suppose now that (1.7) holds and (1.6) fails. By Lemma 2.2, (1.6) fails if and only
if some non-trivial linear combination of P and Q is a complete square. Hence, after a
change of variables as in (1.10), we may assume P.r; s; t/ D r2.

Now consider Q.0; s; t/, which is a quadratic form of two variables. First of all, we
know that it cannot have rank zero, as otherwise Q.r; s; t/ would share a common factor
with P.r; s; t/ D r2. Therefore, Q.0; s; t/ can have rank either one or two. Making a
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change of variables in s and t , we may assume that Q.0; s; t/ equals either s2 ˙ t2 (if it
has rank 2) or s2 (if it has rank 1). In the rank 2 case, we have

(2.1) Q.r; s; t/ D s2 ˙ t2 C c1 r
2
C c2 rs C c3 rt:

Here c1, c2 and c3 are real numbers. We now add multiples of P.r; s; t/ D r2 toQ.r; s; t/
and complete squares. This process removes all the mixed terms in (2.1) and hence .P;Q/
� .r2; s2 ˙ t2/.

The case of Q.0; s; t/ having rank one is similar, but one of the mixed terms cannot
be removed, hence .P; Q/ � .r2; s2 C crt/. The coefficient c does not vanish, since
otherwise .P; Q/ would omit the variable t . Rescaling the variable t , we may assume
c D 1.

Proof of Lemma 2.2. If some non-trivial linear combination of P and Q is of the form
.u1r C u2 s C u3 t /

2, then condition (1.6) fails for that u.
Conversely, suppose that condition (1.6) fails for some u¤ 0. Without loss of general-

ity, we may assume uD .0; 0; 1/. Write P D arr r2 C ass s2 C at t t2 C ars rsC art rt C
ast st and Q D brr r2 C bss s2 C bt t t2 C brs rs C brt rt C bst st . Then

0 � det.rP;rQ;u/ D det
�
@rP @rQ

@sP @sQ

�
D det

�
2r arr C s ars C t art 2r brr C s brs C t brt
2sass C r ars C t ast 2s bss C r brs C t bst

�
D 2r2 .arr brs � ars brr /C 2s

2 .ars bss � ass brs/C t
2 .art bst � ast brt /

C rs .4arr bss C ars brs � 4ass brr � ars brs/

C rt .2arr bst C art brs � ars brt � 2ast brr /

C st .ars bst C 2art bss � 2ass brt � ast brs/:

Since all coefficients must vanish, we obtain

0 D arr brs � ars brr D ars bss � ass brs D art bst � ast brt D arr bss � ass brr

D 2arr bstCart brs�ars brt �2ast brr D ars bstC2art bss�2ass brt �ast brs :(2.2)

Replacing .P;Q/ by suitable linear combinations, we may assume without loss of gener-
ality ars D 0. We distinguish several cases.

Case 1: brs D 0. Then the equations simplify to

0 D art bst � ast brt D arr bss � ass brr D arr bst � ast brr D art bss � ass brt :

This shows that .arr ; ass; art ; ast / and .brr ; bss; brt ; bst / lie in the same one-dimensional
subspace of R4. Hence, subtracting a suitable multiple of Q from P , we may assume
.arr ; ass; art ; ast / D 0. But then P D at t t2, and we are done.

Case 2: brs ¤ 0. Then from the first two equations in (2.2) we obtain arr D ass D 0,
and the remaining equations simplify to

0 D art bst � ast brt D art brs � 2ast brr D 2art bss � ast brs :
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Case 2.1: if art D ast D 0, then P D at t t2, and we are done.
Case 2.2: if exactly one of art ; ast vanishes, then suppose without loss of generality

art D 0 and ast ¤ 0. Then from the last equation brs D 0, contradiction.
Case 2.3: both art ¤ 0 and ast ¤ 0. Then, multiplying the last two equations, we

obtain
2ast brr � 2art bss D art brs � ast brs :

Since all a’s do not vanish, this gives 4brr bss D b2rs . Hence brr r2 C bss s2 C brs rs is
a complete square. Making a change of variables only in .r; s/, we may assume brs D 0.
Notice that we retain the relation ars D 0 after this change of variables, since we have
arr D ass D 0 in Case 2. Hence we are back in Case 1.

3. Sharp decouplings for the surface .r; s; t; rs; rt/

In this section, we will prove the upper bound in (1.11).

Proposition 3.1. Let � be the surface given by .r; s; t; rs; rt/. Then, for every " > 0, we
have

D� .ı; p/ .";p

´
ı�.2�4=p/�" if 2 � p � 6;

ı�.3�10=p/�" if 6 � p � 1:

Proof. By interpolation with orthogonality at p D 2 and a trivial estimate at p D 1
(see (A.3)), it suffices to prove the case p D 6. First, we notice that

.rs; rt/ � .rs; r2 C rt/:

Denote
� 0 D ¹.r; s; t; rs; r2 C rt/ W .r; s; t/ 2 Œ0; 1�3º:

Our goal is to prove that X
�2P .ı/

f�


6
." ı�4.1=2�1=6/�"

�X
�

kf�k
6
6

�1=6
;

where

supp. yf�/ � ¹.r; s; t; rs C ı
0; r2 C rt C ı00/ j .r; s; t/ 2 �; jı0j; jı00j � ı2º:

For an integer 0 � j � ı�1, let

(3.1) Sj D Œ0; 1� � Œ0; 1� � Œjı; .j C 1/ı�:

By flat decoupling (A.4), we obtain X
�2P .ı/

f�


6
. ı�2.1=2�1=6/

�X
j

 X
��Sj

f�

6
6

�1=6
:
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It remains to prove

(3.2)
 X

��Sj

f�


6
." ı�2.1=2�1=6/�"

�X
�

kf�k
6
6

�1=6
;

uniformly in j . To this end, we use the decoupling inequality for the surface

� 00 WD ¹.r; s; rs; r2/ W .r; s/ 2 Œ0; 1�2º;

which was proved in Bourgain and Demeter [3] (see also [15], where this result is dis-
cussed from a more general perspective). In our notation, Theorem 1.2 in [3] implies that,
for every " > 0, we have

(3.3) D� 00.ı; 6/ ." ı�2.1=2�1=6/�":

Using Theorem 2.2 in [15] with H D ¹.r; s; t/ j t D 0º, we can now deduce (3.2) with
j D 0. The estimates (3.2) for other values of j can be obtained from the case j D 0

using the affine transformation

.r; s; t; �; �/ 7! .r; s; t C t0; �; �C rt0/

in the frequency space, where t0 D jı.

4. A counting argument

Consider the Diophantine system (1.14) with P.x; y; z/D x2 andQ.x;y; z/D y2 C xz.
In this section, we will give a direct proof of the estimate

(4.1) J�;2.N / ." N 6C";

for every " > 0, without invoking decoupling theory. Recall that this corresponds to the
case p D 4 in Theorem 1.2, which is the most interesting case there. As mentioned in
the introduction, the argument used in the following proof will shed some light on how to
prove the related decoupling inequality in Theorem 1.2.

In the current situation, the system of equations (1.14) becomes

x1 C x2 D x3 C x4;

y1 C y2 D y3 C y4;

z1 C z2 D z3 C z4;

x21 C x
2
2 D x

2
3 C x

2
4 ;

y21 C x1 z1 C y
2
2 C x2 z2 D y

2
3 C x3 z3 C y

2
4 C x4 z4:

(4.2)

The first and fourth equations in (4.2) imply that ¹x1; x2º is a permutation of ¹x3; x4º.
Without loss of generality let us assume that x1 D x3 and x2 D x4. Also keeping in mind
that z1 � z3 D z4 � z2, the last equation in (4.2) can then be written as

y21 � y
2
3 C .x1 � x2/.z1 � z3/ D y

2
4 � y

2
2 :

We now distinguish two cases: x1 D x2 and x1 6D x2.
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Case 1: x1 D x2. Then we have x1 D x2 D x3 D x4 and this is the only constraint on
the xi variables. Similarly, the only constraint on the yi variables now becomes

y1 C y2 D y3 C y4;

y21 � y
2
3 D y

2
4 � y

2
2 :

Finally, the only constraint on the zi variables is the linear equation z1 C z2 D z3 C z4.
To summarize, this case leads to a contribution of N �N 2 �N 3 D N 6 to J�;2.N /.

Case 2: x1¤ x2. In this case we have two free choices among the xi variables. Suppose
that x1; x2; x3; x4 have been fixed.

Case 2.1: z1 D z3. Then also z2 D z4, so we may choose two of the zi variables freely.
Suppose that z1; z2; z3; z4 have been fixed. The remaining constraints are now

y1 C y2 D y3 C y4;

y21 � y
2
3 D y

2
4 � y

2
2 ;

which gives two free choices of yi variables. Summarizing, this case yields a contribution
of� N 6 to J�;2.N /.

Case 2.2: z1 6D z3. This is the critical case. First note that there are�N 3 valid choices
of the zi variables. Assume that z1; z2; z3; z4 have been fixed. It remains to analyze the
constraints on the remaining variables y1; y2; y3; y4, which can be written as

(4.3)
y1 � y3 D y4 � y2;

y21 � y
2
3 C C D y

2
4 � y

2
2 ;

where C D .x1 � x2/.z1 � z3/ ¤ 0. We will now make critical use of the fact that all
involved quantities are integers. Observe that necessarily y1 6D y3. Next, the first equation
implies that y24 � y

2
2 is divisible by y1 � y3. Since also y21 � y

2
3 is divisible by y1 � y3,

the second equation implies that y1 � y3 must divide C . Since C is . N 2, we have
d.C / ." N " for all " > 0, where d.C / denotes the number of divisors of C . Let D be
one of these divisors and suppose that y1 � y3 D D. We then have the constraints

y1 � y3 D D;

y4 � y2 D D;

y1 C y3 C C=D D y4 C y2:

For each fixed D, there are . N valid choices of y1; y2; y3; y4. Summarizing, this case
gives a contribution of ." N 6C" to J�;2.N /, for all " > 0.

Remark 4.1. Using the average bound
P
C�N d.C / . N logN , see e.g. Theorem 2.3

in [17], instead of a pointwise bound on d.C /, the bound (4.1) can be further improved to
J�;2.N / . N 6.logN/2.

Remark 4.2. Let us now mention the analogies between the above argument and the
proof of the case p D 4 of Theorem 1.2 below. The distinction between the x’s and z’s
from the y’s in our solution counting argument above motivates us to decouple alternately
in the .r; t/ variables and the s variable (i.e., the alternate use of Propositions 5.2 and 5.3)
in Section 5. The fact that solutions of (4.3) are counted for fixed x’s and z’s corresponds
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to the fiberwise estimate (5.10). Indeed, solutions are counted on the Fourier side of the
decoupling inequality, so fixing the second spatial variable in (5.10) corresponds to con-
sidering all y1; : : : ; y4 simultaneously in (4.2). The use of the quadratic system (4.3) for
y1; : : : ; y4 corresponds to the use of the small ball decoupling inequality of the parabola
(Theorem 5.4) in Proposition 5.2. The initial distinction between the cases x1 D x2 and
x1 ¤ x2 corresponds to the broad/narrow dichotomy in the Bourgain–Guth argument in
the proof of Proposition 5.9 below, which will be run only in the r variable.

5. Sharp decouplings for the surface .r; s; t; r2; s2 C rt/

In this section, we will prove Theorem 1.2. By interpolation (see (A.3)) with orthogonality
at p D 2 and a trivial estimate at p D 1, it suffices to prove the cases p D 4 and p D 6.
For p D 6 we can use the same argument as in Proposition 3.1, using flat decoupling in
the t variable and the decoupling inequality of [3] for the surface .r; s; r2; s2/, lifted to 5
dimensions using Theorem 2.2 in [15].

It remains to consider p D 4. The strategy of the proof for this case is already sketched
in the introduction and motivated in Remark 4.2. Therefore we will enter the proof directly.

Notation 5.1. For a dyadic number ı 2 .0; 1/ and a dyadic box ˛ � Œ0; 1�3 with side
lengths at least ı, we use P .˛; ı/ to denote the partition of ˛ into dyadic cubes of side
length ı. For three real numbers k1; k2; k3, we use P .k1;k2;k3/.˛; �/ to denote a parti-
tion of ˛ into rectangular boxes of dimension �k1 � �k2 � �k3 . We also write P .ı/ D

P .Œ0; 1�3; ı/ and P .k1;k2;k3/.�/ D P .k1;k2;k3/.Œ0; 1�3; �/ for brevity.

Theorem 1.2 will be proved by iterating the following two propositions, which decou-
ple in different coordinates.

Proposition 5.2. Let ˛0 2 P .1;0;1/.�/. For each ˛ 2 P .1;2;1/.˛0; �/, let g˛ be a function
with

(5.1) supp.yg˛/ � ¹.r; s; t; r2 C � 0; s2 C rt C � 00/ j .r; s; t/ 2 ˛; j� 0j; j� 00j � �2º:

Then, for every "0 > 0, we have

(5.2)
 X
˛2P .1;2;1/.˛0;�/

g˛


4
."0 ��2.1=2�1=4/�"

0
� X
˛2P .1;2;1/.˛0;�/

kg˛k
4
4

�1=4
;

uniformly in ˛0 and g˛ .

Proposition 5.3. Let ˛0 2 P .0;1;0/.�/. For each ˛ 2 P .2;1;2/.˛0; �/, let g˛ be a function
with

(5.3) supp.yg˛/ � ¹.r; s; t; r2 C � 0; s2 C rt C � 00/ j .r; s; t/ 2 ˛; j� 0j � �4; j� 00j � �2º:

Then, for every "0 > 0, we have

(5.4)
 X
˛2P .2;1;2/.˛0;�/

g˛


4
."0 ��4.1=2�1=4/�"

0
� X
˛2P .2;1;2/.˛0;�/

kg˛k
4
4

�1=4
;

uniformly in ˛0 and g˛ .
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The Fourier support restrictions in (5.1) and (5.3) arise naturally in the proofs (see
Remarks 5.5, 5.8 and 5.11 below), but it would be sufficient to prove the above results
under the more restrictive conditions j� 0j; j� 00j � �4.

The proofs of Propositions 5.2 and 5.3, as well as Theorem 1.2, rely on translation-
dilation invariance, which we now explain. Let

˛0 D Œ0; �
k1 � � Œ0; �k2 � � Œ0; �k3 �; ˛ D .r0; s0; t0/C �˛0:

Then, the affine map

L˛.�/ WD .� �1 C r0; � �2 C s0; � �3 C t0;

�2 �4 C �2r0 �1; �
2 �5 C �.2s0 �2 C t0 �1 C r0 �3/C s

2
0 C r0 t0/

maps frequency parallelepipeds such as in (1.2), (5.1), and (5.3) to other frequency paral-
lelepipeds of a similar form. Thus, in order to decouple on ˛, we will first pull the Fourier
transforms of the relevant functions back by L˛ , and decouple on Œ0; �k1 � � Œ0; �k2 � �
Œ0; �k3 � instead, where

.k1; k2; k3/ 2 ¹.0; 0; 0/; .0; 1; 0/; .1; 0; 1/º:

Proof of Theorem 1.2 with p D 4 assuming Propositions 5.2 and 5.3. For a dyadic box ˛
� Œ0; 1�3, we write

f˛ WD
X

�2P .˛;ı/

f�:

Set � D ı". By flat decoupling (A.4), we obtain

(5.5)
 X
˛02P .1;0;1/.�/

f˛0


4
. ��2.1�2=4/

� X
˛02P .1;0;1/.�/

f˛044 �1=4:
We iterate the following two estimates. Let k 2 ¹0; 1; : : :º with ı � �2kC3.

Given ˛ 2 P .2kC1;2k;2kC1/.�/, by a rescaled version of Proposition 5.2, we obtain

kf˛k4 D
 X
˛02P .2kC1;2kC2;2kC1/.˛;�/

f˛0

4

." ��2.1=2�1=4/�"
� X
˛02P .2kC1;2kC2;2kC1/.˛;�/

kf˛0k
4
4

�1=4
:

(5.6)

Given ˛ 2 P .2kC1;2kC2;2kC1/.�/, by a rescaled version of Proposition 5.3, we obtain

kf˛k4 D
 X
˛02P .2kC3;2kC2;2kC3/.˛;�/

f˛0

4

." ��4.1=2�1=4/�"
� X
˛02P .2kC3;2kC2;2kC3/.˛;�/

kf˛0k
4
4

�1=4
:

(5.7)
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Let K be the largest integer such that ı � �2KC1. Using (5.5) and applying the estim-
ates (5.6) and (5.7) for k D 0; : : : ; K � 1, we obtain X

�2P .ı/

f�


4
.K;" ��.6KC4/.1=2�1=4/�2K"

� X
˛2P .2KC1;2K;2KC1/.�/

kf˛k
4
4

�1=4
:

For every ˛ 2 P .2KC1;2K;2KC1/.�/, we have jP .˛; ı/j � ��7. Hence, by the flat
decoupling (A.4), we obtain

kf˛k4 . ��7�.1�2=4/
� X

�2P .˛;ı/

f�

4
4

�1=4
:

Combining the last two estimates, we obtain X
�2P .ı/

f�


4
.K;" ��.6KC18/.1=2�1=4/�2K"

� X
�2P .ı/

f�

4
4

�1=4
:

Since ��2K � ı�1, this concludes the proof.

It remains to prove Propositions 5.2 and 5.3, which will be our objective in the next
two subsections. The key ingredients are a decoupling inequality on “small balls” for the
parabola ¹.s; s2/ j s 2 Œ0; 1�º and a decoupling inequality on “thin slabs” for the surface
¹.r; t; r2; rt/ j .r; t/ 2 Œ0; 1�2º. The smallness and thinness of these balls and slabs are what
allowed us to decouple certain frequency variables down to scale �2 in Propositions 5.2
and 5.3 when the other frequency variables are limited to an interval of length � . This is
crucial in letting us make progress, as we decouple in alternate coordinates in the above
proof of Theorem 1.2.

5.1. Decoupling on small balls and proof of Proposition 5.2

We will need the following “small ball” decoupling inequality. The term “small ball”
refers to the fact that it can be localized to spatial scale ı�1, whereas the usual decoup-
ling inequality (1.3) can only be localized to the larger spatial scale ı�2. As a side note,
optimal decoupling inequalities for the parabola at spatial scales between ı�1 and ı�2

were recently established in [10]. In that paper, “small ball” decoupling inequalities are
referred to as “small cap” inequalities. They mean the same thing: one features the spatial
side of the problem, while the other features the frequency side. Here, we prefer the name
“small ball”, because in Proposition 5.3 we need a decoupling inequality similar in spirit
that also features the spatial side of the problem.

Theorem 5.4 (cf. Lemma 4.2 in [13]). Let ı 2 .0; 1/ be a dyadic number, and for each
� 2 P .Œ0; 1�; ı/, let f� be a tempered distribution on R2 with

supp yf� � ¹.s; s2 C ı0/ j s 2 �; jı0j � ıº:

Then, for every " > 0, we have X
�2P .Œ0;1�;ı/

f�


L4.R2/

." ı�.1=2�1=4/�"
� X
�2P .Œ0;1�;ı/

f�4L4.R2/

�1=4
:
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In Lemma 4.2 of [13], a version of Theorem 5.4 is stated for the extension operator.
Although it is possible to deduce Theorem 5.4 from Lemma 4.2 in [13] by the argument
in [5], Section 5, it is preferable to observe that the proof continues to work at the level of
generality in Theorem 5.4.

Proof of Proposition 5.2. By affine scaling, we may assume that ˛0 D Œ0; �� � Œ0; 1� �

Œ0; ��. The inequality (5.2) will follow from the fiberwise inequality X
˛2P .1;2;1/.˛0;�/

g˛.x1; �; x3; x4; �/

L4.R2/

."0 ��2.1=2�1=4/�"
0
�X

˛

kg˛.x1; �; x3; x4; �/k
4
L4.R2/

�1=4(5.8)

with a constant independent of x1; x3; x4. The inequality (5.8) holds by Theorem 5.4,
since for every choice of x1; x3; x4 the Fourier support of

g˛.x1; �; x3; x4; �/

is contained in an O.�2/-neighborhood of a �2-arc of the unit parabola in R2. Indeed,
the Fourier support is contained in the projection of the right-hand side of (5.1) to R2

by omitting the first, third and fourth coordinate. Since jrt j � �2 when .r; s; t/ 2 ˛0, the
projection is contained inside ¹.s; s2 C � 000/ j j� 000j � 2�2º, as claimed.

Remark 5.5. The above calculation of the projection shows that even if we had the
stronger condition j� 00j � �4 on the right-hand side of (5.1), the proof of Proposition 5.2
will not become easier: the projection of the right-hand side of (5.1) will still only be in
an O.�2/-neighborhood of a �2-arc of the unit parabola in R2 (thanks to the contribu-
tion from the term rt ). We would still need to use the small ball decoupling inequality
in Theorem 5.4, since the goal was to decouple in the s coordinate down to scale smaller
than � .

5.2. Decoupling on thin slabs and proof of Proposition 5.3

In view of the proof of Proposition 5.2, it would be natural to use a small ball decoupling
for the 2-dimensional surface .r; t; r2; rt/ in R4. If we had such a small ball decoupling,
then we could hope to have the estimate (5.4) under the assumption that

supp.yg˛/ � ¹.r; s; t; r2 C � 0; s2 C rt C � 00/ j .r; s; t/ 2 ˛; j� 0j � �2; j� 00j � �2º:

One would then be able to finish the proof of Theorem 1.2 using the same bootstrap-
ping argument. Unfortunately, as the following example shows, although such a small cap
decoupling holds for the more “elliptic” surface .r; t; r2; t2/, it fails for its “hyperbolic”
variant .r; t; r2; rt/.

Example 5.6. For each � 2P .Œ0; ı1=2�� Œ0; 1�; ı/, let f� be such that yf� is a non-negative
smooth bump function with

R
yf� D 1 supported in and adapted to a cube of sidelength� ı

contained in
¹.r; t; r2 C ı0; rt C ı00/ j .r; t/ 2 �; jı0j � ı; jı00j � ıº:
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For the remaining � 2 P .Œ0; 1�2; ı/ nP .Œ0; ı1=2�� Œ0; 1�; ı/, set f� D 0. Then [� supp yf�
is contained in a box of size � ı1=2 � 1 � ı � ı1=2. Hence, j

P
�2P .Œ0;1�2;ı/ f� j & ı�3=2

on a slab of dimensions � ı�1=2 � 1 � ı�1 � ı�1=2 centered at the origin, and it follows
that  X

�2P .Œ0;1�2;ı/

f�


L4.R4/

& ı�2:

On the other hand,

ı�2.1=2�1=4/
� X
�2P .Œ0;1�2;ı/

f�4L4.R4/

�1=4
� ı�2.1=2�1=4/.ı�3=2 � ı�4/1=4 D ı�.2�1=8/;

much smaller than ı�2.

The above example shows that we do not have a small ball decoupling for the surface
.r; t; r2; rt/ in R4. Instead, we will prove a slightly weaker result, which we call “decoup-
ling on thin slabs”, since it can be localized to thin slabs of size ı�2 � ı�2 � ı�2 � ı�1.

For a dyadic rectangle R � Œ0; 1�2, we let P .R; ı/ be the partition of R into squares
of side length ı. We denote by V.ı/ the smallest constant such that, for every collection
of functions g˛ indexed by ˛ 2 P .Œ0; 1�2; ı/ with

(5.9) supp.yg˛/ � ¹.r; t; r2 C ı0; rt C ı00/ j .r; t/ 2 ˛; jı0j � ı2; jı00j � ıº;

the following inequality holds: X
˛2P .Œ0;1�2;ı/

g˛


L4.R4/

� V.ı/
� X
˛2P .Œ0;1�2;ı/

kg˛k
4
L4.R4/

�1=4
:

Theorem 5.7. For every " > 0 and every dyadic ı 2 .0; 1/, we have

V.ı/ ." ı�1=2�":

Proof of Proposition 5.3 assuming Theorem 5.7. By affine scaling, we may assume ˛0 D
Œ0; 1� � Œ0; �� � Œ0; 1�. By Fubini’s theorem, it suffices to show the fiberwise inequality

(5.10)
 X
˛2P .2;1;2/.˛0;�/

g˛.�;x2; �; �; �/

L4.R4/

."0 ��1�"
0
�X

˛

kg˛.�;x2; �; �; �/k
4
L4.R4/

�1=4
;

uniformly in x2. This follows from Theorem 5.7 with ı D �2, because for each fixed x2
the Fourier support of

g˛.�; x2; �; �; �/

is contained in the projection of the Fourier support of g˛ modulo the second coordinate,
and this projection satisfies an inclusion of the form (5.9) because s2 � �2 when s 2
Œ0; ��.

Remark 5.8. The above calculation of projection explains the condition j� 00j � �2 on the
right-hand side of (5.3), and hence the condition jı00j � ı in (5.9), in the same spirit as
in Remark 5.5. The importance of the condition j� 0j � �2 on the right-hand side of (5.3)
and the condition jı0j � ı2 in (5.9) can be seen in the proof of Theorem 5.7, as will be
explained in Remark 5.11 below.
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5.3. Proof of decoupling on thin slabs

Theorem 5.7 will follow from:

Proposition 5.9. For each " > 0, there exists K > 0 such that for any ı 2 .0; 1/,

V.ı/ � K1=2C" V.Kı/C CK ı
�1=2;

where CK is a constant depending only on K.

Proof of Theorem 5.7. By iterating the result in Proposition 5.9, ."�1/ log ı
logK -many times

(assuming without loss of generality that this is a positive integer), we obtain

V.ı/ � ı."�1/
1
2�" V.ı"/C zCK .log ı�1/ı�1=2:

It remains to note that
V.ı"/ . ı�2"

by the triangle inequality and Hölder’s inequality.

It remains to prove Proposition 5.9. We will apply a bilinear method, together with a
Bourgain–Guth type argument [8]. We need the following bilinear estimate.

Lemma 5.10. Let K�1 > ı > 0. Let j1; j2 2 Z with jj1 � j2j � 2. Let

R1 D Œj1K
�1; .j1 C 1/K

�1� � Œ0; 1� � Œ0; 1�2; and

R2 D Œj2K
�1; .j2 C 1/K

�1� � Œ0; 1� � Œ0; 1�2:

Then ˇ̌̌� X
ˇ2P .R1;ı/

gˇ

�� X
ˇ 02P .R2;ı/

gˇ 0
�ˇ̌̌1=2

L4
� CK ı

�1=2
� X
ˇ2P .ı/

kgˇk
4
L4

�1=4
:

Lemma 5.10 would in fact still work under the more relaxed Fourier support assump-
tion jı0j � ı in (5.9).

Proof of Lemma 5.10. By Plancherel’s theorem,

(5.11)
ˇ̌̌� X

ˇ2P .R1;ı/

gˇ

�� X
ˇ 02P .R2;ı/

gˇ 0
�ˇ̌̌1=2

L4
D

 X
ˇ2P .R1;ı/

X
ˇ 02P .R2;ı/

ygˇ � ygˇ 0
1=2
L2
:

We claim that the collection

(5.12) ¹supp. ygˇ /C supp. ygˇ 0/ºˇ2P .R1;ı/;ˇ 02P .R2;ı/

has overlap bounded by a constant depending on K: if ˇ1; ˇ3 2 P .R1; ı/ and ˇ2; ˇ4 2
P .R2; ı/, and .ri ; ti / 2 ˇi for i D 1; 2; 3; 4 are such that

(5.13) .r1; t1; r21 ; r1t1/C .r2; t2; r
2
2 ; r2t2/D .r3; t3; r

2
3 ; r3t3/C .r4; t4; r

2
4 ; r4t4/CO.ı/;

then the distances between ˇi and ˇiC2 are O.K2ı/ for i D 1; 2.
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The geometric reason for this is that the pieces of the surface .r; t; r2; rt/ with .r; t/
restricted toR1 andR2, respectively, are transverse. Indeed, if .r1; t1/2R1 and .r2; t2/2R2,
then for bases of tangent spaces at these points we have

det

0BB@
1 0 1 0

0 1 0 1

2r1 0 2r2 0

t1 r1 t2 r2

1CCA D 2.r1 � r2/2 � 2K�2:
However, it is formally easier to verify the bounded overlap property of the col-

lection (5.12) algebraically. Suppose that (5.13) holds. Looking at the third component
of (5.13), we obtain

O.ı/ D r21 � r
2
3 C r

2
2 � r

2
4 D .r1 � r3/.r1 C r3/C .r2 � r4/.r2 C r4/

D .r4 � r2/.r1 C r3/C .r2 � r4/.r2 C r4/CO.ı/

D .r2 � r4/.r2 C r4 � r1 � r3/CO.ı/:

Since jr2 C r4 � r1 � r3j & 1=K, it follows that r2 � r4 D O.Kı/. Similarly, r1 � r3 D
O.Kı/. Looking at the fourth component of (5.13), we obtain

O.ı/ D r1 t1 � r3 t3 C r2 t2 � r4 t4 D r1 .t1 � t3/C r2 .t2 � t4/CO.Kı/

D r1 .t4 � t2/C r2 .t2 � t4/CO.Kı/ D .r2 � r1/.t2 � t4/CO.Kı/:

Since jr2 � r1j & 1=K, it follows that t2 � t4 D O.K2ı/. Similarly, t1 � t3 D O.K2ı/.
This shows that the collection (5.12) has bounded overlap. Therefore,

(5.11) � CK
� X
ˇ2P .R1;ı/

X
ˇ 02P .R2;ı/

k ygˇ � ygˇ 0k
2
L2

�1=4
:

By Plancherel’s theorem and Hölder’s inequality, this implies

(5.11) � CK
� X
ˇ2P .R1;ı/

X
ˇ 02P .R2;ı/

kgˇgˇ 0k
2
2

�1=4
� CK

� X
ˇ2P .R1;ı/

kgˇk
2
4

�1=4� X
ˇ 02P .R2;ı/

kgˇ 0k
2
4

�1=4
� CK ı

�2.1=2�1=4/
� X
ˇ2P .R1;ı/

kgˇk
4
L4

�1=8� X
ˇ 02P .R2;ı/

kgˇ 0k
4
4

�1=8
:

This completes the proof of Lemma 5.10.

Proof of Proposition 5.9. Let K > 0 be a large number that is to be determined. For each
j 2 Z with 0 � j � K � 1, we define the strip Rj D ŒjK�1; .j C 1/K�1� � Œ0; 1�. We
define

Gj WD
X

˛2P .Rj ;ı/

g˛:
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For each x 2 R4, we define the significant part

C.x/ WD
°
j 0 2 ¹0; : : : ; K � 1º

ˇ̌̌ ˇ̌̌K�1X
jD0

Gj .x/
ˇ̌̌
< 10K jGj 0.x/j

±
:

Note that C.x/¤ ; unless
P
j Gj .x/D 0. By considering two possible cases, jC.x/j � 3

and jC.x/j � 2, we obtain

(5.14)
ˇ̌̌ X
˛2P .Œ0;1�2;ı/

g˛.x/
ˇ̌̌
� 10max

j
jGj .x/j C 10K max

j;j 0Wjj�j 0j�2
jGj .x/Gj 0.x/j

1=2
I

indeed, for j 0 … C.x/, we have jGj 0.x/j � 1
10K

ˇ̌PK�1
jD0 Gj .x/

ˇ̌
; soˇ̌̌ X

j 0…C.x/

Gj 0.x/
ˇ̌̌
�
1

10

ˇ̌̌ X
j 0…C.x/

Gj 0.x/
ˇ̌̌
C

1

10

X
j 02C.x/

jGj 0.x/j;

which implies, if jC.x/j � 2, thatˇ̌̌ X
j 0…C.x/

Gj 0.x/
ˇ̌̌
�
2

9
max
j
jGj .x/j

and hence ˇ̌̌K�1X
j 0D0

Gj 0.x/
ˇ̌̌
�

�
2C

2

9

�
max
j
jGj .x/j:

Raising both sides of (5.14) to the fourth power and integrating in x, we obtain X
˛2P .Œ0;1�2;ı/

g˛

4
4
.

KX
jD1

kGj k
4
4 CK

4
X

j;j 0Wjj�j 0j�2

jGjGj 0 j1=244:
By Lemma 5.10, the second term is bounded by

C 4K ı
�2
� X
˛2P .Œ0;1�2;ı/

kg˛k
4
4

�
:

In order to conclude the proof, it suffices to show that, for each j D 0; : : : ;K � 1, we have

(5.15) kGj k4 � CK
1=2 V.Kı/

� X
˛2P .Rj ;ı/

kg˛k
4
4

�1=4
and take K large enough so that C � K".

By an affine transformation, we may assume without loss of generality that j D 0. We
define the scalings:

L W .�1; �2; �3; �4/ 7! .�1=K; �2; �3=K
2; �4=K/ and L0 W .�1; �2/ 7! .�1=K; �2/:
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Note that L0 scales Œ0; 1�2 to the strip R0. The map L is chosen so that L0 is the
restriction of L to the first two coordinates, and so that L leaves the surface .r; t; r2; rt/
invariant.

For each ˇ 2 P .Œ0; 1�2; Kı/, we define a function Hˇ bybHˇ .�1; �2; �3; �4/ WD X
˛2P .L0.ˇ/;ı/

yg˛.L.�1; �2; �3; �4//:

Then,

(5.16) supp.bHˇ / � ¹.r; t; r2 C ı0; rt C ı00/ j .r; t/ 2 ˇ; jı0j � .Kı/2; jı00j � Kıº:
Thus, by the definition of the constant V.Kı/, X

ˇ2P .Œ0;1�2;Kı/

Hˇ


4
� V.Kı/

� X
ˇ2P .Œ0;1�2;Kı/

kHˇk
4
4

�1=4
:

Changing back to the original variables and applying flat decoupling (A.4), we obtain

kGj k4 . V.Kı/
� X
ˇ2P .Œ0;1�2;Kı/

 X
˛2P .L0.ˇ/;ı/

g˛

4
4

�1=4
. K1=2V.Kı/

� X
˛2P .Rj ;ı/

kg˛k
4
4

�1=4
;

where we used that jP .L0.ˇ/; ı/j DK in the last step. This finishes the proof of (5.15).

Remark 5.11. We have already seen, at the beginning of Section 5.2, that one could not
replace the condition jı0j � ı2 on the right-hand side of (5.9) by jı0j � ı and still hope to
prove Theorem 5.7. It may be helpful to see what goes wrong in the proof of Theorem 5.7
if we had the condition jı0j � ı instead. In that case, when we rescale, on the right-hand
side of (5.16), we would only get jı0j � K2ı, which would not allow us to close the
induction on scale argument. This signifies the advantage to decouple on thin slabs as in
Theorem 5.7.

6. Lower bounds

In this section, we prove lower bounds for decoupling constants defined in (1.3). In the
case when p is an even integer, such bounds were proved for the related problem of
bounding multidimensional Vinogradov mean values in Theorem 3.1 of [20]. However, the
construction given there does not detect the optimality of the bound (1.13) for p 2 .4; 6/.

Proposition 6.1. Let Q1.t/; : : : ; Qn.t/ be quadratic forms in d variables. Suppose that
Q1; : : : ; Qn0 do not depend on td 0C1; : : : ; td for some partitions n D n0 C n00 and d D
d 0 C d 00. Let K 00 WD d 00 C 2n00.

Let � be the surface defined in (1.1) and let D� .ı; p/ be the associated decoupling
constant, defined in (1.3). Then, for 2 � p <1, we have

(6.1) D� .ı; p/ & ı�d
0.1=2�1=p/

� ı�d
00.1�1=p/CK 00=p:
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We postpone the proof of Proposition 6.1 till the end of this section and indicate how
it recovers the lower bounds in [15], Section 1.5.

Corollary 6.2. Let Q1; : : : ; Qn be quadratic forms in d variables and K WD d C 2n.
Let � be the surface defined in (1.1) and let D� .ı; p/ be the associated decoupling con-
stant, defined in (1.3). Then, for 2 � p <1, we have

(6.2) D� .ı; p/ & max
�
ı�d.1=2�1=p/; ı�d.1�1=p/CK=p

�
:

Proof of Corollary 6.2 assuming Proposition 6.1. Obviously, the hypothesis of Proposi-
tion 6.1 holds for arbitrary quadratic forms Q1; : : : ;Qn with either d 0 D n0 D 0 or d 00 D
n00 D 0.

By considering functions f� of tensor product form, we also obtain the following
lower bound.

Lemma 6.3. In the situation of Corollary 6.2, if V � Rd is a linear subspace, zQj WD
Qj jV , j D 1; : : : ; n, are restrictions of the Qj ’s to V , and z� is the surface

¹.t; zQ1.t/; : : : ; zQn.t// j jtj � 1º;

then

(6.3) D� .ı; p/ & Dz� .ı; p/:

Now we can justify the lower bounds on the sharp decoupling exponents in The-
orem 1.1.

For surfaces (1.4), we have d D 3 and K D 7. Hence, (6.2) above implies the lower
bounds

(6.4) D� .ı; p/ & max
�
ı�3.1=2�1=p/; ı�3C10=p

�
:

This shows the lower bounds on sharp decoupling exponents in (1.8).
In case (2) of Theorem 1.1, assume without loss of generality that .P;Q/ D .rs; rt/.

Then we apply (6.3) for the subspace given by r D 0. On this subspace, we apply (6.2)
with Qd D 2 and zK D 2. This gives the additional lower bound

(6.5) D� .ı; p/ & ı�2.1�1=p/C2=p D ı�2C4=p:

In case (3) of Theorem 1.1, assume without loss of generality that P D r2. Apply-
ing (6.1) with d 0 D 1 and n0 D 1, we obtain

D� .ı; p/ & ı�1�.1=2�1=p/ı�2�.1�1=p/C4=p D ı�5=2C7=p:

This shows the middle lower bound in (1.12).

Proof of Proposition 6.1. Write points in RdCn as .x0; x00; y0; y00/ 2 Rd
0Cd 00Cn0Cn00 . For

� 2P .ı/, write � D � 0 � � 00. Choose functions f� of the form f� D g� 0.x
0; y0/h� .x

00; y00/

with the following properties:

(1) yg� 0 and yh� are positive smooth functions,

(2)
R
yg� 0 D

R
yh� D 1,
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(3) yg� 0 is supported in a ball of radius� ı2,

(4) yf� is supported in, and adapted to, a rectangular box of dimensions

ı2=10 � � � � � ı2=10„ ƒ‚ …
d 0 times

� ı=10 � � � � � ı=10„ ƒ‚ …
d 00 times

� ı2=10 � � � � � ı2=10„ ƒ‚ …
n times

inside the set (1.2).
Note that g� 0 depends only on the projection of � onto Rd

0Cn0 , whereas h� has to
depend on � because of the geometry of the set (1.2).

On one hand, kf�kp � ı�.2d
0Cd 00C2n/=p , and by definition we have X

�2P .ı/

f�


p
� D� .ı; p/

� X
�2P .ı/

kf�k
p
p

�1=p
� D� .ı; p/ ı

�d=p ı�.2d
0Cd 00C2n/=p:

On the other hand, X
�2P .ı/

f�


p
& inf
x002Rd 00 ;y002Rn00 ;
jx00j;jy00j�1=100

 X
�2P .ı/

f�


Lp.Rd 0�¹x00º�Rn0�¹y00º/

D inf
x002Rd 00 ;y002Rn00 ;
jx00j;jy00j�1=100

X
� 0

c� 0;x00;y00g� 0

Lp.Rd 0�Rn0 /

where c� 0;x00;y00 WD
P
� 00 h� .x

00; y00/ is independent of x0; y0 and satisfies

jc� 0;x00;y00 j � ı
�d 00

uniformly in � 0 and jx00j; jy00j � 1=100. This is because there is almost no cancellation in
the sum over � 00.

Let � D �.ı2�/, where � is a fixed positive Schwartz function on Rd
0

� Rn
0

with
supp y� � B.0; 1=10/. Then, by Hölder’s inequality,X

� 0

c� 0;x00;y00 g� 0

Lp.Rd 0�Rn0 /

� k�k�11=.1=2�1=p/

�X
� 0

c� 0;x00;y00 g� 0

L2.Rd 0�Rn0 /

� ı2�.d
0Cn0/.1=2�1=p/

X
� 0

c� 0;x00;y00 � g� 0

L2.Rd 0�Rn0 /

:

Since the Fourier supports of �g� 0 are disjoint for different .� 0/’s, we obtainX
� 0

c� 0;x00;y00 � g� 0

L2.Rd 0�Rn0 /

D

�X
� 0

jc� 0;x00;y00 j
2
�g� 02L2.Rd 0�Rn0 /

�1=2
� ı�d

0=2
� ı�d

00

� ı�2�.d
0Cn0/=2;

uniformly for jx0j; jy0j � 1=100. Combining the above estimates, we obtain

D� .ı; p/ı
�d=pı�.2d

0Cd 00C2n/=p & ı2�.d 0Cn0/.1=2�1=p/ � ı�d 0=2 � ı�d 00 � ı�2�.d 0Cn0/=2:

This implies the claim (6.1).
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A. Facts about decoupling inequalities

A.1. Interpolation

It is well known that decoupling inequalities can be interpolated by the argument in Pro-
position 6.2 of [2]. However, as observed e.g. in [16], Appendix B, a simpler argument
is available when decoupling inequalities are stated for functions satisfying the relaxed
Fourier support condition (1.2). We record this simpler argument in this appendix.

Let ı 2 .0; 1� be a dyadic number. For every dyadic cube � 2 P .ı/, let U� be
the smallest rectangular box that contains the uncertainty region (1.2). Then, using the
decoupling inequality (1.3) at a scale slightly larger than ı, we see that the estimate

(A.1)
 X

�2P .ı/

f�


Lp.RdCn/

. D�0.Cı; p/
� X

�2P .ı/

kf�k
p

Lp.RdCn/

�1=p
continues to hold for arbitrary functions f� with supp yf� � 2U�, where 2U� are rect-
angular boxes with the same center and orientation but twice the side lengths. Let  � be
Schwartz functions such that 1U�

� b � � 12U�
that are scaled, rotated, and modulated

copies of a fixed Schwartz function. Then it follows that X
�2P .ı/

 � � g�


Lp.RdCn/

. D�0.Cı; p/
� X

�2P .ı/

k � � g�k
p

Lp.RdCn/

�1=p
. D�0.Cı; p/

� X
�2P .ı/

kg�k
p

Lp.RdCn/

�1=p
(A.2)

for arbitrary functions g�, where the first inequality holds by (A.1) and the second by the
Young convolution inequality. Since the estimate (A.2) holds for arbitrary functions g� 2

Lp.RdCn/, we may use the complex interpolation theorem for linear operators on Lp

spaces to conclude that

(A.3) D.ı; p� / . D.Cı; p0/
1�� D.Cı; p1/

� ;

with the usual conventions

1

p�
D
1 � �

p0
C

�

p1
; 0 � � � 1;

for any 2 � p0; p1 � 1.
As a consequence, ˛ 7! P;Q.1=˛/ is a convex function on Œ0; 1=2�.

A.2. Flat decoupling

The same argument as above shows that, for an arbitrary collectionU of parallelepipeds U

in Rd such that 2U have bounded overlap, we have

(A.4)
X

U2U

fU


Lp.Rd /

. jU j1�2=p
� X

U2U

kfUk
p

Lp.Rd /

�1=p
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for arbitrary functions fU with supp yfU �U. The inequality (A.4) is called “flat decoup-
ling” because it does not require any curvature assumption on the Fourier supports. This
inequality was already observed and applied by Tao and Vargas in [23, 24].
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