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Whitney’s extension theorem and the finiteness principle
for curves in the Heisenberg group

Scott Zimmerman

Abstract. Consider the sub-Riemannian Heisenberg group H. In this paper, we
answer the following question: given a compact set K � R and a continuous map
f WK ! H, when is there a horizontal Cm curve F WR! H such that F jK D f ?
Whitney originally answered this question for real valued mappings, and Fefferman
provided a complete answer for real valued functions defined on subsets of Rn. We
also prove a finiteness principle for Cm;

p
! horizontal curves in the Heisenberg

group in the sense of Brudnyi and Shvartsman.

1. Introduction

Fix a compact set K � Rn and a continuous function f WK ! R, and consider the fol-
lowing question:

Whitney’s question. When is there some F 2 Cm.Rn/ such that F jK D f ?
In other words, when do we have f 2 Cm.K/? (For all definitions of the relevant

function and trace spaces, see Subsection 2.2.) In his classical extension theorem [33],
Whitney proved that f 2 Cm.K/ if and only if there is a collection of functions .f˛/j˛j�m
which act as the partial derivatives of f D f0 in the sense of Taylor’s theorem. Moreover,
the extension F can be chosen in such a way that @˛F D f˛ on K. See Theorem 2.3
below for the statement of Whitney’s result in R.

A C 1 version of this result was proven in [23] for real valued mappings defined on
subsets of the sub-Riemannian Heisenberg group H. One naturally then considers the
problem of smoothly extending a map from a subset of Euclidean space into H. In this
setting, however, one also requires that the extension respects the sub-Riemannian geo-
metry of H. As noted in Proposition 4.1 from [28], Whitney’s classical assumptions do
not suffice to guarantee the existence of such an extension in this setting, and, as such,
more assumptions on f are required.

A version of Whitney’s classical extension theorem from [33] was proven by the
author for horizontal C 1 curves in the Heisenberg group [35], and by Pinamonti, Speight,
and the author for horizontal Cm curves [28]. See Theorem 2.5 for the statement of and
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more discussion regarding these results. This extension theorem has since been applied to
verify the existence of Lusin-type approximations of Lipschitz curves in the Heisenberg
group by horizontal Cm curves [10]. Whitney-type extensions for horizontal C 1 curves
in general Carnot groups and sub-Riemannian manifolds have been considered by Julliet,
Sacchelli, and Sigalotti [26, 29].

Let us return to Whitney’s question. We would like an answer without having first
assigned a family of “derivatives” of f on K. In the case n D 1, Whitney provided an
answer using the divided differences of f .

Theorem 1.1 ([34]). Suppose K � R is compact and f WK ! R is continuous. Then
f 2 Cm.K/ if and only if the mth divided differences of f converge uniformly on K.

See Subsection 2.4 for more information about divided differences. Glaeser later pro-
vided an answer to Whitney’s question for functions in C 1.Rn/ using a geometric argu-
ment [24]. The proof of Theorem 1.1 actually implies the following.

Theorem 1.2 ([34]). SupposeK �R is compact. Then there is a bounded, linear operator
W WCm.K/! Cm.R/ such that Wf jK D f for all f 2 Cm.K/.

Brudnyi and Shvartsman [7, 9] observed the following reformulation of Whitney’s
result, which has since come to be known as the finiteness principle.

Theorem 1.3 ([34]). Suppose K � R is compact and f WK ! R is continuous. There
is some F 2 Cm;!.R/ with F D f on K if and only if there is a constant M > 0 such
that, for every subset X � K with #X D mC 2, there is some FX 2 Cm;!.R/ such that
FX D f on X and kFXkCm;!.R/ �M .

The statement of Theorem 1.3 does not involve divided differences and allows one
to consider Whitney’s theorem for higher dimensional domains. As a result, Brudnyi and
Shvartsman generalized the finiteness principle to C 1;!.Rn/ functions in [7]. Their con-
tinued work on this problem can be found in [4–9, 30, 31]. In [2, 3], Bierstone, Milman,
and Pawłucki considered Whitney’s question for extensions from subanalytic sets in Rn,
and Fefferman answered Whitney’s question fully in [13, 14]. He also proved versions of
the finiteness principle for Cm;!.Rn/ functions [12,15]. Recent updates on this project by
Fefferman, Israel, and Luli can be found in [18, 19] and by Carruth, Frei-Pearson, Israel,
and Klartag in [11]. An extensive history of work related to Whitney’s question from the
past few decades can be found in [17].

In this paper, we will focus on mappings into the sub-Riemannian Heisenberg group
Hn and consider a Heisenberg-version of Whitney’s question. (See Subsection 2.1 for the
appropriate definitions.) Suppose K � Rn is compact, and fix f WK ! R2kC1.

Whitney’s question in H. When is there a map F 2 Cm.Rn;R2kC1/ such that F jK D f
and F is horizontal?

For the purposes of this paper, we will consider only the setting H WD H1 D R3.
However, all results discussed below hold in higher dimensional Heisenberg groups with
the appropriate changes in notation.

As mentioned above, Whitney’s question in H was answered on subsets of R in [28]
and [35] when the derivatives of the extension are required to have prescribed values onK.
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This is an analogue of Whitney’s original result from [33]. Now, we will provide an answer
to Whitney’s question in H in the case n D 1, in analogy to Theorem 1.1.

The following are the main results of this paper. For a compact set K � R and a
map  WK ! H, we will write  2 CmH .K/ to indicate that there is a horizontal curve
� 2 Cm.R;R3/ with �jK D  .

Theorem 1.4. Assume K � R is compact, and suppose  WK ! H is continuous. Then
 2 C 1H.K/ if and only if the Pansu difference quotients of  converge uniformly on K to
horizontal points.

See Definition 2.2 for a discussion of the Pansu difference quotients. For higher order
derivatives, we have the following.

Theorem 1.5. AssumeK �R is compact with finitely many isolated points and  WK!H
is continuous. Then  2 CmH .K/ if and only if

(1) the mth divided differences of  converge uniformly on K,

(2)  satisfies the discrete A=V condition on K.

Condition (1) is clearly necessary due to Whitney’s result (Theorem 1.1). The dis-
crete A=V condition in (2) is an analogue of the A=V condition introduced in [28],
and both are generalizations of the Pansu difference quotient. See Sections 3 and 4 for
a thorough discussion of these conditions. According to Proposition 5.2 in [35], the A=V
condition is necessary when extending to smooth, horizontal curves in H. While the A=V
condition from [28] relies on information from a collection of functions defined on K,
the discrete A=V condition in (2) above requires knowledge only of the values of  . The
definition of the discrete A=V condition replaces Taylor polynomials with interpolating
polynomials just as Whitney did in his classical proofs.

The following result holds for arbitrary compact sets K � R. For  D .f; g; h/ with
f; g; h 2 Cm.K/, we will write W  to denote the curve .Wf;Wg;W h/ 2 Cm.R;R3/,
where W is the linear operator whose existence is guaranteed by Theorem 1.2.

Theorem 1.6. AssumeK �R is compact and  WK!H is continuous. Then  2 CmH .K/
if and only if

(1) the mth divided differences of  converge uniformly on K,

(2) W  satisfies the A=V condition on K.

The advantage of this result over Theorem 1.5 is clearly in its generality for all com-
pact sets. However, one might expect that the hypotheses of Theorem 1.6 are harder to
“compute” (in the sense of [16,20,21]) than those of Theorem 1.5. This is summarized in
the following (imprecise) question:

Question. Suppose K � R is compact,  WK ! H is continuous, and the mth divided
differences of  converge uniformly on K. Which is easier: verifying that  satisfies the
discrete A=V condition on K, or computing W  and verifying that it satisfies the A=V
condition on K?
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Finally, we come to our discussion of the finiteness principle (Theorem 1.3) for curves
in the Heisenberg group. Just as in the Euclidean setting, the statement of the following
result removes all mention of divided differences.

Theorem 1.7. Assume K � R is compact with finitely many isolated points, with #K �
mC 2 for some positive integer m, and suppose  WK ! H is continuous. If there exist a
modulus of continuity! and a constantM >0 such that, for anyX �K with #X DmC 2,
there is a curve �X 2 Cm;!.R;R3/ with �X D  on X , k�XkCm;!.R;R3/ �M; andˇ̌̌A.�X I a; b/

V .�X I a; b/

ˇ̌̌
�M!.b � a/ for all a; b 2 K with a < b;

then there is a horizontal curve � 2 Cm;
p
!.R;R3/ such that �jK D  .

Note the drop in regularity of the mth derivative. This is a result of the construction
of the horizontal Cm extension theorem in [28]. The following proposition hints that this
drop is due to the construction itself and may be possible to remedy.

Proposition 1.8. If  2 Cm;!.R;R3/ and  is horizontal, then there is a constantM > 0

such that ˇ̌̌A. I a; b/
V . I a; b/

ˇ̌̌
�M!.b � a/ for all a; b 2 R with a < b:

The proof of this proposition is nearly identical to that of Proposition 5.1 in [28], so it
will not be included below. Simply replace all instances of " with a constant multiple of
!.b � a/ throughout the proof.

The paper is organized as follows. Section 2 establishes preliminary facts about the
sub-Riemannian Heisenberg group, prior Whitney-type results, and divided differences
which will be important for the later discussion. The bulk of the new content is contained
in Sections 3 and 4, wherein the A=V conditions are defined and several important lem-
mas relating the A=V condition from [28] to the discrete A=V condition are established.
Using the technical tools provided in these sections, we then prove Theorems 1.4, 1.5, 1.6,
and 1.7 in Section 5.

2. Preliminaries

Throughout the rest of the paper, m will represent a positive integer, and ! will be a
modulus of continuity, i.e., a continuous, increasing, concave function !W Œ0;1�! Œ0;1�

with !.0/ D 0. In what follows, given an object d , we will write a .d b to indicate that
a � Cb, where C D C.d/ > 0 is a constant depending possibly on d . Moreover, for any
integer k > 0, we say that a nonnegative quantity c.a; b/ is uniformly o.jb � ajk/ on a
setK if, for every " > 0, there is a ı > 0 such that c.a; b/ � "jb � ajk whenever a; b 2 K
satisfy jb � aj < ı.
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2.1. The Heisenberg group

For any positive integer n, we define the nth sub-Riemannian Heisenberg group to be
Hn D R2nC1 with the group law

.x; y; z/ � .x0; y0; z0/ D
�
x C x0; y C y0; z C z0 C 2

nX
jD1

.yjx
0
j � xjy

0
j /
�

for x; y; x0; y0 2 Rn and z; z0 2 R. One may check that .x; y; z/�1 D .�x;�y;�z/. With
this group law, Hn is a Lie group with left invariant vector fields

Xi .p/ D
@

@xi
C 2yi

@

@z
; Yi .p/ D

@

@yi
� 2xi

@

@z
; Z.p/ D

@

@z
for 1 � i � n;

for p D .x; y; z/ 2 Rn � Rn � R. Since ŒXi ; Yi � D �4Z for each 1 � i � n, the Lie
group Hn is a Carnot group of step 2 with horizontal distribution span¹X1;Y1; : : : ;Xn;Ynº.
We say that a point in Hn is horizontal if it lies in R2n � ¹0º, and an absolutely continuous
curve  WR! R2nC1 is horizontal if  0.t/ 2 span¹X1; Y1; : : : ; Xn; Ynº for almost every
t 2 R. We may equivalently write the following.

Proposition 2.1. Suppose  D .f; g; h/WR ! Rn � Rn � R is absolutely continuous.
Then  is horizontal if and only if

h0 D 2

nX
jD1

.f 0j gj � fjg
0
j / a.e. in R:

For a proof of this, see Lemma 2.3 in [32]. In H D H1, this equation is simply h0 D
2.f 0g � fg0/. If  2 CmH .R/ (i.e.,  2 Cm.R;R3/ and  is a horizontal curve), then,
according to the Leibniz rule, we have

(2.1) h.k/ D 2

k�1X
iD0

�
k � 1

i

��
f .k�i/g.i/ � g.k�i/f .i/

�
for 1 � k � m on R:

The dilations .ır /r2Rn¹0º defined as

ır .x; y; z/ D .rx; ry; r
2z/

form a family of group automorphisms on Hn. Recall that the Pansu derivative of the
curve  WR! H at x 2 R is defined as

lim
y!x

ı1=.y�x/ ..x/
�1
� .y//

whenever this limit exists. If  is Lipschitz, then this limit exists almost everywhere and
converges to a horizontal point. See, for example, Lemma 2.1.4 in [27].

Definition 2.2. SupposeK �R is compact and fix  D .f;g;h/WK!H. We say that the
Pansu difference quotients of  converge uniformly onK to horizontal points if the differ-
ence quotients of f and g converge uniformly on K (in the sense of divided differences,
see Subsection 2.4), and if there is a modulus of continuity ˛ such that

jh.b/ � h.a/ � 2.f .b/g.a/ � f .a/g.b//j � ˛.jb � aj/ jb � aj2

for all a; b 2 K.
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According to the definition of the group law, this is equivalent to the assumption that
the difference quotients formed by the first two coordinates of ı1=.b�a/..a/�1 � .b//
converge uniformly, and that the third coordinate vanishes uniformly. Indeed, the third
coordinate of .a/�1 � .b/ is h.b/ � h.a/ � 2.f .b/g.a/ � f .a/g.b//. Compare this
definition to the statement of Theorem 1.7 in [35].

2.2. Function spaces

Suppose C.Rn/ is a (semi)normed space of real valued functions on Rn with (semi)norm
k � kC.Rn/. For any measurable set E � Rn, the trace space C.E/ is defined as C.E/ D

¹F jE W F 2 C.Rn/º with seminorm

kf kC.E/ D inf
®
kF kC.Rn/ W F 2 C.Rn/; F jE D f

¯
:

We also define C.R;R3/ to be the space of functions  D .f; g; h/WR! R3 such that
f; g; h 2 C.R/, and we endow this space with the seminorm

kkC.R;R3/ D kf kC.R/ C kgkC.R/ C khkC.R/:

For a positive integer m, the space Cm.Rn/ consists of those m-times continuously
differentiable functions f WRn ! R such that the following seminorm is finite:

kf kCm.Rn/ D sup
x2Rn

X
j˛jDm

j@˛f .x/j:

If ! W Œ0;1/! Œ0;1/ is a modulus of continuity (i.e., an increasing, concave, continu-
ous function with !.0/ D 0), define Cm;!.Rn/ to be the subspace of Cm.Rn/ consisting
of those functions such that the following seminorm is finite:

kf kCm;!.Rn/ D sup
x;y2Rn

x¤y

X
j˛jDm

j@˛f .x/ � @˛f .y/j

!.jx � yj/
�

Of course, when n D 1, we have

kf kCm.R/ D sup
x2R
jf .m/.x/j and kf kCm;!.R/ D sup

x;y2R
x¤y

jf .m/.x/ � f .m/.y/j

!.jx � yj/

for any f WR! R. In other words, f 2 Cm;!.R/ means f .m/ is uniformly continuous
with modulus of continuity kf kCm;!.R/ � !.

2.3. Prior Whitney-type results

Given a collection F D .F k/m
kD0

of continuous, real valued functions on a set E � R,
define the mth order Taylor polynomial Tma F of F at a 2 E as

(2.2) Tma F.x/ D

mX
kD0

F k.a/

kŠ
.x � a/k for all x 2 R:

If f WR!R ism times differentiable at a, the Taylor polynomial Tma f is defined as usual
using the collection F D .f .k//m

kD0
in (2.2). We will often drop the exponent and write

TaF or Taf when the order of the polynomial is obvious from the context.
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If f 2 Cm.R/ and K � R is compact, then, according to Taylor’s theorem,

(2.3) lim
jb�aj!0
a;b2K

jf .k/.b/ � Tm�ka f .k/.b/j

jb � ajm�k
D 0 for 0 � k � m:

We note in particular that there is a modulus of continuity ˛ with

jf .m/.x/ � f .m/.y/j � ˛.jx � yj/;(2.4)
jf .y/ � Tmx f .y/j � ˛.jx � yj/ jx � yj

m;(2.5)

jf 0.y/ � .Tmx f /
0.y/j � ˛.jx � yj/ jx � yjm�1;(2.6)

for all x; y 2 K since .Tmx f /
0 D Tm�1x .f 0/.

We call a collection F D .F k/m
kD0

of continuous, real valued functions on a closed
set K � R a Whitney field of class Cm on K if

lim
jb�aj!0
a;b2K

jF k.b/ � Tm�ka F k.b/j

jb � ajm�k
D 0 for 0 � k � m;

where Tm�ka F k is the .m� k/th order Taylor polynomial of the collection .F j /m
jDk

. Note
that, if f 2 Cm.R/, then the collection F D .f .k//m

kD0
is a Whitney field of class Cm

on K for any compact K � R. From Whitney’s classical extension theorem in dimen-
sion 1, we have the following.

Theorem 2.3 ([33]). Suppose F D .F k/m
kD0

is a collection of continuous, real valued
functions on a compact setK �R. There is a function f 2Cm.R/ satisfying f .k/jK DF k

for 0 � k � m if and only if F is a Whitney field of class Cm on K.

See [1] for a proof. Suppose now that f 2 Cm;!.R/. According to (2) in [22], there
is a constant C > 0 such that

jf .k/.b/ � Tm�ka f .k/.b/j

jb � ajm�k
� C!.jb � aj/(2.7)

for any a; b 2 R and 0 � k � m. For a closed set K � R, a collection F D .F k/m
kD0

of
continuous, real valued functions on K is a Whitney field of class Cm;! on K if there is a
constant C > 0 such that

jF k.b/ � Tm�ka F k.b/j

jb � ajm�k
� C!.jb � aj/ for a; b 2 K; 0 � k � m:

A proof similar to that of Theorem 2.3 then implies the following result. This theorem
will be useful when proving the finiteness principle (Theorem 1.7).

Theorem 2.4 ([33]). Suppose F D .F k/m
kD0

is a collection of continuous, real valued
functions on a compact setK�R. There is a function f2Cm;!.R/ satisfying f .k/jKDF k

for 0 � k � m if and only if F is a Whitney field of class Cm;! on K.
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The following version of Theorem 2.3 was proven for C 1 horizontal curves in the
Heisenberg group in [35], and for Cm horizontal curves in [28].

Theorem 2.5 ([28, 35]). Suppose K � R is compact and F D .F k/m
kD0

, G D .Gk/m
kD0

,
and H D .H k/m

kD0
are collections of continuous, real valued functions on K. There is a

curve � 2 CmH .R/ satisfying �.k/jK D .F k ; Gk ;H k/ for 0 � k � m if and only if

(1) F , G, and H are Whitney fields of class Cm on K,

(2) for every 1 � k � m and x 2 K, the following holds on K :

H k
D 2

k�1X
iD0

�
k � 1

i

�
.F k�iGi �Gk�iF i /;

(3) .F 0; G0;H 0/ satisfies the A=V condition on K.

Condition (1) here was discussed above, and condition (2) is a consequence of the
Leibniz rule as in (2.1). Condition (3) (discussed at length in Section 3) establishes a con-
trol on the rate at which the curve gathers symplectic area in the plane, and this area is
fundamentally tied to the height of a horizontal curve in the Heisenberg group. For more
discussion on this relationship, see [28, 32, 35].

We will also record one direction of this result for Cm:! curves. The proof is similar to
the one found in [28], and the differences are noted below. This result is why Theorem 1.7
produces a curve of class Cm;

p
! rather than Cm;! , and it is not obvious to me how the

construction in [28] can be strengthened.

Theorem 2.6 ([28]). SupposeK � R is compact and F D .F k/m
kD0

, G D .Gk/m
kD0

, and
H D .H k/m

kD0
are collections of continuous, real valued functions on K. If there is a

constant yC > 0 such that

(1) F , G, and H are Whitney fields of class Cm;! on K,

(2) for every 1 � k � m and x 2 K, the following holds on K :

H k
D 2

k�1X
iD0

�
k � 1

i

�
.F k�iGi �Gk�iF i /;

(3) and, writing  D .F0; G0;H0/,ˇ̌̌A. I a; b/
V . I a; b/

ˇ̌̌
� yC !.b � a/ for all a; b 2 K with a < b;

then there is a horizontal curve � 2 Cm;
p
!.R;R3/ satisfying �.k/jK D .F k ; Gk ; H k/

for 0 � k � m.

Proof. This follows from the proof of Theorem 6.1 in [28]. We note the differences here.
Rather than invoking Whitney’s original extension theorem (which is Theorem 2.3 in this
paper and Theorem 2.8 in [28]), we instead use Theorem 2.4 above to extend the Whitney
fields F and G to Cm;! functions f and g on R. Moreover, it follows from the definition
of the Whitney field of class Cm;! and condition (3) above that we may replace the mod-
ulus of continuity ˛ in the estimates (2.3), (2.4), and (6.1)–(6.6) in [28] with a constant
multiple of !.
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Since K is compact, the modulus of continuity ˇ in Proposition 6.2 of [28] may then
be replaced by a constant multiple of

p
!. (This is because, in [28], ˇ is bounded by a

constant multiple of
p
y̨ D
p
˛ C ˛2. This is where the drop in regularity occurs.) The

proofs of Lemma 6.7 and Proposition 6.8 in [28] then follow.

2.4. Divided differences

FixA�R. For any f WA!R and any set ofmC 1 distinct pointsX D ¹x0; : : : ; xmº �A,
define

f Œx0� D f .x0/;

f Œx0; : : : ; xk � D
f Œx1; : : : ; xk � � f Œx0; : : : ; xk�1�

xk � x0
for 1 � k � m:(2.8)

We will call f ŒX� D f Œx0; : : : ; xm� an mth divided difference of f , and, if K � R is
compact, we say that the mth divided differences of f converge uniformly on K if, for
every " > 0, there is a ı > 0 such that jf ŒX� � f ŒY �j < " whenever X and Y are sets of
mC 1 distinct points in K and diam.X [ Y / < ı. For  WK ! R3, we define ŒX� WD
.f ŒX�; gŒX�; hŒX�/. The following equivalent definition of divided differences for Cm

functions is Theorem 2 on page 250 of [25].

Proposition 2.7. Fix mC 1 distinct points x0; : : : ; xm 2 R. If f 2 Cm.I /, where I is
some interval containing ¹x0; : : : ; xmº, then

f Œx0; : : : ; xm�

D

Z 1

0

Z t1

0

� � �

Z tm�1

0

f .m/.tm .xm � xm�1/C � � � C t1.x1 � x0/C x0/ dtm � � � dt2dt1:

In particular, as long as f is of class Cm, the map .x0; : : : ; xm/ 7! f Œx0; : : : ; xm�

extends to a continuous function on ImC1, and the recursive condition (2.8) holds for sets
of not necessarily distinct points.

2.5. Newton interpolation polynomials

Given a set A � R, a function f WA! R, and a finite set X D ¹x0; : : : ; xkº � A, the
associated Newton interpolation polynomial is defined as

P.X If /.x/ D f Œx0�C.x � x0/f Œx0; x1�C � � � C.x � x0/ � � � .x � xk�1/f Œx0; : : : ; xk �:

This is the unique polynomial of degree at most k which satisfies P.xi / D f .xi / for
i D 0; : : : ; k.

Lemma 2.8. Suppose ˛ is a modulus of continuity and f 2 Cm;˛.I / for some compact
interval I . There is a constant C > 0 depending only on m and kf kCm;˛.I / such that, for
any X � I with #X D mC 1 and P D P.X If /,

(2.9)
jf .x/ � P.x/j

diam.X/m
� C ˛.diam.X// and

jf 0.x/ � P 0.x/j

diam.X/m�1
� C ˛.diam.X//

for all x 2 ŒminX;maxX�.
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Proof. Write
M D kf kCm;˛.I /:

For any y0; : : : ; ym; z0; : : : ; zm 2 I , Proposition 2.7 gives

jf Œy0; : : : ; ym� � f Œz0; : : : ; zm�j

�M

Z 1

0

Z t1

0

� � �

Z tm�1

0

˛
�
jtm..ym � ym�1/ � .zm � zm�1//

C � � � C t1..y1 � y0/ � .z1 � z0//C .y0 � z0/j
�
dtm � � � dt2dt1

�M ˛
�
jym � zmj C 2jym�1 � zm�1j C � � � C 2jy1 � z1j C 2jy0 � z0j

�
�M .2mC 1/ ˛

�
max
i
jyi � zi j

�
:

Therefore, if we have mC 1 distinct points X D ¹x0; : : : ; xmº � I with P D P.X I f /
then, according to the definition of P , we have for any x 2 ŒminX;maxX� with x ¤ x0
that

jf .x/ � P.x/j D jf Œx0; : : : ; xm; x�.x � x0/ � � � .x � xm/j

D
jf Œx1; : : : ; xm; x� � f Œx0; : : : ; xm�j

jx � x0j
jx � x0j � � � jx � xmj

D jf Œx1; : : : ; xm; x� � f Œx0; : : : ; xm�j jx � x1j � � � jx � xmj

�M.2mC 1/ ˛.diam.X// diam.X/m:

Since f .x0/ D P.x0/, this gives the first inequality in (2.9).
Now, for every x 2 ŒminX;maxX� with x ¤ x0 and x ¤ x1, Problem 7 on page 255

of [25] and the symmetry of divided differences imply that

d

dx
f Œx0; : : : ; xm; x� D f Œx0; : : : ; xm; x; x�

D
f Œx1; : : : ; xm; x; x� � f Œx0; : : : ; xm; x�

x � x0

D
f Œx2; : : : ; xm; x; x� � f Œx1; : : : ; xm; x�

.x � x0/.x � x1/

�
f Œx0; x2 : : : ; xm; x� � f Œx1; x0; x2; : : : ; xm�

.x � x0/.x � x1/
�

Thus, as above,

jf 0.x/ � P 0.x/j �
ˇ̌̌ d
dx
f Œx0; : : : ; xm; x� � .x � x0/ � � � .x � xm/

ˇ̌̌
C jf Œx0; : : : ; xm; x�j

mX
iD0

Y
j¤i

jx � xj j

�M .2mC 1/.mC 3/ ˛.diam.X// diam.X/m�1:

The continuity of f 0 and P 0 gives the second inequality in (2.9).
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3. The A=V condition

The following quantities were first defined in [28] to establish Theorem 2.5.

Definition 3.1. Suppose F D .F k/m
kD0

and G D .Gk/m
kD0

are collections of continuous,
real valued functions on a set E � R, and suppose hWE ! R is continuous. Set  D
.f; g; h/ WD .F 0; G0; h/. For each a; b 2 E, define the area discrepancy A. I a; b/ and
the velocity V. I a; b/ as follows:

A. I a; b/ D h.b/ � h.a/ � 2

Z b

a

..TaF /
0TaG � .TaG/

0TaF /

C 2f .a/.g.b/ � TaG.b// � 2g.a/.f .b/ � TaF.b//;

V . I a; b/ D .b � a/2m C .b � a/m
Z b

a

�
j.TaF /

0
j C j.TaG/

0
j
�
:

If  2 Cm.R;R3/, we use the collections F D .f .k//m
kD0

and G D .g.k//m
kD0

in this
definition as before unless otherwise noted.

Definition 3.2. Suppose F D .F k/m
kD0

and G D .Gk/m
kD0

are collections of continuous,
real valued functions on a set E � R, and suppose hWE ! R is continuous. Set  D
.f; g; h/ WD .F 0; G0; h/. We say that  satisfies the A=V condition on E if, for all " > 0,
there is a ı > 0 such that

A. I a; b/

V . I a; b/
< " for all a; b 2 E with jb � aj < ı:

Note that such a map  satisfies the A=V condition vacuously on every finite set E.
As seen above, the A=V condition is part of the necessary and sufficient conditions to
guarantee the existence of smooth, horizontal extensions in Theorem 2.5.

We will now make a few observations about the quantities A and V . The following
shows that they are left invariant with respect to the group operation on H. In particular,
it will allow us to assume without loss of generality that .a/ D 0 when working with A
and V .

Lemma 3.3. Suppose  2 Cm.R;R3/. For any p 2 H and a; b 2 R, we have

A.p �  I a; b/ D A. I a; b/ and V.p �  I a; b/ D V. I a; b/:

Proof. Fix a; b; 2 R and p 2 H. Write  D .f; g; h/ and p D .x; y; z/, and write y D
. yf ; yg; yh/ D p �  . We then have

yf D x C f; yg D y C g and yh D z C hC 2.yf � xg/:

Notice also that
Ta yf D Taf C x and Tayg D Tag C y:

Clearly, V.p � ; a; b/ D V.; a; b/.
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Assume first that .a/ D 0. In this case, y.a/ D p, so

A.p �  Ia; b/ D yh.b/ � yh.a/ � 2

Z b

a

�
.Ta yf /

0Tayg � .Tayg/
0Ta yf

�
C 2 yf .a/.yg.b/ � Tayg.b// � 2 yg.a/. yf .b/ � Ta yf .b//

D h.b/C 2.yf .b/ � xg.b// � 2

Z b

a

�
.Taf /

0.Tag C y/ � .Tag/
0.Taf C x/

�
C 2x .g.b/ � Tag.b// � 2y.f .b/ � Taf .b//

D h.b/ � 2

Z b

a

�
.Taf /

0Tag � .Tag/
0Taf

�
� 2y

Z b

a

.Taf /
0
C 2x

Z b

a

.Tag/
0
� 2xTag.b/C 2yTaf .b/

D A. I a; b/:

If .a/ is arbitrary, then, since z WD .a/�1 �  satisfies z.a/D 0, we have from above

A. I a; b/ D A ..a/ � z I a; b/ D A .z I a; b/

D A ..p � .a// � z I a; b/ D A.p �  I a; b/:

When  is smooth, we are allowed to swap a and b in A. I a; b/ if we account for a
small error term.

Lemma 3.4. Suppose  2 Cm.R;R3/ and K � R is compact. Assume ˛ is a modulus of
continuity such that f and g satisfy (2.4)–(2.6) for all x and y in an interval containingK.
Then, for any a; b 2 K, we have

jA. I b; a/j .;K jA. I a; b/j C ˛.jb � aj/ jb � ajm:

Proof. According to the previous lemma, we may assume that .a/ D 0. Thus

jA. Ib; a/j

D

ˇ̌̌
�h.b/�2

Z a

b

�
.Tbf /

0Tbg � .Tbg/
0Tbf

�
�2f .b/Tbg.a/C2g.b/Tbf .a/

ˇ̌̌
D

ˇ̌̌
� h.b/ � 2

Z a

b

�
.Taf /

0Tag � .Tag/
0Taf

�ˇ̌̌
(3.1)

C 2
ˇ̌̌ Z a

b

�
.Taf /

0Tag � .Tag/
0Taf

�
�
�
.Tbf /

0Tbg � .Tbg/
0Tbf

�ˇ̌̌
(3.2)

C 2 jf .b/Tbg.a/ � g.b/Tbf .a/j:

Note that (3.1) is exactly jA. I a; b/j. Also, for any x between a and b, we have

jTag.x/ � Tbg.x/j � jTag.x/ � g.x/j C jg.x/ � Tbg.x/j

� ˛.jx � bj/jx � bjmC˛.jx � aj/jx � ajm � 2˛.jb � aj/jb � ajm:
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A similar argument gives j.Taf /0.x/ � .Tbf /0.x/j � 2˛.jb � aj/ jb � ajm�1, so that

j.Taf /
0Tag � .Tbf /

0Tbgj � jTagj j.Taf /
0
� .Tbf /

0
j C j.Tbf /

0
j jTag � Tbgj

.f;g;K ˛.jb � aj/ jb � ajm�1:

Swapping f and g and arguing similarly, we bound (3.2) by a constant multiple of
˛.jb � aj/jb � ajm. Moreover, since .a/ D 0,

jf .b/Tbg.a/ � g.b/Tbf .a/j � jf .b/j jTbg.a/ � g.a/j C jg.b/j jTbf .a/ � f .a/j

.f;g;K ˛.jb � aj/ jb � ajm:

This proves the lemma.

3.1. A=V and horizontality

The following is possibly the most useful observation from this paper. As long as a Cm

curve satisfies the A=V condition on a compact set K � R, the following lemma ensures
that we may drop the horizontality assumption (condition (2) in Theorem 2.5) on K.

Lemma 3.5. Suppose f; g; h 2 Cm.R/ and K � R is compact. If  D .f; g; h/ satisfies
the A=V condition on K, then there is some yh 2 Cm.R/ such that yh D h on K, and

(3.3) yh0 D 2.f 0g � fg0/ on K:

Proof. We will prepare our setting so that we may apply Whitney’s classical extension
theorem. Set H 0 WD h on K, and, for 1 � k � m, define H k D �.k�1/jK , where � 2
Cm�1.R/ is defined as

� D 2.f 0g � g0f / on R:

Claim: H is a Whitney field of class Cm on K.
Fix a;b 2K. We will first check that jh.b/� TaH.b/j is uniformly o.jb � ajm/ onK.

Using Lemma 3.3 and the fact that the group operation in H is C1 smooth, we may
assume that .a/ D 0. Recalling the definition (2.2) of the Taylor polynomial of a collec-
tion and that H k.a/ D �.k�1/.a/ for each 1 � k � m, observe that

TaH.b/D

Z b

a

.Tma H/
0
D

Z b

a

Tm�1a H 1
D

Z b

a

Tm�1a � D 2

Z b

a

Tm�1a .f 0g/�Tm�1a .fg0/:

Here, we used the convention that T 0aH
1 D H 1.a/. Then

jh.b/ � TaH.b/j �
ˇ̌̌
h.b/ � 2

Z b

a

.Tma f /
0Tma g � T

m
a f .T

m
a g/

0

ˇ̌̌
C 2

Z b

a

ˇ̌
.Tma f /

0Tma g � T
m�1
a .f 0g/

ˇ̌
C 2

Z b

a

ˇ̌
Tm�1a .fg0/ � Tma f T

m�1
a .g0/

ˇ̌
:
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Notice that, for any x between a and b,

.Tma f /
0.x/Tma g.x/ � T

m�1
a .f 0g/.x/

D
�
Tm�1a .f 0/.x/Tm�1a g.x/ � Tm�1a .f 0g/.x/

�
C .Tma f /

0.x/
g.m/.x/

mŠ
.x � a/m;

and recall that Tm�1a .f 0g/.x/ is simply the polynomial consisting of those terms in the
polynomial Tm�1a .f 0/.x/ � Tm�1a g.x/ which have degree at most m � 1. Therefore, the
quantity in brackets above is a polynomial in .x � a/ whose coefficients are linear com-
binations of derivatives of f and g and whose terms have degree at least m. Thus there is
a constant C > 0, depending only on the derivatives of f and g on K, such that

j.Tma f /
0Tma g � T

m�1
a .f 0g/j � C jb � ajm

between a and b. Swapping f and g and repeating the above discussion, we find that

jh.b/ � TaH.b/j �
ˇ̌̌
h.b/ � 2

Z b

a

.Tma f /
0Tma g � .T

m
a g/

0Tma f
ˇ̌̌
C 4C jb � ajmC1

D jA. I a; b/j C 4C jb � ajmC1:(3.4)

If a � b, then jh.b/ � TaH.b/j is uniformly o.jb � ajm/ on K since  satisfies the A=V
condition on K. If a > b, we choose a modulus of continuity ˛ such that f and g sat-
isfy (2.4)–(2.6) on an interval containing K, we apply Lemma 3.4 to (3.4), and then we
apply the previous sentence.

It remains to check that jH k.b/� Tm�ka H k.b/j is uniformly o.jb � ajm�k/ onK for
1 � k � m, but this follows easily from the definition of H k since, for such a k,

jH k.b/ � Tm�ka H k.b/j D j�.k�1/.b/ � Tm�ka .�.k�1//.b/j

which is uniformly o.jb � aj.m�1/�.k�1// on K since � is of class Cm�1. This proves the
claim.

Therefore, according to Whitney’s classical extension theorem (Theorem 2.3), there is
a Cm extension yh of H . In particular, we have yh.x/ D H 0.x/ D h.x/ for all x 2 K, and,
by the definition of H ,

yh0 D H 1
D � D 2.f 0g � g0f / on K:

This completes the proof of the lemma.

We will now record a version of the above result for Cm;! curves to be used in the
proof of Theorem 1.7.

Lemma 3.6. Suppose f;g;h 2 Cm;!.R/ andK �R is compact. If  D .f;g;h/ satisfies
the A=V condition on K, then there is some yh 2 Cm;!.R/ such that yhjK D h, and

yh0 D 2.f 0g � fg0/ on K:
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Proof. The proof of this lemma is nearly identical to the previous one. The main difference
is that we must use the fact that � is now of class Cm�1;! to conclude that

jH k.b/ � Tm�ka H k.b/j D j�.k�1/.b/ � Tm�ka .�.k�1//.b/j � C !.jb � aj/ jb � ajm�k

for some constant C > 0. Thus, we may apply Theorem 2.4 in lieu of Theorem 2.3 to
construct a Cm;! extension yh of h and conclude the proof of the lemma.

4. The discrete A=V condition

Definition 4.1. FixE �R and  D .f;g;h/ WE!R3. SupposeX �E with #X DmC 1,
and set Pf D P.X I f / and Pg D P.X I g/. For any a; b 2 X , define the discrete area
discrepancy AŒX;  I a; b� and the discrete velocity V ŒX;  I a; b� as follows:

AŒX;  I a; b� D h.b/ � h.a/ � 2

Z b

a

.P 0f Pg � P
0
gPf /;

V ŒX;  I a; b� D diam.X/2m C diam.X/m
Z b

a

.jP 0f j C jP
0
g j/:

Note in particular that the definitions of AŒX;  I a; b� and V ŒX;  I a; b� depend only
on the functions f , g, and h rather than on a family of functions (as the definitions of
A. I a; b/ and V. I a; b/ do).

Definition 4.2. For any set E � R with and  WE ! R3, we say that  satisfies the dis-
crete A=V condition on E if, for every " > 0, there is some ı > 0 such that

AŒX;  I a; b�

V ŒX;  I a; b�
< "

for any finite set X � E with #X D mC 1 and diamX < ı and any a; b 2 X with a < b.

Note again that such a map  satisfies the discrete A=V condition vacuously on every
finite set E. We once again have a left invariance property for the discrete versions of A
and V .

Lemma 4.3. Suppose  WK!H for someK �R, and supposeX �K with #X DmC1.
Fix a; b 2 X and p 2 H. Then

AŒX; p �  I a; b� D AŒX;  I a; b� and V ŒX; p �  I a; b� D V ŒX;  I a; b�:

Proof. This lemma follows almost exactly the same proof as that of Lemma 3.3 since

P yf D Pf C x and Pyg D Pg C y;

and since Pf .x/ D f .x/ and Pg.x/ D g.x/ for any x 2 X by the definition of the inter-
polating polynomials.
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4.1. Equivalence of the conditions for C m curves

Here, we will compare the A=V and discrete A=V conditions for Cm curves.

Lemma 4.4. Suppose  2 Cm.R;R3/ and K � R is a compact set containing at least
mC 1 points. If  satisfies the A=V condition on K, then, for every " > 0, there is some
ı > 0 such that ˇ̌̌A. I a; b/

V . I a; b/
�
AŒX;  I a; b�

V ŒX;  I a; b�

ˇ̌̌
< "

for any finite set X � K with #X D mC 1 and diamX < ı and any a; b 2 X with a < b.
In particular, if  satisfies the A=V condition on K, then  satisfies the discrete A=V
condition on K.

Proof. Write  D .f; g; h/. We may choose a modulus of continuity ˛ and a constant
C > 0 such that f and g satisfy (2.9) for any X � I with #X D mC 1 and (2.4)–(2.6)
for all x; y 2 I where I D ŒminK;maxK�.

Suppose X is a set of m C 1 distinct points in K. Choose a; b 2 X with a < b.
By Lemmas 3.3 and 4.3, we may assume without loss of generality that .a/ D 0. For
simplicity, write A D A. I a; b/ and V D V. I a; b/, and write AX D AŒX;  I a; b� and
VX D V ŒX;  I a; b�. Then

(4.1)
ˇ̌̌A
V
�
AX

VX

ˇ̌̌
�

ˇ̌̌A
V
�
A

VX

ˇ̌̌
C

ˇ̌̌A � AX
VX

ˇ̌̌
D

ˇ̌̌A
V

ˇ̌̌ˇ̌̌VX � V
VX

ˇ̌̌
C

ˇ̌̌A � AX
VX

ˇ̌̌
:

Write ˛ WD ˛.b � a/. We will prove that j.A�AX /=VX j is bounded by a constant multiple
of ˛ and that j.VX � V /=VX j is bounded.

To begin, notice that

A � AX D 2

Z b

a

�
.P 0f Pg � .Taf /

0Tag/C ..Tag/
0Taf � P

0
gPf /

�
:(4.2)

Let us bound the first term in this integrand. Note that

P 0f Pg � .Taf /
0Tag D P

0
f .Pg � Tag/CPg.P

0
f � .Taf /

0/C..Taf /
0
�P 0f /.Pg � Tag/:

Now Lemma 2.8 gives

jPg � Tagj � jPg � gj C jg � Tagj � .C C 1/ ˛ diam.X/m(4.3)

and

jP 0f � .Taf /
0
j � jP 0f � f

0
j C jf 0 � .Taf /

0
j � .C C 1/ ˛ diam.X/m�1(4.4)

on Œa; b�. Therefore,

(4.5) j.Taf /
0
� P 0f j jPg � Tagj � .C C 1/

2˛2 diam.X/2m�1

on Œa; b�. Combining (4.3), (4.4), and (4.5), we getZ b

a

jP 0f Pg � .Taf /
0Tagj

.C ˛ diam.X/m
Z b

a

jP 0f j C ˛ diam.X/m�1
Z b

a

jPg j C ˛
2 diam.X/2m:
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According to Corollary 2.11 in [28] applied to the polynomial Pg , we haveZ b

a

jPg j � 8m
2 .b � a/

Z b

a

jP 0g j:

HenceZ b

a

jP 0f Pg � .Taf /
0Tagj .C ˛2 diam.X/2mC.1C 8m2/ ˛ diam.X/m

Z b

a

jP 0f jCjP
0
g j:

Similar arguments giveZ b

a

j.Tag/
0Taf � P

0
gPf j .C ˛

2 diam.X/2mC.1C 8m2/ ˛ diam.X/m
Z b

a

jP 0f jCjP
0
g j;

and inputting these bounds into (4.2) gives

jA � AX j .m;C ˛2 diam.X/2m C ˛ diam.X/m
Z b

a

jP 0f j C jP
0
g j .m;C .˛

2
C ˛/VX :

This bounds the second term in (4.1). To bound the first term, notice that

jVX � V j � diam.X/2m C .b � a/2m C jdiam.X/m � .b � a/mj
Z b

a

.jP 0f j C jP
0
g j/

C .b � a/m
Z b

a

ˇ̌
jP 0f j � j.Taf /

0
j C jP 0g j � j.Tag/

0
j
ˇ̌
:

As above, we have

j jP 0f j � j.Taf /
0
j j � jP 0f � .Taf /

0
j � .C C 1/ ˛ diam.X/m�1

and
j jP 0g j � j.Tag/

0
j j � jP 0g � .Tag/

0
j � .C C 1/ ˛ diam.X/m�1:

Hence, the bound ˛.b � a/ � ˛.diamK/ gives

jVX � V j .C;˛;K diam.X/2m C diam.X/m
Z b

a

.jP 0f j C jP
0
g j/ D VX :

Thus, by (4.1), ˇ̌̌A
V
�
AX

VX

ˇ̌̌
.m;C;˛;K

ˇ̌̌A
V

ˇ̌̌
C ˛:

Since  satisfies the A=V condition on K, the proof is complete.

Lemma 4.5. Suppose  2 Cm.R;R3/ and K � R is a compact set containing at least
mC 1 points with finitely many isolated points. If  satisfies the discrete A=V condition
on K, then it satisfies the A=V condition on K.

Moreover, if m D 1, then K can be any compact set containing at least two points.
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Proof. If K is finite, the definition of the A=V condition is vacuously true. Otherwise,
choose a modulus of continuity ˛ as in the proof of Lemma 4.4 which also satisfies

(4.6)
AŒX;  I a; b�

V ŒX;  I a; b�
� ˛.diam.X//

for all a; b 2 X � K with a < b and #X D mC 1.
Let a; b 2 K with a < b. By our assumption on K, we may assume that either a or b

is a limit point of K. Thus we can choose a finite set X consisting of a, b, and m � 1
other distinct points in K within .b � a/=2 of a or b. In particular, diam.X/ � 2.b � a/.
(Whenm D 1, we may skip this argument since X D ¹a; bº, and so diam.X/ D b � a. In
particular, there is no need to concern ourselves with limit points or isolated points in this
case.)

The proof of this lemma will now be nearly identical to that of the previous lemma.
We will only note the main differences. Write A, V , AX , VX , ˛, and C as before. Also, as
before (but slightly differently), writeˇ̌̌A

V
�
AX

VX

ˇ̌̌
�

ˇ̌̌AX
VX

ˇ̌̌ ˇ̌̌V � VX
V

ˇ̌̌
C

ˇ̌̌A � AX
V

ˇ̌̌
:(4.7)

Again, Lemmas 3.3 and 4.3 ensure that we may assume .a/ D 0. With (4.2) in mind,
write

P 0f Pg � .Taf /
0Tag D .Taf /

0.Pg � Tag/C Tag.P
0
f � .Taf /

0/

C .P 0f � .Taf /
0/.Pg � Tag/:

By applying Corollary 2.11 in [28] to the polynomials Tag and Taf , we may use (4.3),
(4.4), and (4.5) and the fact that diam.X/ � 2.b � a/ to conclude as before that

jA � AX j .m;C ˛2.b � a/2m C ˛.b � a/m
Z b

a

jTaf
0
j C jTag

0
j .m;C .˛2 C ˛/V:

Moreover, arguing as above using the fact that diam.X/ � 2.b � a/, we have

jV � VX j � .b � a/
2m
C diam.X/2mCj.b � a/m� diam.X/mj

Z b

a

.j.Taf /
0
jCj.Tag/

0
j/

C diam.X/m
Z b

a

ˇ̌
j.Taf /

0
j � jP 0f j C j.Tag/

0
j � jP 0g j

ˇ̌
.C;m;˛;K .b � a/2m C .b � a/m

Z b

a

.j.Taf /
0
j C j.Tag/

0
j/ D V:

By (4.6), the proof is complete.

4.2. Stronger equivalence for C m;! curves

We now record two analogous results which will be important in the proof of the finiteness
principle Theorem 1.7. The additional regularity on jA=V j provides more control on the
difference between the A=V fractions.
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Lemma 4.6. Suppose  2Cm;!.R;R3/, and supposeK �R is compact with #K�mC1.
Assume that there is a constant M > 0 such that jA. I a; b/=V . I a; b/j � M!.b � a/
for all a; b 2 K with a < b. Then for any X � K with #X D mC 1 and a; b 2 X with
a < b, we have ˇ̌̌A. I a; b/

V . I a; b/
�
AŒX;  I a; b�

V ŒX;  I a; b�

ˇ̌̌
� C0 !.diam.X//;

where C0 � 1 is a polynomial combination of m, M , kkCm;!.R;R3/, !.diamK/, and
diam.K/.

Proof. The proof of this lemma is then nearly identical to that of Lemma 4.4. Indeed, we
may simply replace all instances of ˛ with a constant multiple of !. Our added assumption
that jA=V j �M!.b � a/ �M!.diam.X// completes the proof.

The proof of the final lemma follows from the proof of Lemma 4.5 in the same way
that the proof of Lemma 4.6 followed from the proof of Lemma 4.4.

Lemma 4.7. Suppose  2 Cm;!.R;R3/, and suppose K � R is compact with finitely
many isolated points and #K � mC 1. Assume that there is a constant M > 0 such that
jAŒY; Ia;b�=V ŒY; Ia;b�j �M!.diam.Y // for all Y �K with #Y DmC 1 and a;b 2 Y
with a < b.

For any a;b 2K with a < b, there is a setX �K containing a and b with #X DmC 1
and diam.X/ � 2.b � a/ such thatˇ̌̌A. I a; b/

V . I a; b/
�
AŒX;  I a; b�

V ŒX;  I a; b�

ˇ̌̌
� C1 !.b � a/;

where C1 � 1 is a polynomial combination of m, M , kkCm;!.R;R3/, !.diamK/, and
diam.K/.

5. Proofs of the main theorems

In this section, we will prove Theorems 1.4, 1.5, 1.6, and 1.7.

5.1. Answering Whitney’s question in H for n D 1

We will first observe that the assumptions of Theorems 1.4 and 1.5 are necessary even
when K is an arbitrary compact set.

Proposition 5.1. If  2 CmH .R/ and K � R is compact, then

(1) the mth divided differences of  converge uniformly in K, and

(2)  satisfies the discrete A=V condition on K.

Proof. Condition (1) follows from Theorem 1.1, and Theorem 2.5 implies that  satisfies
the A=V condition on K. Thus Lemma 4.4 gives (2).
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We will now prove sufficiency in Theorem 1.5. Our restriction on the set K appears
here only because we will be applying Lemma 4.5.

Theorem 5.2. Suppose K � R is compact with finitely many isolated points, and fix
 WK ! H. Assume

(1) the mth divided differences of  converge uniformly in K, and

(2)  satisfies the discrete A=V condition on K.

Then there is a horizontal curve � 2 Cm.R;R3/ such that �jK D  .

Proof. We may clearly assume that K contains at least m C 1 points. By (1) and The-
orem 1.1, there is some z D .f; g; h/ 2 Cm.R; R3/ such that z jK D  . By (2) and
Lemma 4.5, z satisfies the A=V condition onK. Therefore, Lemma 3.5 implies that there
is some yh 2 Cm.R/ such that yhjK D hjK , and yh0 D 2.f 0g � fg0/ on K. By the Leibniz
rule, then, we have

yh.k/ D 2

k�1X
iD0

�
k � 1

i

��
f .k�i/g.i/ � g.k�i/f .i/

�
on K:

Set y D .f; g; yh/WR! H. By our above construction, we have that y jK D z jK D 
and also that the collection .F k ;Gk ;H k/m

kD0
D .y .k//m

kD0
onK satisfies the assumptions

of Theorem 2.5. Therefore, there is a Cm horizontal curve �WR! H such that �jK D
y jK D  .

5.2. The special case m D 1

Here we prove Theorem 1.4, which holds for arbitrary compact sets.

Proof. The necessity follows from Theorem 1.7 in [35]. Now fix a compact set K � R
and a continuous map  D .f;g;h/WK!R3 such that the Pansu difference quotients of 
converge uniformly on K to horizontal points. That is, the classical Euclidean difference
quotients of f and g converge uniformly on K and there is a modulus of continuity ˛
such that

jh.b/ � h.a/ � 2.f .b/g.a/ � f .a/g.b//j � ˛.jb � aj/ jb � aj2

for all a; b 2 K. This implies in particular that

jh.b/ � h.a/j � jh.b/ � h.a/ � 2.f .b/g.a/ � f .a/g.b//j C 2jf .b/g.a/ � f .a/g.b/j

� ˛.jb � aj/jb � aj2 C 2jg.a/jjf .b/ � f .a/j C 2jf .a/jjg.a/ � g.b/j

.f;g ˛.jb � aj/
�
jb � aj2 C jb � aj

�
:

That is, the difference quotients of h converge uniformly on K as well. In other words,
the first divided differences of  converge uniformly in K, and so there is some z D
. zf ; zg; zh/ 2 Cm.R;R3/ such that z jK D  .
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Now supposeX D ¹a;bº �K, with a < b, and set Pf DP.X If / and Pg DP.X Ig/.
Since Pf and Pg are affine, we have

AŒX;  I a; b� D h.b/ � h.a/ � 2

Z b

a

.P 0f Pg � P
0
gPf /

D h.b/ � h.a/ � 2.f .b/g.a/ � f .a/g.b//

and

V ŒX;  I a; b� D diam.X/2 C diam.X/
Z b

a

ˇ̌̌f .b/ � f .a/
b � a

ˇ̌̌
C

ˇ̌̌g.b/ � g.a/
b � a

ˇ̌̌
� diam.X/2 D .b � a/2:

Therefore, since z D  on K,ˇ̌̌AŒX; z I a; b�
V ŒX; z I a; b�

ˇ̌̌
D

ˇ̌̌AŒX;  I a; b�
V ŒX;  I a; b�

ˇ̌̌
�
jh.b/�h.a/�2.f .b/g.a/�f .a/g.b//j

jb � aj2
� ˛.jb�aj/:

Hence z satisfies the discrete A=V condition on K. It follows from Lemma 4.5 that z
satisfies the A=V condition on K as well since m D 1. Thus Lemma 3.5 gives an yh 2
C 1.R/ such that yhjK D zhjK D h and yh0 D 2. zf 0 zg � zf zg0/ on K. Setting y D . zf ; zg; yh/,
it follows that y jK and y 0jK satisfy the assumptions of Theorem 1.7 in [35]. We may
conclude that there is a horizontal curve � 2 C 1.R;R3/ such that �jK D  .

5.3. Answering Whitney’s question in H using W

Here we prove Theorem 1.6.

Proof. Necessity once again follows from Theorems 1.1 and 2.5. Assume now that K
is compact,  WK ! H is continuous, and the mth divided differences of  converge
uniformly on K. In particular, W  D .f; g; h/ exists. Assume W  satisfies the A=V
condition on K. Lemma 3.5 then gives a function yh 2 Cm.R/ such that yhjK D hjK and
yh0D 2.f 0g� fg0/ onK. Once again defining y D .f;g; yh/, the collection

�
y .k/

�m
kD0

onK
satisfies the assumptions of Theorem 2.5, so there is a horizontal curve � 2 Cm.R;R3/
such that �jK D y jK D .W /jK D  .

5.4. The finiteness principle

This subsection is devoted to the proof of Theorem 1.7.

Proof. Suppose K � R is compact with finitely many isolated points and #K � mC 2.
SupposeM > 0 and  WK ! R3 satisfy the following: for any X � K with #X D mC 2,
there is a function �X 2 Cm;!.R;R3/ such that �X D  onX , k�XkCm;!.R;R3/ �M; and

(5.1)
ˇ̌̌A.�X I a; b/
V .�X I a; b/

ˇ̌̌
�M!.b � a/ for all a; b 2 X with a < b:



S. Zimmerman 22

Suppose X D ¹x0; : : : ; xmC1º is a set of mC 2 distinct points in K, with x0 < x1 <
� � � < xmC1. Choose �X 2 Cm;!.R;R3/ as above. Then

jŒX�j D j�X ŒX�j D
j�X Œx1; : : : ; xmC1� � �X Œx0; : : : ; xm�j

jxmC1 � x0j

D
j�
.m/
X .y1/ � �

.m/
X .y2/j

.mC 1/ŠjxmC1 � x0j
�

M

.mC 1/Š

!.diam.X//
diam.X/

for some y1 2 .x1; xmC1/ and y2 2 .x0; xm/, by the mean value theorem for divided
differences. According to Theorem A in [7], there is some z D .f; g; h/ 2 Cm;!.R;R3/
such that z jK D  .

We will now observe that there exists a constant zC > 0, depending only on m, M ,
!.diamK/, and diam.K/, such that z satisfiesˇ̌̌AŒY; z I a; b�

V ŒY; z I a; b�

ˇ̌̌
� zC !.diam.Y //(5.2)

for any a; b 2 Y � K with a < b and #Y D m C 1. Indeed, choose such a set Y , set
X D Y [ ¹xº for some x 2 K n Y , and choose �X as above. Since �X D  D z on Y , it
follows from (5.1) and Lemma 4.6 that, for any a; b 2 Y with a < b,ˇ̌̌AŒY; z I a; b�
V ŒY; z I a; b�

ˇ̌̌
D

ˇ̌̌AŒY; �X I a; b�
V ŒY; �X I a; b�

ˇ̌̌
�

ˇ̌̌AŒY; �X I a; b�
V ŒY; �X I a; b�

�
A.�X I a; b/

V .�X I a; b/

ˇ̌̌
C

ˇ̌̌A.�X I a; b/
V .�X I a; b/

ˇ̌̌
.m;M;!;K !.diam.Y //:

In particular, z satisfies the discrete A=V condition on K, and thus, by Lemma 4.5, it
satisfies theA=V condition onK as well. Now, by Lemma 3.6, there is some yh2Cm;!.R/
such that yhjK D hjK and yh0 D 2.f 0g � fg0/ on K.

Set y D .f; g; yh/. As before, the collection .y .k//m
kD0

on K satisfies conditions (1)
and (2) from Theorem 2.6. We will now verify condition (3). Note that (5.2) holds with y
in place of z since y D z onK. Fix a; b 2 K with a < b. According to Lemma 4.7, there
is a set Y � K containing a and b with #Y D mC 1 and diam.Y / � 2.b � a/ such thatˇ̌̌A.y I a; b/

V .y I a; b/

ˇ̌̌
�

ˇ̌̌A.y I a; b/
V .y I a; b/

�
AŒY; y I a; b�

V ŒY; y I a; b�

ˇ̌̌
C

ˇ̌̌AŒY; y I a; b�
V ŒY; y I a; b�

ˇ̌̌
� yC !.b � a/;

where yC > 0 is a constant depending only on m, M , !, K, and kykCm;!.R;R3/. We may
therefore apply Theorem 2.6 to find a horizontal curve � 2 Cm;

p
!.R;R3/ such that

�jK D y jK D z jK D  .
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