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The regularity problem for degenerate elliptic operators
in weighted spaces

Pascal Auscher, Li Chen, José Maria Martell and Cruz Prisuelos-Arribas

Abstract. We study the solvability of the regularity problem for degenerate elliptic
operators in the block case for data in weighted spaces. More precisely, let Ly, be
a degenerate elliptic operator with degeneracy given by a fixed weight w € A;(dx)
in R”, and consider the associated block second order degenerate elliptic problem
in the upper-half space RT‘I. We obtain non-tangential bounds for the full gradi-
ent of the solution of the block case operator given by the Poisson semigroup in
terms of the gradient of the boundary data. All this is done in the spaces L? (vdw),
where v is a Muckenhoupt weight with respect to the underlying natural weighted
space (R”, wdx). We recover earlier results in the non-degenerate case (when w = 1,
and with or without weight v). Our strategy is also different and more direct thanks
in particular to recent observations on change of angles in weighted square function
estimates and non-tangential maximal functions. Our method gives as a consequence
the (unweighted) L2 (dx)-solvability of the regularity problem for the block operator

Lou(x,t) = —|x|* divy (]x| ™% A(x)Vu(x, 1)) — 07u(x, 1)

for any complex-valued uniformly elliptic matrix 4 and forall —e <« <2n/(n + 2),
where ¢ depends just on the dimension and the ellipticity constants of A.

1. Introduction

The study of divergence form degenerate elliptic equations was pioneered in the series of
papers [22-24], where real symmetric elliptic matrices with some degeneracy expressed in
terms of A, (dx)-weights were considered (here and elsewhere, A, (dx) = A>(R”, dx)).
The goal of this paper is to obtain the solvability of the regularity problem for second
order divergence form degenerate elliptic operators with complex coefficients and with
boundary data in weighted Lebesgue spaces. To set the stage, let us introduce the class of
operators that we consider here. Let A be an n x n matrix of complex L°°-valued coeffi-
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cients defined on R”, n > 2. We assume that this matrix satisfies the following uniform
ellipticity (or “accretivity”) condition: there exist 0 < A < A < oo such that

(1.1) MEP <ReA(x)E-& and |A(x)E-C| < AJE[[C],

forall £, ¢ € C" and almost every x € R". We have used the notation § - { = £1{y +--- +
&n Cn, and therefore & - ¢ is the usual inner product in C”. Associated with this matrix and
a given weight w € A,(dx) (which is fixed from now on, unless stated otherwise), we
define the second order divergence form degenerate elliptic operator

(1.2) Lyu = —w ™ div(w A Vu),

which is understood as a maximal-accretive operator on L2(R”, wdx) = L?(w) with
domain D(L,,) by means of a sesquilinear form. Note that writing 4,, = w A, one has
that Ay, is a degenerate elliptic matrix in the sense that

(13) AP wx) <Redy(x)§-€ and |Aw(x)§-C| < AE]IEw(x),

for all £, ¢ € C™" and almost every x € R”. Conversely, if Ay, is degenerate elliptic matrix
satisfying the previous conditions one can trivially see that A := w™! A, is uniformly
elliptic.

The prominent case w = 1 gives the class of uniformly elliptic operators. The cele-
brated resolution of the Kato problem in [5] established that if L is a uniformly divergence
form elliptic operator (that is, L = L, with w = 1), then ~/L f is comparable to V f in
L?(R", dx) = L?(dx). This led to a new Calderén-Zygmund theory developed by the
first named author in [1] to establish the boundedness in Lebesgue spaces of the associ-
ated functional calculus, vertical square function, Riesz transforms, reverse inequalities,
etc. A key ingredient in that theory is the use of the so-called off-diagonal or Gaffney esti-
mates satisfied by the associated heat semigroup and its gradient. This was later extended
in [7-9], where the same operators were shown to satisfy weighted norm inequalities with
Muckenhoupt weights. Conical square functions have been also considered in [6, 29].
Some of the previous results in conjunction with the theory of Hardy spaces for uniformly
elliptic operators from [27,28] led to [31], where the solvability of the regularity problem
in the block case (see (1.4) and (1.5) below with w = 1) for data in Lebesgue spaces was
obtained. This amounted to control non-tangentially the full gradient of the solution given
by the Poisson semigroup in terms of the gradient of the boundary datum. In turn, using
the weighted Hardy space theory developed in [29,30,32], the solvability of the regularity
problem in the block case for data in Lebesgue spaces with Muckenhoupt weights has
been recently studied in [13].

Concerning the Kato problem in the general case, where L., is a degenerate elliptic
operator as above with a generic w € A,(dx), [19] (see also [17,18]) showed that /L, f
is comparable to V f in L?(w). The boundedness of the associated operators (functional
calculus, Riesz transform, reverse inequalities, vertical square functions, etc.), both in the
natural Lebesgue spaces L?(w) and also in weighted spaces L? (vdw) with v € Aso(w)
was considered in [16]. A particular case of interest was that on which, under further
assumptions in w, the authors showed the equivalence of /Ly f and V f in L?(dx)
by simply taking v = w™!. That is, the L?(dx)-problem Kato problem was solved for
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a class of degenerate elliptic operators that goes beyond that of uniformly elliptic. For
instance, [16] considered L, = —|-|¥ div(| - |7Y A(-)V), where A is a uniformly elliptic
matrix, y € (—e,2n/(n + 2)), and ¢ depends on the dimension and the ellipticity constants
of A. Some work has been also done concerning conical square functions with respect to
the heat or Poisson semigroup generated by L,, and their gradients. For example, in [12]
the last three authors of the present paper established the boundedness and the comparabil-
ity of some conical square functions extending to the degenerate case the results from [29].
Moreover, in [33], the last named author has made a deeper study of the vertical and con-
ical square functions and some non-tangential maximal functions arising from degenerate
elliptic operators. On another direction, in [10] the authors considered L?-boundary value
problems for degenerate elliptic equations and systems. In particular, they initiated the
study of Dirichlet and Neumann problems in the degenerate setting using the so-called
first order method.

Our goal in this paper is to contribute to this theory by studying the solvability of the
regularity problem for degenerate elliptic operators and also propose other methods, as it
is explained after Theorem 1.1. More precisely, consider the degenerate elliptic operator
Ly = —w~div(w A V), where w € A5(dx) and A is an n x n matrix of complex L>°-
valued coefficients defined on R”, n > 2, which is a uniformly elliptic matrix (see (1.1))
with ellipticity constants 0 < A < A < oo. Introduce the (n + 1) x (n 4 1) block matrix

A 0
(1.4) A:(O 1),

which is (n + 1) x (n 4 1) uniformly elliptic with ellipticity constants 0 < min{A, 1} <
max{A, 1}. This gives rise to the block degenerate elliptic operator in R”*1,

(1.5) Lyu=—w"! divy (W AV, su) = —w dive(w AVyu) — afu = (Ly)xu — 8fu.

Here and elsewhere, Vy ; denotes the full gradient, while the symbols V and V refer just
to the spatial derivatives. Note that in the previous equality we have used that w does not
depend on the 7 variable, hence by applying Fubini’s theorem it is not difficult to see that,
with a slight abuse of notation, if we write w(x,#) := w(x) for every (x,¢) € R"*1, then
w € A,(R"1, dx) since w € A, (dx).

The operator —L,, generates a C°-semigroup {e *L},.( of contractions on L2(w)
which is called the heat semigroup. This and the subordination formula (see (3.1) below)
yield that {e~* VL }i>0 is a C%-semigroup of contractions on L2(w). Hence, whenever
f € C(R"), the function (called semigroup solution) given by the semigroup formula
u(x,t):= e~tVLu f(x), with (x,¢) € RTFI, is a strong solution in C2((0, 00); L?(w)) N
C((0, 00); D(Ly)) of the evolution equation d2u(r) = Ly,u(r) satisfied in L2(w) for all
t > 0. But we can rather interpret L, # = 0 in R'j_“ in a weak sense and u is also weak
solution of it: by this we mean that u € WI’Z(IR'_L+1 ,dwdt) satisfies

loc
(1.6) // AX) Vi u(x,1) - Ve, ¥ (x, 1) dw(x)dt =0, Yy € CORY).
n+1

Also, u(-,t) — f in L?(w) as t — 0 by the semigroup continuity (see, e.g., [20]). As
usual, dw(x) = w(x)dx.
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Consider the Lz—non-tangential maximal function NV, defined in [10]:

1/2
(1.7)  Nyh(x) :=sup (][][W( ) [h(y,$)|* dw(y) ds) , he Lﬁ)C(RT'l,dwdt),
x,t

t>0

where W(x,t) := (co_lt,cot) x B(x,cyt) is a Whitney region and ¢g > 1, ¢; > 0 are fixed
parameters throughout the paper.

Note that our assumption w € A;(dx) implies that w is a doubling measure in R”,
hence (R”, w, | - |) is a space of homogeneous type. Given 1 < p < co and v € A (W),
we say that the weighted regularity problem (RTw) Lr(vdw) 15 solvable if for every f €

C°(R") the weak solution of L,u = 0 in Rﬁ_‘“, given by u(x, 1) := e 'VEiw f(x),
(x,1) € Ri“, satisfies the following weighted non-tangential maximal function estimate:

(1.8) ||</vw(vx,tu)||Lﬂ(vdw) = C“Vf”Lp(vdw)‘

Once this estimate is under control, one can extend the semigroup to general data. How-
ever, the status of convergence to the boundary of the solution needs a specific treatment
that is not addressed here.

Asin[1,9,16], we denote by (p—(Ly), p+(Ly)) and by (g—(Ly), g+ (L)) the max-
imal open intervals on which the heat semigroup {e~*L»},. ¢ and the gradient of the heat
semigroup {+/t Ve 'Lw},_, are respectively uniformly bounded on L? (w). That is,

p—(Ly) := inf{P € (1,00) s sup e || Lo wyLrw) < OO},
t>0

P+(Ly) = sup {p € (1,00) : sup [le™ ™ || Lo () Lr(w) < 00}7
t>0

g—(Ly) = inf {p € (1,00) : sup [VIVe ™ || Loy Low) < oo},
t>0

g+ (Lw) = sup {p € (1,00) : 5up [ V/1Ve™ ¥ | o+ o) < 00
t>0

We need to introduce some extra notation (see Section 2). Set ry, := inf { p:weE
Ap(dx)}, and note that 1 < ry, < 2 since w € A,(dx). Given 0 < py < go < oo and
V€ Ax(w) = Ao (R", wdx), define

W (po.qo) := {p € (Po.q0) : v € App,(w) NRHgqpy (w)}.
We are now ready to state our main result.

Theorem 1.1. Let w € A>(dx) and let 1Ly, be a block degenerate elliptic operator in Rﬁ_‘“
as above. Let v € Aoo (W) be such that

(1.9) 'W:;U(max{rwvQ—(Lw)}vQ+(Lw)) # 0.

Then, for every p € Wl’)"(max {rw, %},q_{_(lzw)) and every f € CX(R"), if
one sets u(x,1) = e~ VLu f(x), (x,1) € ]Rf’:rl, then
(1.10) ||</vw(vx,tu)||Lp(vdw) = C”Vf”Lp(udw)

and (R )L? (vdw) IS solvable.
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Let us compare this result with some previous work. When w = 1 (that is, we are
working with the class of uniformly —or non-degenerate — elliptic operators) and v = 1,
then, clearly, ry, = 1, W’ (max{ry,¢—(Lw)},q+(Lw)) = (¢—(Lw).q+(Lw)) # D, and
our result gives (1.10) in the range (max {1, %}, q+ (Lw)), hence we fully recover
Theorem 4.1 in [31]. If we still assume that w = 1 and we let v € Ago(w) = Aoo(dx),
then our assumption (1.9) agrees with that in Theorem 1.10 of [13] and the range of p’s
here is slightly worse than the one in that result (the lower end-point in Theorem 1.10
of [13] has been pushed down using an extra technical argument that we have chosen not
to follow here).

Sharpness of the exponents is a delicate issue. It is not known even when w = v = 1.
Let us discuss this situation for information and relate to other estimates. The upper bound
p < q+(L) in (1.10) is by definition sharp for the L? boundedness of +/tVe 'L It
is shown in [4], Section 12, that this is also sharp for the L? bound of tVe*“/z. But
global L? control of such non-tangential maximal functions with inside L2 averages does
not imply L? boundedness when p > 2: namely, ||Vx’te_“/zf||p S|V flp is not neces-
sary and the maximal estimate could be obtained for other reasons as seen in [6] for some
square functions. Consider the lower bound in p. First, it is the same as the one found in [1]
for ||v/L 1| » SV flp. and for this one sharpness is not known (although it is believable
that it should be). Secondly, when p < 2, a control of this non-tangential maximal func-
tion does imply L? boundedness. More precisely, one deduces ||V je VL flp SV,
uniformly in z > 0 (and one recovers ||v/L f|| » S|V fllp when t — 0). The same lower
bound in p is shown using the theory of Hardy spaces adapted to L in [4], Section 9, but
here too it is said that sharpness is not known.

Our methods to prove Theorem 1.1, in particular the estimate involving d;u, are also
novel. The above works used advanced technology of Hardy spaces adapted to operators:
developing them in our context is probably a new challenge in itself. Instead, we rely
on recent change of angle formulas for weighted conical square function estimates (see
Section 2.4) and also the ones we prove for non-tangential weighted maximal functions
(see Lemma 3.3), which allow us to implement more directly standard tools in the field.

An important consequence of our method is that we can obtain the solvability of the
regularity problem corresponding to data in unweighted Lebesgue spaces. The main idea
consists in taking v = w™! in Theorem 1.1. The following result focuses on the case of
the L2-solvability (more general results are presented in Section 4, see Corollaries 4.1
and 4.2).

Corollary 1.2. Let w €A, (dx) and let 1Ly, be a block degenerate elliptic operator in RZ_H
as above. Given © > 1, there exists g = £9(®,n, A/A) € (0, ﬁ] such that for every
w € Ar4e(dx) NRH, 2 14 (14 2y (@X) With O < & < g9 and [w]g,(ax) < O, then

(.11 Mo (Ve Wl L2 axy < CIIV fllL2axy.  forevery fe C2(R?),

where u(x,t) = e~tVLu f(x), (x,1) € Rﬁ_ﬂ. Hence (RL’”)Lz(dx) is solvable.
Furthermore, if we set

Lou(x,1) = —|x|*divy (|x|7* A(x)Viu(x, 1)) — 07u(x, 1),
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where A is an n X n matrix of complex L*°-valued coefficients defined on R", n > 2, sat-
isfying the uniform ellipticity condition (1.1), then there exists 0 < ¢ < 1/2 small enough
(depending only on the dimension and the ratio A /) such that if —e < a <2n/(n + 2),
then (1.11) holds in this scenario and (RLa)LZ(dx) is solvable.

The plan of the paper is as follows. In Section 2 we introduce notations and defini-
tions, and we recall some known results. We also obtain estimates for some inhomoge-
neous vertical and conical square functions which are interesting in their own right (see
Propositions 2.14 and 2.18). To prove our main result, Theorem 1.1, we split the main
estimate into two independent pieces, one regarding Ny, (Vyu) and the other one related
to My (0:u), see respectively Propositions 3.1 and 3.2 in Section 3. In Section 4 we study
the solvability of the regularity problem in unweighted Lebesgue spaces and, in particular,
we prove Corollary 1.2.

2. Preliminaries

We shall use the following notation: dx denotes the usual Lebesgue measure in R”, dw
denotes the measure in R” given by the weight w, and vdw or d(vw) denotes the one
given by the product weight vw. Besides, throughout the paper n will denote the dimen-
sion of the underlying space R” and we shall always assume n > 2.

Given a ball B, let rg denote the radius of B. We write A B for the concentric ball with
radius A rg, A > 0. Moreover, we set C1(B) = 4B and, for j > 2, C;(B) =2/T1B\2/B.

2.1. Weights

We need to introduce some classes of Muckenhoupt weights. Namely, Ao (dx), on which
the underlying measure space is (R”, dx), and then fix w € Ay (dx) and consider the
class Aso(w) where the “weighted” underlying space is (R”, dw).

2.1.1. Ao (dx) weights. By a weight w we mean a non-negative, locally integrable func-
tion. For brevity, we will often write dw for w dx. In particular, we write w(E) = f g dw
and L?(w) = L?(R", dw). We will use the following notation for averages: given a set £
such that 0 < w(FE) < oo,

][Efdx:|l?|/Efdx.

Abusing slightly the notation, for j > 1, we set

or, if 0 < |E| < o0,

1
dw = ———— dw.
][C]«(B)f w(21+1B) Cj(B)f
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We state some definitions and basic properties of Muckenhoupt weights. For further
details, see [21,25,26]. Consider the Hardy-Littlewood maximal function

Mf@x) = sup][ F )] dy.

It is well known that given a weight w, M is bounded on L? (w) if and only if w € A, (dx),
1 < p < oo, where we say that w € A,(dx), 1 < p < oo, if

[w]4,@x) = sgp (]i w(x) dx) (]i w(x)' =7 dx)p_1 < oo.

Here and below, the sups run over the collection of balls B C R". When p = 1, M is
bounded from L!(w) to L1*°(w) if and only if w € A;(dx), that is, if

(w]a, @x) = sgp (Ji w(x) dx)( ess sup w(x)_1> < 00.

xX€B

We also introduce the reverse Holder classes. We say that w € RH(dx), 1 < s < oo,

whon s = s0p ( f e ax) " (f weorax) < .

[W]RH (dx) = sgp (]i w(x) dx)_l( ess sup w(x)) < 00.

X€B

if
and

It is also well known that
Aso(dx):= | ) Apdx)= |J RH,(dx).
1<p<oo 1<s<oo

Throughout the paper we shall use in several places the following properties. Namely,
if w € RHg(dx), 1 <s < o0,

w(E) (IEI

1/s
, VE CB,
w(B) < [w]rn, @x) |B|) C

2.1
where B is any ball in R”. Analogously, if w € A,(dx), 1 < p < oo, then

|E|\? w(E)
2.2) (W) < Wl gy YECB.

This implies in particular that w is a doubling measure, that is,
(2.3) w(AB) < [wlg,@x A" w(B), VB, VA>1.

We continue by introducing some important notation. Weights in the classes A, (dx)
and RH; (dx) have a self-improving property: if w € A, (dx), there exists ¢ > 0 such that
w € Ap_¢(dx), and similarly if w € RH;(dx), then w € RH,5(dx) for some & > 0.
Hereafter, given w € A,(dx), let

24)  ry=inf{p: we Ay(dx)} and s, =inf{g: w € RHy(dx)}.
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Note that, according to our definition, sy, is the conjugated exponent of the one defined in
Lemma 4.1 of [8]. Given 0 < pg < g¢ < 0o and w € A (dx), Lemma 4.1 in [8] implies
that

(2:5) Wi (po-q0) = { P € (P0.0) : w € Ap py (@) N RH o/ py (@)} = (porn, 1.

w

In the case pg = 0 and gop < oo, it is understood that the only condition that stays is
w € RH(g,/py(dx). Analogously, if 0 < po and go = oo, the only assumption is w €
Ap/po(dx). Finally, Wy, (0, c0) = (0, 00).

Furthermore, given p € (0, 00) and a weight w € Ay (dx), we define the following
Sobolev exponents with respect to w:

nry p

2.6 * = _,
(2.6) (P)w, ——

and, fork € N,

57 ko nf;’ﬂip ifnry > kp,
(2.7) Py .
00 otherwise.

We write py := pur.

2.1.2. Aoo(w) weights. Fix now w € A (dx). As mentioned above, (2.3) says that w
is a doubling measure, hence (R, dw, | - |) is a space of homogeneous type (here and
elsewhere, | - | stands for the ordinary Euclidean distance). One can then introduce the
weighted maximal operator

3) MO £ 1= swp f 1) dw).

B>x JB
Much as before, M™ is bounded on L?(vdw), 1 < p < oo, if and only if v € A,(w),
which means that

(2.9) V4, w) = sgp (]f9 v(x) dw) (]f9 v(x)l—p' a’w)"’_1 < 00.

Analogously, we can define the classes RHg(w) by replacing the Lebesgue measure in the
definitions above with dw: v € RHg(w), 1 <5 < oo, if

(2.10) VIR, w) = sgp <]€3 v(x) dw>_1<]i v(x)* dw>1/s < o0.

From these definitions, it follows at once that there is a “duality” relationship between the
weighted and unweighted 4, (dx) and RH;(dx) conditions: w™! € Ap,(w) if and only if
w € RH, (dx), and w™! € RH(w) if and only if w € Ay (dx).

For every measurable set E € R”, we write vw(E) = [ d(vw) = [ vdw= (vdw)(E)
and L?(vdw)=L?(R", v(x)w(x)dx). In this direction, for every w € A,(dx), v €
Ay(w), 1 < p,q < oo, it follows that

vw(E)

E E
2.1D (%)M =8 L (%)q < (W}, @x) [Vlag) w0 (B)’ VE C B.
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Analogously, if w € RH,(dx) and v € RH,(w), 1 < p,g < oo, one has

vw(E) _ [v]rH, (w) ( w(E)y!

/q 1/q’

|E|\ /(P d)
( ) , VECB.

18]
As before, for a weight v € Ao (w) (recall that w € Ay (dx) is fixed) we set
(2.13) ry(w) :=inf{r: v e A,(w)} and s,(w):=inf{s: v € RHy(w)}.

For 0 < pg < gp < ocoand v € Ag(w), by a similar argument to that of Lemma 4.1 in [8],
we have

(2.14) WY (Po.q0) :={P € (Po.40) : v € Ap;p,(w) N RH(go/py (w)}
qo
= (pOrv(w)» )

sy (w)

If po = 0and g¢ < o0, as before, it is understood that the only condition that stays is v €
RHg,/py (w). Analogously, if 0 < pg and go = 00, the only assumptionis v € A/, (w).
Finally, W}’ (0, 00) = (0, 00).

Remark 2.1. The proof of our main result will use the Calderén—-Zygmund decomposi-
tion from Lemma 2.13 with respect to the underlying measure v(x)dw(x)=v(x)w(x)dx,
where w € Ay (dx) and v € Ao (w). In that scenario, it was shown in [33], Remark 2.15,
that wv € Ao (dx) and moreover ryy, < 1y, vy (w). The converse inequality is false in gen-
eral: let w(x) := |x|" and v := w™!; then one can easily see that 7, 1y (W) = 1y Sy = 2
and 1y, = 1.

We state a lemma which will be useful in the sequel.

Lemma 2.2 (Remark 2.16 in [33]). Let B C R" be a ball and let j > 1. Given 0 < p <
q < oo, the following holds.

(@ IfveAdy,w), then

(L,

J

1/p 1/q
@I dw) s(f @I )

J

(b) If v e RHypy(w), then

(L,

J

1/p 1/q
, e don@) "< (f i)

J

2.2. Square functions and non-tangential maximal functions

In this section, we introduce several auxiliary operators (vertical and conical square func-
tions, non-tangential maximal functions) which will be needed at various points along the
proofs.

Consider, for ¥ > 1, the non-tangential maximal function &% defined as

K,w — 2 —dw(y) v
2.15) NEEF () 1= fli{)) </B(x,/ct) Fo.0l w(B(x, t))) .
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We write N when « = 1. We are particularly interested in the non-tangential maxi-
mal functions associated with the heat or Poisson semigroup. For f € L?(w), define

2 d /
210 fo’wf(x):sup(/g( e e f) P )

>0 w(B(x,1))
ew ._ —tVLw 2 dw(y) \1/2
@1 NP f(X) o ?1:%) ( /B(x,/ct) }e f(y)i LU(B(X, t))) ’

Again, when k = 1, we write M" and M. We shall obtain weighted boundedness of
these operators in Section 3.2.

We also consider several variants of the vertical square functions associated with the
heat semigroup which were studied in [16], Sections 5 and 10:

d
(2.18) g f (%) :=</ |t>Ly e Lv f(x )|2 l) .
@1 Gpufe= ([ e et P )"
(2.20) Gy f(x) == (/ }tVt Lye" wa( )}2 dt)l/z'

Proceeding as in Propositions 5.1 and 10.1 of [16], by a standard argument, we have
the following lemma.

Lemma 2.3. Let Ly, be a degenerate elliptic operator with w € Ay(dx) and let v €
Aco(w). Then
(a) gf is bounded on L? (vdw) forall p € WY (p—(Ly), p+(Lw)),

(b) Gl/2 y and Gyj are bounded on L? (vdw) for all p € W’ (¢—(Lw), q+(Lw)).

Now we recall the following conical square functions studied by the authors in [12]:
2 dw(y)dt \1/2
tw(B(y, f))) ’
where I'*(x) := {(y,1) € RT‘I : |x — y| < at} is the cone with vertex at x and aperture

a > 0. When o = 1, we write I'(x) and Sjf . According to Proposition 3.1 in [12], we have
that §}{ is bounded on L? (vdw) for all p € W (p—(Ly ), 00).

Finally, we introduce the following “inhomogeneous” vertical and conical square func-
tions:

(2.22) GY f(x) := (/ V12 Lye T f ()]

(2.21) SEY f(x) = (//( ) |z2Lwe—’2wa(y)|

)

2 dt)1/2

2 dw(y)dt )1/2
tw(B(y, 1)/

By inhomogeneity we mean that the power rule of ¢ inside the square functions is not
in accordance with that of the operator L,,: we are modifying respectively G and S}
by removing one power of ¢ which makes the modified square functions applied to f
homogeneous instead to the gradient of f, so that we expect bounds in terms on V f only
for them. The analogues of the above two square functions in other settings turn to be very

(2.23) 5w f(x) = //( 7 (2 Lw)e ™ £ (9)|
T'(x)
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useful in the study of Riesz transform and Hardy space theory, see for instance [14,27].
Sections 2.6 and 2.7 below study the boundedness of G¥ and S¥ on weighted Sobolev
spaces, which plays an essential role in the proof of our main results.

We finish this subsection by recalling the results about the reverse inequality of the
Riesz transform associated with the operator L, proved in [16]. The Riesz transform

VL;I/ 2 associated with the operator L,, can be written as
o0
VLV = i/ (Ve tLw 9L,
w T Jo t

Consider also the following square root representation (see for instance [10, 19]):

(2.24) JL 2 / T Lot U
. = — e wo__ .,
w ﬁ o w P

Proposition 2.4 (Proposition 6.1 in [16]). Let max{ry, (p—(Ly))w.x} < P < p+(Lwp).
Then forall f € S,

IV LwSflLraw) S IV FllLew)-
Furthermore, if p € WY (max{ry,, p—(Ly)}, p+(Lw)), thenforall f € S,

IV Lw fllLrwawy S NV fllLewaw):-

2.3. Off-diagonal estimates

Definition 2.5. Let {7;};~( be a family of sublinear operators, and let 1 < p < co. Given
a doubling measure w, we say that {7} };~¢ satisfies L?(u) — LP(u) full off-diagonal
estimates, denoted by Ty € ¥ (L?(u) — LP(u)), if there exist constants C, ¢ > 0 such
that for all closed sets E and F, all f € L?(R"), and all # > 0, we have

/ 2 /
@3 fF Tetp f)Pd) " < € e dERRI( fE 1) .

where d(E, F) =inf{|x —y|:x € E,y € F}.

In the previous definition, when p = oo one has to change the L?-norms by the cor-
responding essential suprema.

Set Y(s) = max{s, s~ '} for s > 0. Recall that, given a ball B, we use the notation
C;(B) = 2/*t1B\2/ B for j > 2, and for any doubling measure x,

1 1
hdu = —/ hdu, ][ hdy = ———— hdu.
]i M= um Jp C;(B) "= L@+ (B)) C;(B) o

Definition 2.6. Given 1 < p < g < oo and any doubling measure ., we say that a family
of sublinear operators {7} };~¢ satisfies L?(u) — L9(u) off-diagonal estimates on balls,
denoted by Ty € O(L? () — L9(p)), if there exist 61, 6, > 0 and ¢ > 0 such that for all
t > 0 and for all ball B with radius rp,

(2.26) (f 1ms 1)idp) "’ 5 v (%)ez(ﬁ 1),
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and for j > 2,

NV 01 (27BN _caiv2 )
2.27) (fl;‘Tt(f ICJ-(B))‘ dﬂ) <2/ IT(T) e ¢4 Tp (f;j(g)

1/p
f17dp)

and

(2.28) ( ][C ;

| T, (f lB)|qu)l/q < 2761 T<21£>62€_C4jr§/l <][ |f|17du>l/p.
i (B) NG B

Again when ¢ = oo, or p = 0o, one has to change the L?-norms, or L?-norms, by
the corresponding essential suprema.

Let us recall some results about off-diagonal estimates on balls for the heat semigroup
associated with L.

Lemma 2.7 ([9], Section 2, and [16], Sections 3 and 7). Let Ly, be a degenerate elliptic
operator with w € A,(dx).
@ If p—(Lw) < p <q < ps(Ly), then eLv and (tL,)"e 'L, for everym € N,
belong to O(L? (w) — LY (w)).
(b) Letp (Ly)<p=q<py(Ly)lfvedyp r,) (W) NRH,, (1,)/qy (W), then
e Lw and (tLy)"e v, for every m € N, belong to O(L? (vdw) — L2 (vdw)).
(¢) There exists an interval K (Ly,) such that if p,q € K(Ly), with p < q, then
VtVe v belongs to O(LP(w) — L(w)). Moreover, denoting by q_(Ly,) and
q+(Ly) the left and right endpoints of K (Ly), then q—(Ly) = p—(Ly) and
2 < q+(Lw) = (q+(Lw))y < p+(Lw).
(d) Letq—(Lw) < p <q <q+(Lw)-If v € Apjq_(L,)(w) NRH(g, (L,,)/q) (W), it fol-
lows that /tVe v € O(LP (vdw) — L4 (vdw)).
(e) If p = q and pu is a doubling measure, then ¥ (L?P (1) — L? (1)) and O(LP (un) —
L? (1)) are equivalent.

Remark 2.8. Since off-diagonal estimates on balls are stable under composition (see
Theorem 2.3 in [9]), it follows from (b) and (d) that v/7VtLye 'lv € O(L? (vdw) —
Li(vdw)) forq_(Ly) < p <q <q+(Ly)and v € Ap/q_(1,)(W) N RHg, (1,)/qy (W).

Moreover, in the following result, which is a weighted version of [30], (5.12) (see
also [27]), and whose proof can be found in Proposition 2.42 of [33], we have off-diagonal
estimates for the family {77 ¢ }s.i>0 := {(e ™" Lw — e~ +s)Luy)My _ forall M € N.

Proposition 2.9. Let p € (p—(Ly), p+(Ly)) and let 0 < t, s < oo. Then, for all sets
Ei,E>; CR" and f € L?(w) such that supp(f) C E1, we have that {T; s}s >0 satisfies
the following LP (w) — L? (w) off-diagonal estimate:

o S2\M _ dE Ep)?
(229) MeTes sy € (3) € 25 1 1 lrw).
In particular, there holds

(2.30) 1% S Nerar S () 1 Iereor.
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We conclude this section by introducing the following off-diagonal estimates on Sobo-
lev spaces (for non-degenerate elliptic operators, see [1]).

Lemma 2.10. Let g € (9—(Ly),q+(Ly)) and a > 0. Assume that p satisfies

max {ry, (§—(Lw))wx} < p <q.

. +1
Then, there exists 0 > 0 such that for every (x,t) € R,

0o
(2.31) (]i(x,at) |Ve—t2wa|qdw)1/q 5 T(O{)g Z(f“”j (f

i=1 B(x,2/tlat)

1/
v f1rdw)

Proof. For simplicity, we write B := B(x,«t) and h := f — f4pw, Where, for every
A >0, fyp,w is the average of f in A B with respect to the measure dw. By the conserva-
tion property, that is, e Lol =1,

(o)
Ve 'hu f = Ve hu(f — fapw) = Y Ve Lviy,
j=1
with
hj = thj(B)-
By Lemma 2.7, for any g_(Ly) < go < ¢, we have that /tVe 'lv ¢ Q(L%(w) —
L9(w)), and then

(][ |ve—t2wa|qdw)l/q < i (][ |ve—f2Lwh~|"dw)l/q
B o Ve !

00 P — J

2](91+92) e cad
< Y(a)? E —(7[
~ ( ) P .

1/q0
|h|q°dw) .
= 5 (B)

Using the weighted Poincaré—Sobolev inequality (see Theorem 2.1 in [16] and also The-
orem 1.6 in [24]), we obtain that for any p > max{ry, (¢o)w,*}

1/q 1/q /
( f ,. h®dw) " < ( ]EM |f = fareig | "dw) " + ; | fotrim = fois ]

C;(B)
<i(][ | f = for |q°dw)l/q°<2j:zlm(][ |Vf|1’dw)1/p
~ 2l+1B 2*1Bw ~ 2l+1B
=2 =2
Hence,
1/q © —cadl J 1/p
(][ |Ve—f2wa\"dw) ST@!Y S Y 2l (][ |Vf|”dw)
B — — 2l+1B
Jj=1 =2
[ . —cad’ )4 1/p
ST@ Y e ( oV dw)

J=1

This completes the proof. u
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2.4. Change of angles

We shall use two change of angles results. The first one is a version of Proposition 3.30
in [29] in the weighted degenerate case.

Proposition 2.11 (Proposition A.2 in [12]). Let w € A7(dx) and v € RH,(w) with 1 <
7,r < 0o. Given a non-negative measurable function h, for every 1 <q <7, 0 <a <1
andt > 0, there holds

dw(y) /g
/" (/B(x,az)m(y’t)' m) v(x) dw(x)

N d 1/
2.32) < qnP/r=1/0) / ,, ( /B N2 by ooy ;’,"((yy )t))) o) dw(x).

The second result was proved for the unweighted non-degenerate case in [2] and for
the weighted non-degenerate case in Proposition 3.2 of [29]. Consider, for o > 0, the
following operator acting over measurable functions F defined in Ri‘“:

dw(y) dt )1/2 c R

A= (ffy 170F ity

where ['*(x) the cone with vertex at x and aperture o > 0 defined right below (2.21).

Proposition 2.12 (Proposition 4.9 in [12]). Let0 < a < B < o0.
(a) Foreveryw € Az(dx) andv € A,(w), 1 < 1,7 < o0, there holds

8 IB n¥r/p o
@33) AL Fllrwan <C(5) IAS FllLsawy Jorall 0<p <2r,
where C > 1 depends on n, p, r, T, [W]as(dx), and [v]a,w), but it is independent
of o and B.
(b) Forevery w € RHy(dx) and v € RHy (w), 1 < 5,5 < 00, there holds

o\ 55y
Q34 1AL Pl = C(5) " 1AL Fllroawy forall 2/s < p < oo,

where C > 1 depends onn, p, s, 3, [Wlrny (dx), and [V]rn, (w), but it is independent
of a and B.

2.5. Calderon-Zygmund decomposition on Sobolev spaces
Our proofs rely on the following Calderén—Zygmund decomposition on Sobolev spaces.

Lemma 2.13 (Lemma 6.6 in [7]). Letn > 1, « > 0, w € Axo(dx), andlet 1 < p < o0
be such that w € Ap(dx). Assume that € § is such that |V f||Le(w) < 00. Then, there
exist a collection of balls {B;}; with radii rp,, smooth functions {b;};, and a function
g € Ll (w), such that

loc

(2.35) f=g+> b
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and the following properties hold:

(2.36) |Vg(x)| < Ca, for p-ae. x,
(2.37) suppb; C B; and /; |Vb;|Pdw < CaP’w(B;),
(2.38) Y w(Bi) < % / IV fIPdw,
- a? Jgrn
(2.39) Z 14, <= N,

where C and N depend only on n, p, and w.
In addition, for 1 < q < px., where py, is defined in (2.7),

1/
(2.40) (]i |b,-|qdw) "< arp,.

2.6. Non-homogeneous vertical square function

In this section, we study the weighted boundedness of (:Jﬁ , see (2.22). Our result is the

following.

Theorem 2.14. Let w € Ay(dx) and let Ly, be a degenerate elliptic operator. Given
v € Aoo(w), assume that W) (max{ry,q—(Lw)}, q+(Ly)) 7# O. Then, for every f € §

and p € Wy’ (max{ry, (§—(Lw))w,«}, g+ (Lw)), it holds

(2.41) ||GngLp(vdw) S ”vf“LP(vdw)'

Before starting with the proof, we make some remarks and prove Lemma 2.17 (stated
below). These results will be useful in this proof and also in the remainder of the paper.

Remark 2.15. Let w € A;(dx) and v € Ao (w). Take 0 < g— < g4 < oo and suppose

that
p > vy(w) max{ry, (g-)w,«}-

Assuming that

(ro(w) max{ry. g—}. g+ /50 (w)) = W’ (max{ry.q-}.q+) # 3.

we claim that

(2.42) (rv(w) max{ry. g—}, min{g4 /s, (w). pr,}) # 9.

where we recall that by Remark 2.1, vw € A (dx), and where p,, is defined in (2.7).
Indeed, since by hypothesis r, (w) max{ry, ¢—} < ¢+ /sy (w), this can be seen from the

fact that

(2.43) ty(w) max{ry,g-} < py,-
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To prove (2.43), we distinguish two cases. If v, (w) max{ry,qg_} = vy, (w)ry, since we
are taking p such that p > r,(w) max{ry., (¢—)w,«} and since (¢—)y » < g— (see (2.6)),
then
1y (w) max{ry, ¢—} = vy (W) max{ry, (-)ws} < p < Pyy-
If now
Ty (w) max{ry,qg—} = ry(w)gq—_,

then we can assume that nry,, > p (otherwise p;, = oo and the inequality is trivial).
Hence, by hypothesis and by (2.7),

L1 1 1 nre+q- 1
Pow P Nryw rv(w)(q—)w,>r< Nryw Ty(W)g_nry nryw
1 1 Fow 1 1
Q44 = -—(1- )= - .
ry(W)g—  nryy Fy Ty (W) Ty (w)g— ry(w) max{ry, ¢_}

Remark 2.16. Let {B;}; be a collection of balls with bounded overlap, w € Aoo(dx), and
v € Aoo(w). Besides, consider 1 < p < oo, u € L? (vdw) such that 1l L5 wawy = 1>
and MP% the weighted maximal operator defined as

M ()= sup ]é f )] dw)(7).

Then, by Kolmogorov’s inequality, we have that
ow (1 PN ) ow o I \P
(2.45) (Z/B (M (|u|P') vdw) S(LB,- (M (fu|P') vdw)
va(UBi)”u”iﬁ’(vdw)ng(UB")'
i i

We next state a technical lemma which will be used several times. We notice that the
statement, which may appear slightly clumsy, is written so that it can be easily invoked in
some of our proofs.

Lemma 2.17. Given w € A>(dx) and v € Axo(w), fix 1 < py < 00, and a collection { B; };
of balls in R"™ with bounded overlap. Assume that there is a sequence of positive num-
bers {d;}i,; (whose significance will become clear when applying the result) so that

(2.46) Jij < Cow(@/ T By) /P 27iCM=O) > g
where C, C are fixed constants, and 2M > C +nryry (w). Then

1/p1
sup Y Y il Lol Lo} pauy S vw(UBi) :
1 i

u =157¢
I ”Lpll(vdw) i >4

Proof. Fix u so that |ju|| = 1. Note that we can find p > ry,, g > r,(w) so that

L7\ (vdw)
2M > C + nr with r = pq. In particular, w € A,(dx), v € A;(w) and we have (2.11)
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at our disposal. This, together with (2.46) and (2.45) with p = p;, allows us to show that

DY il i syl (vdw)

i j>4
. ~ , 1/p)
SY Y vy 2 /eHEn(f ot aue)
— - C;(B;
i jz4 i
< Z vw(B;) inf (M (jul) ()7
, / 1/p
ST [ o) o due < ve(|J5) "
i VB i
This readily leads to the desired estimate. ]

Proof of Theorem 2.14. Throughout the proof, fix w € A, (dx) and denote g— := g_(Ly,)

and g+ := g+ (Luw).
If p € WY (max{ry.qg-},q+), then (2.41) follows easily from Lemma 2.3 and Propo-
sition 2.4. Indeed, we have

o0
(2.47) ||Ggf||LP(wa) = H(/O |tV(t2Lw)l/Ze_t2Lw(\/Ef)|
SIVLw Lo wawy S IV FllLr@aw)-

In accordance with (2.14), to go below r,(w) max{ry, g—}, we shall show that if p
satisfies

din1/2
2Tl)

L?(vdw)

(2.48) Ty (W) max {ry, (g=)w,«} < p < ry(w) max{ry, g—},
then for any & > 0 and f € § it follows that

(2.49) vw({x e R": G¥ f(x) > a}) < ail’/ IV£I?vdw.
Rn

Hence, using interpolation between Sobolev spaces (see [11]), we shall conclude the
desired estimate.

In order to prove (2.49), we apply to f the Calderén—Zygmund decomposition in
Lemma 2.13 at height o > 0 for the product weight vw (recall that ry,, < ryry(w) < p,
see Remark 2.1). Thus, by (2.35),

vw({x e R" : G¥ f(x) > a}) < vw({x eR":G¥g(x) > %})
+ vw({x e R” :aﬂ(Zbi)(x) > 2?01}) = T1+1L

Note that by Remark 2.15 we can pick ¢ such that

(2.50) ry(w) max{ry,,q_} < q < min{ q+ x }

sy(w)’ Powy-

Keeping this choice of g, by (2.47) we have

1GY f La@waw) S IV fllLewdw)-
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Besides, since p < g (see (2.48)), properties (2.36)—(2.39) yield

1 ~ 1 1
1< — |Gl'fl’g|quw§—/ |Vg|quw§—/ IViIPvdw.
od Jrn a? Jrn o? Jrn

To estimate term II, for every k € Z, let r; := 2k if 2k <rp < 2k+1, Then,

II < vw(U16Bi)
+ vw({x eR™: (/0 ‘ ?VLye™ Lw( Z bi )(x)‘2d1>1/2 %}>
+ vw({x eR"\ LlJ 16B; : </0 ’szLweitZLw( Z b,)(x)’ %)1/2 ~ %})

iri>t

1
< — |V f1Pvdw + 11} + 1,
aP R?

where we have used (2.3) and (2.38).
In order to estimate term II;, write

([ ottt 5 m)eof %)

i<
o0 24t b dt\1/2
esh = ([ rveee (3 X n)w[ )" = ([T imsers)”
0 iri<t 0 t
where )
T, :=3VLye "Iv and  f,(x) = - Z b; (x).
1:ri <t
Moreover, note that 2 € (max{ry, g—}, ¢+), then, by Remark 2.8, for every vy €

A2/ max{ry gy (W) NRH g, /2y (w) we have 132V L e v e O(L2(vodw) — L2 (vodw)).
In particular, T; is bounded from L2(vodw) to L?(vodw). Consequently,

> de\1/2)2 i dt
T, fi|*— = T, f: 1> vo dw —
H(/O I72.7t] t) L2 (vodw) /0 /Rnl tfil vodw =

5/000/11@ |ft|2vodw% = H(/(;Oo|ft|2 dt)1/2‘L2(v0dw)

Now, by extrapolation (see Theorem A.1 in [12] and also Theorem 3.31 in [15]), we obtain
that for v € Aoo(w) and any g € W’ (max{ry,q-},q+),

(2.52) H(/Ooo IT: f2l? %)l/z‘mﬁd,ﬂ) S H</O°° |l %)1/2

In particular the above inequality holds for our choices of ¢ and v.

Next, the proof follows much as in [3], p. 543, but we write the details for the sake of
completeness. Consider the following sum:

Bi= > =

irj=2k

2

Li(5dw)
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and note that

By the Cauchy—Schwarz inequality, for every ¢ > 0,
2 2* 2 2* 2k 2 2t 2
AP ZIBP) (X T)E X 1A = 2 1Bl 1k oy (),
k:2k<t k:2k<t k:2k<t keZ

and hence,

/0|f,|2—<2[ 2—£I/3I2 3Bl

keZ
Using the bounded overlap property (2.39), the fact that ; ~ rp,, and also (2.40), we have

A / s
1) SN e [ 2
Saqsz(Bi) Sal™? fRn IV FI?vdw.

i

This estimate, (2.51), and (2.52) with ¢ and v, yield, as desired,

5 G 7P s = (S 1807)

1
< — IV flPvdw.
24 R?

q
L4 (vdw)

In order to estimate term II,, notice that

(s (S m) )" < S ([ v tonp )

iiri>t
=. Z szz
i
Then, by duality, we have
1 q
1, ’ZT,-b,-(x)’ v(x) dw(x)
R\U; 16B; | 5
1 q
< —q( su Z[ ITibi () ()] v() d (o))
AT\ g1 oy =1 T TR\ 163;
1 q
(s ZZ/ ITibs (O] b)) ) )
o el g’ pauy=1 i j>4
1 q
S a_q( sup > Y ITib ”Lq(Cj(Bi),vdw)”u”Lq'(C_i(Bi),vdw)) :
el g’ pauy=1 "7 j=4
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To estimate ||7;b; ||Lq(ci (B;),vdw)> WE Pick po close enough to g—, and go > ¢ close
enough to ¢4+ such that

(2.53) g- <po<2<gqo<qy and v e Ay p (w) N RHyg, /gy (w).

Note that WY (¢—, ¢g+) # @ since by assumption ‘WY (max{ry,, ¢}, g+) # @ and
additionally W’ (max{ry,q—},q+) C W’ (q—.q+). Notice also that applying Remark 2.8
with v = 1, we have t3/2VL,e v € O(LP°(w) — L9 (w)). Then, by Minkowski’s
integral inequality, Lemma 2.2 (a) and (b) (see (2.53)), (2.40) (see (2.50)), and recalling
thatr; =~ rp,, for j > 2,

I TibillLa(c; (Bi).vdw)

i Ti _ 2 2 dt\a/2 1/q
= vw(21+13)1/q(]£i(3i) (/0 |3V Lyye™Luby| t—3) d(vw))
N
i1 p 1/ s 2Ly |2 ﬂ q0/2 1/q0
Sow2/TBy) q<][c,-(3,-)</o |1’V Lye b t3) dw)

IA

. Ti 2/q0 dt\1/2
+1p1/ 3 —t2Ly 3, |90
vw(2/ T B;) q(/(; (fcj(B,-) \t VL,e b,| dw) _t3>

S 2101vw(2f+13i)1/q(][ |bi|P0 dw)l/p()(/” (2]:Bi)29ze_c4ir§i/t2 %)1/2
B; 0

. _ bi |4 ta : ‘
<e¥ vw(2/+lB,~)1/q(][ )_l) d(vw)) Se Y avw(@/ T B
B; 'TB;

Now we use Lemma 2.17 with p; = ¢q, J;; = ot_l||7}bi||Lq(cj(Bi),vdw), {Bi}i the

collection of balls given by Lemma 2.13, and with P replacing 27/ M -0 (conse-

quently M and C do not play any role here). Therefore, Lemma 2.17 and (2.38) imply

1
Ilzng(LiJBi) S’a_l’/]l;n [VfI?vdw.

Collecting the above estimates, we get the desired result. ]

2.7. Non-homogeneous conical square function

In this section, we shall prove weighted boundedness in Sobolev spaces for the inhomoge-
neous conical square function §}{ defined in (2.23). The analogous result for elliptic oper-
ators was studied in [27] for the Riesz transform characterization of Hardy spaces. See
also [32] for the Riesz transform characterization of weighted Hardy spaces. Our result is
stated as follows.

Theorem 2.18. Given w € Az(dx), v € Aoo(w), assume that

(2.54) Wy (max{ry.q—(Lw)}.q+(Lw)) # O.
Then, for everyh € § and p € W' (max {ry, (P—(Lw))w,*}. P+(Lw)), it holds

(2.55) IS¥ 2 Lo wy S IVAILr o)-
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To prove this theorem, we shall use Lemma 2.19 and Proposition 2.20. Lemma 2.19
will be also useful in the proof of Proposition 3.2 (all these results are stated below).

Lemma 2.19. Let w € A>(dx) and v € Aoo(w) be such that WY (q—(Ly).q+(Lw)) # 9D,
and let

p € (ry(w) max{ry, (- (Lw))w,«}, tv(w) max{ry, g—(Lw)}).
Givena > 0and f € 8 suchthat |V f | Lrwaw) < 00, let {b;}; be the collection of smooth
Sfunctions from Lemma 2.13 (applied to f, p, a, and w = vw). Write

o0

~ 2

b= E Arsibi’ where A,Bi =1—-(—e rBiL"’)M,
i=1

and where M € N is sufficiently large. Then, for p1 € W' (q—(Ly), q+ (L)) such that
1 < p1 < p},, (note that following (2.44) we get that v, (w)q—(Ly) < p3,,), there holds

Vb ”i}n (vdw) Salt™? ||vf||ip(vdw)-

Proof. First of all, denote g— := g—(Ly,) and g+ := g+(Ly). By duality and expand-
ing A, , we have

1
vdw

M
VB, ) = [R ‘V(ZZCk,Me—krgiwai)
k=1

i
M 2 b; 1
< sup (Z Z/ )rBiVe_krBiLw (—l)) |u|vdw) .
el =1 TR B,
LP1 (vdw)
By hypothesis, v € A, /,_(w) N RH,, /p,y (w) (see (2.14)), hence
VTVe v € O(LP (vdw) — LP (vdw)).

Using this, (2.40), and also (2.3),

J.

—kr2 b;
rg; Ve krp; Lu <—l)} |ujvdw
rBi

< Z vw(2j+1B,-)<][

e Ci(B)

, 17,
x(][ |t d(vw)) o
C;(B;)

J

S e (f \%

Jj=1

‘VB,- Ve kb L (%) )pl d(vw)) o

") inf (A ()7 0)

inf
XEB;

< oe/ («M”w(lulp,l))l/p,‘vdw.
B;
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Consequently, (2.45) with p = p; and (2.38) imply

LPl(d)

F A\ /P P
V5 <@ s (X[ (s i) vaw)
i i

< a’”vw(UB,-) 50[”1_1’/ |V f1Pvdw.
]Rn

i
This completes the proof. u

The next result is the particular case of Proposition 4.5 in [33], taking m = 1. In order
to formulate it (proceeding similarly as in [27, 32]), we introduce the following conical
square function:

L, 2 dw(y)dt \1/2
Syt () 1= B(xt>/ VLwe 0P G0 )

Observe that Eﬁ’f = Slw2 H«/wa. Our goal is to see that Slw/2 ./ compares with S f
(defined in (2.21)) in some welghted spaces (see Proposition 4.5 [3 3] for a general version
of this result). For the following statement, we recall that p (Lw)w was defined in (2.7).

Proposition 2.20. Given w € A,(dx), v € Aso(w), and f € L?*(w), there hold
(a) ”Swf”Ll’(vdw) < ”81/2 Hf”LP(vdw)) f()l" all JZRS W;u (07p+(LW)%),*),
®) 181, 5 f lLrwawy S ISH fllLraw). forall p € WF(0, p1(Lw)3y,)-

In particular, if p € WP (0, p+(Ly)35), we have

”81/2 Hf”Ll’(vdw) ~ ”S]z[”f”LP(vdwy

Proof. We observe that §{ and § 1w/2 y respectively correspond to §°y and $1"y in [33].

Then the proof follows from that of Proposition 4.5 in [33] taking m = 1. ]

Proof of Theorem 2.18. First of all, fix w € A»(dx), and denote g— := p_(Ly) =g—(Lw)
(see Lemma 2.7), g+ := q+(Ly), and py := p4(Ly).

We claim that for all p € W)’ (max{ry,q—}, p+)andh € S,

(2.56) ISHRlLr @aw) S VAL aw)-
Indeed, applying Proposition 2.20, Theorem 3.1 in [12], and Proposition 2.4, we have that
IS8 1l Lo wawy = 1525V LwhlLr@aw) ~ IS8V Lwhl Lo aw)
S IV LwhllLrwawy S IVAIL wdw)-

Note that WY (max{ry,g—}, p+) = (vo(w) max{ry.q_}, p4+/sy(w)). Therefore, for
every p satisfying

(2.57) ry(w) max {ry, (§-)w,«} < p < ry(w)max{ry,q—},
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if we show that
(2.58) IS RllLrowaw) S VAo @waw).  Yh €S,
then, by interpolation (see [11] and Remark 2.1) we would conclude (2.55).
Now fix p as in (2.57), and note that vw € A, (dx), since ryy < ryry(W) < p (see
Remark 2.1). Given o > 0, we apply Lemma 2.13 to & € §, «, the product weight w = vw

and p. Let {B;}; be the collection of balls given by Lemma 2.13. Consider for M € N
arbitrarily large,

M
—r2 LM —kr3 L
.—— B:; Lw R — B: Lw
By o= (I —¢ B "M and A, :=1—B,, =Y Cipe B0
k=1

Then
h =g+ZArB,.bi +ZBrBibi =g+b+b.
It follows that | |
vw({x € R" : S¥h(x) > a}) < vw({x eR": §¥g(x) > %})
+ vw({x eR": S¥h(x) > %})
(2.59) n vw({x ER": S¥h(x) > %}) — T4+ 11+ 111

Now, since WY (max{ry,q—},q+) 7 @ by assumption and p > vy, (w) max{ry, (¢—)w «}
(see (2.57)), by Remark 2.15 we can pick p; such that

(2.60) wo(w) maxtr, g-) < pr < min{ oS, |

Observe that
p1>p and p; € W (max{ry,q—},q+).

Note also that in particular r,(w) g— < p1 < g+/sy(w), that is,
(261) DS Apl/q_(lU) mRH(q+/p])/(1U).

Now we are ready to estimate I. Applying Chebyshev’s inequality with p;, (2.56), and
the properties (2.36)—(2.39), we obtain

1 ~ 1 1
< ____ w P1 < ___ D1 < __ V4
262 15— /Rn|ng| vdw £ — A Vel? vdw < — /R \VA|? vdw.

In order to estimate II, apply Chebyshev’s inequality, (2.56), and Lemma 2.19 (with
f = h). Then

1 o 1 ~ 1
(2.63) 1< —/ 5%b]" vdw < —/ VB[P vdw < —/ |Vh|?vdw.
oPl Jpn Pl Jrn o? Jrn
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Next, we estimate I11. Note that, by (2.38)

(2.64) I < vw(LiJ 16B,-) + vw({x eR” \LZJ 16B; : gﬁ”l;(x) > %})

1
<— [ |VhPvdw +111,,
a? R”

where
I, = vw{(x eR"\ | J16B; : $¥h(x) > %})
i

By Chebyshev’s inequality, duality, splitting the integral in x, and applying Holder’s ine-
quality,

1 ~ o~
(2.65) 1 < — |545]”" vdw
aPt Jrn\u;16B;

1 Sw NP1 1/p1
Oﬁ(”“” P 1 Z Z </Cj(3i) |SH (Bry, b’)} wa)

, 14
LP1 (vdw) i jz4

N

D1
x ule; sl 0 (vdw))

1 p1
= sup (ZZJJJU ||u lcj(Bi)”LP'I(wa)) .

ol - — £
I IILp/](vdw) i >4

Splitting the integral in ¢ (recall that j > 4), we have

21'72rBi dw(y) dt pi/2
dddii < / / / tLye "Lv(B,, bi)(y)|> ———
Iy U Jy e Bra b0 00 T5055)

1/p1
X v(x) dw(x))

o0
(oL
Cj(Bi) ~J2/=2rp; JB(x,1)

1/p1
X v(x) dw(x))

lsze_tZLw (BrBl- (%))(y)r %)p1/2

(2.66) =:ddd}; + 447

Before estimating 444} and 4447, we take po close enough to ¢g_, and go close
g 4

ij ij>
enough to ¢+ so that
(2.67)
q- < po <min{2, p1}, max{2, p1} < qo < g4+, VE Ap /p,(w) N RHgy/pyWw).

Hence, by Lemma 2.2 (b),

2.68) 444} Svw@/ 1B

ij ~

" <][Cj(Bi) (/021_ : /B(x,t) ‘the—tsz (BrB,- bi)(y)‘2%)%/20’10()6))1/%.
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~ Besides, note that for x € Cj (B;) and 0 <7 < 2/=2rp. we have that B(x,t) C 2/ T2B; \
2771 B;. Then, by (2.3), recalling that g > 2, applying Jensen’s inequality with respect to
dw(y) dt, and Fubini’s theorem, we get

2/72rp; 2 dw(y)dt \20/2 1/qo0
tLye " Lv (B, b; 2 27V dw(x
0 A . GO y) 400)

< (2) R )1/2 2, 1 —12Ly 2
< (27rB) _|the (Brgl. bz)(y)|
c;(8) Mo B(x,p) I

qo0/2 1/q0
x dw(y)dz) dw(x))

277 2pp. er qo/2—1
i B; 0 _ 42
Sl " E, e w0
¢ Jo ! Bx.)

dw(y) dt (x))l/qo

2J=
ZJ qo/2—1
][ / rB; ) 0 / |the_t2L'” (BrB.bi)(y)|q0
Cj(Bi) B(x,1) '

dw(y) dt 1/q0
nMB@J»dw“D

2/2rp, 2/ rp. \d0/2-1
269 < ( / ( rBl) ’ t“”][ _ PP Lwe B (Bry bi) ()]
0 t 2/+2B;\2i-1B;

y dw(y) dt)l/qo.
t

We estimate the integral in y by using functional calculus. The notation is taken from [1]
and Section 7 of [7]. We write ¥ € [0, 7r/2) for the supremum of |arg({Ly f, f)r2(w))|
over all f in the domain of L. Let 0 < ¢ <0 <v < u < /2 and note that, for a
fixedt > 0, ¢(z,1) := e“zz(l - e_rlzfiz)M is holomorphic in the open sector X, = {z €
C \ {0} : |arg(z)| < u} and satisfies |¢(z, )| < |z|M (1 + |z])72M (with implicit constant
depending on u, t > 0, rp;, and M) for every z € X,,. Hence, we can write

(2.70) ¢(Lw,t)=/1:e_ZL'” n(z,t)dz, where n(z,t) =/e§z¢(§,t)d§.
v

Here I' = 0X,/,_¢ with positive orientation (although orientation is irrelevant for our
computations) and y = R e 2(m@)v Tt is not difficult to see that for every z € T,
2M
r
B.
) S ——L——-

Moreover, observe that 2/ t2B; \ 2/~ B, = U?=1 Ci+,-2(Bi), Y j > 4. Also, our choices
of po and go in (2.67) yield that zL, e ?Lv € @(LP°(w) — L9°(w)). Thus, by these facts
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and Minkowski’s integral inequality, we obtain
1/q
(][ |2 Loye 1w (Byy bi)|® dw) ’
2/+2B;\2i-1B; '
140 12 riM
5/ (][ e byt dw) e |
r \J2i+2B;\2i-1B; lz] (|z] +2)M+
. 1/ po 2jrBA 0> —c4lr2 /lz| tz rfng
<o (f rean) [ x(Zr) e LT,
S, A\ErE 21 =1+ 2w

) 1/p1 [ 27 rp. \ 62 j 2M dS
< 9Jb 2( | P1 ) ( B;) —c4/r} /s B
S 279 %Bi |b; |P* d(vw) /0 Y B2 e AT

—1 h—j2M+2-6;) .2 Oo 0 —cs? aM+2 48
Sarg 27/ Ut Y(s)?e s —

0 N

<a rl;il 2 /@M +2-61) ;2.

where, for the last inequality, we need to take M € N large enough so that 2M + 2 > 6,.
Besides, we use Lemma 2.2 (a) in the third inequality; and the fourth inequality follows
from (2.40) (see (2.61)) and the change of variable s into 4/ r123,~ /sz.

Plugging the above estimate into (2.69) and changing the variable ¢ into 2/ g, t, allows
us to obtain

27 dw(y)dt \a0/2 1/40
the_tzL"’ B, b; 2 awy)ar dw(x
(][c,(B,-) </o /B(x,t) | (Brs ) lw(B(y,t))) ( ))

2/ 2rp, nj g0/2—1 1/q .
< o(r_l —iCM+2— 91)(/ ! <_2 :Bi) 0 t%?) ’ 50{2_1(21"“‘1—91).
0

This and (2.68) yield, for M € N such that 2M + 2 > 6,,

(2.71) M,yl!j < avw(2/ 1 By P I@M 16

In order to estimate J 442, we first change the variable ¢ into 16y := /M + 1. Then

00
(/;j_zrgi /};E(x,t)
00
(e
2/=2rg; J B(x,t)
00
2.72) < ( / ][
2j_2rBi/9M B(x,01)

where we recall that

ij’

> by dw(y)di \U/
2 Lye " Lv (BrBi (T&))(Y)‘Z%)l ’

e (3 () oo L)

2dw(y) dl>1/2

g‘;,rgitsze_IZLw( )( )’

)

_ .2 _t2 2 L
Torg, 1= (e 0w — & CHB) Loy M

JB. -
i
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Next, fix x € C;(B;) and ¢t > 2j_2rBl./9M. In this case, B; C B(x, 126y,t). Thus,
by (2.30) and the fact that T L, e~ fv € O(LP°(w) — L?(w)), for T > 0, we get

]i(x,GMt)

r.\2M 1
~ (t2> w(B(x, Op1)) Jrn

2 b; 2
222"1][ ’tsze hw (lB(x,IZOMt) —Z)(y)‘ dw(y)
C;(B(x,126)1)) I'B;

I>1
Do 2/ po
dw y))

)ZM
\2M —eal ][
) ge ( B(x,120p1) ' TB;
2M w(B;) 2/po 2/Po
T) (w(B(x 129Mt)) ][ )rB,

AR

The next-to-last inequality is due to Lemma 2.2 (a) and the fact that B; C B(x, 120y1),
and the last inequality follows from (2.40).

Plugging the above estimate into (2.72) and recalling the definition of JIJJ in (2.66)
allows us to obtain

0 M di\p/ /
115 5 O[(/c,-ufz,-) (Lj—zm,-/eM ( tg )2 zt)m E dw)l )

< avw(/ 1BV 27I2M,

T *Lue s (22) ) dw ()

N

_ biy, P2
2 Lue ™ (Lage oy o ) 0| dw(y)
rBi

2
"B;
t2

AN

r

t

24N
AN

N N N N
N

S

2
rs,

A

D1 2/p1 rBi M,
d(vw)) §<[—2> a.

~

By this and (2.71), for M € N such that 2M > 6, — 2, we have
444 < avw(2/ T B;) /P17 I@M =6

Then, by Lemma 2.17 with J;; = a_lJJJ,-j, C = 0,, and {B;}; the collection of balls
given by Lemma 2.13, and by (2.38) and (2.65), for M € N so that 2M > max{6, — 2
01 + ryry(w)n}, we conclude that

1
11, < vw(UB,-) < a—p/R |Vh|? vduw.
i

This, together with (2.62)—(2.64) and (2.59), yields (2.58). [

3. Proof of Theorem 1.1

Fix w € A2(dx), v € Aoo(w) and f € C°(R"), and note that for every (x,?) € R’fl
and u(x, 1) := Ve Vv f(x),

u(x,0)? = Ve Vv f(x)? + [8,e7 Vv f(x)]2,
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where we define the Poisson semigroup {e~*VLw},_ using the classical subordination
formula, or the functional calculus for L,, (see [1, 16]):
dA

o0
(3.1) e~ VIv — C/ e AV/2 g~ Lu -
0

Therefore, it suffices to see that if WY (max {ry,g—(Lw)},q+(Ly)) # D, then

1Mo (Ve™YE® £ o waw) + [ 8w @ee™VE PllLowawy S IV S owaw).
forall p € WY (max {ry, (¢—(Lw))w,*}.9+(Ly)). We shall see this in Propositions 3.1
and 3.2 below.

3.1. Non-tangential maximal function estimate for the spatial derivatives

Proposition 3.1. Let w € Ay(dx) and v € Axo(w) be such that

W:f) (max {ry,q—(Lw)},q+(Ly)) # D.

Then, for all f € § and p € WY (max{ry, (¢—(Lw))w,+} g+ (L)), we have

(3.2) | Mo (Ve™ 2 O Lo oawy S IV F o au)-

Proof. Firstof all, fix w € A»(dx) and define g— := g_(Ly) and g+ := g4+ (Ly).
In the context of (1.7), we set o := cgcq. We claim that

1/2
(33 Mo(Ve VI £)(x) < sup (][ Ve VE £ () dw(z)) .
t>0 B(x,at)

Indeed, by (2.3),
Lo T 5 1/2
Ny (Ve VTu £)(x) = sup (][ ][ Ve sVTu f(z)] dw(z)ds)
cg lt<s<cot J B(x,c1t)

t>0

1/2
<sup sup ][ ‘Ve_smf(z)yzdw(z)>
B(x,as)

1>0 ¢t <s<cot

1/2
< sup (][B(xm) We—tmf(z)|2dw(z)> .

t>0

Besides, by the subordination formula (3.1) and Minkowski’s integral inequality,

(]i . M)IVe‘fmﬂz)de(z))” ’

1/4 2 1/2 d)
5/ e—"xl/z(][ |ve—anf(z)|2dw(z)) a
0 B(x,at) A

o0 2 1/2 4\
+/ e—ul/z(][ |ve—anf(z)|2dw(z)) LI
1/4 B(x,at) A
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Dealing first with term I, note that

1/4 1/2 4\
I< / AI/Z(J[ |ve—’2Lw f(z)|2dw(z)) dz
0 B(x,at) A
/2 dA

1/4
+/ Al/z(][ |(Ve 2r _ Ve ! Lw)f(z)| dw(z)) =:1; + L.
0 B(x,at) A

In order to estimate term Iy, for any p € WY’ (max{ry, (¢—)w,*} ¢+), We pick po in the
interval (max {ry, (¢—)w.x}, min{2, p}), close enough to max{ry, (¢—)w,«} so that v €
Ap/po(w) (see (2.13) and (2.14)). Therefore M, (f) := (M},”O(lf|1’°))1/1’° is bounded
on L?(vdw). This and Lemma 2.10, with « = ¢g ¢y, yield

o9, e o o)

t>0

LP(vdw)

1/po
—c4/ )
sup E e <7[B(.,2/‘+1M)|Vf(2)| dw(z))

t>()

r\/

L?(vdw)

<2 D Loy S IV Neran)-
]>1

Consequently, by Minkowski’s integral inequality,

1/4 1/2 da
sup / < 22| su (][ Ve ’Lv () > dw(z ) —
o0 Ml = [ 22| s (f,  ve s P ane) 7, S
S IV fllLrwaw)-
Now we turn to the estimate of term I,. Write
2 2 2 1_1y,2 2
Ve ailv Ve " lw — ye=7 Lw (e_(ﬂ_i)’ Lw g7 Lw)
and use again Lemma 2.10 and (2.3). Then,
1/4 1/a
= [CA(f ve e b - ) £ )
0 B(x,at) A
0 Cpl/4 1
< Ze—c4-l/ Al/z(f (V(e (Fr—$)12 Ly _ e_%l‘"’)f(z)|p°dw(z)) /po @
i=1 0 B(x,2/2at) A

Since 0 < A < 1/4, there holds

(Ve Grmbrite —veirhe) £(2)|

t/1/(41)-1/2 5 t/1/@A)—1/2 X ds
< / |3sVe_S Lw f(z)\ ds < / |s2VLwe_s L"’f(z)| .
/

1/32 1/32
o _ dsy\1/2 _ _ -
< (/O |s2VLye™ e f(z))? T) (log22)~%)M2 < (log A™H2 GE £(2).
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where f}l‘{” is the vertical square function defined in (2.22). Then, we get

1/pod)

. orl/4 ~
supl, S e f A2 (1log A2 sup (f @ dee) TS
0 B(x,2/t2at)

>0 i>1 t>0

< M2 (G f)().

Then, since M},‘g is bounded on L?(vdw), the above computation and Theorem 2.14
imply

” flilg I ”Lp(vdw) = H Ml%agf)HLl’(vdw) S ”éﬁ)fHLP(vdw) S IVl waw)-

We finally estimate term II. Applying Lemma 2.10, we have that, for every ¢ > 0,

1/2
Ve’ Lv £(2)12 dw(z
(]i o] FOP du(z))

< T(ﬁ)e ie—cu (][

j=1 B(x,2/+2a+/At)

Vr@I dw@) " < TR ME T .

Hence,
< [* U -
I'sup 10 1 ) < e & XY IM OV Dlerawy S IV Neraw):

Collecting the above estimates, we conclude (3.2). [

3.2. Non-tangential maximal function estimate for the time derivative

Proposition 3.2. Given w € Az(dx) and v € Axo (W), assume that

Wy (max {ry,q—(Lw)},q+(Lw)) # D.
Then, for all p € WY (max{ry, (p—(Lw))w,x}. p+(Lw)) and f € S, we have

(3.4 | ¥ @ee™E )] o oany S NV S Lo wau-

To prove this result, we need Theorem 2.18, a change of angles result in L? (vdw)
for the operator defined in (2.15), and the boundedness of the non-tangential maximal
square functions defined in (2.16) and (2.17). We obtain these results in Lemma 3.3, and
Proposition 3.4 below.

Our next result is an extension of Lemma 6.2 in [27] (see also Lemma 7.3 in [30]).

Lemma 3.3. Given w € A,(dx) andv € As(w), 1 <r,7<o0,let 0 < p<ocoandk > 1.
There hold

(3.5) [NSY Fllpooawy S k" CTD2HTID) | N F |1 poo o)
and

(3.6) [NY Fllzo@aw) S & CED2EED YN F b .-
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Proof. We will just prove (3.5); the proof of (3.6) follows analogously by writing the
L?(vdw)-norm as an integral of the level sets. Details are left to the interested reader.
Consider, for any A > 0,

O, ={xeR":N"F(x)> A} and E; :=R"\0,,

and, fory =1 — ¥ the set of y-density

1

(w4, @x 11k
E; N B(x,

Ej::{xeR”:Vr>o,w> }
w(B(x,r))

Note that

07 =R"\E} = {x eR": M¥(10,)(x) > W}-

We claim that for every A > 0,
(3.7) N F(x) < [wla, @x) 2" (9)"CTD/2 ) Vx e Ef.

Assuming this momentarily, let 0 < p < oo. Since M¥: L™ (vdw) — L™ (vdw), as we
are assuming that v € Az (w), we get

IV F I penuay = SUp APvW({(x € R 2 N F(x) > 2))
>0

= sup ([w]Ar(dx) onr/2 (9K)n(r+1)/2 A)p
A>0

xvw ({x e R" : NP F(x) > [wl4, (@x) /2 (9/{)"(’“)/2/\})
< [w]ir(dx) opnr/2 (9K)n(r+1)p/2 ili% Apvw(Ojf) < Kn((r+1)p/2+r?) )Stli[(;/xpvw(ok)

— Kn((r+1)p/2+r?) ||=NwF||£p (vdw)
" (vdw)’

which would finish the proof.

It remains to show (3.7). First, note that if x € E} and ¢ > 0, for every y € B(x, 2«t)
we have B(y,t/2)N E; #@. To prove this, suppose by way of contradiction that B(y,?/2)
C O,. Then, by (2.2), since B(y,t/2) C B(x,3«t) and B(x,3«t) C B(y,5«t),

w(B(y,1/2)) _ w(B(,1/2) _ 1 - 1 )
w(B(x,3kt)) ~ w(B(y,5«1)) ~ [w]a,(ax)(106)™  [w]a,@x)(116)"™

This implies that x € O, which contradicts our assumption.

Let us fix now x € EI and ¢ > 0, and note that if y € B(x, 2«t) there exists xo €
B(y,t/2) N Ej, hence N F(x¢) < A. Besides, since B(y,t/2) C B(xg,t) and by (2.2),
for every y € B(x, 2kt),

MY (10,)(x) =

dw(z) 1/2
F(z, 2=
(/B(y,t/2)| COF S50 75)
1/2 nr/2 2 dw(z) 1/2
S [w]Ar(dX) 2 ilig (/B(xo,s) |F(Z’S)| w(B(x()ss)))

(3.8) = (W]} 710 2" 2 NV F(xo) < [w]}/7,, 2"/ 1.
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On the other hand, for every x € R” and ¢ > 0, we have that B(x,«t) C Ul- B(x;,t/2),
where {B(x;,/2)}; is a collection of at most (9«)" balls such that, for every i, we have
that x; € B(x,2«t). In particular, B(x;,t/2), B(x,t) C B(x;j,3kt).

Therefore, by the above observations and (2.2), we conclude that

2 w( ) nr 2 dw(y)
/B(x,x,)'F 0OF ey = [laran (30 Z/ e - OO B 2)

< Q0" w3 027 22,

where we have used (3.8), since x; € B(x, 2kt). Finally, taking the supremum over all
t > 0, we obtain

NOWF(x)? < W15 ax 2" 0"V 22 Vi e E}.
This readily gives (3.7) and the proof is complete. |

Proposition 3.4. Let Ly, be a degenerate elliptic operator with w € A,(dx) and let v €
Aoco(w). Then

(@) MY is bounded on L? (vdw) for all p € WY (p—(Ly), 00),
(b) MY is bounded on L? (vdw) for all p € WY (p—(Ly). p+(Lw)})-

Proof. Part (b) is proved in Theorem 3.7 of [33].
In order to prove part (a), fix p € W' (p—(Ly), 00) and choose pg close enough to
p—(Ly) so that

(3.9) p—(Ly) < po <min{2, p} and v € A,/p,(w).

Then e~*Lv € @(LPo(w) — L?(w)). This fact and (2.3) yield

2 /
NI F() S supZ(]i( e (e, peean NG dw ()

t>0 i=1
1/po
Ssup 2@ (f e ane) " S s s,
t>0]>1 Cj(B(x,t))
Consequently,
INMY fllLraw) S IMpy fllLewawy S I lLr wdw)
since M, is bounded on L?(vdw) by our choice of po. |

Proof of Proposition 3.2. First of all, fix w € A,(dx) and denote

g- = p—(Lw) = q-(Lw), g+ :=q+(Lw), p+:= p+(Lw),

and

u(x, 1) = 00"V f(x) = —/Ly e VI f(x).
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From the definitions of ,, and Ny’ (see (1.7) and (2.17)), proceeding as in the proof
of (3.3) we have that

(3.10) Nou(x) SN (V Ly f)(x), VxeR",

with @ = cgc;. Consequently, Lemma 3.3, and Propositions 3.4 (b) and 2.4 imply

[Nl Lr wdw) < ” NPw(V Ly f) “LP(wa) Slv Ly fllLrwdw) S IV S lLrdw)s

forall p € WY (max{ry,q-}, p+) = (vy(w) max{ry,q—}, p+/sy(w))and f € §.
Our goal is to obtain (3.4) for all
p € Wy (max{ry. (¢-)w«}. 1) = (vo(w) max{ry, (§-)ws}. p+/5v(w)).
Recall that (¢—) « < g— (see (2.6)). Hence, fix p such that

(3.11) Ty (W) max{ry, (§-)w,«} < p < ry(w)max{ry,qg_}.

Then, in view of inequality (3.10) and Lemma 3.3, if we show that, for all f € §,

(3.12) ” pr(v Ly f) ||Lp,oo(vdw) ,S ”Vf”LP(vdw)ﬁ

by interpolation, see [11] and Remark 2.1, we would conclude the desired estimate.

Given « > 0, take a function f € §. We apply Lemma 2.13 to f, «, and the product
weight @ = vw (note that vw € A, (dx) since ryy < ryry(w) < p, see Remark 2.1).
Let { B;}; be the collection of balls given by Lemma 2.13. Consider for M € N arbitrarily
large,

M
—r2 Ly\M —kr} L
By, = (I —e ™))" and Ay :=1—-B = Crpe 5"
k=1

Hence,

(3.13) f =8+ Apbi+Y By b =g+b+b.
i i

To prove the weak-type estimates for g, b and b. , we need some preparations. On the
one hand, since we assume that W, (max{ry,q—},q+) # @, by (3.11) and (2.42) we can
take p; satisfying

(3.14) vy () max {ry, g_} < p1 < min{gq&),p:w}.

In particular, r, (W) g— < p1 < g+ /sy (w), thatis, p; € WY (g—, g+). This can be written
as

(3.15) v € Apl/qf(w) n RH(,H/I,I)/(w).

On the other hand, take po satisfying ¢— < po < min{2, p;} close enough to g_,
and ¢ satisfying max{2, p;} < go < ¢+ close enough to ¢, so that

(3.16) v € Ap/po(w) N RH(gy/pyy (w).
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Next, note that by (2.3) and from the proof of Theorem 4.20 in [33], for

g, f(z) = (/ 2 Loe=Lv 1) ds)l/

and for any function 4 € L?(w), we have that

ol 1/po
Mh(x) S MPh(x) + Ze 4 sup <][ ]gﬁ’,th(y)]po a’w(y))
B(x,2!+1¢)

I>1 t>0

+/ e~ s”“h( )5 = MPh() + Ze—“’@z,lh(x) + O3h(x).
1/4

I>1

Besides, note that, the fact that e "*L» € @ (L?°(w) — L?(w)), and (2.3) yield

NP h(x) = sup |€_t2L"’h(y)’2 dw(y) v
B(x,t)

t>0

2 1/p
< Ze‘c“l sup (][ ]e_%Lwh(y)‘po dw(y)) ’
B(x,2+11)

I>1 t>0

1/po

< —c4! f —tszh Po d = —c4! Ok )
> tsp (f [T dw() T = Y 1o

1>1 >0 I>1
Therefore, for any function 4 € L?(w), we have that
N h(x) < C(Z e 0 h(x) + e 0, h(x) + Dgh(x)), Vx € R".
I>1 =1

Using this and (3.13), we get
3.17) vw({x ER": NP (VLwf)(x) > a})
< uw<{x eR" : MY (VLwg)(x) > })
+ vw({x ER": N (VLwb)(x) > %})

+ i vw({x eR":C ZE_MIDmJ(\/EB)(x) > g})

m=1 I>1

+ vw({x €R": CO3(VLyb)(x) > %})

2
= 1+11+ Y I, +1IV.
m=1
In order to estimate I, first note that p < p; (see (3.11) and (3.14)). Then, apply Cheby-

shev’s inequality, Propositions 3.4 (b) and 2.4, and properties (2.35)—(2.39), to get
(3.18)

1< 1 / v /_ng)|plvdw§L/ |Vg|p‘vdw,§L/ IV £|Pvdw.
R” aP1l Jrn oP Jrn

24!
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Now we estimate II. To this end, apply Chebyshev’s inequality, Propositions 3.4 (b)
and 2.4, and Lemma 2.19. Then,

(3.19) H<— yde(\/ b)|”1vdw<—/ IVb|P v dw

1
< — IV fI1?vdw.
a? R~

We next estimate I'V. With this aim, we write b = ) _; b; so that h=b— g, and note
that

IV < vw({x eR": CO3(v/Lub)(x) > 1%})
+ vw({x eR": CD3(\/EE)()C) > %}) =1V +1V,.

In order to estimate IV, apply Chebyshev’s inequality, Minkowski’s integral inequality,
and Proposition 2.12, to get

1 _ d
v, ~ _</ cuHSZﬁw V b ”Ll’(vdw) u)

u

D “Sw(V b “LP(Udu)) ~ “81/2 H(V Ly b) ”il’(vdw)

Z/\

IIS’”bIILp(vdw) IIVbIILp(vdw)
1
< a_pXi:/B,- |Vbi|pvdw§2i:vw(3i)§ a_P/Rn IV £ vdw,

where we have used Proposition 2.20 in the third inequality, Theorem 2.18 in the fourth
inequality, and the last two inequalities follow from (2.37) and (2.38).

As for the estimate of IV,, apply again Chebyshev’s inequality, Minkowski’s inte-
gral inequality and Proposition 2.12. Then, Theorem 3.1 in [12], Proposition 2.4, and
Lemma 2.19 readily give

1 _ du
v, < L /1/4 w52V (VTw ) Hm(vdw) )"

24
1
S ﬁ st( \ b “Ll’l (vdw) < ”Vb ”Ll’l(vdw)
Sop L vsrvaw.
oP

Therefore, we conclude that

1
(3.20) v < —/ VP vdw.
(174 R~
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Now, it remains to estimate I11,,, for m = 1, 2. Note that by (2.38),

1, < vw(U 16B,-)
+ vw({x €R"\Ui16B;: C > e ' 0,,(VLub)(x) > %})

1>1
S [ s vau
oP R
~ oy
+ ; vw({x € R" \ U;16B; : O s (v/Lw b)(x) > ec;})
1
G2 =— /R VAP vdw+ Y Ty,

I>1

Applying Chebyshev’s inequality, duality, and Holder’s inequality, it follows that

—c4!
<o | Ot (VI B)| v duw
R”\U; 16 B;
o4 1/p1
< ( sup ZZ( |Dm’l(\/Lw(B,B,bi))|plvdw)
oaft Ny, =157 Cj(B) :
LP1 (vdw) i jz4 S
P1
X 16,8021 )
—C4l
L€ ij ’
(22) = (|| s MY [ERERTSI o,
u

Pl wawy 1 J=4

Then, for m = 1, we have that

ij 2L, . Po 1/poy p1
(L, (s (f e LB o] anm) )

j 0<t<2/=1=3rp,

1/p1
X vdw(x))

i (/c. w | ]i(x sing [V LBy by duw() ")

j(Bi) 1221.717%‘3!.

1/p1
X vdw(x))
=: ¢ +GC,.

In order to estimate €1, we use functional calculus as in the proof of Theorem 2.18.
Recall (2.70) and take

b(z.1) =1z e_tzz(l — e_rg‘iz)M.
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Then ¢(z, t) is holomorphic in the open sector X, = {z € C \ {0} : |arg(z)| < u} and
satisfies | (z,1)| < |z|M (1 + |z])™M (with implicit constant depending on u, ¢ > 0, rg,,
and M) for every z € X,,. We can check that forevery z € I' = 0%/,

2M
| trBi

M( (| | _|_12)M+3/2

Now fix x € Cj(B;), j = 4,and 0 <t < 2/7'3rp. 5o B(x,2/%2¢) c 2/+2B; \ 27! B;.
This and Minkowski’s integral inequality imply

1/p
(f o0 /Loy (Byy, b,-)<y)|"°dw(y)) °
B(x,2!+2¢)

( ] 1+2
B(X,2 t)
T B(Xf 21+2t)

< 1 Ly [P aw(n) B

N/;(]i(x,zl+2t)| 2i+2B;\2i-1B;€ z()’)| w(y)) ||M—+3/2| z|
2M

< /F !M;i) (12j+23i\2j_13ie b )(X) |z |M+3/2 |dz].

1/po
(L (2) 0| ()

2M
l/p() eri

———|dz
(|Z| +t2)M+3/2| |

eth (?)(y)\’"’dw(y))

Recalling that M, on LP! (vdw) since v € A, /p,(w), and applying again Minkowski’s
integral inequality, we get

I Cj(Bi)
M

1/p1
< _Zwai D1 d d
N/I:</2!'+ZB,~\2JIB,» le M| v(y) w(y)) MR |M+3/2| z|.

Observe that 2/t2B; \ 2/7'B; = U3_ C14;»(B;).
We next use that e~ ?Lw € O(LP (vdw) — LP' (vdw)), (2.40), and change the vari-
able s into 477 /s%:

2M

_ l/pl rBi
| M2 (1j+2p,\2i-1 B, € ZLup,) (x)]plv(x)dw(x)> Z[M+372 |dz]|

€1 Svw/TIB)YP 2j91<][
B;

; _ oM
X/OOT(zjrBi)eze_””f;./s STy ds
2B ; &
o $1/2 SM+3/2 g

o
<av U)(2j+lBi)1/p1 2_j(2M+1—91)/ T(s)eze—cszszM+l @
0 N

1/
il d(ww))

< quw (2T By) /P g i@MH1-6)

provided 2M + 1 > 6,.
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We continue by estimating €,. To thls end first change the variable ¢ into # o/ M =

0y . Next, for any x € Cj(B;) and t > , note that

2l+29
B; C B(xp,.042'T2t) =t B!  B(x, 042" "251)
(xp; denotes the center of B;). Then,
42
SR A SR SN =T MO Ol
Cj(Bi) B(x,OMZH'Zt) !

t221_1_3r3,. /60m

1/p1

< dw ()" dw))

< (/ sup w(B(x, 02ty
C

7 (Bi) N t>2i~13rp, /Oy
p1/p 1/p
< [ Tir Ve () 00| )y 0)

42 — t2 2 L
where rJ‘;’rB. = (e t° Ly —e ( +rBi) w)M.
13

In the above setting, (2.30), Proposition 2.4, the fact that \/TVe "Lw € @(LP°(w) —
LPo(w)), (2.3), Lemma 2.2 (a) (see (3.16)), and (2.40) imply

([ 1700 VEwe e 1y ) "™
r2 M 1/
< (%) (/I;n |Ve_t2Lw (lBizbi)|p0 dw) re

sz’IVZle(cN(B,?))”Po(Z—’%;")M(][ A (s

Do 1/po
dw)

Cn (B i TI'B;

< »l6 IN1/p caNV rl%- M
0 - _Bi
< 2% w(Bl) Ze (2)"(f,

N=>1

Do

b;

1/po
dw)
rBi

1/p
< 20 w(Bil)l/I70 2 ][ ‘ la’(vw)) ]

rB
(323) <2l y(BlH/ro a( 2 )

Consequently,

rg \M\p 1/p
€, < 21905(/ ( sup (%) ) 1vdw) 1
C;i(B;) j t

t321_1_3r31. /0m

S ()(Uw<2j+lBi)1/pl 2—j2M 21(2M+0)’

where in the first inequality we have used that w(B(x, 9M21+2t))_1w(Bil) < C, since
B! C B(x, 0p2'%251).
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Collecting the estimates obtained for € and €,, we conclude that, for M € N such
that 2M + 1 > 0,,

(3.24) Ifjl <a vw(2/ T BV P =i @M =01) HlCM+6)

Next, let us estimate term I;j ;- Splitting the supremum in ¢, we have

ij < w ‘ Po p1/Po
s (e (L VB, b0 0) e ()

i (Bi) 0<t<2/=12rp,

1/p1
X v dw(x))

+ (/C sup (]{g(x,zhrlt) (gg{’t E(BrBi bi)(y))podw()’)

j(Bi) 122/~1=2rp,

)171/170

X v dw(x))l/pl
=: Dij + D;j.
Regarding DY, we claim that
(3.25) DY S avw(2/+! By /p g7 @M 160
To this end, first note that for 0 < ¢ < ZJ_I_ZrBl. and x € C;(B;), then
B(x,2'11) c 2/2B; \ 2/ B;.

Next recall that M), is LP! (vdw) bounded since v € Ap, /p,(w) (see (3.16)). Hence
ij <« w w\/_ D1 1/m
pY 5 ( M (g, VT (B b)) dw)

J(Bi)
S vw(2j+lBi)1/P1 (f |g11§) /Lw(BrBibi)|pld(vw))l/pl,

2/1t2B;\2/~1 B;

In view of (3.16), we can apply Lemma 2.2 (b) and the Minkowski integral inequality
to get

D’lj < vw(2-’+lB,-)1/p1</ (][ |err\/Lwe_'2L'” (B,BAb,-(x))\q0
0 2j+23i\2j_1B,' !

(3.26) X dw(x))z/qo ?)1/2.

In order to estimate the integral in x, we use functional calculus as in the estimate of €;.
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Apply the fact that zL, e ~?Lv € O(LPo(w) — L9°(w)), Lemma 2.2 (a), and (2.40), to get

1/q
(][ ]err,/Lwe—rsz(B,B_bi)\q"dw) ’
2/+2B;\2/-1B; '

1/40 r2riM dz
5/ (][ |sze—Zwa,-|quw) %u
r \J2i+2B,\2/-1B; (Iz] +r2?) |z

2 .2M
r l’Bi ds

<200 [T (g emer? bifro dw)'’”
~ /0 (5)%e (4J'r§i/s2+r2)M+3/2T<fl;i| i w)

- oo ~ r2 M ds 1/p1
<2191/ Y(s5)%2 e — Bi —(][ b; p‘de)
~ 0 () (4Jr129i /Sz + r2)M+3/2 s B; i (vw)
oo B 72 p2M ds
<ar .2]9‘[ T(s)2 e — B —
~ B; o ( ) (4'/r}23i /S2 + r2)M+3/2 s

Plugging this into (3.26) and changing the variable r into 2/ rp. r, we obtain, for M € N
such that 2M > 52,
~ oo o0 ~
Dij Sarg, 270w (27T B /P (/ (/ Y (s)% ees?
0 0
”2"12;?4 ds\2dr\1/2
X (4jr129i /52 + r2)M+3/2 T) T)

< avw(/T1B;)/” 2_j(2M+1—§1)(/°° r4(/°° T(S)f72 o8’
0 0
1 dS)2dr)1/2
X —_— JE—
(1/52 4+ r2)M+3/2

_ 1 _
<avw/T1B)V" 2_j(2M+1_91)((/ P4 ﬂ)l/z /oo Y (5)P g5 M +3 ds
0 r 0 s

oo 1/2 o0 ~
([T ) [T xeheean
1 r 0 S

< quw (/1 B;)P 9—iCM+1-6))

r

Now turning to the estimate of DY , we claim that
(3.27) D;/‘ < Hl2M+8) avw (27T B/ P12

Forany t > 2/7=2rp and f € L?(w), we have that
© _.2 dr\1/2
o ) = ([ 1P Lue b foP )
t/2 r
oo dr\1/2
<([ . rLeerepor )
2 r

Ji=1=3rp,
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Moreover, recall that pg < qo (see (3.16)), this implies the boundedness of the maximal
operator M, on L (w). This, together with Lemma 2.2 (b) and Minkowski’s integral
inequality, allows us to obtain

. . 1/q
(3:28) DY Svw(/*1 B! (fc o PG (&t (VEu (B b))
j (Bi !

j+1p1/p © /
< M(/ (/~_1_ |r2Lwe_r2Lw( Ly (B’Bi bi)) ZQ)qO/Zdw) o
n N J2i=1=3rp, '

w(21'+1B,-)1/‘10

Jj+1pA1l/p o0
cwemB (| ([ Fon VEur L™ (1)
2 " l

w(2j+1Bl.)1/q0 j_l_3rBi/0M

2/q0 dr\1/2
xdw) 0_r> ,
,

where in the last inequality we have changed the variable r into roy :=r+/M + 1, used
that B; C B(xp,, Op 2! 17y =: Bil, for r > 2}_1_37‘3,-/9M and j > 4 (xp; denotes the
center of B;), and we recall that

(e—rsz _ e_(r2+r123i)Lw)M.

[l o —
Trrs, i=

Proceeding as in the estimate of (3.23), but using now the fact that \/TVrL,e *tv €
O(LPo(w) — L9 (w)) instead of \/TVe *Lv € O(LPo(w) — LP°(w)), we get

([, 1o VTar e 2 (1) )

~ 2 ~
<2lf aw(B,.’)l/qO(r—B;)M < 2 @+20/40) g (2741 ;)10 =270 (
r

i
)

ré. )M—n/KIO
r2

where in the last inequality we have used that for r > 27~/ ~3rp, /0y and j > 4,271 B; C
23 Bil, and (2.2). Plugging this into (3.28) leads to

(r§i>2M—2n/q0 d,»)l/z

r2

DI < 21@+20/a0) o 5-2in/a0 (21 +1 )1/ 71 (/oo
p

2/=1=3rg, [0

< Ql@M+0) (27 +1 g1/ P1 9 72IM

provided 2M > 2n/qq.
Gather (3.25) and (3.27); then, for M € N such that 2M > max{6,,2n/qo},

< Hl2M+6) avw (271 BV y—i@M-6)

This and (3.24) yield, for 2M > max{gz, 2n/qo, 0, — 1},

17, < Cravw(/ 1B/ 27 7@M=Co) - 4y — 1 2,
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with C; := max{6, 51} and C; := C2/¥ Then, in view of (3.22), applying Lemma 2.17
with d;; = a‘llrl'fl and {B;}; the collection of balls given by Lemma 2.13, and (2.38),

for 2M > max {C; + nryry(w), 6.2n/qq0, 0> — 1}, we get

1
Ol S e_C4lvw(UBi) < e a—p/R IVAIPvdw, m=1,2.
i

Therefore, by (3.21),

1 1
< c4! p < 14
1, < E e /n|vf| vdwN P/,,|Vf| vdw.

oP
1>1

Collecting this estimate and (3.17)—(3.20), the proof is complete. ]

4. The regularity problem in unweighted Lebesgue spaces

Our main result, Theorem 1.1, establishes the solvability of the regularity problem in
L?(vdw) of the block operator LL,,. Recall that w € A,(dx) is fixed and controls the
degeneracy of the operator and that v € Ao, (w). This means that we can establish the
solvability of the regularity problem in unweighted Lebesgue spaces by taking v = w1,
In this section, our goal is to explore this idea and study ranges for which we can solve the
regularity problem in terms of the weight w. A particular case of interest, where we can
be more explicit, is that of power weights.

To start with, fix w € A>(dx) and recall the definitions of r,, and sy, in (2.4). As
just mentioned, we let v = w™! and observe that from the definitions it is clear that
for every 1 < r < oo one has w™! € A,(w) if and only if w € RH,/(dx), and w™! €
RH, (w) if and only if w € A,(dx). Hence, according to (2.13) we have r -1 (w) = sy
and s,,-1(w) = ry. Then looking at Theorem 1.1 and using (2.14), we see that (1.9) is
equivalent to

q+(Lw)

w

“.1) max{ry,qd—(Ly)} sy <

and if that holds we have (RLv),, »(dx) solvability for p so that

q+(Lw) .
Tw

nry q—(Ly) }S <p<
w

4.2 max {r ,
4.2) v g (L)

It is important to note that ¢_ (L) and g+ (L,,) are defined in an abstract way and depend
intrinsically on w. From Propositions 3.1 and 7.1 in [16] and recalling that n > 2, we know
that g_(Ly) = p—(Ly) < 2nry/(nry + 2), hence we have an estimate for ¢g_(L,,) in
terms of n and ry,. On the other hand ¢4 (L) > 2 and can be arbitrarily close to 2 (even
in the case w = 1), and we do not have an explicit bound in terms of w (see the proof
of Theorem 11.8 in [16] in this regard). Taking this into account and in order to check
that (4.1) holds, we will replace its right-hand side with 2/ry,.
Our first result for general weights is as follows:
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Corollary 4.1. Let we Ay (dx) and let 1Ly, be a block degenerate elliptic operator in R’j_"’l
as in (1.5). Associated with Ly, consider the regularity problem (R™ )Lr(dx) as in Sec-

tion 1. Given f € C2°(R"), if one sets u(x,t) = e tVLlu f(x), (x,1) € Rf’fl, then
(4.3) Mo (Vi )l Lpaxy < CIV fllLrax)
in any of the following scenarios:

(@) If we A(dx) NRH;1,/2(dx) and

maX{l, %}Sw < p <q+(Lw),
in particular, in the range
max{l, Z_n}sw <p =<2
n+4 -

(b) If w € Apy(dx) N RHoo(dx) with ro := min {/2, LE1E8/0 “12+8/"} and

nry q—(Ly) } << q+(Ly)
nry +q—(Ly) Tw

3

max {rw,

in particular, in the range

{ 2nry } -
max \Fy, ———— < p < —-
v nry + 4 P Tw
(©) If we Ay(dx) NRH;y(dx) with1 <r <rgand s(r) = min{r%, ”nrrtz }, and
{ nry 4—(Lw) } g+ (Lw)
max ry, ——————(Sw < p < ——,
nry +q—(Ly) Ty
in particular, in the range
{ 211y } - 2
max{ry, —— Sy < p < —-
Yy + 4177 P rw

(d) Given © > 1, there exists g = €9(®,n, A/1) € (0, Ln] such that for every w €
A14¢(dx) NRH A+(1+e) %}(dx), with 0 < & < g9, and [W]4,ax) < O, (4.3)

holds with p = 2, or equivalently (R]I‘W)Lz(dx) is solvable.

max{é

Proof. We first consider (a). Let w € A1(dx) N RH;4,/2(dx); then ry, = 1 and sy <

(14n/2) =1+2/n. Using that g_(Ly) < ;2% (since n > 2) we have
max{ry, §—(Ly)} sw < max{l, } (1 + _) =2 <qi(Ly) = q+( w)‘
n+2 n w

That is, (4.1) holds and according to (4.2) we have (RTw) Lr(dx)-solvability for p so that

nqg—(Ly)
1, —} <p< L
maX{ "t a(Lw) sw < p <q+(Lw)
and, in particular, in the range

2n
max{l,—
n

+4}sw <p<2.
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To prove (b) and (c), let us assume that w € A,(dx) N RHyy(dx) with 1 <r <
min {ﬁ, 1y1t8/n 12+8/n} and s(r) = min {3, 252} and note that the restriction on r gives

72 nr?
s(r) € [1, 00). In particular, ry, < r, sy < s(r), and

2nr
ry max{ry,qg—(Ly)} Sy < ry max {rw, —w}sw
nry +2

2nr?
2
< , =2< Ly).
max {2, =E b s(r) = 2 < g1 (Lu)
This implies (4.1) and we have (RT») L7 (dx)-Solvability for p in the range given by (4.2),
and in particular for those p’s satisfying

21ty } 2

— Sy < p<—-
nry + 4 w=P=

max {rw,
w

All these show (b) by taking r = rg so that s(r) = 1 and hence s,, = 1. Also (c) follows
from the case 1 < r < ry.

To deal with (d), we proceed as in [16], pp. 654—655. There, it is shown that given
©® > 1 there exists g9 = £9(O,n, A/A) € (0, in] suchthatif w € Ay4.(dx) with0 <e <gg
so that [w]4,gx) < © then2ry < g4 (Ly). Thatis, 2 < g4 (Ly)/ry. On the other hand,
if we additionally assume that w € RH, ¢ 2 14(1+e) %}(dx), then

Sw<(maX{12 1+(1+8)%})/=min{ 2 1+ 2 }

_87

1+¢ n(l+e)
< mi {2 1+—2 } 2
min { —, = i
r ) T mafra, 20
that is,

{ 2nry } 5
max {ry, ————— ¢ Sy < 2.

v nry +2 v

Altogether we have obtained that max {rw, nzr”w rjr”z} Sw <2< %ﬂ’:w)_ This implies (4.1)

and also that p = 2 satisfies (4.2). Consequently, (RF») 12(dx) 18 solvable as desired. =

Concerning power weights, we have the following result.

Corollary 4.2. Consider the power weight wg(x) = |x|*B=D with 0 < B < 2, and
let Ly, be the associated block operator

(4.4) Lygu(x. 1) = —|x|™ B=D div, (|x" B=D A(x)Vyu(x, 1)) — 02u(x, 1),

where A is an n X n matrix of complex L*°-valued coefficients defined on R"*, n > 2,
satisfying the uniform ellipticity condition (1.1).

Assume that ;
. 1++/1+8/n
Sﬁimm{x/ﬁ,—z }

n+2
Then for every f € C2°(R"), if one sets u(x,t) = e~V f(x), (x,1) € ]R:’_H, then

4.5) [ Mg (Vi c)llLr@axy < C IV fllLrax.
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for every p satisfying

(L (L
max{l,,B, nq—(Ly) ’ npq—(Lw) }max{l,,B_l}<p ‘I+( w)
n+q-(Ly) np+q-(Ly) max{l /3}
In particular, in the non-empty range
2n 2npB 1 2
1’ 9—’ N 17 E T
max{ p n+4 n,3+4} maxtl. B0} < p max{1, B}

provided
nL <B < mm{ﬁ,“r— V12+8/”}

Moreover, there exists 1 = €1(n, AJA) € (0, &) such that if

’2n

<pB<l1 ,
) B + &1

then (4.5) holds with p = 2, or equivalently (RLw/’ )12(dx) is solvable.

Proof. Write wg(x) = |x|* =D with 0 < B < 2 so that wg € Ax(dx). It is not difficult
to see that
rwg = max{l, B} and sy, = max{1, 87!}

Consider first the case 0 < 8 < 1, so that wg € A(dx), Twg = 1, and Swg = ,3_1. If

n
> nt3° then

2n 1 g+ (Luw,)
—§2<q+(Lwﬁ)=—wﬁ'
2/3 Twg

max{hﬂﬁ ’ q— (Lw[g)} Sw —
Thus (4.1) holds and if ;.75 < 8 < | we have (RLw8) L7 (dx)-Solvability for p such that

= <P < q+(Luwy).

max{l,—nq (Lup) },B

+ Q—(Lwﬂ)

In particular, if ;%5 < B < 1, the solvability holds in the range max{1, n+4},3_1 <p<2.

Let us treat the case 1 < f < 2, so that we have ry, =  and sy, = 1. If 1 < <
min{«/f, 1+1+8/n V12+8/"}, then

2n B?
np+2

up max{rug 4-(Luy)} < max (B2 o <2 < g4 (Luy).

This implies that (4.1) holds. Thus, (4.2) yields thatif 1 < # < min {v/2, Z¥2F8/11 then
(RLwp )Lr(dx) is solvable in the range

npq—(Ly) q+(Lw)
nﬁ+q4Lw}<p< B

max {/3,
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In particular, if 1 < 8 < min {\/5 1+ V1+8/n V12+8/"} one can solve (RLwﬁ )Lr(ax) for p satis-

fvi
ying 2’1’3 <
maX{ﬁ,m}<p_E

Let us finally focus on the (R]L'”ﬂ )1,2-solvability. Consider first the case when n”ﬁ <
B < 1. Then

2n 2np
n+4'np+4

_1 2n ) 1 2
max{l,ﬂ, }max{],ﬂ }_max{l’n+4}ﬁ<2_max{l,ﬁ}
Hence what we have proved so far gives the (R]Lwﬂ )12(dx)-solvability. To consider the
case B > 1, we first assume that f < 22tL 5o that wg € A141/(2m)(dx). Note that one
can easily see that there exists ® > 1 depending just on 7 (and independent of ) such
that [wgla,@x) < ©. Next we repeat the argument given in the proof of Corollary 4.1 to
find the corresponding g¢ € (0, 1/(2n)], which depends only on n and A/A. Set &1 = &g
and assume that 1 < 8 <1 4 ¢; < %.Picks’ >0sothatl < B <1+4+¢& <1+e¢;.

Hence wg € A14¢(dx) with0 < & < &1 = g9 and we can invoke () in Corollary 4.3 to

conclude the (R]L"’ﬂ )1.2(dx)-Solvability. |

Proof of Corollary 1.2. 1t suffices to observe that the first part is just item (d) in Corol-
lary 4.1. Regarding power weights, setting « = —n(f — 1) and with a slight abuse of
notation the desired estimate follows at once from Corollary 4.2. ]
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