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The regularity problem for degenerate elliptic operators
in weighted spaces

Pascal Auscher, Li Chen, José María Martell and Cruz Prisuelos-Arribas

Abstract. We study the solvability of the regularity problem for degenerate elliptic
operators in the block case for data in weighted spaces. More precisely, let Lw be
a degenerate elliptic operator with degeneracy given by a fixed weight w 2 A2.dx/
in Rn, and consider the associated block second order degenerate elliptic problem
in the upper-half space RnC1

C
. We obtain non-tangential bounds for the full gradi-

ent of the solution of the block case operator given by the Poisson semigroup in
terms of the gradient of the boundary data. All this is done in the spaces Lp.vdw/,
where v is a Muckenhoupt weight with respect to the underlying natural weighted
space .Rn;wdx/. We recover earlier results in the non-degenerate case (whenw� 1,
and with or without weight v). Our strategy is also different and more direct thanks
in particular to recent observations on change of angles in weighted square function
estimates and non-tangential maximal functions. Our method gives as a consequence
the (unweighted) L2.dx/-solvability of the regularity problem for the block operator

L˛u.x; t/ D �jxj
˛ divx

�
jxj�˛ A.x/rxu.x; t/

�
� @2t u.x; t/

for any complex-valued uniformly elliptic matrixA and for all�" < ˛ < 2n=.nC 2/,
where " depends just on the dimension and the ellipticity constants of A.

1. Introduction

The study of divergence form degenerate elliptic equations was pioneered in the series of
papers [22–24], where real symmetric elliptic matrices with some degeneracy expressed in
terms of A2.dx/-weights were considered (here and elsewhere, A2.dx/ � A2.Rn; dx/).
The goal of this paper is to obtain the solvability of the regularity problem for second
order divergence form degenerate elliptic operators with complex coefficients and with
boundary data in weighted Lebesgue spaces. To set the stage, let us introduce the class of
operators that we consider here. Let A be an n � n matrix of complex L1-valued coeffi-
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cients defined on Rn, n � 2. We assume that this matrix satisfies the following uniform
ellipticity (or “accretivity”) condition: there exist 0 < � � ƒ <1 such that

(1.1) � j�j2 � ReA.x/ � � N� and jA.x/ � � N�j � ƒ j�j j�j;

for all �; � 2Cn and almost every x 2Rn. We have used the notation � � � D �1 �1C � � � C
�n �n, and therefore � � N� is the usual inner product in Cn. Associated with this matrix and
a given weight w 2 A2.dx/ (which is fixed from now on, unless stated otherwise), we
define the second order divergence form degenerate elliptic operator

Lwu D �w
�1 div.w Aru/;(1.2)

which is understood as a maximal-accretive operator on L2.Rn; wdx/ � L2.w/ with
domain D.Lw/ by means of a sesquilinear form. Note that writing Aw D wA, one has
that Aw is a degenerate elliptic matrix in the sense that

(1.3) � j�j2w.x/ � ReAw.x/ � � N� and jAw.x/ � � N�j � ƒ j�j j�jw.x/;

for all �; � 2 Cn and almost every x 2 Rn. Conversely, if Aw is degenerate elliptic matrix
satisfying the previous conditions one can trivially see that A WD w�1 Aw is uniformly
elliptic.

The prominent case w � 1 gives the class of uniformly elliptic operators. The cele-
brated resolution of the Kato problem in [5] established that ifL is a uniformly divergence
form elliptic operator (that is, L D Lw with w � 1), then

p
Lf is comparable to rf in

L2.Rn; dx/ � L2.dx/. This led to a new Calderón–Zygmund theory developed by the
first named author in [1] to establish the boundedness in Lebesgue spaces of the associ-
ated functional calculus, vertical square function, Riesz transforms, reverse inequalities,
etc. A key ingredient in that theory is the use of the so-called off-diagonal or Gaffney esti-
mates satisfied by the associated heat semigroup and its gradient. This was later extended
in [7–9], where the same operators were shown to satisfy weighted norm inequalities with
Muckenhoupt weights. Conical square functions have been also considered in [6, 29].
Some of the previous results in conjunction with the theory of Hardy spaces for uniformly
elliptic operators from [27,28] led to [31], where the solvability of the regularity problem
in the block case (see (1.4) and (1.5) below with w � 1) for data in Lebesgue spaces was
obtained. This amounted to control non-tangentially the full gradient of the solution given
by the Poisson semigroup in terms of the gradient of the boundary datum. In turn, using
the weighted Hardy space theory developed in [29,30,32], the solvability of the regularity
problem in the block case for data in Lebesgue spaces with Muckenhoupt weights has
been recently studied in [13].

Concerning the Kato problem in the general case, where Lw is a degenerate elliptic
operator as above with a generic w 2 A2.dx/, [19] (see also [17,18]) showed that

p
Lwf

is comparable to rf in L2.w/. The boundedness of the associated operators (functional
calculus, Riesz transform, reverse inequalities, vertical square functions, etc.), both in the
natural Lebesgue spaces Lp.w/ and also in weighted spaces Lp.vdw/ with v 2 A1.w/
was considered in [16]. A particular case of interest was that on which, under further
assumptions in w, the authors showed the equivalence of

p
Lwf and rf in L2.dx/

by simply taking v D w�1. That is, the L2.dx/-problem Kato problem was solved for
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a class of degenerate elliptic operators that goes beyond that of uniformly elliptic. For
instance, [16] considered L
 D �j � j
 div.j � j�
A.�/r/, where A is a uniformly elliptic
matrix, 
 2 .�";2n=.nC 2//, and " depends on the dimension and the ellipticity constants
of A. Some work has been also done concerning conical square functions with respect to
the heat or Poisson semigroup generated by Lw and their gradients. For example, in [12]
the last three authors of the present paper established the boundedness and the comparabil-
ity of some conical square functions extending to the degenerate case the results from [29].
Moreover, in [33], the last named author has made a deeper study of the vertical and con-
ical square functions and some non-tangential maximal functions arising from degenerate
elliptic operators. On another direction, in [10] the authors considered L2-boundary value
problems for degenerate elliptic equations and systems. In particular, they initiated the
study of Dirichlet and Neumann problems in the degenerate setting using the so-called
first order method.

Our goal in this paper is to contribute to this theory by studying the solvability of the
regularity problem for degenerate elliptic operators and also propose other methods, as it
is explained after Theorem 1.1. More precisely, consider the degenerate elliptic operator
Lw D �w

�1 div.w Ar/, where w 2 A2.dx/ and A is an n � n matrix of complex L1-
valued coefficients defined on Rn, n � 2, which is a uniformly elliptic matrix (see (1.1))
with ellipticity constants 0 < � � ƒ <1. Introduce the .nC 1/ � .nC 1/ block matrix

(1.4) A D

�
A 0

0 1

�
;

which is .nC 1/ � .nC 1/ uniformly elliptic with ellipticity constants 0 < min¹�; 1º �
max¹ƒ; 1º. This gives rise to the block degenerate elliptic operator in RnC1,

(1.5) LwuD�w
�1 divx;t .wArx;tu/D�w

�1 divx.wArxu/� @2t uD .Lw/xu� @
2
t u:

Here and elsewhere, rx;t denotes the full gradient, while the symbols r and rx refer just
to the spatial derivatives. Note that in the previous equality we have used that w does not
depend on the t variable, hence by applying Fubini’s theorem it is not difficult to see that,
with a slight abuse of notation, if we write w.x; t/ WD w.x/ for every .x; t/ 2 RnC1, then
w 2 A2.RnC1; dx/ since w 2 A2.dx/.

The operator �Lw generates a C 0-semigroup ¹e�tLw ºt>0 of contractions on L2.w/
which is called the heat semigroup. This and the subordination formula (see (3.1) below)
yield that ¹e�t

p
Lw ºt>0 is a C 0-semigroup of contractions on L2.w/. Hence, whenever

f 2 C1c .R
n/, the function (called semigroup solution) given by the semigroup formula

u.x; t/ WD e�t
p
Lwf .x/, with .x; t/ 2 RnC1C , is a strong solution in C 2..0;1/IL2.w//\

C..0;1/ID.Lw// of the evolution equation @2t u.t/ D Lwu.t/ satisfied in L2.w/ for all
t > 0. But we can rather interpret Lwu D 0 in RnC1C in a weak sense and u is also weak
solution of it: by this we mean that u 2 W 1;2

loc .R
nC1
C ; dwdt/ satisfies

(1.6)
“

RnC1
C

A.x/rx;tu.x; t/ � rx;t .x; t/ dw.x/ dt D 0; 8 2 C
1
0 .R

nC1
C /:

Also, u.�; t /! f in L2.w/ as t ! 0C by the semigroup continuity (see, e.g., [20]). As
usual, dw.x/ � w.x/dx.
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Consider the L2-non-tangential maximal function Nw defined in [10]:

(1.7) Nwh.x/ WD sup
t>0

�
�

Z
�

Z
W.x;t/

jh.y; s/j2 dw.y/ ds
�1=2

; h 2 L2loc.R
nC1
C ; dwdt/;

whereW.x; t/ WD .c�10 t; c0t /�B.x; c1t / is a Whitney region and c0 > 1; c1 > 0 are fixed
parameters throughout the paper.

Note that our assumption w 2 A2.dx/ implies that w is a doubling measure in Rn,
hence .Rn; w; j � j/ is a space of homogeneous type. Given 1 < p <1 and v 2 A1.w/,
we say that the weighted regularity problem .RLw /Lp.vdw/ is solvable if for every f 2
C1c .R

n/ the weak solution of Lwu D 0 in RnC1C , given by u.x; t/ WD e�t
p
Lwf .x/,

.x; t/ 2RnC1C , satisfies the following weighted non-tangential maximal function estimate:

(1.8) kNw.rx;tu/kLp.vdw/ � Ckrf kLp.vdw/:

Once this estimate is under control, one can extend the semigroup to general data. How-
ever, the status of convergence to the boundary of the solution needs a specific treatment
that is not addressed here.

As in [1,9,16], we denote by .p�.Lw/;pC.Lw// and by .q�.Lw/; qC.Lw// the max-
imal open intervals on which the heat semigroup ¹e�tLw ºt>0 and the gradient of the heat
semigroup ¹

p
tre�tLw ºt>0 are respectively uniformly bounded on Lp.w/. That is,

p�.Lw/ WD inf
°
p 2 .1;1/ W sup

t>0

ke�tLwkLp.w/!Lp.w/ <1
±
;

pC.Lw/ WD sup
°
p 2 .1;1/ W sup

t>0

ke�tLwkLp.w/!Lp.w/ <1
±
;

q�.Lw/ WD inf
°
p 2 .1;1/ W sup

t>0

k
p
tre�tLwkLp.w/!Lp.w/ <1

±
;

qC.Lw/ WD sup
°
p 2 .1;1/ W sup

t>0

k
p
tre�tLwkLp.w/!Lp.w/ <1

±
:

We need to introduce some extra notation (see Section 2). Set rw WD inf
®
p W w 2

Ap.dx/
¯
, and note that 1 � rw < 2 since w 2 A2.dx/. Given 0 � p0 < q0 � 1 and

v 2 A1.w/ D A1.Rn; wdx/, define

Ww
v .p0; q0/ WD

®
p 2 .p0; q0/ W v 2 Ap=p0.w/ \ RH.q0=p/0.w/

¯
:

We are now ready to state our main result.

Theorem 1.1. Letw2A2.dx/ and let Lw be a block degenerate elliptic operator in RnC1C
as above. Let v2A1.w/ be such that

(1.9) Ww
v

�
max¹rw ; q�.Lw/º; qC.Lw/

�
¤ Ø:

Then, for every p 2 Ww
v

�
max

®
rw ;

nrwq�.Lw /
nrwCq�.Lw /

¯
; qC.Lw/

�
and every f 2 C1c .R

n/, if

one sets u.x; t/ D e�t
p
Lwf .x/, .x; t/ 2 RnC1C , then

(1.10) kNw.rx;tu/kLp.vdw/ � Ckrf kLp.vdw/

and .RLw /Lp.vdw/ is solvable.
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Let us compare this result with some previous work. When w � 1 (that is, we are
working with the class of uniformly – or non-degenerate – elliptic operators) and v � 1,
then, clearly, rw D 1, Ww

v .max¹rw ; q�.Lw/º; qC.Lw// D .q�.Lw/; qC.Lw// ¤ Ø, and
our result gives (1.10) in the range

�
max

®
1; nq�.Lw /
nCq�.Lw /

¯
; qC.Lw/

�
, hence we fully recover

Theorem 4.1 in [31]. If we still assume that w � 1 and we let v 2 A1.w/ D A1.dx/,
then our assumption (1.9) agrees with that in Theorem 1.10 of [13] and the range of p’s
here is slightly worse than the one in that result (the lower end-point in Theorem 1.10
of [13] has been pushed down using an extra technical argument that we have chosen not
to follow here).

Sharpness of the exponents is a delicate issue. It is not known even when w � v � 1.
Let us discuss this situation for information and relate to other estimates. The upper bound
p < qC.L/ in (1.10) is by definition sharp for the Lp boundedness of

p
tre�tL. It

is shown in [4], Section 12, that this is also sharp for the Lp bound of tre�t
p
L. But

global Lp control of such non-tangential maximal functions with inside L2 averages does
not imply Lp boundedness when p > 2: namely, krx;te�t

p
Lf kp ≲ krf kp is not neces-

sary and the maximal estimate could be obtained for other reasons as seen in [6] for some
square functions. Consider the lower bound in p. First, it is the same as the one found in [1]
for k
p
Lf kp ≲ krf kp , and for this one sharpness is not known (although it is believable

that it should be). Secondly, when p � 2, a control of this non-tangential maximal func-
tion does implyLp boundedness. More precisely, one deduces krx;te�t

p
Lf kp ≲ krf kp

uniformly in t > 0 (and one recovers k
p
Lf kp ≲ krf kp when t ! 0). The same lower

bound in p is shown using the theory of Hardy spaces adapted to L in [4], Section 9, but
here too it is said that sharpness is not known.

Our methods to prove Theorem 1.1, in particular the estimate involving @tu, are also
novel. The above works used advanced technology of Hardy spaces adapted to operators:
developing them in our context is probably a new challenge in itself. Instead, we rely
on recent change of angle formulas for weighted conical square function estimates (see
Section 2.4) and also the ones we prove for non-tangential weighted maximal functions
(see Lemma 3.3), which allow us to implement more directly standard tools in the field.

An important consequence of our method is that we can obtain the solvability of the
regularity problem corresponding to data in unweighted Lebesgue spaces. The main idea
consists in taking v D w�1 in Theorem 1.1. The following result focuses on the case of
the L2-solvability (more general results are presented in Section 4, see Corollaries 4.1
and 4.2).

Corollary 1.2. Letw2A2.dx/ and let Lw be a block degenerate elliptic operator in RnC1C
as above. Given ‚ � 1, there exists "0 D "0.‚; n; ƒ=�/ 2 .0;

1
2n
�, such that for every

w 2 A1C".dx/ \ RHmax¹ 2
1�" ;1C.1C"/

n
2 º
.dx/ with 0 � " < "0 and Œw�A2.dx/ � ‚, then

(1.11) kNw.rx;tu/kL2.dx/ � Ckrf kL2.dx/; for every f 2 C1c .R
n/,

where u.x; t/ D e�t
p
Lwf .x/, .x; t/ 2 RnC1C . Hence .RLw /L2.dx/ is solvable.

Furthermore, if we set

L˛u.x; t/ D �jxj
˛ divx

�
jxj�˛ A.x/rxu.x; t/

�
� @2t u.x; t/;
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where A is an n � n matrix of complex L1-valued coefficients defined on Rn, n � 2, sat-
isfying the uniform ellipticity condition (1.1), then there exists 0 < " < 1=2 small enough
(depending only on the dimension and the ratio ƒ=�/ such that if �" < ˛ < 2n=.nC 2/,
then (1.11) holds in this scenario and .RL˛ /L2.dx/ is solvable.

The plan of the paper is as follows. In Section 2 we introduce notations and defini-
tions, and we recall some known results. We also obtain estimates for some inhomoge-
neous vertical and conical square functions which are interesting in their own right (see
Propositions 2.14 and 2.18). To prove our main result, Theorem 1.1, we split the main
estimate into two independent pieces, one regarding Nw.rxu/ and the other one related
to Nw.@tu/, see respectively Propositions 3.1 and 3.2 in Section 3. In Section 4 we study
the solvability of the regularity problem in unweighted Lebesgue spaces and, in particular,
we prove Corollary 1.2.

2. Preliminaries

We shall use the following notation: dx denotes the usual Lebesgue measure in Rn, dw
denotes the measure in Rn given by the weight w, and vdw or d.vw/ denotes the one
given by the product weight vw. Besides, throughout the paper n will denote the dimen-
sion of the underlying space Rn and we shall always assume n � 2.

Given a ball B , let rB denote the radius of B . We write �B for the concentric ball with
radius �rB , � > 0. Moreover, we set C1.B/D 4B and, for j � 2, Cj .B/D 2jC1Bn2jB .

2.1. Weights

We need to introduce some classes of Muckenhoupt weights. Namely, A1.dx/, on which
the underlying measure space is .Rn; dx/, and then fix w 2 A1.dx/ and consider the
class A1.w/ where the “weighted” underlying space is .Rn; dw/.

2.1.1. A1.dx/ weights. By a weightw we mean a non-negative, locally integrable func-
tion. For brevity, we will often write dw for wdx. In particular, we write w.E/D

R
E
dw

andLp.w/DLp.Rn; dw/. We will use the following notation for averages: given a setE
such that 0 < w.E/ <1,

�

Z
E

f dw D
1

w.E/

Z
E

f dw;

or, if 0 < jEj <1,

�

Z
E

f dx D
1

jEj

Z
E

f dx:

Abusing slightly the notation, for j � 1, we set

�

Z
Cj .B/

f dw D
1

w.2jC1B/

Z
Cj .B/

f dw:
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We state some definitions and basic properties of Muckenhoupt weights. For further
details, see [21, 25, 26]. Consider the Hardy–Littlewood maximal function

Mf .x/ WD sup
B3x

�

Z
B

jf .y/j dy:

It is well known that given a weightw, M is bounded onLp.w/ if and only ifw 2Ap.dx/,
1 < p <1, where we say that w 2 Ap.dx/, 1 < p <1, if

Œw�Ap.dx/ WD sup
B

�
�

Z
B

w.x/ dx
��
�

Z
B

w.x/1�p
0

dx
�p�1

<1:

Here and below, the sups run over the collection of balls B � Rn. When p D 1, M is
bounded from L1.w/ to L1;1.w/ if and only if w 2 A1.dx/, that is, if

Œw�A1.dx/ WD sup
B

�
�

Z
B

w.x/ dx
��

ess sup
x2B

w.x/�1
�
<1:

We also introduce the reverse Hölder classes. We say that w 2 RHs.dx/, 1 < s <1,
if

Œw�RHs.dx/ WD sup
B

�
�

Z
B

w.x/ dx
��1�

�

Z
B

w.x/s dx
�1=s

<1;

and
Œw�RH1.dx/ WD sup

B

�
�

Z
B

w.x/ dx
��1�

ess sup
x2B

w.x/
�
<1:

It is also well known that

A1.dx/ WD
[

1�p<1

Ap.dx/ D
[

1<s�1

RHs.dx/:

Throughout the paper we shall use in several places the following properties. Namely,
if w 2 RHs.dx/, 1 < s � 1,

(2.1)
w.E/

w.B/
� Œw�RHs.dx/

�
jEj

jBj

�1=s0
; 8E � B;

where B is any ball in Rn. Analogously, if w 2 Ap.dx/, 1 � p <1, then

(2.2)
�
jEj

jBj

�p
� Œw�Ap.dx/

w.E/

w.B/
; 8E � B:

This implies in particular that w is a doubling measure, that is,

(2.3) w.�B/ � Œw�Ap.dx/ �
npw.B/; 8B; 8� > 1:

We continue by introducing some important notation. Weights in the classes Ap.dx/
and RHs.dx/ have a self-improving property: if w 2 Ap.dx/, there exists " > 0 such that
w 2 Ap�".dx/, and similarly if w 2 RHs.dx/, then w 2 RHsCı.dx/ for some ı > 0.
Hereafter, given w 2 Ap.dx/, let

(2.4) rw D inf
®
p W w 2 Ap.dx/

¯
and sw D inf

®
q W w 2 RHq0.dx/

¯
:
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Note that, according to our definition, sw is the conjugated exponent of the one defined in
Lemma 4.1 of [8]. Given 0 � p0 < q0 � 1 and w 2 A1.dx/, Lemma 4.1 in [8] implies
that

(2.5) Ww.p0; q0/ WD
°
p 2 .p0; q0/ W w 2Ap=p0.dx/\RH.q0=p/0.dx/

±
D

�
p0 rw ;

q0

sw

�
:

In the case p0 D 0 and q0 < 1, it is understood that the only condition that stays is
w 2 RH.q0=p/0.dx/. Analogously, if 0 < p0 and q0 D 1, the only assumption is w 2
Ap=p0.dx/. Finally, Ww.0;1/ D .0;1/.

Furthermore, given p 2 .0;1/ and a weight w 2 A1.dx/, we define the following
Sobolev exponents with respect to w:

(2.6) .p/w;� WD
nrwp

nrw C p
;

and, for k 2 N,

(2.7) pk;�w WD

´
nrwp
nrw�kp

if nrw > kp;
1 otherwise.

We write p�w WD p
1;�
w .

2.1.2. A1.w/ weights. Fix now w 2 A1.dx/. As mentioned above, (2.3) says that w
is a doubling measure, hence .R; dw; j � j/ is a space of homogeneous type (here and
elsewhere, j � j stands for the ordinary Euclidean distance). One can then introduce the
weighted maximal operator

(2.8) Mwf .x/ WD sup
B3x

�

Z
B

jf .y/j dw.y/:

Much as before, Mw is bounded on Lp.vdw/, 1 < p <1, if and only if v 2 Ap.w/,
which means that

(2.9) Œv�Ap.w/ D sup
B

�
�

Z
B

v.x/ dw
��
�

Z
B

v.x/1�p
0

dw
�p�1

<1:

Analogously, we can define the classes RHs.w/ by replacing the Lebesgue measure in the
definitions above with dw: v 2 RHs.w/, 1 < s <1, if

(2.10) Œv�RHs.w/ D sup
B

�
�

Z
B

v.x/ dw
��1�

�

Z
B

v.x/s dw
�1=s

<1:

From these definitions, it follows at once that there is a “duality” relationship between the
weighted and unweighted Ap.dx/ and RHs.dx/ conditions: w�1 2 Ap.w/ if and only if
w 2 RHp0.dx/, and w�1 2 RHs.w/ if and only if w 2 As0.dx/.

For every measurable setE2Rn, we write vw.E/D
R
E
d.vw/D

R
E
vdwD.vdw/.E/

and Lp.vdw/DLp.Rn; v.x/w.x/dx/. In this direction, for every w 2 Ap.dx/, v 2
Aq.w/, 1 � p; q <1, it follows that

(2.11)
�
jEj

jBj

�p q
� Œw�

q

Ap.dx/

�w.E/
w.B/

�q
� Œw�

q

Ap.dx/
Œv�Aq.w/

vw.E/

vw.B/
; 8E � B:
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Analogously, if w 2 RHp.dx/ and v 2 RHq.w/, 1 < p; q � 1, one has

(2.12)
vw.E/

vw.B/
� Œv�RHq.w/

�w.E/
w.B/

�1=q0
� Œv�RHq.w/Œw�

1=q0

RHp.dx/

�
jEj

jBj

�1=.p0 q0/
; 8E �B:

As before, for a weight v 2 A1.w/ (recall that w 2 A1.dx/ is fixed) we set

(2.13) rv.w/ WD inf
®
r W v 2 Ar .w/

¯
and sv.w/ WD inf

®
s W v 2 RHs0.w/

¯
:

For 0 � p0 < q0 �1 and v 2 A1.w/, by a similar argument to that of Lemma 4.1 in [8],
we have

Ww
v .p0; q0/ WD

®
p 2 .p0; q0/ W v 2 Ap=p0.w/ \ RH.q0=p/0.w/

¯
(2.14)

D

�
p0rv.w/;

q0

sv.w/

�
:

If p0 D 0 and q0 <1, as before, it is understood that the only condition that stays is v 2
RH.q0=p/0.w/. Analogously, if 0 < p0 and q0 D1, the only assumption is v 2 Ap=p0.w/.
Finally, Ww

v .0;1/ D .0;1/.

Remark 2.1. The proof of our main result will use the Calderón–Zygmund decomposi-
tion from Lemma 2.13 with respect to the underlying measure v.x/dw.x/Dv.x/w.x/dx,
where w 2 A1.dx/ and v 2 A1.w/. In that scenario, it was shown in [33], Remark 2.15,
thatwv 2 A1.dx/ and moreover rvw � rwrv.w/. The converse inequality is false in gen-
eral: let w.x/ WD jxjn and v WD w�1; then one can easily see that rwrv.w/ D rw sw D 2
and rvw D 1.

We state a lemma which will be useful in the sequel.

Lemma 2.2 (Remark 2.16 in [33]). Let B � Rn be a ball and let j � 1. Given 0 < p �
q <1, the following holds.

(a) If v 2 Aq=p.w/, then�
�

Z
Cj .B/

jf .x/jp dw.x/
�1=p

≲
�
�

Z
Cj .B/

jf .x/jq d.vw/.x/
�1=q

:

(b) If v 2 RH.q=p/0.w/, then�
�

Z
Cj .B/

jf .x/jp d.vw/.x/
�1=p

≲
�
�

Z
Cj .B/

jf .x/jq dw.x/
�1=q

:

2.2. Square functions and non-tangential maximal functions

In this section, we introduce several auxiliary operators (vertical and conical square func-
tions, non-tangential maximal functions) which will be needed at various points along the
proofs.

Consider, for � � 1, the non-tangential maximal function N �;w defined as

(2.15) N �;wF.x/ WD sup
t>0

� Z
B.x;�t/

jF.y; t/j2
dw.y/

w.B.x; t//

�1=2
:
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We write N w when � D 1. We are particularly interested in the non-tangential maxi-
mal functions associated with the heat or Poisson semigroup. For f 2 L2.w/, define

N
�;w

H f .x/ WD sup
t>0

� Z
B.x;�t/

ˇ̌
e�t

2Lwf .y/
ˇ̌2 dw.y/

w.B.x; t//

�1=2
;(2.16)

N
�;w

P f .x/ WD sup
t>0

� Z
B.x;�t/

ˇ̌
e�t
p
Lwf .y/

ˇ̌2 dw.y/

w.B.x; t//

�1=2
:(2.17)

Again, when � D 1, we write N w
P and N w

H . We shall obtain weighted boundedness of
these operators in Section 3.2.

We also consider several variants of the vertical square functions associated with the
heat semigroup which were studied in [16], Sections 5 and 10:

gwH f .x/ WD
� Z 1

0

ˇ̌
t2Lwe

�t2Lwf .x/
ˇ̌2 dt
t

�1=2
;(2.18)

Gw1=2;Hf .x/ WD
� Z 1

0

ˇ̌
tr.t2Lw/

1=2e�t
2Lwf .x/

ˇ̌2 dt
t

�1=2
;(2.19)

GwH f .x/ WD
� Z 1

0

ˇ̌
trt2Lwe

�t2Lwf .x/
ˇ̌2 dt
t

�1=2
:(2.20)

Proceeding as in Propositions 5.1 and 10.1 of [16], by a standard argument, we have
the following lemma.

Lemma 2.3. Let Lw be a degenerate elliptic operator with w 2 A2.dx/ and let v 2
A1.w/. Then

(a) gwH is bounded on Lp.vdw/ for all p 2 Ww
v .p�.Lw/; pC.Lw//,

(b) Gw
1=2;H and GwH are bounded on Lp.vdw/ for all p 2 Ww

v .q�.Lw/; qC.Lw//.

Now we recall the following conical square functions studied by the authors in [12]:

�
˛;w
H f .x/ WD

�“
�˛.x/

ˇ̌
t2Lwe

�t2Lwf .y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�1=2
;(2.21)

where �˛.x/ WD ¹.y; t/ 2 RnC1C W jx � yj < ˛tº is the cone with vertex at x and aperture
˛ > 0. When ˛ D 1, we write �.x/ and �wH . According to Proposition 3.1 in [12], we have
that �wH is bounded on Lp.vdw/ for all p 2 Ww

v .p�.Lw/;1/.
Finally, we introduce the following “inhomogeneous” vertical and conical square func-

tions:

zGwH f .x/ WD
� Z 1

0

ˇ̌
rt2Lwe

�t2Lwf .x/
ˇ̌2 dt
t

�1=2
;(2.22)

z�wH f .x/ WD
�“

�.x/

ˇ̌
t�1.t2Lw/e

�t2Lwf .y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�1=2
:(2.23)

By inhomogeneity we mean that the power rule of t inside the square functions is not
in accordance with that of the operator Lw : we are modifying respectively GwH and �wH
by removing one power of t which makes the modified square functions applied to f
homogeneous instead to the gradient of f , so that we expect bounds in terms on rf only
for them. The analogues of the above two square functions in other settings turn to be very
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useful in the study of Riesz transform and Hardy space theory, see for instance [14, 27].
Sections 2.6 and 2.7 below study the boundedness of zGwH and z�wH on weighted Sobolev
spaces, which plays an essential role in the proof of our main results.

We finish this subsection by recalling the results about the reverse inequality of the
Riesz transform associated with the operator Lw proved in [16]. The Riesz transform
rL
�1=2
w associated with the operator Lw can be written as

rL�1=2w D
2
p
�

Z 1
0

tre�t
2Lw

dt

t
;

Consider also the following square root representation (see for instance [10, 19]):

(2.24)
p
Lw D

2
p
�

Z 1
0

tLwe
�t2Lw

dt

t
�

Proposition 2.4 (Proposition 6.1 in [16]). Let max¹rw ; .p�.Lw//w;�º < p < pC.Lw/.
Then for all f 2 � ,

k
p
Lwf kLp.w/ ≲ krf kLp.w/:

Furthermore, if p 2 Ww
v .max¹rw ; p�.Lw/º; pC.Lw//, then for all f 2 � ,

k
p
Lwf kLp.vdw/ ≲ krf kLp.vdw/:

2.3. Off-diagonal estimates

Definition 2.5. Let ¹Ttºt>0 be a family of sublinear operators, and let 1 � p �1. Given
a doubling measure �, we say that ¹Ttºt>0 satisfies Lp.�/ � Lp.�/ full off-diagonal
estimates, denoted by Tt 2 F .Lp.�/ � Lp.�//, if there exist constants C; c > 0 such
that for all closed sets E and F , all f 2 Lp.Rn/, and all t > 0, we have

(2.25)
� Z

F

jTt .1Ef /jpd�
�1=p

� C e�cd.E;F /
2=t
� Z

E

jf jpd�
�1=p

;

where d.E; F / D inf¹jx � yj W x 2 E; y 2 F º.

In the previous definition, when p D 1 one has to change the Lp-norms by the cor-
responding essential suprema.

Set ‡.s/ D max¹s; s�1º for s > 0. Recall that, given a ball B , we use the notation
Cj .B/ D 2

jC1Bn2jB for j � 2, and for any doubling measure �,

�

Z
B

h d� D
1

�.B/

Z
B

h d�; �

Z
Cj .B/

h d� D
1

�.2jC1.B//

Z
Cj .B/

h d�:

Definition 2.6. Given 1 � p � q �1 and any doubling measure �, we say that a family
of sublinear operators ¹Ttºt>0 satisfies Lp.�/ � Lq.�/ off-diagonal estimates on balls,
denoted by Tt 2 O.Lp.�/ � Lq.�//, if there exist �1; �2 > 0 and c > 0 such that for all
t > 0 and for all ball B with radius rB ,

(2.26)
�
�

Z
B

jTt .f 1B/jqd�
�1=q

≲ ‡
� rB
p
t

��2�
�

Z
B

jf jpd�
�1=p

;
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and for j � 2,

(2.27)
�
�

Z
B

ˇ̌
Tt .f 1Cj .B//

ˇ̌q
d�
�1=q

≲ 2j�1‡
�2j rB
p
t

��2
e�c4

j r2B=t
�
�

Z
Cj .B/

jf jpd�
�1=p

;

and

(2.28)
�
�

Z
Cj .B/

jTt .f 1B/jqd�
�1=q

≲ 2j�1 ‡
�2j rB
p
t

��2
e�c4

j r2B=t
�
�

Z
B

jf jpd�
�1=p

:

Again when q D 1, or p D 1, one has to change the Lq-norms, or Lp-norms, by
the corresponding essential suprema.

Let us recall some results about off-diagonal estimates on balls for the heat semigroup
associated with Lw .

Lemma 2.7 ([9], Section 2, and [16], Sections 3 and 7). Let Lw be a degenerate elliptic
operator with w 2 A2.dx/.

(a) If p�.Lw/ < p � q < pC.Lw/, then e�tLw and .tLw/me�tLw , for every m 2 N,
belong to O.Lp.w/ � Lq.w//.

(b) Let p�.Lw/ < p � q < pC.Lw/. If v 2 Ap=p�.Lw /.w/\ RH.pC.Lw /=q/0.w/, then
e�tLw and .tLw/me�tLw , for every m 2 N, belong to O.Lp.vdw/ � Lq.vdw//.

(c) There exists an interval K.Lw/ such that if p; q 2 K.Lw/, with p � q, then
p
tre�tLw belongs to O.Lp.w/ � Lq.w//. Moreover, denoting by q�.Lw/ and

qC.Lw/ the left and right endpoints of K.Lw/, then q�.Lw/ D p�.Lw/ and
2 < qC.Lw/ � .qC.Lw//

�
w � pC.Lw/.

(d) Let q�.Lw/ < p � q < qC.Lw/. If v 2 Ap=q�.Lw /.w/\ RH.qC.Lw /=q/0.w/, it fol-
lows that

p
tre�tLw 2 O.Lp.vdw/ � Lq.vdw//.

(e) If p D q and � is a doubling measure, then F .Lp.�/ � Lp.�// and O.Lp.�/ �

Lp.�// are equivalent.

Remark 2.8. Since off-diagonal estimates on balls are stable under composition (see
Theorem 2.3 in [9]), it follows from (b) and (d) that

p
trtLwe

�tLw 2 O.Lp.vdw/ �

Lq.vdw// for q�.Lw/ < p � q < qC.Lw/ and v 2 Ap=q�.Lw /.w/ \ RH.qC.Lw /=q/0.w/.

Moreover, in the following result, which is a weighted version of [30], (5.12) (see
also [27]), and whose proof can be found in Proposition 2.42 of [33], we have off-diagonal
estimates for the family ¹Tt;sºs;t>0 WD ¹.e�t

2Lw � e�.t
2Cs2/Lw /M ºs;t>0, for all M 2 N.

Proposition 2.9. Let p 2 .p�.Lw/; pC.Lw// and let 0 < t; s < 1. Then, for all sets
E1; E2 � Rn and f 2 Lp.w/ such that supp.f / � E1, we have that ¹Tt;sºs;t>0 satisfies
the following Lp.w/ � Lp.w/ off-diagonal estimate:

k1E2Tt;sf kLp.w/ ≲
�s2
t2

�M
e
�c

d.E1;E2/
2

t2Cs2 kf 1E1kLp.w/:(2.29)

In particular, there holds

(2.30) kTt;sf kLp.w/ ≲
�s2
t2

�M
kf kLp.w/:
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We conclude this section by introducing the following off-diagonal estimates on Sobo-
lev spaces (for non-degenerate elliptic operators, see [1]).

Lemma 2.10. Let q 2 .q�.Lw/; qC.Lw// and ˛ > 0. Assume that p satisfies

max ¹rw ; .q�.Lw//w;�º < p � q:

Then, there exists � > 0 such that for every .x; t/ 2 RnC1C ,

(2.31)
�
�

Z
B.x;˛t/

jre�t
2Lwf jqdw

�1=q
≲ ‡.˛/�

1X
jD1

e�c˛4
j
�
�

Z
B.x;2jC1˛t/

jrf jpdw
�1=p

:

Proof. For simplicity, we write B WD B.x; ˛t/ and h WD f � f4B;w , where, for every
� > 0, f�B;w is the average of f in �B with respect to the measure dw. By the conserva-
tion property, that is, e�t

2Lw1 D 1,

re�t
2Lwf D re�t

2Lw .f � f4B;w/ D

1X
jD1

re�t
2Lwhj ;

with
hj WD h1Cj .B/:

By Lemma 2.7, for any q�.Lw/ < q0 < q, we have that
p
tre�tLw 2 O.Lq0.w/ �

Lq.w//, and then�
�

Z
B

ˇ̌
re�t

2Lwf
ˇ̌q
dw
�1=q
�

1X
jD1

�
�

Z
B

ˇ̌
re�t

2Lwhj
ˇ̌q
dw
�1=q

≲ ‡.˛/�2
1X
jD1

2j.�1C�2/ e�c˛4
j

t

�
�

Z
Cj .B/

jhjq0dw
�1=q0

:

Using the weighted Poincaré–Sobolev inequality (see Theorem 2.1 in [16] and also The-
orem 1.6 in [24]), we obtain that for any p > max¹rw ; .q0/w;�º,�
�

Z
Cj .B/

jhjq0dw
�1=q0

�

�
�

Z
2jC1B

ˇ̌
f � f2jC1B;w

ˇ̌q0
dw
�1=q0

C

jX
lD2

jf2lC1B;w � f2lB;w j

≲
jX
lD2

�
�

Z
2lC1B

ˇ̌
f � f2lC1B;w

ˇ̌q0
dw
�1=q0

≲
jX
lD2

2l˛t
�
�

Z
2lC1B

jrf jpdw
�1=p

:

Hence,�
�

Z
B

ˇ̌
re�t

2Lwf
ˇ̌q
dw
�1=q

≲ ‡.˛/�
1X
jD1

e�c˛4
j

t

jX
lD2

2l t
�
�

Z
2lC1B

jrf jpdw
�1=p

≲ ‡.˛/�
1X
jD1

e�c˛4
j
�
�

Z
2jC1B

jrf jpdw
�1=p

:

This completes the proof.
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2.4. Change of angles

We shall use two change of angles results. The first one is a version of Proposition 3.30
in [29] in the weighted degenerate case.

Proposition 2.11 (Proposition A.2 in [12]). Let w 2 Ayr .dx/ and v 2 RHr 0.w/ with 1 �
yr; r <1. Given a non-negative measurable function h, for every 1 � q � yr , 0 < ˛ � 1
and t > 0, there holdsZ

Rn

� Z
B.x;˛t/

jh.y; t/j
dw.y/

w.B.y; ˛t//

�1=q
v.x/ dw.x/

≲ ˛nyr.1=r�1=q/
Z

Rn

� Z
B.x;t/

jh.y; t/j
dw.y/

w.B.y; t//

�1=q
v.x/ dw.x/:(2.32)

The second result was proved for the unweighted non-degenerate case in [2] and for
the weighted non-degenerate case in Proposition 3.2 of [29]. Consider, for ˛ > 0, the
following operator acting over measurable functions F defined in RnC1C :

A˛
wF.x/ WD

� ZZ
�˛.x/

jF.y; t/j2
dw.y/ dt

tw.B.y; t//

�1=2
; x 2 Rn;

where �˛.x/ the cone with vertex at x and aperture ˛ > 0 defined right below (2.21).

Proposition 2.12 (Proposition 4.9 in [12]). Let 0 < ˛ � ˇ <1.

(a) For every w 2 Azr .dx/ and v 2 Ar .w/, 1 � r; zr <1, there holds

(2.33) kAˇ
wF kLp.vdw/ � C

�ˇ
˛

�n zr r=p
kA˛

wF kLp.vdw/ for all 0 < p � 2r;

where C � 1 depends on n, p, r , zr , Œw�Azr .dx/, and Œv�Ar .w/, but it is independent
of ˛ and ˇ.

(b) For every w 2 RHQs0.dx/ and v 2 RHs0.w/, 1 � s; Qs <1, there holds

(2.34) kA˛
wF kLp.vdw/ � C

�˛
ˇ

� n
s Qs p
kAˇ

wF kLp.vdw/ for all 2=s � p <1;

where C � 1 depends on n, p, s, Qs, Œw�RHQs0 .dx/, and Œv�RHs0 .w/, but it is independent
of ˛ and ˇ.

2.5. Calderón–Zygmund decomposition on Sobolev spaces

Our proofs rely on the following Calderón–Zygmund decomposition on Sobolev spaces.

Lemma 2.13 (Lemma 6.6 in [7]). Let n � 1, ˛ > 0, $ 2 A1.dx/, and let 1 � p <1
be such that $ 2 Ap.dx/. Assume that f 2 � is such that krf kLp.$/ <1. Then, there
exist a collection of balls ¹Biºi with radii rBi , smooth functions ¹biºi , and a function
g 2 L1loc.$/, such that

(2.35) f D g C
X
i

bi
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and the following properties hold:

jrg.x/j � C˛; for �-a.e. x;(2.36)

supp bi � Bi and
Z
Bi

jrbi j
pd$ � C˛p$.Bi /;(2.37) X

i

$.Bi / �
C

˛p

Z
Rn

jrf jpd$;(2.38) X
i

14Bi � N;(2.39)

where C and N depend only on n, p, and $ .
In addition, for 1 � q < p�$ , where p�$ is defined in (2.7),

(2.40)
�
�

Z
Bi

jbi j
q d$

�1=q
≲ ˛ rBi :

2.6. Non-homogeneous vertical square function

In this section, we study the weighted boundedness of zGwH , see (2.22). Our result is the
following.

Theorem 2.14. Let w 2 A2.dx/ and let Lw be a degenerate elliptic operator. Given
v 2 A1.w/, assume that Ww

v .max¹rw ; q�.Lw/º; qC.Lw// ¤ Ø. Then, for every f 2 �

and p 2 Ww
v .max¹rw ; .q�.Lw//w;�º; qC.Lw//, it holds

(2.41)


zGwH f 

Lp.vdw/ ≲ krf kLp.vdw/:

Before starting with the proof, we make some remarks and prove Lemma 2.17 (stated
below). These results will be useful in this proof and also in the remainder of the paper.

Remark 2.15. Let w 2 A2.dx/ and v 2 A1.w/. Take 0 < q� < qC <1 and suppose
that

p > rv.w/max¹rw ; .q�/w;�º:

Assuming that�
rv.w/max¹rw ; q�º; qC=sv.w/

�
D Ww

v .max¹rw ; q�º; qC/ ¤ Ø;

we claim that

(2.42)
�
rv.w/max¹rw ; q�º;min¹qC=sv.w/; p�vwº

�
¤ Ø;

where we recall that by Remark 2.1, vw 2 A1.dx/, and where p�vw is defined in (2.7).
Indeed, since by hypothesis rv.w/max¹rw ; q�º < qC=sv.w/, this can be seen from the
fact that

(2.43) rv.w/max¹rw ; q�º < p�vw :
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To prove (2.43), we distinguish two cases. If rv.w/max¹rw ; q�º D rv.w/rw , since we
are taking p such that p > rv.w/max¹rw ; .q�/w;�º and since .q�/w;� � q� (see (2.6)),
then

rv.w/max¹rw ; q�º D rv.w/max¹rw ; .q�/w;�º < p < p�vw :

If now
rv.w/max¹rw ; q�º D rv.w/q�;

then we can assume that nrvw > p (otherwise p�vw D 1 and the inequality is trivial).
Hence, by hypothesis and by (2.7),

1

p�vw
D
1

p
�

1

nrvw
<

1

rv.w/.q�/w;�
�

1

nrvw
D

nrw C q�

rv.w/q�nrw
�

1

nrvw

D
1

rv.w/q�
�

1

nrvw

�
1 �

rvw

rwrv.w/

�
�

1

rv.w/q�
D

1

rv.w/max¹rw ; q�º
�(2.44)

Remark 2.16. Let ¹Biºi be a collection of balls with bounded overlap,w 2A1.dx/, and
v 2 A1.w/. Besides, consider 1 < Qp <1, u 2 L Qp

0

.vdw/ such that kukL Qp0 .vdw/ D 1,
and Mvw the weighted maximal operator defined as

Mvwf .x/ WD sup
B3x

�

Z
B

jf .y/j d.vw/.y/:

Then, by Kolmogorov’s inequality, we have that�X
i

Z
Bi

�
Mvw.juj Qp

0

/
�1= Qp0

vdw
� Qp

≲
� Z
[iBi

�
Mvw.juj Qp

0

/
�1= Qp0

vdw
� Qp

(2.45)

≲ vw
�[

i

Bi

�
kuk

Qp

L Qp
0
.vdw/

≲ vw
�[

i

Bi

�
:

We next state a technical lemma which will be used several times. We notice that the
statement, which may appear slightly clumsy, is written so that it can be easily invoked in
some of our proofs.

Lemma 2.17. Givenw 2A2.dx/ and v 2A1.w/, fix 1<p1 <1, and a collection ¹Biºi
of balls in Rn with bounded overlap. Assume that there is a sequence of positive num-
bers ¹Iij ºi;j (whose significance will become clear when applying the result) so that

Iij � yCvw.2
jC1Bi /

1=p1 2�j.2M�
zC/; j � 4;(2.46)

where yC ; zC are fixed constants, and 2M > zC C nrwrv.w/. Then

sup
kuk

L
p01 .vdw/

D1

X
i

X
j�4

Iij ku 1Cj .Bi /kLp01 .vdw/ ≲ vw
�[

i

Bi

�1=p1
:

Proof. Fix u so that kuk
L
p01 .vdw/

D 1. Note that we can find p > rw , q > rv.w/ so that

2M > zC C nr with r D pq. In particular, w 2 Ap.dx/, v 2 Aq.w/ and we have (2.11)



The regularity problem for degenerate elliptic operators in weighted spaces 579

at our disposal. This, together with (2.46) and (2.45) with Qp D p1, allows us to show thatX
i

X
j�4

Iij ku 1Cj .Bi /kLp01 .vdw/

≲
X
i

X
j�4

vw.Bi / 2
�j.2M� zC�nr/

�
�

Z
Cj .Bi /

ju.x/jp
0
1 d.vw/.x/

�1=p01
≲
X
i

vw.Bi / inf
x2Bi

.Mvw.jujp
0
1/.x//1=p

0
1

≲
X
i

Z
Bi

.Mvw.jujp
0
1/.x/

�1=p01 v.x/ dw.x/ ≲ vw
�[

i

Bi

�1=p1
:

This readily leads to the desired estimate.

Proof of Theorem 2.14. Throughout the proof, fixw 2A2.dx/ and denote q� WD q�.Lw/
and qC WD qC.Lw/.

If p 2Ww
v .max¹rw ; q�º; qC/, then (2.41) follows easily from Lemma 2.3 and Propo-

sition 2.4. Indeed, we have

zGwH f 

Lp.vdw/ D 


� Z 1
0

ˇ̌
tr.t2Lw/

1=2e�t
2Lw

�p
Lwf

�ˇ̌2 dt
t

�1=2



Lp.vdw/

(2.47)

≲


pLwf 

Lp.vdw/ ≲ krf kLp.vdw/:

In accordance with (2.14), to go below rv.w/max¹rw ; q�º, we shall show that if p
satisfies

(2.48) rv.w/max ¹rw ; .q�/w;�º < p < rv.w/max¹rw ; q�º;

then for any ˛ > 0 and f 2 � it follows that

(2.49) vw
�®
x 2 Rn W zGwH f .x/ > ˛

¯�
≲

1

˛p

Z
Rn

jrf jp v dw:

Hence, using interpolation between Sobolev spaces (see [11]), we shall conclude the
desired estimate.

In order to prove (2.49), we apply to f the Calderón–Zygmund decomposition in
Lemma 2.13 at height ˛ > 0 for the product weight vw (recall that rvw � rwrv.w/ < p,
see Remark 2.1). Thus, by (2.35),

vw
�®
x 2 Rn W zGwH f .x/ > ˛

¯�
� vw

�°
x 2 Rn W zGwH g.x/ >

˛

3

±�
C vw

�°
x 2 Rn W zGwH

�X
i

bi

�
.x/ >

2˛

3

±�
DW IC II:

Note that by Remark 2.15 we can pick q such that

rv.w/max¹rw ; q�º < q < min
° qC

sv.w/
; p�vw

±
:(2.50)

Keeping this choice of q, by (2.47) we have

kzGwH f kLq.vdw/ ≲ krf kLq.vdw/:
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Besides, since p < q (see (2.48)), properties (2.36)–(2.39) yield

I ≲
1

˛q

Z
Rn

jzGwH gj
q v dw ≲

1

˛q

Z
Rn

jrgjq v dw ≲
1

˛p

Z
Rn

jrf jp v dw:

To estimate term II, for every k 2 Z, let ri WD 2k if 2k � rBi < 2
kC1. Then,

II � vw
�[

i

16Bi

�
C vw

�°
x 2 Rn W

� Z 1
0

ˇ̌̌
t2rLwe

�t2Lw
� X
i Wri�t

bi

�
.x/
ˇ̌̌2 dt
t

�1=2
>
˛

3

±�
C vw

�°
x 2 Rn n

[
i

16Bi W
� Z 1

0

ˇ̌̌
t2rLwe

�t2Lw
� X
i Wri>t

bi

�
.x/
ˇ̌̌2 dt
t

�1=2
>
˛

3

±�
≲

1

˛p

Z
Rn

jrf jpvdw C II1 C II2;

where we have used (2.3) and (2.38).
In order to estimate term II1, write� Z 1

0

ˇ̌̌
rt2Lwe

�t2Lw
� X
i Wri�t

bi

�
.x/
ˇ̌̌2 dt
t

�1=2
D

� Z 1
0

ˇ̌̌
t3rLwe

�t2Lw
�1
t

X
i Wri�t

bi

�
.x/
ˇ̌̌2 dt
t

�1=2
D

� Z 1
0

jTtft .x/j
2 dt

t

�1=2
;(2.51)

where
Tt WD t

3
rLwe

�t2Lw and ft .x/ WD
1

t

X
i Wri�t

bi .x/:

Moreover, note that 2 2 .max¹rw ; q�º; qC/; then, by Remark 2.8, for every v0 2
A2=max¹rw ;q�º.w/\RH.qC=2/0.w/we have t3=2rLwe�tLw 2O.L2.v0dw/�L

2.v0dw//.
In particular, Tt is bounded from L2.v0dw/ to L2.v0dw/. Consequently,


� Z 1

0

jTtft j
2 dt

t

�1=2


2
L2.v0dw/

D

Z 1
0

Z
Rn

jTtft j
2v0 dw

dt

t

≲
Z 1
0

Z
Rn

jft j
2v0 dw

dt

t
D




� Z 1
0

jft j
2 dt

t

�1=2


2
L2.v0dw/

:

Now, by extrapolation (see Theorem A.1 in [12] and also Theorem 3.31 in [15]), we obtain
that for Qv 2 A1.w/ and any Qq 2 Ww

Qv
.max¹rw ; q�º; qC/,

(2.52)



� Z 1

0

jTtft j
2 dt

t

�1=2



L Qq.Qvdw/

≲



� Z 1

0

jft j
2 dt

t

�1=2



L Qq.Qvdw/

:

In particular the above inequality holds for our choices of q and v.
Next, the proof follows much as in [3], p. 543, but we write the details for the sake of

completeness. Consider the following sum:

ˇk WD
X

i WriD2k

bi

ri
;
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and note that

ft D
1

t

X
i Wri�t

bi D
X
kW2k�t

2k

t

X
i WriD2k

bi

ri
D

X
kW2k�t

2k

t
ˇk :

By the Cauchy–Schwarz inequality, for every t > 0,

jft j
2
�

� X
kW2k�t

2k

t
jˇkj

2
�� X

kW2k�t

2k

t

�
≲

X
kW2k�t

2k

t
jˇkj

2
D

X
k2Z

2k

t
jˇkj

2 1Œ2k ;1/.t/;

and hence, Z 1
0

jft j
2 dt

t
≲
X
k2Z

Z 1
2k

2k

t

dt

t
jˇkj

2
D

X
k2Z

jˇkj
2:

Using the bounded overlap property (2.39), the fact that ri � rBi , and also (2.40), we have


� Z 1
0

jft j
2 dt

t

�1=2


q
Lq.vdw/

≲



�X

k2Z

jˇkj
2
�1=2


q

Lq.vdw/
≲
Z

Rn

X
i

jbi j
q

r
q
i

v dw

≲ ˛q
X
i

vw.Bi / ≲ ˛q�p
Z

Rn

jrf jp v dw:

This estimate, (2.51), and (2.52) with q and v, yield, as desired,

II1 ≲
1

˛q




� Z 1
0

jTtft j
2 dt

t

�1=2


q
Lq.vdw/

≲
1

˛q




�X
k2Z

jˇkj
2
�1=2


q

Lq.vdw/

≲
1

˛p

Z
Rn

jrf jpvdw:

In order to estimate term II2, notice that� Z 1
0

ˇ̌̌
t2rLwe

�t2Lw
� X
i Wri>t

bi

�ˇ̌̌2 dt
t

�1=2
�

X
i

� Z ri

0

ˇ̌
t2rLwe

�t2Lwbi
ˇ̌2 dt
t

�1=2
DW

X
i

Tibi :

Then, by duality, we have

II2 ≲
1

˛q

Z
Rnn

S
i 16Bi

ˇ̌̌X
i

Tibi .x/
ˇ̌̌q
v.x/ dw.x/

�
1

˛q

�
sup

kuk
Lq
0
.vdw/

D1

X
i

Z
Rnn

S
i 16Bi

jTibi .x/j ju.x/j v.x/ dw.x/
�q

�
1

˛q

�
sup

kuk
Lq
0
.vdw/

D1

X
i

X
j�4

Z
Cj .Bi /

jTibi .x/j ju.x/j v.x/ dw.x/
�q

≲
1

˛q

�
sup

kuk
Lq
0
.vdw/

D1

X
i

X
j�4

kTibikLq.Cj .Bi /;vdw/kukLq0 .Cj .Bi /;vdw/

�q
:
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To estimate kTibikLq.Cj .Bi /;vdw/, we pick p0 close enough to q�, and q0 > q close
enough to qC such that

(2.53) q� < p0 < 2 < q0 < qC and v 2 Aq=p0.w/ \ RH.q0=q/0.w/:

Note that Ww
v .q�; qC/ ¤ Ø since by assumption Ww

v .max¹rw ; q�º; qC/ ¤ Ø and
additionally Ww

v .max¹rw ; q�º; qC/�Ww
v .q�; qC/. Notice also that applying Remark 2.8

with v � 1, we have t3=2rLwe�tLw 2 O.Lp0.w/ � Lq0.w//. Then, by Minkowski’s
integral inequality, Lemma 2.2 (a) and (b) (see (2.53)), (2.40) (see (2.50)), and recalling
that ri � rBi , for j � 2,

kTibikLq.Cj .Bi /;vdw/

D vw.2jC1B/1=q
�
�

Z
Cj .Bi /

� Z ri

0

ˇ̌
t3rLwe

�t2Lwbi
ˇ̌2 dt
t3

�q=2
d.vw/

�1=q
≲ vw.2jC1Bi /

1=q
�
�

Z
Cj .Bi /

� Z ri

0

ˇ̌
t3rLwe

�t2Lwbi
ˇ̌2 dt
t3

�q0=2
dw
�1=q0

� vw.2jC1Bi /
1=q
� Z ri

0

�
�

Z
Cj .Bi /

ˇ̌
t3rLwe

�t2Lwbi
ˇ̌q0
dw
�2=q0 dt

t3

�1=2
≲ 2j�1vw.2jC1Bi /

1=q
�
�

Z
Bi

jbi j
p0 dw

�1=p0� Z ri

0

�2j rBi
t

�2�2
e
�c 4j r2Bi

=t2 dt

t3

�1=2
≲ e�c4

j

vw.2jC1Bi /
1=q

�
�

Z
Bi

ˇ̌̌ bi
rBi

ˇ̌̌q
d.vw/

�1=q
≲ e�c4

j

˛ vw.2jC1Bi /
1=q :

Now we use Lemma 2.17 with p1 D q, Iij D ˛�1kTibikLq.Cj .Bi /;vdw/, ¹Biºi the

collection of balls given by Lemma 2.13, and with e�c4
j

replacing 2�j.2M� zC/ (conse-
quently M and zC do not play any role here). Therefore, Lemma 2.17 and (2.38) imply

II2 ≲ vw
�[

i

Bi

�
≲

1

˛p

Z
Rn

jrf jp v dw:

Collecting the above estimates, we get the desired result.

2.7. Non-homogeneous conical square function

In this section, we shall prove weighted boundedness in Sobolev spaces for the inhomoge-
neous conical square function z�wH defined in (2.23). The analogous result for elliptic oper-
ators was studied in [27] for the Riesz transform characterization of Hardy spaces. See
also [32] for the Riesz transform characterization of weighted Hardy spaces. Our result is
stated as follows.

Theorem 2.18. Given w 2 A2.dx/, v 2 A1.w/, assume that

Ww
v .max ¹rw ; q�.Lw/º ; qC.Lw// ¤ Ø:(2.54)

Then, for every h 2 � and p 2 Ww
v .max ¹rw ; .p�.Lw//w;�º ; pC.Lw//, it holds

kz�wH hkLp.w/ ≲ krhkLp.w/:(2.55)
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To prove this theorem, we shall use Lemma 2.19 and Proposition 2.20. Lemma 2.19
will be also useful in the proof of Proposition 3.2 (all these results are stated below).

Lemma 2.19. Letw 2A2.dx/ and v 2A1.w/ be such that Ww
v .q�.Lw/;qC.Lw//¤Ø,

and let
p 2 .rv.w/max¹rw ; .q�.Lw//w;�º; rv.w/max¹rw ; q�.Lw/º/:

Given ˛ > 0 and f 2 � such that krf kLp.vdw/ <1, let ¹biºi be the collection of smooth
functions from Lemma 2.13 (applied to f , p, ˛, and $ D vw/. Write

zb WD

1X
iD1

ArBi bi ; where ArBi WD I � .I � e
�r2Bi

Lw /M ,

and where M 2 N is sufficiently large. Then, for p1 2 Ww
v .q�.Lw/; qC.Lw// such that

1 � p1 < p
�
vw (note that following (2.44) we get that rv.w/q�.Lw/ < p

�
vw/, there holds

krzb k
p1
Lp1 .vdw/

≲ ˛p1�p krf k
p

Lp.vdw/
:

Proof. First of all, denote q� WD q�.Lw/ and qC WD qC.Lw/. By duality and expand-
ing ArBi , we have

krzbk
p1
Lp1 .vdw/

D

Z
Rn

ˇ̌̌
r

�X
i

MX
kD1

Ck;M e
�kr2Bi

Lwbi

�ˇ̌̌p1
vdw

≲ sup
kuk

L
p01 .vdw/

D1

� MX
kD1

X
i

Z
Rn

ˇ̌̌
rBire

�kr2Bi
Lw
� bi
rBi

�ˇ̌̌
jujvdw

�p1
:

By hypothesis, v 2 Ap1=q�.w/ \ RH.qC=p1/0.w/ (see (2.14)), hence

p
�re��Lw 2 O.Lp1.vdw/ � Lp1.vdw//:

Using this, (2.40), and also (2.3),Z
Rn

ˇ̌̌
rBire

�kr2Bi
Lw
� bi
rBi

�ˇ̌̌
jujv dw

≲
X
j�1

vw.2jC1Bi /
�
�

Z
Cj .Bi /

ˇ̌̌
rBire

�kr2Bi
Lw
� bi
rBi

�ˇ̌̌p1
d.vw/

�1=p1
�

�
�

Z
Cj .Bi /

jujp
0
1 d.vw/

�1=p01
≲
X
j�1

e�c4
j

vw.Bi /
�
�

Z
Bi

ˇ̌̌ bi
rBi

ˇ̌̌p1
d.vw/

�1=p1
inf
x2Bi

�
Mvw.jujp

0
1/.x/

�1=p01
≲ ˛

Z
Bi

�
Mvw.jujp

0
1/
�1=p01vdw:
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Consequently, (2.45) with Qp D p1 and (2.38) imply

krzbk
p1
Lp1 .vdw/

≲ ˛p1 sup
kuk

L
p01 .vdw/

D1

�X
i

Z
Bi

�
Mvw.jujp

0
1/
�1=p01

vdw
�p1

≲ ˛p1vw
�[

i

Bi

�
≲ ˛p1�p

Z
Rn

jrf jpvdw:

This completes the proof.

The next result is the particular case of Proposition 4.5 in [33], takingm D 1. In order
to formulate it (proceeding similarly as in [27, 32]), we introduce the following conical
square function:

�w1=2;Hf .x/ WD
� Z

B.x;t/

Z 1
0

ˇ̌
t
p
Lwe

�t2Lwf .y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�1=2
:

Observe that z�wH f D �w
1=2;H

p
Lwf . Our goal is to see that �w

1=2;Hf compares with �wH f

(defined in (2.21)) in some weighted spaces (see Proposition 4.5 [33] for a general version
of this result). For the following statement, we recall that pC.Lw/

k;�
w was defined in (2.7).

Proposition 2.20. Given w 2 A2.dx/, v 2 A1.w/, and f 2 L2.w/, there hold

(a) k�wH f kLp.vdw/ ≲ k�
w
1=2;Hf kLp.vdw/, for all p 2 Ww

v .0; pC.Lw/
2;�
w /,

(b) k�w
1=2;Hf kLp.vdw/ ≲ k�

w
H f kLp.vdw/, for all p 2 Ww

v .0; pC.Lw/
�
w/.

In particular, if p 2 Ww
v .0; pC.Lw/

�
w/, we have

k�w1=2;Hf kLp.vdw/ � k�
w
H f kLp.vdw/:

Proof. We observe that �wH and �w
1=2;H respectively correspond to �w2;H and �w1;H in [33].

Then the proof follows from that of Proposition 4.5 in [33] taking m D 1.

Proof of Theorem 2.18. First of all, fixw 2A2.dx/, and denote q� WDp�.Lw/D q�.Lw/
(see Lemma 2.7), qC WD qC.Lw/, and pC WD pC.Lw/.

We claim that for all p 2 Ww
v .max¹rw ; q�º; pC/ and h 2 � ,

kz�wH hkLp.vdw/ ≲ krhkLp.vdw/:(2.56)

Indeed, applying Proposition 2.20, Theorem 3.1 in [12], and Proposition 2.4, we have that

kz�wH hkLp.vdw/ D k�
w
1=2;H

p
LwhkLp.vdw/ � k�

w
H

p
LwhkLp.vdw/

≲ k
p
LwhkLp.vdw/ ≲ krhkLp.vdw/:

Note that Ww
v .max¹rw ; q�º; pC/D

�
rv.w/max¹rw ; q�º; pC=sv.w/

�
. Therefore, for

every p satisfying

rv.w/max ¹rw ; .q�/w;�º < p < rv.w/max¹rw ; q�º;(2.57)
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if we show that

kz�wH hkLp;1.vdw/ ≲ krhkLp.vdw/; 8h 2 � ;(2.58)

then, by interpolation (see [11] and Remark 2.1) we would conclude (2.55).
Now fix p as in (2.57), and note that vw 2 Ap.dx/, since rvw � rwrv.w/ < p (see

Remark 2.1). Given ˛ > 0, we apply Lemma 2.13 to h 2 � , ˛, the product weight$ D vw
and p. Let ¹Biºi be the collection of balls given by Lemma 2.13. Consider for M 2 N
arbitrarily large,

BrBi WD .I � e
�r2Bi

Lw /M and ArBi WD I � BrBi D

MX
kD1

Ck;M e
�kr2Bi

Lw :

Then
h D g C

X
i

ArBi bi C
X
i

BrBi bi DW g C
zb C yb:

It follows that

vw
�
¹x 2 Rn W z�wH h.x/ > ˛º

�
� vw

�°
x 2 Rn W z�wH g.x/ >

˛

3

±�
C vw

�°
x 2 Rn W z�wH zb.x/ >

˛

3

±�
C vw

�°
x 2 Rn W z�wH yb.x/ >

˛

3

±�
DW IC IIC III:(2.59)

Now, since Ww
v .max¹rw ; q�º; qC/ ¤ Ø by assumption and p > rv.w/max¹rw ; .q�/w;�º

(see (2.57)), by Remark 2.15 we can pick p1 such that

(2.60) rv.w/max¹rw ; q�º < p1 < min
° qC

sv.w/
; p�vw

±
:

Observe that
p1 > p and p1 2 Ww

v .max¹rw ; q�º; qC/ :

Note also that in particular rv.w/ q� < p1 < qC=sv.w/, that is,

(2.61) v 2 Ap1=q�.w/ \ RH.qC=p1/0.w/:

Now we are ready to estimate I. Applying Chebyshev’s inequality with p1, (2.56), and
the properties (2.36)–(2.39), we obtain

(2.62) I ≲
1

˛p1

Z
Rn

j z�wH gj
p1 vdw ≲

1

˛p1

Z
Rn

jrgjp1 vdw ≲
1

˛p

Z
Rn

jrhjp vdw:

In order to estimate II, apply Chebyshev’s inequality, (2.56), and Lemma 2.19 (with
f D h). Then

II ≲
1

˛p1

Z
Rn

ˇ̌
z�wH
zb
ˇ̌p1
vdw ≲

1

˛p1

Z
Rn

ˇ̌
rzb
ˇ̌p1
vdw ≲

1

˛p

Z
Rn

jrhjp vdw:(2.63)
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Next, we estimate III. Note that, by (2.38)

III ≲ vw
�[

i

16Bi

�
C vw

�°
x 2 Rn n

[
i

16Bi W z�
w
H
yb.x/ >

˛

3

±�
(2.64)

≲
1

˛p

Z
Rn

jrhjp vdw C III1;

where
III1 WD vw

°�
x 2 Rn n

[
i

16Bi W z�
w
H
yb.x/ >

˛

3

±�
:

By Chebyshev’s inequality, duality, splitting the integral in x, and applying Hölder’s ine-
quality,

III1 ≲
1

˛p1

Z
Rnn[i16Bi

ˇ̌
z�wH
yb
ˇ̌p1
vdw(2.65)

≲
1

˛p1

�
sup

kuk
L
p01 .vdw/

D1

X
i

X
j�4

� Z
Cj .Bi /

ˇ̌
z�wH .BrBi bi /

ˇ̌p1
vdw

�1=p1
� ku 1Cj .Bi /kLp01 .vdw/

�p1
DW

1

˛p1
sup

kuk
L
p01 .vdw/

D1

�X
i

X
j�4

IIIij ku 1Cj .Bi /kLp01 .vdw/
�p1

:

Splitting the integral in t (recall that j � 4), we have

IIIij ≲
� Z

Cj .Bi /

� Z 2j�2rBi

0

Z
B.x;t/

jtLwe
�t2Lw .BrBi bi /.y/j

2 dw.y/ dt

tw.B.y; t//

�p1=2
� v.x/ dw.x/

�1=p1
C

� Z
Cj .Bi /

� Z 1
2j�2rBi

Z
B.x;t/

ˇ̌̌
t2Lwe

�t2Lw
�
BrBi

� bi
rBi

��
.y/
ˇ̌̌2 dw.y/ dt

tw.B.y; t//

�p1=2
� v.x/ dw.x/

�1=p1
(2.66) DW III1ij C III2ij :

Before estimating III1ij and III2ij , we take p0 close enough to q�, and q0 close
enough to qC so that
(2.67)
q� < p0 < min¹2; p1º; max¹2; p1º < q0 < qC; v 2 Ap1=p0.w/ \ RH.q0=p1/0.w/:

Hence, by Lemma 2.2 (b),

(2.68) III1ij ≲ vw.2jC1Bi /
1=p1

�

�
�

Z
Cj .Bi /

�Z 2j�2rBi

0

Z
B.x;t/

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�q0=2
dw.x/

�1=q0
:
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Besides, note that for x 2Cj .Bi / and 0< t � 2j�2rBi we have thatB.x; t/� 2jC2Bi n
2j�1Bi . Then, by (2.3), recalling that q0 > 2, applying Jensen’s inequality with respect to
dw.y/ dt , and Fubini’s theorem, we get�
�

Z
Cj .Bi /

� Z 2j�2rBi

0

Z
B.x;t/

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�q0=2
dw.x/

�1=q0
≲ .2j rBi /

1=2
�
�

Z
Cj .Bi /

�
�

Z 2j�2rBi

0

�

Z
B.x;t/

1

t

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌2

� dw.y/dt
�q0=2

dw.x/
�1=q0

≲
�
�

Z
Cj .Bi /

Z 2j�2rBi

0

�2j rBi
t

�q0=2�1
�

Z
B.x;t/

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌q0

�
dw.y/ dt

t
dw.x/

�1=q0
≲
�
�

Z
Cj .Bi /

Z 2j�2rBi

0

�2j rBi
t

�q0=2�1 Z
B.x;t/

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌q0

�
dw.y/ dt

tw.B.y; t//
dw.x/

�1=q0
≲
� Z 2j�2rBi

0

�2j rBi
t

�q0=2�1
t�q0�

Z
2jC2Bin2j�1Bi

ˇ̌
t2Lwe

�t2Lw .BrBi bi /.y/
ˇ̌q0(2.69)

�
dw.y/ dt

t

�1=q0
:

We estimate the integral in y by using functional calculus. The notation is taken from [1]
and Section 7 of [7]. We write # 2 Œ0; �=2/ for the supremum of jarg.hLwf; f iL2.w//j
over all f in the domain of Lw . Let 0 < # < � < � < � < �=2 and note that, for a
fixed t > 0, �.z; t/ WD e�t

2z.1� e
�r2Bi

z
/M is holomorphic in the open sector †� D ¹z 2

C n ¹0º W jarg.z/j < �º and satisfies j�.z; t/j≲ jzjM .1C jzj/�2M (with implicit constant
depending on �, t > 0, rBi , and M ) for every z 2 †�. Hence, we can write

(2.70) �.Lw ; t / D

Z
�

e�zLw �.z; t/ dz; where �.z; t/ D

Z



e�z �.�; t/ d�:

Here � D @†�=2�� with positive orientation (although orientation is irrelevant for our
computations) and 
 D RC ei sign.Im.z// � . It is not difficult to see that for every z 2 � ,

j�.z; t/j ≲
r2MBi

.jzj C t2/MC1
�

Moreover, observe that 2jC2Bi n 2j�1Bi D
S3
lD1ClCj�2.Bi /,8j � 4. Also, our choices

of p0 and q0 in (2.67) yield that zLwe�zLw 2 O.Lp0.w/�Lq0.w//. Thus, by these facts



P. Auscher, L. Chen, J. M. Martell and C. Prisuelos-Arribas 588

and Minkowski’s integral inequality, we obtain�
�

Z
2jC2Bin2j�1Bi

ˇ̌
t2Lwe

�t2Lw .BrBi bi /
ˇ̌q0
dw
�1=q0

≲
Z
�

�
�

Z
2jC2Bin2j�1Bi

jzLwe
�zLwbi j

q0 dw
�1=q0 t2

jzj

r2MBi
.jzj C t2/MC1

jdzj

≲ 2j�1
�
�

Z
Bi

jbi j
p0 dw

�1=p0 Z
�

‡
�2j rBi
jzj1=2

��2
e
�c 4j r2Bi

=jzj t
2

jzj

r2MBi
.jzj C t2/MC1

jdzj

≲ 2j�1 t2
�
�

Z
Bi

jbi j
p1 d.vw/

�1=p1 Z 1
0

‡
�2j rBi
s1=2

��2
e
�c 4j r2Bi

=s r
2M
Bi

sMC1
ds

s

≲ ˛ r�1Bi 2
�j.2MC2��1/ t2

Z 1
0

‡.s/�2e�cs
2

s2MC2
ds

s

≲ ˛ r�1Bi 2
�j.2MC2��1/ t2;

where, for the last inequality, we need to takeM 2 N large enough so that 2M C 2 > �2.
Besides, we use Lemma 2.2 (a) in the third inequality; and the fourth inequality follows
from (2.40) (see (2.61)) and the change of variable s into 4j r2Bi =s

2.
Plugging the above estimate into (2.69) and changing the variable t into 2j rBi t , allows

us to obtain�
�

Z
Cj .Bi /

� Z 2j�2rBi

0

Z
B.x;t/

ˇ̌
tLwe

�t2Lw .BrBi bi /.y/
ˇ̌2 dw.y/ dt

tw.B.y; t//

�q0=2
dw.x/

�1=q0
≲ ˛ r�1Bi 2

�j.2MC2��1/
� Z 2j�2rBi

0

�2j rBi
t

�q0=2�1
tq0
dt

t

�1=q0
≲ ˛ 2�j.2MC1��1/:

This and (2.68) yield, for M 2 N such that 2M C 2 > �2,

(2.71) III1ij ≲ ˛ vw.2jC1Bi /
1=p1 2�j.2MC1��1/:

In order to estimate III2ij , we first change the variable t into t�M WD t
p
M C 1. Then� Z 1

2j�2rBi

Z
B.x;t/

ˇ̌̌
t2Lwe

�t2Lw
�
BrBi

� bi
rBi

��
.y/
ˇ̌̌2 dw.y/ dt

tw.B.y; t//

�1=2
≲
� Z 1

2j�2rBi

�

Z
B.x;t/

ˇ̌̌
t2Lwe

�t2Lw
�
BrBi

� bi
rBi

��
.y/
ˇ̌̌2 dw.y/ dt

t

�1=2
≲
� Z 1

2j�2rBi =�M

�

Z
B.x;�M t/

ˇ̌̌
Tt;rBi t

2Lwe
�t2Lw

� bi
rBi

�
.y/
ˇ̌̌2 dw.y/ dt

t

�1=2
;(2.72)

where we recall that
Tt;rBi WD .e

�t2Lw � e
�.t2Cr2Bi

/Lw /M :
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Next, fix x 2 Cj .Bi / and t > 2j�2rBi =�M . In this case, Bi � B.x; 12�M t /. Thus,
by (2.30) and the fact that �Lwe��Lw 2 O.Lp0.w/ � L2.w//, for � > 0, we get

�

Z
B.x;�M t/

ˇ̌̌
Tt;rBi t

2Lwe
�t2Lw

� bi
rBi

�
.y/
ˇ̌̌2
dw.y/

≲
�r2Bi
t2

�2M 1

w.B.x; �M t //

Z
Rn

ˇ̌̌
t2Lwe

�t2Lw
�

1B.x;12�M t/
bi

rBi

�
.y/
ˇ̌̌2
dw.y/

≲
�r2Bi
t2

�2M X
l�1

22nl�

Z
Cl .B.x;12�M t//

ˇ̌̌
t2Lwe

�t2Lw
�

1B.x;12�M t/
bi

rBi

�
.y/
ˇ̌̌2
dw.y/

≲
�r2Bi
t2

�2M X
l�1

e�c4
l
�
�

Z
B.x;12�M t/

ˇ̌̌bi .y/
rBi

ˇ̌̌p0
dw.y/

�2=p0
≲
�r2Bi
t2

�2M� w.Bi /

w.B.x; 12�M t //

�2=p0�
�

Z
Bi

ˇ̌̌ bi
rBi

ˇ̌̌p0
dw
�2=p0

≲
�r2Bi
t2

�2M�
�

Z
Bi

ˇ̌̌ bi
rBi

ˇ̌̌p1
d.vw/

�2=p1
≲
�r2Bi
t2

�2M
˛2:

The next-to-last inequality is due to Lemma 2.2 (a) and the fact that Bi � B.x; 12�M t /,
and the last inequality follows from (2.40).

Plugging the above estimate into (2.72) and recalling the definition of III2ij in (2.66)
allows us to obtain

III2ij ≲ ˛
� Z

Cj .Bi /

� Z 1
2j�2rBi =�M

�r2Bi
t2

�2M dt
t

�p1=2
v dw

�1=p1
≲ ˛vw.2jC1Bi /

1=p1 2�j2M :

By this and (2.71), for M 2 N such that 2M > �2 � 2, we have

IIIij ≲ ˛vw.2jC1Bi /
1=p1 2�j.2M��1/:

Then, by Lemma 2.17 with Iij D ˛
�1IIIij , zC D �1, and ¹Biºi the collection of balls

given by Lemma 2.13, and by (2.38) and (2.65), for M 2 N so that 2M > max¹�2 � 2;
�1 C rwrv.w/nº, we conclude that

III1 ≲ vw
�[

i

Bi

�
≲

1

˛p

Z
Rn

jrhjp v dw:

This, together with (2.62)–(2.64) and (2.59), yields (2.58).

3. Proof of Theorem 1.1

Fix w 2 A2.dx/, v 2 A1.w/ and f 2 C1c .R
n/, and note that for every .x; t/ 2 RnC1C

and u.x; t/ WD rx;te�t
p
Lwf .x/,

ju.x; t/j2 D jre�t
p
Lwf .x/j2 C j@te

�t
p
Lwf .x/j2;
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where we define the Poisson semigroup ¹e�t
p
Lw ºt>0 using the classical subordination

formula, or the functional calculus for Lw (see [1, 16]):

(3.1) e�t
p
Lw D C

Z 1
0

e���1=2 e�
t2

4�
Lw

d�

�
�

Therefore, it suffices to see that if Ww
v .max ¹rw ; q�.Lw/º ; qC.Lw// ¤ Ø, then

kNw.re
�t
p
Lwf /kLp.vdw/ C kNw.@te

�t
p
Lwf /kLp.vdw/ ≲ krf kLp.vdw/;

for all p 2 Ww
v .max ¹rw ; .q�.Lw//w;�º ; qC.Lw//. We shall see this in Propositions 3.1

and 3.2 below.

3.1. Non-tangential maximal function estimate for the spatial derivatives

Proposition 3.1. Let w 2 A2.dx/ and v 2 A1.w/ be such that

Ww
v .max ¹rw ; q�.Lw/º ; qC.Lw// ¤ Ø:

Then, for all f 2 � and p 2 Ww
v .max ¹rw ; .q�.Lw//w;�º ; qC.Lw//, we have

(3.2)


Nw.re

�t
p
Lwf /




Lp.vdw/

≲ krf kLp.vdw/:

Proof. First of all, fix w 2 A2.dx/ and define q� WD q�.Lw/ and qC WD qC.Lw/.
In the context of (1.7), we set ˛ WD c0c1. We claim that

(3.3) Nw.re
�t
p
Lwf /.x/ ≲ sup

t>0

�
�

Z
B.x;˛t/

ˇ̌
re�t

p
Lwf .z/

ˇ̌2
dw.z/

�1=2
:

Indeed, by (2.3),

Nw.re
�t
p
Lwf /.x/ D sup

t>0

�
�

Z
c�10 t<s<c0t

�

Z
B.x;c1t/

ˇ̌
re�s

p
Lwf .z/

ˇ̌2
dw.z/ds

�1=2
≲ sup

t>0

sup
c�10 t<s<c0t

�
�

Z
B.x;˛s/

ˇ̌
re�s

p
Lwf .z/

ˇ̌2
dw.z/

�1=2
≲ sup

t>0

�
�

Z
B.x;˛t/

ˇ̌
re�t

p
Lwf .z/

ˇ̌2
dw.z/

�1=2
:

Besides, by the subordination formula (3.1) and Minkowski’s integral inequality,�
�

Z
B.x;˛t/

ˇ̌
re�t

p
Lwf .z/

ˇ̌2
dw.z/

�1=2
≲
Z 1=4

0

e���1=2
�
�

Z
B.x;˛t/

ˇ̌
re�

t2

4�
Lwf .z/

ˇ̌2
dw.z/

�1=2 d�
�

C

Z 1
1=4

e���1=2
�
�

Z
B.x;˛t/

ˇ̌
re�

t2

4�
Lwf .z/

ˇ̌2
dw.z/

�1=2 d�
�
DW IC II:
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Dealing first with term I, note that

I �
Z 1=4

0

�1=2
�
�

Z
B.x;˛t/

ˇ̌
re�t

2Lwf .z/
ˇ̌2
dw.z/

�1=2 d�
�

C

Z 1=4

0

�1=2
�
�

Z
B.x;˛t/

ˇ̌�
re�

t2

4�
Lw � re�t

2Lw
�
f .z/

ˇ̌2
dw.z/

�1=2 d�
�
DW I1 C I2:

In order to estimate term I1, for any p 2 Ww
v .max¹rw ; .q�/w;�º; qC/, we pick p0 in the

interval .max ¹rw ; .q�/w;�º ;min¹2; pº/, close enough to max¹rw ; .q�/w;�º so that v 2
Ap=p0.w/ (see (2.13) and (2.14)). Therefore Mw

p0
.f / WD .Mw

p0
.jf jp0//1=p0 is bounded

on Lp.vdw/. This and Lemma 2.10, with ˛ D c0 c1, yield


 sup
t>0

�
�

Z
B.�;˛t/

ˇ̌
re�t

2Lwf .z/
ˇ̌2
dw.z/

�1=2



Lp.vdw/

≲



 sup
t>0

X
j�1

e�c4
j
�
�

Z
B.�;2jC1˛t/

jrf .z/jp0 dw.z/
�1=p0




Lp.vdw/

≲
X
j�1

e�c4
j 

Mw

p0
.rf /




Lp.vdw/

≲ krf kLp.vdw/:

Consequently, by Minkowski’s integral inequality,



 sup
t>0

I1



Lp.vdw/

�

Z 1=4

0

�1=2



 sup
t>0

�
�

Z
B.�;˛t/

ˇ̌
re�t

2Lwf .z/
ˇ̌2
dw.z/

�1=2



Lp.vdw/

d�

�

≲ krf kLp.vdw/:

Now we turn to the estimate of term I2. Write

re�
t2

4�
Lw � re�t

2Lw D re�
t2

2 Lw
�
e�.

1
4�
� 12 /t

2Lw � e�
t2

2 Lw
�

and use again Lemma 2.10 and (2.3). Then,

I2 D
Z 1=4

0

�1=2
�
�

Z
B.x;˛t/

ˇ̌
re�

t2

2 Lw
�
e�.

1
4�
� 12 /t

2Lw � e�
t2

2 Lw
�
f .z/

ˇ̌2
dw.z/

�1=2 d�
�

≲
1X
jD1

e�c4
j

Z 1=4

0

�1=2
�
�

Z
B.x;2jC2˛t/

�
r
�
e�.

1
4�
� 12 /t

2Lw � e�
t2

2 Lw
�
f .z/

ˇ̌p0
dw.z/

�1=p0 d�
�
�

Since 0 < � � 1=4, there holdsˇ̌�
re�.

1
4�
� 12 /t

2Lw � re�
t2

2 Lw
�
f .z/

ˇ̌
�

Z t
p
1=.4�/�1=2

t=
p
2

ˇ̌
@sre

�s2Lwf .z/
ˇ̌
ds ≲

Z t
p
1=.4�/�1=2

t=
p
2

ˇ̌
s2rLwe

�s2Lwf .z/
ˇ̌ ds
s

≲
� Z 1

0

ˇ̌
s2rLwe

�s2Lwf .z/
ˇ̌2 ds
s

�1=2
.log.2�/�1=2/1=2 ≲ .log��1/1=2 zGwH f .z/;
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where zGwH is the vertical square function defined in (2.22). Then, we get

sup
t>0

I2 ≲
X
j�1

e�c4
j

Z 1=4

0

�1=2.log��1/1=2 sup
t>0

�
�

Z
B.x;2jC2˛t/

ˇ̌
zGwH f .z/

ˇ̌p0
dw.z/

�1=p0 d�
�

≲ Mw
p0
.zGwH f /.x/:

Then, since Mw
p0

is bounded on Lp.vdw/, the above computation and Theorem 2.14
imply

 sup

t>0

I2



Lp.vdw/

�


Mw

p0
zGwH f /




Lp.vdw/

≲


zGwH f 

Lp.vdw/ ≲ krf kLp.vdw/:

We finally estimate term II. Applying Lemma 2.10, we have that, for every t > 0,�
�

Z
B.x;˛2

p
�t/

jre�t
2Lwf .z/j2 dw.z/

�1=2
≲ ‡.

p
�/�

1X
jD1

e�c4
j
�
�

Z
B.x;2jC2˛

p
�t/

jrf .z/jp0 dw.z/
�1=p0

≲ ‡.
p
�/�Mw

p0
.rf /.x/:

Hence,

 sup
t>0

II



Lp.vdw/

≲
Z 1
1=4

e��‡.
p
�/�

d�

�
kMw

p0
.rf /kLp.vdw/ ≲ krf kLp.vdw/:

Collecting the above estimates, we conclude (3.2).

3.2. Non-tangential maximal function estimate for the time derivative

Proposition 3.2. Given w 2 A2.dx/ and v 2 A1.w/, assume that

Ww
v .max ¹rw ; q�.Lw/º ; qC.Lw// ¤ Ø:

Then, for all p 2 Ww
v .max ¹rw ; .p�.Lw//w;�º ; pC.Lw// and f 2 � , we have

(3.4)


Nw.@te

�t
p
Lwf /




Lp.vdw/

≲ krf kLp.vdw/:

To prove this result, we need Theorem 2.18, a change of angles result in Lp.vdw/
for the operator defined in (2.15), and the boundedness of the non-tangential maximal
square functions defined in (2.16) and (2.17). We obtain these results in Lemma 3.3, and
Proposition 3.4 below.

Our next result is an extension of Lemma 6.2 in [27] (see also Lemma 7.3 in [30]).

Lemma 3.3. Givenw 2Ar .dx/ and v 2Ayr .w/, 1� r;yr <1, let 0 < p <1 and � � 1.
There hold

(3.5) kN �;wF kLp;1.vdw/ ≲ �n..rC1/=2Cr yr=p/ kN wF kLp;1.vdw/

and

(3.6) kN �;wF kLp.vdw/ ≲ �n..rC1/=2Cr yr=p/ kN wF kLp.vdw/:



The regularity problem for degenerate elliptic operators in weighted spaces 593

Proof. We will just prove (3.5); the proof of (3.6) follows analogously by writing the
Lp.vdw/-norm as an integral of the level sets. Details are left to the interested reader.

Consider, for any � > 0,

O� WD ¹x 2 Rn W N wF.x/ > �º and E� WD RnnO�;

and, for 
 D 1 � 1
Œw�Ar .dx/.11�/

rn , the set of 
 -density

E�� WD
°
x 2 Rn W 8 r > 0;

w.E� \ B.x; r//

w.B.x; r//
� 


±
:

Note that

O�� WD Rn nE�� D
°
x 2 Rn WMw.1O�/.x/ >

1

Œw�Ar .dx/.11�/
rn

±
:

We claim that for every � > 0,

(3.7) N �;wF.x/ � Œw�Ar .dx/ 2
nr=2 .9�/n.rC1/=2 �; 8x 2 E�� :

Assuming this momentarily, let 0 < p <1. Since Mw WLyr .vdw/! Lyr;1.vdw/, as we
are assuming that v 2 Ayr .w/, we get

kN �;wF k
p

Lp;1.vdw/
D sup
�>0

�pvw.¹x 2 Rn W N �;wF.x/ > �º/

D sup
�>0

�
Œw�Ar .dx/ 2

nr=2 .9�/n.rC1/=2 �
�p

� vw
�®
x 2 Rn W N �;wF.x/ > Œw�Ar .dx/ 2

nr=2 .9�/n.rC1/=2 �
¯�

� Œw�
p

Ar .dx/
2pnr=2 .9�/n.rC1/p=2 sup

�>0

�pvw.O��/ ≲ �n..rC1/p=2Cr yr/ sup
�>0

�pvw.O�/

D �n..rC1/p=2Cr yr/ kN wF k
p

Lp;1.vdw/
;

which would finish the proof.
It remains to show (3.7). First, note that if x 2 E�

�
and t > 0, for every y 2 B.x; 2�t/

we haveB.y; t=2/\E�¤Ø. To prove this, suppose by way of contradiction thatB.y; t=2/
� O�. Then, by (2.2), since B.y; t=2/ � B.x; 3�t/ and B.x; 3�t/ � B.y; 5�t/,

Mw.1O�/.x/�
w.B.y; t=2//

w.B.x; 3�t//
�
w.B.y; t=2//

w.B.y; 5�t//
�

1

Œw�Ar .dx/.10�/
rn
>

1

Œw�Ar .dx/.11�/
rn
�

This implies that x 2 O�
�

, which contradicts our assumption.
Let us fix now x 2 E�

�
and t > 0, and note that if y 2 B.x; 2�t/ there exists x0 2

B.y; t=2/\E�, hence N wF.x0/ � �. Besides, since B.y; t=2/ � B.x0; t / and by (2.2),
for every y 2 B.x; 2�t/,� Z

B.y;t=2/

jF.z; t/j2
dw.z/

w.B.y; t=2//

�1=2
� Œw�

1=2

Ar .dx/
2nr=2 sup

s>0

� Z
B.x0;s/

jF.z; s/j2
dw.z/

w.B.x0; s//

�1=2
D Œw�

1=2

Ar .dx/
2nr=2 N wF.x0/ � Œw�

1=2

Ar .dx/
2nr=2 �:(3.8)
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On the other hand, for every x 2Rn and t > 0, we have thatB.x;�t/�
S
i B.xi ; t=2/,

where ¹B.xi ; t=2/ºi is a collection of at most .9�/n balls such that, for every i , we have
that xi 2 B.x; 2�t/. In particular, B.xi ; t=2/; B.x; t/ � B.xi ; 3�t/.

Therefore, by the above observations and (2.2), we conclude thatZ
B.x;�t/

jF.y; t/j2
dw.y/

w.B.x; t//
� Œw�Ar .dx/ .3�/

nr
X
i

Z
B.xi ;t=2/

jF.y; t/j2
dw.y/

w.B.xi ; t=2//

� .9�/n.rC1/ Œw�2Ar .dx/ 2
nr �2;

where we have used (3.8), since xi 2 B.x; 2�t/. Finally, taking the supremum over all
t > 0, we obtain

N �;wF.x/2 � Œw�2Ar .dx/ 2
nr .9�/n.rC1/ �2; 8 x 2 E�� :

This readily gives (3.7) and the proof is complete.

Proposition 3.4. Let Lw be a degenerate elliptic operator with w 2 A2.dx/ and let v 2
A1.w/. Then

(a) N w
H is bounded on Lp.vdw/ for all p 2 Ww

v .p�.Lw/;1/,

(b) N w
P is bounded on Lp.vdw/ for all p 2 Ww

v .p�.Lw/; pC.Lw/
�
w/.

Proof. Part (b) is proved in Theorem 3.7 of [33].
In order to prove part (a), fix p 2 Ww

v .p�.Lw/;1/ and choose p0 close enough to
p�.Lw/ so that

(3.9) p�.Lw/ < p0 < min¹2; pº and v 2 Ap=p0.w/:

Then e��Lw 2 O.Lp0.w/ � L2.w//. This fact and (2.3) yield

N w
H f .x/ ≲ sup

t>0

X
j�1

�
�

Z
B.x;t/

ˇ̌
e�t

2Lw .1Cj .B.x;t//f /.z/
ˇ̌2
dw.z/

�1=2
≲ sup

t>0

X
j�1

2j�1‡.2jC1/�2 e�c4
j
�
�

Z
Cj .B.x;t//

jf .z/jp0 dw.z/
�1=p0

≲ Mw
p0
f .x/:

Consequently,

kN w
H f kLp.vdw/ ≲ kM

w
p0
f kLp.vdw/ ≲ kf kLp.vdw/;

since Mw
p0

is bounded on Lp.vdw/ by our choice of p0.

Proof of Proposition 3.2. First of all, fix w 2 A2.dx/ and denote

q� WD p�.Lw/ D q�.Lw/; qC WD qC.Lw/; pC WD pC.Lw/;

and
u.x; t/ WD @te

�t
p
Lwf .x/ D �

p
Lw e

�t
p
Lwf .x/:
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From the definitions of Nw and N w
P (see (1.7) and (2.17)), proceeding as in the proof

of (3.3) we have that

(3.10) Nwu.x/ ≲ N
˛;w

P .
p
Lwf /.x/; 8x 2 Rn;

with ˛ D c0c1. Consequently, Lemma 3.3, and Propositions 3.4 (b) and 2.4 imply

kNwukLp.vdw/ ≲


N w

P .
p
Lwf /




Lp.vdw/

≲ k
p
Lwf kLp.vdw/ ≲ krf kLp.vdw/;

for all p 2 Ww
v .max¹rw ; q�º; pC/ D .rv.w/max¹rw ; q�º; pC=sv.w// and f 2 � .

Our goal is to obtain (3.4) for all

p 2 Ww
v .max¹rw ; .q�/w;�º; pC/ D .rv.w/max¹rw ; .q�/w;�º; pC=sv.w//:

Recall that .q�/w;� < q� (see (2.6)). Hence, fix p such that

rv.w/max¹rw ; .q�/w;�º < p < rv.w/max¹rw ; q�º:(3.11)

Then, in view of inequality (3.10) and Lemma 3.3, if we show that, for all f 2 � ,

N w
P

�p
Lwf

�


Lp;1.vdw/

≲ krf kLp.vdw/;(3.12)

by interpolation, see [11] and Remark 2.1, we would conclude the desired estimate.
Given ˛ > 0, take a function f 2 � . We apply Lemma 2.13 to f , ˛, and the product

weight $ D vw (note that vw 2 Ap.dx/ since rvw � rwrv.w/ < p, see Remark 2.1).
Let ¹Biºi be the collection of balls given by Lemma 2.13. Consider forM 2 N arbitrarily
large,

BrBi WD
�
I � e

�r2Bi
Lw
�M and ArBi WD I � BrBi D

MX
kD1

Ck;M e
�kr2Bi

Lw :

Hence,

(3.13) f D g C
X
i

ArBi bi C
X
i

BrBi bi DW g C
zb C yb:

To prove the weak-type estimates for g, zb and yb, we need some preparations. On the
one hand, since we assume that Ww

v .max¹rw ; q�º; qC/ ¤ Ø, by (3.11) and (2.42) we can
take p1 satisfying

(3.14) rv.w/max ¹rw ; q�º < p1 < min
° qC

sv.w/
; p�vw

±
:

In particular, rv.w/q� < p1 < qC=sv.w/, that is, p1 2Ww
v .q�; qC/. This can be written

as

(3.15) v 2 Ap1=q�.w/ \ RH.qC=p1/0.w/:

On the other hand, take p0 satisfying q� < p0 < min¹2; p1º close enough to q�,
and q0 satisfying max¹2; p1º < q0 < qC close enough to qC, so that

(3.16) v 2 Ap1=p0.w/ \ RH.q0=p1/0.w/:
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Next, note that by (2.3) and from the proof of Theorem 4.20 in [33], for

gwH;tf .z/ WD
� Z 1

t=2

ˇ̌
s2Lwe

�s2Lwf .z/
ˇ̌2 ds
s

�1=2
and for any function h 2 L2.w/, we have that

N w
P h.x/ ≲ N w

H h.x/C
X
l�1

e�c4
l

sup
t>0

�
�

Z
B.x;2lC1t/

ˇ̌
gwH;th.y/

ˇ̌p0
dw.y/

�1=p0
C

Z 1
1=4

e�c� �
2
p
�;w

H h.x/
d�

�
DW N w

H h.x/C
X
l�1

e�c4
l

O2;lh.x/CO3h.x/:

Besides, note that, the fact that e��Lw 2 O.Lp0.w/ � L2.w//, and (2.3) yield

N w
H h.x/ D sup

t>0

�
�

Z
B.x;t/

ˇ̌
e�t

2Lwh.y/
ˇ̌2
dw.y/

�1=2
≲
X
l�1

e�c4
l

sup
t>0

�
�

Z
B.x;2lC1t/

ˇ̌
e�

t2

2 Lwh.y/
ˇ̌p0
dw.y/

�1=p0
≲
X
l�1

e�c4
l

sup
t>0

�
�

Z
B.x;2lC2t/

ˇ̌
e�t

2Lwh.y/
ˇ̌p0
dw.y/

�1=p0
DW

X
l�1

e�c4
l

O1;lh.x/:

Therefore, for any function h 2 L2.w/, we have that

N w
P h.x/ � C

�X
l�1

e�c4
l

O1;lh.x/C
X
l�1

e�c4
l

O2;lh.x/CO3h.x/
�
; 8x 2 Rn:

Using this and (3.13), we get

vw
�°
x 2 Rn W N w

P

�p
Lwf

�
.x/ > ˛

±�
(3.17)

� vw
�°
x 2 Rn W N w

P

�p
Lwg

�
.x/ >

˛

5

±�
C vw

�°
x 2 Rn W N w

P

�p
Lw zb

�
.x/ >

˛

5

±�
C

2X
mD1

vw
�°
x 2 Rn W C

X
l�1

e�c4
l

Om;l

�p
Lw yb

�
.x/ >

˛

5

±�
C vw

�°
x 2 Rn W CO3

�p
Lw yb

�
.x/ >

˛

5

±�
DW IC IIC

2X
mD1

IIIm C IV:

In order to estimate I, first note that p <p1 (see (3.11) and (3.14)). Then, apply Cheby-
shev’s inequality, Propositions 3.4 (b) and 2.4, and properties (2.35)–(2.39), to get
(3.18)

I ≲
1

˛p1

Z
Rn

ˇ̌
N w

P

�p
Lwg

�ˇ̌p1
vdw ≲

1

˛p1

Z
Rn

jrgjp1vdw ≲
1

˛p

Z
Rn

jrf jpvdw:
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Now we estimate II. To this end, apply Chebyshev’s inequality, Propositions 3.4 (b)
and 2.4, and Lemma 2.19. Then,

II ≲
1

˛p1

Z
Rn

ˇ̌
N w

P

�p
Lw zb

�ˇ̌p1
v dw ≲

1

˛p1

Z
Rn

jrzb jp1 v dw(3.19)

≲
1

˛p

Z
Rn

jrf jp v dw:

We next estimate IV. With this aim, we write b D
P
i bi so that yb D b � zb, and note

that

IV � vw
�°
x 2 Rn W CO3

�p
Lw b

�
.x/ >

˛

10

±�
C vw

�°
x 2 Rn W CO3

�p
Lw zb

�
.x/ >

˛

10

±�
DW IV1 C IV2:

In order to estimate IV1, apply Chebyshev’s inequality, Minkowski’s integral inequality,
and Proposition 2.12, to get

IV1 ≲
1

˛p

� Z 1
1=4

e�cu


�

2
p
u;w

H

�p
Lw b

�


Lp.vdw/

du

u

�p
≲

1

˛p



�wH
�p
Lw b

�

p
Lp.vdw/

≲
1

˛p



�w1=2;H
�p
Lw b

�

p
Lp.vdw/

D
1

˛p
kz�wH bk

p

Lp.vdw/
≲

1

˛p
krbk

p

Lp.vdw/

≲
1

˛p

X
i

Z
Bi

jrbi j
p v dw ≲

X
i

vw.Bi / ≲
1

˛p

Z
Rn

jrf jp v dw;

where we have used Proposition 2.20 in the third inequality, Theorem 2.18 in the fourth
inequality, and the last two inequalities follow from (2.37) and (2.38).

As for the estimate of IV2, apply again Chebyshev’s inequality, Minkowski’s inte-
gral inequality and Proposition 2.12. Then, Theorem 3.1 in [12], Proposition 2.4, and
Lemma 2.19 readily give

IV2 ≲
1

˛p1

� Z 1
1=4

e�cu


�

2
p
u;w

H

�p
Lw zb

�


Lp1 .vdw/

du

u

�p1
≲

1

˛p1



�wH
�p
Lw zb

�

p1
Lp1 .vdw/

≲
1

˛p1
krzb k

p1
Lp1 .vdw/

≲
1

˛p

Z
Rn

jrf jp v dw:

Therefore, we conclude that

IV ≲
1

˛p

Z
Rn

jrf jp v dw:(3.20)
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Now, it remains to estimate IIIm, for m D 1; 2. Note that by (2.38),

IIIm � vw
�[

i

16Bi

�
C vw

�°
x 2 Rn n [i16Bi W C

X
l�1

e�c4
l

Om;l

�p
Lw yb

�
.x/ >

˛

5

±�
≲
1

˛p

Z
Rn

jrf jp v dw

C

X
l�1

vw
�°
x 2 Rn n [i16Bi W Om;l

�p
Lw yb

�
.x/ >

ec4
l
˛

C2l

±�
DW

1

˛p

Z
Rn

jrf jp v dw C
X
l�1

IIIm;l :(3.21)

Applying Chebyshev’s inequality, duality, and Hölder’s inequality, it follows that

IIIm;l ≲
e�c4

l

˛p1

Z
Rnn[i16Bi

ˇ̌
Om;l

�p
Lw yb

�ˇ̌p1
v dw

≲
e�c4

l

˛p1

�
sup

kuk
L
p01 .vdw/

D1

X
i

X
j�4

� Z
Cj .Bi /

ˇ̌
Om;l

�p
Lw.BrBi bi /

�ˇ̌p1
v dw

�1=p1
� ku 1Cj .Bi /kLp01 .vdw/

�p1
DW

e�c4
l

˛p1

�
sup

kuk
L
p01 .vdw/

D1

X
i

X
j�4

I
ij

m;l
ku 1Cj .Bi /kLp01 .vdw/

�p1
:(3.22)

Then, for m D 1, we have that

I
ij

1;l
≲
� Z

Cj .Bi /

�
sup

0<t<2j�l�3rBi

�
�

Z
B.x;2lC2t/

ˇ̌
e�t

2Lw
p
Lw.BrBi bi /.y/

ˇ̌p0
dw.y/

�1=p0�p1
� v dw.x/

�1=p1
C

� Z
Cj .Bi /

�
sup

t�2j�l�3rBi

�
�

Z
B.x;2lC2t/

ˇ̌
e�t

2Lw
p
Lw.BrBi bi /.y/

ˇ̌p0
dw.y/

�1=p0�p1
� v dw.x/

�1=p1
DW C1 C C2:

In order to estimate C1, we use functional calculus as in the proof of Theorem 2.18.
Recall (2.70) and take

�.z; t/ WD t z1=2 e�t
2z.1 � e

�r2Bi
z
/M :
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Then �.z; t/ is holomorphic in the open sector †� D ¹z 2 C n ¹0º W jarg.z/j < �º and
satisfies j�.z; t/j≲ jzjM .1C jzj/�2M (with implicit constant depending on �, t > 0, rBi ,
and M ) for every z 2 †�. We can check that for every z 2 � D @†�=2�� ,

j�.z; t/j ≲
t r2MBi

.jzj C t2/MC3=2
�

Now fix x 2 Cj .Bi /, j � 4, and 0 < t < 2j�l�3 rBi , so B.x; 2lC2t / � 2jC2Bi n 2j�1Bi .
This and Minkowski’s integral inequality imply�
�

Z
B.x;2lC2t/

ˇ̌
e�t

2Lw
p
Lw.BrBi bi /.y/

ˇ̌p0
dw.y/

�1=p0
D

�
�

Z
B.x;2lC2t/

ˇ̌̌
�.Lw ; t /

�bi
t

�
.y/
ˇ̌̌p0
dw.y/

�1=p0
≲
Z
�

�
�

Z
B.x;2lC2t/

ˇ̌̌
e�zLw

�bi
t

�
.y/
ˇ̌̌p0
dw.y/

�1=p0 t r2MBi
.jzj C t2/MC3=2

jdzj

≲
Z
�

�
�

Z
B.x;2lC2t/

ˇ̌
12jC2Bin2j�1Bi e

�zLwbi .y/
ˇ̌p0
dw.y/

�1=p0 r2MBi
jzjMC3=2

jdzj

≲
Z
�

Mw
p0

�
12jC2Bin2j�1Bi e

�zLwbi
�
.x/

r2MBi
jzjMC3=2

jdzj:

Recalling that Mw
p0

on Lp1.vdw/ since v 2 Ap1=p0.w/, and applying again Minkowski’s
integral inequality, we get

C1 ≲
Z
�

� Z
Cj .Bi /

ˇ̌
Mw
p0

�
12jC2Bin2j�1Bi e

�zLwbi
�
.x/
ˇ̌p1
v.x/dw.x/

�1=p1 r2MBi
jzjMC3=2

jdzj

≲
Z
�

� Z
2jC2Bin2j�1Bi

ˇ̌
e�zLwbi .y/

ˇ̌p1
v.y/dw.y/

�1=p1 r2MBi
jzjMC3=2

jdzj:

Observe that 2jC2Bi n 2j�1Bi D [3lD1ClCj�2.Bi /.
We next use that e�zLw 2 O.Lp1.vdw/ � Lp1.vdw//, (2.40), and change the vari-

able s into 4j r2Bi =s
2:

C1 ≲ vw.2jC1Bi /
1=p1 2j�1

�
�

Z
Bi

jbi j
p1 d.vw/

�1=p1
�

Z 1
0

‡
�2j rBi
s1=2

��2
e
�c4j r2Bi

=s sr2MBi
sMC3=2

ds

s

≲ ˛vw.2jC1Bi /
1=p1 2�j.2MC1��1/

Z 1
0

‡.s/�2e�cs
2

s2MC1
ds

s

≲ ˛vw.2jC1Bi /
1=p1 2�j.2MC1��1/;

provided 2M C 1 > �2.
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We continue by estimating C2. To this end, first change the variable t into t
p
MC1DW

t�M . Next, for any x 2 Cj .Bi / and t �
2j�1rBi
2lC2�M

, note that

Bi � B.xBi ; �M2
lC2t / DW B li � B.x; �M2

lC25t/

(xBi denotes the center of Bi ). Then,

C2 ≲
� Z

Cj .Bi /

�
sup

t�2j�l�3rBi =�M

�

Z
B.x;�M 2lC2t/

ˇ̌
Tt;rBi

p
Lw e

�t2Lw
�
1Bli bi

�
.y/
ˇ̌p0

� dw.y/
�p1=p0

d.vw/.x/
�1=p1

≲
� Z

Cj .Bi /

�
sup

t�2j�l�3rBi =�M

w.B.x; �M2
lC2t //�1

�

Z
Rn

ˇ̌
Tt;rBi

p
Lwe

�t2Lw
�
1Bli bi

�
.y/
ˇ̌p0
dw.y/

�p1=p0
d.vw/.x/

�1=p1
;

where Tt;rBi WD .e
�t2Lw � e

�.t2Cr2Bi
/Lw /M .

In the above setting, (2.30), Proposition 2.4, the fact that
p
�re��Lw 2 O.Lp0.w/ �

Lp0.w//, (2.3), Lemma 2.2 (a) (see (3.16)), and (2.40) imply� Z
Rn

ˇ̌
Tt;rBi

p
Lwe

�t2Lw
�
1Bli bi

�ˇ̌p0
dw
�1=p0

≲
�r2Bi
t2

�M� Z
Rn

ˇ̌
re�t

2Lw
�
1Bli bi

�ˇ̌p0
dw
�1=p0

≲ 2l
X
N�1

w.CN .B
l
i //

1=p0
�r2Bi
t2

�M�
�

Z
CN .B

l
i /

ˇ̌̌
tre�t

2Lw
�

1Bli
bi

rBi

�ˇ̌̌p0
dw
�1=p0

≲ 2l� w.B li /
1=p0

X
N�1

e�c4
N
�r2Bi
t2

�M�
�

Z
Bli

ˇ̌̌̌
bi

rBi

ˇ̌̌̌p0
dw
�1=p0

≲ 2l� w.B li /
1=p0

�r2Bi
t2

�M�
�

Z
Bi

ˇ̌̌ bi
rBi

ˇ̌̌p1
d.vw/

�1=p1
≲ 2l� w.B li /

1=p0 ˛
�r2Bi
t2

�M
:(3.23)

Consequently,

C2 ≲ 2l� ˛
� Z

Cj .Bi /

�
sup

t�2j�l�3rBi =�M

�r2Bi
t2

�M�p1
v dw

�1=p1
≲ ˛vw.2jC1Bi /

1=p1 2�j2M 2l.2MC�/;

where in the first inequality we have used that w.B.x; �M2lC2t //�1w.B li / � C , since
B li � B.x; �M2

lC25t/.
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Collecting the estimates obtained for C1 and C2, we conclude that, for M 2 N such
that 2M C 1 > �2,

I
ij

1;l
≲ ˛ vw.2jC1Bi /

1=p1 2�j.2M��1/ 2l.2MC�/:(3.24)

Next, let us estimate term I
ij

2;l
. Splitting the supremum in t , we have

I
ij

2;l
≲
� Z

Cj .Bi /

sup
0<t<2j�l�2rBi

�
�

Z
B.x;2lC1t/

�
gwH
p
Lw.BrBi bi /.y/

�p0
dw.y/

�p1=p0
� v dw.x/

�1=p1
C

� Z
Cj .Bi /

sup
t�2j�l�2rBi

�
�

Z
B.x;2lC1t/

�
gwH;t

p
Lw.BrBi bi /.y/

�p0
dw.y/

�p1=p0
� v dw.x/

�1=p1
DW D

ij
1 CD

ij
2 :

Regarding Dij
1 , we claim that

D
ij
1 ≲ ˛vw.2jC1Bi /

1=p1 2�j.2MC1�
z�1/:(3.25)

To this end, first note that for 0 < t < 2j�l�2rBi and x 2 Cj .Bi /, then

B.x; 2lC1t / � 2jC2Bi n 2
j�1Bi :

Next recall that Mw
p0

is Lp1.vdw/ bounded since v 2 Ap1=p0.w/ (see (3.16)). Hence

D
ij
1 ≲

� Z
Cj .Bi /

ˇ̌
Mw
p0

�
12jC2Bin2j�1Bi g

w
H

p
Lw.BrBi bi /

�ˇ̌p1
v dw

�1=p1
≲ vw.2jC1Bi /

1=p1
�
�

Z
2jC2Bin2j�1Bi

ˇ̌
gwH
p
Lw.BrBi bi /

ˇ̌p1
d.vw/

�1=p1
:

In view of (3.16), we can apply Lemma 2.2 (b) and the Minkowski integral inequality
to get

D
ij
1 ≲ vw.2jC1Bi /

1=p1
� Z 1

0

�
�

Z
2jC2Bin2j�1Bi

ˇ̌
rLwr

p
Lwe

�r2Lw
�
BrBi bi .x/

�ˇ̌q0
� dw.x/

�2=q0 dr
r

�1=2
:(3.26)

In order to estimate the integral in x, we use functional calculus as in the estimate of C1.
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Apply the fact that zLwe�zLw 2 O.Lp0.w/�Lq0.w//, Lemma 2.2 (a), and (2.40), to get�
�

Z
2jC2Bin2j�1Bi

ˇ̌
rLwr

p
Lwe

�r2Lw .BrBi bi /
ˇ̌q0
dw
�1=q0

≲
Z
�

�
�

Z
2jC2Bin2j�1Bi

jzLwe
�zLwbi j

q0dw
�1=q0 r2r2MBi

.jzj C r2/MC3=2
jdzj

jzj

≲ 2j
z�1

Z 1
0

‡.s/
z�2 e�cs

2 r2 r2MBi
.4j r2Bi =s

2 C r2/MC3=2
ds

s

�
�

Z
Bi

jbi j
p0 dw

�1=p0
≲ 2j

z�1

Z 1
0

‡.s/
z�2 e�cs

2 r2 r2MBi
.4j r2Bi =s

2 C r2/MC3=2
ds

s

�
�

Z
Bi

jbi j
p1 d.vw/

�1=p1
≲ ˛rBi 2

j z�1

Z 1
0

‡.s/
z�2 e�cs

2 r2 r2MBi
.4j r2Bi =s

2 C r2/MC3=2
ds

s
�

Plugging this into (3.26) and changing the variable r into 2j rBi r , we obtain, for M 2 N

such that 2M > z�2,

D
ij
1 ≲ ˛rBi 2

j z�1vw.2jC1Bi /
1=p1

� Z 1
0

� Z 1
0

‡.s/
z�2 e�cs

2

�
r2 r2MBi

.4j r2Bi =s
2 C r2/MC3=2

ds

s

�2 dr
r

�1=2
≲ ˛vw.2jC1Bi /

1=p1 2�j.2MC1�
z�1/
� Z 1

0

r4
� Z 1

0

‡.s/
z�2 e�cs

2

�
1

.1=s2 C r2/MC3=2
ds

s

�2 dr
r

�1=2
≲ ˛vw.2jC1Bi /

1=p1 2�j.2MC1�
z�1/
�� Z 1

0

r4
dr

r

�1=2 Z 1
0

‡.s/
z�2 e�cs

2

s2MC3
ds

s

C

� Z 1
1

r�2
dr

r

�1=2 Z 1
0

‡.s/
z�2 e�cs

2

s2M
ds

s

�
≲ ˛vw.2jC1Bi /

1=p1 2�j.2MC1�
z�1/:

Now turning to the estimate of Dij
2 , we claim that

(3.27) D
ij
2 ≲ 2l.2MC

z�/ ˛vw.2jC1Bi /
1=p1 2�2jM :

For any t � 2j�l�2rBi and f 2 L2.w/, we have that

gwH;tf .x/ D
� Z 1

t=2

jr2Lwe
�r2Lwf .x/j2

dr

r

�1=2
�

� Z 1
2j�l�3rBi

jr2Lwe
�r2Lwf .x/j2

dr

r

�1=2
:
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Moreover, recall that p0 < q0 (see (3.16)), this implies the boundedness of the maximal
operator Mw

p0
on Lq0.w/. This, together with Lemma 2.2 (b) and Minkowski’s integral

inequality, allows us to obtain

(3.28) Dij
2 ≲ vw.2jC1Bi /

1=p1
�
�

Z
Cj .Bi /

ˇ̌
Mw
p0

�
gwH;2j�l�2rBi

�p
Lw.BrBi bi /

��ˇ̌q0
dw
�1=q0

≲
vw.2jC1Bi /

1=p1

w.2jC1Bi /1=q0

� Z
Rn

� Z 1
2j�l�3rBi

ˇ̌
r2Lwe

�r2Lw
�p
Lw

�
BrBi bi

��ˇ̌2 dr
r

�q0=2
dw
�1=q0

≲
vw.2jC1Bi /

1=p1

w.2jC1Bi /1=q0

� Z 1
2j�l�3rBi =�M

� Z
Rn

ˇ̌
Tr;rBi

p
Lwr

2Lwe
�r2Lw

�
1Bli bi

�ˇ̌q0
� dw

�2=q0 dr
r

�1=2
;

where in the last inequality we have changed the variable r into r�M WD r
p
M C 1, used

that Bi � B.xBi ; �M2
lC1r/ DW B li , for r > 2j�l�3rBi =�M and j � 4 (xBi denotes the

center of Bi ), and we recall that

Tr;rBi WD
�
e�r

2Lw � e
�.r2Cr2Bi

/Lw
�M
:

Proceeding as in the estimate of (3.23), but using now the fact that
p
�r�Lwe

��Lw 2

O.Lp0.w/ � Lq0.w// instead of
p
�re��Lw 2 O.Lp0.w/ � Lp0.w//, we get� Z

Rn

ˇ̌
Tr;rBi

p
Lwr

2Lwe
�r2Lw

�
1Bli bi

�ˇ̌q0
dw
�1=q0

≲ 2l
z� ˛w.B li /

1=q0
�r2Bi
r2

�M
≲ 2l.

z�C2n=q0/ ˛w.2jC1Bi /
1=q0 2�2jn=q0

�r2Bi
r2

�M�n=q0
;

where in the last inequality we have used that for r > 2j�l�3rBi =�M and j � 4, 2jC1Bi �
23B li , and (2.2). Plugging this into (3.28) leads to

D
ij
2 ≲ 2l.

z�C2n=q0/ ˛ 2�2jn=q0 vw.2jC1Bi /
1=p1

� Z 1
2j�l�3rBi =�M

�r2Bi
r2

�2M�2n=q0 dr
r

�1=2
≲ 2l.2MC

z�/ ˛vw.2jC1Bi /
1=p1 2�2jM ;

provided 2M > 2n=q0.
Gather (3.25) and (3.27); then, for M 2 N such that 2M > max¹z�2; 2n=q0º,

I
ij

2;l
≲ 2l.2MC

z�/ ˛vw.2jC1Bi /
1=p1 2�j.2M�

z�1/:

This and (3.24) yield, for 2M > max¹z�2; 2n=q0; �2 � 1º,

I
ij

m;l
� C1˛vw.2

jC1Bi /
1=p1 2�j.2M�C2/; m D 1; 2;
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with C2 WDmax¹�1; z�1º and C1 WD C2lCM . Then, in view of (3.22), applying Lemma 2.17
with Iij D ˛

�1I
ij

m;l
and ¹Biºi the collection of balls given by Lemma 2.13, and (2.38),

for 2M > max
®
C2 C nrwrv.w/; z�2; 2n=q0; �2 � 1

¯
, we get

IIIm;l ≲ e�c4
l

vw
�[

i

Bi

�
≲ e�c4

l 1

˛p

Z
Rn

jrf jp vdw; m D 1; 2:

Therefore, by (3.21),

IIIm ≲
X
l�1

e�c4
l 1

˛p

Z
Rn

jrf jp vdw ≲
1

˛p

Z
Rn

jrf jp vdw:

Collecting this estimate and (3.17)–(3.20), the proof is complete.

4. The regularity problem in unweighted Lebesgue spaces

Our main result, Theorem 1.1, establishes the solvability of the regularity problem in
Lp.vdw/ of the block operator Lw . Recall that w 2 A2.dx/ is fixed and controls the
degeneracy of the operator and that v 2 A1.w/. This means that we can establish the
solvability of the regularity problem in unweighted Lebesgue spaces by taking v D w�1.
In this section, our goal is to explore this idea and study ranges for which we can solve the
regularity problem in terms of the weight w. A particular case of interest, where we can
be more explicit, is that of power weights.

To start with, fix w 2 A2.dx/ and recall the definitions of rw and sw in (2.4). As
just mentioned, we let v D w�1 and observe that from the definitions it is clear that
for every 1 � r < 1 one has w�1 2 Ar .w/ if and only if w 2 RHr 0.dx/, and w�1 2
RHr 0.w/ if and only if w 2 Ar .dx/. Hence, according to (2.13) we have rw�1.w/ D sw
and sw�1.w/ D rw . Then looking at Theorem 1.1 and using (2.14), we see that (1.9) is
equivalent to

(4.1) max¹rw ; q�.Lw/º sw <
qC.Lw/

rw
;

and if that holds we have .RLw /Lp.dx/ solvability for p so that

(4.2) max
°
rw ;

nrw q�.Lw/

nrw C q�.Lw/

±
sw < p <

qC.Lw/

rw
�

It is important to note that q�.Lw/ and qC.Lw/ are defined in an abstract way and depend
intrinsically onw. From Propositions 3.1 and 7.1 in [16] and recalling that n� 2, we know
that q�.Lw/ D p�.Lw/ � 2nrw=.nrw C 2/, hence we have an estimate for q�.Lw/ in
terms of n and rw . On the other hand qC.Lw/ > 2 and can be arbitrarily close to 2 (even
in the case w � 1), and we do not have an explicit bound in terms of w (see the proof
of Theorem 11.8 in [16] in this regard). Taking this into account and in order to check
that (4.1) holds, we will replace its right-hand side with 2=rw .

Our first result for general weights is as follows:
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Corollary 4.1. Letw2A2.dx/ and let Lw be a block degenerate elliptic operator in RnC1C
as in (1.5). Associated with Lw , consider the regularity problem .RLw /Lp.dx/ as in Sec-
tion 1. Given f 2 C1c .R

n/, if one sets u.x; t/ D e�t
p
Lwf .x/, .x; t/ 2 RnC1C , then

(4.3) kNw.rx;tu/kLp.dx/ � Ckrf kLp.dx/

in any of the following scenarios:
(a) If w 2 A1.dx/ \ RH1Cn=2.dx/ and

max
°
1;

n q�.Lw/

nC q�.Lw/

±
sw < p < qC.Lw/;

in particular, in the range

max
°
1;

2 n

nC 4

±
sw < p � 2:

(b) If w 2 Ar0.dx/ \ RH1.dx/ with r0 WD min
®p
2; 1C

p
1C8=n
2

¯
and

max
°
rw ;

nrw q�.Lw/

nrw C q�.Lw/

±
< p <

qC.Lw/

rw
;

in particular, in the range

max
°
rw ;

2nrw

nrw C 4

±
< p �

2

rw
�

(c) If w 2 Ar .dx/ \ RHs.r/0.dx/ with 1 < r < r0 and s.r/ D min¹ 2
r2
; nrC2
nr2
º, and

max
°
rw ;

nrw q�.Lw/

nrw C q�.Lw/

±
sw < p <

qC.Lw/

rw
;

in particular, in the range

max
°
rw ;

2nrw

nrw C 4

±
sw < p �

2

rw
�

(d) Given ‚ � 1, there exists "0 D "0.‚; n; ƒ=�/ 2 .0; 12n �, such that for every w 2
A1C".dx/\ RHmax¹ 2

1�" ;1C.1C"/
n
2 º
.dx/, with 0 � " < "0, and Œw�A2.dx/ � ‚, (4.3)

holds with p D 2, or equivalently .RLw /L2.dx/ is solvable.

Proof. We first consider (a). Let w 2 A1.dx/ \ RH1Cn=2.dx/; then rw D 1 and sw <
.1C n=2/0 D 1C 2=n. Using that q�.Lw/ � 2n

nC2
(since n � 2) we have

max¹rw ; q�.Lw/º sw < max
°
1;

2 n

nC 2

± �
1C

2

n

�
D 2 < qC.Lw/ D

qC.Lw/

rw
�

That is, (4.1) holds and according to (4.2) we have .RLw /Lp.dx/-solvability for p so that

max
°
1;

n q�.Lw/

nC q�.Lw/

±
sw < p < qC.Lw/

and, in particular, in the range

max
°
1;

2 n

nC 4

±
sw < p � 2:
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To prove (b) and (c), let us assume that w 2 Ar .dx/ \ RHs.r/0.dx/ with 1 < r �

min
®p
2; 1C

p
1C8=n
2

¯
and s.r/ D min

®
2
r2
; nrC2
nr2

¯
, and note that the restriction on r gives

s.r/ 2 Œ1;1/. In particular, rw < r , sw � s.r/, and

rw max¹rw ; q�.Lw/º sw � rw max
°
rw ;

2nrw

nrw C 2

±
sw

< max
°
r2;

2 nr2

nr C 2

±
s.r/ D 2 < qC.Lw/:

This implies (4.1) and we have .RLw /Lp.dx/-solvability for p in the range given by (4.2),
and in particular for those p’s satisfying

max
°
rw ;

2nrw

nrw C 4

±
sw < p �

2

rw
�

All these show (b) by taking r D r0 so that s.r/ D 1 and hence sw D 1. Also (c) follows
from the case 1 < r < r0.

To deal with (d), we proceed as in [16], pp. 654–655. There, it is shown that given
‚� 1 there exists "0D "0.‚;n;ƒ=�/2 .0; 12n � such that ifw 2A1C".dx/with 0� "< "0
so that Œw�A2.dx/ � ‚ then 2 rw < qC.Lw/. That is, 2 < qC.Lw/=rw . On the other hand,
if we additionally assume that w 2 RHmax¹ 2

1�" ;1C.1C"/
n
2 º
.dx/, then

sw <
�

max
° 2

1 � "
; 1C .1C "/

n

2

±�0
D min

° 2

1C "
; 1C

2

n .1C "/

±
< min

° 2
rw
; 1C

2

nrw

±
D

2

max
®
rw ;

2nrw
nrwC2

¯ ;
that is,

max
°
rw ;

2nrw

nrw C 2

±
sw < 2:

Altogether we have obtained that max
®
rw ;

2nrw
nrwC2

¯
sw < 2 <

qC.Lw /
rw

. This implies (4.1)
and also that p D 2 satisfies (4.2). Consequently, .RLw /L2.dx/ is solvable as desired.

Concerning power weights, we have the following result.

Corollary 4.2. Consider the power weight wˇ .x/ D jxjn .ˇ�1/ with 0 < ˇ < 2, and
let Lwˇ be the associated block operator

(4.4) Lwˇu.x; t/ D �jxj
�n .ˇ�1/ divx

�
jxjn .ˇ�1/A.x/rxu.x; t/

�
� @2t u.x; t/;

where A is an n � n matrix of complex L1-valued coefficients defined on Rn, n � 2,
satisfying the uniform ellipticity condition (1.1).

Assume that
n

nC 2
� ˇ � min

°p
2; 1C

p
1C8=n
2

±
:

Then for every f 2 C1c .R
n/, if one sets u.x; t/ D e�t

p
Lˇf .x/, .x; t/ 2 RnC1C , then

(4.5) kNwˇ .rx;tu/kLp.dx/ � C krf kLp.dx/;
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for every p satisfying

max
°
1; ˇ;

n q�.Lw/

nC q�.Lw/
;
nˇ q�.Lw/

nˇ C q�.Lw/

±
max¹1; ˇ�1º < p <

qC.Lw/

max¹1; ˇº
�

In particular, in the non-empty range

max
°
1; ˇ;

2 n

nC 4
;
2nˇ

nˇ C 4

±
max¹1; ˇ�1º < p �

2

max¹1; ˇº

provided
n

nC 2
< ˇ < min

°p
2; 1C

p
1C8=n
2

±
:

Moreover, there exists "1 D "1.n;ƒ=�/ 2 .0; 12n / such that if

n

nC 2
< ˇ < 1C "1;

then (4.5) holds with p D 2, or equivalently .RLwˇ /L2.dx/ is solvable.

Proof. Write wˇ .x/ D jxjn .ˇ�1/ with 0 < ˇ < 2 so that wˇ 2 A2.dx/. It is not difficult
to see that

rwˇ D max¹1; ˇº and swˇ D max¹1; ˇ�1º:

Consider first the case 0 < ˇ � 1, so that wˇ 2 A1.dx/, rwˇ D 1, and swˇ D ˇ
�1. If

ˇ � n
nC2

, then

max¹rwˇ ; q�.Lwˇ /º sw �
2 n

nC 2

1

ˇ
� 2 < qC.Lwˇ / D

qC.Lwˇ /

rwˇ
�

Thus (4.1) holds and if n
nC2
� ˇ � 1 we have .RLwˇ /Lp.dx/-solvability for p such that

max
°
1;

n q�.Lwˇ /

nC q�.Lwˇ /

± 1
ˇ
< p < qC.Lwˇ /:

In particular, if n
nC2

< ˇ � 1, the solvability holds in the range max¹1; 2n
nC4
ºˇ�1 < p � 2.

Let us treat the case 1 < ˇ < 2, so that we have rwˇ D ˇ and swˇ D 1. If 1 < ˇ �

min
®p
2; 1C

p
1C8=n
2

¯
, then

rwˇ max¹rwˇ ; q�.Lwˇ /º � max
°
ˇ2;

2nˇ2

nˇ C 2

±
� 2 < qC.Lwˇ /:

This implies that (4.1) holds. Thus, (4.2) yields that if 1 < ˇ �min
®p
2; 1C

p
1C8=n
2

¯
, then

.RLwˇ /Lp.dx/ is solvable in the range

max
°
ˇ;

nˇ q�.Lw/

nˇ C q�.Lw/

±
< p <

qC.Lw/

ˇ
�
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In particular, if 1 < ˇ < min
®p
2; 1C

p
1C8=n
2

¯
, one can solve .RLwˇ /Lp.dx/ for p satis-

fying

max
°
ˇ;

2nˇ

nˇ C 4

±
< p �

2

ˇ
�

Let us finally focus on the .RLwˇ /L2 -solvability. Consider first the case when n
nC2

<

ˇ � 1. Then

max
°
1; ˇ;

2 n

nC 4
;
2nˇ

nˇ C 4

±
max¹1; ˇ�1º D max

°
1;

2 n

nC 4

± 1
ˇ
< 2 D

2

max¹1; ˇº
�

Hence what we have proved so far gives the .RLwˇ /L2.dx/-solvability. To consider the
case ˇ > 1, we first assume that ˇ < 2nC1

2n
so that wˇ 2 A1C1=.2n/.dx/. Note that one

can easily see that there exists ‚ � 1 depending just on n (and independent of ˇ) such
that Œwˇ �A2.dx/ � ‚. Next we repeat the argument given in the proof of Corollary 4.1 to
find the corresponding "0 2 .0; 1=.2n/�, which depends only on n and ƒ=�. Set "1 D "0
and assume that 1 < ˇ < 1C "1 � 2nC1

2n
. Pick "0 > 0 so that 1 < ˇ < 1C "0 < 1C "1.

Hence wˇ 2 A1C"0.dx/ with 0 < "0 < "1 D "0 and we can invoke .d/ in Corollary 4.3 to
conclude the .RLwˇ /L2.dx/-solvability.

Proof of Corollary 1.2. It suffices to observe that the first part is just item (d) in Corol-
lary 4.1. Regarding power weights, setting ˛ D �n.ˇ � 1/ and with a slight abuse of
notation the desired estimate follows at once from Corollary 4.2.
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