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The planar low temperature Coulomb gas:
separation and equidistribution

Yacin Ameur and José Luis Romero

Abstract. We consider planar Coulomb systems consisting of a large number n of
repelling point charges in the low temperature regime, where the inverse temperat-
ure ˇ grows at least logarithmically in n as n!1, i.e., ˇ ≳ logn.

Under suitable conditions on an external potential, we prove results to the effect
that the gas is with high probability uniformly separated and equidistributed with
respect to the corresponding equilibrium measure (in the given external field).

Our results generalize earlier results about Fekete configurations, i.e., the case
ˇ D 1. There are also several auxiliary results which could be of independent
interest. For example, our method of proof of equidistribution (a variant of “Landau’s
method”) works for general families of configurations which are uniformly separated
and which satisfy certain sampling and interpolation inequalities.

1. Introduction

1.1. Main results

Let us briefly recall the setting of the planar Coulomb gas with respect to an external
potential Q in the plane and an inverse temperature ˇ D 1=.kBT / > 0.

The potential Q is a fixed function from the complex plane C to R [ ¹C1º. It is
always assumed thatQ is lower semicontinuous, is finite on some set of positive capacity,
and obeys the growth condition

lim inf
�!1

Q.�/

2 log j�j
> 1:(1.1)

To a plane configuration ¹�j ºn1 �C we then associate the Hamiltonian (or total energy)

Hn D
X
j¤k

log
1

j�j � �kj
C n

nX
jD1

Q.�j /;
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and form the Boltzmann–Gibbs measure on Cn:

(1.2) dPˇn D
1

Z
ˇ
n

e�ˇHn dAn:

(The constant Z ˇ
n is chosen so that Pˇn is a probability measure.)

Here and throughout we use the convention that “dA” denotes the Lebesgue measure
in C divided by � , i.e., dAD 1

�
dxdy. We write dAn for the product measure on Cn, that

is, dAn D .dA/˝n:
A configuration ¹�j ºn1 which renders Hn minimal is known as a Fekete configuration.

In a sense, Fekete configurations correspond to the inverse temperature ˇ D1.
In the paper [5], a related low temperature regime was studied, when the inverse tem-

perature increases at least logarithmically with the number n of particles, i.e.,

(1.3) ˇ D ˇn � c logn;

where c is an arbitrary, but fixed, strictly positive number.
In the present work, we shall find further support for the picture that (1.3) gives a

natural “freezing regime” as the parameter c increases from 0 to1, in the sense that the
system becomes more and more “lattice-like” in this transition.

We now recall some results from classical potential theory that can be found in [33]
and [45], for example. For a given compactly supported Borel probability measure� on C,
we define its logarithmic Q-energy by

IQŒ�� D

Z
C2

log
1

j� � �j
d�.�/ d�.�/C �.Q/;

where �.Q/ is short for
R
Qd�.

Under the above hypotheses, there is a unique probability measure � D �ŒQ� which
minimizes IQ over all compactly supported Borel probability measures, see [45]. This
measure � is known as the equilibrium measure in external potential Q, and its support
S D supp � is called the droplet.

We will assume throughout thatQ is C 2-smooth in a neighborhood of S . This implies
(by Frostman’s theorem) that � is absolutely continuous and takes the form

d� D 1S ��QdA;

where
� WD @@ D

1

4
.@xx C @yy/

is one-quarter of the standard Laplacian. In particular, �Q � 0 on the droplet S .
We remark that the system ¹�j ºn1 tends to follow the equilibrium measure in the fol-

lowing sense. Let Rˇnn .�/ be the usual 1-point intensity function, i.e.,

(1.4) Rˇn
n .�/ D lim

"!0

Eˇn
n .#D.�; "//

"2
�

Here and throughout we use the following terminology: if B is a Borel subset of C, then

#B WD #.B \ ¹�j ºn1/
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denotes the number of particles ¹�j ºn1 that fall in B . Thus #B is an integer-valued random
variable and Rˇn

n .�/ has the meaning of the expected number of particles per unit area
at �. Of course, D.�; "/ denotes the open disc with center � and radius ".

Recall that
1

n
Rˇn dA! � as n!1

in the weak sense of measures, by the well-known Johansson equilibrium convergence
theorem, [33,36]. As noted in Theorem A.1 of [4], the proof of (1.5) for fixed ˇ in [33,36]
works in the present situation if we assume (for example) a uniform lower bound ˇn �
ˇ0 > 0, and if the entropy �.log�Q/ is finite, i.e., we have

(1.5)
1

n
Rˇnn dA! � as n!1

in the weak sense of measures.
In what follows, it is convenient to impose the following (mild) assumptions on Q.
(1) �Q > 0 in a neighborhood of the boundary @S .
(2) The boundary @S has finitely many connected components.
(3) Each boundary component is an everywhere C 1-smooth Jordan curve.
(4) S� D S , where S� is the coincidence set for the obstacle problem associated

with Q. (Concretely, this means that for � 2 C n S ,

Q.�/ > sup¹f .�/ W f 2 FQº;

where FQ denotes the class of subharmonic functions on C that are everywhere
� Q and satisfy f .�/ � log j�j2 CO.1/ as j�j ! 1.)

See e.g. [45] or Section 2 of [4] for details about the obstacle problem associated
withQ. It should be emphasized that some of the previous conditions are assumed merely
for convenience. For example, condition (4) could be avoided by redefining the poten-
tialQ to beC1 outside a small enough neighbourhood of the droplet. Also condition (3)
could be relaxed at the expense of some slight elaborations, but in the end those details
have not seemed interesting enough to merit inclusion in our present work.

Our goal is to study asymptotic properties of random samples ¹�j ºn1 as n!1, in the
low temperature regime (1.3). The properties we have in mind are conveniently expressed
in terms of families of configurations,

� D .�n/
1
nD1;

where the configuration �n D ¹�nj º
n
jD1 is the nth sample in the family. To lighten the

notation, we usually write the nth sample as ¹�j ºn1 rather than ¹�nj ºn1 .
We shall consider such families as picked randomly with respect to the product meas-

ure on
Q1
nD1 Cn,

(1.6) P D
1Y
nD1

Pˇnn ;

which we will likewise call a Boltzmann–Gibbs measure.
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Given a plane configuration �n D ¹�j º
n
1 , we define its (global, scaled) spacing by

(1.7) sn.�n/ WD
p
n �min¹ j�j � �kj W j ¤ k º:

If sn.�n/ � s0 > 0, we say that the configuration is s0-separated. Similarly, a family � is
said to be (asymptotically) s0-separated if

lim inf
n!1

sn.�n/ � s0:

The following theorem improves on a local separation result from [5], and also gener-
alizes a global result for Fekete configurations in [9].

Theorem 1.1 (“Uniform separation”). Let Q be a C 2-smooth potential in a neighbour-
hood of the droplet satisfying (1)–(4). Also suppose that there is a constant c > 0 such
that

(1.8) ˇn � c logn:

Then there exists a constant s0 D s0.c/ > 0 such that almost every family is s0-separated,
i.e.,

(1.9) lim inf
n!1

sn.�n/ � s0; almost surely.

Remark. Our proof shows that (1.9) holds with (for example) s0 D me�3=.2c/, where
m > 0 is a constant (depending only on Q).

Remark. In contrast to Theorem 1.1, the separation result in [5] is local, valid near any
point (bulk or boundary). In the local setting, we may obtain stronger bounds for the
separation constant depending on the strength of the Laplacian at the given point. (In
particular, a substantial improvement is possible near a special point at which �Q D 0.)
Like in [5], we may view Theorem 1.1 as a special case of a separation result valid for
all ˇ, not just for the low temperature regime; see a remark by the end of Section 3. A local
separation theorem for the bulk appeared also in the subsequent article [11] (see part (4)
of Theorem 1 in [11]), depending on very different methods.

We shall find that Theorem 1.1 follows in a succinct way by combining and developing
ideas found in the recent works [4, 5].

Remark. By the Borel–Cantelli lemmas (see [16]), our notion of almost sure convergence
in (1.9) (with respect to P D

Q
Pˇnn ) is equivalent with that

(1.10)
1X
nDn0

Pˇnn .¹ sn.�n/ < s0 º/! 0 as n0 !1:

This differs slightly from several related notions of convergence defined in Tao’s book, see
page 6 in [51]. For example, Tao would say that “the event ¹ sn.�n/ � s0 º holds asymp-
totically almost surely as n!1” if the convergence limn!1 Pˇnn .¹ sn.�n/ < s0 º/ D 0
holds. Likewise, Tao’s notion of “convergence with high probability” is closely related to,
but not quite the same, as (1.10).
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We shall now address equidistribution of random families in the low temperature
regime. For this purpose, it is convenient to impose stronger conditions on our poten-
tials Q: we require in addition to our earlier assumptions that

(5) Q is real-analytic in a neighbourhood of S ,
(6) �Q > 0 in a neighbourhood of S ,
(7) S is connected.

Remark. An important consequence of condition (5) is that it implies that the bound-
ary @S is regular. Indeed, the well-known “Sakai regularity theorem” implies that under (5)
and (6), the boundary @S consists of finitely many analytic Jordan curves, possibly hav-
ing finitely many singular points (cusps or double points) of known types. Such singular
points are precluded by condition (3). We shall freely apply this result in the sequel. We
refer to Section 6.3 in [3], as well as [7, 38], for details about the application of Sakai’s
theorem in the present setting. Sakai’s original result, which was formulated in a some-
what different way, is shown in [30, 46], for example. Finally, it should be noted that the
class of potentials meeting all requirements (1)–(7) is very rich (one can begin with any
element of a vast class of real-analytic functions and redefine it to be C1 near infin-
ity [26, 38]). The paper [38] and the references there contain many interesting examples,
see also [7, 12, 17, 48, 52, 53], for example.

We next recall the notion of Beurling–Landau density of a family � D .�n/n at a
point p in the plane (the “zooming point”). It is advantageous to allow the zooming-point
to vary with n, i.e., p D pn. We then look at the number of particles per unit area that fall
in a microscopic disc about pn of radius L=

p
n, where L > 2 is a (large) parameter.

We now come to the precise definition. Write p D .pn/11 , where pn are any points in
the plane. We define the Beurling–Landau density DBL.�;p/ of � at p by

DBL.�;p/ D lim
L!1

lim sup
n!1

#D.pn; L=
p
n/

L2
D lim
L!1

lim inf
n!1

#D.pn; L=
p
n/

L2
(1.11)

provided that the limits exist, and that the two expressions are indeed equal. (In general,
the two expressions in (1.11) are called upper and lower densities.)

To express our next result, it is convenient to restrict attention to zooming points pn
which converge to some limit p� 2 C, i.e.,

pn ! p� as n!1:

Following [9], we say that .pn/11 belongs to the
• bulk regime if pn 2 IntS for all n and

p
n dist.pn;C n S/!1 as n!1,

• boundary regime if lim supn!1
p
n dist.pn; @S/ <1,

• exterior regime if pn 2 C n S for all n and
p
n dist.pn; S/!1 as n!1.

As in [3], we could also include regimes near singular boundary points, but for reasons
of length we shall here ignore this possibility (cf. assumption (3)).

We can now state our second main result, which generalizes the equidistribution the-
orems for ˇ D1 obtained in [3, 9].
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Theorem 1.2 (“Equidistribution”). Assume thatQ satisfies conditions (1)–(7) and that ˇn
is in the low-temperature regime ˇn � c logn. Then for almost every random family � from
the corresponding Boltzmann–Gibbs distribution, the following holds for every zooming
point p D .pn/:

(i) If p belongs to the bulk regime, then

DBL.�;p/ D �Q.p�/:

(ii) If p belongs to the boundary regime, then

DBL.�;p/ D
1

2
�Q.p�/:

(iii) If p belongs to the exterior regime, then

DBL.�;p/ D 0:

Moreover, in each case, the convergence in L towards the limit that defines the Beur-
ling–Landau density (1.11) is uniform among all zooming sequences in the respective
regimes, and among .almost/ all families �. .See Proposition 1.3 for a more precise
statement./

Remark. We pause to discuss some context and the meaning of our result. Excluding a
zero-probability event, the following is true: given " > 0, there exists L0 > 0 such that for
any family �, any zooming point p and any L � L0,

l � " � lim inf
n!1

#D.pn; L=
p
n/

L2
� lim sup

n!1

#D.pn; L=
p
n/

L2
� l C ";

where l D �Q.p�/, 12�Q.p�/, or 0 depending on the regime of p.
The zooming sequence p D .pn/ is thus allowed to be family-dependent, and pn may

for instance track the region where �n is most concentrated.
A family � which satisfies the conclusion of Theorem 1.2 necessarily has the prop-

erty that the number of points in �n in any disc of radius 1=
p
n is eventually uniformly

bounded (with a bound depending only on Q and c). Thus, such a family is necessar-
ily a finite union of asymptotically separated families, with a fixed upper bound on the
number of them. This indicates that Theorem 1.2 is a low-temperature phenomenon, i.e.,
that a condition such as ˇn ! 1 is needed for the conclusion of the theorem to hold.
Our method of proof uses a nontrivial adaptation of “Landau’s method” of sampling and
interpolating families, and is potentially useful for analyzing more general point-processes
which are “lattice-like” (i.e., slight random perturbations of a deterministic lattice).

An estimate in a somewhat similar spirit as Theorem 1.2 (i), formulated at determin-
istic zooming points in the bulk, is stated in Theorem 1 of [11]. This result, that depends on
very different methods, applies to a more restrictive bulk regime where

p
n dist.pn;C nS/

!1 sufficiently fast. The fact that the densities in Theorem 1.2 hold globally is of interest
since the boundary regime is crucial with respect to freezing problems, see [19] as well as
the comments in Section 7.
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Returning to the issues, let us immediately dispose of part (iii) of Theorem 1.2, while
simultaneously introducing certain concepts and results of central importance for our
exposition.

Following [4], we introduce a random variable, the distance from the droplet to the
vacuum, defined by

Dn.�n/ D max
1�j�n

¹ı.�j /º;

where
ı.�/ D dist .�; S/ :

The recent “localization theorem” in Theorem 2 of [4] implies that under (1.3), there
is a constantM DM.c/ such that almost every random sample � D .�n/ has the property
that �n � SM D SM;n for all large n, where SM is the M -vicinity of the droplet,

(1.12) SM D S CD.0;M=
p
n/ D

°
� I ı.�/ <

M
p
n

±
:

To spell it out explicitly: we have the convergence

(1.13) lim
n0!1

1X
nDn0

Pˇnn
�°
Dn �

M
p
n

±�
D 0:

Using this, part (iii) of Theorem 1.2 follows immediately. Thus there remains only to
prove parts (i) and (ii). This is done in the succeeding sections.

In fact, we shall deduce the following somewhat sharper statement, which clearly
implies parts (i) and (ii) of Theorem 1.2.

Proposition 1.3 (“Discrepancy estimates”). Under the hypothesis of Theorem 1.2, assume
that L � 2.

In the bulk case (i), there exists a deterministic constant C D C.c/ such that, almost
surely,

lim sup
n!1

ˇ̌
#D.pn; L=

p
n/ ��Q.p�/ L

2
ˇ̌
� CL˛; .˛ D 5=3/:(1.14)

In the boundary case (ii), there exists a deterministic constant C D C.c/ such that,
almost surely,

lim sup
n!1

ˇ̌
#D.pn; L=

p
n/ � 1

2
�Q.p�/ L

2
ˇ̌
� CL˛ logL; .˛ D 5=3/:(1.15)

Remark. Similar as for Theorem 1.2, our main point is that the above discrepancy estim-
ate holds at any (family-dependent) sequence p D .pn/11 . Sharper discrepancy estimates
for fixed observation disks that remain sufficiently far away from the boundary of S have
appeared in [44] in the setting of Fekete points. Also, Theorem 1(2) in [11] gives an
estimate in this direction for ˇ-ensembles, in the bulk. On the other hand, we expect the
conclusion of Proposition 1.3 to be false if ˇ remains fixed independently of the number
of particles n. (Related questions about fluctuations in fixed observation discs have also
been studied, for example, in [27].)
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The exact value of the constant ˛ in (1.14) and (1.15) is not important. Any other value
˛ < 2 would have done as well for our purposes, but the choice ˛ D 5=3 turns out to lead
to a particularly smooth and simple exposition. (We do not make any claims about the
optimal value of ˛ here; see Section 7.)

Our two main results on uniform separation and equidistribution reflect different as-
pects of the strong repulsions within the system ¹�j ºn1 which hold at low temperatures.
Indeed, it is easy to see that a family may be equidistributed without being uniformly sep-
arated and vice versa. Moreover, it is a household fact that Landau’s method for proving
equidistribution of a family requires only a weak form of separation, namely that one can
decompose it as a finite union of smaller, uniformly separated families.

Conjecture 1.4. We believe that Theorem 1.1 is sharp in the sense that if almost sure
uniform separation holds for some sequence of inverse temperatures ˇn, then necessarily
ˇn � c logn for some constant c > 0.

Further comparison with other related work is found in Section 7.

1.2. Plan of this paper

In Section 2, we introduce the basic objects of our theory, namely weighted polyno-
mials. We also prove a few basic (pointwise-Lp and gradient) estimates for weighted
polynomials. In Section 3, we prove Theorem 1.1 on uniform separation. In Section 4,
we recall a few facts pertaining to asymptotic properties of the reproducing kernel in
spaces of weighted polynomials equipped with the L2-norm. This kind of asymptotic is
needed for our later implementation of Landau’s method. In Section 5, we formulate suit-
able sampling and interpolation inequalities and prove that a random sample in the low
temperature regime satisfies these inequalities almost surely. In Section 6, we prove the
equidistribution theorem (Theorem 1.2) and the discrepancy estimates in Proposition 1.3.
In Section 7, we compare with other related work and provide some concluding remarks.

Notational conventions

For non-negative functions f; g, we write f ≲ g if there exists a constant C > 0 such
that f � Cg at every point. If f ≲ g and g ≲ f , we write f � g. Generic constants are
denoted C , C1, etc. Their meaning may change from line to line.

The usual complex derivatives are denoted

@ D
1

2
.@x � i@y/ and @ D

1

2
.@x C i@y/:

The symbol � D @@ denotes 1=4 of the standard Laplacian on C.
An unspecified integral

R
f always means

R
f dA except when otherwise is indicated,

where dA D 1
�
dxdy. When f is an integrable function on a disc DR of radius R, we

will systematically denote its average value by

(1.16)
«
DR

f WD
1

R2

Z
DR

f:
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2. Weighted polynomials and their basic properties

In this section, we introduce the fundamental objects of this exposition, namely weighted
polynomials. These are analogous to bandlimited functions in Landau’s setting [37], and
they play a fundamental role in (for example) weighted potential theory [45].

We now come to the definition. Given any admissible potential Q, an integer n, and a
holomorphic polynomial q of degree at most n � 1, we designate by

f .�/ D q.�/ � e�nQ.�/=2

a weighted polynomial of order n. The totality of such weighted polynomials will be
denoted by the symbol Wn.

In random matrix theories (i.e., when ˇ D 1), it is customary to equip Wn with the
norm of L2 D L2.C; dA/. This is natural, since the reproducing kernel of .Wn; k � kL2/

plays the role of a correlation kernel in this case. When studying ˇ-ensembles, it turns out
to often be more natural to equip Wn with the norm in L2ˇ (cf. [4, 5, 20]). In the present
work, we shall exploit both of these possibilities.

It is convenient to begin by proving a few frequently used estimates for weighted
polynomials, starting with the following pointwise-Lp estimate.

Lemma 2.1. Fix numbers p > 0 and s > 0 and suppose that Q is C 2-smooth in a neigh-
bourhood U of a point �0 2 C. Let f be a function of the form f D u � e�nQ=2, where u
is holomorphic in U , and suppose also that �Q �M throughout U . Then for all n large
enough that D.�0; s=

p
n/ � U , we have

jf .�0/j
p
� n �

Cp

s2

Z
D.�0;s=

p
n/

jf jp; where C D eMs2=2:

Proof. Consider the function

F.�/ D jf .�/jp � eMpnj���0j
2=2:

By hypothesis, we have whenever D.�0; s=
p
n/ � U that

� logF � �pn�Q=2CMnp=2 � 0 on D.�0; s=
p
n/:

This makes F (logarithmically) subharmonic on D.�0; s=
p
n/, so

F.�0/ �
n

s2

Z
D.�0;s=

p
n/

F:

In turn, this implies

jf .�0/j
p
� n �

eMps
2=2

s2

Z
D.�0;s=

p
n/

jf jp:

In the following, given a subset � � C and a constant M > 0 we write �M for the
M=
p
n-neighbourhood of �, i.e.,

�M D �CD.0;M=
p
n/:
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Corollary 2.2. Let ƒ be a neighbourhood of the droplet S and assume that Q is C 2-
smooth in a neighbourhood U of ƒ with �Q � M there. Then for each subset � of ƒ
and each 2s0-separated configuration �n D ¹�j º

n
1 contained in �, we have

1

n

nX
jD1

jf .�j /j
p
�
Cp

s20

Z
�s0

jf jp; 8f 2 Wn; 8p > 0;8n � n0;

where C depends only on M and s0, and n0 is chosen with s0=
p
n0 < dist.ƒ;C n U/.

Proof. For each j , by Lemma 2.1,

jf .�j /j
p
� n �

Cp

s20

Z
D.�j ;s0=

p
n/

jf jp; 8f 2 Wn:

Here the discs D.�j ; s0=
p
n/ are pairwise disjoint for j D 1; : : : ; n by virtue of the 2s0-

separation. Hence summing in j proves the desired statement.

Another basic tool is provided by the following “Bernstein type” estimate, see for
example [5, 9, 40]. (We remind that “

ª
” denotes the average value, cf. (1.16).)

Lemma 2.3. Let K be a compact set such that Q is C 2-smooth in a neighborhood U
of K. Pick an integer n0 so that 1=

p
n0 < dist.K;C n U/. Also let f 2 Wn and p 2 K

be such that f .p/ ¤ 0. Then there is a constant C depending only on maxK¹j�Qjº such
that for all n � n0,

jrjf j.p/j � C
p
n

«
D.p;1=

p
n/

jf j:

Proof. Fix an integer n� n0 and a point p 2K, and define a holomorphic polynomialHp
by

Hp.�/ D Q.p/C 2@Q.p/ � .� � p/C @
2Q.p/ � .� � p/2:

A Taylor expansion about � D p gives (for n � n0)

(2.1) n � jQ.�/ � ReHp.�/j � n � j�Q.p/j � j� � pj2 C n � o.j� � pj2/ �M;

when j� � pj � 1=
p
n. The constant M can be chosen independently of the particular

point p 2 K and of n � n0 by choosing a suitable M strictly larger than the maximum
of j�Qj over K.

Now if f D q � e�nQ=2 2 Wn satisfies f .p/ ¤ 0, then by a straightforward computa-
tion,

jrjf j.p/j D jq0.p/ � n@Q.p/ � q.p/je�nQ.p/=2:

(And moreover, jr.jqje�nQ=2/j D 2j@.q1=2 Nq1=2e�nQ=2/j D jq0 � qn@Qje�nQ=2.)
In a similar way, we find that

jr.jqje�nReHp=2/.�/j D
ˇ̌̌ d
d�
.qe�nHp=2/.�/

ˇ̌̌
:
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Inserting � D p, we see that

jrjf j.p/j D
ˇ̌̌ d
d�
.qe�nHp=2/.p/

ˇ̌̌
:

Using a Cauchy estimate, we now find that for each r with 1=.2
p
n/ � r � 1=

p
n,ˇ̌̌ d

d�
.qe�nHp=2/.p/

ˇ̌̌
D

1

2�

ˇ̌̌ Z
j��pjDr

q.�/ e�nHp.�/=2

.� � p/2
d�
ˇ̌̌

�
2n

�

Z
j��pjDr

jqj e�nReHp=2 jd�j:

In view of (2.1), the last expression is dominated by

2n

�
eM=2

Z
j��pjDr

jf .�/j jd�j:

Integrating in r over 1=.2
p
n/ � r � 1=

p
n, we find that

jrjf j.p/j �
4n3=2

�
eM=2

Z 1=
p
n

1=.2
p
n/

dr

Z
j��pjDr

jf .�/j jd�j

� 4eM=2
p
n

«
D.p;1=

p
n/

jf j dA:

The proof of the lemma is complete.

Finally, we recall a (rather weak, but sufficient for our purposes) version of the max-
imum principle of weighted potential theory. See Theorem 2.1 in [45] or Lemma 2.3 in [4]
for proofs and more refined versions.

Lemma 2.4. Let Q be an admissible potential. Then each weighted polynomial f 2 Wn

assumes a global maximum on the droplet S , i.e., kf kL1.C/ D kf kL1.S/.

3. Uniform separation

In this section we prove that low-temperature Coulomb gas ensembles are almost surely
uniformly separated (Theorem 1.1). To this end, we fix a potentialQ satisfying the require-
ments in Theorem 1.1. More specifically, we fix a neighbourhood ƒ of S such that Q is
C 2-smooth in a neighbourhood of the closure ƒ.

At the outset, the inverse temperature ˇ D ˇn can be taken arbitrarily subject only to a
mild constraint such as ˇ � ˇ0 for some fixed constant ˇ0 > 0. The much more stringent
condition ˇn ≳ logn will come into play later in our proof.

We now pick a configuration ¹�kºn1 and associate to it the weighted Lagrange polyno-
mial j̀ 2 Wn given by

j̀ .�/ D lj .�/ � e
�n.Q.�/�Q.�j //=2; lj .�/ D

Y
k¤j

� � �k

�j � �k
�(3.1)

Note that j̀ .�k/ D ıjk .
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We shall in the following regard j̀ .�/ as a random function, depending on the ran-
dom sample �n D ¹�kº

n
1 from Pˇn . These kinds of random functions were systematically

used in the papers [4, 5], and we shall here continue in this direction. (Somewhat related
“Lagrange sections” have been used previously in a context of complex geometry, [20].)

We now introduce random functions of the form

(3.2) Yj;f .�/ WD f .�; �j / � j j̀ .�/j
2ˇ ;

where f is an arbitrary but fixed complex-valued, measurable function on C2, integrable
with respect to the normalized Lebesgue measure dA2.

Finally, we let�1, the “1-point measure”, be the distribution of the random variable �j ,
i.e., �1 is the probability measure on C such that

(3.3) �1.D/ WD Pˇn .¹ �j 2 D º/

for Borel sets D. Of course, �1 is independent of the particular choice of j , 1 � j � n.
(Indeed, the Radon–Nikodym derivative d�1=dA is equal to 1

n
Rˇ
n .)

The following basic lemma generalizes Lemma 2.5 in [4].

Lemma 3.1. The following exact identity holds:

Eˇn

Z
C
Yj;f .�/ dA.�/ D

Z
C2

f .�; �/ .d�1 ˝ dA/.�; �/:

Proof. We can without loss of generality take j D 1.
It is easy to check (as in [4, 5]) that

j`1.�/j
2ˇe�ˇHn.�1;�2;:::;�n/ D e�ˇHn.�;�2;:::;�n/:

Consequently,

Eˇn
n

Z
C
Y1;f .�/dA.�/

D

Z
CnC1

f .�; �1/
1

Z
ˇ
n

j`1.�/j
2ˇe�ˇHn.�1;�2;:::;�n/ dAnC1.�; �1; : : : ; �n/

D

Z
CnC1

f .�; �1/
1

Z
ˇ
n

e�ˇHn.�;�2;:::;�n/ dAnC1.�; �1; : : : ; �n/

D

Z
C2

f .�; �1/ .d�1 ˝ dA/.�; �1/:

Recall that we have fixed a neighbourhood ƒ of the droplet in which Q is C 2-smooth
and strictly subharmonic. As shown in Theorem 3 of [4], the system ¹�j ºn1 is contained
in ƒ with very large probability:

(3.4) Pˇnn
�
¹¹�j º

n
1 6� ƒº

�
� Ce�c1ˇnn;

where C and c1 are positive constants.
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We next claim that if C is any constant with C > 1, then there is n0 large enough so
that when n � n0, we have the following estimate for the conditional expectation of the
average value of j`1j2ˇ over the disc D.�1; 2=

p
n/:

(3.5) Eˇ
n

h «
D.�1;2=

p
n/

j`1j
2ˇ dA

ˇ̌
¹�j º

n
1 � ƒ

i
� C:

To prove this, we put "1 D 2=
p
n and apply Lemma 3.1 with f the indicator function

of the set E.�; "1/ defined by

E.ƒ; "1/ D ¹.�; �1/ I �1 2 ƒ j� � �1j < "1º:

From Lemma 3.1 we have

Eˇ
n

Z
C
Y1;1E.ƒ;"1/.�/ dA.�/ D

Z
ƒ

�1.D.�1; "1// dA.�1/:

Here the right-hand side is simplified by writing �1.D.�; "1// as the convolution �1 �
1D.0;"1/.�/, which gives

R
C �1.D.�1; "1// dA.�1/ D "

2
1. In view of (3.4), we obtain (3.5).

(We also see that C in (3.5) can be chosen arbitrarily close to 1 by choosing n0 large
enough.)

In the following we assume that n0 is large enough thatƒCD.0;3=
p
n0/ is contained

in the set where Q is C 2-smooth, and we take n � n0.
Now fix a large parameter �. By Chebyshev’s inequality and (3.5) (or rather its coun-

terpart with �1 replaced by �j ),

Pˇn
�° «

D.�j ;2=
p
n/

j j̀ .�/j
2ˇ dA.�/ > �

± ˇ̌
¹�kº

n
1 � ƒ

�
� C

1

�
�

A union bound thus gives

(3.6) Pˇn
�°

max
1�j�n

«
D.�j ;2=

p
n/

j j̀ .�/j
2ˇ dA.�/ > �

± ˇ̌
¹�kº

n
1 � ƒ

�
� C

n

�
�

Now assume that ¹�kºn1 � ƒ.
Assuming that ˇ � 1=2, we find by Lemma 2.3 and Jensen’s inequality that for all

� 2 ƒ with f .�/ ¤ 0,

jrjf j.�/j2ˇ ≲ C 2ˇ nˇ
«
D.�;1=

p
n/

jf j2ˇ dA .f 2 Wn/:

Hence, using (3.6), we see that there is a constant C independent of ˇ with ˇ � 1=2 such
that with probability at least 1 � Cn=� we have

(3.7) jrj j̀ j.�/j � Cn
1=2�1=.2ˇ/:

Here (3.7) holds for all � in a neighbourhood of ƒ, with the exception of the finite set of
points at which j j̀ j is not differentiable (namely the points �k with k ¤ j ).
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Now choose j; k 2 ¹1; : : : ; nº with j ¤ k so that the distance j�j � �kj is minimal.
Integrating (3.7) along the straight line-segment  D Œ�j ; �k � between these points, we find

(3.8) 1D jj j̀ .�j /j � j j̀ .�k/jj D
ˇ̌̌ Z



rj j̀ .�/j � .d Re �; d Im �/
ˇ̌̌
� C
p
n�

1
2ˇ j�j � �kj:

(We have here assumed that Q is smooth in a neighbourhood of the segment  . This may
of course be assumed by somewhat shrinking ƒ if necessary.)

Now recall that the spacing of the sample ¹�lºnlD1 is

sn D
p
n � j�j � �kj;

so (3.8) says that sn � ��1=.2ˇ/=C .
We have shown that, with probability at least 1 � Cn=� � Ce�c1ˇn, we have that

sn � ��1=.2ˇ/=C .
Now pick " > 0 and put � D n2C". We then find that, with probability at least 1 �

C1n
�1�" (for some new constant C1),

sn � C2 e
�
.2C"/ logn

2ˇ � C2 e
�
2C"
2c ; if ˇ � c logn:

It follows that if we pick a family � D .�n/n in the low-temperature regime ˇn �
c logn, where c > 0, and if we take

s0 D C2 e
�
2C"
2c ;

then
1X
nDn0

Pˇnn .¹ sn.�n/ < s0 º/ � C1
1X
nDn0

1

n1C"
�

The right-hand side clearly tends to 0 as n0 !1.
We have shown that almost every family is s0-separated, and our proof of Theorem 1.1

is complete.

Remark. Our proof above shows that there are positive constants a and b such that for
all ˇ � 1=2 and all � > 0,

Pˇn .sn � a�
�1=.2ˇ// � 1 � b

n

�
�

For example, choosing �D �nD nmn, wheremn!1 slowly, saymnD logn, we obtain
the result that for fixed ˇ, we have sn � .n logn/�1=.2ˇ/ with large probability if n is large
enough.

4. Further preliminaries: The determinantal case

In this section, we recall a few facts pertinent to the well-studied determinantal case ˇD 1.
Perhaps surprisingly, asymptotic properties of the ˇ D 1 kernel are crucially used in our
subsequent analysis of low temperature ensembles, when ˇn ≳ logn.
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Consider the Coulomb gas ¹�j ºn1 in external field nQ at inverse temperature ˇ D 1.
This is a determinantal process, i.e., the k-point intensity function Rn;k is given by a
determinant:

Rn;k.�1; : : : ; �k/ D det.Kn.�i ; �j //
k
i;jD1;

where Kn.�; �/ is a suitable “correlation kernel”.
In fact, as is well known, Kn may be taken as the reproducing kernel of the space Wn

of weighted polynomials, regarded as a subspace of L2 D L2.C; dA/. (Cf. e.g. [28, 41].)
In the following, we shall always let Kn denote this canonical correlation kernel.

Similar as in the earlier works [3, 9], we shall discuss asymptotic properties for the
one-point function

Rn.�/ D Kn.�; �/

as well as some off-diagonal estimates pertaining to the Berezin kernel

Bn.�; �/ D
jKn.�; �/j

2

Kn.�; �/
�

4.1. Scaling limits and the lower bound property

The following result will be crucial for our subsequent usage of sampling and interpolation
inequalities. As always, we use the symbol SM to denote the M=

p
n-neighbourhood of

the droplet S ,
SM D S CD.0;M=

p
n/:

Theorem 4.1. Let Q be an external potential.

(a) If Q is C 2-smooth in a neighbourhood of the droplet, then there exists a con-
stant C such that

sup
�2C

Rn.�/ � C � n:

(b) If Q is real-analytic and strictly subharmonic in a neighbourhood of S , and if @S
is everywhere regular, then for any M � 0 there is a constant cM > 0 such that

inf
�2SM

Rn.�/ � cM � n:

Let us briefly recall the proof of (a), which follows from the identity (a general prop-
erty of reproducing kernels [24])

(4.1) Kn.�; �/ D sup¹ jf .�/j2 I f 2 Wn; kf k � 1 º:

Recalling that jf .�/j2 � Cnk f k2 for each f 2 Wn by Lemma 2.1, we finish the
proof of (a).

Our proof of the “lower bound property” (b) is more subtle and requires some prepar-
ation.

Remark. The validity of a property closely related to (b) was taken as an assumption
in [3] (“universally translation-invariant property”), while here (b) is shown to be a con-
sequence of the general assumptions on Q.
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Our proof of (b) uses an a priori knowledge of all possible subsequential scaling limits,
which will be of frequent use in the sequel. To define these limits, we recall the standard
procedure for taking microscopic limits in planar Coulomb gas ensembles.

Given any sequence .pn/ (pn 2 SM ), we consider the magnification (or blow-up)
about pn, by which we mean the mapping

(4.2) �n W � 7�! z; z D �n.�/ D
p
n�Q.pn/ � .� � pn/ � e

�i�n :

Here the angular parameter �n 2 R can be chosen arbitrarily, according to convenience.
(Note that by assumption (6) we have the estimate �Q.pn/ � c1 for some positive c1
depending only on Q.)

The rescaled system ¹zj ºn1 , where zj D �n.�j /, is a new determinantal process with
correlation kernel

(4.3) Kn.z; w/ D
1

n�Q.pn/
Kn.�; �/; z D �n.�/; w D �n.�/:

Following the convention in [6], we denote by italic symbols objects pertaining to the
rescaled process. In particular, we write

Rn.z/ D Kn.z; z/ and Bn.z; w/ D
jKn.z; w/j

2

Kn.z; z/

for the 1-point function and the Berezin kernel rooted at z, respectively.
We shall use throughout the symbol G for the usual Ginibre kernel,

G.z;w/ D e z Nw�jzj
2=2�jwj2=2;

and we say that a function L.z;w/ is “Hermitian-entire” if it is Hermitian (i.e., L.z;w/D
L.w; z/) and entire as a function of z and of Nw.

We remind that a Hermitian function c is called a cocycle if it takes the form c.�; �/D

g.�/g.�/, where g is continuous and unimodular. It is a basic fact of determinantal point-
processes that a correlation kernel is only determined “up to cocycle”, namely if K is a
correlation kernel, then cK is another one.

The following lemma follows from Lemma 2 in [7].

Lemma 4.2. Suppose that Q is real-analytic and strictly subharmonic in a neighbour-
hood of the closure of a subset� � C, and suppose pn 2�. Then there exists a sequence
of cocycles cn so that each subsequence of the rescaled kernels .cnKn/11 has a further
subsequence converging locally uniformly on C2 to a limiting kernel K of the form

K.z;w/ D G.z;w/ � L.z;w/;

where L is some Hermitian entire function called a “holomorphic kernel”.

Remark on the proof. (Cf. Lemma 2 in [7].) The existence of suitable limiting kernels is
shown using a standard normal families argument in [6]. We note that the real-analyticity
of Q in � is crucially used in this argument, which otherwise works exactly in the same
way irrespective of whether the point pn is fixed or n-dependent, and whether the angle
parameter �n is n-dependent or not.
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A subsequential limit K D GL in Lemma 4.2 is the correlation kernel of a unique
limiting determinantal point field ¹zj º11 (see e.g. [49]). This limit in turn is determined by
the limiting 1-point function

R.z/ D limRnk .z/ D L.z; z/:

For example, if .pn/ is in the bulk regime, we obtain thatR� 1, which is characteristic for
the usual infinite Ginibre ensemble (with correlation kernel G). This universal bulk-limit
follows from well-known (“Hörmander-type”) estimates, see e.g. Theorem 5.4 in [6], and
in particular is independent of choice of angle-parameters �n in (4.2).

If the zooming points .pn/ are in the boundary regime, the microscopic behaviour can
be described in terms of the erfc-kernel L.z;w/ D F.z C Nw/, where F is the function

(4.4) F.z/ D
1
p
2�

Z 0

�1

e�.z�t/
2=2 dt D

1

2
erfc

� z
p
2

�
:

We now fix the angle-parameters �n appropriately. For this, assume that the bound-
ary @S consists of finitely many C 1-smooth Jordan curves.

Consider for each (large) n the unique point qn 2 @S that is closest to pn. We choose �n
so that e i�n is the outwards unit normal to @S at qn.

We can further assume (by passing to a subsequence if necessary) that the limit

(4.5) l D lim
n!1

p
n�Q.pn/ � .pn � qn/ � e

�i�n

exists.

Figure 1. The density profiles x 7! F.2x C 2l/ with l D �2 (left) and l D 1 (right).

Theorem 4.3. Suppose that Q is real analytic and strictly subharmonic in a neighbour-
hood of the droplet.

(A) If .pn/ is in the bulk regime, then there is a unique limiting 1-point function,
namely R � 1.

(B) Suppose that S is connected and that the boundary @S is everywhere smooth.
Then if .pn/ is in the boundary regime and the limit (4.5) holds, there is also a
unique limiting 1-point function, namely

R.z/ D F.z C Nz C 2l/:
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In the language of point-processes, the theorem says that the n-point process ¹zj ºn1
converges to the point field with correlation kernel K D G in case (A), and K D Kl in
case (B), where

(4.6) Kl .z; w/ D G.z;w/F.z C Nw C 2l/:

These kernels interpolate between the Ginibre kernelG at l D�1 and the trivial kernel 0
at l D C1. Figure 1 shows the corresponding density profile R.x/ D Kl .x; x/ for a few
specific values of l .

Proof. Part (A) has already been proved above, and (B) follows immediately from the
leading term of the edge-asymptotic theorem in [34] (or rather, by its counterpart for
n-dependent zooming points pn). See also [35], which concerns simply-connected drop-
lets (while [34] applies to multi-connected ones).

Proof of Theorem 4.1(b). If the conclusion of part (b) fails, then there must be a se-
quence .pn/, where pn 2 SM for each n, and a subsequence nk of positive integers
such that limk!1

1
nk

Rnk .pnk / D 0. Rescaling about pn as above, we then find that
limk!1Rnk .0/ D 0. This contradicts Theorem 4.3.

4.2. Some auxiliary estimates

A frequently useful property of the Ginibre kernel is its Gaussian off-diagonal decay:

(4.7) jG.z;w/j2 D e�jz�wj
2

:

For the kernels Kl in (4.6), there is also off-diagonal decay, albeit much slower.

Lemma 4.4. There is a constant C , independent of l 2 R and z; w 2 C, such that

jKl .z; w/j � C
e�jRe.z�w/j2=2

1C j Im.z � w/j
�

Proof. The lemma follows from the proof of Lemma 8.5 in [9]; it is convenient to recall
the argument in some detail. We start with the observation that

jKl .z; w/j
2
D e�jz�wj

2

jF.z C Nw C 2l/j2:

Now write z C Nw C 2l D aC ib, where a D Re.z C Nw C 2l/ and b D Im.z � w/.
By Cauchy’s theorem, we have F.z/ D 1p

2�

R z
�1

e�u
2=2 du, where we may choose

any suitable contour of integration connecting �1 to the point z. We choose the contour
 D .�1; a� [ Œa; aC ib� and find

jF.z C Nw C 2l/j �
ˇ̌̌ 1
p
2�

Z a

�1

e�u
2=2 du

ˇ̌̌
C

ˇ̌̌ 1
p
2�

Z aCib

a

e�u
2=2 du

ˇ̌̌
� F.a/C

ˇ̌̌ e�a2=2
p
2�

Z b

0

e�iatCt
2=2 idt

ˇ̌̌
� 1C

e�a
2=2Cb 2=2

p
2�

�D
� b
p
2

�
;
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where D.x/ is Dawson’s integral,

D.x/ D e�x
2

Z x

0

e t
2

dt:

We have shown that

(4.8) jKl .z; w/j � e
�jz�wj2=2

C
e�ŒRe.z�w/�2=2

p
2�

�D
�
j Im.z � w/j
p
2

�
:

We next use the asymptotic

(4.9) D.x/ D
1

2x
CO

� 1
x3

�
as x !1;

see e.g. [50], p. 406. Together with (4.8), this implies

jz � wj � jKl .z; w/j

� jz � wj � e�jz�wj
2=2
C jRe.z�w/j � e�ŒRe.z�w/�2=2 1

p
2�
�D
�
j Im.z�w/j
p
2

�
C e�ŒRe.z�w/�2=2

� j Im.z � w/j �D
�
j Im.z � w/j
p
2

�
� C1(4.10)

with a large enough absolute constant C1 (independent of z; w, and l).
Combining the estimates (4.8), (4.9) and (4.10), we finish the proof.

Recall that a set E � C is said to have finite perimeter if its indicator function 1E has
bounded variation, and in this case we define

perimE D var 1E

(see e.g. [25], Section 5). This is the same as the linear Hausdorff measure [29] of the
measure theoretic boundary of E. In our subsequent applications, the set E will have
a piecewise smooth boundary, so the practical-minded reader may think of the usual
arclength. We will also denote by jEj D

R
E
dA the normalized Lebesgue measure of E.

We shall now estimate two integrals that come in naturally in connection with our
method for proving equidistribution (cf. also [3, 9]). We will use the notation logC t D
max¹0; log tº.

Lemma 4.5. Let E be a bounded measurable subset of C with finite perimeter. There is
then a universal constant C such thatZ

E

Z
CnE
jG.z;w/j2 dA.z/ dA.w/ � C � perimE;(4.11) Z

E

Z
CnE
jKl .z; w/j

2 dA.z/ dA.w/ � C � perimE �
�
1C logC jE j

perimE

�
:(4.12)
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Proof. We shall use the following estimate for regularization with an integrable convolu-
tion kernel  WC ! R:

k 1E �  � .s  / � 1E kL1.dA/ � perimE �

Z
C
jzj j .z/j dA.z/:(4.13)

A proof of (4.13) under the assumption that s  D 1 can be found, e.g., in Lemma 3.2
of [1], while the general case follows by homogeneity.

To prove (4.11), we take  .z/ WD e�jzj
2

and C1 WD
R
jzj .z/ dA.z/. Then (4.7)

and (4.13) giveZ
E

Z
CnE
jG.z;w/j2dA.z/dA.w/ D

Z
CnE

h Z
E

 .z�w/ dA.w/�.s  / � 1E .z/
i
dA.z/

� k 1E �  � .s  / � 1E k1 � C1 � perimE:

For (4.12), we select R � 1 and set

 .z/ WD
e�jRe.z/j2

.1C j Im.z/j/2
and  R.z/ WD  .z/ � 1j Im.z/j�R.z/:

By Lemma 4.4,Z
E

Z
CnE
jKl .z; w/j

2 dA.z/ dA.w/ ≲
Z
E

Z
CnE

 R.z � w/ dA.z/ dA.w/

C

Z
E

Z
CnE

. �  R/.z � w/ dA.z/ dA.w/:

The first term is bounded, as before, by

perimE �

Z
C
jzj R.z/ dA.z/ ≲ log.1CR/ � perimE:(4.14)

Another elementary estimate shows that

(4.15)
Z
E

Z
CnE

. � R/.z �w/dA.z/dA.w/� jEj �

Z
j Im zj>R

 .z/dA.z/≲
jEj

1CR
�

If jEj � 2 � perimE, choosing R C 1 D jEj=perimE � 2 and adding (4.14) and (4.15)
yields (4.12). On the other hand, if jEj � 2 � perimE, then (4.12) is trivially true, sinceZ

E

Z
CnE
jKl .z; w/j

2 dA.z/ dA.w/ ≲ .s  / � jEj ≲ perimE:

This completes the proof.

We remark that the estimate (4.11) is sometimes called an “area law”. (Compare, e.g.,
with Theorem 1.2 in [21].)
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5. Sampling and interpolation

We now state and prove the main result on random sampling and interpolation with Cou-
lomb systems. Throughout this section, we assume that our external potential satisfies
assumptions (1)–(7) and, in addition, that we are in the low temperature regime

ˇn � c logn

for some fixed c > 0. As usual, � D .�n/n denotes a random sample from the correspond-
ing Boltzmann–Gibbs distribution, and we write �n D ¹�j º

n
1 .

Theorem 5.1. Fix a failure probability ı 2 .0; 1/ and a bandwidth margin  > 0. Then
there are positive constants AD A.c/,M DM.c/ and s D s.c/ .independent of ı and /
and n0 D n0.c; ı; / such that, with probability at least 1 � ı, the following properties
hold simultaneously for all n � n0.
� (Width):

¹�kº
n
1 � SM D S CD.0;M=

p
n/;(5.1)

� (Separation): ¹�j ºn1 is 2s-separated, i.e.,

sn.¹�j ºn1/ D
p
n �min

®
j�j � �kj I j ¤ k

¯
� 2s:(5.2)

� (Interpolation): For each � � 1 C  and each sequence of values .aj /njD1 2 Cn,
there exists an element f 2 Wn� such that

(5.3) f .�j / D aj ; j D 1; : : : ; n;

and

(5.4)
Z

C
jf j2 �

A

n.� � 1/2

nX
jD1

jaj j
2:

� (Sampling): For each 0 < � � 1�  , the following Marcinkiewicz–Zygmund inequality
holds:

(5.5)
Z
S2M

jf j2 �
A

n.1 � �/2

nX
jD1

jf .�j /j
2; f 2 Wn�:

Remark. To avoid some uninteresting technicalities, we assume throughout that � in
(Interpolation) and (Sampling) is such that n� is an integer. This is easiest to achieve
by allowing � D �n to depend slightly on n.

Remark. The usual intuition (going back to Landau) is that the interpolation property
implies that a family is “sparse”, while the sampling property implies that it is “dense”.
The localization near the droplet accounts for the fact that the L2-norm in (5.5) is only
taken over the vicinity S2M of the droplet. To wit, the density of the Coulomb gas is
very small outside SM if M is large, which is reflected by the fact that the value of our
constant A in (5.5) satisfies A!1 as M !1. This technical obstacle does not occur
for the interpolation inequality (5.4), since the sparseness outside SM is (almost surely)
immediate for large M , in view of the localization property (1.13).
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Proof of Theorem 5.1. Step 1. Preparations. Fix some bounded neighborhood U of the
droplet and consider the random variables

Xj D

Z
U

j j̀ j
2ˇ dA;

where j̀ 2 Wn is the weighted Lagrange polynomial associated with ¹�kºn1 as in (3.1).
Taking f .�; �j / D 1U .�j / in Lemma 3.1, we have Eˇ

n .Xj / D jU j, whence

Eˇ
n

� nX
jD1

Xj

�
D C1n; where C1 D jU j:

Using Chebyshev’s inequality we obtain

Pˇn
�° nX

1

Xj > �
±�
� C1

n

�
�(5.6)

Now recall, by Lemma 2.1, that for some constant C2 we have the inequality

kf k
2ˇ

L1.S/
� C

2ˇ
2 n � k f k

2ˇ

L 2ˇ .U /
.f 2 Wn/:

Hence, by Lemma 2.4,

kf k2ˇ1 � C
2ˇ
2 n � k f k

2ˇ

L 2ˇ .U /
.f 2 Wn/:

Applying this to f D j̀ and summing in j we obtain

nX
jD1

k j̀ k
2ˇ
1 � C

2ˇ
2 n

nX
jD1

Xj :

Hence, by (5.6),

Pˇn
�° nX

jD1

k j̀ k
2ˇ
1 > C

2ˇ
2 n�

±�
� C1

n

�
�

Choosing � D n3, we find that

Pˇn
�°

max
1�j�n

k j̀ k1 > C2n
2=ˇ

±�
�
C1

n2
�

Since ˇ � c logn,
n2=ˇ � e2=c ;

and we conclude that there is a constant A D A.c/ such that for all n,

(5.7) Pˇn
�®

max
1�j�n

k j̀ k1 > A
¯�
<
C1

n2
�
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Let us fix a small failure probability ı > 0. By (5.7) and the Borel–Cantelli lemma,
there exists n0 D n0.ı/ such that with probability at least 1� ı=2 we have, for all n� n0,

(5.8) max
1�j�n

k j̀ k1 � A:

By Theorem 1.1 and (1.13), n0 can be chosen so that, in addition, with probability at
least 1 � ı=2 the properties (width) and (separation) are satisfied for adequate constants,
so that all three properties (width), (separation) and (5.8) hold with probability at least
1 � ı when n � n0. By suitably enlarging n0 (depending on  ), we further assume that

(5.9) n0 �
4


�

Fix n � n0 and a configuration ¹�j ºn1 for which (width), (separation) and (5.8) hold.
Let us verify the remaining properties (interpolation) and (sampling).

Step 2. .The Coulomb gas as an interpolating family/. Let us choose a number � �
1C  and write � D 1C 2". We may assume that n" is an integer. By (5.9), n0 � 2=".
Take n � n0 and let Kn" be the reproducing kernel of the space Wn" (equipped with the
norm of L2).

We form new weighted polynomials Lj 2 Wn� by multiplying with a localizing factor
as follows:

Lj .�/ D
� Kn".�; �j /

Kn".�j ; �j /

�2
� j̀ .�/:

In view of Theorem 4.1(b) and the assumption ¹�j ºn1 � SM , there is a constant c1 > 0
(independent of ") such that

(5.10) Kn".�j ; �j / � c1n"; j D 1; : : : ; n:

Likewise, by Theorem 4.1(a) there is a uniform upper bound

(5.11) Kn".�; �/ � c2n"; .� 2 C/:

Now recall the Berezin kernel Bn".�j ; �/,

Bn".�j ; �/ D
jKn".�j ; �/j

2

Kn".�j ; �j /
�

This is a probability density in �, i.e.,
R

C Bn".�j ; �/ dA.�/ D 1, and we have, by (5.8)
and (5.10), that

(5.12) jLj .�/j D
Bn".�j ; �/
Kn".�j ; �j /

j j̀ .�/j �
A

c1n"
Bn".�j ; �/;

and hence

(5.13) kLj k1 �
C

n"
;

where C is independent of n, j , and ".
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Next write Kn";� 2 Wn" for the reproducing kernel,

Kn";� .�/ D Kn".�; �/:

Using in turn: (5.12) and the lower bound (5.10), the uniform separation (5.2) and
Corollary 2.2, the reproducing property, and the upper bound (5.11), we find for all � 2 C,

nX
jD1

jLj .�/j �
C1

"2n2

nX
jD1

jKn";� .�j /j
2
�
C2

"2n

Z
C
jKn";� .�/j

2 dA.�/

D
C2

"2n
Kn".�; �/ �

C

"
�

(5.14)

Now define a linear operator T WCn ! .L1 C L1/.C/ by

T .a/ D

nX
jD1

ajLj ; a D .aj /
n
1 2 Cn:

Then by (5.13) and (5.14),

(5.15) kT k`1n!L1 � max
1�j�n

kLj k1 �
C

"n
;

while

(5.16) kT k`1n !L1 �
 nX
jD1

jLj j

1
�
C

"
�

An application of the Riesz–Thorin theorem gives

kT k`2n!L2 �
C

"
p
n
�

If we set f D T .a/, this means that f 2 Wn� satisfies f .�j / D aj for all j andZ
C
jf j2 dA �

C 2

"2n

nX
jD1

jaj j
2
�

C3

.� � 1/2n

nX
jD1

jaj j
2;

which proves (5.4).
Step 3. .The Coulomb gas as a Marcinkiewicz–Zygmund family/. Let us choose 0 <

� � 1 �  and write � D 1 � 2", where we again may assume that n" is an integer.
For fixed � 2 S2M and f 2 Wn�, we define a weighted polynomial g� 2 Wn by

g� .�/ D f .�/ �
�Kn".�; �/

Kn".�; �/

�2
:

For any element of Wn, we have the Lagrange interpolation formula

g� .�/ D
X
jD1

g� .�j / � j̀ .�/:
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Putting � D �, this gives

(5.17) f .�/ D g� .�/ D

nX
jD1

f .�j / � QLj .�/;

where
QLj .�/ D

�Kn".�j ; �/

Kn".�; �/

�2
� j̀ .�/:

The lower bound in Theorem 4.1 gives that there is a constant c1 D c1.M/ > 0 such that

Kn".�; �/ � c1n" when � 2 S2M :

Combining this with the estimate in (5.8), we find that

j QLj .�/j �
A

.c1n"/2
jKn".�; �j /j

2 .� 2 S2M /:

The reproducing propertyZ
Kn".�

0; �/Kn".�; �
00/ dA.�/ D Kn".�

0; �00/

thus gives Z
S2M

j QLj .�/j dA.�/ �
A

.c1n"/2

Z
S2M

jKn".�; �j /j
2 dA.�/

�
A

.c1n"/2
Kn".�j ; �j / �

C1

n"
;

where we again used the uniform upper bound (5.11) to obtain the last inequality.
We now put

QF .�/ D

nX
jD1

j QLj .�/j

and observe that (by Corollary 2.2, which is applicable due to the uniform separation
of ¹�j ºn1)

QF .�/ �
A

.c1n"/2

nX
jD1

jKn";� .�j /j
2
�

C1A

c21 "
2n

Z
C
jKn";� j

2
D

C1A

c21 "
2n

Kn".�; �/ �
C

"
;

by virtue of the upper bound (5.11).
Consider the linear operator QT WCn ! .L1 C L1/.S2M / given by

QT .a/ D

nX
jD1

aj QLj :

The above estimates show that

k QT k`1n!L1.S2M / �
C

"n
and k QT k`1n !L1.S2M / �

C

"
;
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so by the Riesz–Thorin theorem,

k QT k`2n!L2.S2M / �
C

"
p
n
�

By (5.17), any f 2 Wn� can be represented as f D QT .c/, where aj D f .�j / for j D
1; : : : ; n. Hence,Z

S2M

jf j2 �
C 2

"2n

nX
jD1

jf .�j /j
2
�

C3

.1 � �/2n

nX
jD1

jf .�j /j
2:

This proves (5.5), thus finishing our proof of Theorem 5.1.

Remark. While our main focus here is on the analysis of random configurations, the
above proof of Theorem 5.1 also applies to deterministic configurations and shows that the
conclusions hold under suitable separation and density properties as in Theorem 1.1 and
Theorem 1.2, as these lead to the bounds for Lagrange polynomials in (5.8). An infinite
dimensional counterpart of such result is found in [14]; see also [47].

6. Equidistribution

In this section we prove Theorem 1.2 and Proposition 1.3. As in [3, 9], we largely fol-
low Landau’s strategy from his work [37] on interpolation and sampling in Paley–Wiener
spaces, but with certain basic modifications due to the localization to the vicinity of the
droplet.

Throughout this section, we fix a potential Q satisfying all the assumptions (1)–(7).
We will write

hf ; g i D

Z
C
f Ng dA

for the inner product in the space L2 D L2.C; dA/. We shall regard the space Wn of
weighted polynomials as a subspace of L2.

6.1. Concentration operators

Given a domain � � C, the corresponding “concentration operator” Tn;� is the Toeplitz
operator on Wn defined by

Tn;�f D PWn.f � 1�/; .f 2 Wn/;(6.1)

where PWn is the orthogonal projection of L2 onto Wn. Thus Tn;� is a (strictly) positive
contraction, and we can write its eigenvalues in non-increasing order as

1 � �1 � �2 � � � � � �n > 0:

Lemma 6.1. Fix a number # , 0 < # < 1. Thenˇ̌
#¹ j I�j � # º � traceTn;�

ˇ̌
� max

®
1
#
; 1
1�#

¯
�
�

traceTn;� � traceT 2n;�
�
:
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Proof. Observe that

#¹ j I �j � # º � traceTn;� D trace .Tn;�/;

where

 .t/ WD

²
�t; if 0 � t < #;
1 � t; if # � t � 1;

and use the estimate j .t/j � max¹ 1
#
; 1
1�#
º.t � t2/ for t 2 Œ0; 1�.

In the following, we shall consider blow-ups about (perhaps n-dependent) points pn.
The following lemma will come in handy. (See [7] for related statements, valid near
cusps.)

Lemma 6.2. Let pn 2 @S be a boundary point and let e i�n be the direction of the normal
of @S at the point pn, pointing outwards from S . Fix a parameter � with 0 < � < 2 and
let �n� be the corresponding magnification map:

(6.2) �n� W � 7�! z; z D �n�.�/ D
p
n��Q.pn/ � e

�i�n � .� � pn/:

Then for each (large)C > 0, the indicator function 1�n�.S/\D.0;C/ converges to 1L\D.0;C/

in the norm of L1, where L is the left half-plane, L D ¹z I Re z � 0º.

Proof. Recall that our assumptions on Q imply (via Sakai’s theory) that the boundary @S
is everywhere real-analytic.

We may assume that pn D 0 and �n D 0, i.e., that the boundary @S is tangential to the
imaginary axis at 0. There is then an " > 0 such that the portion of @S inside D.0; "/ is
given by a graph

u D c2v
2
C c3v

3
C � � � ; � D uC iv 2 .@S/ \D.0; "/:

Writing z in (6.2) as z D x C iy, we see that the image of the curve .@S/ \D.0; "/ is

x D c02n
�1=2y2 C c03n

�1y3 C � � �

for suitable coefficients c02; c
0
3; : : : Now fix a large C > 0 and consider the set

Sn;C D D.0; C / \ �n�.S/ D ¹ z 2 D.0; C / I x � c
0
2n
�1=2y2 C c03n

�1y3 C � � � º:

It is clear that 1Sn;C converges to 1D.0;C/\¹x�0º in the norm of L1.

We will also need an asymptotic description of the quantities in Lemma 6.1. The fol-
lowing lemma is essentially found in Lemmas 4.1 and 4.2 of [3], but we shall supply some
extra details about the proof.

Lemma 6.3. Fix a sequence p D .pn/11 which belongs to SM D S CD.0;M=
p
n/ for

some M > 0. Assume that the limit p� D limpn exists (along some subsequence). Also
fix numbers L � 2 and � with 0 < � < 2, and consider the concentration operator T D
T .�; n; pn; L;M/ defined by

T D T�n;� W W�n ! W�n; Tf D PWn�.f � 1�/; � D D.pn; L=
p
n/ \ SM :



Y. Ameur and J. L. Romero 638

Then .along a further subsequence/,

lim
n!1

traceT D

´
� ��Q.p�/ � L

2 in the bulk case,
�
2
��Q.p�/ � L

2 CO.L/ in the boundary case,

and

lim
n!1

trace.T � T 2/ D

´
O.L/ in the bulk case,
O.L logL/ in the boundary case,

where the implied constants depend only on Q and M .

Proof. By passing to a suitable subsequence, we can assume that .pn/ is either in the bulk
regime or in the boundary regime, and that the limit

(6.3) l D lim
n!1

p
n � e�i�n � .pn � qn/

exists, where qn 2 @S is the closest point to pn and e i�n is the outwards unit normal to @S
at qn. (Note that l �M and that the bulk case corresponds to l D �1.)

It is easy to see that

traceT D
Z
�

K�n.�; �/ dA.�/ and traceT 2 D
“
�2
jK�n.�; �/j

2 dA2.�; �/:

We now zoom on the point pn using the magnification map z D �n�.�/ from (6.2), with
the following convention about angles �n: we put �nD 0 if p is in the bulk regime and e i�n
is the outwards unit normal to @S at qn. (This is in accordance with the earlier convention
in Section 4.)

Similar as in Section 4, we put

K�n.z; w/ D
1

n��Q.pn/
Kn�.�; �/; z D �n�.�/; w D �n�.�/;

and observe that

traceT D
Z
�n�.�/

Kn�.z; z/ dA.z/;(6.4)

traceT 2 D
“
�n�.�/2

jKn�.z; w/j
2 dA2.z; w/:(6.5)

Now write
d D

p
��Q.p�/;

let L1 be the translated half-plane,

L1 D L � l � d CM � d D ¹ z I Re.z C l � d/ �M � d º ;

and set
E1.L/ D D.0;L � d/ and E2.L/ D D.0;L � d/ \ .L1/:
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By Lemma 6.2 and an elementary geometric consideration, we see that the characteristic
function 1��n.�/ converges in the L1-sense to 1E1.L/ in the bulk case, and to 1E2.L/ in the
boundary case.

We now use Theorem 4.3 (with n� in place of n), to take the limit on (6.4), and obtain

lim
n!1

traceT D
Z
E.L/

RdA

where R � 1 and E.L/ D E1.L/ in the bulk case while R.z/ D F.z C Nz C 2ld/ and
E.L/DE2.L/ in the boundary case, respectively. (As always, F denotes the holomorphic
erfc-kernel from (4.4).)

Thus, in the bulk case we have

lim
n!1

traceT D jE1.L/j D � ��Q.p�/ � L2:

Similarly, an easy computation using asymptotics for the erfc-kernel shows that, in the
boundary case,

lim
n!1

traceT D
Z
E2.L/

F.zC NzC2ld/ dA.z/ D
1

2
� ��Q.p�/ � L

2
CO.L/ as L!1;

where the implied constant depends on M (and the potential Q).
Now let K D GL be a limiting kernel in Lemma 4.2, so K.z; z/ D R.z/ with R as

above. (So K D G in the bulk case and K D Kl in the boundary case.) Then (along the
relevant subsequence),

lim
n!1

trace.T � T 2/ D
Z
E.L/

R �

“
E.L/2

jK.z;w/j2 dA2.z; w/

D 2

Z
E.L/

Z
CnE.L/

jK.z;w/j2 dA2.z; w/:

The desired bounds now follow from Lemma 4.5 on noting that

perimE1.L/ � perimE2.L/ ≲ L and jE2.L/j ≲ L � perimE2.L/;

where (for L � 2) the implied constants depend only on M and Q.

6.2. Equidistribution and discrepancy

We now prove Theorem 1.2 on equidistribution and Proposition 1.3 about discrepancy
estimates. While the literature on density conditions for sampling and interpolation is
ample, Landau’s original method seems to adapt best to partial Marcinkiewicz–Zygmund
inequalities such as (5.5). In dealing with certain technicalities, we also benefited from
reading [2, 42, 43].

To get started, we fix a sequence p D .pn/ such that each pn is contained in SM D S
CD.0;M=

p
n/ for some M > 0. After passing to a subsequence, we can assume that pn
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converges to some point p� 2 S . (Recall that the exterior case was already disposed of
after the statement of Theorem 1.2.)

We fix L > 2, a failure probability ı 2 .0; 1/, and a bandwidth margin  2 .0; 1/, and
invoke Theorem 5.1. Let M D M.c/, s D s.c/, A D A.c/, and n0 D n0.c; ı; / be the
respective constants. We then select with probability at least 1 � ı a family � D .�n/n
such that the samples

�n D ¹�j º
n
1

satisfy all conditions in Theorem 5.1 when n� n0. Below, we fix n� n0 and let ¹�j ºn1 be a
configuration satisfying those conditions. (We may also allow  to be slightly n-dependent,
so we can assume that n is an integer).

We may assume without loss of generality that s < M and s < 1=4, and also n0 � 2.
In what follows, all implied constants are allowed to depend on c and Q. An unspecified
norm k � k will always denote the norm in L2.C; dA/.

To simplify the notation, we write

D D D.pn; L=
p
n /;

DC D D.pn; .LC s/=
p
n /;

D� D D.pn; .L � s/=
p
n /;

Nn D #
�
¹ ¹�j º

n
1 \D º

�
D #

�
¹ ¹�j º

n
1 \D \ SM º

�
;

N˙n D #
�
¹ ¹�j º

n
1 \D

˙
º
�
D #

�
¹ ¹�j º

n
1 \D

˙
\ SM º

�
;

where we used (5.1). Due to the 2s-separation, we have

N �n � Nn � N
C
n � N

�
n C CL;(6.6)

for a constant C D C.M; s/.
Step 1. .Lower density bounds/. Choose

� D 1 � 

and consider the concentration operator

(6.7) T W Wn� ! Wn�; f 7! PWn�.f � 1D\SMCs /:

Let .�j /
n�
1 be an orthonormal basis for Wn� consisting of eigenfunctions of T , that is,

T .�j / D �j�j ; where, as before, we use the convention 1 � �1 � �2 � � � � � �n > 0.
Write

Fn D span¹�1; : : : ; �NCn C1 º:

We can then find an element f 2 Fn with k f k D 1 which vanishes at each point in
¹�j º

n
1 \D

C.
Since ¹�j ºn1 is 2s-separated, the Marcinkiewicz–Zygmund inequality (5.5) and Corol-

lary 2.2 implyZ
SMCs

jf j2 �
A

n.1 � �/2

X
�j…DC

jf .�j /j
2
�
C

2

Z
SMCsnD

jf j2:
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Hence,Z
SMCs\D

jf j2 D

Z
SMCs

jf j2 �

Z
SMCsnD

jf j2 �
�
1 �

2

C

� Z
SMCs

jf j2 � 1 �
2

C
�

On the other hand,

�NCn C1 � hTf ; f i D

Z
SMCs\D

jf j2:

Therefore,

�N Cn C1 � 1 �
2

C
�(6.8)

We may assume that C > 2, so that 1� 2=C > 1=2. An application of Lemma 6.1 (with
# D 1 � 2=C ) then gives

N Cn C 1 � traceT �
C

2
� ŒtraceT � traceT 2�:

We now apply Lemma 6.3, with M C s in lieu of M . Combining with (6.6) yields

lim inf
n!1

Nn �

´
.1 � / ��Q.p�/ � L

2 CO. �2L/ in the bulk case,
.1�/
2
��Q.p�/ � L

2 CO. �2L logL/ in the boundary case,
(6.9)

where the implied constants are independent of  .
(To be precise, in order to obtain (6.9), we first assume that  2 Q and select a sub-

sequence .nk/ such that limk!1 Nnk D lim infn!1 Nn and �nk 2 N, and then apply
Lemma 6.3 to this subsequence.)

Step 2. .Upper density bounds/. This time we set

� D 1C :

We consider again the concentration operator T from (6.7).
For j D 1; : : : ; n, consider the reproducing kernels K�j 2 Wn�,

K�j .�/ D Kn�.�; �j /:

Consider the subspace V1 of Wn� spanned by these elements,

V1 D span¹K�1 ; : : : ;K�n º

and the orthogonal complement

V WD V1 	 span¹K�j I �j … D
�
º:

Notice that dimV D N �n :
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Now pick an element f 2 V . Since the family � is assumed to have the interpolation
property in Theorem 5.1, there exists an element f1 2 W�n such that f1.�j / D f .�j /, for
all j D 1; : : : ; n, and

kf1 k
2
�

A

n.� � 1/2

nX
jD1

jf .�j /j
2
D

A

n.� � 1/2

X
�j2D�

jf .�j /j
2;(6.10)

where we used that f .�j /D hf ; K�j i D 0, if �j …D�. Combining with the 2s-separation
and applying Corollary 2.2, we obtain

kf1 k
2
�
C

2

Z
D\SMCs

jf j2:(6.11)

Letting PV1 WWn� ! V1 be the orthogonal projection, we note that

PV1f1.�j / D hPV1f1 ; K�j i D hf1 ; PV1K�j i D f1.�j / D f .�j /; j D 1; : : : ; n;

and kPV1f1k � kf1k. Replacing f1 by PV1f1, we can thus assume besides (6.11) that
f1 2 V1. As the mapping

V1 ! Cn; g 7�! .g.�j //
n
jD1 D .hg ; K�j i/

n
jD1

is a linear bijection, we conclude that f D f1.
In conclusion, we obtain

kf k2 �
C

2

Z
D\SMCs

jf j2; f 2 V:(6.12)

On the other hand, since dimV D N �n , by the Courant–Fischer characterization of eigen-
values of self-adjoint operators,

�N �n � min
f 2V n¹0º

hTf ; f i

kf k2
D min
f 2V n¹0º

1

kf k2

Z
SMCs\D

jf j2 �
2

C
�(6.13)

Assuming again as we may that C > 2, it follows that 2=C < 1=2, and Lemma 6.1 (with
# D 2=C ) yields

N �n � traceT C
C

2
� trace.T � T 2/:

We now apply Lemma 6.3, with M C s in lieu of M . Combined with (6.6), this yields

lim sup
n!1

Nn �

´
.1C / ��Q.p�/ � L

2 CO. �2L/ in the bulk case,
.1C/
2
��Q.p�/ � L

2 CO. �2L logL/ in the boundary case.
(6.14)

(Again, the precise derivation of (6.14) is a follows: we first select a subsequence .nk/ such
that limk!1Nnk D lim supn!1Nn, and then apply Lemma 6.3 to this subsequence.)
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Step 3. .Conclusions/. Combining (6.9) and (6.14) we obtain

´
lim supn!1 jNn ��Q.p�/ � L

2j D O.L2 C �2L/ in the bulk case,
lim supn!1 jNn�

1
2
��Q.p�/ � L

2j D O.L2C�2L logL/ in the boundary case,

(6.15)

where the implied constants are independent of the failure probability ı. Letting ı ! 0,
we infer that (6.15) hold for almost every family, picked randomly with respect to the
Boltzmann–Gibbs measure.

Finally, taking  D L�1=3 yields the desired discrepancy estimates in Proposition 1.3,
from which the claims on Beurling–Landau densities in Theorem 1.2 also follow. By this,
all statements of Theorem 1.2 and Proposition 1.3 are proved.

7. Concluding remarks

Questions about freezing in Coulomb gas ensembles have been the subject of several
investigations in the physics literature, see, e.g., the early works [18, 23] or the recent
paper [19] and the extensive list of references there. Loosely speaking, one wants to under-
stand as much as possible about the transition (as the inverse temperature ˇ!1) between
an “ordinary” state of the Coulomb gas and a “frozen”, presumably lattice-like state. As
far as we are aware, the exact details of the transition remain largely unknown, and in
particular a basic question such as whether or not there exists a finite value f̌ <1, such
that the freezing takes place when ˇ increases beyond f̌ , remains an open question.

In [19], evidence is presented that a phase transition might occur at f̌ approximately
equal to 70. In this connection, we note that it is not expected that “perfect” (or “lattice-
like”) freezing occurs at this value f̌ , but a rather different kind of phase transition,
where the oscillations of the one-particle density near the boundary (the “Hall effect”)
start propagating inwards, from the boundary towards the bulk. (We are grateful to Jean-
Marie Stéphan and to Paul Wiegmann for discussions concerning this point.)

The low temperature regime when ˇn increases at least logarithmically in n, ˇn �
c logn, was introduced in [5]. In this regime, we expect that a typical random configuration
will look more and more lattice-like as c !1, i.e., that we do have a perfect freezing in
this transition. (Some examples of low-energy configurations, obtained numerically by an
iterative method, are depicted in Figure 2.)

A glance at Figure 2 gives the impression that different kinds of crystalline patterns
seem to emerge. The most basic one is Abrikosov’s triangular lattice, which is believed to
emerge close to points p 2 S at which the equilibrium density �Q.p/ is strictly positive.
See Figure 3.

Likewise, other kinds of structures can be sensed from Figure 2, near singular points
p 2 S where the equilibrium density vanishes, i.e., �Q.p/ D 0. Situation (B) depicts
a bulk singularity at p D 0, while (C) and (D) have singularities on the boundary point
p D 0 (which in these cases are of “lemniscate types”, see e.g. [15, 31] and references).
In a rough sense (e.g., (1.5)) the distribution is close to the equilibrium density also in the
presence of singular points, but the exact details of the patterns which may emerge are not
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(a) Q D j�j2. (b) Q D j�j4.

(c) Q D j�j4 � 2p
2

Re.�2/. (d) Q D j�j6 � 2p
5

Re.�3/.

Figure 2. Low-energy configurations with respect to various potentials Q.

known to us. However, for example the papers [7,8,10,15,22] deal with the corresponding
ˇ D 1 ensembles.

As noted in [3], the well-known “Abrikosov conjecture” as posed in [9], namely the
problem of proving emergence of Abrikosov’s lattice when rescaling Fekete configura-
tions about a “regular” point p 2 S where�Q.p/ > 0, would follow if one could prove a
strong enough separation of Fekete configurations �nD ¹�j º

n
1 as n!1. (For example, in

the Ginibre case Q D j�j2, proving lim infn!1 sn.�n/ � 2
1=2 3�1=4 would do.) It seems

natural to add another layer to this problem and ask to what extent Abrikosov’s lattice
emerges under the assumption ˇn � c logn, in the transition as c !1.

We finally offer a few brief remarks about some other works which are somewhat
connected to the main theme in this note.

The counterpart to Theorem 1.1 (uniform separation) for Fekete configurations is well
known, and, apart from [9], is shown also in e.g. [39,44] depending on an idea due to Lieb.

A somewhat weaker version of the equidistribution theorem (Theorem 1.2) for Fekete
configurations was shown in [3,9] using a variant of Landau’s method which has been fur-
ther extended here. In particular, those sources apply to all suitable families which obey
certain sampling and interpolation conditions (a property that here is shown to hold almost
surely for low temperature Coulomb ensembles). The paper [44] suggests an utterly differ-
ent approach, relying heavily on the minimum-energy property of Fekete configurations,
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Figure 3. Abrikosov’s triangular lattice.

and asserts that a discrepancy estimate similar to (1.14) holds for bulk points with ˛ D 1
in such a setting.

In the setting of ˇ-ensembles, a recent result in [11] (part (2) of Theorem 1) provides
discrepancy estimates (1.14) with ˛ close to 1. These are valid at any inverse temperat-
ure ˇ, and provide failure probabilities for individual (deterministic) observation disks
that are sufficiently away from the boundary of the droplet, and which may deteriorate as
such limit is approached. With respect to separation, Theorem 1 (4) in [11] gives a local
result in the bulk, which, when applied to the low temperature regime, asserts a similar
order of separation as we obtain here. In contrast, our result applies globally to all points
in the Coulomb gas, and without truncations that eliminate points close to the bound-
ary. This is a nontrivial issue, since the Hall effect postulates that the particle-distribution
near the boundary is quite subtle when ˇ > 1. (In addition, Corollary 1.2 in [11] discusses
certain “spatially averaged Coulomb-gases” at low temperatures. As remarked in the para-
graph below Corollary 1.2 in [11] these are different from the Coulomb gas ensembles, as
considered here and in Theorem 1 of [11].)

The Coulomb gas on a sphere at a very low temperature (ˇn > n) is studied in the
paper [13], where a certain Fekete-like behaviour is demonstrated. In this connection,
it seems interesting to investigate the extent to which our present methods extend to
Riemann surfaces. We hope to return to this issue in a future work.
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