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Towards a classification of entanglements of Galois
representations attached to elliptic curves

Harris B. Daniels, Álvaro Lozano-Robledo and Jackson S. Morrow

Abstract. Let E=Q be an elliptic curve, let Q be a fixed algebraic closure of Q,
and let GQ D Gal.Q=Q/ be the absolute Galois group of Q. The action of GQ on
the adelic Tate module of E induces the adelic Galois representation �E WGQ !

GL.2; yZ/:
The goal of this paper is to explain how the image of �E can be smaller than

expected. To this end, we offer a group theoretic categorization of different ways in
which an entanglement between division fields can be explained and prove several
results on elliptic curves (and more generally, principally polarized abelian varieties)
over Q where the entanglement occurs over an abelian extension.

1. Introduction

This article is concerned with the classification of (adelic) Galois representations attached
to elliptic curves and, in particular, this paper is an attempt to systematically classify rea-
sons that explain when the adelic image is not as large as possible. More concretely,
let E=Q be an elliptic curve, let Q be a fixed algebraic closure of Q, and let GQ D

Gal.Q=Q/ be the absolute Galois group of Q. Then GQ acts on EŒn�, the n-torsion sub-
group of E.Q/, and induces a Galois representation

�E;n W Gal.Q=Q/! Aut.EŒn�/ Š GL.2;Z=nZ/:

More generally, Gal.Q=Q/ acts on the Tate module T .E/ D lim
 �

EŒn� of the elliptic
curve E, and induces an adelic Galois representation

�E W Gal.Q=Q/! Aut.T .E// Š GL.2; yZ/:

This paper is then aimed at understanding the possibilities for the image HE of �E (a
problem which is sometimes called Mazur’s Program B, after [28]).

If E has complex multiplication (CM), then HE fails to be open in GL.2; yZ/ and
is well understood (see [2, 24, 27]). Otherwise, if E does not have CM, then Serre [35]
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showed that HE is an open subgroup of GL.2; yZ/. Let �E be the index ŒGL.2; yZ/ W HE �.
For elliptic curves over Q, it is always the case that �E > 2. The reason for this is either
because �E;2 is not surjective or due to the existence of an explained non-trivial quadratic
intersection of the division field Q.EŒ2�/ and Q.�n/ � Q.EŒn�/, for some n > 2 (see
Section 3.2.1). In fact, �E is always even.

The goal of this paper is to understand the different scenarios that force �E to be larger
than two. There are two phenomena that explain a larger-than-expected index, which we
call a vertical Galois collapsing and a horizontal Galois entanglement, respectively. Here,
we will describe these phenomena for non-CM curves E=Q and will refer the reader to
Subsection 3.3 for these definitions in the CM setting.

• For a prime `, we say that the `-adic representation has a vertical Galois collapsing if
the projection

�E;`1 W GQ ! GL.2; yZ/! GL.2;Z`/;

which corresponds to the action of Galois on the `-adic Tate module, fails to be sur-
jective. Vertical tanglements are (mostly) well-understood. If �E;`1 is not surjective,
then either `D 2 or 3, or the mod-` representation �E;` is not surjective (by Lemma 3
in IV-23 of [36]). If �E;21 is not surjective, then �E;8 is not surjective (see [13]), and
if �E;31 is not surjective, then �E;9 is not surjective (see [15]). The conjectural list of
all non-surjective images modulo ` can be found in [40]. There is also work of Rouse
and Zureick-Brown [33], and more recent work of Rouse, Sutherland and Zureick-
Brown [32], where the authors (conjecturally) classify all the possible `-adic images
of Galois for elliptic curves E=Q for all primes `. The classification of `-adic images
in the CM case was described in [27].

• We say that an elliptic curve E has a horizontal Galois entanglement if there exists
a composite number n > 6 such that the projection

�E;n W GQ ! GL.2; yZ/! GL.2;Z=nZ/;

which corresponds to the action of Galois on the n-torsion, fails to be surjective, and
the entanglement is not explained by a product of vertical tanglements, i.e.,

�E;n.GQ/ ¨
Y
`ajjn

�E;`a.GQ/:

In other words, there are integers a; b > 2, and at least one prime q that divides b but
not a, such that Q.EŒd �/ ¨ Q.EŒa�/ \Q.EŒb�/, where d D gcd.a; b/.
In this work, we will primarily be interested in horizontal entanglements, and more

concretely on abelian horizontal entanglements (see Section 3 for the precise definition).
To study these horizontal entanglements, we need to analyze the mod-n image of the
Galois representation �E;n for a composite integer n > 6. In [12], the first and last author
describe how one can detect when an elliptic curve E=Q has a non-trivial .a; b/-entan-
glement, which corresponds to when the intersection of the a and b-division fields is an
extension of Q that is not isomorphic to the d -division field, in terms of group theoretic
data attached to the image of �E;ab .
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1.1. Main contributions

Our first contribution to the study of entanglements is a categorization of the ways in which
an abelian entanglement (Definition 3.1) can occur. More precisely, we define several
classes of abelian entanglements: Weil, discriminant, CM, and fake CM entanglements;
see Section 3 for details. Our first result shows that, except for a finite number of isomor-
phism classes of elliptic curves, the abelian entanglements between two prime division
fields are completely explained by Weil, discriminant, CM, and fake CM entanglements.

Theorem A. LetE=Q be an elliptic curve, and let p and q be distinct primes such thatE
has an abelian .p; q/-entanglement of type S (Definition 3.1), for some finite abelian
group S . Then, there is a finite set J � Q such that if j.E/ 62 J and the entanglement
is not Weil, discriminant, CM, or fake CM, then S D Z=3Z and .p; q/ D .2; 7/, and
j.E/ belongs to one of the following three explicit one-parameter families of j -invariants
(which appear in Section 8:1 of [12]):

j1.t/ WD
.t2 C t C 1/3 .t6 C 5t5 C 12t4 C 9t3 C 2t2 C t C 1/P1.t/

3

t14 .t C 1/14 .t3 C 2t2 � t � 1/2
;

j2.t/ WD
74.t2 C t C 1/3 .9t6 C 39t5 C 64t4 C 23t3 C 4t2 C 15t C 9/P2.t/

3

.t3 C t2 � 2t � 1/14 .t3 C 8t2 C 5t � 1/2
;

j3.t/ WD
.t2 � t C 1/3.t6 � 5t5 C 12t4 � 9t3 C 2t2 � t C 1/P3.t/

3

.t � 1/2 t2 .t3 � 2t2 � t C 1/14
;

where

P1.t/ D t
12
C 8t11 C 25t10 C 34t9 C 6t8 � 30t7 � 17t6 C 6t5 � 4t3 C 3t2 C 4tC1;

P2.t/ D t
12
C 18t11 C 131t10 C 480t9 C 1032t8 C 1242t7 C 805t6C306t5C132t4

C 60t3 � t2 � 6t C 1;

P3.t/ D t
12
� 8t11 C 265t10 � 1474t9 C 5046t8 � 10050t7 C 11263t6 � 7206t5

C 2880t4 � 956t3 C 243t2 � 4t C 1:

Moreover, the set J contains ¹�52=2;�52 � 2413=23;�5 � 293=25; 5 � 2113=215º and
also the (at most finitely many) j -invariants of elliptic curves with a 13-isogeny and
Gal.Q.EŒ2�/=Q/ Š Z=3Z, such that Q.EŒ2�/ � Q.EŒ13�/.

Corollary B. Let E=Q, p, and q be as in Theorem A, and assume a positive answer to
Serre’s uniformity question. Then, there is a finite set J 0 � Q such that, if j.E/ 62 J 0 and
the entanglement is not Weil, Serre, or CM, then:
(1) S D Z=3Z and .p; q/ D .2; 7/ and j.E/ belongs to one of the three families des-

cribed in Theorem A,

(2) S D Z=2Z and .p; q/ D .2; q/ with q 2 ¹3; 5; 7; 13º, and j.E/ belongs to one of
the explicit one-parameter families of j -invariants with discriminant entanglements
which appear in Section 8:1 of [12],
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(3) S DZ=2Z and .p;q/D .3; 5/, and j.E/ belongs to one of the following two explicit
one-parameter families of j -invariants which appear in Section 8:1 of [12]:

j4.t/ WD
212P4.t/

3

.t � 1/15 .t C 1/15 .t2 � 4t � 1/3
;

j5.t/ WD
212P5.t/

3

.t � 1/15 .t C 1/15 .t2 � 4t � 1/3
;

where

P4.t/ D t
12
� 9t11 C 39t10 � 75t9 C 75t8 � 114t7 C 26t6 C 114t5 C 75t4

C 75t3 C 39t2 C 9t C 1;

P5.t/ D 211t
12
� 189t11 � 501t10 � 135t9 C 345t8 C 966t7 C 146t6 � 966t5

C 345t4 C 135t3 � 501t2 C 189t C 211:

(4) The set J 0 contains all the j -invariants that correspond to non-cuspidal rational
points on modular curves parametrizing elliptic curves such that they have non-
surjective image at two primes p; q 6 37, and at least one of the two is a contained
in a normalizer of Cartan image, except for those infinite families mentioned above
in (2) and (3). Further, J ¨ J 0 as, for example, j D 113=23 and �293 � 413=215 are
in J 0 but not in J .

The proofs of Theorem A and Corollary B are given in Section 4. Each of J and J 0

corresponds to a collection of non-cuspidal, non-CM Q-points on a finite number of higher
genus modular curves, and therefore, it is difficult to explicitly determine it. While we
make no attempt to do so in this work, it would be interesting to precisely compute J
and J 0, and hence make the statement of the theorems more precise.

In the remainder of the work, we study infinite families of Weil and Serre entangle-
ments, describe how CM entanglements can be used to further analyze the adelic image
of an elliptic curve with CM, and illustrate how group theoretic definitions of entangle-
ments and our categorization of explained entanglements can be extended to principally
polarized abelian varieties over Q.

First, we prove results concerning infinite families of certain Weil entanglements (Def-
inition 3.2). We exhibit several infinite families of elliptic curves over Q which have Weil
.a; b/-entanglements for various tuples .a; b/. For example, we prove the following result,
which is expanded on in Section 5.

Theorem C. There are infinitely many Q-isomorphism classes of elliptic curvesE over Q
satisfying one of the following conditions:
(1) a Weil .3; n/-entanglement of type Z=2Z, where 3 − n,

(2) a Weil .5; n/-entanglement of type Z=4Z, where 5 − n,

(3) a Weil .7; n/-entanglement of type Z=6Z, where 7 − n,

(4) a Weil .m; n/-entanglement of type Z=2Z, where m 2 ¹4; 6; 9º and n > 3, with
gcd.m; n/ 6 2.

(5) a Weil .m;gcd.4j�E j;n//-entanglement of type Z=2Z�Z=2Z, wherem2¹8;10;12º
and n > 3, with gcd.m; n/ 6 2.
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In Section 6, we shift our focus to entanglements of elliptic curves E=Q with com-
plex multiplication. By work of the second author (see Theorem 1.2 in [27]), there is a
compatible system of bases for EŒn� such that the image of �E is contained inside an
extension Nı;�.yZ/ of a certain Cartan subgroup (see Definition 3.20) and the index of the
image inside of this group divides jO�

K;f
j. When the elliptic curve E=Q has CM, entan-

glements between division fields become much more prevalent. Indeed, if E has CM by
an order OK;f of conductor f > 1 of an imaginary quadratic field K and n > 3, then
K � Q.EŒn�/ by Lemma 3.15 in [3], and so such elliptic curves will always have an
entanglement between their a and b division fields once a; b > 3.

We leverage this information to determine the index of the adelic representation asso-
ciated to an elliptic curve over Q with CM, and we are able to precisely determine what
this index is in several settings.

Theorem D. Let E=Q be an elliptic curve with CM by an order OK;f of conductor
f > 1 in an imaginary quadratic field K with �K ¤ �4 and j.E/ ¤ 0. For a choice of
compatible bases of EŒn� for each n > 2, the index of the image of �E in Nı;�.bZ/ is 2.

Remark 1.1. When the j -invariant of E is either 0 or 1728, we are not able to exactly
determine the index of the image of �E in Nı;�.bZ/, but we can exclude the possibility
of certain indices occurring. Our work provides a different proof of certain cases of a
more general result of Campagna and Pengo [6], whose work we were not aware of until
after our paper was finished. In their work (see Corollary 4.6 in [6]), they show that for an
elliptic curve over Q with CM by an order OK;f of an imaginary quadratic field, the index
of the image of �E in Nı;�.bZ/ is jO�

K;f
j. Moreover, in Theorem 5.5 of [6], they analyze

the level where the entanglement happens.

Remark 1.2. We also mention another work of Campagna and Pengo [7], which stud-
ies how large the image of �E .GQ/ is inside of a subgroup G .E=Q/ of Aut.T .E//
when E=Q is a CM elliptic curve. They provide a closed formula for the index ŒG .E=Q/ W
�E .GQ/� using the classical theory of complex multiplication. We refer the reader to Sec-
tion 2 in [7] for the definition of G .E=Q/.

Our final result concerns entanglements for principally polarized abelian varieties A
over Q of arbitrary dimension. The definition of entanglements in terms of intersection of
division fields carries over for abelian varieties, however the group theoretic definitions
require more care as the determinant of the mod n image of Galois associated to A over Q
need not be surjective. In Section 7, we generalize a result of the authors concerning an
infinite family of elliptic curves over Q with a Weil .2; n/-entanglement of type Z=3Z to
the setting of principally polarized abelian varieties.

Theorem E. Let ` > 3 be a prime number. Suppose that `� 1D 2e, where e D 2gC 1 is
some odd integer. There exist infinitely many principally polarized abelian varieties A=Q
of dimension g which have a Weil .2; `/-entanglement of type Z=eZ.

In addition to these results, we also pose two question related to the behavior of Weil
entanglements (see Questions 8.5 and 8.7).
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1.2. Related results

Over the past five years, the study of entanglements has significantly developed and
matured. The first results on entanglements can be traced to Brau–Jones [4] and the
last author [29], Theorem 8.7, where their results classified all elliptic curves E=Q with
.2; 3/-entanglement of non-abelian type. More recently, the first and second author [11]
determined the elliptic curves E=Q and primes p and q such that Q.EŒp�/ \Q.�qk / is
non-trivial and determined the degree of this intersection, and consequently, they describe
all elliptic curves E=Q and integers m; n such that the m-th and n-th division fields coin-
cide. In the setting of CM elliptic curves, work of Campagna–Pengo [6] studies when
division fields become linearly disjoint.

Finally, there have been very recent works which attempt to systematically study
entanglements. Jones–McMurdy [19] have determined the genus zero modular curves
and their j -maps where rational points on these modular curves correspond to elliptic
curves over any number field K with entanglements of non-abelian type. Also, the first
and last author [12] initiated a group theoretic perspective to studying entanglements and
completely classified the infinite families of elliptic curves over Q which have an “unex-
plained” .p; q/-entanglement where p; q are distinct primes.

1.3. Outline of paper

In Section 2, we recall the group theoretic definition of explained entanglements estab-
lished by the first and last author in [12]. In Section 3, we offer a categorization of
explained entanglements, and in particular, we define the notions of abelian, Weil, dis-
criminant (and Serre), and CM entanglements. In Section 4, we prove Theorem A and
Corollary B.

The next two sections focus on proving results related to our categorization. In Sec-
tion 5, we construct several infinite families of elliptic curves over Q which have certain
Weil entanglements using various methods such as division polynomials and isogeny-
torsion graphs and prove Theorem C. In Section 6, we analyze the adelic image of Galois
associated to a CM elliptic curve and prove Theorem D. We extend the group theoretic
notions of entanglements to principally polarized abelian varieties over Q of arbitrary
dimension and prove Theorem E in Section 7.

Finally, in Section 8, we discuss future avenues of study for explained entanglements.

1.4. Conventions

We establish the following conventions throughout the paper.

Elliptic curves. For a field k, we will use E=k to denote an elliptic curve over k. For
an element d 2 k�=.k�/2, the twist of E by d will be denoted by E.d/. Any particular
elliptic curve over Q mentioned in the paper will be given by LMFDB reference and a
link to the corresponding LMFDB [22] page when possible. We will abbreviate an elliptic
curve E=k having complex multiplication by an order OK;f in an imaginary quadratic
field K by saying that E has CM by OK;f . We will use the notation jK;f to denote a
j -invariant with CM by the order of conductor f of OK where all other such j -invariants
are conjugates of this one.
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Groups. We set some notation for specific subgroups of GL.2;Z=`Z/ for ` > 3. Let `Cs
be the subgroup of diagonal matrices. Let " D �1 if ` � 3 .mod 4/, and otherwise let
" > 2 be the smallest integer which is not a quadratic residue modulo `. Let `Cn be
the subgroup consisting of matrices of the form

�
a b"
b a

�
with .a; b/ 2 Z=`Z2 n ¹.0; 0/º.

Let `Ns and `Nn.`/ be the normalizers of `Cs and `Cn, respectively, in GL.2;Z=`Z/.
We have Œ`Ns W `Cs� D 2 and the non-identity coset of `Cs.`/ in `Ns.`/ is represented by�
0 1
1 0

�
. Similarly, Œ`Nn W `Cn� D 2 and the non-identity coset of `Cn in `Nn is represented

by
�
1 0
0 �1

�
. Let `B be the subgroup of upper triangular matrices in GL.2;Z=`Z/. This

notation was established by Sutherland in [38] and is used in the LMFDB [22]. We will
also use Sutherland’s notation for the less standard subgroups of level ` (and also for those
of level ` D 2).

Comments on code. All of the computations in this paper were performed using1 the
software Magma [1].

2. Group theoretic definition of entanglement

In this section, we recall, from [12], the group theoretic definitions for explained entan-
glements.

Notation. Let G be a subgroup of GL.2;Z=nZ/ for some n > 2 with surjective deter-
minant, let a < b be divisors of n, and write c D lcm.a; b/ and d D gcd.a; b/. Let
�c W GL.2; Z=nZ/ ! GL.2; Z=cZ/ denote the natural projection map, and set Gc WD
�c.G/. Then, for each e 2 ¹a; b; dº, we have the following reduction maps and normal
subgroups of Gc :

�e W GL.2;Z=cZ/! GL.2;Z=eZ/; Ne WD ker.�e/ \Gc :

We now recall one of the definitions for when G represents an .a; b/-entanglement.

Definition 2.1. With the notation above, we say that the group G represents a non-trivial
.a; b/-entanglement if

hNa; Nbi ¨ Nd :

The type of the entanglement is the isomorphism type of the group Nd=hNa; Nbi.

Figure 2.1 contains a diagram summarizing the notation and definitions for group-
theoretical entanglements.

We now impose a maximality condition on a group representing a non-trivial entan-
glement.

Definition 2.2. Consider the set

TG D ¹..a; b/;H/ jG represents a non-trivial .a; b/-entanglement of type H º:

We define a relation on TG by declaring that ..a1; b1/;H1/ 6 ..a2; b2/;H2/ if:

1The code used can be found at: https://github.com/jmorrow4692/ExplainedEntanglements.

https://github.com/jmorrow4692/ExplainedEntanglements
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Gc � GL.2;Z=cZ/

Ga � GL.2;Z=aZ/ Gb � GL.2;Z=bZ/

Gc=hNa; Nbi

Gd � GL.2;Z=dZ/

hNa;Nbi

Na Nb

Nd

hNa;Nbi=Na

Nd =Na

hNa;Nbi=Nb

Nd =Nb
Nd =hNa;Nbi

Figure 2.1. A diagram describing group-theoretical entanglements. Lines denote maps, together
with the subgroup that one has to quotient the group on top by to get to the group below.

(1) H1 and H2 are isomorphic and either .a2 j a1 and b2 j b1/ or .b2 j a1 and a2 j b1/,
(2) or H1 is isomorphic to a quotient of H2 and either .a1 j a2 and b1 j b2/ or .b1 j a2

and a1 j b2/.
We say the group G represents a primitive .a; b/-entanglement of type H if ..a; b/;H/ is
the unique maximal element of TG and n D lcm.a; b/.

Remark 2.3. For a given G, if the set TG has no maximal element with respect to this
relation, then G does not represent any primitive entanglement.

We now apply these definitions to elliptic curves. For E=Q an elliptic curve and for
an integer n > 2, let G D Im .�E;n/ � GL.2;Z=nZ/ denote the image of the Galois
representation associated to the action on EŒn�. Recall that the n-division field Q.EŒn�/
is the fixed field of Q by the kernel of the representation �E;n, and so the Galois group of
this number field is isomorphic to the image of the mod n representation.

In Definition 1.1 of [12], the first and last author defined a notion of entanglement for
elliptic curves, which we now rephrase in terms of the definitions of this paper.

Definition 2.4. We say that an elliptic curveE=Q has a non-trivial .a;b/-entanglement of
type T if for some n > 2 and proper divisors a < b, the mod n image of Galois Im .�E;n/
represents a non-trivial .a; b/-entanglement of type T .

Remark 2.5. We note that the definitions of horizontal entanglement from Section 1 and
non-trivial .a; b/-entanglement coincide.

3. Classification of abelian entanglements

In this work, we are interested in the study and classification of abelian entanglements. To
this end, we offer the following classification. Our guiding principle is that an abelian
entanglement will happen when there is some underlying arithmetic reason for it to.
Below, we will highlight several arithmetic constraints which elucidate the existence of
the abelian entanglement.
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Q.EŒc�/

Q.EŒa�/ Q.EŒb�/

K D .Q.EŒa�/ \Q.EŒb�//

Q.�a/ Q.EŒd �/ K \Qab Q.�b/

Q.EŒd �/ \Qab K \Q.�b/

Q.�d /

Q

S

T

Figure 3.1. An abelian .a; b/-entanglement of type S , and a Weil .a; b/-entanglement of type T ,
where c D lcm.a; b/ and d D gcd.a; b/.

3.1. Abelian and Weil entanglements

To begin, we define notions of abelian entanglements and Weil-type entanglements.

Definition 3.1. Let E=Q be an elliptic curve, let a < b be integers, let d D gcd.a; b/,
and suppose S is a non-trivial finite abelian group. Let K D Q.EŒa�/\Q.EŒb�/. We say
that E=Q has an abelian entanglement, or more precisely, that it has an abelian .a; b/-
entanglement of type S , if Gal.K \Qab=Q.EŒd �/ \Qab/ Š S .

Definition 3.2. LetE=Q be an elliptic curve, let a < b be integers, let d D gcd.a; b/, and
suppose T is a non-trivial finite abelian group. Let Ka D Q.EŒa�/ \Qab, and similarly
let Kb D Q.EŒb�/ \Qab. We say that E=Q has an entanglement of Weil-type, or more
precisely, that it has a Weil .a; b/-entanglement of type T , if Q.EŒd �/ \Qab D Q.�d /,
and Gal.Ka \Q.�b/=Q.�d // Š T or Gal.Kb \Q.�a/=Q.�d // Š T .

Remark 3.3. We note that an elliptic curve has a Weil .a; b/-entanglement if and only if
it has an explained .a; b/-entanglement as in Definition 3.7 of [12]. Indeed, this follows
from the discussion in Remark 4.4 of [12].

Remark 3.4. We require Q.EŒd �/ \ Qab D Q.�d / in the definition of a Weil entan-
glement to ensure primitivity of the phenomenon. Indeed, if Q.EŒd �/ \ Qab=Q.�d / is
non-trivial, then there exist another integer d 0 and a field F �Q.�d 0/ such that Q.EŒd �/\
Qab D Q.�d /F and therefore there is a Weil .d; d 0/-entanglement.

For a diagram summarizing the definition of abelian and Weil entanglements, we refer
the reader to Figure 3.1.
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Example 3.5 (An abelian entanglement that is not Weil). This example shows that not
all abelian entanglements are of Weil type. For example, let E=Q be the elliptic curve
with LMFDB label 448.g3. Then, Q.EŒ2�/ D Q.

p
2/, while Q.EŒ3�/ D Q.EŒ6�/ D

Q.
p
2;
p
�3/. In particular, Q.EŒ2�/ \Q.EŒ3�/ D Q.

p
2/ but Q.

p
2/ is not contained

in Q.�2/ nor Q.�3/. Thus, here E has an abelian .2; 3/-entanglement of type S D Z=2Z
which does not arise as a Weil entanglement.

Example 3.6 (A Weil entanglement that is not abelian). This example shows that not all
Weil-type entanglements are of abelian type as defined in Definition 3.1. For example,
let E=Q be the elliptic curve with LMFDB label 21.a1. The discriminant of E is �E D
3 � 72, and therefore Q.EŒ2�/ is entangled with Q.

p
3/�Q.�12/�Q.EŒ12�/ and we have

a Weil .2; 12/-entanglement. Note that Q.
p
3/ is not contained in Q.EŒ3�/, so there is no

Weil .2; 3/-entanglement. However, d D gcd.2; 12/ D 2, and K \Qab=Q.EŒd �/ \Qab

is the trivial extension Q.
p
3/=Q.

p
3/, so there is no abelian .2; 12/-entanglement.

See Example 3.17 for a family of elliptic curves that have an entanglement that is both
of the abelian and Weil-type, simultaneously.

We note that in the Examples 3.5 and 3.6, we have that the entanglement field is
Q.
p
�E /, which is a type of entanglement that we define in the following section in

greater generality.

3.2. Discriminant entanglements

A discriminant entanglement is an entanglement between division fields Q.EŒ2�/ and
Q.EŒn�/ such that Q.

p
�E /�Q.EŒ2�/\Q.EŒn�/. Whenever�E is not a square in Q�,

the field Q.
p
�E / is the unique quadratic extension of Q inside Q.EŒ2�/. If n is even,

Q.EŒ2�/ � Q.EŒn�/, so we refine the notion of discriminant entanglement as follows.

Definition 3.7. Let E=Q be an elliptic curve, and let �E be the discriminant of E.
(1) IfE=Q has a square discriminant�E 2 .Q�/2, then Q.

p
�E /=Q is trivial, which

means that Gal.Q.EŒ2�/=Q/ is either isomorphic to Z=3Z or is trivial. In either case, the
image of �E;2 is smaller than GL.2;Z=2Z/ and therefore E=Q has a vertical collapsing
(see Section 1). We call this entanglement a vertical discriminant collapsing.

(2) If�E is not a square and n > 3, then we letmD lcm.2; n/, and Gm D Im .�E;m/.
If there exists a group G � GL.2;Z=mZ/ such that Gm � G is of index 2, and there are
two index-2 subgroups N2 and Nn of G with the following properties:
• N2 is the index-2 normal subgroup of G corresponding to Q.

p
�E /, in other words,

N2 is the unique index-2 normal subgroup of G such that Œ�2.G / W �2.N2/� D 2 as
subgroups of GL.2;Z=2Z/, where

�2 W GL.2;Z=mZ/! GL.2;Z=2Z/

is the natural reduction map,
• N2 ¤ Nn, and
• Gm \N2 D Gm \Nn,

then we say that E has a .2; n/-discriminant entanglement.

https://www.lmfdb.org/EllipticCurve/Q/448/g/3
https://www.lmfdb.org/EllipticCurve/Q/21/a/1
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Before proceeding, we make a remark and provide a few examples to illuminate Defi-
nition 3.7, in particular part (2).

Remark 3.8. We now describe the idea behind part (2) of Definition 3.7. With G as
in part (2), the rational points on the modular curve XG correspond to elliptic curves
whose m-division fields have two distinct quadratic fields. One of these quadratic fields
is Q.

p
�E / (the fixed field of N2), and the other one is the fixed field of Nn, which is

distinct from Q.
p
�E / sinceN2 ¤Nn and quadratic since ŒG WNn�D 2. The groupGm is

contained in this group G , and the group Gm the can be constructed by gluing N2 and Nn
together. At the level of fields, this corresponds to the fixed field ofN2 andNn coinciding.
We note that it is not required for G to be an admissible group containing �I , however we
restrict to this case in order to describe the ideas precisely.

Example 3.9. Let E be the elliptic curve with LMFDB label 35.a2. Using [32] and [22],
we see that Im .�E;31/ is exactly the group 3B.1.1 lifted to GL.2;Z3/, and �E;`1 is sur-
jective onto GL.2;Z`/ otherwise. LetG6 be the mod-6 full preimage of the group 3B.1.1
in GL.2;Z=6Z/, and let G be the group corresponding to the the preimage of 3B but again
inside of GL.2;Z=6Z/. We note that ŒG W G6� D 2 in GL.2;Z=6Z/.

The normal subgroup

N2 D

��
2 5

3 1

�
;

�
2 3

3 5

�
;

�
2 3

3 1

��
of G corresponds to the field Q.

p
�E / D Q.

p
�35/. Next let

Nn WD

��
2 1

3 2

�
;

�
4 5

3 5

��
:

With this, one can verify that
• Nn ¤ N2 and
• Nn \G6 D N2 \G6,

and hence we see that E has a .2; 6/-discriminant entanglement. We remark that this is
neither a Weil entanglement, as Q.

p
�35/ is not contained in Q.�6/, nor an abelian entan-

glement (in the sense of Definition 3.1), because lcm.2; 6/D 2 and Q.EŒ2�/\Q.EŒ6�/\
Qab=.Q.EŒ2�/ \Qab/ is the trivial extension Q.

p
�35/=Q.

p
�35/.

Remark 3.10. We point out that any elliptic curveE 0=Q whose mod-6Galois representa-
tion has image conjugate to G ¨ GL.2;Z=6Z/ has a point P of order 3 defined over Q or
a quadratic field, call it Q.

p
d/. A group theoretic computation shows thatNn is precisely

the subgroup that fixes the subfield Q.
p
d�E 0/ � Q.E 0Œ6�/ and N2 fixes Q.

p
�E 0/.

Thus, ifE is an elliptic curve whose mod-6 Galois representation has image conjugate
to G6 ¨ G ¨ GL.2;Z=6Z/, such as E in Example 3.9, then the entanglement we see is
exactly Q.

p
�E 0/ D Q.

p
d�E 0/: Notice that this would mean

�E 0 � d�E 0 mod .Q�/2;

which forces d � 1 modulo squares. That is, d is a square, and so P 2 E.Q/.

https://www.lmfdb.org/EllipticCurve/Q/35/a/2
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Motivated by Example 3.9 and the previous remark, we provide one more example
to show that part (1) of Definition 3.7 can be viewed in a similar light as in the case of
part (2).

Example 3.11. Let E=Q be the elliptic curve with Cremona label 392f1. In this case,
the discriminant of E is �E D 784 D 24 � 72, and �E;`1 is surjective everywhere except
for ` D 2, where the image is the preimage of 2Cn in GL.2;Z`/. Note that 2Cn is the
subgroup of GL.2; Z=2Z/ of order 3. In this case, since �E is a square, the normal
subgroup N2 does not exist (the subgroup fixing Q.

p
�E / D Q is the entire group, so

not of index 2), but we can still give a group-theoretic description of the entanglement as
follows. To see this, let G6 D Im .�E;6/ and G D GL.2;Z=6Z/. Then, if we let

Na WD

��
5 1

4 3

�
;

�
2 5

5 1

�
;

�
2 1

1 1

�
;

�
2 5

5 0

��
and

Nb WD

��
2 1

5 0

�
;

�
2 5

5 1

�
;

�
2 1

1 1

��
then the subgroupNa corresponds to Q.

p
�3/�Q.�3/, whileNb corresponds to the field

Q.
p
�3�E /. In G6, we have that G6 \Na D G6 \Nb .

The group Na \ G6 is exactly the normal subgroup of G6 that fixes Q.
p
�3/. In

other words, the group G6 is characterized by the coincidence of the fields Q.
p
�3/ and

Q.
p
�3�E /. This is the same as Q.

p
�E / D Q: So, in this sense, parts (1) and (2) are

compatible.
Before moving on, we also point out that there is nothing particularly special about

pD 3. We could do the same thing for any odd prime by lettingNa be the normal subgroup
that fixes

Q
�p
p�
�
� Q.�p/ � Q.EŒp�/;

where p� D .�1/.p�1/=4p. Therefore, in this case p��E � p� mod .Q�/2 forces that
�E � 1 mod .Q�/2:

The most common of discriminant entanglements was described by Serre, and we
define it next.

3.2.1. The Serre (or discriminant) entanglement. The Serre entanglement is a discrim-
inant entanglement (as in Definition 3.7) that was first described in Proposition 22 of [35].

Assume that�E is not a square in Q�. Then, Q.
p
�E / is the unique quadratic exten-

sion of Q inside Q.EŒ2�/. Now, since Q.
p
�E /=Q is an abelian extension, we know that

there exists an integer n > 3 such that Q.
p
�E / � Q.�n/ by the Kronecker–Weber the-

orem (e.g., n D 4j�E j works). The Weil pairing implies that Q.�n/ � Q.EŒn�/, and thus
Q.EŒ2�/\Q.�n/'Q.

p
�E /. It follows that Q.EŒ2�/\Q.�n/ is a non-trivial quadratic

extension of Q, and therefore Gal.Q.EŒ2�; �n/=Q/ is a subgroup of index 2 of the direct
product Gal.Q.EŒ2�/=Q/ � Gal.Q.�n/=Q/: This coincidence causes an entanglement
between the division fields Q.EŒ2�/ and Q.EŒn�/ which we call a Serre entanglement.
In the notation of Definition 3.2, we have K D Q.EŒ2�/ \ Q.EŒn�/ and K \ Qab D

K \Q.�n/DQ.
p
�E /, which is a non-trivial quadratic extension of Q.�2/DQ. There-

fore, E=Q has a Weil .2; 4j�E j/-entanglement of type Z=2Z, which we call a Serre
entanglement. See Example 3.6 for an instance of this phenomenon.
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Remark 3.12. A Serre entanglement is a discriminant entanglement as in Definition 3.7,
part (2). Indeed, let n > 3 be as above and such that it is minimal with the property
Q.
p
�E /�Q.�n/, and letmD lcm.2; n/. For an integer k > 2, letGk D Im .�E;k/, and

write m D 2r � s, where r; s > 1 and s is odd. Let G be the subgroup of GL.2;Z=mZ/ Š
GL.2;Z=2rZ/ � GL.2;Z=sZ/ that is isomorphic to G2r � Gs . Then we say there is a
Serre entanglement if Gm is a subgroup of G of index 2, and there are index-2 normal
subgroups N2 and Nn of G such that
(1) N2 corresponds to Q.

p
�E / � Q.EŒ2�/,

(2) Nn corresponds to a quadratic subfield of Q.�n/ � Q.EŒn�/, with Nn ¤ N2, and
(3) N2 \Gm D Nn \Gm.

Example 3.13. For instance, letE=Q be the elliptic curve with LMFDB label 21.a1, and
discriminant �E D 3 � 72. Hence, Q.

p
�E / D Q.

p
3/ � Q.�3; i/ D Q.�12/, and there-

fore there is a .2;12/-Serre entanglement. In this case, nDmD12, and G�GL.2;Z=12Z/
is isomorphic to G4 �G3, where Gk D Im .�E;k/ as before. Finally, N2, Nn, and Gm are
generated as follows, as subgroups of GL.2;Z=12Z/:

N2 D

��
9 2

2 1

�
;

�
1 8

4 7

�
;

�
1 4

2 1

�
;

�
3 2

8 7

�
;

�
5 2

4 5

��
;

Nn D

��
5 5

10 3

�
;

�
5 8

2 3

�
;

�
11 7

8 3

�
;

�
3 1

8 7

��
;

Gm D

��
7 9

2 7

�
;

�
5 7

4 9

�
;

�
3 1

10 1

�
;

�
5 11

10 9

��
:

One can verify thatN2 andNn are index-2 subgroups of G , thatN2¤Nn, andN2 \GmD
Nn \ Gm. It is worth pointing out that Nn fixes Q.

p
3/ � Q.�12/ because det.Nn/ D

¹1; 11 mod 12º, and on the other hand, �12 C �1112 D
p
3. Moreover, �12 C �1112 is invariant

under the automorphism that sends �12 7! �1112 , and therefore Q.
p
3/must be fixed byNn,

as desired.

IfE=Q has CM, and j ¤ 1728, then�E is not a perfect square (see §3 in Appendix A
of [37]; the discriminant changes by a square after a quadratic or cubic twist), and the same
argument as in the first paragraph in this section shows thatE=Q has a Serre entanglement.
If jE D 1728, then E is given by a model y2 D x3 � dx, where d is a non-zero fourth-
power-free integer, and Q.EŒ2�/ D Q.

p
d/. If d is not a square (in other words, if E is

not a quadratic twist of y2 D x3 � x), then we once again have a Serre entanglement. If
d is a square, however, then Q.EŒ2�/ D Q and there is no Serre entanglement involving
the 2-torsion. However, the 2-adic image is “small” even for a CM curve, i.e., there is a
vertical collapsing, which we will discuss below (see Example 3.23).

To summarize, we have shown the following result.

Theorem 3.14. Let E=Q be an elliptic curve.

(1) If �E is not a perfect square in Q�, then E=Q has a Serre entanglement.

(2) If �E 2 .Q�/2, then E has a vertical collapsing.

Remark 3.15. If d 2 Q�, then the elliptic curves over Q with �E � d mod.Q�/2 are
precisely those curves E=Q with j -invariant of the form j.E/ D dt2 C 1728 for some

https://www.lmfdb.org/EllipticCurve/Q/21/a/1
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t 2 Q� (or j.E/ D 1728 if d � 3 mod .Q�/2). Indeed, the discriminant of the universal
elliptic curve

Ej0=Q W y
2
C xy D x3 �

36

j0 � 1728
x �

1

j0 � 1728

with j.Ej0/ D j0, is given by �Ej0 D j
2
0 =.j0 � 1728/

3. Hence, �Ej0 � j0 � 1728 mod
.Q�/2 as long as j0 ¤ 0 or 1728. Moreover, if E 0=Q is any other elliptic curve with
j.E/ D j0, then �Ej0 and �E 0 differ by a square in Q�.

Proposition 3.16. Fix a quadratic number field K. There are infinitely many Q-isomor-
phism classes of elliptic curvesE=Q with a Serre entanglement such that Q.

p
�E /DK.

Proof. Let K be a fixed quadratic field. Then there is a square-free integer d such that
K D Q.

p
d/. It follows from Remark 3.15 that any elliptic curve E=Q with j.t/ D

dt2 C 1728, for any t 2 Q�, has a Serre entanglement with Q.
p
�E / D Q.

p
d/ D K,

as desired.

Example 3.17. Let p > 2 be a prime, and let Op D .�1/.p�1/=2 � p. For any t 2 Q�, let

Ep;t W y
2
C Op t xy D x3 � 36 Op3 t2x � Op5 t4:

Then j.Ep;t / D Op t2 C 1728, and therefore (by our comments in Remark 3.15) we have
�Ep;t � .�1/

.p�1/=2p mod .Q�/2. In particular, Q.
p
Op/ is the unique quadratic subfield

of Q.Ep;t Œ2�/. Since Q.
p
Op/�Q.�p/, it follows that Q.

p
Op/�Q.Ep;t Œ2�/\Q.Ep;t Œp�/

and an entanglement of Serre type ensues. Moreover, any elliptic curve E 0=Q with a
Serre entanglement between Q.E 0Œ2�/ and Q.E 0Œp�/ is a quadratic twist of a curve in the
family Ep;t . We also remark here that the entanglements described in this family are both
of abelian and Weil-type, since d D gcd.2; p/ D 1.

3.2.2. Other discriminant .2 ; q/-entanglements. Let q be a prime such that E=Q has
a .2; q/-discriminant entanglement, that is, such that Q.

p
�E / � Q.EŒ2�/ \Q.EŒq�/.

Since Q.
p
�E / (when non-trivial) is the unique quadratic subfield of Q.EŒ2�/, it follows

that any abelian .2;q/-entanglement of type Z=2Z is a discriminant entanglement. In [12],
Daniels and Morrow have classified all the .p; q/-entanglements of type S , for some finite
group S , such that there are infinitely non-Q-isomorphic elliptic curves over Q with such
an entanglement. In particular, when p D 2, they show that the possible values for q
are q 2 ¹3; 5; 7; 13º. Thus, it remains to study discriminant .2; q/-entanglements with
q 62 ¹3; 5; 7; 13º, that are not of Serre type.

Lemma 3.18. Suppose that E=Q has no CM, and that it has a discriminant .2; q/-
entanglement where �E;q is contained in a Borel subgroup, for q 62 ¹2; 3; 5; 7; 13º. Then,
q D 11, and j D �112 or �11 � 1313.

Proof. Suppose that E=Q has no CM and an isogeny of degree q 62 ¹2; 3; 5; 7; 13º, and
that E has a discriminant entanglement. By the classification of rational isogenies, we
have q 2 ¹11; 17; 37º and the j -invariant of E is one of finitely many, as given in [26].
Since quadratic twisting preserves the field of x-coordinates (Lemma 9.6 of [26]), if the
quadratic fields contained in Q.EŒq�/ are contained in Q.x.EŒq�//, then either all twists
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of E have a discriminant entanglement or none have it. On the contrary, if the kernel
of the q-isogeny is generated by Q 2 EŒq� and Q.x.Q// is of odd degree, then there
is a quadratic twist of E with a discriminant entanglement. By Theorem 9.4 of [26], for
p D 17 and 37, the degree of Q.x.Q// is even, and therefore all the quadratic subfields
of Q.EŒq�/ are contained in Q.x.EŒq�//, and it suffices to check one twist for each j -
invariant. One can check that 14450.b1 and 14450.b2, and 1225.b1 and 1225.b2 do
not have discriminant entanglements. Therefore there are no discriminant entanglements
of type .2; 17/ and .2; 37/.

However, for p D 11, the degree of Q.x.Q//, where Q generates the kernel of an
11-isogeny, is odd (degree 5) and therefore there is a twist of E with a discriminant
entanglement. For instance, the elliptic curves 1936.a1 and 1936.b1 have discriminant
entanglements.

We will come back to the other cases according to the image of �E;q when we prove
Theorem A in Section 4.

3.3. CM entanglements

Next, we describe entanglements in the CM case. We note here that, by Lemma 3.15 in [3],
if E=Q is an elliptic curve with complex multiplication by an order Of;K of an imaginary
quadratic fieldK, and n> 3, thenK �Q.EŒn�/. Hence, for any a; b > 3, we at least have
K �Q.EŒa�/\Q.EŒb�/which results in a Weil entanglement of type T with Z=2Z� T .

Therefore, the presence of CM ensures that we have an entanglement, and we record
this phenomena below.

Definition 3.19. Let E=Q be an elliptic curve with complex multiplication by the order
Of;K with K=Q an imaginary quadratic extension. We say that an elliptic curve E=Q has
a CM .a; b/-entanglement of type Z=2Z if K � Q.EŒa�/ \Q.EŒb�/.

In addition to the CM entanglement, elliptic curves with CM may have other vertical
collapsing and horizontal entanglement that we shall describe below. First, we need to
describe the image of the Galois representations attached to elliptic curves with CM.

Definition 3.20. LetK be an imaginary quadratic field with discriminant�K and let OK;f
be the order of K of conductor f > 1. Let E=Q be an elliptic curve with CM by OK;f ,
let n > 3, and let �E;n be the mod n image of Galois.

We define groups of GL.2;Z=nZ/ as follows:
• If �Kf 2 � 0 mod 4, let ı D �Kf 2=4, and let � D 0.

• If �Kf 2 � 1 mod 4, let ı D .�K�1/
4

f 2, and let � D f .
The Cartan subgroup Cı;�.n/ of GL.2;Z=nZ/ is defined by

Cı;�.n/ D
°�

aC b� b

ıb a

�
W a; b 2 Z=nZ; a2 C ab� � ıb2 2 .Z=nZ/�

±
;

and we also define

Nı;�.n/ D
D
Cı;�.n/;

�
�1 0

� 1

�E
:
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Finally, let

Nı;�.p
1/ D lim

 �
Nı;�.p

n/ and Nı;�.yZ/ D lim
 �

Nı;�.n/:

Now we are ready to define a vertical CM tanglements and horizontal CM entangle-
ments in terms of the groups of Definition 3.20.

Definition 3.21. Let E=Q be an elliptic curve with CM by an order of an imaginary
quadratic field K, and let Nı;�.�/ be the groups of Definition 3.20.
(1) We say that E=Q has a vertical CM collapsing if Im .�E;p1/ is contained in, but not

equal to, a conjugate subgroup of Nı;�.p
1/ in GL.2;Zp/.

(2) Let n > 6 be an integer divisible by at least two distinct primes. We say that E=Q
has a horizontal CM entanglement if Im .�E;p1/ is contained in, but not equal to,
a conjugate subgroup of Nı;�.n/ in GL.2;Z=nZ/, and if the entanglement is not
explained by a product of vertical tanglements.

Remark 3.22. By Theorem 1.1 in [27], there is always a Z=nZ-basis ofEŒn� such that the
image of �E;n is contained in Nı;�.n/ � GL.2;Z=nZ/. Moreover, the index of Im .�E;n/
in Nı;�.n/ is a divisor of 4 or 6, and if j ¤ 0; 1728, then the index divides 2. In fact,
the same is true for the adelic image as the index is a divisor of jO�

K;f
j. This has been

shown in Theorem 1.5 of [24], a stronger version in Corollary 1.5 of [2], and in a slightly
different way, in Theorem 1.2 of [27].

Example 3.23. According to Theorem 1.7 in [27], there is a Z2-basis of T2.E/ such that
the 2-adic image of an elliptic curve with jE D 1728 is contained in the subgroup

N�1;0.2
1/ D

D�
1 0

0 �1

�
;
°�

a b

�b a

�
2 GL.2;Z2/ W a2 C b2 6� 0 mod 2

±E
of GL.2;Z2/. In particular, the image of �E;2 is contained in the subgroup of order 2
given by °�

1 0

0 1

�
;
�
0 1

1 0

�±
� GL.2;Z=2Z/:

Hence, if Q.EŒ2�/DQ, then the image of �E;2 is trivial, and therefore the image of �E;21
is at least of index 2 in N�1;0.2

1/. Hence, there is a vertical collapsing.

3.4. Fake CM entanglements

Here we describe the last of our generic or explained abelian entanglements, which we
call a fake CM entanglement. Let E=Q be an elliptic curve without CM and let p > 2

be an odd prime such that the image of �E;p is conjugate to N .p/, the normalizer of
a (split or non-split) Cartan subgroup C.p/ of GL.2; Fp/. Then, there is an element
� 2 Gal.Q.EŒp�/=Q/ of order 2, such that N .p/ D C.p/ Ì h�i. In particular, the Car-
tan subgroup is normal in N .p/, and the fixed field by C.p/ is a quadratic extension
yKp D Q.EŒp�/C.p/ of Q. The Weil pairing gives another quadratic subfield in Q.EŒp�/,

namely Fp D Q.
p
Op/, where Op D .�1/.p�1/=2 � p. Moreover, yKp ¤ Fp . Indeed, let H

be the subgroup of index 2 of N .p/ that fixes Fp . Since Fp � Q.�p/, it follows that
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N .p/ \ SL.2; Fp/ � H . However, C.p/ does not contain N .p/ \ SL.2; Fp/. Indeed,
C.p/ contains at least one element c of determinant �1, and c� 2 N .p/ \ SL.2; Fp/
but not in C.p/. Further, we note that � Id is contained in C.p/, and therefore yKp �
Q.x.EŒp�//. In particular, yKp is contained in Q.E 0Œp�/ for any quadratic twistE 0 ofE=Q
(see, for instance, Lemma 9.6 in [26]). In particular, there is a square-free integer d , dif-
ferent from Op, such that yKp D Q.

p
d/. Further, there is a third quadratic subfield of

Q.EŒp�/, namely Q.
p
d � Op /.

More generally, let E=Q be an elliptic curve without CM such that the image of �E;p
is contained in the normalizer of a Cartan subgroup of GL.2; Fp/, and let Kp.E/ D
Q.EŒp�/\Qab. Then, Theorem 5.12 and Corollary 5.17 of [11] show that Gal.Kp.E//Š
.Z=pZ/� or Z=2Z � .Z=pZ/�. In the first case, the only quadratic subfield of Q.EŒp�/
is Q.

p
Op/. In the second case, when Gal.Kp.E// Š Z=2Z � .Z=pZ/�, there are three

quadratic subfields in Q.EŒp�/, namely Q.
p
Op/, yKp D Q.

p
d/, and Q.

p
d � Op /.

Definition 3.24. Let E=Q be an elliptic curve without CM such that the image of �E;p
is contained in the normalizer of a Cartan subgroup of GL.2; Fp/, and suppose that
Gal.Kp.E// Š Z=2Z � .Z=pZ/�. We say that E=Q has a fake CM entanglement if it
has an abelian .p; q/-entanglement of type Z=2Z where Q.EŒp�/ \Q.EŒq�/ Š yKp or
Q.
p
d � Op / as defined above.

Example 3.25. The elliptic curve with LMFDB label 338.d2 and j.E/ D 113=23 is
an example of a curve with a fake CM .3; 5/-entanglement of type Z=2Z, where the
entanglement field is yK3 DQ.

p
13/. In this case, the elliptic curve has normalizer of split

Cartan image at p D 3 and it is Borel at q D 5. Since j.E/ is not integral, the elliptic
curve is not a CM elliptic curve.

4. Proofs of Theorem A and Corollary B

Before we prove Theorem A, we introduce some work of Lemos and by two of the authors
which will be used in the proof. Recall that Serre asked, for an elliptic curve over Q
without CM, whether �E;p is surjective for all primes p > 37.

Theorem 4.1 ([21]). Let E=Q be an elliptic curve over Q without CM, and let p be a
prime.

(1) Suppose that there is a prime q such that the image of �E;q is contained in either a
Borel subgroup or the normalizer of a split Cartan subgroup. Then, �E;p is surjective
for p > 37.

(2) Suppose that there is a prime q such that the image of �E;q is contained in the nor-
malizer of a split Cartan subgroup and a prime p > 11 such that the image of �E;q is
contained in the normalizer of a non-split Cartan subgroup. Then, j.E/ is integral.

Suppose thatE=Q is an elliptic curve, and that p and q are distinct primes such thatE
has an abelian .p; q/-entanglement of type S . Then, it follows that

F D .Q.EŒp�/ \Q.EŒq�// \Qab

https://www.lmfdb.org/EllipticCurve/Q/338/d/2
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is a Galois extension of Q with Gal.F=Q/Š S . Hence, F �Q.EŒ`�/\Qab for `D p;q.
The first and second author have classified the possibilities for Q.EŒ`�/\Qab in [11] (see
Theorem 1.6 and Corollaries 5.3, 5.7, 5.11, 5.17, and 5.20).

Theorem 4.2 ([11]). LetE=Q be an elliptic curve and let p be an odd prime. LetKp.E/D
Q.EŒp�/ \Qab. Then:
(1) Gal.Kp.E/=Q/' .Z=pZ/� �C , where C is a cyclic group of order dividing p � 1.

(2) If E=Q does not have a rational p-isogeny (equivalently, the image of �E;p is not
contained in a Borel subgroup), then C is trivial or of order 2 and Kp.E/ D F.�p/,
with F=Q a trivial or quadratic extension.

(3) If the image of �E;p is exceptional or full, then Kp.E/ D Q.�p/.

Finally, if p D 2, then Kp.E/ is a trivial, quadratic, or cubic extension of Q.

4.1. Proof of Theorem A

Suppose E=Q is an elliptic curve without CM, and let p < q be primes such that E has
an abelian .p; q/-entanglement. Let

F D Q.EŒp�/ \Q.EŒq�/ \Qab:

Then, F � Kp.E/ \ Kq.E/, where Ks.E/ D Q.EŒs�/ \ Qab. We distinguish several
cases.

(1) If p D 2, then F � K2.E/ � Q.EŒ2�/ can be quadratic or cyclic cubic. If F is
quadratic, then there is a discriminant entanglement (see Sections 3.2 and 3.2.2).

(2) If p D 2, and F is a cyclic cubic, then dF D ŒF W Q� D 3. In this case, F D
Q.EŒ2�/ is a cyclic cubic number field, and F appears also in Q.EŒq�/. By Theorem 4.2,
the curve E must have a rational q-isogeny where 3 divides q � 1. By the classifica-
tion of cyclic rational isogenies (see, for instance, Section 9 of [26], and in particu-
lar Theorem 9.5), we must have q 2 ¹7; 13; 19; 37; 43; 67; 163º. Since X0.`/ with ` 2
¹19; 37; 43; 67; 163º only has finitely many rational points, these choices of q lead to,
at most, finitely many examples (j -invariants). If ` D 43; 67; 163 the only j -invariants
are CM ones, but we are assuming E does not have CM. If ` D 19 or 37, then there are
three possible j -invariants, and one can easily verify that elliptic curves with those three
j -invariants have full 2-adic image, and therefore Q.EŒ2�/ is not cyclic cubic.

If q D 13, we have used Magma to look for subgroups of GL.2;Z=26Z/ that would
surject to the corresponding images mod 2 and mod 13, with a Z=3Z-entanglement. Our
computations show that there are precisely 4 such subgroups, and none of these define
modular curves of genus 0 or 1 (they have genus 3; 3; 3, and 5, respectively), and any
elliptic curve with this prescribed entanglement must correspond to a Q-rational point on
a modular curve of genus 3 or 5. Therefore, Faltings’ theorem tells us there are at most
finitely many j -invariants of elliptic curves with a .2; 13/-entanglement of type Z=3Z.

If q D 7, however, there are such entanglements, and in fact there are such entan-
glements with the added condition that F is not a subfield of Q.�7/, which makes the
entanglement not of Weil type. These entanglements have been described in [12]. The
authors show that there are three genus 0 modular curves whose Q-points correspond to
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elliptic curves with such an abelian entanglement, and their parametrizations appear in
Theorem A.

(3) If 2 < p < q, and the images of �E;p and �E;q are exceptional or full, then The-
orem 4.2 implies that F � Kp.E/ \ Kq.E/ D Q.�p/ \Q.�q/ D Q, and therefore the
entanglement would be trivial.

(4) If both p and q are odd, and the images of �E;p and �E;q are contained in Borel
subgroups, then E has a rational cyclic pq-isogeny. By the classification of cyclic ratio-
nal isogenies (see, for instance, Section 9 of [26], and in particular Theorem 9.5), we
must have pq D 15, and the only j -invariants with a 15-isogeny are j 2 ¹�52=2;�52 �
2413=23;�5 � 293=25; 5 � 2113=215º: In all four cases, the 3-torsion is defined over a field
of degree dividing 6 while the 5-torsion is defined over a field of degree dividing 20 so the
intersection must be trivial or quadratic. As we show in Example 4.4, quadratic entangle-
ments are possible in this case.

(5) The last case remaining is p;q odd, with dF D2, but without rational pq-isogenies.
Thus, F D .Q.EŒp�/ \Q.EŒq�// \Qab is a quadratic extension of Q, and since there
is no pq-isogeny either the mod-p or mod-q image is not contained in a Borel subgroup.
Thus, one or both images are contained in a normalizer of a Cartan subgroup, and there-
fore, the entanglement is either of Weil type or of fake CM type.

This completes the proof of Theorem A.

Example 4.3. For instance, the curve with LMFDB label 1922.c2 has an abelian .2; 7/-
entanglement of type Z=3Z, which is not Serre, Weil, or CM. Indeed, the entanglement
field F D Q.EŒ2�/ is the cyclic cubic field that corresponds to x3 � x2 � 10x C 8 D 0,
with discriminant 312, while the field of definition of one kernel of the 7-isogeny is a
cyclic sextic field with discriminant �315 that contains F as its unique cubic subfield.

Example 4.4. Let d ¤�2;�3;5 be a square-free integer, and letE.d/=Q be the quadratic
twist by d of the curve EW y2 C xy C y D x3 � 126x � 552 with LMFDB label 50.a1
with j.E/ D �52 � 2413=23. The image of the representation �E;p for p D 3; 5 is of the
form °�

�p b

0 1

�
W b 2 Z=pZ

±
� GL.2;Fp/:

Hence, if �d is the quadratic character associated to Q.
p
d/, then the image of �E .d/;p is

of the form °�
�p�d b

0 �d

�
W b 2 Z=pZ

±
� GL.2;Fp/:

In particular, we have that Q.E.d/Œp�/ \ Qab D Q.�p;
p
d/ for p D 3; 5, and so

Q.E.d/Œ3�/ \Q.E.d/Œ5�/ D Q.
p
d/.

Note that:
• E is a non-CM curve, so its twists E.d/ are non-CM as well. Thus the entanglement

is not of CM type.
• The entanglement is between the third and fifth division fields, so it is not a discrim-

inant entanglement (since it does not involve the second division field). Moreover,

https://www.lmfdb.org/EllipticCurve/Q/1922/c/2
https://www.lmfdb.org/EllipticCurve/Q/50/a/1
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since �E D �1 � 23 � 54, we have that Q.
p
�E .d// D Q.

p
�2/, and hence there is a

discriminant entanglement between 2 and p D 3; 5 if and only if d ¤ �2.
• Finally, Q.

p
d/ is not contained in Q.�p/ for p D 3; 5, as long as d ¤ �3; 5. Hence,

the entanglement is not of Weil type. We notice, however, that if n is the smallest
positive integer such that Q.

p
d/ � Q.�n/, then there is an additional .p; n/-Weil

entanglement of type Z=2Z.

4.2. Proof of Corollary B

In order to prove the corollary, we need to analyze all the possibilities of quadratic entan-
glements in more depth.

(1) If p D 2, then F � K2.E/ � Q.EŒ2�/ can be quadratic or cyclic cubic. If F is
quadratic, then there is a discriminant entanglement. If the image of �E;q is exceptional
or full, then Theorem 4.2 implies that F � Kq.E/ D Q.�q/ and therefore the entangle-
ment is of Serre type. If the image of �E;q is contained in a Borel subgroup, then either
q 2 ¹3; 5; 7; 13º and the possibilities have been parametrized by [12], or Lemma 3.18
shows that ` D 11 and there are two possible j -invariants. Otherwise, the image of �E;q
is contained in the normalizer of a Cartan subgroup (but not in a Borel) and therefore the
entanglement is either of Serre type (if F DQ.

p
Op/), or of fake CM type. If the entangle-

ment is of fake CM type, and it corresponds to an infinite family, those once again appear
in [12] and those do occur for q D 3; 5; 7. Otherwise, the corresponding modular curves
are of genus 2 or higher and contain at most finitely many rational points. Moreover, if
we assume Serre’s uniformity then q 6 37, so there are only finitely many possibilities in
total.

(2) The last case remaining is p;q odd, with dF D2, but without rational pq-isogenies,
and F D .Q.EŒp�/ \Q.EŒq�// \Qab is a quadratic extension of Q. First we study the
case when one of the images is contained in a Borel subgroup B and another image is
contained in a normalizer of a Cartan subgroup. Since we are assuming that the elliptic
curve does not have CM, then the classification of rational cyclic isogenies over Q together
with Theorem 4.1, show that p; q 6 37 (without the need of Serre’s uniformity).

Note that if the image of �E;q , say, is contained in a Borel, then there is either one
or three non-trivial quadratic subfields of Q.EŒq�/, where one of them is Q.

p
Oq/ with

Oq D .�1/.q�1/=2 � q. Hence, it may occur that F D Q.EŒp�/ \ Q.EŒq�/ \ Qab is one
of the three quadratic subfields, and if F ¤ Q.

p
Oq/, then E=Q has an abelian .p; q/-

entanglement of type Z=2Z that is not a Weil entanglement. SinceE=Q does not have CM,
then it is not a CM entanglement, and since p and q are odd, it is not a discriminant
entanglement either, thus not of Serre type. Since we are assuming the other image, that
of �E;p , is contained in the normalizer of a Cartan subgroup, it would be an entangle-
ment of fake CM type. If there are infinitely many j -invariants that correspond to one of
these entanglements, then there would be a modular curve of genus 0 or 1 (with positive
rank) that corresponds to such mod pq image. The tables in [10] show that these are the
possibilities that occur in genus 0 and 1:

• .3Nn; 5B/ corresponds to a modular curve of genus 0which parametrize elliptic curves
with j -invariant j.t/D .3125t6C250t3C1/3=t3. Using the results of [12], we know
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that there are exactly 2 groups representing entanglements between 3- and 5-division
fields of this type with infinitely many points. They are both genus 0 curves that
parametrize (3,5)-entanglements of type Z=2Z, and their parametrizations appear in
Corollary B.

• .3Ns; 5B/ corresponds to a modular curve of genus 1 but the rank is 0. Thus, there
are only two such j -invariants, which were computed in [10], namely 113=23 and
�293 � 413=215. The elliptic curves with LMFDB labels 338.d2 and 338.b1, with
j -invariants j.E/ D 113=23 and �293 � 413=215 respectively, are examples of curves
with a .3;5/-entanglement of type Z=2Z,where the entanglement field isFDQ.

p
13/.

Any other possible combination of p and q would correspond to a modular curve of
genus > 2, and since p; q 6 37 as explained before, it follows that there are only finitely
many j -invariants that could possibly have a fake CM entanglement other than those in
the infinite families described above.

(3) The last case to study is when both images are contained in normalizer of Cartan
subgroups. Hence, the entanglement is either of Weil type or of fake CM type. By work
of Bilu, Parent, and Rebolledo, if the image of �E;p is contained in a normalizer of a split
Cartan subgroup, then p 6 11. So either q > 11 and the image of �E;q is contained in a
normalizer of a non-split Cartan, or p; q 6 11.

In [10], Daniels and González-Jiménez have classified all the possible combinations
of mod p and mod q images that are associated to modular curves (of level pq) of genus 0
or 1 (with positive rank). There they find that the only possibilities of mod p and mod q
images which occur for infinitely many j -invariants are .3Nn; 5Nn/, .3Nn; 5Ns/, and
.3Nn; 7Nn/which are parametrized by elliptic curves of positive rank (see Tables 9 and 10
of [10] for the equations). However, if a non-Weil entanglement did occur, then there is
a quadratic entanglement F D Q.EŒp�/ \Q.EŒq�/ \Qab. We have computed the genus
of the quotients of images .3Nn; 5Nn/, .3Nn; 5Ns/, and .3Nn; 7Nn/ where such a coin-
cidence would occur, and none have genus < 2 (in fact, no subgroup of these images
has genus < 2). Therefore, if any such examples exist, they do only for finitely many
j -invariants.

It follows that if we assume Serre’s uniformity question, then p; q 6 37, and therefore
there would be only finitely j -invariants that correspond to a fake CM entanglement such
that the images of �E;p and �E;q are contained in a normalizer of a Cartan subgroup.

This completes the proof of Corollary B.

5. Entanglements of Weil-type

In this section, we prove several results on entanglements of Weil-type, and to conclude,
we will present two questions which relates explained entanglements to generic polyno-
mials.

5.1. Weil .2 ; n/-entanglements of Z=3Z-type

This type of entanglement occurs when Q.EŒ2�/=Q is an Z=3Z-extension. Elliptic curves
with this kind of entanglement have already been studied in Proposition 8.4 of [29], which

https://www.lmfdb.org/EllipticCurve/Q/338/d/2
https://www.lmfdb.org/EllipticCurve/Q/338/b/1
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uses work of Gauss and Rubin–Silverberg. We note here that if Q.�n/ contains a cyclic
cubic number field L, then there are an odd prime p and e > 1 such that L � Q.�pe / �
Q.�n/ and, in fact, either pe D 9 or pe D p if p > 3 (note that, of course, not every cyclic
cubic extension has prime conductor, but here for simplicity we concentrate on prime
conductor cyclic cubics). In particular, it follows that if an elliptic curve E=Q has a non-
trivial ..2; n/;Z=3Z/-entanglement (in the notation of Definition 2.2), then E also has a
..2; pe/;Z=3Z/ entanglement, and ..2; pe/;Z=3Z/ 6 ..2; n/;Z=3Z/. Thus, it suffices to
realize ..2; p/;Z=3Z/ entanglements for p > 3, and ..2; n/;Z=3Z/ for n D 9.

Proposition 5.1. Let p be a prime, and let e > 1 be such that 3 j '.pe/. Then, there
exist infinitely many Q-isomorphism classes of elliptic curves E=Q (which are explicitly
parametrized ) such that Q.EŒ2�/ \ Q.EŒpe�/ Š L, where L is the degree 3 subfield
of Q.�pe /.

Proof. If p > 3, then p > 7 and 3 j p � 1. This case is taken care of in Proposition 8.4
of [29]. Otherwise, suppose pe D 9. Then, L � Q.�9/ is the cubic field generated by the
roots of the polynomial f .x/ D x3 � 6x2 C 9x � 3. Let E=Q be the elliptic curve given
by y2 D f .x/, so that Q.EŒ2�/ D L. Following a procedure detailed in [34], we can find
a family of elliptic curves Et=Q.t/, one for each t 2 Q, given by

Et W y
2
D x3 � 3888.2303t2 C 1/x � 46656.�2303t3 � 6909t2 C 3t C 1/;

such that Q.Et Œ2�/ D Q.EŒ2�/ D L (further, the j -invariant of E is non-constant as a
function of t , so there are infinitely many non-isomorphic elliptic curves in the family).
Since L � Q.�9/ � Q.Et Œ9�/, it follows that

Q.Et Œ2�/ \Q.Et Œ9�/ D L \Q.Et Œ9�/ D L � Q.�9/;

as desired.

Remark 5.2. Proposition 5.1 can be made explicit in the case where p is a prime such
that 3 j p � 1 using the Magma intrinsic RubinSilverbergPolynomials.

5.2. Weil .3; n/-entanglements of Z=2Z-type

We now turn our attention to .3; n/-entanglements of Weil-type. We note that there are
two possible ways to construct elliptic curves whose mod 3n representation has an image
representing a Weil .3; n/-entanglement of Z=2Z-type.

First, we can construct elliptic curves such that either Q.�3/ \Q.EŒn�/ is larger than
expected (i.e., not equal to Q), or Q.�n/ \Q.EŒ3�/ is larger than expected. It turns out
that the easiest way for one of these two things to be true is for Im .�E;n/ (or respectively,
Im .�E;3/) to not be surjective; note that in the n D 2 case, this produces a Serre .2; 3/-
entanglement which has been classified in Proposition 3.16. Indeed, if n > 3 and �E;n is
surjective, then Gal.Q.EŒn�/=Q/' GL.2;Z=nZ/, and so we can determine the intersec-
tion

Q.EŒn�/ \Qab
D

´
Q.�n/ n is odd;
Q.�n;

p
�E / n is even;
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where �E is the discriminant of the elliptic curve in question. Moreover, this tells us
that it is more difficult to find anything larger than expected in those two intersections.
Assuming a positive answer to Serre’s uniformity question (that is, Im .�E;p/ is surjective
onto GL.2;Z=pZ/ for all primes p > 37, for non-CM curves), there is an upper bound
on how large n can be if Im .�E;n/ is not surjective. We analyze both cases separately.

Suppose that Im .�E;3/ is not surjective, and in particular that Im .�E;3/ is conjugate to
a subgroup of the full Borel subgroup of GL.2;Z=3Z/ (i.e., E has a rational 3-isogeny).
Let G D B.3/ be the Borel subgroup of GL.2;Z=3Z/. We have that Q.EŒ3�/ contains up
to 3 different quadratic extensions. If P is a generator of the kernel of a 3-isogeny, then
we can see that these quadratic extensions are Q.

p
�3/, Q.P /, and the compositum of

these two fields.
We want to understand what extensions (either quadratic or trivial) arise as the field

Q.P /. To begin, we start with a concrete example.

Example 5.3. Let E=Q be the elliptic curve with LMFDB label 19.a1. This elliptic
curve has a rational 3-isogeny and discriminant �E D �19. The kernel of the 3-isogeny
is generated by

P D
�
�
49

3
;�
9C
p
�3

18

�
;

and we have that Q.x.P // D Q and Q.P / D Q.
p
�3/. For a quadratic twist E.d/, we

denote the corresponding generator of the kernel of the 3-isogeny by Pd , so that Q.Pd /D
Q.
p
�3d /: Thus, we have that for any square-free d 2 Z, there is an elliptic curve with

a 3-isogeny whose kernel is defined over Q.
p
d/, namely, one can just twist the elliptic

curve E by �3d . Therefore, we are able to realize any quadratic extension as the field of
definition of the kernel of the 3-isogeny through appropriate twisting.

Next, we extend the technique from Example 5.3 to produce an infinite family of non-
isomorphic elliptic curves, which have a Weil .3; n/-entanglement of type Z=2Z.

Proposition 5.4. Let n 2 N be such that n > 1 and 3 − n, and let K be a quadratic field
contained in Q.�n/. Then there are infinitely many Q-isomorphism classes of elliptic
curves with a Weil .3; n/-entanglement of type Z=2Z, such that the entanglement field
is K.

Proof. Let n > 1 and 3 − n, and let K � Q.�n/ be a quadratic field. Then, K D Q.
p
d/

for a square-free integer d . Let t ¤ 1 be a rational number, and let Et be the elliptic curve
over Q.t/ given by

Et W y
2
D x3 � 27t.t3 C 8/x C 54.t6 � 20t3 � 8/:

The curve Et is the so-called Hesse cubic, which is a model of X.3/ over Q.
p
�3/ (see

Section 6.2 in [17]). In particular, for each 1 ¤ t 2 Q, Et has a rational point of order 3
and Q.Et Œ3�/DQ.

p
�3/. Twisting Et by the square-free integer d results in a curve E

.d/
t

given by
E
.d/
t W dy2 D x3 � 27t.t3 C 8/x C 54.t6 � 20t3 � 8/

such that the field of definition of the point of order 3 changing from Q to Q.
p
d/ D K,

and Q.E.d/t Œ3�/ D Q.
p
�3;
p
d/. The fact that there are infinitely many Q-isomorphism

https://www.lmfdb.org/EllipticCurve/Q/19/a/1
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classes of elliptic curves follows from the fact that Et , and hence E
.d/
t , is not isotrivial as

j.Et / D j.E
.d/
t / D

t3.t C 2/3.t2 � 2t C 4/3

.t � 1/3.t2 C t C 1/3
;

so the j -invariant in the family E
.d/
t is non-constant. Since 3−n and since we have that

Q.E.d/t Œ3�/ D Q.
p
�3;
p
d/, it follows that Q.E.d/t Œ3�/ \Q.E.d/t Œn�/ D K. Then, E

.d/
t

has a Weil .3; n/-entanglement of type Z=2Z, such that the entanglement field is K.

5.3. Weil .m; n/-entanglements of Z=2Z-type

The techniques of Example 5.3 and Proposition 5.4 can be extended to prove the follow-
ing.

Theorem 5.5. Letm2 ¹3; : : : ;10;12º, and let n> 3 be an integer such that gcd.m;n/6 2.
Then,

(1) if m 2 ¹3; 4; 5; 6; 7; 9º, then there are infinitely many Q-isomorphism classes of
elliptic curves with a Weil .m; n/-entanglement of type Z=2Z,

(2) if m 2 ¹8; 10; 12º, then there are infinitely many Q-isomorphism classes of elliptic
curves E with a Weil .m; gcd.4j�E j; n//-entanglement of type Z=2Z � Z=2Z.

Proof. Let m 2 ¹3; : : : ; 10; 12º. The modular curve X1.m/ is of genus 0 with a rational
point, and the 1-parameter families of elliptic curves with a rational point of order m can
be found in the literature (see [20]). Note that if E=Q is an elliptic curve with a rational
point of order m, and �m;t is the Galois representation associated to EŒm�, then the image
of �m;t is contained in the subgroup°�

1 a

0 b

�
W a 2 Z=mZ; b 2 .Z=mZ/�

±
� GL.2;Z=mZ/:

Moreover, the bottom right corner is given by the m-th cyclotomic character �m, because
the determinant of Im .�m;t / is �m. Let n > 3 be an integer and let d be a square-free
integer such that Q.

p
d/ �Q.�n/, but Q.

p
d/ 6�Q.�m/ or, equivalently, gcd.n;m/ 6 2.

Below, we show infinite families with the desired property:
(1) If m 2 ¹3; 4; 5; 6; 7; 9º, the curves in the family satisfy .Q.EŒn�/ \ Q.EŒm�// \

Qab D Q.�c ;
p
d /, where c D gcd.m; n/.

(2) Ifm 2 ¹8; 10; 12º, the curves in the family satisfy that .Q.EŒn0�/\Q.EŒm�//\Qab

is equal to Q.�c ;
p
�E ;
p
d /, where c D gcd.m; n0/, and n0 D gcd.4j�E j; n/.

We give a list according to the value of m:

CasemD 3. Pick E
3;.d/
t Wdy2 D x3 � 27t.t3C 8/xC 54.t6 � 20t3 � 8/; as in Propo-

sition 5.4, so that Q.E3;.d/t Œ3�/ D Q.
p
�3;
p
d/.

Case m D 4. Pick E4;.d/W y2 C xy � .d2 � 1=16/y D x3 � .d2 � 1=16/x2 for d ¤
0;˙1=4, which parametrizes elliptic curves withE.Q/ŠZ=2Z˚Z=4Z (see Appendix E
in [25]). A calculation of the 4th division field reveals that Q.EŒ4�/ D Q.i;

p
d/.
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Case m D 5. Pick E
5;.d/
t to be the quadratic twist by d of the model of X.5/ defined

over Q.�5/ given in Section 6.4 (1) of [17]. Then, Q.E5;.d/t Œ5�/ D Q.�5;
p
d/.

Case m D 6. Pick E
6;.d/
t to be quadratic twist by d of the family of elliptic curves

with torsion subgroup Z=2Z˚ Z=6Z, as given in Appendix E of [25]. An elliptic curve
in the family E6t has full 2-torsion defined over Q, an isogeny graph of type S , and an
isogeny-torsion graph of type .Œ2; 6�; Œ2; 2�; Œ6�; Œ2�; Œ6�; Œ2�; Œ6�; Œ2�/ following the notation
of Table 4 in [9]. Upon a quadratic twist by a square-free integer d , an elliptic curve
in the family E

6;.d/
t has full 2-torsion defined over Q, and an isogeny-torsion graph of

type S with isomorphism types .Œ2; 2�; Œ2; 2�; Œ2�; Œ2�; Œ2�; Œ2�; Œ2�; Œ2�/. Note that E6t has
a unique rational 3-isogeny by its isogeny-torsion graph, so the image of �3 cannot be
diagonalizable. This implies that Q.E6t Œ2�/ D Q and Q.E6t Œ3�/ is an S3 extension with
quadratic subfield equal to Q.

p
�3/, and hence upon a twist by a square-free d , we see

that Q.E6;.d/t Œ2�/ D Q and Q.E6;.d/t Œ3�/ \Qab D Q.
p
�3;
p
d/.

Case m D 7. Pick E
7;.d/
t to be the quadratic twist by d of the family of elliptic curves

with a rational 7-torsion point, as given in Appendix E of [25]. In this case, one can show
that Q.E7;.d/t Œ7�/ ¤ Q.E7;.d/t Œ7�/ \Qab D Q.�7;

p
d/ because the mod-7 image has to

be a subgroup conjugate to ¹Œ1 � 0 ��º � GL.2;Z=7Z/, otherwise the image would be
diagonal and the curves would have two independent 7-isogenies, which cannot occur.

Case m D 8. Let E2�8t be the family of elliptic curves with Z=2Z˚ Z=8Z-rational
torsion subgroup, as in Appendix E of [25], for t ¤ 0;1; 1=2. Then we have Q.E2�8t Œ2�/D

Q.
p
8t2 � 8t C 1/. Note that the image of �8 is contained in ¹Œ1 � 0 ��º � GL.2;Z=8Z/

and the bottom right corner is the full �8 cyclotomic character. Moreover, by [9], the
isogeny-torsion graph must be T8 with .Œ2; 8�; Œ8�; Œ8�; Œ2; 4�; Œ4�; Œ2; 2�; Œ2�; Œ2�/. If the top
right corner in the image of �8 was 0 mod 4, then E2�8t would have two independent
4-isogenies, but that would contradict the fact that the curve E1 in a T8 graph does not
have two such isogenies. Thus, the image of �8 is ¹Œ1 .2 � �/ 0 ��º � GL.2;Z=8Z/, and a
group-theoretic calculation shows that F DQ.E2�8t Œ8�/\Qab is a degree 8, tri-quadratic
extension of Q. It follows that F DQ.�8;

p
8t2 � 8t C 1//DQ.i;

p
2;
p
8t2 � 8t C 1/,

where Q.
p
�/ D Q.

p
8t2 � 8t C 1/.

Now let E
2�8;.d/
t be the quadratic twist by d . Then,

Q.E2�8;.d/t Œ8�/ \Qab
D Q.�8;

p
8t2 � 8t C 1;

p
d/ D Q.i;

p
2;
p
8t2 � 8t C 1;

p
d/:

CasemD 9. Pick E9t to be the family of elliptic curves with a rational 9-torsion point,
as in Appendix E of [25]. Then, the image of �3;t cannot be diagonal, because in that
case E9t would have two independent 3-isogenies and a rational point of order 9, which
is impossible by the classification of isogeny-torsion graphs (see Tables 1-4 in [9]). In
particular, the image of �9;t is the subgroup H D ¹Œ1 � 0 ��º � GL.2;Z=9Z/, where
the lower right corner is the 9-th cyclotomic character �9. In particular, H=ŒH;H� is of
order 6 and Q.E9t Œ9�/ \Qab D Q.�9/. Now, let E9

t;d
be the quadratic twist by d . Then,

Q.E9
t;d
Œ9�/ \Qab D Q.�9;

p
d/.

Case m D 10. Pick E
10;.d/
t to be the quadratic twist by d of the family E10t of elliptic

curves with a rational 10-torsion point, and discriminant �t . The image of �10 for E10t
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is contained in B D ¹Œ1 � 0 ��º � GL.2;Z=10Z/, where the bottom right corner is �10,
the full 10-th cyclotomic character. Moreover, the top right corner cannot be 0 (mod 2),
because the curves in the family would have rational Z=2Z�Z=10Z-torsion, and it cannot
be 0 (mod 5) because then the curves would have two independent 5-isogenies, which
cannot occur because then the isogeny graph would contain a rational 50-isogeny. Thus,
the image of �10 is the full group B , and the image for the twists is ¹Œ � 0  �1�10�º �
GL.2;Z=10Z/, where  D  d is the quadratic character corresponding to

p
d . Then,

Q.E10;.d/t Œ10�/ \Qab
D Q.�5;

p
�t ;
p
d/:

Case m D 12. Pick E
12;.d/
t to be the quadratic twist by d of the family E12t of elliptic

curves with a rational 12-torsion point, and discriminant �t . By [9], the isogeny-torsion
graph of E12t is S of type .Œ2; 6�; Œ2; 2�; Œ12�; Œ4�; Œ6�; Œ2�; Œ6�; Œ2�/, and it follows that the only
prime-power isogenies of such a curve are a 3-isogeny and two 4-isogenies that share an
initial 2-isogeny. It follows that the image of �12 is B D ¹Œ1 � 0 �12�º � GL.2;Z=12Z/,
where the top right corner is full (because otherwise there would be additional 4- or 3-
isogenies). A group-theoretic calculation shows that F DQ.E12t Œ12�/\Qab is a degree 8,
tri-quadratic extension of Q. It follows that F D Q.�12;

p
�t // D Q.i;

p
�3;
p
�t / and

Q.E12;.d/t Œ12�/ \Qab
D Q.�12;

p
�t ;
p
d/ D Q.i;

p
�3;

p
�t ;
p
d/:

This concludes the proof of the theorem.

5.4. Weil .5; n/-entanglements of Z=4Z-type

Continuing with our discussion on Weil entanglements, the purpose of this subsection is to
study what Weil .5; n/-entanglements of type Z=4Z can occur by studying division fields
of elliptic curves with 5-isogenies.

LetG DB.5/�GL.2;Z=5Z/ be the Borel subgroup, so thatG=ŒG;G�' .Z=5Z/� �
.Z=5Z/�. Determining what entanglements of Z=4Z-type can occur amounts to under-
standing which Z=4Z-extensions of Q can appear as subfields of the 5-division field of
an elliptic curve with a 5-isogeny. To study this, we begin by analyzing which quadratic
extensions can occur as subfields.

We start by fixing a model for the generic elliptic curve with a 5-isogeny. Let

Et Wy
2
Dx3�33

.t2 C 10t C 5/3

.t2C 22
25
tC 1

5
/.t2�20t�25/2

�xC2 � 33
.t2 C 10t C 5/3

.t2C 22
25
tC 1

5
/.t2�20t�25/2

�

Then Et is an elliptic curve over Q.t/with the property that every elliptic curveE 0=Q with
a 5-isogeny is isomorphic to a twist of a specialization of Et . The 5-division polynomial
of Et has a quadratic factor whose roots define Q.x.Pt //, where Pt generates the kernel
of the 5-isogeny for Et . Using Magma, we check that this splitting field of this polynomial
is exactly Q.

p
ı.t//, where

ı.t/ D 5
�
t2 C

22

25
t C

1

5

�
:
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Notice that

ı.t/ D .m.t//2 C .n.t//2; where m.t/ D t C 7=25 and n.t/ D 2t C 24=25:

Therefore, for any t 2Q, the quadratic field inside Q.Pt / is of the form Q.
p
d/, where d

can be written as the sum of two squares. (Note that this condition needs to be met, since
the Q.

p
d/ D Q.x.Pt // � Q.Pt / and Q.Pt / is a cyclic quartic; see Remark 5.7.)

Next, we turn our attention to determine whether there is a t 2Q such that Q.
p
ı.t//D

Q.
p
d/ for a given d 2N that is square-free and can be written as the sum of two squares.

Notice that, in this case, twisting will not help us because Q.x.EŒn�// is invariant under
twisting. This question can be reformulated as follows: given a square-free integer d that
can be written as the sum of two squares, say d D m2 C n2, are there always rational
points on the curve

Cd W
�
x2 C

22

25
x C

1

5

�
D dy2 ‹

The curve Cd is a genus zero curve, and we now show that Cd .Q/ ¤ ; when d can be
written as the sum of two squares. In other words,Cd is isomorphic to P1 over Q precisely
when d can be written as the sum of two squares.

Lemma 5.6. The curve Cd has a rational point if and only if d can be written as the sum
of two squares.

Proof. We can rewrite the defining polynomial of Cd as

Cd W
�
x C

7

25

�2
C

�
2x C

24

25

�2
D dy2:

Thus, one direction is clear: if Cd .Q/ is non-empty, then d can be written as a sum of two
squares. Conversely, writing d D m2 C n2 with m 6 n, we can solve the system´

x C 7=25 D my;

2x C 24=25 D ny:

Using the first equation to solve for y, plugging into the second and solving for x we find
a point � 7m � 24n

25.2n �m/
;�

2

5.2n �m/

�
on Cd .Q/.

Thus, for every d > 1 that can be written as the sum of two squares, there is an ellip-
tic curve E=Q with a 5-isogeny, whose kernel is generated by P such that Q.x.P // D
Q.
p
d/.

Remark 5.7. It is no surprise that the only quadratic extensions that occur as subfields
of the division fields of these elliptic curves are those of the form Q.

p
d/, where d D

m2 C n2 because these are exactly the quadratic extensions that can be embedded into a
cyclic extension of degree 4. In fact, given a d D m2 C n2, one can write down explicitly
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all of the Z=4Z-extensions of Q that contain Q.
p
d/. By Theorem 2.2.5 in [18], all of

these extensions are of the form

Q
�p

r .d Cm
p
d/
�

for r 2 Q�=.Q�/2.

To summarize, we have the following proposition.

Proposition 5.8. Let K be a cyclic quartic number field, and let n > 2 be an integer
not divisible by 5 such that K � Q.�n/. Then, there is an elliptic curve E=Q with a
Weil .5; n/-entanglement of type Z=4Z such that the entanglement field is precisely K. In
particular, there are infinitely many Q-isomorphism classes of elliptic curves E=Q with
a Weil .5; n/-entanglement of type Z=4Z.

Proof. Let K be a cyclic quartic field, and let F D Q.
p
d/ be the intermediary quadratic

field contained in K, where d is a square-free integer. By our comments in Remark 5.7,
the integer d is a sum of two squares, say d D m2 C n2, with m 6 n. Thus, Lemma 5.6
shows that there is a rational number t 2 Q such that Q.

p
ı.t// D Q.

p
d/ D F . If we

let E D Et be the elliptic curve over Q.t/ defined at the beginning of Section 5.4, then
F D Q.x.Pt //, where hPt i is the kernel of a 5-isogeny. Thus, K 0 D Q.Pt / is a cyclic
quartic extension of Q.

By Theorem 2.2.5 in [18], there are integers r and r 0 such that

K D Q
�p

r .d Cm
p
d/
�

and K 0 D Q
�p

r 0 .d Cm
p
d/
�
;

where d Dm2C n2 as before. Let q be an integer such that q� r=r 0 mod .Q�/2. LetE.q/

be the quadratic twist of E by q. Then, E.q/ also has a Q-rational 5-isogeny, with kernel
hPt;qi such that

Q.x.Pt;q// D Q.x.Pt // D F and Q.Pt;q/ D K:

It follows that Q.E.q/Œ5�/ \Qab D K.�5/, and K D K.�5/ \Q.�n/ � Q.�n/ (note: we
know that Q.�5/ \Q.�n/ D Q because n is not divisible by 5 by hypothesis). Thus, E
has a Weil .5; n/-entanglement of type Z=4Z, with entanglement field K as desired.

Example 5.9. Consider the case when d D 13 D 22 C 32. Plugging in m D 2 and n D 3
to the parametrization from Lemma 5.6, we get the point .�27=25; 2=5/ on

C13 W 5
�
x2 C

22

25
x C

1

5

�
D 13y2:

Using the x-coordinate of this point to specialize the j -invariant of Et , we see that the
minimal quadratic twist of elliptic curves in that Q-isomorphism class is the elliptic curve
with LMFDB label 12675.e2. The field of definition of the kernel of 5-isogeny of this
curve is given in the LMFDB and is the field 4.0.2197.1, which contains Q.

p
13/, as

desired.

https://www.lmfdb.org/EllipticCurve/Q/12675bn2/
https://www.lmfdb.org/NumberField/4.0.2197.1
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5.5. Weil .7; n/-entanglements of Z=6Z-type

We now turn our attention to studying Weil .7; n/-entanglements of Z=6Z-type. Let Et be
a generic elliptic curve that has a rational 7-isogeny �, defined by

Et W y
2
D x3 � 27.t2 C 13t C 49/3.t2 C 245t C 2401/x

C 54.t2 C 13t C 49/4 .t4 � 490t3 � 21609t2 � 235298t � 823543/:

We have found Et by twisting a model of X0.7/. Let hPt i � Et Œ7� be the kernel of �,
so Pt is defined over a Z=6Z-extension, namely Q.Pt /=Q.

Since Q.Pt /=Q is a cyclic sextic, it has unique quadratic and cubic subfields that
generate the whole field, and these are exactly Q.y.Pt // and Q.x.Pt //. After a suitable
quadratic twist, the quadratic field Q.y.Pt // in Q.Pt / is arbitrary (without modifying the
field of x-coordinates Q.x.Pt //), so it suffices to determine which cubic extensions arise
as Q.x.Pt //.

We compute the 7-division polynomial of Et , find its lone degree 3 factor, and compute
that it defines the same field as the polynomial

gt .x/ WD x
3
C 147.t2 C 13t C 49/x2 C 147.t2 C 13t C 49/.33t2 C 637t C 2401/x

C 49.t2 C 13t C 49/.881t4 C 38122t3 C 525819t2 C 3058874t C 5764801/:

In particular, gt .x/ defines Q.x.Pt //. We now need to determine which Z=3Z-extensions
of Q the polynomial gt .x/ parametrizes, and somewhat surprisingly, it parametrizes all
such extensions.

Lemma 5.10. The polynomial gt .x/ parametrizes all Z=3Z-extensions of Q, i.e., every
Z=3Z-extension of Q occurs as the Galois group of the splitting field of gt .x/, for some
value of t 2 Q.

Proof. By the example on page 30 of [18], every Z=3Z-extension of Q occurs as the
Galois group of the splitting field for some specialization of polynomial

ft .x/ D x
3
� tx2 C .t � 3/x C 1:

We verified (using Magma) that gt .x/ and f49=tC8.x/ define the same degree 3 extension
of Q.t/, and so it remains to treat the case of t D 0. We complete the proof by not-
ing that the cyclic cubic extension obtained from f0.x/ D x

3 � 3x C 1 is also obtained
from f�20.x/.

We have proved the following result.

Proposition 5.11. Let K be a cyclic sextic number field, and let n > 2 be an integer not
divisible by 7 such that K � Q.�n/. Then, there is an elliptic curve E=Q with a Weil
.7; n/-entanglement of type Z=6Z, such that the entanglement field is precisely K. In
particular, there are infinitely many Q-isomorphism classes of elliptic curves E=Q with
a Weil .7; n/-entanglement of type Z=6Z.

In Section 8, we speculate as to whether these types of results can be extended to find
other families of Weil .m; n/-entanglements of Z=aZ-type where a is a positive integer
greater than six.
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6. CM entanglements

The goal of this section is to classify the image of the adelic representations attached
to elliptic curves over Q with CM by understanding the entanglements of their division
fields. To do this, we first compute the adelic image of a representative set of curves
over Q and then describe how the adelic image changes under twisting. Throughout this
section, let E=Q be an elliptic curve with CM by the order of an imaginary quadratic
extension K=Q of conductor f , which we shall denote by OK;f .

To start, from Theorem 1.2 in [27], if we define ı and � as in Definition 3.20 and let

Nı;�.yZ/ D lim
 �
n

Nı;�.n/;

then there is a compatible system of bases for EŒn� such that the image of �E is contained
in Nı;�.yZ/, and the index ŒNı;�.yZ/ W Im .�E /� divides jO�

K;f
j.

Before discussing the results, we highlight the difference between entanglements of
division fields of elliptic curves with CM and elliptic curves without CM. Indeed, by
Lemma 3.15 in [3], we have that for E with CM by OK;f and n > 3, the fieldK is always
contained in the n-division field Q.EŒn�/. This is something that cannot happen for a
curve without CM since in this case ŒGL.2;bZ/ W Im .�E /� is finite by Serre’s open image
theorem.

We note that the group Nı;�.yZ/ already accounts for these entanglements in the fol-
lowing sense. If we put

Cı;�.yZ/ D lim
 �

Cı;�.n/;

then for an elliptic curve over Q with CM by K, we have that the image of

�E jK W Gal.Q=K/! Nı;�.yZ/

is in fact contained in Cı;�.yZ/ and we still have that the index ŒCı;�.yZ/ W Im .�E jK/�

divides jO�
K;f
j as before. Hence, the CM entanglement of Section 3.3 is already “baked

into” the definition of Nı;�.yZ/, and if the index of the image in Nı;�.yZ/ is larger than 1,
then there must be an additional entanglement beyond the CM entanglement.

From the above result of the second author, we deduce one way to determine the adelic
image of an elliptic curve with CM. If we can show that there exists an n0 2 N such that
ŒNı;�.n0/ W Im .�E;n0/� D jO

�
f;K
j, then Im .�E / D �

�1
n0
.Im .�E;n0//, where

�n0 W Nı;�.bZ/! Nı;�.n0/

is the standard component wise reduction mod n0 map.
Our first theorem handles the case when E=Q has CM by an order OK;f of K D

Q.
p
�p/ for some odd p and jO�

K;f
j D 2:

Theorem 6.1. Let E=Q be an elliptic curve with CM by an order OK;f in an imaginary
quadratic field K with �K ¤ �4;�8 and j.E/ ¤ 0. Choose compatible bases of EŒn�,
for each n > 2, such that the image of �E is contained in Nı;�.yZ/. Then, the index of the
image of �E in Nı;�.yZ/ is exactly 2.
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Proof. Let E=Q be an elliptic curve with CM by an order OK;f inK with�K ¤ �4;�8
and j.E/ D jK;f ¤ 0, let ı and � be chosen as in Definition 3.20, and fix a system of
compatible bases for EŒn� such that the image of �E;n is contained in Nı;�.n/. Part (1)
of Theorem 1.2 in [27] gives us that the index of the image of �E;n inside Nı;�.n/ is a
divisor of the order of O�

K;f
. From the hypotheses, we have that O�

K;f
D ¹˙1º (see, for

instance, Lemma 4.2 in [27]), which implies that ŒNı;�.n/ W Im.�E;n/� is 1 or 2, and, in
fact, we have that jK;f ¤ 0; 1728, and so jK;f is one of the j -invariants that appear in
Table 1.

j -invariant �K f NE LMFDB Label(s)

j D 24 � 33 � 53
�3

2 22 � 32 36.a1, 36.a2

j D �215 � 3 � 53 3 33 27.a1, 27.a2

j D �33 � 53
�7

1 72 49.a2, 49.a4

j D 33 � 53 � 173 2 72 49.a1, 49.a3

j D �215 �11 1 112 121.b1, 121.b2

j D �215 � 33 �19 1 192 361.a1, 361.a2

j D �218 � 33 � 53 �43 1 432 1849.b1, 1849.b2

j D �215 � 33 � 53 � 113 �67 1 672 4489.b1, 4489.b2

j D �218 � 33 � 53 � 233 � 293 �163 1 1632 26569.a1, 26569.a2

Table 1. Elliptic curves with CM and non-maximal image for p j �K .

Thus, E is a quadratic twist of one of the curves E 0=Q whose LMFDB labels appear
listed in Table 1 (see Lemma 9.6 of [26]). Let p > 2 the unique prime that divides �K .
The elliptic curves E 0=Q listed by their LMFDB label in Table 1 are chosen among all
those elliptic curves over Q with j D jK;f such that the image of the p-adic representa-
tion �E 0;p1 has index 2 within Nı;�.p

1/.
Each curve E 0=Q listed in Table 1 has a vertical collapsing that can be explained by

one of two possible phenomena. In all cases, E 0 has a p-isogeny (where again p is the
unique odd prime dividing �K). Let M=Q be the field of definition of a generator of
the kernel of the p-isogeny with domain E. Then the first possibility is that ŒM W Q� D
.p � 1/=2, which forces the image of �E;p to be strictly smaller than Nı;�.p/. The other
possibility is that ŒM W Q� D .p � 1/, but the unique quadratic subfield of M coincides
with the unique quadratic subfield of Q.�p/. Since Q.�p/ is always inside Q.E 0Œp�/ by
the Weil pairing, this coincidence forces the image of �E;p to be smaller than Nı;�.p/.

Let d 2 Z be the unique square-free integer not divisible by p such that the quadratic
twist of E, E.d/, is Q-isomorphic to one of the curves listed in Table 1, call it E 0. We
can choose d not divisible by p since the pairs of curves listed are quadratic twists of
each other by �p. If d D 1, then we are done. Otherwise, we have that Q.EŒp�/ D
Q.E 0Œp�;

p
d/ and �E;p surjects onto Nı;�.p/: Next we let n be the conductor of the

extension Q.
p
d/=Q and note that since d is not divisible by p > 3, we have that n is

https://www.lmfdb.org/EllipticCurve/Q/36/a/1
https://www.lmfdb.org/EllipticCurve/Q/36/a/2
https://www.lmfdb.org/EllipticCurve/Q/27/a/1
https://www.lmfdb.org/EllipticCurve/Q/27/a/2
https://www.lmfdb.org/EllipticCurve/Q/49/a/2
https://www.lmfdb.org/EllipticCurve/Q/49/a/4
https://www.lmfdb.org/EllipticCurve/Q/49/a/1
https://www.lmfdb.org/EllipticCurve/Q/49/a/3
https://www.lmfdb.org/EllipticCurve/Q/121/b/1
https://www.lmfdb.org/EllipticCurve/Q/121/b/2
https://www.lmfdb.org/EllipticCurve/Q/361/a/1
https://www.lmfdb.org/EllipticCurve/Q/361/a/2
https://www.lmfdb.org/EllipticCurve/Q/1849/b/1
https://www.lmfdb.org/EllipticCurve/Q/1849/b/2
https://www.lmfdb.org/EllipticCurve/Q/4489/b/1
https://www.lmfdb.org/EllipticCurve/Q/4489/b/2
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/2
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not divisible by p, and K ¤ Q.
p
d/. Thus, we have that gcd.n; p/ D 1 and by the Weil

pairing and definition of conductor, Q.
p
d/ � Q.EŒp�/\Q.EŒn�/. Since Q.

p
d/ ¤ K,

this is not a CM entanglement as in Definition 3.19. This entanglement together with
Theorem 1.2 in [27] gives us that 1 < ŒNı;�.pn/ W Im .�E;pn/� 6 2. Thus,

ŒNı;�.pn/ W Im .�E;pn/� D 2 and Im .�E / D �
�1
pn .Im .�E;pn//;

where
�pn W Nı;�.yZ/! Nı;�.pn/

is the standard component wise reduction mod pn map.

Proposition 6.2. Let E=Q be an elliptic curve with CM by an order OK;f , where K D
Q.
p
�2/. Then, the index of the image of �E in Nı;�.yZ/ is 2 .

Proof. Let E=Q be an elliptic curve with CM by an order OK;f , where K D Q.
p
�2/,

and define the auxiliary curves

E1 W y
2
D x3 C x2 � 3x C 1; E2 W y

2
D x3 � x2 � 13x C 21;

E3 W y
2
D x3 C x2 � 13x � 21; E4 W y

2
D x3 � x2 � 3x � 1:

Then E1; : : : ; E4 all have CM by ZŒ
p
�2� and form a complete set of quadratic twists

by �1, 2 and �2. That is, they fit into the following diagram:

E1 oo
Twist by 2

//
OO

Twist by �1

��

E2OO

Twist by �1

��

E4 oo Twist by 2
// E3

Because of this, there exists a unique square free, odd, positive integer d , such that E is
the quadratic twist by d of exactly one of E1, E2, E3 or E4. We write E D Edi for some
i D 1; : : : ; 4. Using Magma, for each i D 1; : : : ; 4, we compute that ŒQ.Ei Œ8�/ W Q� D 32
and Nı;�.8/ has size 64. Therefore, for each of these curves ŒNı;�.8/ W Im .�E;8/� D 2,
which forces ŒNı;� W Im .�E /� D 2 as well.

Letting F be the splitting field of f .x/ D x8 C 6x4 C 1 and let

Ld D Q
�p

d.2C
p
2/
�
:

A computation of the 4-division field ofEi shows that Q.Ei Œ4�/D FL1, for i D 1; 2; 3; 4,
and the 4-division field of the twist is Q.EŒ4�/ D FLd . Noticing that both Q.EŒ4�/ and
Q.�16/ D Q.

p
�1;

p
2C
p
2/ are contained in Q.EŒ16�/ gives us that

Q.
p
d/ � Q

�p
d;
p
2C
p
2
�
D Q

�p
d.2C

p
2/;
p
2C
p
2
�
� Q.EŒ16�/:
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Moreover, since d is assumed to be odd and positive, the conductor ofLd is exactly 16
times the conductor of Q.

p
d/. Indeed, the field Ld is contained inside Q.

p
d/Q.�16/C,

and so if Q.
p
d/=Q is of conductor n, then Ld �Q.�16n/ and Ld is not contained in any

smaller cyclotomic field. We also note that since d is positive, Q.
p
�2/ ¤ Q.

p
d/ and

so any entanglement that involves Q.
p
d/ is not one of the CM entanglements already

accounted for in Nı;�.bZ/. These two things force the mod 16n image to be index 2 inside
of Nı;�.16n/ and the Im .�E / D �

�1
16n.Im .�E;16n//.

Proposition 6.3. Let E=Q be an elliptic curve with j.E/D 1728 and choose compatible
bases of EŒn� for each n > 2 such that the image of �E is contained in Nı;�.yZ/. Then,
the index of the image of �E in Nı;�.yZ/ is 2 or 4.

Proof. Let E=Q be an elliptic curve with jK;f D 1728, given by a Weierstrass model
y2 D x3 C sx, for some s 2 Q. We choose compatible bases of EŒn� for each n > 2 such
that the image of �E is contained in Nı;�.yZ/. By Theorem 1.2 in [27], the image of �E
has index dividing #.O�

K;f
/ D 4, since K D Q.i/ and f D 1 for jK;f D 1728.

Suppose towards a contradiction that the index is 1. Then, the image of �E;21 must
have index 1 in Nı;�.2

1/. By the proof of Theorem 9.5 in [27], which contains a descrip-
tion of the possible 2-adic images when jK;f D 1728, we have that s … ˙.Q�/2 nor
˙2.Q�/2, and

Q.EŒ4�/ D Q.i;
p
2; 4
p
�s/:

If we write s D 2e1 �m � n2 withm an odd square-free integer, then
p
m and

p
�m belong

to Q.EŒ4�/. Now consider

�E;m W Gal.Q=Q/! GL.2;Z=mZ/:

Since det.�E;m/ is the m-th cyclotomic character, then one of
p
˙m is contained in

Q.EŒm�/. Therefore Q.i;
p
m/=Q.i/ is a non-trivial quadratic extension, and

Q.i;
p
m/ � Q.i; EŒ4�/ \Q.i; EŒm�/:

It follows that the image of

�E;4m W Gal.Q.i/=Q.i//! GL.2;Z=4mZ/

is not surjective onto
C�1;0.4m/ Š C�1;0.4/ � C�1;0.m/;

and therefore the image of �E;4m in N�1;0.4m/ is of index at least 2, which is a contra-
diction to our initial assumption.

Proposition 6.4. Let E=Q be an elliptic curve with jK;f D 0, and choose compatible
bases of EŒn� for each n > 2 such that the image of �E is contained in Nı;�.yZ/. Then,
the index of the image of �E in Nı;�.yZ/ is 2 or 6.

Proof. Let E=Q be an elliptic curve with jK;f D 0, given by a Weierstrass model y2 D
x3C s, for some s 2Q�. We choose compatible bases ofEŒn� for each n> 2 such that the
image of �E is contained in Nı;�.yZ/. By Theorem 1.2 in [27], the image of �E has index
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dividing #.O�
K;f

/ D 6, since K D Q.�3/ and f D 1 for jK;f D 0. A straight forward
computation shows that in this case

Q.EŒ3�/ D Q.
p
�3;
p
s;

3
p
4s/:

So if s D t2 or �3t2 for some t 2 Q�, then ŒNı;�.3/ W Im .�E;3/� is divisible by 2, com-
pleting this case. Otherwise, we have that Q.

p
s/ � Q.EŒ3�/ and n, the conductor of

Q.
p
s/=Q, is not 3, and Q.

p
s/ ¤ K D Q.�3/ (thus the entanglement described here

is not a CM entanglement). This forces E to have an unexpected quadratic intersection
between its 3 and n division fields, forcing ŒNı;�.yZ/ W Im .�E /� to be even.

7. Entanglements for higher dimensional abelian varieties

In this final section, we investigate entanglements for higher dimensional abelian varieties.

7.1. Galois representations attached to principally polarized abelian varieties

Before getting to entanglements, we describe the modm image of Galois for a principally
polarized abelian variety A=Q of dimension g > 1. For each positive integer m, denote
by AŒm� the kernel of the multiplication-by-m map Œm�WA! A. We have that AŒm� is a
finite group scheme over Q and that AŒm�.Q/ forms a finite subgroup of A.Q/, called the
m-torsion subgroup, which is isomorphic to .Z=mZ/2g . AŒm� is a finite étale Q-group
scheme, which we will identify with the Aut.Q=Q/-moudle AŒm�.Q/.

As with elliptic curves, we can make the following definition of an entanglement. We
note that this definition makes sense for any field of characteristic zero K, but we restrict
to the case of K D Q for simplicity.

Definition 7.1. LetA=Q be a principally polarized abelian variety, and let a;b be positive
integers. We say that A has an .a; b/-entanglement if

K D Q.AŒa�/ \Q.AŒb�/ ¤ Q.AŒd �/;

where d D gcd.a; b/. The type T of the entanglement is the isomorphism class of the
Galois group Gal.K=Q.AŒd �//.

In [12], the first and last author provided a group theoretic definition of entanglements
for elliptic curves. To describe a similar construction for principally polarized abelian
varieties A=Q, we recall the mod m Galois representation attached to A.

The absolute Galois group GQ acts on A.Q/, and since this action is compatible with
the group law on A.Q/, it gives rise to an action of GQ on the m-torsion subgroup AŒm�
for each positive integer m. This action produces a Galois representation

GQ ! Aut.AŒm�/ ' GL.2g;Z=mZ/:

There is a constraint on the image of this above representation coming from the Weil
pairing. More precisely, for each m, let �m be the group of m-th roots of unit in Q,
and let �mWGQ ! �m denote the mod m cyclotomic character. By composing the Weil
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pairing with the principal polarization isomorphism A! A_, we have an alternating non-
degenerate bilinear form

em W AŒm� � AŒm�! �m:

Since the Weil pairing is GQ-equivariant, the image of the above Galois representation is
constrained to lie in GSp.2g;Z=mZ/, i.e., the group of 2g � 2g general symplectic matri-
ces with coefficients in Z=mZ. Therefore, we obtain the mod m Galois representation

�A;m W GQ ! GSp.2g;Z=mZ/:

7.2. Group theoretic definition of entanglements for principally polarzied abelian
varieties

With this construction, we can provide similar group theoretic definitions of explained and
unexplained entanglements for principally polarized abelian varieties A=Q as follows. In
the case of elliptic curves over Q, the determinant of the image of the mod m represen-
tation is the mod m cyclotomic character, and the surjectivity of this map allowed us to
define the notion of explained and unexplained entanglements.

For abelian varietiesA=Q of dimension greater than one, the determinant of the image
of mod m representation does not always correspond to the mod m cyclotomic character;
we refer the reader to Lemma 4.5.1 in [31] for a discussion of when this holds. As such,
we cannot directly transport the definitions of explained and unexplained entanglements
from elliptic curves to arbitrary principally polarized abelian varieties A=Q.

That said, if we replace the determinant with the similitude character, then we can
obtain our desired result. Let

� W GSp.2g;Z=mZ/! �m

denote the similitude character. Note that the composition

GQ GSp.2g;Z=mZ/ �m
�A;m �

is the mod m cyclotomic character �m, and since A is defined over Q, the map �m is
surjective (see, e.g., Lemma 2.1 in [23]). Recall that Remark 3.3 provides an equivalence
between explained and Weil entanglements for elliptic curves, and so the above descrip-
tion allows us to make group theoretic definitions of Weil and non-Weil entanglements for
principally polarized abelian varieties A=Q as in Definitions 3.7 and 3.9 of [12], where
we replace the map det.�/ with the similitude character �.�/. While these group theo-
retic considerations take some care, the non-group theoretic definitions of abelian and
Weil entanglements (Definitions 3.1 and 3.2) can be carried over mutatis mutandis. The
definition of CM entanglements (Definition 3.19) is more subtle. The main issue is we
do not have a complete description of the geometric endomorphism ring of an arbitrary
principally polarized abelian variety; however, we do have such a description for abelian
surfaces, the so-called Albert’s classification (see e.g., [30], p. 203).

7.3. Weil entanglements for higher dimensional abelian varieties

In Proposition 8.4 of [29] and Theorem 1.7 (2) of [11], we defined an explicit family of
elliptic curves E=Q which have an Weil .2; `/-entanglement of type Z=3Z, where ` is
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some prime such that 3 j ` � 1. We generalize this construction to principally polarized
abelian varieties of dimension g as follows.

Theorem 7.2. Let ` > 3 be a prime number. Suppose that `� 1D 2e, where eD 2gC 1 is
some odd integer. There exist infinitely many principally polarized abelian varieties A=Q
of dimension g which have a Weil .2; `/-entanglement of type Z=eZ.

Proof. Our assumptions on the divisibility of `� 1 ensure that the cyclotomic field Q.�`/
contains a unique subfield K=Q of degree e with Galois group Z=eZ. By work of Gauss
(see [16], art. 337), the minimal polynomial of K is of the form

f .x/ D xe C a1x
e�1
C a2x

e�2
C � � � C ae�1x C ae;

with coefficients

ar D .�1/
Œr=2�

�
.` � 1/=2 � Œ.r C 1/=2�

Œr=2�

�
.0 6 r 6 e/;

where Œ � � denotes the greatest integer function.
Consider the hyperelliptic curve X of genus g with affine equation y2 D f .x/. Note

that since f .x/ is odd, we have that X has a rational Weierstrass point1, and in partic-
ular, we know that X.Q/ ¤ ;. Let JX denote the Jacobian of X , which is a principally
polarized abelian variety over Q of dimension g. As with elliptic curves, the 2-division
field Q.JX Œ2�/ of JX is given by the splitting field of f .x/. Furthermore, the Weil pair-
ing tells us that Q.�`/ is contained in the `-division field of JX , and thus, JX has a Weil
.2; `/-entanglement of type Z=eZ.

To complete the proof, we need to find infinitely many other hyperelliptic curvesX 0=Q
which have isomorphic 2-torsion. To do so, we follow the construction from Section 4.4
of [5]. Let ˛1 denote the companion matrix of f .x/. For j D 1; : : : ; e, let

j̨ D ˛
j
1 � kj I;

where kj is chosen to make j̨ traceless. For indeterminates b1; : : : ; be , the curve

X.b1; : : : ; be/ W y
2
D det.xI � b1˛1 � b2˛2 � � � � � be ˛e/ � A2Q.b1;:::;be/

will have the same 2-torsion as the original curveX . After removing the discriminant locus
(i.e., the values of .b1; : : : ; be/ where the above curve is singular), specializations of the
curve X.b1; : : : ; be/ will produce infinitely many hyperelliptic curves X 0=Q with isomor-
phic 2-torsion as X . The Jacobians JX 0 of these infinitely many hyperelliptic curves X 0

will yield infinitely many principally polarized abelian varieties A=Q of dimension g
which have a Weil .2; `/-entanglement of type Z=eZ.

Remark 7.3. To conclude, we remark on the difficulty of studying other explained (or
even Weil) entanglements for principally polarized abelian varieties not involving the
2-torsion. Above in Section 5, there were two crucial aspects to our approach. First, we
could construct an elliptic surface E=Q.t/ whose specializations correspond to elliptic
curves with a prescribed mod m image of Galois; in particular, the moduli space of ellip-
tic curves with a prescribed modm image of Galois was rational. Second, we were able to
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use the well established theory of elliptic division polynomials to study m-division fields.
Both aspects become more complicated in the higher dimensional setting.

For the first part, we refer the reader to [5] for a discussion on the rationality of moduli
spaces of principally polarized abelian varieties with a prescribed modm image of Galois.
We note that in Theorem 2 of [5], the authors provide for a given a genus two curve X=Q
with affine equation y2 D x5 C ax3 C bx2 C cx C d an explicit parametrization of all
other such curves Y with a specified symplectic isomorphism JX Œ3� ' JY Œ3�. While the
parametrization is explicit, working directly with universal Weierstrass curve associated
to this parametrization is difficult due to the complexity of the coefficients.

As for the second part, Cantor [8] has developed a theory of division polynomials for
hyperelliptic curves of genus g > 1, where in the g D 1 setting one recovers the classical
division polynomials. The degrees of theses polynomials become quite large as the genus
grows, so understanding their Galois theory for arbitrary g is difficult. However, it would
be quite interesting to write computer program which inputs a separable polynomial f .x/
and an integer m and outputs the mth division polynomial of the hyperelliptic curve with
affine equation y2 D f .x/.

Combining the results from [5] with such a computer program, one could hope to
study .3;m/-entanglements of genus 2 hyperelliptic curves over Q.

8. Concluding remarks

In this final section, we discuss future avenues of study for explained entanglements.

8.1. Recollections on generic polynomials

In Section 5, we saw that questions on Weil entanglements are related to questions about
specializations of polynomials Pt.X/ in Q.t/ŒX� with t D .t1; : : : ; tn/ parametrizing cer-
tain Galois extensions of Q. This latter question is related to the embedding problem
(which is a generalization of the inverse Galois problem) and to the existence of generic
polynomials and the generic dimension of finite groups.

Below, we recall the definition of generic polynomials and generic dimension of a
finite group.

Definition 8.1 (Definition 0.1.1 in [18]). Let Pt.X/ be a monic polynomial in Q.t/ŒX�
with t D .t1; : : : ; tn/ and X being indeterminates, and let L be the splitting field of Pt.X/

over Q.t/. Suppose that
• L=Q.t/ is Galois with Galois group G, and that
• every L=Q with Galois group G is the splitting field of a polynomial Pa.X/ for some

a D .a1; : : : ; an/ 2 Qn.
We say that Pt.X/ parametrizes G-extensions of Q and Pt.X/ is a parametric polyno-
mial.

The parametric polynomial Pt.X/ is generic if
• Pt.X/ is parametric for G-extensions over any field containing Q.
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Definition 8.2 (Definition 8.5.1 in [18]). For a finite groupG, the generic dimension forG
over Q, written gdQG, is the minimal number of parameters in a generic polynomial forG
over Q, or1 if no generic polynomial exists.

Remark 8.3. The generic dimension of G is bounded below by (and when finite, is con-
jecturally equal to) the essential dimension of G (cf. Proposition 8.5.2 and Conjecture on
p. 202 of [18]).

We recall two results, which will help us formulate our precise question relating
generic dimension of finite groups to Weil entanglements.

Theorem 8.4 (Proposition 8.5.5 and Theorem 8.5.8 in [18]).
(1) Let G and H be finite groups. Then

gdQG; gdQH 6 gdQ.G �H/ 6 gdQG C gdQH:

(2) The only groups of generic dimension 1 over Q are ¹I º ;Z=2Z;Z=3Z; and S3:

8.2. Two questions on Weil entanglements and generic polynomials

To conclude, we propose two questions concerning the further study of Weil entangle-
ments.

In Subsections 5.1, 5.3, 5.4, and 5.5, we encountered several examples of generic poly-
nomials for Z=2Z-extensions and Z=3Z-extensions over Q, and the results from these
sections lead us to ask the following question.

Question 8.5. Fix an integer n. Let Et be a family of elliptic curves over Q. Suppose
that Q.x.Et Œn�// contains a quadratic (respectively, cubic abelian) subfield Kt , which is
not contained in Q.�n/. Let Pt .X/ denote the quadratic (respectively, cubic) factor of the
n-division polynomial of Et .
(1) Is Pt .X/ a generic polynomial for Z=2Z-extensions (respectively, for Z=3Z-exten-

sions) of Q?
(2) If Pt .X/ is not a generic polynomial for Z=2Z-extensions (respectively, for Z=3Z-

extensions) of Q, then which quadratic (respectively, cubic) number fields are real-
ized as Galois groups of specializations of Pt .X/?

The reason we restrict to Kt=Q.t/ being quadratic or abelian cubic is due to Theo-
rem 8.4. More precisely, we observed in the above discussion that we essentially have
two parameters when studying Weil entanglements: one of them coming from the divi-
sion polynomials (i.e., the x-coordinate of the torsion points) and the second coming from
twisting (i.e., the y-coordinate of the torsion points). As the field of definition of a point
of order N is generated by the x and y coordinates of the torsion points and twisting will
only contribute a Z=2Z-factor, the parameter corresponding to the x-coordinates must
contribute a Z=2Z or Z=3Z factor.

Remark 8.6. If a classification of finite groups with generic dimension 2 over Q existed,
then we could make Question 8.5 more precise. However, no such classification exists; we
do not even have a classification of finite groups with essential dimension 2 over Q (cf.
Remark 1.4 in [14]).
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The above question asked if one can parametrize the quadratic or cubic abelian exten-
sions which are not contained in certain cyclotomic field. To conclude the section, we dis-
cuss how one could systematically study elliptic curves over Q with a Weil entanglement.
First note that a consequence of [4] is that if E=Q has surjective Im .�E;p1/ for all p,
then the only possible entanglements are Serre entanglements or a .2; 3/-entanglement of
S3-type coming from an inclusion Q.EŒ2�/ � Q.EŒ3�/. Thus, to have a different Weil
entanglement, one needs some exceptional prime power.

For a given prime p and natural number n, we consider the groupsG �GL.2;Z=pnZ/
such that there exists an elliptic curve E0=Q with Im .�E0;pn/ conjugate to G. Notice that
if ŒGW ŒG;G�� is strictly larger than '.pn/D pn�1.p � 1/, then this means that any elliptic
curve E=Q with Im .�E;pn/ conjugate to G has Q.EŒpn�/ \Qab, which is strictly larger
than Q.�pn/. For any particular elliptic curve E=Q with mod pn image conjugate to G,
.Q.EŒpn�/ \Qab/=Q is an abelian extension and thus has some conductor, say

f .Q.EŒpn�/ \Qab/=Q// D N:

Since Q.�pn/ �Q.EŒpn�/\Qab, we know that N D pn �m for somem, and thism tells
us about the level of any explained entanglement that involves the pn-division field of E.
If p − m then we know that E=Q has a Weil .pn; m/-entanglement and if p j m, then E
has an Weil .pn; N /-entanglement.

For an example, when p jm, see Example 3.9 in [11]. In that example, it is shown that
the elliptic curve with LMFDB label 32a3 has the property that

Q.�2kC1/ � Q.EŒ2k �/ for all k > 1,

and so the conductor of Q.EŒ2k �/ is divisible by 2kC1 for all k > 1. In both cases, the
type of the Weil entanglement is the Galois group

Gal..Q.EŒpn�/ \Qab/=Q.�pn//:

With this, we see one approach to the study of explained entanglements of elliptic
curves over Q through the conductor f ..Q.EŒpn�/ \ Qab/=Q// of the field extension
given by Q.EŒpn�/ \Qab/=Q. More precisely, we propose the following question.

Question 8.7. For a given prime p and a natural number n, let G � GL.2;Z=pnZ/ be
such that �I 2 G and there exists an elliptic curve E=Q with Im .�E;pn/ conjugate to G.
Consider the function

Npn;G.X/ D #
®
E=Q W Im .�E;pn/ is conjugate to G,

and f ..Q.EŒpn�/ \Qab/=Q/<X
¯
;

where the count is up to Q-isomorphism. For which p; n; G; and X , is the function
Npn;G.X/ finite?

The work of [39] makes this question concrete when restricting to group of genus 0
and level pn containing �I . For each of these groups there is an explicit parametrization
for the moduli space XG , and one could use this parametrization to find a 1-parameter

https://www.lmfdb.org/EllipticCurve/Q/32a3/
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family of number fields Kt=Q corresponding to the family .Q.EŒpn�/ \Qab/=Q as E
runs over XG.Q/, much in the same way as we did above.
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