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Uniqueness of Yudovich’s solutions to the 2D
incompressible Euler equation despite

the presence of sources and sinks

Florent Noisette and Franck Sueur

Abstract. In 1962, Yudovich proved the existence and uniqueness of classical solu-
tions to the 2D incompressible Euler equations in the case where the fluid occupies a
bounded domain with entering and exiting flows on some parts of the boundary. The
normal velocity is prescribed on the whole boundary, as well as the entering vorti-
city. The uniqueness part of Yudovich’s result holds for Hölder vorticity, by contrast
with his 1961 result on the case of an impermeable boundary, for which the nor-
mal velocity is prescribed as zero on the boundary, and for which the assumption
that the initial vorticity is bounded was shown to be sufficient to guarantee unique-
ness. Whether or not uniqueness holds as well for bounded vorticities in the case of
entering and exiting flows has been left open until 2014, when Weigant and Papin
succeeded to tackle the case where the domain is a rectangle. In this paper we adapt
Weigant and Papin’s result to the case of a smooth domain with several internal
sources and sinks.

1. Introduction

This first section is devoted to the presentation of the model and of the mathematical
problem which are at stake in this paper.

1.1. Geometry of the domain

We consider a bounded domain � � R2 whose boundary, denoted by � , is a C 2 simple
curve which can be decomposed as

(1.1) � D
[
i2I

�i ;

where I is a finite set of index which admits a partition I D ¹0º [ Iin [ Iout, the sets �i
are the connected components of � , with the convention that �0 is the external boundary.
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Figure 1. Example of a fluid domain with one source and two sinks.

We set I � WD Iin [ Iout D I n ¹0º; and

(1.2) �in WD [i2Iin�i and �out WD [i2Iout�i :

The indexes refer to the fact that, below, �in is the zone with entering flux and �out is the
zone with exiting flux, see (1.6).

1.2. The equations at stake

We assume that the domain � is occupied by an incompressible perfect flow whose evol-
ution is driven by the incompressible Euler equation. More precisely, we consider the
following transport equation, where the scalar function !.t; x/ denotes the fluid vorticity:

@t! C u � r! D 0 on �;(1.3a)
!.0; :/ D !0 on �;(1.3b)

! D !in on �in;(1.3c)

where the vector field u.t; x/ is the fluid velocity, given as the solution of the system

div u D 0 on �;(1.4a)
curl u D ! on �;(1.4b)
u � n D g on �;(1.4c) Z

�i

u � � D Ci for all i 2 I �;(1.4d)

and where n is the outward unit normal vector to the boundary, � is the counterclockwise
tangent vector to the boundary, and the .Ci .t//i2I� are the circulations of the fluids around
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each connected component �i , for i 2 I �, of the boundary, given as the solutions of the
following Cauchy problem:

C 0i .t/ D �

Z
�i

!g for all i 2 I �;(1.5a)

Ci .0/ D Ci;0 for all i 2 I �:(1.5b)

The quantities !0, !in, g and .Ci;0/i2I� , which appear in the right-hand sides of the equa-
tions above, are given data. Regarding g, we assume that, at any time t , it has zero average
on � , which is the compatibility condition associated with the incompressibility, and we
also assume, as hinted above, that

g � 0 on �in; g � 0 on �out; g D 0 on �0;(1.6)

which means that �in is the part of the boundary with entering flux, and �out is the part
with exiting flux. Thus (1.3c) is a condition on the vorticity which enters in the domain�.
Since � is multiply connected, it is necessary to prescribe the circulations, see (1.4d), to
guarantee the uniqueness of the solution u to the system (1.4). These circulations evolve
in time according to Kelvin’s law (1.5a), where the right-hand side encodes the vorticity
flux across �i . We refer to Lemma 1.2 in [33] and to Section 1.3 in [5] for a derivation
of (1.5a) from the velocity formulation of the incompressible Euler equation. Observe that
for i in Iin, the trace of the vorticity on �i , which appears in the right-hand side of (1.5a)
is prescribed according to (1.3c), whereas it is part of the solution for i in Iout.

1.3. An open problem on the uniqueness of solutions with bounded vorticity

The system (1.3)–(1.4)–(1.5) was proposed by Yudovich in [33], who proved the existence
and uniqueness of classical solutions. Later, the existence part of Yudovich’s result in the
permeable case has been generalized to weaker solutions, see [1, 5, 6, 27]. On the other
hand, for a long time, no progress has been obtained on the uniqueness part despite that
the conjecture that uniqueness should hold in the case where the vorticity is bounded, was
broadly shared. Indeed such a result is well known in the case of impermeable boundaries,
for which u � n D 0 on � instead of (1.4c), as proved by Yudovich in his celebrated res-
ult [32]. This problem was recalled for instance in Section 3.2 of [20] and in Section 3.2.1
of [12]. Indeed, this open problem has known a regain of interest in the controllabil-
ity community after the works on the incompressible Euler system by Coron and Glass
in [7–9, 11]. Finally, a breakthrough result was obtained by Weigant and Papin in 2014,
see [28], who proved the case where the fluid domain is a rectangle with lateral inlet and
outlet, under the assumption that the vorticity is bounded. Their nice proof makes use of
two energy estimates on the difference of two solutions, one related to the time-evolution
of the kinetic energy, and another one associated with a clever auxiliary function. The
two estimates are combined to deduce a stability estimate which in particular guarantees
uniqueness of the solutions with bounded vorticities for this particular geometry. In this
paper, we extend Weigant and Papin’s approach to prove the uniqueness of solutions with
bounded vorticity in the case, presented above, of a smooth multiply-connected domain
with several interior sources and sinks.
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2. Reminder on the definition and existence of solutions with
bounded vorticity

This section is devoted to recall a definition and an existence result of weak solutions to
the system (1.3)–(1.4)–(1.5) in the case where the vorticity is bounded. This will set up
the context to which the uniqueness result of this paper is applied.

Let us start the discussion with the choice of the unknowns. Because of the boundary
condition (1.3c), the vorticity ! is a natural choice, for instance compared to the velo-
city u. Also, as mentioned above, the vorticity which flows through �out is unknown; we
denote it by !out. Taking (1.3c) into account for what concerns �in, Kelvin’s laws (1.5)
can therefore be recast as

Ci .t/ D Ci;0 �

Z t

0

Z
�i

!in g for i 2 Iin;(2.1a)

Ci .t/ D Ci;0 �

Z t

0

Z
�i

!out g for i 2 Iout:(2.1b)

The fact that the system (1.4) determines a single solution u, the right-hand sides being
given, is well known. In particular, we have the following result, see for instance [33],
where we omit the time-dependence since the time only plays the role of a parameter in
this part of the system.

Proposition 2.1. Let .Ci /i 2RI
�

, let g be in the Hölder spaceC 1;˛.�/ for some ˛2.0;1/,
with zero average on � , and let ! be in L1.�/. Then the system (1.4) admits a unique
solution

u 2
[

1�p<C1

W 1;p.�/:

Moreover, there is a constant C > 0 such that, for all p � 2,

(2.2) kukW 1;p.�/ � Cp
�
k!kLp.�/ C kgkC 1;˛.�/ C

X
i2I�

jCi j
�
:

Remark 2.2. The dependence with respect to p in (2.2) shall be useful in Section 10.
Indeed, that the constant in front of the parenthesis in the right-hand side is bounded by p
for large p is crucial in Yudovich’s proof of uniqueness in the impermeable case, as it
allows to bypass the failure of the Lipschitz estimate of u, which is the main difficulty
with respect to case of classical solutions. To overcome this difficulty, Yudovich used
some a priori bounds on the Lp norms of the vorticity. We refer here to [34, 35] for more
details.

Finally, it only remains to tackle the transport part (1.3) of the system (1.3)–(1.4)–
(1.5). When considering this initial boundary value problem on the time interval Œ0; T �,
with T > 0, we are naturally led to a weak formulation corresponding to the following
family of identities:

(2.3)
Z t1

t0

Z
�

! .@t� C u � r�/ D
h Z

�

!�
it1
t0
C

Z t1

t0

Z
�in

!in�g C

Z t1

t0

Z
�out

!out�g;
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for 0 � t0 < t1 � T , and for some test functions � to determine, and where the nota-
tion Œa�t1t0 means

(2.4) Œa�
t1
t0
WD a.t1/ � a.t0/:

Definition 2.1. Let T > 0. Let !0 2 L1.�/, .Ci;0/i2I� 2RI
�

, g 2 L1.Œ0; T �IC 1;˛.�//
with zero average on � at every time, and let !in be in L1.Œ0; T �IL1.�in; g//. We say
that

(2.5) .!; !out/ 2 C
0.Œ0; T �IL1.�/-w�/ � L1.Œ0; T �IL1.�out; jgj//;

is a weak solution to the system (1.3)–(1.4)–(1.5) when, for every test function � in
H 1.Œ0; T � � �IR/, and for every t0 < t1, the equality (2.3) holds true with u given, at
time t in Œ0; T �, as the unique solution of the system (1.4) given by Proposition 2.1, where
the circulations are given by (2.1a)–(2.1b).

Let us emphasize that the appearance of g in the notation Lp.�; jgj/ refers to the
measure jgjH1, where H1 is the one-dimensional Hausdorff measure on � . On the other
hand, the notation L1.�/-w� in (2.5) stands for the space L1.�/ equipped with the
weak star topology.

Remark 2.3. The article [4] by Boyer allows to give a sense to the trace of ! on the
permeable part of the boundary, that is, where g ¤ 0, for solutions, in the sense of dis-
tributions, of the transport equation (1.3a). Therefore, when it does not lead to confusion,
we use the notation ! instead of !in or !out on the corresponding parts �in and �out of the
boundary.

It also establishes that the assumption regarding the continuity in time in (2.5) is not
restrictive.

The existence of weak solutions to the system (1.3)–(1.4)–(1.5) in the sense of Defin-
ition 2.1 has been obtained in Theorem 1 of [27]; see also Theorem 3 in [5] for a slightly
different proof, and for some other existence results of weaker solutions.

3. Statement of the main result

This section is devoted to the statement of the main result of the paper. We also make a
few remarks about it and finally explain how is organized of the rest of the paper.

3.1. Statement of the main result and a few remarks

The following result establishes a quantitative stability estimate for weak solutions to the
system (1.3)–(1.4)–(1.5) in the sense of Definition 2.1, corresponding to different initial
and boundary data, which in particular implies uniqueness for solutions corresponding to
the same initial and boundary data.

Theorem 3.1. Let T > 0 and two weak solutions to the system (1.3)–(1.4)–(1.5) as in
Definition 2.1 corresponding to T , to the same boundary data g for the normal velocity,
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and to some possibly different data. We denote those initial and boundary data respectively
!1in and !2in for the entering vorticity; .C1i;0/i2I� and .C2i;0/i2I� for the initial circulations;
and !10 and !20 for the initial vorticity. Let u1 and u2 the corresponding velocities as
given by Proposition 2.1. Then there exists a continuous function F W .RC/3 �RI

�

7! RC
satisfying F.t; 0; 0; 0/ D 0 for all t � 0, such that for all t in Œ0; T �,

ku1.t; :/ � u2.t; :/kL2.�/ C

Z t

0

Z
�

ju1 � u2j2 jgj(3.1)

� F
�
t; k!10 � !

2
0kL1.�/; k!

1
in � !

2
inkL1.Œ0;t�IL1.�in;jgj//; .C

1
i;0 � C2i;0/i2I�

�
:

In particular, for some given initial and boundary data, there exists a unique weak solution
to the system (1.3)–(1.4)–(1.5) in the sense of Definition 2.1.

Remark 3.2. The results of Theorem 3.1 can be extended to the slightly more general
case where the vorticity is unbounded but with a moderate growth of its Lp norms, as it
was done by Yudovich in [34,35]. Indeed, the limitation in terms of regularity assumption
on the vorticity is due to interior terms, which are treated similarly in the permeable and
in the impermeable case. As a matter of fact, to extend Theorem 3.1 to the same setting as
in [34, 35], it is sufficient to adapt the Osgood argument used in Section 10.

Remark 3.3. Theorem 3.1 can be extended to the case where the boundary datum g for
the normal velocity on the boundaries of the sources and of the sinks oscillates in time, as
long as the sign is the same, for every time, on each connected component. It is therefore
possible to consider some cases where a inner connected component of the boundary is at
some time a source and at another time a sink. On the other hand, transitions between an
inflow part and an outflow part in space, on the same connected component of a boundary,
seem to require careful studies. Let us highlight that such transitions occur in [28], with
right angles at the places where transitions occur.

Remark 3.4. Let us insist on the fact that the stability estimate (3.1) concerns two solu-
tions to the system (1.3)–(1.4)–(1.5) corresponding to the same boundary data g for the
normal velocity. The analysis performed below does not consider the issue of the stability
of the solutions to the system (1.3)–(1.4)–(1.5) with respect to perturbations of g. This
issue is of interest with respect to the stabilization issue [9, 11].

Remark 3.5. In the impermeable case, several proofs of uniqueness are available, with
quantitative estimates in different topologies for different quantities. More precisely, while
the original proof by Yudovich in [32] relies on an energy estimate, that is, on theL2 norm
of the fluid velocity, some alternative proofs have been since found, in particular thanks to
a Lagrangian viewpoint in Theorem 3.1 of [21] by Marchioro and Pulvirenti, where theL1

norm of the flow map is used, and thanks to tools of optimal transportation theory in [19]
by Loeper with the Wasserstein distance W2, and in [14] by Hauray with the Wasserstein
distanceW1. While the proof of Theorem 3.1 given below uses an energy-type argument,
it would be interesting to investigate whether an alternative proof of Theorem 3.1 based
on the Lagrangian viewpoint could also be carried on.

Remark 3.6. Observe that Theorem 3.1 implies in particular an energy estimate for a
(single) weak solution to the system (1.3)–(1.4)–(1.5) in the sense of Definition 2.1, by
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considering the solution to the system (1.3)–(1.4)–(1.5) corresponding to the same initial
circulations and to the same prescribed trace g for the normal velocity but with zero initial
and entering vorticity, and therefore with zero vorticity in � and on �out at any time.

Remark 3.7. Theorem 3.1 implies in particular the uniqueness of the unstationary Euler
system with prescribed normal velocity and entering vorticity. Let us recall that, on the
other hand, it is known that solutions of the 2D stationary Euler system with prescribed
normal velocity and entering vorticity are not in general unique (see e.g. [25]).

Remark 3.8. A natural question is whether the result in Theorem 3.1 and the method used
in its proof can be extended to some other nonlinear evolution PDEs with non-conservative
boundary conditions, in particular to the ones which share the same features to couple
transport and non-local features. A candidate in this direction is the Camassa–Holm equa-
tion, set on a finite interval with some inhomogeneous boundary conditions as considered
in [22]. An open question left in this paper was the uniqueness of the weak solutions
obtained in Theorem 1 of [22].

Remark 3.9. Finally, let us mention that the weak-strong uniqueness property is a natural
issue which has not been investigated yet for the system (1.3)–(1.4)–(1.5). In the case
of impermeable boundaries, it is associated with the notion of dissipative solutions, see
Chapter 4.4 of [18]. Recently, the effect of an impermeable boundary on the issue of the
weak-strong uniqueness has been investigated by various authors, we refer here to the
survey [29] for more on the subject, and it would be therefore interesting to extend these
investigations to the case of permeable boundaries.

3.2. Strategy of the proof of Theorem 3.1 and organization of the rest of the paper

The rest of the paper is devoted to the proof of Theorem 3.1, which compares the differ-
ence of two solutions of the Euler equations in presence of sources and sinks. The set-up
of the proof of Theorem 3.1, with the derivations of the equations satisfied by the differ-
ence of two solutions is done in Section 4. The initial idea is to perform an energy estimate
from the weak vorticity formulation by using a stream function of the difference as a test
function. In the case where the fluid occupies the whole plane, with nice decay at infinity,
this corresponds to the identityZ

R2

u � u D �

Z
R2

 !; where ! D curl u D � :

This allows to bypass the velocity formulation, which has some unpleasant features in the
permeable case, in particular due to the pressure. A technical difficulty in this process is to
justify that the stream function associated with the difference of the two solutions at stake
is regular enough to be taken as a test function in the weak formulation of the equation.
The estimate of the stream function of the difference is performed in Section 5. The most
delicate part is to obtain some estimates of the time-derivative of the stream function. This
is accomplished thanks to the weak vorticity formulation with some other appropriate
particular test functions associated with the geometry. Then the energy estimate of the
difference is performed in Section 6. A difficulty is the presence of a “bad” boundary term
corresponding to “the energy entering at the sources”. Because of its sign, it is needed to
bound this term for the energy estimate to be conclusive.
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A great idea, first used by Weigant and Papin in the case where the fluid domain is
a rectangle with lateral inlet and outlet, see [28], is to couple this energy estimate with a
second one, obtained with the help of an appropriate test function. As in [28], we consider
a harmonic test function with mixed boundary conditions, more precisely with Neumann
inhomogeneous conditions on the boundary of the sources and with zero Dirichlet con-
dition on the rest of the boundary. However, compared to the case of [28], where this
test function is constructed and estimated thanks to some Fourier series, the construction
and the estimates in the present case requires more work, which is done in Section 7. In
Section 8, we state a generalized Lamb lemma which tackles trilinear integrals by some
appropriate vector calculus identities and some integrations by parts. This allows to cla-
rify the treatment of some convective terms in the second energy estimate associated with
the auxiliary harmonic test function. The auxiliary energy-type estimate is performed in
Section 9. Finally, we combine the two energy estimates in Section 10 and conclude the
proof of Theorem 3.1 by Osgood’s lemma.

4. Equations satisfied by the difference of two solutions

To prove Theorem 3.1, we use an energy method to compare the dynamics of two weak
solutions of the Euler equation in the sense of Definition 2.1 corresponding to T > 0. To
that extent, let us fix two solutions .!1; !1out/ and .!2; !2out/ of the Euler equation, with
initial and boundary conditions

.!10 ; .C
1
i;0/i2I� ; g; !

1
in/ and .!20 ; .C

2
i;0/i2I� ; g; !

2
in/:

We consider the velocities u1 and u2 which are respectively associated to the previous
quantities by Proposition 2.1. We use the following notations:

Q! WD !1 � !2 and O! WD
!1 C !2

2
;

Qu WD u1 � u2 and Ou WD
u1 C u2

2
�

By the linearity of (1.4a) and (1.5), the vector field Qu satisfies, at every time, the system

div Qu D 0 in �;(4.1a)
curl Qu D Q! in �;(4.1b)
Qu � n D 0 on �;(4.1c) Z

�i

Qu � � D QCi for all i 2 I �;(4.1d)

where, for i in I �, the circulation QCi of Qu around �i satisfies at any t 2 Œ0; T �,

(4.2) QCi .t/ D QCi;0 �

Z t

0

Z
�i

Q!g; with QCi;0 WD C1i;0 � C2i;0; for i 2 I �:
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Observe that, as hinted in Remark 2.3, we use the notation Q! in the first term of the
right-hand side of (4.2) instead of Q!in WD !

1
in � !

2
in or Q!out WD !

1
out � !

2
out on the corres-

ponding parts �in and �out of the boundary � .
Using the Hodge–De Rham theory, we decompose, at every time, the vector field Qu

into two types of contributions, respectively corresponding to the circulations and to the
vorticity:

• On the one hand, to tackle the effect of the circulations, we consider, for i in I �,
the functions f i , which are the unique solutions in C 2.�/ of the following boundary
value problem:

�f i D 0 on �; and f i D ıi;j on �j ;(4.3)

where ıi;j is equal to 1 when i D j and to 0 otherwise.
• On the other hand, we consider, for any given bounded function !, the unique solution
GŒ!� of the following boundary value problem:

�GŒ!� D ! on �; and GŒ!� D 0 on �;(4.4)

and we set
KŒ!� WD r?GŒ!�;

where r? D .�@x2 ; @x1/ (similarly, we will use below the convention u? D .�u2; u1/
for any vector u D .u1; u2/ of R2).
It is a classical result of the Hodge–De Rham theory, see for instance [16], that there

exists some real-valued functions Q i D Q i .t/, for i 2 I �, such that, at every time,

(4.5) Qu.t; �/ D r? Q .t; �/ in �;

where

(4.6) Q .t; �/ WD GŒ Q!.t; �/�C
X
i2I�

Q i .t/f
i :

Let us observe that, as a consequence of (4.1a) and (4.5),

(4.7) � Q D Q! in �;

and that, as a consequence of (4.3) and (4.4),

(4.8) Q j�i D
Q i ; for all i 2 I;

where we set Q 0 WD 0. Combining (4.1d) and (4.5), we arrive at

(4.9)
Z
�i

@n Q D QCi for all i 2 I �:

Moreover, for all test function � 2 H 1.Œ0; T � ��/, and for every 0 � t0 < t1 � T ,

(4.10)
Z t1

t0

Z
�

. Q!@t� C Q! Ou � r� C O! Qu � r�/ D

Z t1

t0

Z
�

� Q!g C
h Z

�

Q!�
it1
t0
:

On the other hand, the half-sum Ou satisfies

(4.11) Ou � n D g on �:
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5. Estimate of the stream function of the difference

This section is devoted to the regularity of the stream function Q . The main result of this
section reads as follows.

Proposition 5.1. The stream function Q is in the space C 0.Œ0; T �IW 2;p.�// for all p in
Œ1;C1/ and in the space H 1.Œ0; T �IH 1.�//. Moreover, there exists C > 0 such that for
i 2 I , the time derivative of the trace Q i of Q on �i satisfies, for 0 � t0 < t1 � T ,

(5.1)
Z t1

t0

j Q 0i j
2
� C

� Z t1

t0

k Quk2
L2.�/

C

Z t1

t0

k Quk2
L2.�;jgj/

�
:

Proposition 5.1 will be useful in Section 6 to obtain an energy estimate, see Propos-
ition 6.1, as it allows us to apply (4.10) to the case where the test function is the stream
function Q . On the other hand, the estimate (5.1) will be useful in Section 9. Let us high-
light that it follows from the regularity of the solutions at stake that the right-hand side
of (5.1) is finite.

Proof. The fact that the function Q is in the space C 0.Œ0; T �IW 2;p.�// for all for all p
in Œ1;C1/ can be found in Lemma 1.4 of [33].

We now turn to the estimate of the time derivative of . Q i /i , for i 2 I . For i D 0, we
have by definition that Q 0 D 0, so that (5.1) holds true in this case with any constant C > 0
and it is therefore sufficient to deal with the case where i 2 I �. To this aim, we recall that
there exist some constants .gij /i2I�; j2I , with gi0D 0, and some smooth functions .gi /i2I�
such that

�gi D 0 on �;(5.2a)

gi D gij on �j ; for j 2 I;(5.2b) Z
�j

@ng
i
D �ıi;j for j 2 I �:(5.2c)

These functions can be obtained by some appropriate linear combinations of the func-
tions f i , which are defined in (4.3); we refer here again to [16] for more details.

Lemma 5.2. For any i in I �, the time derivative Q 0i is in the space L2.0; T /, and there
exists C > 0 such that for any 0 � t0 < t1 � T , the estimate (5.1) holds true.

Proof of Lemma 5.2. Let i2I �. We take gi as a (time-independent) test function in (4.10),
and obtain that for every 0 � t0 < t1 � T ,

(5.3)
Z t1

t0

Z
�

�
Q! Ou � rgi C O! Qu � rgi

�
D

Z t1

t0

Z
�

gi Q!g C
h Z

�

Q!gi
it1
t0
:

Let us start with the right-hand side of (5.3). By (1.1) and (5.2b), the first term in the
right-hand side of (5.3) can be simplified as follows:Z t1

t0

Z
�

gi Q!g D
X
j2I�

gij

Z t1

t0

Z
�j

Q!g D �
X
j2I�

gij
�
QCj
�t1
t0
;

thanks to (4.2).
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On the other hand, using (4.7) and two integrations by parts, the second term in the
right-hand side of (5.3) can be simplified by observing thatZ
�

Q!.t; :/gi D

Z
�

Q .t; :/�gi C

Z
�

@n Q .t; :/g
i
�

Z
�

Q .t; :/@ng
i
D

X
j2I�

gij
QCj .t/C Q i .t/;

thanks to (4.8), (4.9) and (5.2). Thus, the right-hand side of (5.3) turns out to be equal to
Q i .t1/ � Q i .t0/.

Regarding the second term in the left-hand side of (5.3), by the Cauchy–Schwarz
inequality, we obtain thatˇ̌̌Z

�

O! Qu � rgi
ˇ̌̌
� krgikL1.�/ k O!kL2.�/ k QukL2.�/:(5.4)

Since k O!kL1.Œ0;T �IL2.�// is bounded, we infer that the left-hand side of (5.4) is inL2.0;T /
and that there exists C > 0 such that for 0 � t0 < t1 � T ,Z t1

t0

ˇ̌̌Z
�

O! Qu � rgi
ˇ̌̌2
� C

Z t1

t0

k Quk2
L2.�/

:(5.5)

On the other hand, regarding the first term in the left-hand side of (5.3), we integrate by
parts by observing that Q! D �div Qu?, so that

(5.6)
Z
�

Q! Ou � rgi D

Z
�

Qu? � r. Ou � rgi / �

Z
�

. Qu � �/. Ou � rgi /:

Regarding the first term in the right-hand side of (5.6), by the Leibniz rule and the
Cauchy–Schwarz inequality, we arrive atˇ̌̌Z

�

Qu? � r. Ou � rgi /
ˇ̌̌
� k QukL2.�/

�
krgikL1.�/ k OukH1.�/ C kr

2gikL2x k OukL1.�/
�
:

Since the term in the parenthesis in the right-hand side is in L1.Œ0; T �/, the right-hand
side is in the space L2.0; T / and there exists C > 0 such that for 0 � t0 < t1 � T ,

(5.7)
Z t1

t0

ˇ̌̌Z
�

Qu? � r. Ou � rgi /
ˇ̌̌2
� C

Z t1

t0

k Quk2
L2.�/

:

On the other hand, for the second term in the left-hand side of (5.6), we proceed as
follows. Let us set

‡ WD

Z
�

. Qu � �/. Ou � rgi /;

which is a time-dependent function. Since the function gi is constant on each connected
component of the boundary � ,

Ou � rgi D . Ou � n/@ng
i
D g@ng

i ;

by (4.11). Then we recast ‡ into

‡ D

Z
�

�
. Qu � �/ jgj1=2

� �
.@ng

i / sign.g/ jgj1=2
�
;
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so that, by the Cauchy–Schwarz inequality,

j‡ j 6
� Z

�

. Qu � �/2 jgj
�1=2 � Z

�

.@ng
i /2 jgj

�1=2
:

Therefore,Z t1

t0

j‡ j2 �

Z t1

t0

k Quk2
L2.�;jgj//

:

Z
�

.@ng
i /2 jgj � C

Z t1

t0

k Quk2
L2.�;jgj//

:(5.8)

Gathering (5.3), (5.5), (5.7) and (5.8) for 0� t0 < t1 � T , we obtain that Q 0i is inL2.0;T /,
and the estimate (5.1) holds true.

We now prove the following result on the function GŒ Q!�, recalling that the oper-
ator GŒ � � is defined in (4.4). For the purpose of proving Proposition 5.1, it would be
enough to prove thatGŒ Q!� is in the spaceH 1.Œ0;T �IH 1.�//; however, it does not involve
more work to obtain a slightly better regularity in time.

Lemma 5.3. The function GŒ Q!� is in the space Lip.Œ0; T �IH 1.�//.

Proof of Lemma 5.3. Let a in H 1
0 .�/. By using a as a (constant-in-time) test function

in (4.10), we get that for 0 � t0 < t1 � T ,Z t1

t0

Z
�

. Q! OuC O! Qu/ � ra D

Z
�

. Q!.t1; :/ � Q!.t0; ://a

D

Z
�

.�GŒ Q!�.t1; :/ ��GŒ Q!�.t0; :// a D �

Z
�

r .GŒ Q!�.t1; :/ �GŒ Q!�.t0; :// � ra;

by using the definition of the operator GŒ � � in (4.4) and an integration by parts. In partic-
ular, in the case where

a D GŒ Q!�.t1; :/ �GŒ Q!�.t0; :/;

we infer by the Cauchy–Schwarz inequality as well as the Poincaré inequality, see for
example Theorem 13.6.9 in [26], that there exists a constant C > 0 such that for 0 � t0 <
t1 � T ,

(5.9) kGŒ Q!�.t1; :/ �GŒ Q!�.t0; :/kH1.�/ � C

Z t1

t0

k Q! OuC O! QukL2.�/;

which gives

(5.10) kGŒ Q!�kLip.Œ0;T �IH1.�// � Ck Q! OuC O! QukL1.Œ0;T �IL2.�//:

Thus by mastering the right-hand side of (5.10) thanks to Proposition 2.1 and (2.5), we
conclude the proof of Lemma 5.3.

Using the decomposition (4.6), we deduce from Lemma 5.2, from Lemma 5.3 and
from the C 2 regularity on � of the functions f i defined in (4.3), that the stream func-
tion Q is in the space H 1..0; T /IH 1.�//. The proof of Proposition 5.1 is therefore
completed.
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6. Energy estimate of the difference

This section is devoted to the proof of the following energy inequality.

Proposition 6.1. For 0 � t0 < t1 � T ,

(6.1)
1

2

�
k Quk2

L2.�/

�t1
t0
C
1

2

Z t1

t0

Z
�

j Quj2g C

Z t1

t0

Z
�

Qu � .. Qu � r/ Ou/ D 0;

where we recall the notation (2.4).

Proof. According to Proposition 5.1, we can apply (4.10) to the case where the test func-
tion is the stream function Q defined in (4.6). This entails that for 0 � t0 < t1 � T ,

(6.2)
Z t1

t0

Z
�

Q!@t Q C

Z t1

t0

Z
�

Q! Ou � r Q C

Z t1

t0

Z
�

O! Qu � r Q D

Z t1

t0

Z
�

Q Q!gC
hZ
�

Q! Q 
it1
t0
:

Let us successively transform each term of (6.2).
First, by (4.7) and an integration by parts, the first term in the left-hand side of (6.2)

can be recast asZ t1

t0

Z
�

Q!@t Q D �

Z t1

t0

Z
�

r Q � @tr Q C

Z t1

t0

Z
�

@n Q @t Q 

D �
1

2

�
k Quk2

L2.�/

�t1
t0
C

X
i2I�

Q 0i

Z t1

t0

QCi ;(6.3)

thanks to the boundary decomposition (1.1), (4.5), (4.8) and (4.9).
Next, we recast the second term in the left-hand side of (6.2) by using the following

lemma.

Lemma 6.2. Let u be a divergence-free vector field in C 0.�IR2/ with bounded vorticity
! WD curlu. Let w be a divergence-free vector field in H 1.�/. ThenZ

�

!u? � w D �
1

2

Z
�

juj2 .w � n/ �

Z
�

u � ..u � r/ w/C

Z
�

.u � w/.u � n/:(6.4)

We use later on a technical lemma, see Lemma 8.1, which slightly extends Lemma 6.2.
Indeed, Lemma 6.2 is the particular case of Lemma 8.1 below where u D v and where w
is divergence-free, so that we do not provide here any proof of Lemma 6.2.

Thus, with a preliminary recasting due to (4.5),

(6.5)
Z t1

t0

Z
�

Q! Ou � r Q D �

Z t1

t0

Z
�

Q! Qu? � Ou D

Z t1

t0

�1
2

Z
�

j Quj2g C

Z
�

Qu � .. Qu � r/ Ou/
�
;

by applying Lemma 6.2 with . Qu; Ou/ instead of .u; w/, with the observation that the last
boundary term of (6.4) vanishes thanks to (4.1c). Observe that we also use (4.11) to deal
with the other boundary term.

Regarding the third term in the left-hand side of (6.2), it follows from (4.5) that

(6.6)
Z t1

t0

Z
�

O! Qu � r Q D 0:
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Using the decomposition (1.1), (4.8) and (4.2), we get that the first term in the right-
hand side of (6.2) satisfies

(6.7)
Z t1

t0

Z
�

Q Q!g D �

Z t1

t0

X
i2I�

Q i QC
0
i :

Finally, using again (4.7) and an integration by parts, we observe that the term involved
in the bracket of the last term in the right-hand side of (6.2) satisfies, for every time,

(6.8)
Z
�

Q! Q D �

Z
�

r Q � r Q C

Z
�

Q @n Q D �k Quk
2
L2.�/

C

X
i2I�

Q i QCi ;

by using (4.5), the decomposition (1.1) and (4.8).
Combining (6.2), (6.3), (6.5), (6.6), (6.7) and (6.8), we arrive at (6.1), and this con-

cludes the proof of Proposition 6.1.

From Proposition 6.1, we deduce the following estimate.

Corollary 6.3. There exists a constant C such that for any 0 � t0 < t1 � T , and for every
p 2 Œ2;C1/,

(6.9)
1

2

h
k Quk2

L2.�/

it1
t0
C
1

2

Z t1

t0

Z
�out

j Quj2g �
1

2

Z t1

t0

Z
�in

j Quj2.�g/CCp

Z t1

t0

k Quk
2.p�1/=p

L2.�/
:

Observe that due to the sign conditions in (1.6), the second term in the left-hand side
and the first term in the right-hand side are both non-negative; this is indeed the reason
why we display them in this way. Should the latter be discarded, the inequality (6.9) would
allow to conclude the proof of Theorem 3.1 by proceeding as in the impermeable case,
that is, by optimizing in p and by using Osgood’s lemma, see Remark 2.2 and [34, 35].
As already hinted above, see Section 3, the presence of this “bad” boundary term, which
is associated with the sources, but not bounded by the left-hand side nor by the data, is
an obstacle to this program, which is overcome in the next sections, by making use of a
well-chosen auxiliary test function.

Proof of Corollary 6.3. Taking into account the splitting of the second term of (6.1) ac-
cording to the decomposition of the boundary � into � D �in [�out [�0, and the fact that
g D 0 on �0 (see (1.1), (1.2) and (1.6)), the proof of Corollary 6.3 amounts to prove that
there exists a constant C such that at any non-negative time, and for every p 2 Œ2;C1/,
the third term of (6.1) is bounded as follows:

(6.10)
ˇ̌̌ Z
�

Qu � .. Qu � r/ Ou/
ˇ̌̌
� Cpk Quk

2.p�1/=p

L2.�/
:

To that aim, let us first observe that, by Hölder’s inequality, we have, for all p 2 .1;C1/,
that

(6.11)
ˇ̌̌ Z
�

Qu � .. Qu � r/ Ou/
ˇ̌̌
� k Quk2

L2p=.p�1/.�/
k OukW 1;p.�/:
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To bound the first factor in the right-hand side, let us recall that for any p in .1;C1/,
for any vector field w in L2.�IR2/ \ L1.�IR2/, we have the following interpolation
inequality:

(6.12) kwkL2p=.p�1/.�/ � kwk
1=p

L1.�/
kwk

.p�1/=p

L2.�/
:

By Proposition 5.1, the Sobolev embedding theorem and (4.5), we obtain that Qu is in the
space C 0.RCIL1.�//, so that the first factor of the right-hand side of (6.11) can be
bounded by

Ck Quk
2.p�1/=p

L2.�/
:

Moreover, the second factor of the right-hand side of (6.11) can be bounded thanks to
Proposition 2.1 by Cp for a positive constant C independent of time and of p in Œ2;C1/.
This allows to deduce (6.10) from (6.11), and therefore to conclude the proof of Corol-
lary 6.3.

7. An auxiliary test function

This section is devoted to the existence and to the regularity of an auxiliary test function
which is useful in the sequel to establish a second energy estimate. This test function is
defined through the following Zaremba-type problem:

� Q' D 0 on �;(7.1a)
Q' D 0 on �out [ �0;(7.1b)

@n Q' D �@n Q on �in:(7.1c)

It is instructive to look first at a variational formulation of the system (7.1), associated
with the space

(7.2) H 1
0; out.�/ WD ¹a 2 H

1.�/I aj�out[�0 D 0º:

Thanks to the Poincaré inequality, the space H 1
0; out.�/ is a Hilbert space endowed with

the homogeneous Sobolev norm associated with the space PH 1.�/. Then, we consider the
following variational formulation of the system (7.1):

(7.3) Q' is in H 1
0; out.�/ and 8a 2 H 1

0; out.�/;

Z
�

r Q' � ra D �

Z
�

r Q � ra �

Z
�

Q!a:

Indeed, if Q' is a smooth solution of the system (7.1), then for all a in H 1
0; out.�/,

(7.4) 0 D

Z
�

.� Q'/a D �

Z
�

r Q' � raC

Z
�

.@n Q'/a;

by integrating by parts. Moreover, by (7.1c) and the fact that a 2 H 1
0; out.�/, we deduce

that

(7.5)
Z
�

.@n Q'/a D �

Z
�

.@n Q /a D �

Z
�

r Q � ra �

Z
�

.� Q /a;

by integrating by parts. Combining (7.4), (7.5) and recalling (4.7), we arrive at (7.3).
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Since the right-hand side of the identity in (7.3) is a linear form with respect to a in
H 1
0; out.�/ with an operator norm bounded by

(7.6) C
�
k QukC 0.Œ0;T �IL2.�// C k Q!kC 0.Œ0;T �IL2.�//

�
;

by the Lax–Milgram theorem, there exists a unique function Q' in C 0.Œ0; T �IH 1
0; out.�//

which satisfies (7.3) for all non-negative times.
Moreover, the following result establishes that the function Q' is more regular.

Proposition 7.1. The function Q' is in C 0.Œ0; T �IW 2;p.�// for all p in .1;C1/. More-
over, for all T > 0, the function Q' is also in the space H 1.Œ0; T �IH 1

0; out.�//.

Proof. First, by Proposition 2.1, we know that Q is in C 0.Œ0; T �IW 2;p.�// for any
finite p. Then, it follows from the classical regularity results on the Zaremba-type prob-
lems, see e.g. Theorem 2.4.2.6 in [13], that the function Q' is also in C 0.Œ0; T �IW 2;p.�//

for any p in .1;C1/.
Thus, it only remains to prove that @t Q' is in the space L2..0; T /IH 1

0; out.�//. To this
aim, let us consider !� a smooth function on Œ0; T � ��, compactly supported in .0; T /
as a function in time with values in the space of continuous functions on �. As argued
above, there exists a unique smooth function � which satisfies for all t in Œ0; T �,

�� D !� on �;(7.7a)
� D 0 on �out [ �0;(7.7b)

@n� D 0 on �in:(7.7c)

Moreover, the function � is compactly supported in .0; T /. Let us denote by H 0 the dual
space of H 1.�/ for the L2 scalar product, seen as a subset of H�1.�/. Using the fact
that we have the equality

(7.8)
Z
�

�!� D �

Z
�

jr�j2;

we get that the function � is also in L1.Œ0; T �IH 1.�//, together with the estimate

(7.9) k�.t; :/kH1.�/ � Ck!�.t; :/kH 0 ;

for every t in Œ0; T � with some constant C independent of the time.
By integrating by parts, and using that on the one hand @t@n� D @n@t� D 0 on �in for

all t in Œ0; T �, and on the other hand (7.1b), we have that

(7.10)
Z
�

Q' @t!� D �

Z
�

r Q' � r@t�:

Since, for all t in Œ0; T �, the function @t�.t; �/ is in H 1
0; out.�/, we have, by applying (7.3)

with @t�.t; �/ instead of a, and integrating over .0; T /, that

(7.11)
Z T

0

Z
�

r Q' � r@t� D �

Z T

0

Z
�

r Q � r@t� �

Z T

0

Z
�

Q!@t �:
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By integrating by parts in space and in time and using (7.7a), we deduce thatZ T

0

Z
�

r Q � r@t� D �

Z T

0

Z
�

Q @t !� C

Z T

0

Z
�

Q @n@t�

D

Z T

0

Z
�

.@t Q /!� �

Z T

0

Z
�

.@t Q /@n�:(7.12)

On the one hand, by the Cauchy–Schwarz inequality and Proposition 5.1,

(7.13)
ˇ̌̌ Z T

0

Z
�

.@t Q /!�

ˇ̌̌
� Ck!�kL2..0;T /IH 0/:

On the other hand, by using the boundary decomposition (1.1) and recalling (4.8),

(7.14)
Z T

0

Z
�

.@t Q /@n� D
X
i2I

Z T

0

Q 0i

Z
�i

@n�:

Moreover, for any i in I �, recalling the definition of f i in (4.3), we have, for all non-
negative times, that Z

�i

@n� D

Z
�

rf i � r� C

Z
�

f i!� ;

so that, by the Cauchy–Schwarz inequality and (7.9), we deduce thatˇ̌̌ Z
�i

@n�
ˇ̌̌

6 Ck!�kH 0 :

Therefore, by (7.14), the Cauchy–Schwarz inequality with respect to time, Proposition 5.1
and recalling that Q 0 is identically null, we obtain that

(7.15)
ˇ̌̌ Z T

0

Z
�

.@t Q /@n�
ˇ̌̌
� Ck!�kL2..0;T /IH 0/:

Combining (7.12), (7.13) and (7.15), we infer that

(7.16)
ˇ̌̌ Z T

0

Z
�

r Q � r@t�
ˇ̌̌
� Ck!�kL2..0;T /IH 0/:

We now turn to the estimate of the last term of (7.11). By (4.10), with .t0; t1/ D .0; T /,

�

Z T

0

Z
�

Q!@t� D

Z T

0

Z
�

�
Q! Ou � r� C O! Qu � r�

�
�

Z T

0

Z
�

� Q!g:

Since Q! and O! are in L1..0; T / ��/, since Qu and Ou are in L2..0; T / ��/, since Q! is in
L1.0; T IL1.�out; jgj//, by the classical trace properties, see for example Section 13.6
in [26], and using (7.9), we obtain that

(7.17)
ˇ̌̌ Z T

0

Z
�

Q!@t�
ˇ̌̌
� Ck!�kL2..0;T /IH 0/:
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By gathering (7.10), (7.11), (7.16) and (7.17), we deduce that for any function !� which
is smooth on Œ0; T � �� and compactly supported in .0; T /,ˇ̌̌ Z T

0

Z
�

Q' @t!�

ˇ̌̌
� Ck!�kL2..0;T /IH 0/:

This entails that @t Q' is in the space L2..0; T /IH 1.�// and it follows from the properties
of the trace that @t Q' is indeed in the spaceL2..0;T /IH 1

0; out.�//. This concludes the proof
of Proposition 7.1.

8. A generalized Lamb-type lemma

This section is devoted to the following Lamb-type lemma.

Lemma 8.1. Let u an dv be two divergence-free vector fields in C 0.�IR2/ with bounded
vorticity. Let w be a vector field in H 1.�IR2/. We have the following equality:Z

�

.u � v/.w � n/ �

Z
�

.u � w/.v � n/ �

Z
�

.v � w/.u � n/(8.1)

D

Z
�

.u � v/ divw �
Z
�

.curlu/ v? � w �
Z
�

.curl v/ u? � w

�

Z
�

u � ..v � r/ w/ �

Z
�

v � ..u � r/ w/:

In particular, in the case where u D v, then (8.1) reduces toZ
�

juj2 .w � n/ � 2

Z
�

.u � w/.u � n/(8.2)

D

Z
�

juj2 divw � 2
Z
�

!u? � w � 2

Z
�

u � ..u � r/ w/;

where ! WD curlu.

Lemma 8.1 implies Lemma 6.2 by considering the particular case where u D v and
where w is divergence free. It also implies Lemma 7 in [23] and Lemma 2.15 in [24] in
the particular cases where w is a rigid velocity. It will also be useful several times in the
sequel.

Proof. It is sufficient to prove (8.1) in the case where the three vector fields u, v andw are
smooth, since then the result follows from an approximation process. We start with using
Stokes’ formula to obtain thatZ

�

.u � v/.w � n/ D

Z
�

div ..u � v/w/ D
Z
�

r.u � v/ � w C

Z
�

.u � v/ divw:(8.3)

Moreover,

(8.4) r.u � v/ D .u � r/v C .v � r/u � .curl u/ v? � .curl v/ u?;
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and therefore,Z
�

.u � v/.w � n/ D

Z
�

.u � v/ divw �
Z
�

.curl u/ v? � w �
Z
�

.curl v/ u? � w(8.5)

C

Z
�

..u � r/v/ � w C

Z
�

..v � r/u/ � w:

Finally, by some integrations by parts, since u and v are divergence-free,Z
�

..u � r/v/ � w D �

Z
�

v � ..u � r/w/C

Z
�

.v � w/.u � n/; and(8.6) Z
�

..v � r/u/ � w D �

Z
�

u � ..v � r/w/C

Z
�

.u � w/.v � n/:

Gathering (8.3), (8.5) and (8.6), we obtain (8.1).

9. An auxiliary energy-type estimate

Recall that the function Q' is defined in Section 7. We denote by Qv its orthogonal gradient

(9.1) Qv WD r? Q':

We also set, for i in I �,

(9.2) QDi WD

Z
�i

@n Q':

Let us observe that, it follows from (7.1c) that, at any time t 2 Œ0; T �,

(9.3) QDi .t/ D � QCi .t/ for all i 2 Iin:

Proposition 9.1. For 0 � t0 < t1 � T ,

1

2

�
k Qv.t; :/k2

L2.�/

�t1
t0
C

Z t1

t0

Z
�in

j Quj2.�g/(9.4)

D

Z t1

t0

Z
�out

. Qu � Qv/.�g/C

Z t1

t0

Z
�in

. Qu � Ou/. Qv � n/

C

Z t1

t0

Z
�

�
Qu � .. Qv � r/ Ou/C Qv � .. Qu � r/ Ou/C O! Qu � Qv?

�
�

Z t1

t0

X
i2I�

Q 0i
QDi C

Z t1

t0

Z
�in

Q' Q!ing:

Observe that due to the sign conditions in (1.6), the second term in the left-hand side
is non-negative; and is twice the “bad” boundary term in (6.9).
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Proof. Thanks to Proposition 7.1, we can apply (4.10) to the case where the test function
is the function Q'. This entails that for every t0; t1,

(9.5)
Z t1

t0

Z
�

Q!@t Q'C

Z t1

t0

Z
�

Q! Ou � r Q'C

Z t1

t0

Z
�

O! Qu � r Q' D

Z t1

t0

Z
�

Q' Q!gC
hZ

�

Q! Q'
it1
t0
:

Let us simplify each term of (9.5).
Let us start with the last one. Taking Q' as a test function in (7.3), and using (9.1), we

get that:

(9.6) �

Z
�

j Qvj2 D

Z
�

r Q � r Q' C

Z
�

Q! Q':

We can simplify the first term of the right-hand side of (9.6) by an integration by parts:

(9.7)
Z
�

r Q � r Q' D �

Z
�

Q � Q' C

Z
�

Q @n Q' D
X
i2I�

Q i QDi ;

by (7.1a), (1.1), (4.8) and (9.2). Therefore, by combining (9.6) and (9.7), we obtain that
the last term of (9.5) can be recast as

(9.8)
Z
�

Q! Q' D �

Z
�

j Qvj2 �
X
i2I�

Q i QDi :

We now turn to the first term in the left-hand side of (9.5) for which we apply sim-
ilar computations. More precisely, by taking @t Q� as a test function in (7.3), and using
again (9.1), we obtain that

(9.9) �

Z
�

Qv � @t Qv D

Z
�

r Q � @tr Q' C

Z
�

Q!@t Q':

Moreover, by an integration by parts, the first term in the right-hand side of (9.9) can be
simplified into

(9.10)
Z
�

r Q � @tr Q' D �

Z
�

Q @t� Q' C

Z
�

Q @t@n Q' D
X
i2I�

Q i QD
0
i :

By combining (9.9) and (9.10) and integrating between t0 and t1, we obtain:

(9.11)
Z t1

t0

Z
�

Q!@t Q' D �
1

2

�
k Qvk2

L2.�/

�t1
t0
�

Z t1

t0

X
i2I�

Q i QD
0
i :

The second term in the left-hand side of (9.5) can be tackled by Lemma 8.1 with
. Ou; Qv; Ou/ instead of .u; v; w/. Using also that curl Qv D 0 in � and (4.1c) this entails thatZ

�

Q! Ou � r Q' D

Z
�

. Qu � Qv/g �

Z
�

. Qu � Ou/. Qv � n/C

Z
�

Qu � .. Qv � r/ Ou/C

Z
�

Qv � .. Qu � r/ Ou/:
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Moreover, using (7.1c), (9.1) and again (4.1c), the first term in the left-hand side above
can be decomposed as follows:

(9.12)
Z
�

. Qu � Qv/g D

Z
�out

. Qu � Qv/g C

Z
�in

j Quj2 .�g/;

and the second one can be simplified into

(9.13)
Z
�

. Qu � Ou/. Qv � n/ D

Z
�in

. Qu � Ou/. Qv � n/;

by (9.1) and (7.1b). We therefore arrive atZ t1

t0

Z
�

Q! Ou � r Q' D

Z t1

t0

Z
�out

. Qu � Qv/g C

Z t1

t0

Z
�in

j Quj2.�g/ �

Z
�in

. Qu � Ou/. Qv � n/

C

Z t1

t0

Z
�

�
Qu � .. Qv � r/ Ou/C Qv � .. Qu � r/ Ou/

�
:(9.14)

The third term of the right-hand side of (9.5) satisfies

(9.15)
Z t1

t0

Z
�

O! Qu � r Q' D �

Z t1

t0

Z
�

O! Qu � Qv?;

by (9.1).
Finally, the first term in the left-hand side of (9.5) satisfies

(9.16)
Z t1

t0

Z
�

Q' Q!g D

Z t1

t0

Z
�in

Q' Q!ing;

by (7.1b).
Gathering (9.5), (9.8), (9.11), (9.14), (9.15) and (9.16), we arrive at (9.4). This con-

cludes the proof of Proposition 9.1.

In the same way as we deduce Corollary 6.3 from Proposition 6.1, we deduce the
following corollary from Proposition 9.1.

Corollary 9.2. There exists a constant C > 0 such that for every p in Œ2;C1/ and for
every 0 � t0 < t1 � T ,

1

2

�
k Qv.t; :/ k2

L2.�/

�t1
t0
C
7

8

Z t1

t0

Z
�in

j Quj2.�g/ �
1

4

Z t1

t0

Z
�out

j Quj2.�g/

C C

Z t1

t0

�
k Qvk2

L2.�/
C k Quk2

L2.�/

�
C Cp

Z t1

t0

�
k Qvk

2.p�1/=p

L2.�/
C k Quk

2.p�1/=p

L2.�/

�
C C.t1 � t0/ k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C .t1 � t0/
X
i2Iin

j QCi;0j
2:(9.17)

In the proof of Corollary 9.2, we use the following result on the trace of harmonic
functions.



F. Noisette and F. Sueur 752

Lemma 9.3. For all i 2 I , there exists a constant C > 0 such that for any function h
which is harmonic on � and C 1 on �,

(9.18)
Z
�i

.@nh/
2
�

Z
�i

.@�h/
2
C C

Z
�

jrhj2:

Lemma 9.3 can be seen for example as local version of Hörmander’s trace inequal-
ity (see [15]). Let us refer here to [10] for more on the historical context of this trace
inequality and its relationship with Rellich and Pohozaev types inequalities. For the sake
of completeness, we provide below a proof which uses Lemma 8.1.

Proof of Lemma 9.3. For all i 2 I , there is a C 1 vector field Ni W�! R2 which is equal
to the outward unit normal vector n on �i , and which is equal to 0 in a neighbourhood
of � n �i . We apply (8.2) with .r?h;Ni / instead of .u; w/. Observe that the first vector
field is divergence free and curl free since the function h is harmonic. This entails that

(9.19)
Z
�i

jrhj2 � 2

Z
�i

.@�h/
2
D

Z
�

jrhj2.div Ni / � 2
Z
�

r
?h �

�
.r?h � r/Ni

�
:

SinceNi is C 1, we deduce from (9.19) that there exists a constant C > 0 such that for any
function h that is harmonic on � and C 1 on �, the following estimate holds true:

(9.20)
ˇ̌̌ Z
�i

.@nh/
2
� .@�h/

2
ˇ̌̌
� C

Z
�

jrhj2;

and thus in particular (9.18).

Proof of Corollary 9.2. We successively bound the terms in the right-hand side of (9.4).
The first term can be estimated as follows.

Lemma 9.4. For all " > 0, there exists M."/ > 0 such that

(9.21)
ˇ̌̌ Z
�out

. Qu � Qv/ g
ˇ̌̌
� "

Z
�out

j Quj2g CM."/

Z
�

j Qvj2:

Proof of Lemma 9.4. First, since Qu � n D 0,

(9.22)
Z
�out

. Qu � Qv/ g D

Z
�out

. Qu � �/ . Qv � �/ g:

Using (9.1) and the fact that g is bounded on � we deduce that for all " > 0, there
exists QM."/ > 0 such thatˇ̌̌ Z

�out

. Qu � Qv/ g
ˇ̌̌
� "

Z
�out

j Quj2 jgj C QM."/

Z
�out

j@n Q'j
2:(9.23)

Now we apply Lemma 9.3 for i in Iout with Q' instead of h and we use that Q' is equal to 0
on �out to obtain that there exists C > 0 such that

(9.24)
Z
�out

j@n Q'j
2
� C

Z
�

j Qvj2:

Combining (9.23) and (9.24) and setting M."/ WD C QM."/, we conclude the proof of
Lemma 9.4.
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The second term in the right-hand side of (9.4) can be estimated as follows.

Lemma 9.5. There exists a constant C > 0 such that for all p in Œ2;C1/,

(9.25)
ˇ̌̌ Z
�in

. Ou � Qu/ . Qv � n/
ˇ̌̌
� Cpk Qvk

2.p�1/=p

L2.�/
:

Proof. First, since Qu � n D 0 and Qu � � D �Qv � � on �in, we have:Z
�in

. Ou � Qu/ . Qv � n/ D �

Z
�in

. Ou � �/ . Qv � n/ . Qv � �/:

There exists a vector field T W�! R2 which is C 2, equal to 0 outside a given neighbor-
hood of �in and satisfies Tj�in D � . We apply Lemma 8.1 with . Qv; Qv; . Ou � T / T / instead of
.u;v;w/, observing that Qv is divergence free since the function Q' is harmonic. We arrive at

2

Z
�in

. Ou � �/ . Qv � n/ . Qv � �/ D 2

Z
�in

. Qv � n/ . Qv � . Ou � T / T /

D �

Z
�

j Qvj2 div .. Ou � T / T /C 2
Z
�

Qv � .. Qv � r/ . Ou � T / T /:

By Hölder’s inequality, we have that

(9.26)
ˇ̌̌ Z
�in

. Ou � �/ . Qv � n/ . Qv � t /
ˇ̌̌
� Ck Qvk2

L2p=.p�1/.�/
k OukW 1;p.�/:

To conclude, we use the interpolation inequality (6.12) and the estimates of Proposition 2.1
and of Proposition 7.1.

Regarding the second to last term in the right-hand side of (9.4), we first establish the
following result on the circulations QDi of Qv around each �i .

Lemma 9.6. For all " > 0, there exists M."/ > 0 such that for every 0 � t0 < t1 � T ,ˇ̌̌ Z t1

t0

X
i2I�

 0i
QDi

ˇ̌̌
�M."/

�
.t1 � t0/k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C .t1 � t0/
X
i2Iin

j QCi;0j
2

C

Z t1

t0

k Qvk2
L2.�/

�
C "

Z t1

t0

�
k Quk2

L2.�/
C k Quk2

L2.�;jgj/

�
:(9.27)

Proof. On the one hand, for i 2 Iin, by (9.3) and (4.2), we obtain that for any t � 0,

(9.28) j QDi .t/j � j QCi;0j C

Z t

0

Z
�i

j Q!inj jgj � j QCi;0j C T k Q!inkL1.Œ0;t�IL1.�in;jgj//:

On the other hand, by the Cauchy–Schwarz inequality and (9.24) we obtain that there
exists a constant C > 0 such that for any t � 0, for all i 2 Iout,

(9.29) j QDi .t/j � Ck Qv.t; :/kL2.�/:
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Combining (9.28) and (9.29), we get that there exists a constant C > 0 such that for every
0 � t0 < t1 � T ,Z t1

t0

X
i2I�

j QDi j
2
� C

Z t1

t0

k Qvk2
L2.�/

C C.t1 � t0/k Q!ink
2
L1.Œ0;t�IL1.�in;jgj//

C C.t1 � t0/
X
i2Iin

j QCi;0j
2:(9.30)

Moreover, for any " > 0, there exists M."/ > 0 such that for every 0 � t0 < t1 � T ,

(9.31)
ˇ̌̌ Z t1

t0

X
i2I�

 0i
QDi

ˇ̌̌
�M."/

Z t1

t0

X
i2I�

j QDi j
2
C "C�1

Z t1

t0

X
i2I�

j 0i j
2;

where C > 0 is the constant which appears in (5.1). By combining (9.31), (9.30) and (5.1)
we obtain (9.27).

Regarding the last term in the right-hand side of (9.4), we have the following estimate.

Lemma 9.7. There exists a constant C > 0 such that for any 0 < t0 < t1 < T :

(9.32)
ˇ̌̌ Z t1

t0

Z
�in

Q' Q!ing
ˇ̌̌
� C

Z t1

t0

k Qvk2
L2.�/

C .t1 � t0/k Q!ink
2
L1.Œ0;T ���in/

:

Proof. By classical trace theory, there exists C > 0 such that

k Q'kL2.�/ � Ck Q'kH1.�/ � C
0
k QvkL2.�/;

for another C 0 > 0 by the Poincaré inequality, using that Q' is equal to 0 on �out. Therefore
Lemma 9.7 follows by using the Cauchy–Schwarz inequality.

Finally, to bound the fourth term in the right-hand side of (9.4), we proceed as in the
proof of Corollary 6.3. More precisely, we first use Hölder’s inequality to get that for all p
in .1;C1/,ˇ̌̌ Z

�

�
O! Qu � Qv? C Qv � .. Qu � r/ Ou/C Qu � .. Qv � r/ Ou/

�ˇ̌̌
�
�
k Qvk2

L2p=.p�1/.�/
C k Quk2

L2p=.p�1/.�/

�
k OukW 1;p.�/:

Then, we observe that both Qu and Qv are in L1.Œ0; T �IL1.�//, respectively thanks to
Proposition 5.1 and Proposition 7.1, the Sobolev embedding theorem and (4.5) and (9.1).
Thus, by the interpolation inequality (6.12) and by Proposition 2.1, we deduce that there
exists a positive constant C such that for all p in Œ2;C1/,

(9.33)
ˇ̌̌ Z
�

�
O! Qu � Qv?C Qv � .. Qu � r/ Ou/C Qu � .. Qv � r/ Ou/

�ˇ̌̌
� Cp

�
k Quk

2.1�1=p/

L2.�/
CkQvk

2.1�1=p/

L2.�/

�
:

Therefore, Corollary 9.2 is a consequence of Lemma 9.4, Lemma 9.7, Lemma 9.5, and
Lemma 9.6 with " D 1=8, and (9.33).
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10. Osgood argument and end of the proof

In this section we combine the two energy estimates obtained, respectively, in Section 6
and in Section 9, and use an Osgood argument to conclude the proof of Theorem 3.1.
Indeed, by summing (6.9) and (9.17), we obtain that there exists a constant C > 0 such
that, for 0 � t0 < t1 � t � T , for every p � 2,�

k Quk2
L2.�/

C kQvk2
L2.�/

�t1
t0
C
1

2

Z t1

t0

Z
�

j Quj2jgj(10.1)

� C

Z t1

t0

�
k Qvk2

L2.�/
C k Quk2

L2.�/
C pk Qvk

2.p�1/=p

L2.�/
C pk Quk

2.p�1/=p

L2.�/

�
C C .t1 � t0/

�
k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C

X
i2Iin

j QCi;0j
2
�
:

We first omit the second term on the left-hand side of (10.1) and focus on the estimate of
the time-dependent function

(10.2) z WD k Quk2
L2.�/

C kQvk2
L2.�/

:

We obtain that for 0 � t0 < t1 � t � T and for every p � 2,

Œz�
t1
t0
� C

Z t1

t0

.z.t/C pz.t/1�1=p/ dt(10.3)

C C.t1 � t0/
�
k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C

X
i2Iin

j QCi;0j
2
�
:

In the case where z.t/ is more than one, the term in the first parenthesis above can be
bounded by .1 C p/z.t/, and a classical Gronwall argument can be applied. The case
where z.t/ is less than one, which is of particular interest in view of the uniqueness
issue, requires to replace the Gronwall argument by Osgood’s lemma, as this was done
by Yudovich in [34, 35] in the impermeable case. To this end, we first establish the fol-
lowing result in view of minimizing the right-hand side above with respect to p locally in
time.

Lemma 10.1. Let a � 0 and let y be a non-negative continuous and non-decreasing func-
tion. Let F be a non-negative continuous function on Œ2;C1/ �RC which is increasing
with respect to the second variable. We assume that for every 0 < t0 < t1 < T , and for
every p 2 Œ2;C1/,

(10.4) Œy�
t1
t0
� a.t1 � t0/C

Z t1

t0

F.p; y.s// ds:

Let � be a continuous function from RC to RC. We assume that for any x � 0, there
exists px in Œ2;C1/ such that

(10.5) F.px ; x/ � �.x/:

Then, for all 0 < t < T ,

(10.6) Œy�t0 � at C

Z t

0

�.y.s// ds:
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Proof of Lemma 10.1. Let t be in .0; T / and n in N�. Using (10.4) and (10.5), we get that
there are some .py..kC1/t=n//0�k�n�1 in Œ2;C1/n and C > 0 such that

Œy�t0 D

n�1X
kD0

�
y
� .k C 1/t

n

�
� y

�kt
n

��
(10.7)

� at C

n�1X
kD0

Z .kC1/t=n

kt=n

F
�
py..kC1/t=n/; y.s/

�
ds;

and for 0 � k � n � 1,

(10.8) F
�
py..kC1/t=n/; y

� .k C 1/t
n

��
� C�

�
y
� .k C 1/t

n

��
:

Then, as y is an non-decreasing function of t and F is an increasing function of y, the
function t 7! F.p; y.t// is increasing, which leads to

(10.9)
Z .kC1/t=n

kt=n

F
�
py..kC1/t=n/; y.s/

�
ds �

t

n
F
�
py..kC1/t=n/; y

� .k C 1/t
n

��
:

Combining (10.7), (10.8) and (10.9), we obtain that

(10.10) Œy�t0 � at C
Ct

n

n�1X
kD0

�
�
y
� .k C 1/t

n

��
:

As this is true for every n, we conclude by Riemann summations, using the fact that � is
continuous.

We define the function y by

(10.11) y.t/ WD max
s2Œ0;t�

z.s/;

where z is the function defined in (10.2), and we set

(10.12) F.p; x/ WD x C px1�1=p; �.x/ WD Cx.1C j ln.x/j/

and

(10.13) a WD C
�
k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C

X
i2Iin

j QCi;0j
2
�
;

where C is the constant which appears in (10.3). The condition (10.5) is fulfilled with
px D j ln.x/j for x in Œ0; e�2� and px D 2 for x in .e�2;C1/. Moreover, according
to (10.3), the function y satisfies (10.4). Therefore, by Lemma 10.1, the function y satis-
fies (10.6) for all t 2 Œ0; T �.

Let us now recall Osgood’s lemma, see for example Lemma 3.4 in [2].
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Lemma 10.2. Let �W Œ0; 1�! Œ0;C1/ be an increasing continuous function with �.0/D
0, T > 0 and le tc � 0. Let yWRC ! Œ0; 1� be a function satisfying, for t in Œ0; T �,

(10.14) y.t/ � c C

Z t

0

�.y.s// ds;

In the case where c > 0, then, for t in Œ0; T �,Z y.t/

c

dx

�.x/
� t:

In the case where c D 0, if the function � also satisfiesZ 1

0

dt

�.t/
D C1;

then for t in Œ0; T �, y.t/ D 0.

We now apply Osgood’s lemma to the function y defined in (10.11), with � and a
defined in (10.12), and c D y.0/ C aT . Focusing on the first case, this yields that for
0 � t � T , Z y.t/

y.0/CaT

dx

�.x/
� t;

and thus in particular that for any t � 0,Z y.t/

y.0/Cat

dx

�.x/
� t;

which leads to

(10.15) y.t/ � e .y.0/C ta/e
�Ct

:

Using that, similarly to (7.6), there holds

(10.16) k Qv.0; �/kL2.�/ � C
�
k Qu.0; �/kL2.�/ C k Q!.0; �/kL2.�/

�
;

and recalling (10.2) and (10.11), we deduce from (10.15) that

k Qu.t/k2
L2.�/

� C
�
k Qu.0; �/k2

L2.�/
C k Q!.0; �/k2

L2.�/

C t
�
k Q!ink

2
L1.Œ0;t�IL1.�in;jgj//

C

X
i2Iin

j QCi;0j
2
��e�Ct

:

Now, by using Proposition 2.1, we conclude that there exists a continuous function
F W .RC/3 �RI

�

7! RC satisfying F.�; 0; 0; 0/ D 0 for all � � 0, and such that for every
t 2 Œ0; T �,

k Qu.t/k2
L2.�/

� F
�
t; k!10 � !

2
0kL1.�/; k!

1
in � !

2
inkL1.Œ0;t�IL1.�in;jgj//; .C

1
i;0 � C2i;0/i2I�

�
:

Moreover, going back to (10.1), we deduce a similar bound of the second term on the left-
hand side, and we arrive at (3.1). The uniqueness result corresponds to the case where y.0/
and a are both zero, for which we apply the second case of Osgood’s lemma.
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Remark 10.3. With some bookkeeping, we observe that formally the inequality (10.1)
is obtained by applying the weak formulation (4.10) with a test function which is a com-
bination of Q , of Q' and of QDi g

i , for i in I �, and that such a test function is a non-local
operator of order 0 acting on Q . This is reminiscent of the Kreiss symmetrizer technics in
hyperbolic theory, see for example [3, 17].
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