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C 2 interpolation with range restriction

Charles Fefferman, Fushuai Jiang and Garving K. Luli

Abstract. Given�1<�<ƒ<1,E �Rn finite, and f WE! Œ�;ƒ�, how can we
extend f to a Cm.Rn/ function F such that � � F �ƒ and kF kCm.Rn/ is within a
constant multiple of the least possible, with the constant depending only onm and n?
In this paper, we provide the solution to the problem for the case m D 2. Specifi-
cally, we construct a (parameter-dependent, nonlinear) C 2.Rn/ extension operator
that preserves the range Œ�; ƒ�, and we provide an efficient algorithm to compute
such an extension using O.N logN/ operations, where N D #.E/.
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1. Introduction

For integers m � 0, n � 1, we write Cm.Rn/ to denote the Banach space of m-times
continuously differentiable real-valued functions such that the following norm is finite:

kF kCm.Rn/ WD sup
x2Rn

max
j˛j�m

j@˛F.x/j:

We useC.m;n/, k.m;n/, etc., to denote controlled constants that depend only onm and n.
If E is a finite subset of Rn, we write #E to denote the number of elements in E.
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We consider the following interpolation problem with lower and upper bounds �;ƒ;
respectively.

Problem 1. Let E � Rn be a finite set. Let �1 < � < ƒ < 1. Let f WE ! Œ�; ƒ�.
Compute a function F WRn ! Œ�;ƒ� such that

(A) F D f on E, and

(B) kF kCm.Rn/ � C.m; n/ � inf¹k QF kCm.Rn/ W
QF D f on E, and � � QF � ƒº.

By “computing a function F ” from .E; �; ƒ; f /, we mean the following: After pro-
cessing the input .E;�;ƒ; f /, we are able to accept a query consisting of a point x 2 Rn,
and produce a list of numbers .F˛.x/ W j˛j � m/. The algorithm “computes the func-
tion F ” if for each x 2 Rn, we have @˛F.x/ D F˛.x/ for j˛j � m. In other words, for
each x 2 Rn, we want to produce the coefficients of the m-th degree Taylor polynomial
of F at x. See Theorem 1.2 below.

We call the function F in Problem 1 a C -optimal interpolant of f (see Condition (B)).
Problem 1 is closely related to a common theme in data visualization, where one wants

to present some given three-dimensional data as a surface or a contour map. Moreover, one
may want to preserve some crucial inherent properties of the data, such as nonnegativity
or convexity. This occurs when the data arises as some physical quantities and we want
to preserve the physical meaning of the interpolant. For instance, nonnegative constraint
is natural when the data represents a probability distribution or (absolute) temperature.
More generally, it is sometimes desirable to impose both upper and lower bounds on the
interpolants, commonly referred to as “range-restricted interpolants”. See, e.g., [12, 26,
27, 31–33]. These problems arise, for example, when the predicted trajectory must avoid
collision with prescribed obstacles. We refer the readers to the aforementioned references
for further background and related topics on range-restricted interpolation.

By letting � WD .ƒ � �/=2 and replacing f by f � .ƒC �/=2, we see that Problem 1
admits the following symmetric formulation.

Problem 2. LetE �Rn be a finite set. Let � > 0. Let f WE! Œ��; ��. Compute a function
F WRn ! Œ��; �� such that

(A) F D f on E, and

(B) kF kCm.Rn/ � C.m; n/ � inf¹k QF kCm.Rn/ W
QF D f on E, and � � � QF � �º.

Since translating a Cm.Rn/ function by a constant does not affect its (nonzero-th
order) derivatives, Problem 2 captures all the difficulties of Problem 1. To recover Prob-
lem 1 from Problem 2, we simply modify the zero-th order estimate by the translated
amount. From now on, we abuse language and say that Problems 1 and 2 are “equivalent”.

Formally letting � !1 in Problem 2, we recover the classical Whitney interpolation
problem.

Problem 3 (Classical Whitney interpolation problem). Let E � Rn be a finite set. Let
f WE ! R. Compute a function F WRn ! R such that

(A) F D f on E, and

(B) kF kCm.Rn/ � C.m; n/ � inf¹k QF kCm.Rn/ W
QF D f on Eº.
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Problems 1–3 for the casesmD 0; 1 can be immediately solved by the classical Whit-
ney extension theorem. Recall that the classicalCm Whitney extension operator for a finite
set (see Theorem 3.1 (B) below) is a continuous linear operator that smoothly averages the
given .m� 1/-jets and can be efficiently constructed (in the sense of Definition 1.1 below).
For m D 1 (or the more trivial case m D 0), the Whitney extension operator simply aver-
ages the given function values, and thus preserves the prescribed range. For m � 2, the
operator fails to do the job for two reasons. One is that we are not given .m � 1/-jets
but only function values, and the other one is that averaging .m � 1/-jets will no longer
preserve the prescribed range in general.

Further alternatives for the case m D 0 include Urysohn’s lemma and Kirszbraun’s
formula.

The classical Whitney interpolation Problem 3 is well-understood thanks to the works
of Brudnyi and Shvartsman [6,8,9], Fefferman and Klartag [14,17,20,21,24]. In [20,21],
the authors provide an efficient algorithm for solving the classical Whitney interpolation
Problem 3. Their algorithm pre-processes the set E using at most C.m; n/N logN oper-
ations (on a von Neumann machine that can operate with exact numbers) and C.m; n/N
storage with N D #E. Then, after reading f , the algorithm is ready to answer queries.
A query consists of a point x 2 Rn, and the answer to a query is the m-th order Tay-
lor polynomial of an interpolant F with the least norm up to a constant factor C.m; n/.
The number of operations to answer a query is C.m; n/ logN . The complexity of the
Fefferman–Klartag algorithm is most likely the best possible.

Problem 2 (or equivalently Problem 1) and the classical Whitney interpolation Prob-
lem 3 are related to the following smooth selection problem.

Problem 4. LetE �Rn be finite. For each x 2E, letK.x/�Rd be convex. Find a func-
tion EF D .F1; : : : ;Fd /WRn!Rd such that F.x/ 2K.x/ for all x 2E and k EF kCm.Rn;Rd /

as small as possible, up to a constant factor depending only on m, n, and d .

If we specialize K.x/ � R (hence d D 1) in Problem 4 to a singleton, we obtain the
classical Whitney interpolation Problem 3.

Here we note a subtle but crucial difference between Problems 1, 2 and Problem 4
(with d D 1 and K.x/ being a fixed compact interval for each x 2 E). The lower and
upper bounds, Œ�; ƒ� or Œ��; ��, for F are global in Problem 1 or 2. On the other hand,
these bounds are only imposed on the set E in Problem 4.

Problem 4 and the related “finiteness principles” (see e.g. Theorem 1.4 below) have
been extensively studied by Y. Brudnyi and P. Shvartsman [5, 9], C. Fefferman, A. Israel,
and G. K. Luli[19], C. Fefferman and P. Shvartsman [23].

In this paper, inspired by [17,20,21], building on the work of [28–30], we solve Prob-
lem 2 for the case n 2 N and m D 2.

To facilitate the discussion on algorithms, we introduce the following concepts.

Definition 1.1. Let N0 � 1 be an integer. Let B D ¹�1; : : : ; �N0º be a basis of RN0 . Let
� � RN0 be a subset. Let X be a set. Let „W�! X be a map.

• We say „ has depth D (with respect to the basis B) if D is the smallest integer
such that the following holds: There exists a D-dimensional subspace V spanned
by �i1 ; : : : ; �iD 2 B , such that for all z1; z2 2 � with �V .z1/ D �V .z2/, we have
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„.z1/ D „.z2/. Here, �V WRN0 ! V is the natural projection. We call the set of
indices ¹i1; : : : ; iDº the source of „ (with respect to the basis B).

• Suppose „ has depth D. Let V D span.�i1 ; : : : ; �iD / and let �V be as above. By an
efficient representation of „, we mean a specification of the index set ¹i1; : : : ; iDº �
¹1; : : : ; N0º and a map Q„W�V .�/! X with „ D Q„ ı �V on �, such that given v 2
�V .�/, Q„.v/ can be computed using at most CD operations. Here, CD is a constant
depending only on D.

Remark 1.1. In [21], the authors introduced the notion of a “compact representation” of a
linear functional„WR xN !R, which consists of a list of indices ¹i1; : : : ; iDº � ¹1; : : : ; xN º
and a list of coefficients �i1 ; : : : ; �iD , so that the action of „ is characterized by

„W .�1; : : : ; � xN / 7!

DX
�D1

�i� � �i� :

Therefore, given v 2 span.�i1 ; : : : ; �iD /, we can compute „.v/ by the dot product of two
vectors of length D, which requires CD operations. The present notion of “efficient rep-
resentation” is a natural generalization of the “compact representation” in [21] adapted to
the nonlinear nature of constrained interpolation (see also [28–30]).

We write C 2.E; �/ to denote the collection of functions f WE ! Œ��; ��, which can
be identified with Œ��; ��#E . We define

kf kC 2.E;�/ WD inf¹kF kC 2.Rn/ W F D f on E and � � � F � �º:

Our first main theorem is the following.

Theorem 1.1. Let n be a positive integer. Let � > 0. Let E � Rn be a finite set. There
exist controlled constants C.n/;D.n/, and a map E� WC

2.E; �/� Œ0;1/! C 2.Rn/ such
that the following hold:

(A) LetM �0. Then for all f 2C 2.E; �/with kf kC 2.E;�/�M , we have E� .f;M/2

C 2.Rn; �/, E� .f;M/ D f on E, and kE� .f;M/kC 2.Rn/ � CM .

(B) For each x 2Rn, there exists a set S.x/�E, independent of � , with #S.x/�D,
such that for all M � 0 and f; g 2 C 2.E; �/ with f jS.x/ D gjS.x/, we have

@˛E� .f;M/.x/ D @˛E� .g;M/.x/ for j˛j � 2:

In fact, we can prove a stronger version of Theorem 1.1. Let PC denote the vector
space of polynomials on Rn with degree no greater than two, and let JCx F denote the
two-jet of F at x.

Theorem 1.2. Let n be a positive integer. LetE �Rn be a finite set with #.E/DN . Then
there exists a collection of maps ¹„�;x W � 2 Œ0;1/; x 2 Rnº, where

„�;x WC
2.E; �/ � Œ0;1/! PC

for each x 2 Rn, such that the following hold:
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(A) There exists a controlled constant D.n/ such that for each x 2 Rn, the map
„�;x. � ; �/WC

2.E; �/ � Œ0;1/! PC is of depth D. Here, we view C 2.E; �/ �

R#E with the standard basis. Moreover, the source of „�;x (in the sense of Defi-
nition 1.1) is independent of � .

(B) Suppose we are given .f;M/ 2 C 2.E; �/ � Œ0;1/ with kf kC 2.E;�/ �M . Then
there exists a function F 2 C 2.Rn; �/ such that

JCx F � „�;x.f;M/ for all x 2 Rn;

kF kC 2.Rn/ � CM and F.x/ D f .x/ for x 2 E:

Here, C depends only on n.

(C) There is an algorithm that takes the given data set E, performs one-time work,
and then responds to queries. A query consists of a pair .�; x/ 2 Œ0;1/ � Rn,
and the response to the query is the map„�;x , given in an efficient representation.
The one-time work takes C1N logN operations and C2N storage. The work to
answer a query is C3 logN . Here, C1; C2; C3 depend only on n.

We briefly explain the strategy for the proofs of Theorem 1.1 and Theorem 1.2, sacri-
ficing accuracy for the ease of understanding.

We will prove Theorem 1.1 and Theorem 1.2 by inducting on the dimension n. The
base case for the induction is given by

Theorem 1.3. Theorems 1.1 and 1.2 are true for n D 1.

Assume the validity of Theorems 1.1 and 1.2 for n� 1. Let E � Rn be a finite set. We
perform a Calderón–Zygmund decomposition of Rn into dyadic cubes ¹Q W Q 2 CZ0º,
such that near each Q, E lies on a hypersurface with curvature bounded by Cı�1Q , where
ıQ is the sidelength of Q and C is some constant depending only on n. As such, E can
be locally straightened to lie within a hyperplane by a C 2-diffeomorphism, and the local
interpolation problem is readily solvable by the induction hypothesis. We then construct
the global interpolation map by patching together these local interpolation maps via a par-
tition of unity. To avoid large derivatives caused by the partition functions supported on
small cubes, we introduce a collection of “transition jets” that guarantee Whitney compat-
ibility among neighboring cubes, and construct our local interpolants in accordance with
these transition jets.

We have given an overly simplified account of our strategy. In practice, we have to
take great care to preserve the range restriction �� � F � � , and control the derivative
contribution from hypersurface with large curvature.

The proof for Theorem 1.3 will be given in Section 4. The proofs for Theorem 1.1 and
Theorem 1.2 will be presented in Sections 5–9.

Using Theorem 1.2, together with the “well separated pairs decomposition” technique
from computational geometry, we obtain the following.

Theorem 1.4. Let E � Rn be a finite set with #E D N <1. Then there exist controlled
constants C1; : : : ;C5, depending only on n, and a list of subsets S1; : : : ; SL �E satisfying
the following:

(A) We can compute the list ¹S` W ` D 1; : : : ; Lº from E using one-time work of at
most C1N logN operations and using storage at most C2N .
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Algorithm 1 Algorithm for C 2.Rn/ interpolation with range restriction.

DATA: E � Rn finite with #E D N , � > 0, f WE ! Œ��; ��, M � 0.
ORACLE: kf kC 2.E;�/ �M .
RESULT: A query function that accepts a point x 2 Rn and produces a list of numbers
.F˛.x/ W j˛j � 2/ that guarantees the following: There exists a function F 2 C 2.Rn; �/
with kF kC 2.Rn/ � CM and F jE D f , such that @˛F.x/ D F˛.x/ for j˛j � 2. The func-
tion F is independent of the query point x, and is uniquely determined by .E; �; f;M/.
COMPLEXITY: • Preprocessing .E;�/: at mostCN logN operations andCN storage.
• Processing f : CN operations and CN storage.
• Answering a query: at most C logN operations.

Algorithm 2 Algorithm for approximate C 2.Rn/ norm with range restriction.

DATA: E � Rn finite with #E D N , � > 0.
QUERY: f WE ! Œ��; ��.
RESULT: The order of magnitude of kf kC 2.E;�/. More precisely, the algorithm outputs
a number M � 0 such that both of the following hold:
• We guarantee the existence of a function F 2 C 2.Rn; �/ such that F jE D f and
kF kC 2.Rn/ � CM .

• We guarantee there exists no F 2 C 2.Rn; �/ with norm at most C�1M satisfying
F jE D f .

COMPLEXITY: • Preprocessing E: at most CN logN operations and CN storage.
• Answer a query: at most CN operations.

(B) #S` � C3 for each ` D 1; : : : ; L.

(C) L � C4N .

(D) Given any � > 0 and f WE ! Œ��; ��, we have

max
1�`�L

kf kC 2.S`;�/ � kf kC 2.E;�/ � C5 max
1�`�L

kf kC 2.S`;�/:

The proof for Theorem 1.4 will be given in Section 10.
The above theoretical results allow us to produce efficient algorithms to solve Prob-

lem 2 (or Problem 1) in the case m D 2. In this paper, we content ourselves with an
idealized computer with standard von Neumann architecture that is able to process exact
real numbers. We refer the readers to [21] for discussion on finite-precision computing.

Theorem 1.2 guarantees the existence of Algorithm 1. Theorem 1.4 guarantees the
existence of Algorithm 2 for approximating kf kC 2.E;�/.

Finally, we mention that the techniques developed in this paper can readily be adapted
to treat C 2.Rn/ nonnegative interpolation; for comparison, see [28–30].
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This paper is a part of a literature on extension, interpolation, and selection of func-
tions, going back to H. Whitney’s seminal works [44–46], and including fundamental
contributions by G. Glaeser [25], Y. Brudnyi and P. Shvartsman [5–10,34–42], and E. Bier-
stone, P. Milman, and W. Pawłucki [1–3], as well as our own papers [13–17, 20–22, 24,
28–30]. See, e.g., [18] for the history of the problem, as well as N. Zobin [47, 48] for a
related problem.

2. Notations

We use c�;C�;C 0, etc., to denote constants depending only on n, referred to as “controlled
constants”. They may be different quantities in different occurrences. We will label them
to avoid confusion when necessary.

Let M and M 0 be two nonnegative quantities determined by E, f and n. We say
that M and M 0 have the same order of magnitude, provided that there exists a controlled
constant C.n/ such that C�1M �M 0 � CM . In this case we writeM �M 0. To compute
the order of magnitude of M 0 is to compute a number M such that M �M 0.

We assume that we are given an ordered orthogonal coordinate system on Rn, specified
by an ordered list of unit vectors Œe1; : : : ; en�. We use j � j to denote the Euclidean distance.
We use B.x; r/ to denote the ball of radius r centered at x. For nonempty X;Y � Rn, we
write dist.X; Y / WD infx2X;y2Y jx � yj.

We use ˛ D .˛1; : : : ; ˛n/; ˇ D .ˇ1; : : : ; ˇn/ 2 Nn
0 , etc., to denote multi-indices. We

write @˛ to denote @˛1e1 � � � @
˛n
en . We adopt the partial ordering ˛ � ˇ if and only if ˛i � ˇi

for i D 1; : : : ; n.
By a cube, we mean a set of the formQ D

Qn
iD1Œai ; ai C ı/ for some a1; : : : ; an 2 R

and ı > 0. If Q is a cube, we write ıQ to denote its sidelength. For r > 0, we use rQ to
denote the cube whose center is that of Q and whose sidelength is rıQ. Given two cubes
Q;Q0, we write Q $ Q0 if either Q D Q0, or if closure.Q/ \ closure.Q0/ ¤ ¿ and
interior.Q/ \ interior.Q0/ D ¿.

A dyadic cube is a cube of the form Q D
Qn
iD1Œ2

�k � pi ; 2
�k � .pi C 1// for some

p1; : : : ;pn 2Z and k 2N0. Let D0 be the collection of dyadic cubes with unit sidelength.
For k � 1, we form Dk by bisecting each cube in Dk�1 into 2n congruent dyadic cubes
with sidelength 2�k . If Q 2 Dk for some k � 1, then there exists a unique cube in Dk�1

containing Q, and we denote this cube by QC.
Let n � 1. Let X be a C 2-diffeomorphic image of a cube or all of Rn. We use C 2.X/

to denote the vector space of twice continuously differentiable real-valued functions up to
the closure of X , whose derivatives up to order two are bounded. Let X0 be the interior
of X . For F 2 C 2.X/, we define

kF kC 2.X/ WD sup
x2X0

max
j˛j�2

j@˛F.x/j:

We write C 2.X;�/ to denote the collection of functions F 2C 2.X/ such that�� �F � �
on X .

Let E � Rn be finite.
• Define C 2.E/ WD ¹f WE ! Rº, which can be (non-uniquely) identified with R#.E/.
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• Define kf kC 2.E/ WD inf¹kF kC 2.Rn/ W F jE D f º.
• Define C 2.E; �/ WD ¹f WE ! Œ��; ��º, which can be (non-uniquely) identified with
Œ��; ��#.E/.

• For f 2C 2.E; �/, define kf kC 2.E;�/ WD inf¹kF kC 2.Rn/ WF jE D f and �� �F � �º.
Note that both infima above are finite, since we can always interpolate f using bump
functions, each of which is supported near one and only one point in E.

We write P and PC, respectively, to denote the vector spaces of polynomials with
degree no greater than one and two.

For x 2 Rn and a function F twice continuously differentiable at x, we write JxF

and JCx F to denote the one-jet and two-jet of F at x, respectively, which we identify with
the first and second-order Taylor polynomials, respectively:

(2.1) JxF.y/ WD
X
j˛j�1

@˛F.x/

˛Š
.y � x/˛ and JCx F.y/ WD

X
j˛j�2

@˛F.x/

˛Š
.y � x/˛:

We use Rx , RCx to denote the rings of one-jets, two-jets at x, respectively. The multipli-
cations on Rx and RCx are defined in the following way:

P ˇx R W� Jx.PR/ and PC ˇCx R
C
W� JCx .P

CRC/;

for P;R 2 Rx and PC; RC 2 RCx .

Definition 2.1. Let S �Rn be a finite set. A Whitney field on S is an array of polynomials
EP D .P x/x2S parameterized by points in S , such that P x 2 P for each x 2 S . The

collection of Whitney fields will be denoted by W.S/. It is a finite dimensional vector
space equipped with a norm

k.P x/x2SkW.S/ WD max
x;y2S;x¤y;j˛j�1

°
j@˛P x.x/j;

j@˛.P x � P y/.x/j

jx � yj2�j˛j

±
:

It is a vector space of dimension .#S/ � dim P .

Given a Whitney field EP D .P x/x2S , we sometimes use the notation

. EP ; x/ WD P x :

3. Essential polynomials

3.1. Jets with range restriction

The following object captures the effect of the range restriction on jets.

Definition 3.1. Let � > 0. Let x 2 Rn andM � 0. We define K� .x;M/ to be the collec-
tion of polynomials P 2 P such that

jP.x/j � min¹M; �º; jrP j �M;(3.1)

jrP j �M 1=2
�min¹

p
� � P.x/;

p
� C P.x/º:(3.2)
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Lemma 3.1. Let P 2P and x 2Rn be such that�� �P.x/� � , and that if P.x/D˙� ,
thenrP D 0. Let� WD jrP j2

.min¹
p
��P.x/;

p
�CP.x/º/2

, where we use the convention 0
0
D 0. Then

(3.3) dist.¹P D P.x/º; ¹P D ˙�º/ D ��1=2 �min¹
p
� � P.x/;

p
� C P.x/º:

In particular, given P 2K� .x;M/ as in Definition 3.1, we have

(3.4) dist.¹P D P.x/º; ¹P D ˙�º/ �M�1=2 �min¹
p
� � P.x/;

p
� C P.x/º:

Proof. Suppose P.x/ D ˙� or rP D 0. Then (3.3) obviously holds.
Suppose �� < P.x/ < � and rP ¤ 0. Since P is an affine function, the level sets

of P are parallel hyperplanes. We have

� C P.x/

dist.¹P D P.x/º; ¹P D ��º/
D jr.� C P /j(3.5)

D jr.� � P /j D
� � P.x/

dist.¹P D P.x/º; ¹P D �º/
:

Combining the definition of � and (3.5), we see that (3.3) holds.
Since � � M for any given P 2 K� .x; M/, as in Definition 3.1, we see that (3.4)

follows.

Lemma 3.2. There exists a controlled constant C.n/ such that the following holds. Let
x0 2 Rn.

(A) Assume that there exists F 2 C 2.Rn; �/ with kF kC 2.Rn/ � M . Then we have
Jx0F 2K� .x0; CM/.

(B) There exists a map T
x0
� W
S
M�0K� .x0;M/! C 2.Rn; �/ such that the following

holds: Suppose P 2K� .x0;M/. Then T
x0
� .P / satisfies kTx0� .P /kC 2.Rn/ � CM

and Jx0T
x0
� .P / � P .

Proof. We write C , c, etc., to denote constants that depend only on n.
Without loss of generality, we may assume that x0 D E0 2 Rn.
(A) Let F 2 C 2.Rn; �/ with kF kC 2.Rn/ �M . Let P W� J0F . By Taylor’s theorem,

(3.6) �CM jxj2 � F.x/ � P.x/ � CM jxj2 for all x 2 Rn:

Since F 2 C 2.Rn; �/ and kF kC 2.Rn/ �M , we have

(3.7) jF.x/j � min¹M; �º for all x 2 Rn:

Combining (3.6) and (3.7), we see that

.� C P.0//CrP � x C CM jxj2 � 0 for all x 2 Rn;(3.8)

.� � P.0// � rP � x C CM jxj2 � 0 for all x 2 Rn:(3.9)

By restricting to each line and computing the discriminant in both (3.8) and (3.9), we see
that jrP j � CM 1=2 �min¹

p
� � P.0/;

p
� C P.0/º. Moreover, since kF kC 2.Rn/ � M ,

we see that (3.1) also holds for P with CM in placed of M . Hence, P 2K� .0; CM/.
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(B) Let P 2K� .x0;M/ be given. We write T� instead of T0�.
Suppose that P.0/ D ˙� . Then property (3.2) of K� in Definition 3.1 implies that

P � ˙� . We may simply take T�.P / W� ˙� .
Suppose �� < P.0/ < � . We define the following quantities:

• � WD jrP j2 � .min¹
p
� �P.0/;

p
�CP.0/º/�2 (see Lemma 3.1). It is clear from (3.2)

that � �M .
• ı WD ��1=2 �min¹

p
� �P.0/;

p
�CP.0/º.

We note that the definitions of � and ı depend only on the polynomial P ; in particular,
they are independent of M .

If ı � 1, then the size of P does exceed � within the unit ball. Let �1 be a nonnega-
tive C 2 function supported in the unit ball, such that �1 � 1 near x0 D E0 and j@˛�1j � C
for j˛j � 2. We immediately verify that

T�.P / WD �1 � P

satisfies the conclusion of Lemma 3.2 (B).
For the rest of the proof, we assume ı < 1.
Let c0 2 .0;1/ be a small universal constant. For concreteness, we can take c0D 1=100.

We consider the following two cases:
Case I. Either � � c0� or jP.0/j � c0� .
Case II. Both � < c0� and jP.0/j < c0� .

Proof for Case I. By (3.1) and the observation that M � max¹�; jP.0/jº, we see that

(3.10) � � c�10 M:

For convenience, we set

u WD
rP

jrP j
:

Consider the auxiliary functions

R�.x/ WD P.x/C
�

4
jx � uj2 and RC.x/ WD P.x/ �

�

4
jx � uj2:

Note that the graphs of R� and RC are parabolic cylinders that are constant along each
direction orthogonal to u. By construction,

(3.11) J0R
�
� J0R

C
� P:

We see from the definition of � that

(3.12) R�.x/ � ��; RC.x/ � � for all x 2 Rn:

By computing the root along the u-direction, we also have

(3.13)
R�.x/ � � for 0 � x � u � �2.

p
2C 1/ı;

RC.x/ � �� for 0 � x � u � 2.
p
2C 1/ı:



C 2 interpolation with range restriction 659

Consider the following regions in Rn:

A0;�� D ¹x 2 Rn W �ı � x � u � 0º;

A0;� D ¹x 2 Rn W 0 � x � u � ıº

(it follows from construction that �� � P.x/ � P.0/ on A0;�� and P.0/ � P.x/ � �
on A0;� ),

A1;�� WD ¹x 2 Rn W �2.
p
2C 1/ı � x � u � �ıº;

A1;� WD ¹x 2 Rn W ı � x � u � 2.
p
2C 1/ıº;

A2;�� WD ¹x 2 Rn W x � u � �2.
p
2C 1/ıº;

A2;� WD ¹x 2 Rn W x � u � 2.
p
2C 1/ıº:

We define a C 2 partition of unity ¹� Œ0�; � Œ1��� ; �
Œ1�
� ; �

Œ2�
�� ; �

Œ2�
� º with the following prop-

erties:
(�1) � Œ0� C � Œ1��� C �

Œ1�
� C �

Œ2�
�� C �

Œ2�
� � 1 on Rn.

(�2) 0 � � Œ0� � 1, supp.� Œ0�/ � A0;�� [ A0;� , � Œ0� � 1 near A0;�� \ A0;� , and
j@˛� Œ0�j � Cı�j˛j for j˛j � 2.

(�3) 0 � � Œ1��� � 1, supp.� Œ1��� / � A0;�� [ A1;�� , �
Œ1�
�� � 1 on A0;�� \ A1;�� , and

j@˛�
Œ1�
�� j � Cı

�j˛j for j˛j � 2.

(�4) 0 � � Œ1�� � 1, supp.� Œ1�� / � A0;� [A1;� , �
Œ1�
� � 1 on A0;� \A1;� , and j@˛� Œ1�� j �

Cı�j˛j for j˛j � 2.

(�5) 0 � � Œ2��� � 1, supp.� Œ2��� / � A1;�� [ A2;�� , �
Œ2�
�� � 1 on A2;�� , and j@˛� Œ2��� j �

Cı�j˛j for j˛j � 2.

(�6) 0 � � Œ2�� � 1, supp.� Œ2�� /� A1;� [A2;� , �
Œ2�
� � 1 on A2;� , and j@˛� Œ2�� j � Cı�j˛j

for j˛j � 2.
We define T�.P / 2 C

2.Rn/ by

T�.P / WD �
Œ0�P C � Œ1���R

�
CR�.�2ıu/� Œ2��� C �

Œ1�
� RC CRC.2ıu/� Œ2�� :

We see from (�1)–(�6), (3.12), and (3.13) that �� � T�.P /.x/ � � for all x 2 Rn.
Hence, T�.P / 2 C 2.Rn; �/. Moreover, thanks to (3.10), we have

jT�.P /.x/j � CM for all x 2 Rn:

We now estimate the derivatives of T�.P /. Since all the � sum to one everywhere, we
have, for ˛ ¤ 0,

@˛T�.P /.x/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

P
ˇ�˛ C˛;ˇ � @

ˇ� Œ0�.x/ � @˛�ˇ .P �R�/.x/ for x 2 A0;�� ;P
ˇ�˛ C˛;ˇ � @

ˇ� Œ0�.x/ � @˛�ˇ .P �RC/.x/ for x 2 A0;� ;P
ˇ�˛ C˛;ˇ � @

ˇ�
Œ1�
�� .x/ � @

˛�ˇ .R�.x/C �/ for x 2 A1;�� ;P
ˇ�˛ C˛;ˇ � @

ˇ�
Œ1�
� .x/ � @˛�ˇ .RC.x/ � �/ for x 2 A1;�� ;

0 for x 2 A2;�� [ A2;� :

We analyze the first and third sums. The analysis for the second is similar to the first,
and the fourth to the third.
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From the definitions of P , ı, R�, A0;�� , and the fact that � �M , we see that

(3.14) j@˛.P �R�/.x/j � C�ı2�j˛j � CMı2�j˛j for x 2 A0;�� , 0 < j˛j � 2:

Combining (3.14) and (�2), we see that j@˛T�P.x/j � CM for x 2 A0;�� , 0 < j˛j � 2.
From the definitions of ı, R�, and A1;�� , we see that

(3.15) j@˛.R�.x/�R�.�2ıu//j �C�ı2�j˛j �C 0Mı2�j˛j for x 2A1;�� , 0 < j˛j � 2:

Combining (3.15) and (�4), we see that j@˛T�P.x/j � CM for x 2 A1;�� , 0 < j˛j � 2.
Thus, we have shown that kT�P kC 2.Rn/ � CM . This concludes our treatment of

Case I.
Proof for Case II. Since both�<c0� and jP.0/j<c0� , there exists a universal constant c1
such that

ı D ��1=2 �min¹
p
� � P.0/;

p
� C P.0/º � c1:

We fix such c1. Thanks to Lemma 3.1, we have

(3.16) dist.¹P D P.0/º; ¹P D ˙�º/ � c1:

As before, we set u WD rP=jrP j. Note that u is orthogonal to the level sets of P . Let
� be a nonnegative C 2 function such that � � 1 near ¹P D P.0/º, supp.�/ � ¹x 2 Rn W
jx � uj � c1=2º, and j@˛� j � C . We define

T�P.x/ WD �.x/ � P.x/:

Thanks to (3.16) and the support of � , we have T�P.x/ 2 Œ��; �� for all x 2 Rn, so
T�P 2 C

2.Rn; �/.
By the fundamental theorem of calculus, we see that

(3.17) jP.x/j � jP.0/j C
c1

2
jrP j � CM for all x 2 supp.�/:

From (3.1) and (3.17), we have, for 0 < j˛j � 2,

(3.18) j@˛T�P.x/j �
X

0<ˇ�˛

jC˛;ˇ � @
ˇ�.x/ � @˛�ˇP.x/j � CM for all x 2 supp.�/:

Since T�P vanishes outside supp.�/, we can conclude from (3.17) and (3.18) that
kT�P kC 2.Rn/ � CM . This concludes the treatment of the second case and the proof of
the lemma.

3.2. Whitney’s extension theorem for finite sets

Recall the notion of a Whitney field in Definition 2.1. Let � > 0. Recall K� in Defini-
tion 3.1. We use W.S; �/ to denote the sub-collection of Whitney fields .P x/x2S such
that for any x 2 S , P x 2K� .x;M/ for some M � 0. We define

k.P x/x2SkW.S;�/ WD k.P
x/x2SkW.S/(3.19)

C inf¹M � 0 W P x 2K� .x;M/ for all x 2 Sº:

Recall the following classical result.
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Theorem 3.1. There exists a controlled constant C.n/ such that the following holds. Let
S � Rn be a finite set.

(A) (Taylor’s theorem). Let F 2 C 2.Rn/. Then k.JxF /x2SkW.S/ � CkF kC 2.Rn/.

(B) (Whitney’s extension theorem). There exists a linear map Tw WW.S/! C 2.Rn/

such that given any EPD.P x/x2S 2W.S/, we have kTw. EP /kC 2.Rn/�Ck EP kW.S/

and JxTw. EP / � P
x for each x 2 S .

A proof of Theorem 3.1 can be found in standard textbooks, see, for instance, [43].

Theorem 3.2. There exists a controlled constant C.n/ such that the following holds. Let
S � Rn be a finite set.

(A) (Taylor’s theorem forC 2.Rn; �/). Let F 2C 2.Rn; �/. Then k.JxF /x2SkW.S;�/ �
CkF kC 2.Rn/.

(B) ( Whitney’s extension theorem for C 2.Rn; �/). There exists a map Tw;� W

W.S; �/! C 2.Rn; �/ such that given any EP D .P x/x2S 2 W.S; �/, we have
kTw;� . EP /kC 2.Rn/ � Ck EP kW.S;�/ and JxTw;� . EP / � P

x for each x 2 S .

Theorem 3.2 (A) is an immediate consequence of Lemma 3.2 (A) and the definition
of k�kW.S;�/ in (3.19). To prove Theorem 3.2 (B), we may proceed as in the proof of
Theorem 3.1, but instead of pasting together P x using a Whitney partition of unity, we
paste together Tx� .P

x/, with Tx� as in Lemma 3.2 (B). Note that the operator Tx� in Lem-
ma 3.2 (B) is nonlinear, resulting in the nonlinearity of Tw;� .

3.3. Norms on small subsets

Throughout this section, we fix a finite set

S � Rn; #S � k0; where k0 D k0.n/ is a controlled constant.

We define a norm L on W.S/ by

LWW.S/! Œ0;1/;(3.20)

.P x/x2S 7!
X

x2S;j˛j�1

j@˛P.x/j C
X

x;y2S;x¤y;j˛j�1

j@˛.P x � P y/.x/j

jx � yj2�j˛j
:

Lemma 3.3. There exists a controlled constant C such that given any EP 2 W.S/, we
have

(3.21) C�1L. EP / � k EP kW.S/ � CL. EP /:

Proof. Recall Definition 2.1. Recall the assumption that #S � k0 where k0 is a controlled
quantity. For a given EP 2W.S/, it is clear that k EP kW.S/ �L. EP /. For the reverse inequal-
ity, we have

L. EP / �
�
k0.nC1/C k0.k0�1/.nC1/

�
� max
x;y2S;x¤y
j˛j�1

°
j@˛P x.x/j;

j@˛.P x �P y/.x/j

jx � yj2�j˛j

±
� C.n/k EP kW.S/:

This proves (3.21).
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For � > 0, we define a function that measures the effect of the range restriction on the
optimal Whitney extension.

(3.22) M� WW.S; �/! Œ0;1/; .P x/x2S 7!
X

x2S;j˛jD1

j@˛P xj2

� � P.x/
C
j@˛P xj2

� C P.x/
:

In (3.22), we adopt the convention 0
0
D 0.

Lemma 3.4. There exists a controlled constantC.n;k0/ such that given any EP 2W.S;�/,
we have

(3.23) C�1.LCM� /. EP / � k EP kW.S;�/ � C.LCM� /. EP /:

Proof. We adopt the notation A � B if there exists a controlled constant C.n/ such that
C�1A � B � CA.

Comparing (3.2) and (3.22), we see that

M� . EP / � inf¹M � 0 W P x 2K� .x;M/ for all x 2 Sº:

Thanks to Lemma 3.3, we have

L. EP / � k EP kW.S;�/:

Adding the two equivalences above, we see that equivalence in (3.23) follows.

We now explain how to compute the order of magnitude of kf kC 2.S;�/. To be more
specific, using at most a bounded number of operations, we compute a Whitney field
.P x/x2S 2 W.S; �/ such that P x.x/ D f .x/ for each x 2 S and k.P x/x2SkW.S;�/ �
kf kC 2.S;�/.

Consider the affine subspace A�;f � W.S/ defined by

A�;f WD
®
EP D .P x/x2S 2 W.S/ W P

x.x/ D f .x/ for x 2 S;
if f .x/ D �; then P x � �;

if f .x/ D ��; then P x � ��
¯
:

Equivalently,

A�;f D
®
EP D .P x/x2S 2 W.S; �/ W P

x.x/ D f .x/ for x 2 S
¯
:

Note that A�;f has dimension n � #.S n f �1.¹˙�º//, as we can thin of A�;f as a collection
of n-dimensional gradients, one for each point in S for which f is not˙� .

Let L and M� be as in (3.20) and (3.22). Thanks to Whitney’s extension theorem
(Theorem 3.2 (B)) and Lemma 3.4, we have

(3.24) kf kC 2.E;�/ � inf¹.LCM� /. EP / W EP 2 A�;f º:

Let d WD dimW.S/ D #S � dim P � k0.nC 1/. We identify W.S/ Š Rd via

.P x/x2S 7! .P x.x/; @1P
x ; : : : ; @nP

x/x2S :
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We define the `1 and `2 norms, respectively, on Rd by

kvk`1 WD

dX
iD1

jvi j and kvk`2 WD

� dX
iD1

jvi j
2

�1=2
; v D .v1; : : : ; vd / 2 Rd :

Let Lw WW.S/! Rd be a linear isomorphism that maps EP 2 W.S/ to a vector in Rd

with components

@˛.P y � P z/.y/

jy � zj2�j˛j
; @˛P xS .xS /; j˛j � 1;

for suitable xS ; y; z 2 S in certain order, such that

(3.25) kLw. EP /k`1.Rd / � L. EP / for EP 2 W.S/:

One possible construction of such an Lw is based on the technique of “clustering” intro-
duced in [1]. See Remark 3.3 of [1]. We can compute Lw from S using at most C
operations, since #S is controlled.

For the rest of this section, we identify W.S/ with Rd via Lw .
Let V�;f � W.S/ be the subset defined by

V�;f WD
®
.P x/x2S W P

x.x/ D 0 for x 2 S n f �1.¹��; �º/;

P x � 0 for x 2 f �1.¹��; �º/
¯
:

Let …�;f D .…
x
�;f /x2S WW.S/! V�;f be the orthogonal projection. Let EPf denote the

vector .f .x/; 0; 0/x2S . It is clear that A�;f D EPf C V�;f .
Let L�;f D .Lx�;f /x2S WW.S/! W.S/ be a linear endomorphism defined by

Lx�;f .P
x/ D

´
P x �

�
min¹

p
� � f .x/;

p
� C f .x/º

��1=2 for x 2 S n f �1.¹��; �º/;
0 for x 2 f �1.¹��; �º/;

for .P x/x2S 2 W.S/:
We see from the definition of M� that

(3.26) M� . EP / � kL�;f…�;f . EP /k
2
`2.Rd /

for EP 2 A�;f :

Combining Lemma 3.4, (3.25), and (3.26), we have

(3.27) k EP kW.S;�/ � kL�;f…�;f . EP /k
2
`2.Rd /

C kLw. EP /k`1.Rd / for EP 2 EPf C V�;f :

Setting ˇ WDLw. EP / andX WD.L�;f…�;f /
�.L�;f…�;f /, we see from (3.24) and (3.27)

that computing the order of magnitude of kf kC 2.S;�/ amounts to solving the following
minimization problem:

(3.28) Minimize hˇ;Xˇi C kˇk`1.Rd / subject to L�1w ˇ 2 EPf C V�;f :
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In particular, an optimal (feasible) solution to (3.28) is a Whitney field EP� D .P x� /x2S 2
W.S; �/ with P x� .x/ D f .x/ for x 2 S and k EP�kW.S;�/ � kf kC 2.S;�/.

Finally, we note that (3.28) is a convex quadratic programming problem with affine
constraints. We can find the exact solution to (3.28) by solving for its Karush–Kuhn–
Tucker conditions, which consist of a bounded system of linear equations and inequalities,
see [4]. We can solve such a system, for instance via the simplex method or elimination,
using at most C.n/ operations, since the system size is controlled. We refer the readers
to the appendix of [30] for an elementary discussion, and [4] for a detailed treatment of
convex programming.

3.4. Homogeneous convex sets

For x 2 Rn, S � E and k � 0, we define

�.x; S/ WD
®
P 2 P W There exists 'S 2 C 2.Rn/, with k'SkC 2.Rn/ � 1,

such that 'S D 0 on S and Jx'
S
� P

¯
;(3.29)

�].x; k/ WD
\

S�E; #S�k

�.x; S/:

Theorem 3.3 (Finiteness principle). There exist controlled constants k]n;old and C.n/ for
which the following holds. Let E � Rn be a finite set.

(A) Let f WE ! R. Suppose that, for every S � E with #S � k]n;old, there exists
F S 2 C 2.Rn/ with kF SkC 2.Rn/ � M and F S D f on S . Then there exists
F 2 C 2.Rn/ with kF kC 2.Rn/ � CM and F D f on E.

(B) Let � and �] be as in (3.29). Then for all k � k]n;old,

C�1�].x; k/ � �.x;E/ � C � �].x; k/ for all x 2 Rn:

For each n 2 N, we fix a choice of k]n;old. We further assume that k]nC1;old > k
]
n;old for

all n.
See [9,20,21,24] for a proof of Theorem 3.3. For the special case nD 2, see also [28].

3.5. Main convex sets

For the rest of the section, we assume we are given a finite set E � Rn.
For x 2 Rn, S � E, f WE ! Œ��; ��, and M � 0, we define

�� .x; S; f;M/ WD
®
P 2 P W There exists F S 2 C 2.Rn; �/;(3.30)

with kF SkC 2.Rn/ �M ,

such that F S D f on S and JxF
S
� P .

¯
:

For x 2 Rn, k 2 N0, f WE ! Œ��; ��, and M � 0, we define

(3.31) �]� .x; k; f;M/ WD
\

S�E; #S�k

�� .x; S; f;M/:
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Note that �� and �]� are (possibly empty) bounded convex subsets of P . With respect
to set inclusion, �� is decreasing in S and increasing in M ; �]� is decreasing in k and
increasing in M .

It follows from Lemma 3.2 that

(3.32) K� .x; C
�1M/ � �� .x;¿; f;M/ �K� .x; CM/

for some controlled constant C.n/.

Theorem 3.4 (Helly’s theorem). Let D 2 N0. Let F be a finite family of convex subsets
of RD . If everyDC 1members of F have nonempty intersection, then all members of F

have nonempty intersection.

Lemma 3.5. Let x; x0 2 Rn. Let k; k0 > 0 be such that k � .nC 2/k0. Then given P 2
�
]
� .x; k; f;M/, there exists P 0 2 �]� .x0; k0; f;M/ satisfying

(3.33) j@˛.P � P 0/.x/j; j@˛.P � P 0/.x0/j � C.n/ �M jx � x0j2�j˛j for j˛j � 2:

Proof. For S � E, we define

K.S/ WD
®
Jx0F

S
WF S 2C 2.Rn; �/ with kF SkC 2.Rn/ �M; F

S
jS D f and JxF

S
�P

¯
:

Note thatK.S/ is convex, and thatK.S 0/ � K.S/ whenever S � S 0. It also follows from
the definition of �]� in (3.31) that if #S � k, then K.S/ ¤ ¿.

Let S1; : : : ; SnC2 � E be given with #Si � k0 for each i . Setting S WD
SnC2
iD1 Si , we

see that #S � .nC 2/k0 � k, so that K.S/ ¤ ¿. Therefore,

nC2\
iD1

K.Si / � K.S/ ¤ ¿:

Since S1; : : : ; SnC2 � E are arbitrary, Helly’s theorem (Theorem 3.4) applied to the con-
vex sets K.Si / � P (with dim P D nC 1) yields

�]� .x
0; k0; f;M/ D

\
S 0�E;#S 0�k0

K.S 0/ ¤ ¿:

Pick P 0 2
T
S 0�E;#S 0�k0 K.S

0/. Estimate (3.33) then follows from Taylor’s theorem.

Lemma 3.6. Let Q � Rn be a cube, let k � 2, and let f WE ! Œ��; ��. Suppose that
�
]
� .x; k; f;M/ ¤ ¿ for each x 2 E \ 5Q. Given any Acentric > 0, there exists Apolar D

C.n/ � .A
1=2
centric C 1/

2 > 0 such that the following hold:
(A) Either � C f .x/ � AcentricMı2Q for all x 2 E \ 5Q, or � C f .x/ � ApolarMı2Q

for all x 2 E \ 5Q.

(B) Either � � f .x/ � AcentricMı2Q for all x 2 E \ 5Q, or � � f .x/ � ApolarMı2Q
for all x 2 E \ 5Q.
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Proof. We prove (A) here. The proof of (B) is similar.
Fix Acentric > 0. If � C f .x/ � AcentricMı2Q for all x 2 E \ 5Q, then there is nothing

to prove.
Suppose not, namely, there exists x0 2 E \ 5Q such that

(3.34) � C f .x0/ < AcentricMı
2
Q:

If #.E \ 5Q/ D 1, then there is nothing to prove. We assume that #.E \ 5Q/ � 2.
Let P0 2 �

]
� .x0; k;f;M/. Let S �E \ 5Q with #.S/� 2 and x0 2 S . By (3.31), there

exists a function F S 2 C 2.Rn; �/ with kF SkC 2.Rn/ �M , F S jS D f , and Jx0F
S � P0.

In particular, P0.x0/ D f .x0/. By (3.34), we have

(3.35) min¹
p
� � P0.x0/;

p
� C P0.x0/º < A

1=2
centricM

1=2 ıQ:

Recall K� in Definition 3.1. Since P0 2 �
]
� .x0; k; f;M/, we have P0 2K� .x0; CM/

by Lemma 3.2. Therefore, by (3.2) and (3.35),

jrF S .x0/j D jrP0j � CA
1=2
centricMıQ:

Since kF SkC 2.Rn/ �M , Taylor’s theorem implies

jrF S .x/j � C.1C A
1=2
centric/MıQ for x 2 5Q:

From (3.34), we see that � C F S .x0/ < AcentricMı2Q. Writing

F S .x/ � F S .x0/ D

Z
seg.x0!x/

rF S ;

we see that

� C F S .x/ � j� C F S .x/j � � C F S .x0/C

Z
seg.x0!x/

jrF S j

� C.Acentric C A
1=2
centric C 1/Mı

2
Q � C

0.A
1=2
centric C 1/

2Mı
2
Q:

In particular, for each x 2 S ,

� C f .x/ D � C F S .x/ � C.A
1=2
centric C 1/

2Mı
2
Q:

Since S is any arbitrary subset of E \ 5Q containing two points, conclusion (A)
follows.

For x 2 Rn and ı > 0, we define

(3.36) B.x; ı/ WD ¹P 2 P W j@˛P.x/j � ı2�j˛j for j˛j � 1º:

The significance of B is that given F 2 C 2.Rn/ and x; y 2 Rn, Taylor’s theorem
implies

JxF � JyF 2 C.n/kF kC 2.Rn/ �B.x; jx � yj/:
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Lemma 3.7. Let k � 2. Let Q � Rn be a dyadic cube .ıQ � 1/ with E \ 5Q ¤ ¿.
Suppose xQ 2 Q satisfy dist.xQ; E/ � c0 ıQ for some controlled constant c0.n/. Let
f WE ! Œ��; �� be given. Suppose �]� .xQ; k; f;M/ ¤ ¿. The following are true:

(A) There exists a number Aperturb exceeding a large controlled constant such that
the following holds. Suppose min¹� � f .x/; � C f .x/º � AperturbMı2Q for each
x 2 E \ 5Q. Then

�]� .xQ; k; f;M/CM �B.xQ; ıQ/ � �
]
� .xQ; k; f; AM/; A D A.n;Aperturb/:

(B) Suppose � C f .x/ � AflatMı2Q for some x 2 E \ 5Q and Aflat � 0. Then

�� 2 �]� .xQ; k; f; AM/; A D A.n;Aflat/:

Here, �� is the constant polynomial. Similarly, suppose � � f .x/ � Aflat Mı2Q
for some x 2 E \ 5Q and Aflat � 0. Then

� 2 �]� .xQ; k; f; AM/; A D A.n;Aflat/:

Here, � is the constant polynomial.

Proof. We writeC;C 0, etc., to denote controlled constants depending only on n. Recall K�

in Definition 3.1.
Proof of (A). We claim that under the hypothesis of (A), given any P 2 �]� .xQ; k; f;M/,
we have

(3.37) min¹� � P.xQ/; � C P.xQ/º � c.n/ � .A
1=2
perturb � 1/

2
�Mı

2
Q:

To see this, we fix P 2 �]� .xQ; k; f;M/ and x 2 E \ 5Q. By the definition of �]� ,
there exists F 2 C 2.Rn; �/ with kF kC 2.Rn/ � M , JxQF � P , and F.x/ D f .x/. In
particular,

(3.38) min¹� � F.x/; � C F.x/º � AperturbMı
2
Q:

Suppose toward a contradiction that

(3.39) � � jF.xQ/j � A0Mı
2
Q

for some to-be-determined A0 depending only on n and Aperturb. Since we have JxQF 2

K� .xQ; CM/, (3.2) and (3.39) imply

(3.40) jrF.xQ/j � CA
1=2
0 MıQ:

Applying Taylor’s theorem to (3.39) and (3.40), we see that

(3.41) � � jF.x/j � C.A0 C A
1=2
0 C 1/Mı

2
Q � C

0.A
1=2
0 C 1/2Mı

2
Q for x 2 5Q:

If we pick A0 to be so small that A1=20 < A1=2perturb=C
0 � 1, with C 0 as in (3.41), we see

that (3.41) will contradict (3.38). Hence, (3.37) holds.
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Now we fix a jet P 2 �]� .xQ; k; f; M/. We know that P satisfies (3.37). Let QP 2
M � B.xQ; ıQ/. By definition (3.36), we have j@˛ QP .xQ/j � Mı2�j˛jQ for j˛j � 2. We
want to show that P C QP 2 �]� .xQ; k; f; CM/.

By the definition of �]� , we want to show that given S � E with #S � k, there exists
F S 2 C 2.Rn; �/ with kF SkC 2.Rn/ � CM , F S .x/ D f .x/ for x 2 S , and JxQF

S �

P C QP .
Fix S � E with #S � k. We define SC WD S [ ¹xQº. Since P 2 �]� .xQ; k; f;M/,

there exists F S 2 C 2.Rn; �/ with

(3.42) kF SkC 2.Rn/ �M; F S .x/ D f .x/ for x 2 S; and JxQF
S
� P:

Consider the Whitney field EP 2 W.SC/ defined by
• P x � JxF

S for x 2 S , and
• P xQ � JxQF

S C QP � P C QP .
Thanks to Whitney’s extension theorem (Theorem 3.2 (B)), it suffices to show that EP 2
W.SC; �/ and k EP kW.SC;�/ � CM .

Thanks to (3.42), we have

P x 2K� .x; CM/ for x 2 S;(3.43)

j@˛.P x � P y/.x/j � CM jx � yj2�j˛j for x; y 2 S; x ¤ y; j˛j � 1:(3.44)

On the other hand, using (3.37), we have

(3.45) � � jP xQ.xQ/j D � � jP.xQ/C QP .xQ/j � .C.A
1=2
perturb � 1/

2
� 1/Mı

2
Q:

Since P � JxQF
S , (3.42) implies that P 2 K� .xQ; CM/. Using property (3.2) of K�

and (3.37), we have

(3.46) jrP xQ j � jrP j C jr QP j � .C.A
1=2
perturb � 1/ � 1/MıQ:

Combining (3.45) and (3.46), we see that

(3.47) P xQ 2K� .xQ; AM/; with A D A.n;Aperturb/:

Combining (3.43) and (3.47), we see that EP 2 W.SC; �/.
Now we estimate k EP kW.SC;�/. By assumption, xQ 2 Q satisfies

jxQ � xj � c0 ıQ for x 2 E:

As a consequence,

(3.48) j@˛ QP .xQ/j � CMı
2�j˛j
Q �M jx � xQj

2�j˛j for x 2 E; j˛j � 1:

By Taylor’s theorem and (3.42), we have

(3.49) j@˛.P x � P /.x/j; j@˛.P x � P /.xQ/j � CM jx � xQj2�j˛j for x 2 S; j˛j � 1:
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Combining (3.48) and (3.49), we see that

j@˛.P x � P xQ/.xQ/j � j@
˛.P x � P /.xQ/j C j@

˛ QP .xQ/j(3.50)

� CM jx � xQj
2�j˛j for x 2 S; j˛j � 1:

By Taylor’s theorem and (3.50), we also have

(3.51) j@˛.P x � P xQ/.x/j � CM jx � xQj
2�j˛j for x 2 S; j˛j � 1:

Finally, we see from (3.44), (3.50), and (3.51) that k EP kW.SC;�/ � CM .
This proves Lemma 3.7 (A).

Proof of (B). We prove the case when � C f .x/�AflatMı2Q. The case � � f .x/ is similar.
We claim that under the assumption of (B), given any P 2 �]� .xQ; k; f;M/, we have

(3.52) � C P.xQ/ � C.A
1=2
flat C 1/

2Mı
2
Q:

The proof is similar to that of Lemma 3.6 (B). We provide the proof here for completeness.
Fix x0 2 E \ 5Q such that � C f .x0/ � AflatMı

2
Q. Let P 2 �]� .xQ; k; f;M/. By the

definition of �]� , there exists a function F 2C 2.Rn; �/with kF kC 2.Rn/ �M , JxQF �P ,
andF.x0/Df .x0/. Since Jx0F 2K� .x0;CM/, property (3.2) of K� implies jrF.x0/j �
CA

1=2
flat MıQ. Inequality (3.52) then follows from Taylor’s theorem and the estimates im-

mediately above.
Now we need to show that the constant polynomial�� 2�]� .xQ;k;f;AM/ for someA

depending only on n and Aflat. We write A;A0, etc., to denote quantities that depend only
on n and Aflat.

Let P 2 �]� .xQ; k; f; M/. Then P 2 K� .xQ; AM/ and satisfies (3.52). By (3.2)
and (3.52),

(3.53) j@˛.� C P /.xQ/j � AMı
2�j˛j
Q for j˛j � 2:

Fix S � E with #S � k. We want to show that �� 2 �� .xQ; S; f; AM/.
By the definition of �]� , there exists F S 2 C 2.Rn; �/ with

(3.54) kF SkC 2.Rn/ �M; F S .x/ D f .x/ for x 2 S; JxQF
S
� P:

From Taylor’s theorem, together with (3.53) and (3.54), we see that

(3.55) j@˛.� C F S /.x/j � AMı
2�j˛j
Q for x 2 B.xQ; c0 ıQ/; j˛j � 2:

Here, c0 is the constant in the hypothesis of Lemma 3.7.
Let � 2 C 2.Rn/ be a cutoff function such that
(�1) 0 � � � 1 on Rn,
(�2) � � 1 near xQ and supp.�/ � B.xQ; c0 ıQ/,
(�3) j@˛�j � Cı2�j˛jQ for j˛j � 2.
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We define
QF S WD � � .��/C .1 � �/ � F S :

It is clear that QF S 2 C 2.Rn/. Thanks to (�1), QF S is defined as the convex combination
of two functions with range Œ��; ��. Therefore, QF S 2 C 2.Rn; �/. Thanks to (�2) and the
fact that dist.xQ; E/ � c0 ıQ, we have QF S .x/ D f .x/ for x 2 S . Thanks to (�2) again,
JxQ
QF S � �� . Finally, thanks to (3.55) and (�3), we have k QF SkC 2.Rn/ � AM .

Hence, �� 2 �� .xQ; S; f; AM/. Since S is chosen arbitrarily, we can conclude that
�� 2 �� .xQ; k; f; AM/. This proves Lemma 3.7 (B).

4. Base case of the induction

In this section, we prove a stronger version of Theorem 1.3. We use P and PC, respec-
tively, to denote the vector space of single-variable polynomials with degree no greater
than one and two. We use Jx and JCx , respectively, to denote the one-jet and two-jet of a
single-variable function twice continuously differentiable near x 2 R.

Lemma 4.1. Suppose we are given a finite set E� � R with #E� � 3. Then there exists a
collection of maps ¹„�;x W � 2 Œ0;1/; x 2 Rº, where

„�;x WC
2.E�; �/! PC

for each x 2 R, such that the following hold:
(A) Let f 2 C 2.E�; �/ be given. Then there exists a function F 2 C 2.R; �/ such that

JCx F � „�;x.f / for all x 2 R;

kF kC 2.R/ � Ckf kC 2.E�;�/ and F.x/ D f .x/ for x 2 E�:

Here, C depends only on n.

(B) There is an algorithm that takes the given data set E�, performs one-time work,
and then responds to queries. A query consists of a pair .�; x/ 2 Œ0;1/ �R, and
the response to the query is the map „�;x , given in its efficient representation.
The one-time work takes C1 operations and C2 storage. The work to answer a
query is C3. Here, C1; C2; C3 are universal constants.

Proof. Let � > 0 and f 2 C 2.E�; �/ be given. Let L and M� , respectively, be as in (3.20)
and (3.22), with S D E�. Consider the affine subspace A�;f � W.E�/ given by

A�;f WD
®
EP D .P x/x2E 2 W.E�/ W P

x.x/ D f .x/ for x 2 E�;(4.1)
if f .x/ D �; then P x � �;

if f .x/ D ��; then P x � ��
¯
:

Consider the optimization problem

(4.2) Minimize LCM� over A�;f :
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By Section 3.3, we can find an approximate minimizer EP0 2 W.E�; �/ of (4.2) using C
operations. Namely, .LCM/. EP0/�C � inf¹.LCM/. EP / W EP 2A�;f º for some universal
constant C . We denote the solution procedure by

eMin� WC 2.E�; �/! W.E�; �/:

It follows from Lemma 3.4 that

(4.3) keMin� .f /kW.E�;�/ � Ckf kC 2.E�;�/:

Let Tw;� be as in Whitney’s extension theorem (Theorem 3.2 (B)) with S D E�. We
define an extension operator

(4.4) E�;� WD Tw;� ıeMin� WC 2.E�; �/! C 2.R; �/:

We then define
„�;x W� JCx ı E�;�

Lemma 4.1 (A) follows from the conclusion of Whitney’s extension theorem (Theo-
rem 3.2 (B)) and (4.3).

Recall from Section 3.3 that constructing the operator eMin� amounts to solving a con-
vex quadratic programming problem with affine constraint. Since #E � 3, this procedure,
as well as constructing a one-dimensional Whitney extension operator, requires at most C
operations and C 0 storage. Lemma 4.1 (B) follows.

First sorting the set E � R, and then patching together adjacent maps, we arrive at the
following Theorem 4.1. Note that Theorem 4.1 is in fact stronger than Theorem 1.3, since
the extension maps do not depend on the parameter M .

Theorem 4.1. Suppose we are given a finite set E � R with #.E/D N . Then there exists
a collection of maps ¹„�;x W � 2 Œ0;1/; x 2 Rº, where

„�;x WC
2.E; �/! PC

for each x 2 R, such that the following hold:
(A) There exists a universal constant D such that for each x 2 R, the map „�;x. �/ W

C 2.E; �/ ! PC is of depth at most D. Moreover, the source of „�;x (in the
sense of Definition 1.1) is independent of � .

(B) Let f 2 C 2.E; �/ be given. Then there exists a function F 2 C 2.R; �/ such that

JCx F � „�;x.f / for all x 2 R;

kF kC 2.R/ � Ckf kC 2.E;�/ and F.x/ D f .x/ for x 2 E:

Here, C depends only on n.

(C) There is an algorithm that takes the given data set E, performs one-time work,
and then responds to queries. A query consists of a pair .�; x/ 2 Œ0;1/ �R, and
the response to the query is the map „�;x , given in its efficient representation.
The one-time work takes C1N logN operations and C2N storage. The work to
answer a query is C3 logN . Here, C1; C2; C3 are universal constants.
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Proof. If #E � 3, then Theorem 4.1 reduces to Lemma 4.1. Suppose #E � 4. We sort
E into an order list E D ¹x1 < � � � < xN º. For convenience, we set x0 WD �1 and
xNC1 WD C1. We set:

• E� WD ¹x��1; x� ; x�C1º for � D 2; : : : ; N � 1, E1 WD E2 and EN WD EN�1.
• J� WD .x��1; x�C1/ for � D 1; : : : ; N .

Let ¹��ºN�D1 be a nonnegative C 2-partition of unity subordinate to ¹J�ºN�D1 that satis-
fies the following:
(4.5) For each � D 1; : : : ;N , �� � 1 near x� , and supp.��/ � J� . Note that each x 2 R

lies in the support of at most two �� .
(4.6) For each � D 1; : : : ; N ,ˇ̌̌ dm

dxm
��.x/

ˇ̌̌
�

´
C jx� � x��1j

�m for x 2 .x��1; x�/;
C jx�C1 � x� j

�m for x 2 .x� ; x�C1/;

for m D 0; 1; 2, and some universal constant C . For � D 1;N , we use the conven-
tion10 D 1 and1�m D 0 for m � 1.

We can construct each �� using the standard trick with summing and dividing cutoff
functions.

For each � D 2; : : : ; N � 1, we define E�;� as in (4.4) of Lemma 4.1 with � D �. We
define an extension operator E� WC

2.E; �/! C 2.R; �/ by

E� .f /.x/ WD

NX
�D1

��.x/ � E�;�.f jE� / for f 2 C 2.E; �/:

It is clear that E� .f / 2 C
2.R/ since each E�;�.f jE� / 2 C

2.R/. Moreover, since the
range of each E�;�.f jE� / is Œ��; �� and E� is a convex combination of E�;� , we have
that E� .f / 2 C

2.R; �/.
Now we show that E� is bounded.
Let M WD max�D1;:::;N kf kC 2.E� ;�/. By the definition of the trace norm, we have

kf kC 2.E;�/ �M .
Let F� WD E�;�.f jE� / for each �. By Lemma 4.1 (A), we have

(4.7) kF�kC 2.R/ � CM for � D 1; : : : ; N:

Since ¹�� W � D 1; : : : ; N º is a partition of unity, we see from (4.7) that

(4.8) jE� .f /.x/j � CM for x 2 R:

On J1 or JN , we see, from the definitions of E1, EN and the support condition (4.5),
that E� .f / � E�;1.f / or E� .f / � E�;N .f /. Therefore,

(4.9)
ˇ̌̌ dm
dxm

E� .f /.x/
ˇ̌̌
� CM for x 2 J1 [ JN ; m � 2:

Suppose that x 2 Œx2; xN�1�. Let �.x/ be the least integer such that x 2 J�.x/. Then
the only partition functions that are possibly nonzero at x are ��.x/ and ��.x/C1. Since
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dm

dxm
��.x/ D �

dm

dxm
��.x/C1.x/ for m D 1 and 2, we have

(4.10)
dm

dxm
E� .f /.x/ D

X
0�m0�m

Cm;m0
dm

0

dxm
0 .F�.x/ � F�.x/C1/.x/

dm�m
0

dxm�m
0 ��.x/.x/:

We claim that

(4.11)
ˇ̌̌ dm0
dxm

0 .F�.x/ � F�.x/C1/.x/
ˇ̌̌
� CM jx�.x/C1 � x�.x/j

2�m0 for 0 � m0 � 2:

To see this, observe that F�.x/ D F�.x/C1 at x�.x/ and x�.x/C1. Therefore, by Rolle’s
theorem, there exists Ox�.x/ 2 .x�.x/; x�.x/C1/ such that

(4.12)
d

dx
.F�.x/ � F�.x/C1/. Ox�.x// D 0:

Now, (4.11) follows from (4.12) and Taylor’s theorem.
Using (4.6) and (4.11) to estimate (4.10), we can conclude that

(4.13)
ˇ̌̌ dm
dxm

E� .f /.x/
ˇ̌̌
� CM for x 2 Œx2; xN�1�:

From (4.8), (4.9), and (4.13), we see that

kE� .f /kC 2.R/ � CM � Ckf kC 2.E;�/:

Namely, E� WC
2.E; �/! C 2.R; �/ is bounded.

Finally, we set
„�;x W� JCx ı E� :

Theorem 4.1 (A)–(B), then follows from the boundedness of E� .
The one-time work consists of sorting the set E and computing E� , J� , and �� for

� D 1; : : : ; N . This requires at most CN logN operations and CN storage.
Now we discuss query work. Let .�; x/ 2 Œ0;1/ �R and let f 2 C 2.E; �/ be given.

It requires at most C logN operations to locate �.x/, where �.x/ is the least integer that
x 2 J�.x/. Note that „�;x.f / is a linear combination of

JCx E�;�.x/.f jE�.x//; JCx E�;�.x/C1.f jE�.x/C1/; JCx ��.x/; JCx ��.x/C1:

From Lemma 4.1, we can compute JCx E�;�.x/.f jE�.x// and JCx E�;�.x/C1.f jE�.x/C1/ from
.E�.x/; f / and .E�.x/; f /, respectively, using at most C operations. On the other hand, we
can compute JCx ��.x/ and JCx ��.x/C1 from J�.x/ and J�.x/C1 using at most C operations.
Therefore, the work to answer a query is C logN .

5. Set up for the induction

We write xx 2 Rn�1 to denote points in Rn�1. We write xP and xPC to denote the vector
spaces of polynomials on Rn�1 with degree no greater than one and two, respectively.
We write xJxx and xJC

xx to denote the one-jet and two-jet of a function (twice) differentiable
near xx 2 Rn�1.
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Given any finite set xE � Rn�1 with # xE D xN , we assume the following.
(5.1) There exists a collection of maps ¹ x„�;xx W � 2 Œ0;1/; xx 2 Rn�1º, where

x„�;xx W C
2. xE; �/ � Œ0;1/! xPC

for each xx 2 Rn�1, such that the following hold:

(A) There exists a controlled constant xD, depending only on n� 1, such that for each
xx 2 Rn�1, the map x„�;xx is of depth at most xD, and the source of x„�;xx (in the
sense of Definition 1.1) is independent of � .

(B) Suppose we are given . xf ;M/ 2 C 2. xE;�/� Œ0;1/ with k xf kC 2. xE;�/ �M . Then
there exists a function xF 2 C 2.Rn�1; �/ such that

• xJC
xx
xF � x„�;x. xf ;M/ for all xx 2 Rn�1,

• k xF kC 2.Rn�1/ � C.n � 1/ �M , and

• xF .xx/ D xf .xx/ for all xx 2 xE.
(C) There exists an algorithm that takes the given data set xE, and then responds to

queries. A query consists of a pair .�; xx/ 2 Œ0;1/�Rn�1, and the response to the
query is the map x„�;x , given in its efficient representation. The one-time work
takes xC1 xN log xN operations and xC2 xN storage. The work to answer a query is
xC3 log xN . Here, xC1; xC2; xC3 depend only on n � 1.

(D) For each � > 0, we use xE� W C 2. xE;�/� Œ0;1/! C 2.Rn/ to denote the operator
associated with ¹„�;xx W xx 2 Rn�1º determined by the relation

xJC
xx ı
xE� . xf ;M/ � x„�;xx. xf ;M/ for all . xf ;M/ 2 C 2.E; �/ � Œ0;1/:

Thanks to (A), for each xx 2 Rn, there exists xS.xx/ � xE with # xS.xx/ � xD, inde-
pendent of � , such that for all xf ; xg 2 C 2.E; �/ with xf D xg on xS.xx/, we have

@˛ xE� . xf ;M/.xx/ D @˛ xE� .xg;M/.xx/ for j˛j � 2 and M � 0:

(5.2) We also assume that we are given the Fefferman–Klartag interpolation maps, i.e.,
a collection of linear maps ¹x‰xx W xx 2 Rn�1º, where

x‰xx W R
xN
! xPC

for each xx 2 Rn�1, such that the following hold:

(A) There exists a controlled constant xD, depending only on n� 1, such that for each
xx 2 Rn�1, the map x‰xx is of depth at most xD.

(B) Suppose we are given x' 2 R xN . Then there exists a function x̂ 2 C 2.Rn�1/ such
that

• xJC
xx
x̂ � x‰x.'/ for all xx 2 Rn�1,

• k x̂kC 2.Rn�1/ � C.n � 1/kx'kC 2. xE/, and

• x̂ .xx/ D x'.xx/ for all xx 2 xE.
Here, kx'kC 2. xE/ WD inf¹k Q̂ kC 2.Rn�1/ W

Q̂ 2 C 2.Rn�1/ and Q̂ j xE D x'º.
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(C) There exists an algorithm that takes the given data set xE, and then responds to
queries. A query consists of a point xx 2Rn�1, and the response to the query is the
map x‰xx , given in its efficient representation. The one-time work takes xC1 xN log xN
operations and xC2 xN storage. The work to answer a query is xC3 log xN . Here,
xC1; xC2; xC3 depend only on n � 1.

(D) We use xE1 to denote the operator associated with ¹x‰xx W xx 2 Rn�1º, mapping
from ¹x'W xE ! Rº into C 2.Rn�1/, determined by the relation

xJC
xx ı
xE1.x'/ � x‰xx.x'/ for all x'W xE ! R:

Thanks to (A), for each xx 2 Rn, there exists xS.xx/ � xE with # xS.xx/ � xD, such
that for all x'; x
 W xE ! R with x' D x
 on xS.xx/, we have

@˛ xE1.x'/.xx/ D @
˛ xE1.x
/.xx/ for j˛j � 2:

For the construction of the Fefferman–Klartag maps, see [20,21]. Such maps can also
be constructed using the techniques in [28–30], which are adapted from [20, 21].

We will be working with the finiteness constants k]n�1;old and k]n;old in Theorem 3.3.
Their precise values do not matter. We will also be working with a constant k]LIP associ-
ated with the local interpolation problems, where we take k]LIP � .nC 2/

2k]n;old. We will
remind the readers of these quantities when necessary.

6. Preliminary data structure

Recall Theorem 3.3. We begin by reviewing some key objects introduced in [20,21], which
we will use to effectively approximate �] for x 2 E.

We will be working with C 2.Rn/ functions instead of C 2.Rn; �/ functions.
Let E � Rn be a finite set with #E D N . We assume that E is labeled, that is, E D

¹x1; : : : ; xN º. We write C.E/ to denote the collection of functions 'WE ! R, which we
can identify (non-uniquely) with RN .

6.1. Parameterized approximate linear algebra problems (PALP)

We equip RN with the standard coordinate basis ¹�1; : : : ; �N º. The following definition
was introduced in Section 6 of [21].

Definition 6.1. A parameterized approximate linear algebra problem (PALP for short) is
an object of the form:

(6.1) A D
�
.�1; : : : ; � imax

/; .b1; : : : ; b imax
/; .�1; : : : ; �imax/

�
;

where
• each � i is a linear functional on P , which we will refer to as a “linear functional”;
• each b i is a linear functional on C.E/, which we will refer to as a “target functional”;
• each �i 2 Œ0;1/, which we will refer to as a “tolerance”.
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Given a PALP A in the form (6.1), we introduce the following terminologies:
• We call imax the length of A;
• We say A has depth D if D is the smallest integer such that each of the linear func-

tionals b i on RN has depth at most D with respect to the basis ¹�1; : : : ; �N º (see
Definition 1.1).

Recall Definition 1.1. We assume that every PALP is “efficiently stored”, namely,
each of the target functionals are stored in its efficient representation. In particular, given
a PALP A of the form (6.1) and a target b i of A, we have access to a set of indices
¹i1; : : : ; iDº � ¹1; : : : ; N º such that b i is completely determined by its action on the
subset ¹�i1 ; : : : ; �iD º � ¹�1; : : : ; �N º. Here iD D depth.b i /. We define

(6.2) S.b i / WD ¹xi1 ; : : : ; xiD º � E:

Given a PALP of the form (6.1), we define

(6.3) S.A/ WD

imax[
iD1

S.b i / � E

with S.b i / as in (6.2).

6.2. Blobs and PALPs

Definition 6.2. A blob in P is a family E� D .�M /M�0 of (possibly empty) convex sub-
sets�M � P parameterized byM 2 Œ0;1/, such thatM <M 0 implies�M ��M 0 . We
say two blobs E�D .�M /M�0 and E�0 D .�0M /M�0 are C -equivalent if�C�1M ��0M �
�CM for each M 2 Œ0;1/.

Let A be a PALP of the form (6.1). For each ' 2 C.E/, we have a blob defined by

(6.4) E�'.A/ D .�'.A;M//M�0;

where

�'.A;M/ WD
®
P 2 P W j� i .P / � b i .'/j �M�i for i D 1; : : : ; imax

¯
� V:

In this paper, we will be mostly interested in the centrally symmetric (called “homo-
geneous” in [21]) polytope defined by setting ' � 0:

(6.5) �.A/ WD �0.A; 1/:

Note that �.A/ is never empty, since it contains the zero polynomial.

6.3. Essential PALPs and blobs

Definition 6.3. Let E � Rn be finite. For each x 2 Rn and 'WE ! R, we define a blob

(6.6) E†'.x/ D .†'.x;M//M�0;

where

†'.x;M/ WD
®
P 2 P W 9G 2 C 2.Rn/ with kGkC 2.Rn/ �M;GjE D ' and JxG � P

¯
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It is clear from the definition of � in (3.29) that

�.x;E/ D †0.x; 1/:

The zero in the formula above denotes the zero polynomial. Therefore, thanks to Theo-
rem 3.3, we have, for k � k]n;old and x 2 E,

(6.7) C�1 � �].x; k/ � †0.x; 1/ � C � �
].x; k/;

for some controlled constants k]n;� .n/ and C.n/.
We summarize some relevant results from [21].

Lemma 6.1. Let E � Rn be finite with #E D N . Using at most C.n/N logN opera-
tions and C.n/N storage, we can compute a list of PALPs ¹A.x/ W x 2 Eº such that the
following hold:

(A) There exists a controlled constant D0.n/ such that for each x 2 E, A.x/ has
length no greater than .nC 1/ D dim P and has depth at most D0.

(B) For each given x 2 Rn and ' 2 C 2.E/, the blobs E�'.A.x// in (6.4) and E†'.x/
in (6.6) are C.n/-equivalent.

See Section 11 of [21] for Lemma 6.1 (A), and Sections 10, 11, and Lemma 34.3
of [21] for Lemma 6.1 (B).

The main lemma of this section is the following.

Lemma 6.2. Let k]n;old be as in Theorem 3.3. There exists a controlled constant C.n/ such
that the following holds. Let E � Rn be given. Let ¹A.x/ W x 2 Eº be as in Lemma 6.1.
Recall the definitions of � and S.A.x// as in (3.29) and (6.3). Then for k � k]n;old and
x 2 E,

C�1 � �.x; S.A.x/// � �].x; k/ � C � �.x; S.A.x///:

Proof. For centrally symmetric �; � 0 � P , we write � � � 0 if there exists a controlled
constant C.n/ such that C�1 � � � � 0 � C � � . Thus, we need to show �.x;A.x// �

�].x; k]n;old/ for x 2 E.
Thanks to Theorem 3.3, Lemma 6.1 (B) (applied to ' � 0), (6.5), and (6.7), we have

(6.8) �].x; k/ � �].x;E/ � �0.A.x/; 1/ D �.A.x// for x 2 E:

Therefore, it suffices to show that

�.x; S.A.x/// � �.A.x// for x 2 E:

From (6.8) and the definition of � in (3.29), we see that

�.A.x// � C � �.x;E/ � C � �.x; S.A.x///:

It remains to show that
�.x; S.A.x/// � C � �.A.x//:

Let x 2 E and let P 2 �.x; S.A.x///. Then there exists ' 2 C 2.Rn/ such that
k'kC 2.Rn/ � 1, '.x/D 0 for all x 2 S.A.x//, and Jx.'/� P . Note that 'jE 2 C 2.Rn/.
We abuse notation and write ' in place of 'jE when there is no possibility of confusion.
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It is clear from the definition of †'.x;M/ in (6.6) that

P 2 †'.x; 1/:

By Lemma 6.1 (B), we have
P 2 �'.A.x/; C /

with �'.A.x/; C / as in (6.4). In particular, we have

(6.9) j� i .P / � b i .'/j � C�i for i D 1; : : : ; L D length.A.x//:

Here, the �1; : : : ; �L, b1; : : : ; bL, and �1; : : : ; �L, respectively, are the linear function-
als, target functionals, and the tolerance of A.x/. However, by the definition of S.A.x//
in (6.3) and the fact that ' � 0 on S.A.x//, we see that (6.9) simplifies to

j� i .P /j � C�i for i D 1; : : : ; L D length.A.x//:

This is equivalent to the statement

P 2 �0.A.x/; C / D C � �.A.x//:

7. Calderón–Zygmund cubes

Let Q� � Rn be a convex set symmetric about the origin. We define

(7.1) diam Q� WD 2 � sup
u2Rn;jujD1

pQ� .u/;

where pQ� .u/ is a gauge function given by

(7.2) pQ� .u/ WD sup¹r � 0 W ru � Q�º:

Let ¹A.x/ W x 2Eº be as in Lemma 6.1, and let �.A.x//�P be as in (6.5). Note that
for each x 2 E, �.A.x// � P is n-dimensional. Indeed, thanks to Lemma 6.1 (B) (with
' � 0), any P 2 �.A.x//, x 2 E, must have P.x/ D 0. Thus, for each x 2 E, we can
identify �.A.x// as a subset of Rn via the map

(7.3) �.A.x// 3 P 7! .rP � e1; : : : ;rP � en/;

where ¹e1; : : : ; enº is the chosen orthonormal system.

7.1. OK cubes

Definition 7.1. Let A1; A2 > 0 be sufficiently large dyadic numbers to be fixed later. Let
¹A.x/ W x 2 Eº be as in Lemma 6.1. Let Q be a dyadic cube. We say Q is OK if the
following hold:

• Either #.E \ 5Q/� 1, or diam�.A.x//�A1ıQ for all x 2E \ 5Q. Here and below,
the diam .�.A.x/// is defined using the formula (7.1) via the identification (7.3).

• ıQ � A�12 .
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The importance of OK cubes is illustrated in the following lemma. Roughly speaking
if Q is OK, then E lies on a hypersurface near Q with controlled curvature. Moreover,
this hypersurface can be realized as the null set of a C 2 function.

Lemma 7.1. Let Q be OK. Suppose E \ 5Q ¤ ¿. Let x0 2 E \ 5Q. Let u0 2 Rn be a
unit vector such that

(7.4) diam �.A.x0// D p�.A.x0//.u0/;

with diam �.A.x0// and p�.A.x0// as in (7.1) and (7.3), respectively. Let � be a rigid
motion of Rn given by the simple rotation´

u0 7! en;

identity on .Ru0 ˚Ren/?,

and the translation x 7! x � x0. Then there exists ' 2 C 2.Rn�1/ satisfying the following:

�.E \ 5Q/ � ¹.xx; '.xx// W xx 2 Rn�1º;(7.5)

jr
m
xx '.xx/j � CA

�1
1 ı

1�m
Q for xx 2 Rn�1; m D 1; 2; with A1 as in Definition 7.1;(7.6)

x0 D .x0; '.x0//; where x0 is the origin of Rn�1:(7.7)

Moreover, let ˆWRn ! Rn be defined by

ˆ ı �.xx; t/ WD .xx; t � '.xx//:

Then ˆ is a C 2 diffeomorphism of Rn satisfying ˆ.E \ 5Q/ � Rn�1 � ¹t D 0º, and
jrmˆj; jrmˆ�1j � CA�11 ı

1�m
Q for m D 1; 2 and A1 as in Definition 7.1.

Proof. If #.E \ 5Q/� 1, then we may take ' to be the constant function. The conclusions
of the lemma are trivially satisfied.

Assume #.E \ 5Q/ > 1. Since Q is OK, we see that diam �.A.x// � A1ıQ for all
x 2 E \ 5Q. By Lemma 6.2, we see that

(7.8) diam �].x; k]n;old/ � cA1ıQ for all x 2 E \ 5Q;

with k]n;old as in Theorem 3.3.
Let x0 and u0 be as in the hypothesis. Without loss of generality, we may assume that

x0 D 0, u0 D en, and � is the identity map. Let � WRn ! Rn�1 be the natural projection
that eliminates the last coordinate.

By (7.8) and the symmetry of �], there exists P0 2 �].x0; k]n;old/ such that

(7.9) @nP0 � cA1ıQ and @iP0 D 0 for i D 1; : : : ; n � 1:

Claim 7.1. Under the assumption of Lemma 7.1, for any S�E\5Q with #S � k]n;old�1,
there exists 'S 2 C 2.Rn�1/ such that

S � ¹.xx; 'S .xx// W xx 2 Rn�1º; and(7.10)

jr
m
xx '

S .xx/j � CA�11 ı
1�m
Q for xx 2 Rn�1; m D 1; 2; with A1 as in Definition 7.1:(7.11)
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Proof of Claim 7.1. Fix S � E \ 5Q with #S � k]n�1;old � k
]
n;old � 1. Here, k]n�1;old

and k]n;old are as in Theorem 3.3. Let S0 WD S [ ¹x0º. Then #S0 � k]n�1;old C 1. Since
P0 2 �

].x0; k
]
n;old/ � �

].x0; k
]
n�1;old C 1/, by the definition of �] in (3.29), there exists

‰ 2 C 2.Rn/ such that S � ¹‰ D 0º, k‰kC 2.Rn/ � 1, and Jx0‰ � P0. For A1 sufficiently
large, from Taylor’s theorem and (7.9), we see that

(7.12) @n‰.x/ � cA1ıQ and j@i‰.x/j � CıQ for x 2 5Q:

Thanks to (7.12) and the implicit function theorem, there exists a well-defined function
'S 2 C 2loc.R

n/ such that S � ¹.xx; 'S .xx// W xx 2 Rn�1º. This proves (7.10).
Let i; j 2 ¹1; : : : ; n � 1º and xx 2 �.5Q/. We have

@i'
S .xx/ D

@i‰

@n‰
.x/;

@2ij'
S .xx/ D

�.@n‰/
2@2ij‰ C .@

2
ni‰@j‰ C @

2
nj‰@i‰/.@n‰/

2 � @2n‰@i‰@j‰

.@n‰/3
.xx/:

(7.13)

We see that (7.11) follows from (7.12) and (7.13). Claim 7.1 is proved.

Consider the function '0W�.E \ 5Q/! R defined by

'0.xx/ WD t for x D .xx; t/ 2 E \ 5Q:

By Claim 7.1, given xS � �.E \ 5Q/with # xS � k]n�1;old, there exists ' xS 2C 2loc.R
n�1/

such that ' xS j xS D '0, jrm
xx '
xS .xx/j � CA�11 ı

1�m
Q for xx 2 �.5Q/ and m D 1; 2.

By Theorem 3.3 (A) together with the rescaling Q'.xx/ 7! ı�1Q Q'.ıQ � xx/, there exists
' 2 C 2.Rn�1/ such that 'j�.E\5Q/ D '0 and jrm

xx '.xx/j � CA
�1
1 ı

1�m
Q for xx 2 Rn�1 and

m D 1; 2.
The properties of ˆ follow immediately from those of '.

7.2. CZ cubes

Definition 7.2. We write CZ0 to denote the collection of dyadic cubes Q such that both
of the following hold:

(A) Q is OK (see Definition 7.1).
(B) Suppose ıQ < A�12 . Then QC is not OK. Recall that QC is the unique dyadic

parent of Q defined in Section 2

We recall the following results from [21].

Lemma 7.2 (Lemma 21.2 of [21]). CZ0 forms a cover of Rn. Moreover, if Q;Q0 2CZ0

with .1C 2cG/Q \ .1C 2cG/Q0 ¤ ¿, then

C�1ıQ � ıQ0 � CıQ:

As a consequence, for each Q 2 CZ0,

#
®
Q0 2 CZ0 W .1C cGQ

0/ \ .1C cG/Q ¤ ¿
¯
� C 0:

Here, C;C 0 are controlled constants depending only on n, and cG is a fixed small dyadic
number, say cG D 2�5.
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Lemma 7.3. After one-time work using at most CN logN operations and CN storage,
we can perform each of the following tasks using at most C logN operations.

(A) (Section 26 of [21]). Given a point x 2 Rn, we compute a list

ƒ.x/ WD ¹Q 2 CZ0 W .1C cG/Q 3 xº:

(B) (Section 27 of [21]). Given a dyadic cube Q � Rn, we can compute Empty.Q/,
with Empty.Q/DTrue if E\25QD¿, and Empty.Q/DFalse if E\25Q¤¿.

(C) (Section 27 of [21]). Given a dyadic cube Q � Rn with E \ 25Q ¤ ¿, we
can compute Rep.Q/ 2 E \ 25Q, with the property that Rep.Q/ 2 E \ 5Q if
E \ 5Q ¤ ¿.

We define the following subcollections of CZ0:

CZ]] WD
®
Q 2 CZ0 W E \ .1C cG/Q ¤ ¿

¯
; with cG as in Lemma 7.2,(7.14)

CZ] WD ¹Q 2 CZ0 W E \ 5Q ¤ ¿º;(7.15)

CZempty
WD ¹Q 2 CZ0 n CZ] W ıQ < A

�1
2 º; with A2 as in Definition 7.2.(7.16)

Lemma 7.4. After one-time work using at most CN logN operations and CN storage,
we can perform the following task using at most C logN operations. Given Q 2 CZ0,
we can decide if Q 2 CZ], Q 2 CZempty, or Q 2 CZ0 n .CZ] [ CZempty/.

Proof. This is a direct application of Lemma 7.3 (B), (C) to Q.

Lemma 7.5. We can compute a map

(7.17) �WCZempty
! CZ]

that satisfies

(7.18) .1C cG/�.Q/ \ 25Q ¤ ¿ for any Q 2 CZempty:

The one-time work uses at most CN logN operations and CN storage. After that, we can
answer queries using at mostC logN operations. A query consists of a cubeQ 2CZempty,
and the response to the query is a cube �.Q/ that satisfies (7.18).

Proof. Suppose that Q 2 CZempty. Then we have E \ 5QC ¤ ¿. On the other hand,
5QC � 25Q. Hence,E \ 25Q¤¿. Therefore, the map Rep in Lemma 7.3 (C) is defined
for Q.

We set

(7.19) x WD Rep.Q/ � E \ 25Q;

with Rep as in Lemma 7.3. Note that x … 5Q, since Q 2 CZempty.
Letƒ.x/� CZ0 be as in Lemma 7.3 (A). PickQ0 2ƒ.x/. Note that the choice ofQ0

may not be unique. By the defining property of ƒ.x/ and the fact that x 2 E, we have
Q0 2 CZ]. Set

�.Q/ WD Q0 2 CZ]:
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By the previous comment, we have

(7.20) .1C cG/�.Q/ 3 x:

Combining (7.19) and (7.20), we see that .1C cG/�.Q/ \ 25Q ¤ ¿. (7.18) is satisfied.
By Lemma 7.3 (A), (C), the tasks ƒ. �/ and Rep. �/ require at most C logN opera-

tions, after one-time work using at most CN logN operations and CN storage. Therefore,
computing �.Q/ requires at most C logN operations, after one-time work using at most
CN logN operations and CN storage.

Lemma 7.6. After one-time work using at most CN logN operations and CN storage,
we can perform the following task using at most C logN operations. Given Q 2 CZ],
compute an orthonormal frame Œu1; : : : ; un�1; uQ� of Rn, such that the following hold:

(A) The orthonormal frame Œu1; : : : ; un�1; uQ� has the same orientation as

Œe1; : : : ; en�1; en�:

(B) Let � be the rigid motion given by the simple rotation´
uQ 7! en;

identity on .RuQ ˚Ren/?,

and the translation x 7! x �Rep.Q/. Then there exists a function ' 2 C 2.Rn�1/
that satisfies (7.5) and (7.7) with this particular �.

Proof. Fix Q 2 CZ]. This means that E \ 5Q ¤ ¿. In particular, Rep.Q/ is defined,
and by Lemma 7.3 (C),

x0 WD Rep.Q/ 2 E \ 5Q:

Computing x0 requires at most C logN operations, after one-time work using at most
CN logN operations and CN storage.

Let A.x0/ be as in Lemma 6.1, and let �.A.x0// be as in (6.5). By Lemma 6.1 (B)
(with ' � 0), any P 2 �.A.x0// must satisfy P.x0/ D 0. By Lemma 6.1 (A) and defini-
tions (6.4), (6.5) of �.A.x0//, we see that �.A.x0// is an n-dimensional parallelepiped
in P centered at the zero polynomial. Therefore, we have

diam �.A.x0// D length.�0/;

where diam is defined in (7.1) and �0 is one of the longest diagonals of �.A.x0//.
Set uQ to be a unit vector parallel to�0. Lemma 7.6 (B) then follows from Lemma 7.1.
Using the Gram–Schmidt process, we can compute the rest of the vectors u1; : : : ;un�1

such that Œu1; : : : ; un�1; uQ� satisfies Lemma 7.6 (A). Computing Œu1; : : : ; un�1; uQ� from
�.A.x0// uses elementary linear algebra, and requires at most C operations.

Lemma 7.7. After one-time work using at most CN logN operations and CN storage,
we can perform the following task using at most C logN operations. Given Q 2 CZ0,
we can compute a point x]Q 2 Q such that

(7.21) dist.x]Q; E/ � a0 ıQ

for some a0 D a0.n; A1/
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Proof. Let Q 2 CZ0 be given.
Suppose Empty.Q/ D True, with Empty. �/ as in Lemma 7.3 (B). We set

x
]
Q WD center.Q/:

It is clear that x]Q 2 Q and (7.21) holds with a0 D 1=2.
Suppose Empty.Q/ D False. Let x0 WD Rep.Q/ 2 E \ 25Q.
Suppose x0 … 5Q. Then E \ 5Q D ¿ by Lemma 7.3 (C). Again, we set

x
]
Q WD center.Q/:

Suppose x0 2 5Q. This means that Q 2 CZ] with CZ] as in (7.15). Let uQ be as in
Lemma 7.6.

By Lemma 7.1, we haveE \ 5Q� ¹.xx;'.xx// W xx 2Rn�1º up to the rotation uQ 7! en,
and the function ' satisfies jrm

xx 'j �CA
�1
1 ı

1�m
Q formD 1;2, withA1 as in Definition 7.2.

Therefore, by the defining property of uQ in Lemma 7.6, we have

E \ 5Q �
®
y 2 Rn W j.y � x0/ � uQj � CA

�1
1 jy � x0j

¯
DW Z.x0/:

Suppose dist.center.Q/;Z.x0// � ıQ=1024. We set

x
]
Q WD center.Q/:

In this case, it is clear that x]Q 2 Q and (7.21) holds with a0 D 2�10.
Suppose dist.center.Q/;Z.x0// < ıQ=1024. We set

x
]
Q WD center.Q/C

ıQ

4
� uQ:

It is clear that x]Q 2Q. For sufficiently large A1, we also have dist.x]Q;Z.x0//� 2
�10ıQ.

Thus, (7.21) holds with a0 D 2�10, if we pick A1 to be sufficiently large.
After one-time work using at most CN logN operations and CN storage, the pro-

cedure Empty.Q/ requires at most C logN operations by Lemma 7.3 (B); the procedure
Rep.Q/ requires at most C logN operations by Lemma 7.3 (C); computing the vector uQ
requires at most C logN operations; and computing the distance between center.Q/ and
Z.x0/ is a routine linear algebra problem, and requires at most C operations.

We now turn our attention to CZ]] as in (7.14).

Lemma 7.8. Using at most CN logN operations and CN storage, we can compute the
list CZ]] as in (7.14).

Proof. This is a direct application of Lemma 7.3 (A) to each x 2 E.

The next lemma states that we can efficiently sort the data contained in cubes in CZ]].

Lemma 7.9. Using at most CN logN operations and CN storage, we can do the follow-
ing. For each Q 2 CZ]] with CZ]] as in (7.14), we can compute a list of points

Proju?Q.E \ .1C cG/Q � Rep.Q// � Rn�1:

Here, uQ is as in Lemma 7.6, u?Q is the subspace orthogonal to uQ, Proju?Q is the orthog-
onal projection onto u?Q, and Rep.Q/ is as in Lemma 7.3 (C).
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Proof. By the bounded intersection property in Lemma 7.2, we have

(7.22) #.CZ]]/ � CN:

From the definitions of CZ]] and CZ] in (7.14) and (7.15), we see that CZ]] � CZ].
Therefore, we can compute Rep.Q/ and u?Q for each Q 2 CZ]] using at most C logN
operations, by Lemma 7.3 (B) and Lemma 7.6.

Recall the proof of Lemma 7.8 that we can compute the list CZ]] by computing each
ƒ.x/ for x 2 E, with ƒ.x/ as in Lemma 7.3 (A). During this procedure, we can store the
information Q 3 x for Q 2 ƒ.x/.

By the bounded intersection property in Lemma 7.2, we have

(7.23)
X

Q2CZ]]

#.E \ .1C cG/Q/ � CN:

By Lemma 7.3 (A) and (7.23), we can compute the list

¹E \ .1C cG/Q W Q 2 CZ
]]
º

using at most CN logN operations and CN storage. Then, by Lemma 7.3 (C), Lem-
ma 7.6, and (7.22), we can compute the list

(7.24) Proju?Q.E \ .1C cG/Q � Rep.Q//

for each Q 2 CZ]] using at most CN logN operations and CN storage.

Lemma 7.10. Suppose we are given

• Q 2 CZ]],
• E \ .1C cG/Q,

• uQ as in Lemma 7.6, and

• Proju?Q.E \ .1C cG/Q � Rep.Q// � Rn�1.

Let xN WD #.E \ .1C cG/Q/. After one-time work using at most C xN log xN operations
and C xN storage, we can compute a function ' 2 C 2.Rn�1/ and a query algorithms with
the following properties:

(A) �.E \ .1C cG/Q/ � ¹.xx; '.xx// W xx 2 Rn�1º. Here, � is the rigid motion given
by the simple rotation ´

uQ 7! en;

identity on .RuQ ˚Ren/?,

and the translation x 7! x � Rep.Q/, with uQ as in Lemma 7.6.

(B) jrm
xx '.xx/j � CA

�1
1 ı

1�m
Q for m D 1; 2, with A1 as in Definition 7.1.

(C) Rep.Q/ D .x0; '.x0//, where Rep. �/ is the map in Lemma 7.3 (C) and x0 is the
origin of Rn�1.

A query consists of a point xx 2 Proju?Q.1C cG/Q � Rn�1. An answer to a query is the
two-jet JC

xx '. The work to answer a query is C log xN .
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Proof. We set xE WD Proju?Q.E \ .1C cG/Q�Rep.Q//. We define a function '0W xE!R
by

'0.xx/ WD .x � Rep.Q// � uQ; where x D .xx; xn/ 2 E:

For each xx 2Rn�1, let x‰xx WR
xN ! xPC be as in (5.2) in Section 5. We define the function '

by specifying
JC
xx ' W�

x‰xx'0:

We see from (5.2) (B) that ' 2 C 2.Rn�1/. By construction, ' satisfies Lemma 7.10 (A)
and (C). From (5.2)(B), Lemma 7.1, and an obvious rescaling, we see that Lemma 7.10 (B)
follows.

By (5.2) (C), the one-time work uses at most C xN log xN operations and C xN storage,
and the work to answer a query is C log xN .

7.3. Compatible jets on CZ cubes

Recall that B.x; ı/ D ¹P 2 P W j@˛P.x/j � ı2�j˛jfor j˛j � 1º.

Lemma 7.11. Let Q � CZ0 and let x]Q 2 Q be as in Lemma 7.7. Let k]n;old be as in
Theorem 3.3 and let k � .nC 2/k]n;old. Then

(7.25) �].x
]
Q; k

]
LIP/ � A �B.x

]
Q; ıQ/

with A D A.n;A1; A2/.

Proof. First we note that (7.25) holds when ıQ D A�12 with A2 as in Definition 7.2.
Suppose ıQ < A�12 . Then QC is not OK (see Definition 7.1). Combining this with

Lemma 6.2, we see that #.E \ 5Q/ > 1 and there exists Ox 2 E \ 5Q such that

(7.26) diam �]. Ox; k]n;old/ < CA1ıQ:

Using Helly’s theorem (Theorem 3.4) and a similar argument as in Lemma 3.5, we see
that given P0 2 �].x]Q; k/, there exists P 2 �]. Ox; k]n;old/ such that

(7.27) j@˛.P0 � P /.x
]
Q/j; j@

˛.P0 � P /. Ox/j � Cı
2�j˛j
Q for j˛j � 1:

Combining (7.26) and (7.27), we see that anyP 2�].x]Q;k/ satisfies j@˛P.x]Q/j�Cı
2�j˛j
Q

for j˛j � 1, which is precisely (7.25).

The next lemma is crucial in controlling the derivatives when we patch together nearby
local solutions.

Lemma 7.12. Let Q;Q0 2 CZ0 and x]Q; x
]
Q0 be as Lemma 7.7. Let f WE ! Œ��; �� be

given, and let �]� be as in (3.31). Let k]LIP � .nC 2/
2k]n;old with k]n;old as in Theorem 3.3.

Let P 2 �]� .x
]
Q; k

]
LIP; f;M/ and P 0 2 �]� .x

]
Q0 ; k

]
LIP; f;M/. Then for x 2 25Q [ 25Q0,

(7.28) j@˛.P � P 0/.x/j � AM.jx
]
Q � x

]
Q0 j C ıQ C ı

]
Q0/

2�j˛j for j˛j � 2;

with A D A.n;A1; A2/.
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Proof. We write A;A0, etc., to denote constants depending only on n;A1; A2.
Set

ı WD max¹jx]Q � x
]
Q0 j; ıQ; ıQ0º:

By Lemma 7.2 and Lemma 7.7, we see that

(7.29) jx � x
]
Qj; jx � x

]
Q0 j � Aı for x 2 25Q [ 25Q0:

Lemma 3.5 applied to P yields P0 2 �
]
� .x

]
Q0 ; .nC 1/k

]
n;old; f;M/ such that

(7.30) j@˛.P � P0/.x
]
Q0/j � CM jx

]
Q � x

]
Q0 j � AMı2�j˛j for j˛j � 2:

Observe that1

�]� .x
]
Q; k

]
n;old; f;M/ � �]� .x

]
Q; k

]
n;old; f;M/ � CM � �].x

]
Q; .nC 1/k

]
n;old/:

Therefore, we have

(7.31) P 0 � P0 2 CM � �
].x

]
Q0 ; .nC 1/k

]
n;old/:

By Lemma 7.11, we see that

(7.32) j@˛.P 0 � P0/.x
]
Q0/j � CMı

2�j˛j
Q0 � AMı2�j˛j for j˛j � 2:

Taylor’s theorem, combined with (7.29), (7.30) and (7.32), yields

(7.33) j@˛.P � P 0/.x0/j � AMı
2�j˛j
Q for j˛j � 2 and x0 2 25Q0:

By Taylor’s theorem, (7.29), and (7.33), we have

(7.34) j@˛.P � P 0/.x/j � AMı
2�j˛j
Q for j˛j � 2 and x 2 25Q:

Estimate (7.28) follows from (7.33) and (7.34).

8. Local interpolation problem

8.1. Distortion estimate

Lemma 8.1. Let 0 < ı � 1. Let ‰WRn ! Rn be a C 2-diffeomorphism such that

jr
m‰.x/j � Aı1�m for m D 1; 2 and x 2 Rn:

Let � � Rn be a C 2 diffeomorphic image of a dyadic cube and let F 2 C 2.x�/. Suppose

j@˛F.x/j �Mı
2�j˛j
Q for j˛j � 2 and x 2 �:

Then

(8.1) j@˛.F ı‰/.x/j � C.n/AMı2�j˛j for j˛j � 2 and x 2 ‰�1.x�/:

1For X; Y � V with V a vector space, we write X � Y to denote the set ¹z W z D x � y; x 2 X; y 2 Y º.
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Proof. We expand ‰ D .‰1; : : : ; ‰n/ in coordinates. Then

@i .F ı‰/ D

nX
kD1

@i‰k � @kF ı‰;

@ij .F ı‰/ D

nX
k;lD1

ck;l � @i‰k � @j‰l � @
2
klF ı‰ C

nX
kD1

@2ij‰k � @kF ı‰:

Then (8.1) follows from the derivative estimates on F and ‰.

8.2. Local clusters

The next lemma shows how to relay local information to the point x]Q.

Lemma 8.2. Let Q 2 CZ]. Let x]Q be as in Lemma 7.7. Let x 2 E \ 5Q. Let A.x/ be
as in Lemma 6.1. Let S.A.x// be as in (6.3). Let k]n;old be as in Theorem 3.3. Then

(8.2) �.x
]
Q; S.A.x/// � A � �

].x
]
Q; k

]
n;old/

with A D A.n;A1; A2/.

Proof. We write A, a, etc., to denote quantities depending only on n;A1; A2.
Fix x as in the hypothesis. By our choice of x]Q in Lemma 7.7, we have

(8.3) jx
]
Q � xj � aıQ:

Let P0 2 �.x]Q; S.A.x///. By the definition of � , there exists ' 2 C 2.Rn/ with
k'kC 2.Rn/ � 1, 'jS.A.x// D 0, and Jx]Q' � P0. Set P W� Jx'. Then

P 2 �.x; S.A.x///:

Since x 2 E, by Lemma 6.2, we have

P 2 C � �].x; k]n;old/:

Let S � E with #.S/ � k]n;old. By the definition of �] in (3.29) and Taylor’s theorem
(Theorem 3.1 (A)), there exists a Whitney field EP D .P; .P y/y2S / 2 W.S [ ¹xº/, with
k EP kW.S[¹xº/ � C and P y.y/ D 0 for y 2 S .

Consider another Whitney field EP0 D .P0; .P
y/y2S / 2 W.S [ ¹x

]
Qº/ defined by

replacing P by P0 in EP and leaving other entries unchanged. By Whitney’s extension
theorem (Theorem 3.2 (B)), it suffices to show that EP0 satisfies

P y.y/ D 0 for y 2 S;(8.4)

k EP0kW.S[¹x]Qº/ � C:(8.5)

Note that (8.4) is obvious by construction.
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We turn to (8.5). Since P0 � Jx]Q' and P � Jx', Taylor’s theorem implies

(8.6) j@˛.P � P0/.x
]
Q/j; j@

˛.P � P0/.x/j � C jx � x
]
Qj
2�j˛j for j˛j � 1:

Since the Whitney field EP D .P; .P y/y2S / satisfies k EP kW.S[¹xº/ � C , we have

(8.7) k.P y/y2SkW.S/ � C

and

(8.8) j@˛.P � P y/.x/j; j@˛.P � P y/.y/j � C jx � yj2�j˛j for j˛j � 2; y 2 S:

Applying the triangle inequality to (8.6) and (8.8), and using (8.3), we see that

(8.9) j@˛.P0 � P
y/.x

]
Q/j; j@

˛.P0 � P
y/.y/j � Ajx

]
Q � yj

2�j˛j for j˛j � 1:

Moreover, since P0 2 �.x]Q; S.A.x///, we have

(8.10) j@˛P0.x
]
Q/j � 1 for j˛j � 1:

Then (8.5) follows from (8.7), (8.9) and (8.10).

Let Q 2 CZ] with CZ] as in (7.15). Let A.x/; x 2 E be as in Lemma 6.1. Let
S.A.x// be as in (6.3). Let Rep.Q/ be as in Lemma 7.3 (C). Let x]Q be as in Lemma 7.7.
We set

(8.11) S].Q/ WD S.A.Rep.Q/// [ ¹x]Qº:

Thanks to Lemma 6.1 (A), we have

(8.12) #S].Q/ � C.n/:

8.3. Transition jet

Recall Section 3.3. For S � E and � > 0, we define the following functions:

LWW.S/! Œ0;1/;

.P x/x2S 7!
X

x2S;j˛j�1

j@˛P.x/j C
X

x;y2S;x¤y;j˛j�1

j@˛.P x � P y/.x/j

jx � yj2�j˛j
;

M� WW.S; �/! Œ0;1/;

.P x/x2S 7!
X

x2S;j˛jD1

j@˛P xj2

� � P.x/
C
j@˛P xj2

� C P.x/
:

(8.13)

We adopt the conventions that 0
0
D 0 and a

0
D1 for a > 0. Note that L is a norm onW.S/.

Let Q 2 CZ] with CZ] as in (7.15). Let x]Q be as in Lemma 7.7. Let S].Q/ be as
in (8.11). We set x0 WD Rep.Q/ with Rep as in Lemma 7.3 (C). Note that x0 2 S].Q/,
thanks to Lemma 6.2 and the definition of � .
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Let f WE ! Œ��; �� be given. We consider the following spaces:

(8.14)

A��f WD
®
.P y/y2S].Q/ 2 W.S

].Q/; �/ W

P x
]
Q � �� and P x.x/ D f .x/ for x 2 S].Q/ \E

¯
;

A�f WD
®
.P y/y2S].Q/ 2 W.S

].Q/; �/ W

P x
]
Q � � and P x.x/ D f .x/ for x 2 S].Q/ \E

¯
;

A0f WD
®
.P y/y2S].Q/\E 2 W.S

].Q/ \E; �/ W

P x.x/ D f .x/ for x 2 S].Q/ \E
¯
:

Note that A��
f

and A�
f

are affine subspaces ofW.S].Q//, and A0
f

is an affine subspace
of W.S].Q/ \E/. All three depend only on � and f jS].Q/\E .

We will be considering the following minimization problems:
MP(�� ): Let S D S].Q/ in (8.13). Minimize LCM� over A��

f
.

MP(� ): Let S D S].Q/ in (8.13). Minimize LCM� over A�
f

.

MP(0): Let S D S].Q/ \E in (8.13). Minimize LCM� over A0
f

.

For ? D ��; �; 0, we say a Whitney field EP 2 A?
f

is an approximate minimizer of
MP(?) if

.LCM� /. EP / � C.n/ � inf¹.LCM� /. EP
0/ W EP 0 2 A?f º:

We make the following important remark that will be referenced in various later places.

Remark 8.1. By Section 3.3, MP(?) can be reformulated as a convex quadratic program-
ming problem with affine constraint and can be solved efficiently using at most C.n/
operations, since the size of S].Q/ is controlled. Thus, we can find the approximate min-
imizers for MP(?) using at most C.n/ operations. Computing S].Q/ requires at most
C logN operations after one-time work using CN logN operations and CN storage,
since it involves computing the point x]Q as in Lemma 7.7.

For future reference, we fix these approximate minimizers:

(8.15) For ? D ��; �; 0, let EP ŒQ; ?� be the approximate minimizer of MP(?) solved via
the method in Section 3.3.

Notice that the approximate minimizer for MP(0) contains no information at x]Q. The
next lemma takes care of this gap.

Lemma 8.3. Let Q 2 CZ]. Let x]Q be as in Lemma 7.7. Let f W E ! Œ��; ��, with
kf kC 2.E;�/ �M . Let EP D EP ŒQ; 0� be as in (8.15) above with ? D 0. Let x0 WD Rep.Q/
with Rep.Q/ as in Lemma 7.3 (C). Let Tw;� be the � -constrained Whitney extension oper-
ator as in Theorem 3.2 associated with the singleton S D ¹x0º. Then

Jx]Q ı Tw;� .P
x0/ 2 �� .x

]
Q; S

].Q/ \E; f; CM/:

Here, C depends only on n.
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Proof. We set P ]W � Jx]Q ı Tw;� .P
x0/. We adjoin P ] to EP to form

EP ] WD .P ]; EP / 2 W.S].Q//:

By Theorem 3.2 (B), it suffices to show that EP ]2W.S].Q/;�/ and k EP ]kW.S].Q/;�/�CM.
Since EP is an approximate minimizer of MP(0) and kf kC 2.E;�/ �M , we have

(8.16) k EP kW.S].Q/\E;�/ � CM:

Since P x0 is a component of EP ,

Tw;� .P
x0/ 2 C 2.Rn; �/ and kTw;� .P

x0/k � CM:

Therefore, we have (recall Definition 3.1)

(8.17) P ] 2K� .x
]
Q; CM/:

Thus, EP ] 2 W.S].Q/; �/.
For x 2 S].Q/ \E and j˛j � 1, we have

j@˛.P x � P ]/.x/j � j@˛.P x � P x0/.x/j C j@˛.P x0 � Jx]Q ı Tw;� .P
x0//.x/j:

Using (8.16) to estimate the first term and Taylor’s theorem to the second, we have

(8.18) j@˛.P x � P ]/.x/j � CM.jx � x0j C jx0 � x
]
Qj/

2�j˛j
� C 0M jx � x

]
Qj
2�j˛j:

For the last inequality, we use the fact that dist.x]Q; E/ � cıQ, thanks to Lemma 7.7.
Applying Taylor’s theorem to estimate (8.18), we have

(8.19) j@˛.P x � P ]/.x
]
Q/j � CM jx � x

]
Qj
2�j˛j:

Combining (8.16)–(8.19), we see that k EP ]kW.S].Q/;�/ � CM . Lemma 8.3 is proved.

We fix a large parameter AT exceeding a constant depending only on n. ForQ 2 CZ]

and x]Q as in Lemma 7.7, we define a map

(8.20) T�;QWC
2.E; �/ � Œ0;1/! P

via the following rules. Let .f;M/ 2 C 2.E; �/ � Œ0;1/ be given.

(8.21) Let L and M� be as in (8.13) with S D S].Q/, and let EP D EP ŒQ;��� be as
in (8.15). Suppose .LCM� /. EP / � ATM . Then we set T�;Q.f;M/ W� �� .

(8.22) Let EP D EP ŒQ; �� be as in (8.15). Suppose .LCM� /. EP / � ATM . Then we set
T�;Q.f;M/ W� � .

(8.23) Suppose both conditions (8.21) and (8.22) above fail. Let EP D EP ŒQ; 0� be as
in (8.15). We set T�;Q.f;M/ W� Jx]Q ıTw;� .P

Rep.Q//. Here,P Rep.Q/ is the compo-
nent of EP corresponding to the point Rep.Q/, with Rep.Q/ as in Lemma 7.3 (C),
and Tw;� is the � -constrained Whitney extension operator in Theorem 3.2 associ-
ated with the singleton S D ¹Rep.Q/º.
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To wit, we first test if the putative solution is close to the lower range threshold, and
then we test for the upper threshold if the first test fails. Lastly, we conclude that the
solution is situated away from both thresholds if both of the previous tests fail.

The main lemma of this section is the following.

Lemma 8.4. Let Q 2 CZ] and x]Q be as in Lemma 7.7. Let k]LIP D .nC 2/
2k]n;old with

k]n;old as in Theorem 3.3. Let T�;Q be as in (8.20). Let .f;M/ 2 C 2.E; �/ � Œ0;1/ with
kf kC 2.E;�/ �M . Then

T�;Q.f;M/ 2 �]� .x
]
Q; k

]
LIP; f; AM/

with A D A.n;AT /.

Proof. We write A, A0, etc., to denote quantities depending only on n and AT .
Since kf kC 2.E;�/ �M , we see that �]� .x;k

]
LIP;f;2M/¤¿. Therefore, the hypothesis

of Lemma 3.7 is satisfied with k D k]LIP.
Recall that T�;Q is defined in terms of a series of rules (8.21), (8.22), (8.23). We

analyze them in this order.

Rule for (8.21). Suppose T�;Q.f; M/ is defined in terms of (8.21). By Theorem 3.2,
there exists F 2 C 2.Rn; �/ with kF kC 2.Rn/ � AM , F jS].Q/\E D f , and Jx]Q ��� . Let
Rep be the map in Lemma 7.3 (C), and recall that Rep.Q/ 2 S].Q/ \ 5Q. By Taylor’s
theorem, we have

� C f .Rep.Q// D � C F.Rep.Q// � AMı
2
Q:

Lemma 3.7 then implies �� 2 �]� .x
]
Q; k

]
LIP; f; AM/.

Rule for (8.22). Suppose T�;Q.f;M/ is defined in terms of (8.22). By Theorem 3.2, there
exists F 2C 2.Rn; �/with kF kC 2.Rn/ �AM , F jS].Q/\E D f , and Jx]Q � � . By Taylor’s
theorem, we have

� � f .Rep.Q// D � � F.Rep.Q// � AMı
2
Q:

Lemma 3.7 then implies � 2 �]� .x
]
Q; k

]
LIP; f; AM/.

Rule for (8.23). Suppose T�;Q.f;M/ is defined in terms of (8.23). Recall that we have
chosen AT to be sufficiently large in (8.21) and (8.22). Taylor’s theorem then implies,
with Aperturb as in Lemma 3.7,

min¹� � f .x/; � C f .x/º � CAperturbMı
2
Q for x 2 E \ 5Q:

Thus, the hypothesis of Lemma 3.7 (A) is satisfied.
Since kf kC 2.E;�/�M , there existsF 2C 2.Rn; �/with kF kC 2.Rn/� 2M ,F jE D f ,

and
Jx]QF 2 �� .x

]
Q; E; f; 2M/:

By Lemma 8.3,

T�;Q.f;M/ 2 �� .x
]
Q; S

].Q/ \E; f; CM/:
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Thus, by Lemma 6.2, Lemma 8.2, and the definition of S].Q/ in (8.11), we see that

Jx]QF � T�;Q.f;M/ 2 CM � �.x
]
Q; S

].Q/ \E/ � C 0M � �].x
]
Q; k

]
n;old/

� C 00M � �].x
]
Q; k

]
LIP/:

By Lemma 7.11, we see that

Jx]QF � T�;Q.f;M/ 2 CM �B.x
]
Q; ıQ/:

For sufficiently large Aperturb, Lemma 3.7 (A) implies

T�;Q.f;M/ 2 Jx]QF C CM �B.x
]
Q; ıQ/ � �

]
� .x

]
Q; k

]
LIP; f; C

0M/:

Lemma 8.4 is proved.

8.4. Fixing the parameters A�

(8.24) In Definitions 7.1 and 7.2, we fix A1; A2 � C.n/ so that Lemma 7.1 holds.
(8.25) Let Aperturb and Aflat be as in Lemma 3.7. We fix Aperturb so that Lemma 3.7 (A)

holds. We then fix Aflat � C.n/Aperturb.
(8.26) Let AT be the parameter associated with the map (8.20). We fix AT D c.n/Aflat.

Henceforth, we treat all the parameters A�, a� appeared in the previous sections as
controlled constants and write C�, c� instead.

8.5. Local interpolation problem with a prescribed jet

RecallCZ]] from (7.14). Also recall that cG is a small dyadic number fixed in Lemma 7.2.

Lemma 8.5. Let Q 2 CZ]]. There exists a map

E�;QWC
2.E; �/ � Œ0;1/! C 2..1C cG/Q/

such that the following hold:
(A) Given .f;M/ 2 C 2.E; �/ � Œ0;1/ with kf kC 2.E;�/ �M , we have

(1) �� � E�;Q.f;M/ � � on .1C cG/Q,

(2) E�;Q.f;M/.x/ D f .x/ for x 2 E \ .1C cG/Q,

(3) kE�;Q.f;M/kC 2..1CcG/Q/ � C.n/M , and

(4) Jx]Q ı E�;Q.f; M/ � T�;Q.f; M/, with x]Q as in Lemma 7.7 and T�;Q as
in (8.20).

(B) For each x 2 .1C cG/Q, there exists a set SQ.x/�E with SQ.x/�D.n/, such
that given f; g 2 C 2.E; �/ with f jSQ.x/ D gjSQ.x/, we have

(8.27) @˛E�;Q.f;M/.x/ D @˛E�;Q.g;M/.x/ for j˛j � 2 and M � 0:

Proof. We fix k]LIP D .nC 2/
2k]n;old with k]n;old as in Theorem 3.3.

The essential ingredients in the construction of the map E�;Q are as follows.
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• Let ˆWRn! Rn be the C 2-diffeomorphism associated withQ defined by ˆ ı ��1 D
.xx; xn � '.xx//, with ' and � as in Lemma 7.10. See also Lemma 7.1. In particular, ˆ
satisfies the estimate

(8.28) jr
mˆ.x/j � Cı

1�m
Q for x 2 Rn and m D 1; 2:

• Let x]Q and c0 D a0 be as in Lemma 7.7. Let  2 C 2.Rn/ be a cutoff function such
that

0 �  � 1;  � 1 near x]Q; supp. / � B.x]Q; c0 ıQ/;

j@˛ j � C.n/ı
2�j˛j
Q for j˛j � 2:

(8.29)

• Define an indicator function

(8.30) �.f;M;Q/ WD

´
1 if T�;Q.f;M/ is not the constant polynomial˙� ,
0 otherwise.

• Let xE� and xE1 be as in (5.1) and (5.2) associated with the set ˆ.E \ .1C cG/Q/ �
Rn�1 � ¹0º. We identify Rn�1 � ¹0º Š Rn�1.

• Let V be the vertical extension map defined by V. xF /.xx; xn/ WD xF .xx/ for an .n � 1/-
variable function xF , .xx; xn/ 2 Rn�1 �R.
We begin with conclusion (A). We define

(8.31) E�;Q.f;M/ WD �T�;Q.f;M/C .1 �  / �eE�;Q.f;M/;

whereeE�;Q.f;M/ WD
vertical extension¥�

V ı
�
.�xE1C.1��/xE� . � ; C0M//

�
.f ��T�;Q.f;M//

ˇ̌
E\.1CcG/Q

ıˆ�1
�

”
local flattening

�
•

.n� 1/-dimensional extension

�
ıˆ:

In the formula above, � D �.f;M;Q/ and C0 is some large controlled constant depend-
ing only on n. We also identify Rn�1 � ¹0º Š Rn�1.

First we note that the map zE�;Q.f;M/ is well defined. Indeed, when�D 1, the opera-
tor in effect is xE1, which can be applied to any xf WRn�1 � ¹0º�ˆ.E \ .1C cG/Q/!R;
when�D0, the operator in effect is xE� . � ;C0M/, and the argument is f jE\.1CcG/Qıˆ

�1,
which has domain Rn�1 � ¹0º and range Œ��; ��.

We proceed to verify (A1)–(A4) in the following four claims.

Verification of (A1). Suppose T�;Q.f;M/�˙� . By (8.30),�D 0. Formula (8.31) sim-
plifies to

(8.32) E�;Q.f;M/ D .1 �  / �
�
V ı xE� .f jE\.1CcG/Q ıˆ

�1/
�
ıˆ:
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By the induction hypothesis (5.1),�� � xE� .f jE\.1CcG/Q ıˆ
�1/� � . On the other hand,

left composition with V and right composition with ˆ do not alter the range, and 0 �
1 �  � 1. Therefore, we have �� � E�;Q.f;M/ � � .

Now we analyze the more delicate case when T�;Q.f;M/ is not the constant polyno-
mial˙� . In this case, formula (8.31) becomes

E�;Q.f;M/ D T�;Q.f;M/(8.33)

C .1 �  / �
�
V ı xE1..f � T�;Q.f;M//jE\.1CcG/Q ıˆ

�1/
�
ıˆ:

By Lemma 8.4, we have

(8.34) T�;Q.f;M/ 2 �]� .x
]
Q; k

]
LIP; f; CM/:

By the assumption kf kC 2.E;�/ � M , we know that there exists F 2 C 2.Rn; �/ with
F D f on E, kF kC 2.Rn/ � CM , and

(8.35) Jx]QF 2 �� .x
]
Q; E; f; CM/ � �]� .x

]
Q; k

]
LIP; f; CM/:

Thanks to Lemma 7.12, Taylor’s theorem, (8.34), and (8.35), we see that

(8.36) j@˛.F � T�;Q.f;M//.x/j � CMı
2�j˛j
Q for all j˛j � 2; x 2 .1C cG/Q:

Using Lemma 8.1, (8.28), and (8.36), we have

j@˛..F � T�;Q.f;M// ıˆ�1/.x/j � CMı
2�j˛j
Q for all j˛j � 2;(8.37)

x 2 ˆ..1C cG/Q/:

Restricting .F � T�;Q.f;M// ıˆ�1 to Rn�1 � ¹0º Š Rn�1, we see that

(8.38) k.f � T�;Q.f;M// ıˆ�1kC 2.ˆ.E\.1CcG/Q// � C�M:

Here, C� is a constant depending only on n, and the trace norm is taken in Rn�1.
Note that the vertical extension map V does not increase the C 2 norm. Therefore, by

taking C0 � C� in (8.31) and (8.38), the induction hypothesis (5.1) implies

(8.39) kGkC 2.ˆ..1CcG/Q// � CM;

where
G WD V ı xE1..f � T�;Q.f;M// ıˆ�1; C0M/

and the norm is evaluated on Rn. In fact, by using (8.37), (8.38), and a standard rescaling,
we have a stronger estimate

(8.40) j@˛G.x/j � CMı
2�j˛j
Q for j˛j � 2 and x 2 ˆ..1C cG/Q/:

Lemma 8.1, (8.28), and (8.40) yield

(8.41) j@˛.G ıˆ/.x/j � CMı
2�j˛j
Q for j˛j � 2 and x 2 .1C cG/Q:
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Now thanks to (8.41) and the fact that 0 �  � 1, if � � jT�;Q.f; M/j � AMı2Q
on .1C cG/Q for some sufficiently large parameter A, then we can conclude that �� �
E�;Q.f; M/ � � on .1 C cG/Q. We proceed to examine the value of T�;Q.f; M/ on
.1C cG/Q.

Since we assume that T�;Q.f;M/ is not the constant polynomial˙� , T�;Q.f;M/must
be defined according to (8.23) (recall (8.20)). In particular, both assumptions in (8.21)
and (8.22) fail. Lemma 3.6 then implies that

(8.42) � � jf .x/j � A0Mı
2
Q for x 2 E \ .1C cG/Q:

Here, A0 � c.n/ � .A
1=2
T � 1/ with AT as in the definition (8.20) of T�;Q.

Recall from Lemma 8.4 that T�;Q.f;M/ 2 �
]
� .x

]
Q; k

]
LIP; f; CM/. We claim that

(8.43) � � jT�;Q.f;M/.x
]
Q/j � c.n/ � .

p
A0 � 1/Mı

2
Q:

Suppose toward a contradiction, that � � jT�;Q.f;M/.x]Q/j < AbadMı2Q for some Abad
to be determined. For any x 2 E \ .1 C cG/Q, there exists F 2 C 2.Rn; �/ such that
kF kC 2.Rn/ � CM , F.x/ D f .x/, and Jx]QF � T�;Q.f;M/ 2 K� .x

]
Q; C

0M/, with K�

as in Definition 3.1. Thus, (3.6) and Taylor’s theorem imply

jrF.x/j � jrF.x
]
Q/j C CkF kC 2.Rn/ıQ(8.44)

� C 0.
p
Abad C 1/Mı

2
Q for x 2 .1C cG/Q

and

� � jF.x/j � .� � jF.x
]
Q/j/C CıQ � supy2.1CcG/QjrF j(8.45)

� Cbad.
p
Abad C 1/

2Mı
2
Q for x 2 .1C cG/Q:

If Abad < Cbad.
p
A0 � 1/, with A0 as in (8.42) and Cbad as in (8.44) and (8.45), we see

that (8.44) and (8.45) contradict (8.42). Therefore, (8.43) holds.
Thanks to Lemma 3.1 and (8.43), we have

(8.46) dist.x]Q; ¹T�;Q.f;M/ D 0º/ � c.
p
A0 � 1/ıQ:

For sufficiently large A0, i.e., sufficiently large AT chosen in (8.25) and (8.26), we have

(8.47) � � jT�;Q.f;M/.x/j � CM.
p
A0 � 1/ı

2
Q for x 2 .1C cG/Q:

Combining (8.41) and (8.47), we see that �� � E�;Q.f;M/ � � on .1C cG/Q, thus (A1)
is established.

Verification of (A2). Conclusion (A2) follows from the following observation.
• The support of  is disjoint from E by (8.29).
• When � D 0, formula (8.31) takes the form of (8.32). Here, the .n � 1/-dimensional

extension operator in effect is xE� , which interpolates the values of f .
• When � D 1, formula (8.31) takes the form of (8.33). Here, the .n � 1/-dimensional

extension operator in effect is xE1, which interpolates the values of f � T�;Q.f;M/.
Note that we added T�;Q.f;M/ back to the final extension.



C. Fefferman, F. Jiang and G. K. Luli 696

Verification of (A3). We first deal with the easy case when T�;Q.f;M/ is not the con-
stant polynomial˙� . Then formula (8.31) becomes (8.33). By Lemma 8.4, T�;Q.f;M/ 2

�
]
� .x

]
Q; k

]
LIP; f; CM/. Thus,

(8.48) kT�;Q.f;M/kC 2..1CcG/Q/ � CM:

Recall from (8.29) that  satisfies the estimate j@˛ j � Cı�j˛jQ for j˛j � 2. Using Lem-
ma 8.1, (8.41), and (8.48) to estimate (8.33), we have kE�;Q.f;M/kC 2..1CcG/Q/ � CM .

We now move on to the case where T�;Q.f; M/ � ˙� . We will analyze the case
T�;Q.f;M/ � �� . The case T�;Q.f;M/ � � is similar.

In the present setting, formula (8.31) is simplified to (8.32), T�;Q.f;M/ in (8.20) is
defined using (8.21), and by Lemma 3.7 we have�� �T�;Q.f;M/2�

]
� .x

]
Q;k

]
LIP;f;CM/.

Thus,

(8.49) f .x/C � � CMı
2
Q for x 2 E \ .1C cG/Q:

Since kf kC 2.E;�/ �M , there exists F 2 C 2.Rn; �/ with F jE D f and kF kC 2.Rn/ �

CM . In particular, JxF 2 K� .x; CM/ for each x 2 E \ .1 C cG/Q, with K� as in
Definition 3.1. Using Taylor’s theorem and property (3.2) of K� , we see that

(8.50) j@˛F.x/j � CMı
2�j˛j
Q for x 2 .1C cG/Q:

Using Lemma 8.1, (8.28), and (8.50), we have

(8.51) j@˛.F ıˆ�1/.x/j � CMı
2�j˛j
Q for j˛j � 2 and x 2 ˆ..1C cG/Q/:

Restricting F ıˆ�1 to Rn�1 � ¹0º Š Rn�1, we see that

(8.52) kf ıˆ�1kC 2.ˆ.E\.1CcG/Q// � C�M:

Here, C� is a constant depending only on n, and the trace norm is taken in Rn�1 � ¹0º Š
Rn�1.

The vertical extension map does not increase theC 2 norm. By takingC0�C� in (8.31)
and (8.52), the induction hypothesis (5.1) implies

(8.53) kHkC 2..1CcG/Q/ � CM;

where
H WD V ı xE� .f ıˆ

�1; C0M/:

In fact, by using (8.51) and (8.52), together with a standard rescaling, we arrive at the
stronger estimate

(8.54) j@˛H.x/j � CMı
2�j˛j
Q for j˛j � 2 and x 2 ˆ..1C cG/Q/:

Lemma 8.1, (8.28), and (8.54) then imply

(8.55) j@˛.G ıˆ/.x/j � CMı
2�j˛j
Q for j˛j � 2 and x 2 .1C cG/Q:

Recall that the cutoff function ' satisfies j@˛ j � Cı�j˛jQ for j˛j � 2. Combining this
with (8.55), we can conclude that kE�;Q.f;M/kC 2..1CcG/Q/ � CM .

We have established (A3).
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Verification of (A4). Since  � 1 near x]Q by (8.29), we have, by Lemma 8.4,

Jx]Q ı E�;Q.f;M/ � T�;Q.f;M/ 2 �]� .x
]
Q; k

]
LIP; f; CM/:

This prove conclusion (A4).
Therefore, Lemma 8.5 (A) holds.

Verification of (B). Now we turn to Lemma 8.5 (B).
Fix x 2 .1C cG/Q. We begin by defining the set SQ.x/ to be

(8.56) SQ.x/ WD .S
].Q/ \E/ [ xS.Proju?Q.x � Rep.Q///;

with S].Q/ as in (8.11), xS. �/ as in (5.1) (D), and uQ as in Lemma 7.6. Thanks to (8.12)
and (5.1) (D), we have #SQ.x/ � D.n/.

LetM � 0. Let f; g 2 C 2.E; �/ with f D g on SQ.x/. Since f D g on S].Q/\E,
we see from the definition of the map T�;Q. � ;M/ that

(8.57) T�;Q.f;M/ � T�;Q.g;M/ for M � 0:

As a consequence, we have

(8.58) �f WD �.f;M;Q/ D �.g;M;Q/ DW �g :

The assumption that f D g on xS.Proju?Q.x � Rep.Q/// along with (8.57) implies

.f ��f T�;Q.f;M// ıˆ�1(8.59)

D .g ��gT�;Q.g;M// ıˆ�1 on xS.Proju?Q.x � Rep.Q///.

It is easy to see that (8.27) follows from substituting (8.57)–(8.59) into (8.31). This proves
Lemma 8.5 (B).

Lemma 8.5 is proved.

Next, we analyze the algorithmic complexity of Lemma 8.5. Recall that PC denotes
the vector space of polynomials with degree no greater than two and JCx denotes the two-
jet at x.

Lemma 8.6. LetQ 2CZ]] with CZ]] as in (7.14). Then there exists a collection of maps

¹„�;x;Q W � 2 Œ0;1/; x 2 .1C cG/Qº;

where
„�;x;Q W C

2.E; �/ � Œ0;1/! PC

for each x 2 .1C cG/Q, such that the following hold:
(A) There exists a controlled constant D.n/ such that for each x 2 Rn, the map

„�;x;Q. � ; �/W C
2.E; �/ � Œ0;1/ ! PC is of depth at most D. Moreover, the

source of „�;x;Q is independent of � .

(B) Suppose we are given .f;M/ 2 C 2.E; �/ � Œ0;1/ with kf kC 2.E;�/ �M . Then
there exists a function FQ 2 C 2..1C cG/Q; �/ such that:
(1) JCx FQ � „�;x;Q.f;M/ for all x in the interior of .1C cG/Q,
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(2) kFQkC 2..1CcG/Q/ � CM ,

(3) FQ.x/ D f .x/ for x 2 E \ .1C cG/Q, and

(4) Jx]QFQ 2 �
]
� .x

]
Q; k

]
LIP; f; CM/, with x]Q as in Lemma 7.7.

Here, C depends only on n.

(C) There is an algorithm that takes the given data set E, performs one-time work,
and then responds to queries. A query consists of a pair .�; x; Q/, and the
response to the query is the map „�;x;Q, given in its efficient representation.
The one-time work takes C1N logN operations and C2N storage. The work to
answer a query is C3 logN . Here, C1; C2; C3 depend only on n.

Proof. Let E�;Q be as in Lemma 8.5, defined by the formula (8.31). For convenience, we
repeat the formula here. We set

(8.60) E�;Q.f;M/ WD �T�;Q.f;M/C .1 �  / � zE�;Q.f;M/;

where

zE�;Q.f;M/ WD
vertical extension¥�

V ı
�
.�xE1C.1��/xE� . � ; C0M// ..f ��T�;Q.f;M//

ˇ̌
E\.1CcG/Q

ıˆ�1/”
local flattening

�
•

.n� 1/-dimensional extension

�
ıˆ:

Recall that JCx denotes the two-jet of a function at x. We would like to define

(8.61) „�;x;Q W� JCx ı E�;Q for x 2 .1C cG/Q:

Lemma 8.6 (A) follows from Lemma 8.5 (B), and Lemma 8.6 (B) follows from Lem-
ma 8.5 (A).

Now we examine Lemma 8.6 (C). Suppose we have performed the necessary one-time
work using at most CN logN operations and CN storage. See Remark 8.2 below. Fix Q
as in the hypothesis, and let x 2 .1C cG/Q be given.

• We compute the point
xy.x/ WD Proju?Q.x � Rep.Q//:

Here, Proju?Q is the orthogonal projection onto the hyperplane u?Q orthogonal to uQ;
uQ is the vector as in Lemma 7.6; Rep.Q/ is the map in Lemma 7.3 (C). Thanks to
Lemma 7.6 and Lemma 7.9, Step 1 requires at most C logN operations.

• Let � be the rotation specified by en ! uQ. We can compute JCx � using at most C
operations.

• Let uQ and Proju?Q be as in Step 1. We set

xEQ WD Proju?Q.E \ .1C cG/Q � Rep.Q// � Rn�1:
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Recall from Lemma 7.9 that we can compute all of the unsorted lists xEQ associated
with each Q 2 CZ]] using at most CN logN operations and CN storage, which is
included in the one-time work.

• Let C 2. xEQ; �/ be the .n � 1/-dimensional trace class. Let x„� and x‰ be the maps as
in (5.1) and (5.2) associated with the set xEQ. The one-time work to pre-process xEQ
involves CNQ logNQ operations and CNQ storage, with NQ WD #.E \ .1C cG/Q/.
The work to answer a query is C logNQ. Recall that an answer to a query is the
map x„� or x‰, given its efficient representation (Definition 1.1).

Remark 8.2. Here, we make the crucial remark that the one-time work to pre-process all
the xEQ uses at most X

Q2CZ]]

CNQ logNQ � C 0N logN

operations and X
Q2CZ]]

CNQ � C
00N

storage, thanks to the bounded intersection property of CZ0 in Lemma 7.2.

• We can compute the map T�;Q.f;M/ in (8.20) from S].Q/ using at most C opera-
tions (Remark 8.1). Computing S].Q/ requires at most C logN operations, thanks to
Lemma 7.3 (C) and Lemma 7.7.

• The jets of ˆ and ˆ�1 can be computed from the jets of ', with ' as in Lemma 7.10,
in C logNQ operations, with NQ D #.E \ .1C cG/Q/.

• For appropriate choice of cutoff function  , we can compute the jets of  using at
most C operations. See Section 9.1 below.

Summarizing all of the above, we see that Lemma 8.6 (C) holds.

9. Theorems 1.1 and 1.2 and Algorithm 1

9.1. Partitions of unity

Recall that JCx denotes the two-jet of a function twice continuously differentiable near
x 2 Rn.

We can construct a partition of unity ¹�Q W Q 2 CZ0º that satisfies the following
properties:

• 0 � �Q � 1 for each Q 2 CZ0.
•
P
Q2CZ0 �Q � 1.

• supp.�Q/ � .1C cG=2/Q for each Q 2 CZ0.
• For each Q 2 CZ0, j@˛�Qj � Cı2�j˛jQ for j˛j � 2.
• After one-time work using at most CN logN operations and CN storage, we can

answer queries as follows: Given x 2 Rn and Q 2 CZ0, we return JCx �Q. The work
to answer a query is C logN .
See Section 28 of [21] for details.
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9.2. Proof of Theorem 1.1

Proof. Let CZ0; CZ]; CZ]]; CZempty be as in Definition 7.2, (7.14)–(7.16). We have

CZ]] � CZ] � CZ0 and CZempty
D ¹Q 2 CZ0 n CZ] W ıQ � A

�1
2 º:

For Q 2 CZ0, we define a map E0�;QWC
2.E; �/ � Œ0;1/! C 2..1C cG/Q/ via the

following rules:
• Suppose Q 2 CZ]]. We set E0�;Q WD E�;Q, with E�;Q as in Lemma 8.5.

• Suppose Q 2 CZ] n CZ]]. We set E0�;Q WD Tx
]
Q
� ı T�;Q, where Tx

]
Q
� is as in Lem-

ma 3.2 (B) with x0 D x]Q and T�;Q is as in (8.20).
• SupposeQ 2 CZempty. We set E0�;Q WD Tx

]
�.Q/
� ı T�;�.Q/, where � is as in Lemma 7.5,

Tx
]
�.Q/
� is as in Lemma 3.2 (B) with x0 D x]�.Q/, and T�;�.Q/ is as in (8.20).

• Suppose Q 2 CZ0 n .CZ] [ CZempty/. We set E0�;Q WD 0.

Let ¹�Q W Q 2 CZ0º be a partition of unity subordinate to CZ0 as in Section 9.1
above. We define E� by the formula

(9.1) E� .f;M/.x/ WD
X

Q2CZ0

�Q.x/ � E
0
�;Q.f;M/.x/:

Since �� � E0�;Q.f;M/ � � for each Q, we see that �� � E� .f;M/ � � .
Since E0�;Q.f;M/D f onE \ .1C cG/Q for eachQ 2CZ0, we see that E� .f;M/D

f on E.
To estimate the C 2 norm of E� .f;M/, we need the following lemma.

Lemma 9.1. Let E0�;Q be defined as above for each Q 2 CZ0. Let x 2 Q 2 CZ0 and
Q0 2 CZ0 such that Q0 $ Q. Let .f;M/ 2 C 2.E; �/ � Œ0;1/ with kf kC 2.E;�/ � M .
We have

(9.2) j@˛.E0�;Q.f;M/ � E0�;Q0.f;M//.x/j � CMı
2�j˛j
Q for j˛j � 2:

We proceed with the proof of Theorem 1.1 assuming the validity of Lemma 9.1, post-
poning the latter’s rather tedious proof till the end of the section.

Now we estimate the C 2 norm of E� .f;M/. Fix x 2 Rn. LetQ.x/ 2 CZ0 denote the
cube such that Q 3 x. We can write

@˛E� .f;M/.x/ D
X

Q0$Q.x/

�Q0.x/ � @
˛E

]
Q0.f;M/.x/(9.3)

C

X
Q0$Q.x/;0<ˇ�˛

@ˇ�Q0.x/ � @
˛�ˇ .E0�;Q.f;M/ � E0�;Q0.f;M//.x/:

Now, using the bounded intersection property in Lemma 7.2 and Lemma 8.5 to esti-
mate the first sum in (9.3), and Lemma 9.1 to estimate the second sum, we can conclude
that

kE� .f;M/kC 2.Rn/ � CM:

This proves Theorem 1.1 (A).
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Now we turn to Theorem 1.1 (B). Fix x 2Rn. LetQ.x/ 2CZ0 be such thatQ.x/ 3 x.
We define

S.x/ WD
� [
Q0$Q.x/;Q02CZ]]

SQ0.x/
�
[

� [
Q0$Q.x/;Q02CZempty

S].Q0/
�
:

Here, SQ0.x/ is as in Lemma 8.5 (B) and S].Q0/ is as in (8.11).
Thanks to Lemma 7.2, Lemma 8.5 (B), and (8.12), we have

#S.x/ � D.n/:

Given f; g 2 C 2.E; �/ with f D g on S.x/, we see from the construction of S.x/
and E0�;Q that

@˛E0�;Q.f;M/ D @˛E0�;Q.g;M/ for j˛j � 2 and M � 0:

From formula (9.1), we see that

@˛E� .f;M/ D @˛E� .g;M/ for j˛j � 2 and M � 0:

Thus, we have established Theorem 1.1 (B).
The proof of Theorem 1.1 is complete once we prove Lemma 9.1.
We return to Lemma 9.1.

Proof of Lemma 9.1. We fix a number k]LIP D k
]
n;old with k]n;old as in Theorem 3.3. Fix ˛

with j˛j � 2 and expand

j@˛.E0�;Q.f;M/ � E0�;Q0.f;M//.x/j(9.4)

� j@˛.E0�;Q.f;M/ � Jx]QE0�;Q.f;M//.x/j

C j@˛.E0�;Q0.f;M/ � Jx]Q0E
0
�;Q0.f;M//.x/j

C j@˛.Jx]QE0�;Q.f;M/ � Jx]Q0E
0
�;Q0.f;M//.x/j

DW �1 C �2 C �3:

By Taylor’s theorem,

(9.5) �1; �2 � CMı
2�j˛j
Q :

It remains to show that

(9.6) �3 � CMı
2�j˛j
Q :

Recall from Lemma 7.2 that C�1ıQ � ıQ0 � CıQ, and observe that �3 is symmetric
with respect to Q$ Q0. It then suffices to analyze the following cases.
Case 1. Suppose either Q or Q0 belongs to CZ0 n .CZ] [ CZempty/. Then (9.6) follows
from Lemmas 7.2, 8.4, 8.5, and Taylor’s theorem. For the rest of the analysis, we assume
that neither Q nor Q0 belongs to CZ0 n .CZ] [ CZempty/.
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Case 2. Suppose both Q;Q0 2 CZ]]. Recall from Lemmas 8.4 and 8.5 that

Jx]QE0�;Q.f;M/ 2 �]� .x
]
Q; k

]
LIP; f; CM/;

Jx]Q0E
0
�;Q0.f;M/ 2 �]� .x

]
Q0 ; k

]
LIP; f; CM/:

Then (9.6) follows from Lemma 7.12.
Case 3. Suppose Q 2 CZ]] and Q0 2 CZ] n CZ]]. This means that

• E0�;Q D E�;Q as in Lemma 8.5, and

• E0�;Q0 D Tx
]
Q0

� ı T�;Q0 , with Tx
]
Q0

� as in Lemma 3.2 and T�;Q0 as in (8.20).
We expand

�3 � j@
˛.Jx]QE0�;Q.f;M/ � T�;Q0.f;M//.x/j(9.7)

C j@˛.T�;Q0.f;M/ � T
x
]
Q0

� ı T�;Q0.f;M//.x/j

DW �3;1 C �3;2:

Taylor’s theorem implies

(9.8) �3;2 � CMı
2�j˛j
Q :

On the other hand, we have (by Lemma 8.5 (A4) and Lemmas 7.12, 8.4, respectively)

(9.9) �3;1 D j@
˛.T�;Q.f;M/ � T�;Q0.f;M//.x/j � CMı

2�j˛j
Q :

We see that (9.6) follows from (9.7)–(9.9).
Case 4. Suppose Q 2 CZ]] and Q0 2 CZempty. This means that

• E0�;Q D E�;Q as in Lemma 8.5, and

• E0�;Q0 D Tx
]
�.Q0/
� ı T�;�.Q0/, with Tx

]
�.Q0/
� as in Lemma 3.2 and T�;�.Q0/ as in (8.20).

Thanks to Lemma 7.5 (B), we have

(9.10) jx
]
Q � x

]

�.Q0/
j; jx � x

]
Qj; jx � x

]

�.Q0/
j � CıQ:

We expand

�3 � j@
˛.Jx]QE0�;Q.f;M/ � T�;�.Q0/.f;M//.x/j(9.11)

C j@˛.T�;�.Q0/.f;M/ � T
x
]
Q0

� ı T�;�.Q0/.f;M//.x/j

DW �3;1 C �3;2:

Taylor’s theorem and (9.10) implies

(9.12) �3;2 � CMı
2�j˛j
Q :

On the other hand, we have (by Lemma 8.5 (A4) and Lemmas 7.12, 8.4, respectively)

(9.13) �3;1 D j@
˛.T�;Q.f;M/ � T�;�.Q0/.f;M//.x/j � CMı

2�j˛j
Q :

We see that (9.6) follows from (9.11)–(9.13).
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Case 5. Suppose Q 2 CZ] n CZ]] and Q0 2 CZempty. This means that
• E0�;Q D Tx

]
Q
� ı T�;Q, with Tx

]
Q
� as in Lemma 3.2 and T�;Q as in (8.20),

• E0�;Q0 D Tx
]
�.Q0/
� ı T�;�.Q0/, with Tx

]
�.Q0/
� as in Lemma 3.2 and T�;�.Q0/ as in (8.20).

Notice that Jx]Q ı E0�;Q D T�;Q, so that Taylor’s theorem, Lemma 7.12, and (9.10) imply

�3 D j@
˛.T�;Q.f;M/ � T

x
]
Q0

� ı T�;�.Q0/.f;M//.x/j � CMı
2�j˛j
Q :

This is precisely (9.6).
Case 6. Suppose both Q;Q0 2 CZempty. By construction,

• E0�;Q D Tx
]
�.Q/
� ı T�;�.Q/, with Tx

]
�.Q/
� as in Lemma 3.2 and T�;�.Q/ as in (8.20),

• E0�;Q0 D Tx
]
�.Q0/
� ı T�;�.Q0/, with Tx

]
�.Q0/
� as in Lemma 3.2 and T�;�.Q0/ as in (8.20).

Thanks to Lemma 7.5 (B) and the assumption that Q0 $ Q, we have

(9.14) jx
]

�.Q/
� x

]

�.Q0/
j; jx � x

]

�.Q/
j; jx � x

]

�.Q0/
j � CıQ:

We expand

�3 � j@
˛.T

x]
�.Q/
� ı T�;�.Q/.f;M/ � T�;�.Q/.f;M//.x/j(9.15)

C j@˛.T
x]
�.Q0/
� ı T�;�.Q0/.f;M/ � T�;�.Q0/.f;M//.x/j

C j@˛.T�;�.Q/.f;M/ � T�;�.Q0/.f;M//.x/j

DW �3;1 C �3;2 C �3;3:

It follows from Taylor’s theorem, Lemma 3.2, and (9.14) that

(9.16) �3;1; �3;2 � CMı
2�j˛j
Q :

On the other hand, Lemma 7.12, Lemma 8.5 (A4), and (9.14) imply

(9.17) �3;3 � CMı
2�j˛j
Q :

Therefore, (9.6) follows from (9.15)–(9.17).
We have analyzed all the possible cases. Therefore, (9.6) holds.
Finally, (9.2) follows from (9.5) and (9.6). The proof of Lemma 9.1 is complete.

The proof of Theorem 1.1 is complete.

9.3. Proof of Theorem 1.2

Proof. We put ourselves in the setting of the proof of Theorem 1.1 in Section 9.2. In
particular, recall formula (9.1) and the assignment rules for E0�;Q.

For each x 2 Rn, we define

(9.18) „�;x.f;M/ W� JCx ı E� .f;M/ D
X

Q2ƒ.x/

JCx �Q ˇ
C
x JCx ı E0�;Q.f;M/:

In the formula above, JCx denotes the two-jet at x, ˇCx is the multiplication on the ring of
two-jets RCx , andƒ.x/ is as in Lemma 7.3 (A), i.e.,ƒ.x/D ¹Q 2CZ0 W .1C cG/Q 3 xº.
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Theorem 1.2 (A) follows from Theorem 1.1 (B). Theorem 1.2 (B) follows from Theo-
rem 1.1 (A).

We now turn to Theorem 1.2 (C). Recall from the proof of Theorem 1.1 in Section 9.2
that E0�;Q can take the following forms:

• E0�;Q D E�;Q as in Lemma 8.5 for Q 2 CZ]].

• E0�;Q D Tx
]
Q
� ı T�;Q, with Tx

]
�.Q/
� as in Lemma 3.2 and T�;Q as in (8.20), for Q 2

CZ] n CZ]].
• E0�;Q D Tx

]
�.Q/
� ı T�;�.Q/, with � as in Lemma 7.5, for Q 2 CZempty.

• E0�;Q � 0 for Q 2 CZ0 n CZempty.
Suppose we have performed the necessary one-time work using at most CN logN

operations and CN storage. Note that this includes the work and storage involved in
Lemma 6.1, Lemma 7.3, and Remark 8.2 in the proof of Lemma 8.6.

• By Lemma 7.3 (A) and Section 9.1, we can compute ƒ.x/ and ¹JCx �Q W Q 2 ƒ.x/º
using at most C logN operations.

• By Lemma 8.6, we can compute

¹JCx ı E�;Q W Q 2 CZ
]]
\ƒ.x/º

using at most C logN operations. Recall Remark 8.2 in the proof of Lemma 8.6.
• By Lemma 7.7 and Remark 8.1, we can compute®

JCx ı T
x
]
Q
� ı T�;Q.f;M/ W Q 2 ƒ.x/ \ .CZ] n CZ]]/

¯
;

using at most C logN operations.
• By Lemma 7.5, Lemma 7.7, and Remark 8.1, we can compute®

JCx ı T
x]
�.Q/
� ı T�;�.Q/.f;M/ W Q 2 CZempty

\ƒ.x/
¯
;

using at most C logN operations.
Thus, given .f; M/ 2 C 2.E; �/ � Œ0;1/, we can compute „�;x.f; M/ in C logN

operations. Theorem 1.2 (C) follows.
This completes the proof of Theorem 1.2.

10. Proof of Theorem 1.4 and Algorithm 2

10.1. Callahan–Kosaraju decomposition

We will use the data structure introduced by Callahan and Kosaraju [11].

Lemma 10.1 (Callahan–Kosaraju decomposition). Let E � Rn with #E D N <1. Let
� > 0. We can partition E �E n diagonal.E/ into subsets E 01 �E

00
1 ; : : : ; E

0
L �E

00
L satis-

fying the following:
(A) L � C.�; n/N .
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(B) For each ` D 1; : : : ; L, we have

diamE 0`; diamE 00` � � � dist.E 0`; E
00
` / :

(C) Moreover, we may pick representatives x0
`
2E 0

`
and x00

`
2E 00

`
for each `D1; : : : ;L,

such that x0
`
;x00
`

for `D1; : : : ;L can all be computed using at mostC.�;n/N logN
operations and C.�; n/N storage.

Here, C.�; n/ is a constant that depends only on � and n.

The same argument in the proof of Lemma 3.1 in [17], with obvious modifications,
yields the following.

Lemma 10.2. Let � > 0. Let E � Rn be a finite set. Let �0 > 0 be a constant that is
sufficiently small. Let E 0

`
; E 00

`
; x0
`
; x00
`

be as in Lemma 10.1 with � D �0. Suppose EP D
.P x/x2E 2 W.E; �/ satisfies the following:

(A) P x 2K� .x;M/ for each x 2 E, with K� as in Definition 3.1.

(B) j@˛.P x
0
` � P x

00
` /.x00

`
/j �M jx0

`
� x00

`
j2�j˛j for j˛j � 1; ` D 1; : : : ; L.

Then k EP kW.E;�/ � CM .

Lemma 10.3 (Lemma 3.2 of [17]). Let E � R2 be a finite set. Let E 0
`

and E 00
`

be as in
Lemma 10.1 with `D 1; : : : ;L. Then every x 2 E arises as an x0

`
for some ` 2 ¹1; : : : ;Lº.

10.2. Proof of Theorem 1.4

Proof of Theorem 1.4 assuming Theorem 1.2. Let E � Rn be a finite set, and let ¹„�;x W
x 2 Rnº be as in Theorem 1.2. For each x 2 E, let S.x/ be the source of „�;x (see
Definition 1.1). Note that S.x/ is independent of � , thanks to Theorem 1.2 (A).

Let �0 be as in Lemma 10.2. Let .x0
`
; x00
`
/ 2E �E, `D 1; : : : ;L, be as in Lemma 10.1

with � D �0.
We set

(10.1) S` WD ¹x
0
`; x
00
` º [ S.x

0
`/ [ S.x

00
` /; ` D 1; : : : ; L:

Conclusion (A) follows from Theorem 1.2 (B), (C) and Lemma 10.1.
Conclusion (B) follows from Theorem 1.2 (B), (C).
Conclusion (C) follows from Lemma 10.1 (C).
Now we verify conclusion (D). We modify the argument in [17]. Fix � > 0 and f W

E ! Œ��; ��. Set

(10.2) M WD max
`D1;:::;L

kf kC 2.S`;�/:

Thanks to (10.2), we see that kf kC 2.S`;�/ � M for ` D 1; : : : ; L. Thus, for each
` D 1; : : : ; L, there exists F` 2 C 2.Rn; �/ such that

(10.3) kF`kC 2.Rn/ � 2M and F`.x/ D f .x/ for x 2 S`:

Fix such F`. For ` D 1; : : : ; L, we define

(10.4) f`WE ! Œ0;1/; f`.x/ WD

´
f .x/ for x 2 S`;
F`.x/ for x 2 E n S`:
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From (10.3) and (10.4), we see that

(10.5) kf`kC 2.E;�/ � 2M for ` D 1; : : : ; L:

For each ` D 1; : : : ; L, we define

(10.6) P 0` W� Jx0
`
.„�;x0

`
.f`; 2M// and P 00` W� Jx00

`
.„�;x00

`
.f`; 2M//:

We will show that assignment (10.6) unambiguously defines a Whitney field over E.

Claim 10.1. Let `1; `2 2 ¹1; : : : ; Lº.
(a) Suppose x0

`1
D x0

`2
. Then P 0

`1
D P 0

`2
.

(b) Suppose x00
`1
D x00

`2
. Then P 00

`1
D P 00

`2
.

(c) Suppose x0
`1
D x00

`2
. Then P 0

`1
D P 00

`2
.

Proof of Claim 10.1. We prove (a). The proofs for (b) and (c) are similar.
Suppose x0

`1
D x0

`2
DW x0. Let S.x0/ be the source of „�;x0 . By (10.1), we see that

S.x0/ � S`1 \ S`2 :

Therefore, we have
f`1.x/ D f`2.x/ for x 2 S.x0/:

Thanks to Theorem 1.2 (A) and (10.5), we see that

„�;x0.f`1 ; 2M/ D „�;x0.f`2 ; 2M/:

By (10.6), we see that P`1 D P`2 . This proves (a).

By Lemma 10.3, there exists a pair of maps:
(10.7) A surjection � W ¹1; : : : ; Lº ! E such that �.`/ D x0

`
for ` D 1; : : : ; L, and an

injection �WE ! ¹1; : : : ; Lº such that x0
�.x/
D x for x 2 E, i.e., � ı � D idE .

The surjection � is determined by the Callahan–Kosaraju decomposition (Lemma 10.1),
but the choice of � is not necessarily unique.

Thanks to Claim 10.1 and the fact that E 0
`
� E 00

`
� E � E n diagonal.E/, assign-

ment (10.6) produces for each x 2 E a uniquely defined polynomial

(10.8) P x � Jx.„�;x.f�.x/; 2M//;

with „x as in Theorem 1.2 and �.x/ as in (10.7). Note that, as shown in Claim 10.1, the
polynomial P x in (10.8) is independent of the choice of � as a right-inverse of � in (10.7).

Thanks to Theorem 1.2 (B) and (10.5)–(10.8), for each ` D 1; : : : ; L, there exists a
function QF` 2 C 2.Rn/ such that

k QF`kC 2.Rn/ � CM and �� � QF` � � on Rn;(10.9)
QF` D f`.x/ D f .x/ for x 2 S`;(10.10)

Jx0
`

QF` � P
x0
` � Jx0

`
.„�;x0

`
.f`; 2M//; Jx00

`

QF` � P
x00
` � Jx00

`
.„�;x00

`
.f`; 2M//:(10.11)



C 2 interpolation with range restriction 707

Thanks to (10.9) and (10.10), we have

(10.12) P x
0
` 2 �� .x

0
`; ¹x

0
`º; f; CM/ for ` D 1; : : : ; L:

Thanks to (10.9) and (10.11), we have

(10.13) j@˛.P x
0
` � P x

00
` /.x00` /j � CM jx

0
` � x

00
` j
2�j˛j for j˛j � 1; ` D 1; : : : ; L:

Therefore, by Lemma 10.2, (10.12), and (10.13), the Whitney field EP D .P x/x2E ,
with P x as in (10.8), satisfies

EP 2 W.E; �/; P x.x/ D f .x/ for x 2 E; k EP kW.E;�/ � CM:

By Whitney’s extension theorem (Theorem 3.2 (B)), there exists a functionF 2C 2.Rn; �/
such that kF kC 2.Rn/ � CM and JxF � P x for each x 2 E. In particular, F.x/ D
P x.x/ D f .x/ for each x 2 E. Thus, kf kC 2.E;�/ � CM . This proves conclusion (D).

Theorem 1.4 is proved.

10.3. Explanation of Algorithm 2

Let E � Rn be given. We compute S1; : : : ; SL from E as in Theorem 1.4. This uses
one-time work using at most CN logN operations and CN storage.

For each ` D 1; : : : ; L, we compute a number M` that has the order of magnitude as
kf kC 2.S`;�/. This can be reformulated as a collection of convex quadratic programming
problems as in Section 3.3, and requires at most CN operations, since #S` � C and
L�CN . Finally, kf kC 2.E;�/ has the same order of magnitude as max¹M` W `D 1; : : : ;Lº.
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