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On the Holder regularity of signed solutions to a doubly
nonlinear equation. Part I1

Verena Bogelein, Frank Duzaar, Naian Liao and Leah Schitzler

Abstract. We demonstrate two proofs for the local Holder continuity of possibly
sign-changing solutions to a class of doubly nonlinear parabolic equations whose
prototype is

(u?tu) —Apu =0, p>2,0<g<p—1.

The first proof takes advantage of the expansion of positivity for the degenerate,
parabolic p-Laplacian, thus simplifying the argument; the second proof relies solely
on the energy estimates for doubly nonlinear parabolic equations. After proper adap-
tations of the interior arguments, we also obtain the boundary regularity for initial-
boundary value problems of Dirichlet and Neumann type.

1. Introduction and main results

Initiated in [1], we continue our study on the Holder regularity of weak solutions to a class
of doubly nonlinear parabolic equations whose model case is

(1.1) 9 (|u|?" u) — div(|Du|P~2Du) = 0 weakly in E7.

Here E7 := E x (0, T] for some T > 0 and some E open in R¥ . In[1] we have studied
the borderline case, i.e., p > 1 and ¢ = p — 1, and in this note we will take on the doubly
degenerate case,i.e., p >2and0 < g < p — 1.

Our main result states that locally bounded, weak solutions to (1.1) are Holder contin-
uous in the interior, and up to the parabolic boundary of Er, if proper assumptions on the
boundary are imposed. Two proofs will be presented, both of which are entirely local and
structural.

As a matter of fact, we shall consider parabolic partial differential equations of the
general form

(1.2) 3 (Jul9"'u) —divA(x,t,u, Du) =0 weakly in ET,
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where A(x,t,u,): ET X RN+l S RN i5a Carathéodory function. Namely, it is mea-
surable with respect to (x, ) € E7 for all (u,¢) € R x R¥, and continuous with respect
to (u, ¢) for a.e. (x,t) € ET. Moreover, we assume the structure conditions

A ,Z7 b * ZC p?
(1.3) { (. t,u,8) - ¢ ol8] fora.e. (x,t) € E7,allu eRandall{eRN,

|A(X, t»ua §)| S C1|§|P—1’

where C, and C; are given positive constants.

In the sequel, we will refer to the set of parameters {p, ¢, N, C,, C1} as the structural
data. We also write y as a generic positive constant that can be quantitatively determined
a priori only in terms of the data and that can change from line to line.

Postponing the formal definitions of weak solution, we will proceed to present the
main results on the interior regularity in Section 1.1 and the boundary regularity in Sec-
tion 1.2.

1.1. Interior regularity

Suppose that v € L*°(Er) and set M := ||u||00,E,. Let I' := 0ET — E x {T} be the
parabolic boundary of E7. For a compact set X C E7, we introduce the following intrin-
sic, parabolic distance from X to I" by

dist, (K;I') := inf {|x —y|+ MP—a—D/p It _sll/p}.
(x,0)eX

(y,s)el’

Now we state our main result concerning the interior Holder continuity of weak solutions
to (1.2), subject to the structure conditions (1.3). Throughout this note, we assume that
p>2and 0 < g < p — 1 unless otherwise stated.

Theorem 1.1. Let u be a bounded, local, weak solution to (1.2)—(1.3) in E7. Then u
is locally Holder continuous in Er. More precisely, there exist constants y > 1 and
B € (0, 1), that can be determined a priori only in terms of the data, such that for every
compact set X C Er,

|x1 — xo| + MP=2=D/P |1 — t2|1/17)ﬁ

, 1) — , <yM "
[u(xy,t1) —u(x2, )| <y ( dist, (K;T)

for every pair of points (x1,1t1), (x2,12) € K.

Remark 1.2. Local boundedness is sufficient for Theorem 1.1 to hold. In fact, local
boundedness is inherent in the notion of weak solutions, cf. Appendix A. Moreover, the
method also applies to equations with lower order terms like in Chapters II-IV of [4] and
in Appendix C of [6]. However, we will not pursue generality in this direction. Instead,
concentration will be made on the actual novelty.

Remark 1.3. Theorem 1.1 implies a Liouville type theorem; the argument is the same as
Corollary 1.1 of [1], which we refer to for details.
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1.2. Boundary regularity

Results on the boundary regularity will be stated in this section. Let us first consider the
following initial-boundary value problem of Dirichlet type:

(14) 0 (|u|?7 u) —divA(x,t,u, Du) =0 weakly in E7,
. u(-,lee = g(-,1)|pe forae.r € (0,T],  u(-,0) = uy(-),

where the structure conditions (1.3) are in force. Concerning the Dirichlet datum g at the
lateral boundary S7 := dE x (0, T'] and the initial datum u,, we assume

(I) u, is continuous in E with modulus of continuity w, (-);
(D) geL?(0,T;WP(E)),and g is continuous on Sz with modulus of continuity wg (+).

As for the geometry of the boundary dF, we introduce the property of positive geometric
density:

(G) there exists ax € (0, 1) and o, > 0 such that for all x, € dE, every cube K,(x,) and
0 <0 <00, wehave |[E N Ky(xo)| < (1 —ay)|Kpl-

Here, for ¢ > 0, we have set K,(x,) to be the cube with center at x,, € R and edge 20,
whose faces are parallel with the coordinate planes. When x, = 0, we simply write K.
Intuitively, condition (G) means that there is an exterior cone whose vertex is attached
to x, and whose angle is quantified by o. This condition is also termed Condition (A),
see (6.48) of [13].

Next, we consider the Neumann problem. The boundary JF is assumed to be of
class C!, such that the outward unit normal, which we denote by n, is defined on JF.
The initial-boundary value problem of Neumann type is formulated as

(15) {8,(|u|qlu) —divA(x,t,u, Du) =0 weakly in ET,

A(x,t,u, Du) -n = y(x,t,u) onSr, u(-,0) = u,(-),

where the structure conditions (1.3) and assumption (I) for the initial data are still in force.
For the Neumann datum ¥, we assume for simplicity, for some absolute constant C,, that

(N) |[W(x,t,u)] < Cy forae. (x,t,u) € Sp xR.

Although more general conditions should also work (cf. Chapter II, Section 2 of [4]), we
however will not pursue generality in this direction.

The formal definitions of weak solutions to (1.4) and (1.5) will be given in Section 1.4.
Now we are ready to present the results concerning regularity of solutions to (1.4) or (1.5)
up to the parabolic boundary I'. Recall also that we have set M := ||u||c0,E; -

1.2.1. Near the initial time.

Theorem 1.4. Let u be a bounded weak solution to the Dirichlet problem (1.4) under the
assumption (1.3). Assume (1) holds. Then u is continuous in K x [0, T] for any compact
set K C E. More precisely, there is a modulus of continuity o (-), determined by the data,
dist(K, dE), M and @ ,(+), such that

u(x1,11) — u(x2,1)| < @(|x1 — xa| + MPIV/P|1 4|1/ P),
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for every pair of points (x1,t1), (x2,t2) € K x [0, T]. In particular, if u, is Holder con-
tinuous with exponent By, then  (r) = y MrP for some y > 0 and p € (0, B,] depending
on the data, dist(K; 0F) and B,.

Remark 1.5. As we shall see in the proof of Theorem 1.4, the estimate on the modulus
of continuity actually holds true forall p > 1and g > 0,ift; =0orz, = 0.

1.2.2. Near St —Dirichlet type data.

Theorem 1.6. Let u be a bounded weak solution to the Dirichlet problem (1.4) under
the assumption (1.3). Assume (D) and (G) hold. Then u is continuous in any compact set
K C E. More precisely, there is a modulus of continuity o (-), determined by the data,
U, 0o, dist(K;{t = 0}), M and @4 (-), such that

[u(x1,t1) —u(xz, t2)] < @(jx; — x2| + M(p_q_l)/p|l‘1 - l2|1/p)»

for every pair of points (x1,t1), (x2,t2) € K. In particular, if g is Hilder continuous with
exponent Bg, then o (r) = yMrB for some y > 0and B € (0, B¢l depending on the data,
U, 0o, dist(K; {t = 0}) and B;.

1.2.3. Near S7 —Neumann type data.

Theorem 1.7. Let u be a bounded weak solution to the Neumann problem (1.5). Assume
OF is of class C' and (N) holds. Then u is Holder continuous in any compact set X C E7.
More precisely, there exist constants y > 1 and B € (0, 1) determined by the data, C,
dist(K; {t = 0}) and the structure of OE, such that

lu(xr, 1) — u(x2, 1) < pM(Jx1 — xo| + MPID/P| —1,|1/P)B

for every pair of points (x1,11), (x2,12) € K.

Remark 1.8. The proofs of Theorems 1.4—1.7 are local in nature. As a result, it suffices
to require the boundary data in the Dirichlet problem (1.4) or the Neumann problem (1.5)
to be taken just on a portion of the parabolic boundary.

1.3. Novelty and significance

The doubly nonlinear parabolic equation (1.2) accounts for many physical models, includ-
ing dynamics of glaciers, shallow water flows and friction dominated flows in a gas
network. We refer to [1] for a source of physical motivations. The mathematical inter-
est of this equation lies in the degeneracy or the singularity or both it possesses, and a
broader class of parabolic equations it generates, which include the parabolic p-Laplacian
and the porous medium equation as particular instances.

The issue of local Holder regularity for this equation has been investigated by a num-
ber of authors, in various forms and with different notions of solution, cf. [8,9, 14, 16].
However, all of them assume that p > 2and 0 < g < 1.

The main novelty of our results consists in extending the known range to a larger one,
thatis, p > 2and 0 < g < p — 1, cf. Figure 1. On the other hand, even in the case p > 2 and
0 < g < 1, our results are not covered by the previous works, as they either use different
notions of solution [9, 14, 16], or assume non-negativity of the solution [8].
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1 2 p

Figure 1. Range of p and ¢q.

One of our main technical advances from the previous works lies in that we dispense
with any kind of logarithmic type energy estimates. As such our arguments should have
further implications in the context of the so-called Q-minima from the calculus of varia-
tions, cf. [16].

The expansion of positivity for the degenerate parabolic equations has been estab-
lished in [5] as a key tool to study Harnack’s inequalty. Roughly speaking, it asserts that
the measure of the positivity set of a non-negative, super-solution translates into point-
wise positivity at later times. Using it to handle the Holder regularity seems new in the
doubly degenerate setting. Similar ideas have appeared in [7, 1 1] in different forms, either
for the parabolic p-Laplacian or for the porous medium equation. The real advantage of
this important property lies in the simplification it brings and a geometric character it
offers. On the other hand, the proof of this property is not easy, and meanwhile it is only
known to hold in the context of partial differential equations. This latter point unfortu-
nately results in certain restrictions for its application near the boundary. In particular,
when we deal with the boundary regularity for Neumann problems, the original approach
of DiBenedetto [3] has to be evoked and adapted.

Our arguments can be adapted to the borderline cases. In particular, when g = 1,
the arguments deal with the degenerate, parabolic p-Laplacian; when p = 2, the porous
medium equation can be treated; when ¢ = p — 1, we are back to our first work [1]; see
also [10] for non-negative solutions. Although a Harnack inequality has been established
for all 0 < g < p — 1 in [2], the Holder regularity seems to present a different feature
when 1 < p < 2 and hence asks for a new argument. Beyond these borderline cases will
be the subject of our next study.

1.4. Notations and definitions
1.4.1. Notion of local solution. A function

(1.6) U € Cioe(0. T3 LLTH(E)) N LY (0. T: WP (E))

loc loc

is a local, weak sub(super)-solution to (1.2) with the structure conditions (1.3) if for every
compact set K C E and every sub-interval [z, ;] C (0, T],

(1.7) / [u|? ue dx
K

t
: +// [ ul9= ut, + Ae. .1, Du) - DE]dxdr < ()0
2 Kx(t1,12)
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for all non-negative test functions

¢ e Woatho, T LI (K)) N L2 (0, T; W)P(K)).

loc

This guarantees that all the integrals in (1.7) are convergent.
A function u that is both a local weak sub-solution and a local weak super-solution to
(1.2)—(1.3) is a local weak solution.

1.4.2. Notion of solution to the Dirichlet problem. A function
ueC@O,T;LITY(E) N LP(0, T; WHP(E))

is a weak sub(super)-solution to (1.4) if for every sub-interval [t1, ;] C (0, T],

/ lu|9" u dx
E

for all non-negative test functions

¢ e WA, T; LIYY(E) N LP (0, T; WEP(E)).

oc loc

t
’ +// [—[u|? 't + A(x, 7, u, Du) - D¢]dxdt < ()0
gl Ex(t1,t2)

Moreover, setting ¢ := min{2, g + 1}, the initial datum is taken in the sense that for any
compact set K C F,

/ (u—ug)idx—>0 ast | 0.
Kx{t}

The Dirichlet datum g is attained under u < (>) g on JF in the sense that the traces of
(u — g)+ vanish as functions in W17 (E) for a.e. t € (0, T}, i.e., we have (u — g)+ €
L?(0,T; W, P (E )). Notice that no a priori information is assumed on the smoothness
of OE.

A function u that is both a weak sub-solution and a weak super-solution to (1.4) is a
weak solution.

1.4.3. Notion of solution to the Neumann problem. A function
ueC@O,T;LITY(E) N LP(0, T; WHP(E))

is a weak sub(super)-solution to (1.5) if for every compact set K € RY and every sub-
interval [t1, 1] C (0, T,

f lu|9" u dx
KNE

<) // V(x. 1w dodr
{KNIOE}x(t1,t2)

for all non-negative test functions

¢ e What o, T; L7 Y(K)) N LE (0, T; WEP(K)).

oc loc

T
: +// [—|u|?'us; + A(x,t,u, Du) - D¢]dxdt
h {KNE}x(t1,t2)

Here do denotes the surface measure on dE. The Neumann datum v is reflected in the
boundary integral on the right-hand side. Moreover, the initial datum is taken as in the
Dirichlet problem.

A function u that is both a weak sub-solution and a weak super-solution to (1.5) is a
weak solution.
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2. Energy estimates

In this section we present certain energy estimates for weak sub(super)-solutions to (1.2)—
(1.3). They are analogues of the energy estimates derived in [1], which will be referred to
for details. Moreover, it is noteworthy that they actually hold true for all p > 1 and ¢ > 0.

The different roles played by sub-solutions and super-solutions are emphasized. When
we state “u is a sub(super)-solution...” and use “ &+ " or “ F " in what follows, we mean
the sub-solution corresponds to the upper sign and the super-solution corresponds to the
lower sign in the statement.

For any k € R, we denote the truncated functions

(u —k)y = max{u —k,0}, (u—k)- = max{—(u —k),0}.

For w, k € R, we define two non-negative quantities
w
(0. ) = £ [ 151975 = K ds.
k

For b € R and o > 0, we will embolden »* to denote the signed a-power of b as

o — |b|*=1h, b £0,
o, bh=0.

Throughout the rest of this note, we will use Kgr(x,) to denote the cube of side
length 2R and center x,, whose faces are parallel with the coordinate planes in R¥, and
the symbols

(X0,20) + Qp(0) := Kp(xp) X (t, — 007, 1,),
(X0,20) + QR,S = KRr(xo) X (to — S.15)

to denote (backward) cylinders with the indicated positive parameters; when the context
is unambiguous, we will omit the vertex (x,, t,) from the symbols for simplicity.

First of all, we present energy estimates for local weak sub(super)-solutions defined
in Section 1.4.1. The proof is similar to Proposition 3.1 of [1], which we refer to for
details. The only difference is that in the present situation, #”~! must be replaced by u?
in terms related to the time derivative and g+ has to be defined as above. Since the testing
functions and the treatment of the term containing the vector-field A remain unchanged,
the constant y on the right-hand side of the estimates is independent of g.

Proposition 2.1. Let u be a local weak sub(super)-solution to (1.2)—(1.3) in E1. There
exists a constant y(C,, C1, p) > 0 such that for all cylinders Qr,s € Er, all k € R,
and every non-negative, piecewise smooth cutoff function ¢ vanishing on dKg(x,) X
(t, — S, t,), we have

max{ €ss sup / Pay(u,k)dx, // E”|D(u—k)i|pdxdt}
KR(xo)x{t} OR,s

to—S<t<t,

< y// [ — k)2 DEIP + g (. k)|3,L7[] de e +/ £P g (u. k) dx.
OR,s KRr(x0)x{to—S}



V. Bogelein, F. Duzaar, N. Liao and L. Schétzler 1012

Next, we consider the situation near the initial level 1 = 0 when a continuous datum u,,
is prescribed. Suppose the level k satisfies

.1 {k > SUPK . (x,) Yo for sub-solutions,

k <infgp(x,)Uo for super-solutions.

The following energy estimate can be obtained as in Proposition 3.2 of [1].

Proposition 2.2. Let u be a local weak sub(super)-solution to (1.4) with (1.3) in ET.
There exists a constant y (C,, C1, p) > 0 such that for all cylinders Kg(x,) x (0,S) C ET,
every k € R satisfying (2.1) and every non-negative, piecewise smooth cutoff function {
independent of t and vanishing on 0K g(x,), we have

esssup/ {pgi(u,k)dx—i-// CP|D(u —k)+|? dxdt
0<t<S JKRg(xp)x{t} KR(x0)x(0,S)

Sy// (u — k)L |DE|P dxdr.
KR(x0)%(0,5)

Next, we turn our attention to the energy estimates near St. When dealing with Dirich-
let data, we need to assume the following restrictions on the level k:

2.2) k> .supQR,SmST g for sub-solutio.ns,
k <infg, ¢ns; & for super-solutions.

The following energy estimate can be obtained as in Proposition 3.3 of [1].

Proposition 2.3. Let u be a local weak sub(super)-solution to (1.4) with (1.3) in ET.
There exists a constant y (C,, C1, p) > 0 such that for all cylinders Q r, s with the vertex
(X0, 1) € ST, every k € R satisfying (2.2), and every non-negative, piecewise smooth
cutoff function ¢ vanishing on 0Kg(x,) x (t, — S, t,), we have

max{ ess sup

/ é”gi(u,k)dx,// e7|DGu — k)e|? dxdr)
to=S<t<ty HKR(xo)NE}x{t} OrsNEr

< y// [ = )2 DEIP + g (. k)3, £7[] de dr
ORr,sNET

+ / ¢P g (u. k) dx.
{KRr(xo)NE}x{t,—S}

Finally, we deal with the energy estimates for the Neumann problem (1.5). The fol-
lowing can be obtained as in Proposition 3.4 of [1].

Proposition 2.4. Let u be a local weak sub(super)-solution to (1.5) with (1.3) in ET.
Assume OE is of class C' and that (N) holds. There exists a constant y > 0, depending
on Co, C1, p and the structure of OE, such that for all cylinders Q g s with the vertex
(x0,10) € ST, every k € R, and every non-negative, piecewise smooth cutoff function {
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vanishing on 0K g(x,) x (t, — S, t,), we have

max{ ess sup

/ Cpgi(u,k)dx,// ZPID(u—k)iV’dxdt}
—S<t<t, J{KR(xo)NE}x{t} OrsNEr

<y // [ — k)2 DEIP + g, k)[0,¢7 ] dx dr
QORr,sNET
+}’C2p/(p71)// L Yiu—k)>0y dx dt +/ g4 (u,k)dx.
ORrsNET {KR(xo)NE}x{t,—S}

3. Preliminary tools

For a compact set K C R and a cylinder @ := K x (T}, T»] C Er, we introduce num-
bers u* and w satisfying

p,+ >esssupg U, M <essinfou, w > ;/,+ —p.

In this section, we collect some lemmas, which will be the main ingredients in the
proof of Theorem 1.1. The first one is a De Giorgi type lemma, which actually holds for
all p > landg > 0.

Lemma 3.1. Let u be a locally bounded, local weak sub(super)-solution to (1.2)—(1.3)
in Er. Set 0 = (£0)4117P for some € € (0, 1) and assume (x,,1,) + Qo(0) C Q. There
exists a constant v € (0, 1), depending only on the data, such that if

HE(R™ —u) < 0} N (X0, 10) + Qo(B)] < v[Qo(O)],

then either
IkE| > 8kw or (T —u)>Ltw ae in(xo.15) + Qga(0).

Proof. The De Giorgi iteration has been performed in Lemma 2.2 of [12] for super-
solutions, whereas the proof for sub-solutions is analogous. In order to obtain the present
formulation, choose @ = 1/2 and replace M by £w. If || > 8£w, there is nothing to
prove. In the opposite case, the assumption || < 8£w allows us to estimate L ~ M.
Therefore, the critical number v depends only on the data. ]

The next lemma is a variant of the previous one, involving quantitative initial data.
Again, it actually holds for all p > 1 and g > 0.

Lemma 3.2. Let u be a locally bounded, local weak sub(super)-solution to (1.2)—(1.3)
in Er. Set 8 = (Ew)?+1=P for some & € (0, 1). There exists a positive constant v, depend-
ing only on the data such that if

+(nE —u(-,1,)) > tw a.e in Ky(x,),
then either
| > 8w or £ (uF—u) > jE0  ae in Kyn(xo) X (lo, lo + 10007,

provided the cylinders are included in Q.
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Proof. After enforcing that |u~| < 8w, this is essentially the content of Lemma 3.1
in [12] for super-solutions, the case of sub-solutions being similar. More precisely, one
has to choose a = 1/2, replace M by £w and note that L =~ M whenever |u~| < 8fw.
This allows to choose the parameter @ in Lemma 3.1 of [12] in the form v, (§@)? 71 =7 for
some v, depending only on the data. ]

The previous lemma propagates pointwise information in a smaller cube, without a
time lag. The next lemma translates measure theoretical information into a pointwise esti-
mate over an expanded cube of later times. This is essentially the expansion of positivity
for the degenerate, parabolic p-Laplacian established in [5]; see also Proposition 4.1 in
Chapter 4 of [6]. As such, it actually holds for p > 2 and g > 0.

Lemma 3.3. Let u be a locally bounded, local, weak sub(super)-solution to (1.2)—(1.3)
in ET. Let the parameters A, ¢ > 0 and a € (0, 1) be such that

cw < :|:[l,i < Aw,

and for some 0 < a < %c,

{EW® —u(-,15)) = aw} N Ko(xo)| = @|Kol.

There exist constants b > 0 and n € (0, 1), depending only on the data, A, c, a and «,
such that

+(nF —u)=nw aein Kop(x0) X (to+ %ba)q_l (nw)> PP t,+bwi H(nw)? P o”],
provided this cylinder is included in Q.

Proof. We may assume (x,,f,) = (0, 0) and prove the case of super-solutions only as the
other case is similar. Letk = =~ + %cw. By Lemma A.1, ug :=min{u,k} =k — (u—k)_
is a local, weak super-solution to (1.2), i.e.,

doul —divA(x,t,ug, Dug) =0 weakly in Q.

Here the symbol uZ has been emboldened to denote the signed power of uj defined in
Section 2. To proceed, we define

vi= uZ - (Il’_)qy

which is non-negative in @. Thanks to the restriction on g, it is not hard to show that v
belongs to the function space (1.6), with ¢ = 1, defined on @ and satisfies

v; —divA(x,f,v, Dv) > 0 weakly in Q.
Here A is defined by
A(x,1.3.0) 1= Alx 1[5+ @) CTF + (D)D), 1T + w4 T0),
where ¥ denotes the truncation

¥ := min{max{y, 0}, (1 — Zlq)(cw)q}.
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Meanwhile, one verifies the structure conditions
A, 1,9,0) ¢ 2 Coo™ PP A (x,1,y,0)| < Cro W DU=P g7,

with positive constants C; =C; (Ci, p,q,c,N),i =0,1. B
In order to eliminate the dependence on @ in the structure conditions of A, we consider
the transformed function

T(x, 1) := v(x, @@ D@Dy,
which satisfies
(3.1) U —divA(x,£,7, D7) >0 weaklyin K x (@9 VI=P)T) @ DU-PT,]
Here A is defined by
X(x, 1y, 0= w(q—l)(P—l)A(L w(q—l)(p—l)h y,0)

for (x,1) € Q:=K x (w(q:l)(l_p)Tl,w(q_l)(l_p)Tz] and all (y,¢) € R x R¥ . Thus, an
easy calculation shows that A satisfies the conditions

A(x,1,,0)-L>GCole|?,  |A(x,1,9,0)] < Ci]g)P72

In other words, the function ¥ is a non-negative, local, weak super-solution to the parabolic
p-Laplacian type equation (3.1) in @. This allows us to apply the expansion of positivity,
see Proposition 4.1 in Chapter 4 of [6]. The measure theoretical information for u implies
a similar inequality for uy; in fact, we have

Huk(-.0) = p~ + aw} N Kp| = a|K|.

Taking into account —Ae@ < up < —%cw, the information that uz (-,0) > u~ + aw can
be converted into an estimate from below for v. Indeed, by the mean value theorem, we

estimate
v(-,0) = u{(-,0) = ()7 = gmin{A?™", (3)7 ! g (-,0) = p7)
> agmin{A?"", (L 0) 0! = dwl.
In terms of v, this becomes
(7. 0) = @) N Kol = a|Kol-

An application of Proposition 4.1 in Chapter 4 of [6] to ¥ (with C = 0 and M = aw?)
yields that for some positive constants 7, € (0, 1) and b > 1, depending only on the data
C,, Cy1, p, N and on o, we have

U(-,t) = naw? ae.in K,

for all 2 2
——— 60 <t < ——— 8o”.
2mawnp "¢ 1= aenr2
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For v, this means that
v(-,t) > naw? ae.in K,

for all ¢ in the interval
%bPﬂS(nﬁw)Z*”wq*lQp <t <bP2§(naw)* Pwi 1p”.

We revert to the original function u with the aid of the mean value theorem. More pre-
cisely, we estimate

nde? <v=ul —(p)? <gmax{A”" G ) e (ur —p)
<yl u—p")

for some positive ¥ = y(q, ¢, A). This, however, is equivalent to

a
u(-,t) > p~ + nT(R) a.e. in Ka,,
Yy

for all ¢ in the above interval. Redefining na/¥ as n and $> ?b?~2§ as b, the claim
follows. u

Remark 3.4. An inspection of the above proof shows that n = ya for some positive y
depending only on the data, ¢, ¢ and A. The conclusion of Lemma 3.3 holds true for a
smaller n by properly making a smaller.

The following lemma examines the situation when pointwise information is given at
the initial level. It actually holds for p > 2 and g > 0.

Lemma 3.5. Let u be a locally bounded, local weak sub(super)-solution to (1.2)—(1.3)
in E7. Introduce the parameters A, ¢ > 0 and n € (0, 1), and set § = w9 ' (nw)>~P.
Suppose that

cw < :i:;LjE < Aw.

There exists a positive constant vq, depending only on the data, ¢ and A, such that if
+(uE —u(-, 1) > new  ae in Ky(x,),

then
:I:(;Li —u) > %r]co a.e.in Kpjr(xo) X (15,15 + v1607],

provided the cylinders are included in Q.

Proof. Suppose u is a local, weak super-solution as the other case is similar. Moreover,
we may assume (x,,%,) = (0, 0). Introduce v like in the proof of Lemma 3.3, which
turns out to be a non-negative, local, weak super-solution to the parabolic p-Laplacian
type equation (3.1) in €. Using the mean value theorem, the information that u(-,0) >
1L~ + nw in K, yields that ¥(-,0) > ynew? in K, for some positive y = y(q,c, A).
Consequently, we may apply Lemma 4.1 in Chapter 3 of [6] or Lemma 3.2 of [12] to v.
For a € (0, 1) at our disposal, we have

T >aynw? ae on Ky x(0,9(50)7],
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where
9=l —a)V P (ynw?)>?,

for some constant ¢ € (0, 1) depending on C,, Cy, p, N. As in the proof of Lemma 3.3,
we convert this into an estimate for u. First, the scaling in time gives

v

re@=D=p) =27 P 5(1 _ a)N+3y2_p&)q_l(r]a))2_p

=2"7¢(1—a)NT3y?7Ph =: 1,0,

so that v > aynw? on K,/, x (0,v160”]. Note that v; depends on Co,C1,p.q.N,c, A
and a. As in the proof of Lemma 3.3, we may apply the mean value theorem to estimate

ayne? <v < ;wq—l(u 1)
for some positive y = y(q, ¢, A), and therefore on Ky/5 x (0, v1007], we have

_ ay
U= pm +?nw.

Finally, choosing the free parameter a so thatay /¥ = 1/2, on the one hand determines
the value of v; in dependence on the data, ¢ and A, and on the other hand implies the
desired bound from below. [

4. The first proof of Theorem 1.1

The proof of Theorem 1.1 in this section relies on the expansion of positivity from Lem-
ma 3.3. This important tool simplifies our arguments, though the attainment of it is difficult
and turned out to be a major achievement in the recent theory, cf. [5,6]. As such, the same
simplification can be carried out in [1]. On the other hand, the argument of this section
does not seem applicable directly to the boundary regularity for the Neumann problem.
For this reason, we will give a second proof of Theorem 1.1 in Section 5, referring back
to our previous arguments in [1] that are modeled on [3].

4.1. The proof begins
Assume (x,,1,) = (0,0),let Q, = K, x (—oP~!,0] € E7 with radius ¢ < 1 and set
ut = esssupg u, M- =essinfg,u, @ > pt—pn.

Let 0 = (% ®)?T17P_ For some A > 1 to be determined in terms of the data, we may
assume that

4.1) 0,(A40) C Q,, such that essoscg,(46) U < ®;
otherwise, we would have

4.2) ® < LQI/(P—q—l), where I, = 44V @—a—1)
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Our proof unfolds along two main cases, namely, for some £ € (0, 1) to be determined,
(4.3a) when u is near zero: i~ < &w and [L+ > —fw;
(4.3b) when u is away from zero: u~ > fw or p < —£w.

Note that (4.3a) implies that | *| < 2. We deal with this case in Sections 4.2—4.4; the
other case will be treated in Section 4.5.

4.2. Reduction of oscillation near zero —Part I

In this section, we will assume that (4.3a) holds true. We work with u as a super-solution
near its infimum. To proceed further, we assume

4.4) pt—p > %w.

The other case u* — u~ < %w will be considered later. Observe that (4.4) implies

(4.5a) [L+ —
(4.5b) or pm+ 1
Let us consider for instance the first case, i.e., (4.5a), as the other one can be treated
analogously. Hence we have %w < ut <20 and Lemma 3.3 is at our disposal with
c=1/4and A = 2.

Suppose A is a large number, and consider the “bottom” sub-cylinder of Q,(A6),
that is,

0 := K, x (—A60%,—(A — 1)00"].
One of the following two alternatives must hold true:
(4.62) fu<p”+z0}n 0| <v|0l.
(4.6b) lu<n”+30in0l>v|0]

Here the number v € (0, 1) is determined in Lemma 3.1 in terms of the data.
First suppose (4.6a) holds true. An application of Lemma 3.1 (with § = 1/4) gives us
that, recalling |~ | < 2w due to (4.3a),

@7 u2pf+%a) a.e. in%Q.

Here the notation %Q~ should be self-explanatory in view of Lemma 3.1. In particular,
the above pointwise lower bound of u holds at the time level z, = —(A — 1)0p? for a.e.
X € Ky/2, which serves as the initial datum for an application of Lemma 3.2. Indeed, we
fix v, in Lemma 3.2 depending on the data and choose & € (0, 1/8) so small that

0=to +v5(§@)T"7P(30)7 = ~(A = (@) PP +v,(50)T 7P (5 0)7,

i.e., we choose

(4.8) £ = min{%, %(;—”A)l/(p_q_l)}.
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Thus, enforcing |~ | < £w, we obtain that

u>p + %éa) a.e.in Ky/4 X (t0, 0],
which in turn yields a reduction of oscillation
4.9) essosco, @)U = (1 — 1w.

Here in (4.8) we have tacitly used the fact that ¢ < p — 1 in the determination of £. Keep
also in mind that A > 1 is yet to be determined in terms of the data.

The case u~ > £w will be treated in Section 4.5; whereas if 2w < =~ < —fw, we
may apply Lemma 3.5 with ¢ = §, A = 2 and n = 1, € (0, 1/8). Indeed, fixing vy in
Lemma 3.5 depending on the data and &, we choose 7, to satisfy

v (1,0)> 7P (30)7 = A(zw)TT PP,

Y R N
-l () )
No mln{g A

Here we have tacitly used the fact that p > 2 in the determination of 7,. In this way,
Lemma 3.5 asserts that

u>pn + %nga) a.e.in K,/4 X (1,,0],
which yields the reduction of oscillation

(4.10) essosco, @)U = (1 — 11M0)®.

4.3. Reduction of oscillation near zero —Part 11

In this section, we still assume that (4.3a) and (4.4) hold true. However, we turn our atten-
tion to the second alternative (4.6b). We work with u as a sub-solution near its supremum.
Since under our assumptions we have .+ — %w >u + %w, we may rephrase (4.6b) as
Hpt —u=go}in0|>v|0|
Then it is not hard to see that there exists
tv € [AO0?, —(A —1)0p? — %v@g”]
such that
Kot —u(-.te) = $@} N Kyl > 1v[K|.
Indeed, if the above inequality does not hold for any s in the given interval, then
—(A-1)80”—Lv80?

w—u=toing= [ [t —us) = Lo} 1 Kplds
—Abo

—(4-1)60?
+/ it —u(.5) = Lo} Kyl ds
—(A—I)GQP—%VBQP

< W|K,1007 (1 — Lv) + Lvoo?|K,| < v|0],
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implying a contradiction to the above measure theoretical information. Recall that due
to (4.5a), we actually have %w < u" < 2w. Then, based on the above measure theoretical
information at 7., an application of Lemma 3.3 with ¢ = 1/4, A = 2 and a fixed constant
a=1/8= %c yields constants b > 0 and 7; € (0, 1) depending only on the data such
that

[,L+ —u(-,1) >me ae.in K,/,,

for all times
L + 2007 (@) Po? <t <t + bo? ' (nw)* Po”.
Now, we determine A so that the set inclusion
(—9(%@)1’, 0] C [t* + %bwq_l(mw)z_pgp, te + bwq_l(mw)z_pgp]

is satisfied. To this end, we first consider the requirement 0 < ¢, + bwi 1 (mw)z_l’gp,
which follows if the stronger condition

0<—-A(F®) ™' 7Pe? + bw? ' (mw)* ?Po”
is fulfilled. This leads to the choice
_py 2=
A=p4ati=P 7P,

Note that we may assume A > 1, since we could choose a smaller constant 7; in the
definition of A by Remark 3.4 and use the fact that p > 2. The second requirement
—9(% 0)f >t + %bwq_l(mw)z_pgp is satisfied if we are able to verify the stronger
condition

—(A— 180" — Iv00? + Jbe? (mw)> Po? = —(4—1)00” — Lv00? + L A60?

which is equivalent to
1 1 1
1—3v+ 4 <34

Since v € (0, 1), the last inequality holds true if A > 4. However, as mentioned above,
we may assume it by making 7; smaller. Altogether, the above analysis determines A
through 7; and yields a reduction of oscillation

4.11) eSS 0SCQ, () U = 1-mw.
To summarize, let us define
n= mln{%s, %770’ 771} € (Ov %)’

where 1 £ is asin (4.9), 27, is as in (4.10) and 7, is as in (4.11). Combining (4.9)~(4.11)
gives the reduction of oscillation

(4.12) essosco, U = (1 —nNw,

provided the intrinsic relation (4.1) is verified and under (4.3a) and (4.4).
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In order to iterate the above argument, we introduce
@1 = max{(l —n)w, Lg"/P~17V};
we need to choose o1 = Ap, for some A € (0, 1), such that
00, (401) C Qp/a(0) N Qp,  where 6 = (Fw1)?T!77.

To this end, we first let
A= %A_l/l’(l _ ,])(p—q—l)/p

and estimate
Ab1of = AGGw )T TP (M0)? < (@) TP (307 =007,

Consequently, the first set inclusion Q,, (A61) C Og/4(6) holds. Note that A < 1/4. The
second set inclusion Qyp, (461) C Q, is verified similarly with the same choice of A.
Therefore, taking into account (4.2), (4.12) and the violation of (4.4), i.e., the case where
€ss0scg, U = ;1,+ —p~ < %a), we arrive at the intrinsic relation

€ss OSCle(At‘)l) u=<wi,

which takes the place of (4.1) in the next stage.

4.4. Reduction of oscillation near zero concluded

Now we may proceed by induction. Suppose that,uptoi = 1,2,...,j — 1, we have built
0o =0. 0i =2A0i-1, 0 =02,
wo =@, ®; =max{(l- W)wi—l,LQili(f’_q_l)},

Qi = QQi(ei)’ Q; = Qgi/4(9i)v

;L;r =esssupg, U, p; =essinfp, u, essosco, U < ;.
For all the indices i = 1,2,...,j — 1, we always assume that (4.3a) holds true, i.e.,
1 <éw; and IL;" > —fw;.
This means that the previous arguments can be repeated and we have, foralli =1,2,...,J,

0,,(46;) C Q;j_y, essosco,u < (1—nNwi—1 < ;.
Consequently, iterating the above recursive inequality, we obtain foralli = 1,2, ..., j,

(4.13) essosco, U < ®; < max{(l —n)'w, Lo'/P=17V}
= max{w (ﬁ)ﬂo7 LQI/(P_‘I_D}’
e
where

_In(1—n)
Po=—



V. Bogelein, F. Duzaar, N. Liao and L. Schétzler 1022

4.5. Reduction of oscillation away from zero

In this section, let us suppose j is the first index satisfying the second case in (4.3), i.e.,
either

r; >éwj or [,L;_ < —€wj.
Let us treat, for instance, .~ > £w;; the other case is analogous. We observe that since j
is the first index for this to happen one should have [L+ = tei =1+
Here, we assume that there exists an index j — 1 such that the first case in (4.3) is fulfilled.
This can be justified by choosing w = §||u||Loo(ET) in Section 4.1. In addition, since
Qj C Qj_1, by the definition of the essential supremum, one estimates

_ 1+§
I EIL;_SILJt (1+8w;- 151_7’]&)]

As a result, we have

__1+&

The bound (4.14) indicates that starting from j, the equation (1.2) resembles the parabolic
p-Laplacian type equation in Q;. We drop the suffix j from our notation for simplicity,
and introduce v :=u/p~ in Q = K, x (—00%,0], where 6 = (%w)‘”l_l’. It is straight-
forward to verify that v belongs to the function space (1.6) defined on Q and satisfies

9;v7 —divA(x,t,v, Dv) =0 weaklyin Q,
where, for (x,7) € Q,veRand { € R¥, we have defined
A, 1,0,80) =A@, t,pn v, 00 /(7).

which is subject to the structure conditions

Ax.t . —\P—q-1|¢|P
{ (. 1,0,8) - § = Colk™) 617, forae. (x,1) € Q,allv e Rand ¢ € RV,

JA(x,1,v.0)| < Cr ()PP,
Moreover, since w /.~ < 1/&, we have that

+ —
T _pte 14§

(4.15) l<v<s—<*—<
| | 3

a.e.in Q.

To proceed, it turns out to be more convenient to consider w := v?, which because
of (4.15) belongs to the function space (1.6), with ¢ = 1, defined on Q and satisfies

orw — divg(x,t, w, Dw) =0 weakly in Q,
where we have defined the vector-field A by

A(x.1,y,0) = A(x,t, yl/a, é)‘;(l—q)/qé-)’
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fora.e. (x,¢) € Q,any y € R and any { € RY . This time ¥ is defined by

7= minfmaxly. 3} 2(4 )}
;= miny maxjy, =, 2( ——) ;-
y y B £
Using (4.15) again, we verify that there exist positive constants Co =v,(p.9.8)Co
and C; = y,(p.q,&)C; such that
{K<x,r,y, 0)-¢ = Cour)Pa g,

» » forae. (x,f) € Q,all y € Randall ¢ € RY.
Rt y.0)] < Co(uryr-a-tjgpmr, [OToe (01 € Coally € Randallg

Note that £ is already fixed in (4.8) in terms of the data. To proceed, we introduce the
function
B(x, 1) 1= wlx, (g)THPr),

which satisfies
(4.16) 9,0 —divA(x,t, %, DD) = 0 weakly in O := K, x (—(n™)? "7 100”,0]

and belongs to the function space (1.6), with g = 1, defined on Q . Here the function A is
defined by

A(x,1,y.6) = OTTTPAQL ()T Py, D),
and it is subject to the structure conditions

@ {A(x,r,y,z)-zzcow,

N ~ forae. (x,1) € Q, ally e Randall ¢ € RV,
|A(x7t,)%§)| E C1|C|p_1’

This shows that w is a local weak solution to the parabolic p-Laplacian type equation
in Q

First proved in [3], the power-like oscillation decay for solutions to this kind of degen-
erate parabolic equation is well known by now. We state the conclusion in the following
proposition in a form that favors our application, and refer to the monographs [4, 15] for a
comprehensive treatment of this issue.

Proposition 4.1. Let p > 2,0 € (0,1) and ® > 0. Then there exist constants 1 € (0, 1)
and y > 1, depending only on the data N, p, C,, Cy and o, such that if W is a bounded,
local, weak solution to (4.16)—(4.17) in Q and, for 6 = &P, the assumptions

(4.18) ess0SCH ) D <& and Qqo(0) C O

hold true, then for all 0 < r < o, we have
R /r\B
ess0sCy ay W =< yw(g) .

We tend to use Proposition 4.1. First we check that condition (4.18) is satisfied. Indeed,
by the mean value theorem and (4.15), there exists some positive ¥ = ¥ (g, £) such that

~ ~ ~ @ ~
€SSOSCH W = essoch w f yessoch v f Yy — =l w.
0 =
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According to (4.14), we find that
1—
1+

=

= =

e | =

@
n

wry

Further, by the definition of the corresponding cylinders, we obtain that Qag(é) C Q ,

provided
(}7 :—_)Z_p(ae)" =< (u’)”’q’l(% w)q+l_pg”

holds true. This can be achieved by choosing o small enough, i.e.,

+1- -1
()
n
In view of the lower and upper bound on the ratio @ /@ ~, the number ¢ can be chosen

only in terms of the data, so that

€SS 0SC AW <®
Qag(‘g) - ’

i.e., the condition (4.18) is fulfilled. Consequently, by Proposition 4.1, we have
ry\A
(2)
for y = yy /& and for any 0 < r < o, with some 8; € (0, 1) depending only on the data.
Since p > 2, we may estimate

. /r\B
essosc, g W < yw<5> <

<

60, = (g)”

and conclude that

)
IA

_(T B
y( ) forall0 <r < p.

€ss0sC, > —
0,(00) 0

Reverting to w and using the fact that ¢ + 1 < p and (4.14) in order to estimate
+1-
()77 > (—1 ik w)q g
-

we obtain that

_/r\h
eSS 0SCH Bwati-r) W = }’(5) ’

where
~ 14+ &\q+1-p ~
1= (_> to
1—n
depends only on the data. Recalling the definition of w, by the mean value theorem
and (4.15), one easily estimates that for some positive y = y(q, &),

esS0SC, G pa+i—py U = y(q,&)ess 0SC (3, wa+1-p) W-
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Finally, we revert to u and the suffix j, and use (4.14) to estimate p " < 1, j» which

1-n
leads to

_ r \b
4.19) ess OSCQr(é‘lw;{+1—p) u < pjess OSCQr(glwg-f—l—p) V=yw; <E) ,
whenever 0 < r < g;. Since o0 < 1, we have that ®; < @ < max{w, L} =: @, and
therefore we obtain that Q,(leZH_p) C Q,(le;“l_p). Combining this with (4.13)
and (4.19), we arrive at the following, forall 0 < r < p:

B
eSSOSCQr(§1w¢£+17p) U<yw (£> 2 n yLQI/(p—q—l)’ where f, = min{f,, B1}.

Without loss of generality, we may assume the above oscillation estimate holds with o
replaced by some g € (r, 0). Then taking § = (r0)'/? and properly adjusting the Holder
exponent, we obtain the power-like decay of oscillation

r\B2/2 1/(p—g—1) (T /BP=a=1] r\A8
eSS 0SCy G wit1-7) U < yw(é) +yLo (E) < wa(E) ,

where 5 .
—mind?% -
p _mm{ 2 ’2(p—q—1)}‘

At this stage, the proof of Theorem 1.1 can be completed by a standard covering argument.

5. The second proof of Theorem 1.1

The purpose of this section is to present another proof of Theorem 1.1 without using the
expansion of positivity (Lemma 3.3). As we shall see, the arguments in Section 5.2 are
similar to that of Section 4.2. The main difference appears in Section 5.3. To avoid using
Lemma 3.3 as done in Section 4.3, we perform an argument of DiBenedetto [3], adapted
in [1]. The real advantage of this section is that the proof relies solely on the energy
estimates in Proposition 2.1. As such, it offers an amenable adaptation near the boundary
given Neumann data, cf. Section 6.3.

5.1. The proof begins

The set-up is the same as in Section 4.1. Namely, we introduce the quantities u*, w,

6, L, A and the cylinders Q,(A8) C Q,. Moreover, they are connected by the intrinsic
relation (4.1). For a positive £ to be determined, the proof unfolds along two main cases,
as in (4.3).

5.2. Reduction of oscillation near zero —Part I

Like in Section 4.2, we assume that (4.3a) holds and work with u as a super-solution near
its infimum. Then we proceed with the assumption (4.4), which implies one of (4.5) holds.
We may take (4.5a) such that %w <nt <2w.
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The second proof begins here. Suppose that for some 7 € (—(A4 — 1)60?, 0],

(5.1) fu < p™ 4+ 3@} N0.1) + Quo(0)] < v[0,(8)],

where v is the constant determined in Lemma 3.1 in terms of the data. According to
Lemma 3.1, applied with § = 1/4, we have

u>p 4+ g0 aein(0,7) + Qg 2(),

since the other alternative, i.e., |t ™| > 2w, does not hold due to (4.3a). This pointwise
information parallels (4.7) in Section 4.2. Similar arguments can be reproduced as in
Section 4.2 to obtain the reduction of oscillation as in (4.9)—(4.10). In particular, only
Lemma 3.1, Lemma 3.2 and Lemma 3.5 are used. In this process we fix the constant £ as
in (4.8) depending on the data and A, which will be chosen next in terms of the data.

5.3. Reduction of oscillation near zero —Part I1

In this section we still assume that (4.3a) holds. However, now we work with u as a sub-
solution near its supremum. Keep also in mind that (4.52a) is enforced so that %w < [L+ <
2w may be assumed.

Suppose contrary to (5.1) that, recalling 6 = (% )9

+1-p,
Hu <p™ + @} N0,7) + 0o(0)| > v|Qn(8)| foralli € (—(A—1)6g”,0].
Then for any such 7, it is easy to see that there exists some s € [ — 6g?, 7 — 1v6gP] with
Hu(-,s) < p™ + 30} N Kyl > 3v|K.

1
2

1

Since we assumed that p* — p~ > L@, we have p™ — 0 > p~ + 1 w, which implies

Hu(-,s) <pt — t0) N Ky > v|K,|.

Recall that due to (4.5a), we have iw < [l,+ < 2. Thus our assumptions for the following
Sections 5.3.1-5.3.3 are

(52) to=<pt <20,
(5.3) forany7 € (—(A—1)0g”,0], there exists s € [f — 0o, 7 — 5 vHoP] such that
{u(-.s) < pt — 30} N Kyl = 2v|K,|.

They would allow us to determine A and reduce the oscillation in this case. Similar
arguments in Sections 5.3.1-5.3.3 have been carried out in [1]. However we think it is
necessary to adapt them in the new setting because of the technical nature.

5.3.1. Propagation of measure theoretical information.

Lemma 5.1. Suppose (5.2) and (5.3) are in force. There exists ¢ € (0, 1), depending only
on v and the data, such that

Hu(-.t) < pt —ew) N Kol > %I)|KQ| forallt € (s,1].
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Proof. For ease of notation, we set s = 0. Further, for§ >0and 0 < ¢ < % to be determined
by the data and v, we consider Q := K, x (0,86 P0p”]andk = u+ — e > éw. Apply-
ing the energy estimate in Proposition 2.1 with a standard non-negative, time independent
cutoff function {(x,?) = {(x) that equals 1 on K(;_4), for some o € (0, 1) to be fixed
later, vanishes on 9K, and satisfies | D¢| < (60)™!, we obtain, for all 0 < ¢ < §e2~P6o?,

that
u
/ / 197 Y v — k)L dr ¢P dx
Kyx{t} Jk

f/ / ‘L’q_l(‘lf—k)+d1’§pdx+}/// (u—k)ﬂ’r|D§|pdxdt.
Kox{o} Jk o

Defining kz = p+ — Esw for some £ € (0, %), we estimate the term on the left-hand side by
u ki
[ [ etk an = e > k) 0 Kool [ 27 @ -k e
Kox{t} Jk k

Further, note that by the mean value theorem and the restriction %w < ut < 2w, there
exists a constant y = y(q) such that

kg
/ 17N — k) dt > yo? (ew)? = ye?wit!
k

Next, by (5.3), we obtain for the first term on the right-hand side of the energy estimate
that

u nt
/ f 19 Y e —k)ydr P dx < (1—%v)|KQ|/ 197Nt — k)4 dt
Kox{0} Jk k
and, by the choice of ¢ and u < ™ for the second term on the right-hand side, that
8 )
// (k)7 DEIP dxdr < 22 2770 0)| K| < L 20Tt K.
0 o o

Combining the preceding estimates leads to

fk'LJr 9 Yt —k), dr
[ a1t — k)4 do

yé
Ku(-,1) > ke} N Ka—o)ol < (1—%V)|KQI+O—I,IKQI-
Rewriting the fractional number of integrals on the right-hand side and using the mean
value theorem as well as the restrictions %w < [L+ <2w and k > %w yields the bound

N
JE T e = b de . JE k) de

[feratc—kypdr 0 [l —k)ydr

=1+,
where y depends only on ¢. Inserting this into the previous inequality, we conclude that

_ Y
Hu(-.1) > ks) N Kyl < (1= 30)(1 + p8)|K,| + O—p|KQ| + No|K,|.
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Now, we first fix £ = £(g, v) small enough that
1- %v)(l +ye) <1- %v

and define 0 := lg - Then, we choose § small enough that C’;—i < %v and e small enough

that §e2=? > 1, where we take into account that p > 2. Redefining £¢ as ¢, we finish the
proof of the lemma. u

Since 7 is arbitrary in (—(A4 — 1)00?, 0], the previous lemma actually yields the mea-
sure theoretical information

5.4 Hu(-,t) < pt —ew}n Kol > %I)|KQ| forall t € (—(A4 — 1)60?,0].

5.3.2. Shrinking the measure near the supremum. Let ¢ € (0, 1) denote the constant
from Lemma 5.1 depending only on the data. Further, we choose the number A in the
form

A =202 1,

with some j to be fixed later and consider the cylinder Q,((4 — 1)0) = Q,(2/+(?=29),
where 6 = (L w)?t172,

Lemma 5.2. Suppose (5.2) and (5.4) hold. Then there exists a constant y > 0, depending
only on the data, such that for any positive integer jx, we have

fu=n =532 0 Qota—1)0)| = j(p_ﬁmg(m ~ ).

Proof. Consider the cylinder K>, X (—(A — 1)80”,0] and a time independent cutoft func-
tion {(x,7) = {(x) vanishing on K5, and equal to 1 in K, such that |D¢| < 207 L.
Applying the energy estimate from Proposition 2.1 with levels k; = p+ — 27/ lew for
j =0,...,jx— 1, we obtain that

// |D(u — kj)+|? dxdt
00,((4-1)0)

5/ §p9+(u,kj)dx+)’[/ (u—k;)5 |D¢|P dxdr.
Koox{—(A-1)00?} K3px(—(4-1)6¢7,0]

By the mean value theorem, the restriction iw < [L+ < 2w and the fact that the param-

eter ¢ is already fixed in Lemma 5.1 in dependence on the data, the first term on the
right-hand side of the preceding inequality is estimated by

Ew

2
(g k) dx < yo'™ (37) Kzl
4

< —era(3r) 124 =10

Y [E®

= 2 (57) 104 = Do)l

= or

/KzQ x{—(4—1)0o"}
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For the second term on the right, we use ¥ < u and the bound for | D¢|. Thus, we arrive at

Y

EW\P
//QQ((A_1)0)|D(M —kj)4|Pdxdt < Q_P(2_1> 10,((A —1))].

Next, we apply Lemma 2.2 in Chapter I of [4] with levels kj 11 > k; slicewise to u(-, )
for fixed t € (—(A — 1)0¢7, 0]. Taking into account the measure theoretical information
from (5.4), which implies

Hu(-.1) <k;j} N Kyl = 1v|K,| forallt € (—(A —1)60”,0],
and using Holder’s inequality, we conclude that

(kj1 —kj)[{u(-,1) > kjt1} N K|
N+1
< re |Du(-.1)| dx
Ru(-, 1) <k;j}N Kyl {kj<u(-,1)<kj+1}NK,

1/p
< Q[/ |Du(-,0)[” dx] [tk <u(-.1) <kjr) 0 Kol'™17
v {kj<u(-,t)<kjt1}NK,

Yo 1/p B
e DuC 017 ax] 14,01 = 145 O 7.
% {kj<u(-.t)<kj+1}NK,

Here, we abbreviated A; (¢) := {u(-,t) > k;} N K,. Further, we define 4; = {u > k;} N

0,((A—1)0). Integrating the preceding inequality with respect to ¢ over (—(A—1)60?,0]
and applying Holder’s inequality slicewise leads to the measure estimate

&

® yo 1/p _
el <220 [ b=k arar] i) - g
Y o ((4-1)8)

IA

7 57100((A = DO [14;] = Ay 1)V
Taking the power # on both sides, we find that
[4j 4177770 < p100((A = DOV 4] = A )

Finally, adding the inequalities with respect to j from 0 to j,. — 1, we obtain that

Jel A P17 <y 0,((A - 1)) P/P Y,
which is equivalent to

41.] = —oE5=100((4 = 1)O)].
Jx

To conclude, it suffices to replace j. by j« — 1 in the above line and adjust y. ]

5.3.3. A De Giorgi-type lemma. As in the preceding section, let ¢ € (0, 1) denote the
constant from Lemma 5.1 depending only on the data.
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Lemma 5.3. Suppose that the assumptions (5.2) and (5.3) hold true. Then there exists a
constant vy € (0, 1) depending only on the data such that if for some j. > 1, the measure
bound

{r—u= 22 0 04— 10)| = v11Qp((4 - 1))

holds true, where A = 27*@P=2 4+ 1 and 6 = (%w)‘”l_l’, then

cw )
pt—u> ShiT dein Qo/2((A—1)0).

Proof. Let M := 2 /*gw and define

K + M M ~ _kn+kn+1
TR Ty T T T
_ @ Q ~ _ On Tt 0Ont1

Qn—z PLESR Qn——2 )

Ky = Ko,, En = K5,
On = 00,(A= 1)), 0u = Q;5,((A—1)0).

We employ the energy estimate from Proposition 2.1 with cutoff functions ¢ that vanish
on the parabolic boundary of Q,, equal the identity in Q, and fulfill
n pn

2
D¢ <y=— and <yp——.
| CI_}'Q an Iézl_y(A_l)GQp

Using the condition 41‘1“’ < [L+ < 2 to estimate the terms on the right-hand side, we find

0?1 esssup (u- lgn)ﬁ_ dx + // |D(u — kp)4|? dxdt
—(A-1)0g2 <t<0 Y Kn On
pn g—1

S}’Qp <1+W>|An|

where we abbreviated

20n
=y—MP?(1 +&¥77)|4,],
QP

Ap ={u>ky,} N Q4.
Taking into account the choice of ¢, by an application of the Sobolev imbedding (see
Proposition 3.1 in Chapter I of [4]) and the preceding estimate, we conclude that

M \p ~
(W) |[Ant1] = /~ (u — kn) 87 dxdt
On

2‘2

=[], 10-Far avar| " e
<y /[ DI~ )2l axer]

X [ ess sup B (u—lgn)zd ]N+2|A |N+2
—(A-1)0g8 <t<0 Y Kn

ver
< yo W7 (o prr) ™ (g ) W g,
e’
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Hence, for the quantity Y ,, = |A,|/|Qx|, we deduce the recursive inequality

ybn((A — 1)9MP—2)N’.12

o Ntp 1+ 5E5
(1 +82 p)N+2 Yn N+2
w1

IA

Yn+1

p(p=2) o Ntp 1+ A
=yb"e N2 (142 P)Nr2 Y, V2

)

PQRN+p+2) .
where b = 2~ ~+2 , and p only depends on the data. Thus, the lemma on fast geometric

convergence, i.e., Lemma 4.1 in Chapter I of [4], ensures the existence of a constant v; €
(0, 1) depending only on the data such that ¥, — 0 if we assume that the smallness
condition Y, < v; holds true. [

At this stage, we conclude the reduction of oscillation in the remaining case where
(5.2) and (5.3) hold. To this end, denote by ¢ € (0,1), y > 0 and v; € (0, 1) the cor-
responding constants from Lemmas 5.1, 5.2 and 5.3. Choose a positive integer j, large

enough so that
Y
7, = V1
jép D/p
and notice Q,/2((A —1)0) D Qy/4(9), where A = 2/+(P=2) 1 1 Hence, applying in turn
Lemmas 5.2 and 5.3, we arrive at

Ew .
IL+ —u > ZJ*T a.e. n QQ/4(9)

This gives the reduction of oscillation

€
eSS 0SCQ, 4 () U = (1 — 2j*+1)w.

Recall the reduction of oscillation achieved in Section 5.2 via arguments of Section 4.2.
Namely, % & is chosen in the reduction of oscillation (4.9) and % 1o 1s chosen in the reduc-
tion of oscillation (4.10). Combining all cases gives the reduction of oscillation exactly as
in (4.12) with the choice
. {E Mo & }
n = min{= ,

20 2 20l
from which the rest of the proof can be reproduced just like in Section 4.

6. Proof of boundary regularity

Since Theorems 1.4—1.7 can be proved in a similar way as the interior Holder continuity,
we will only give sketchy proofs, where we keep reference to the tools and strategies used
in the interior case and highlight the main differences.

6.1. Proof of Theorem 1.4

Consider the cylinder Q, = K,(x,) x (0,07~'] C ET whose vertex (x,,0) is attached to
the initial boundary E x {0}. For ease of notation, assume x, = 0 and set

ut = esssupg u, M- =essinfg,u, @ > nt—pn.
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Let0 = (%w)qﬂ_P. We may assume that
00(0) C Qo = K, X (—0P71,0], such that €SS 0SCQ,(g) U < @;
otherwise we would have
0w < 491/(},_‘1_1)'
Like in the proof of interior regularity, we start by distinguishing between the main cases
» when u is near zero: 0~ < w and u* > —w,

» when u is away from zero: =~ > @ or pt < —w.

The second case reduces to the corresponding estimate for weak solutions to parabolic
p-Laplacian equations, see Lemma 11.1 in Chapter III of [4]. In the first case, which
implies [t ®| < 2w, we proceed by a comparison to the initial datum u,. More precisely,
we assume that either

+ 1 -, 1 :
BT —z@ >supg Uy OF M7+ z@ < infg, u,,
since otherwise, we would obtain the bound

ess0sco, U < 2SS 0SCk, Uop.

As both cases can be treated analogously, we consider only the second inequality with p™
and work with u as a super-solution. Using |~ | < 2@, Lemma 3.2 (with § = 1/4) yields
a constant v, € (0, 1), depending only on the data, such that

u>p + éw ae.in 0; 1= Ko/2 % (0,v,607].
Thus, we arrive at the reduction of oscillation
essoch1 u < %w.
Finally, taking the initial datum into account, we conclude that
ess0sCy U < max{%co, 20,,(0)}
Now we may proceed by an iteration argument as in Section 7.1 of [1] to conclude the

proof.

6.2. Proof of Theorem 1.6

Consider the cylinder Q, = K,(x,) X (1, — 0771, 19] whose vertex (x,, 7,) is attached
to S7. Suppose that g is so small that z, — 0?~! > 0 and ¢ < g,, where g, is the constant
from the geometric condition (G). Further, we assume that (x,, f,) = (0, 0) for ease of
notation and define

[l,+ = esSSuUpg ng, U, u- =essinfg ngru, > [.l,+ —pn
Let 0 = (% ®)?T17P_ For some A > 1 to be determined in terms of the data, we may
assume that
Q,(A0) C Q,, such that essoscg,(4g)nEr U < @;
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otherwise we would have
w < Lo"/?P747D  where L = 44"/(=4=D,
As in the proof of interior Holder continuity, we consider the main cases

(6.1a) when u is near zero: p~ <éwand pt > —fw;

(6.1b) when u is away from zero: u~ > fw or p < .

Here & € (0, 1) will be fixed in terms of the data and o, where o, comes from the geo-
metric condition (G) of 0.
When (6.12) holds true, we either arrive at the bound

€ss0SCo,nEy U < 2€8805Co, NSy &

or we continue with a comparison to the boundary datum g, i.e., we are concerned with
the cases either

pt— %w > Supg,nsy § Of M+ %w <infg,nsy 8-

Since the inequalities can be treated analogously, let us consider only the second one.
Observe that k satisfies the second inequality in (2.2) with Q r s replaced by Q,, since
(u — k)— vanishes on Q, N Sy forall k < u= + %w. Therefore, we may employ the
energy estimate in Proposition 2.2 for super-solutions if we extend all integrals in the
energy estimates to zero outside of Er. The extended function (v — k)_, which will be
denoted by the same symbol, is still contained in the functional space in (1.6) within Q,.

The proof of Lemma 4.2 of [1] can be adapted to the current situation, bearing in mind
that we have assumed that dE fulfills the property of positive geometric density (G), and
therefore for k = u= + A—l‘w, we have

(6.2) Hug (1) —p~ = ‘1—‘0)} N Ko(xo)| > ax|K,| forallt € (—A60?,0].

Here we have used u;_ as the extension of u to the whole Q,, defined by

y= = k—(u—k)_ in Q, N ET,
) k in 0, \ E7.

By Lemma A.2, the extension u;_ turns out to be a local, weak super-solution_to (1.2)
in Q,, with a properly extended principle part A, cf. Appendix A. The extended A enjoys
the same type of structural conditions as in (1.3). For simplicity, we still use u to denote
the extended function in what follows.

Consequently, like in Lemma 4.2 of [1], there exists y, depending only on the data
and o, such that for any positive integer j., we have

_ 0] A~ Yy ~
fu—n" =575} N 00| = i 10l
*

where .
0o = Ko x (-2 2w)1H17PgP 0),
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provided |p~| < 27/*"2@. Assuming this condition on g~ is fulfilled and letting v be
the number determined in Lemma 3.1, we may choose j, to satisfy that y j-(»=D/p <y,

Then setting
£ = 272 4 = 2/x(p=q=1)

Lemma 3.1 implies that

u—p~ > %gw a.e.in Qp/2(A10),

which in turn yields
1
eSS 0SCH . npy U <(1-38o.

Hence, the oscillation is reduced when |~ | < £w for some & € (0, 1) determined by
the data and o«. To proceed, one still needs to handle the situation when u~ < —£w, since
this is not excluded in (6.1a).

Our current hypothesis to proceed consists of the measure information (6.2) and that
—2w < p~ < —£w, as we have assumed u ™ > —£w in (6.1a). From this, we have two
ways to proceed: one is to use the expansion of positivity (Lemma 3.3); the other is to
follow the arguments in Sections 5.3.2-5.3.3. We only describe the first option.

In fact, by Lemma 3.3, the measure information (6.2) translates into the pointwise
estimate

u>p +ne ae.in Qyn(A20),

for some n € (0, 1) depending on the data and &. This gives us a reduction of oscillation
as usual, and hence finishes the reduction of oscillation under the condition (6.1a). The
constant A, is determined by the data in this step, through b and n of Lemma 3.3. The
final choice of A is given by the larger one of A; and A,.

As in the interior case, we repeat the arguments inductively until the second case
of (6.1) is satisfied for some index j for the first time. Starting from j, the equation
behaves like the parabolic p-Laplacian type equation within Q; N Er. In order to render
this point technically, we adapt the proof for interior regularity, where we use in particular
the boundary regularity result Proposition 7.2 of [1] for the parabolic p-Laplacian near
the lateral boundary.

6.3. Proof of Theorem 1.7

First of all, we observe that the second proof of interior regularity (Theorem 1.1) in Sec-
tion 5 is based solely on the energy estimates in Proposition 2.1 and a corresponding
Holder estimate for solutions to the parabolic p-Laplacian.

A key ingredient —the Sobolev imbedding (cf. Proposition 3.1 in Chapter I of [4])—
was used in order to establish Lemma 3.1, Lemma 3.2, Lemma 3.5, Lemma 5.1 and
Lemma 5.3, assuming the functions (u — k)1¢? vanish on the lateral boundary of the
domain of integration. This assumption in turn is fulfilled by choosing a proper cutoff
function ¢. In the boundary situation, similar arguments have been employed in Section 6.2
and Section 6.1 by restricting the value of the level k according to the Dirichlet data as
in (2.2) and the initial data as in (2.1), respectively.

However, in the current situation of Neumann data, the functions (¥ — k)1¢? under
conditions of Proposition 2.4 do not vanish on S7 and therefore such a Sobolev imbedding
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cannot be used in general. On the other hand, a similar Sobolev imbedding (cf. Proposi-
tion 3.2 in Chapter I of [4]) that does not require functions to vanish on the boundary still
holds for the functional space

ueCO,T;LP(E)) NLP0,T; WHP(E)).

The appearing constant now depends on N, the structure of dE and the ratio T'/|E|?/N
which is invariant for cylinders of the type Q, = K, x (—0?,0] and Q, N ET as well,
provided 0F is smooth enough. In particular, Lemmas 3.1, 3.2, 3.5, 5.1 and 5.3 can be
proved in this boundary setting.

Finally, we remark that the use of De Giorgi’s isoperimetric inequality (cf. Lemma 2.2
in Chapter I of [4] and Theorem 4.2.1 of [17]) is permitted for extension domains, and thus
in particular for C '-domains. Thus, the machinery used in Lemma 5.2 can be reproduced.

For the proof of Theorem 1.7, we now consider a cylinder Q, = K,(x,) X (fo —
0”71 1,] whose vertex (x,, f,) is attached to St and g is so small that 7, — o?~! > 0.
According to the preceding considerations, we proceed exactly as in the second proof of
interior regularity in Section 5. Obviously, in the present situation all cylinders have to
be intersected with E7. In this way, we conclude a reduction of oscillation for the lateral
boundary point (x,, ).

A. On the notion of parabolicity

We collect some useful lemmas regarding the notion of parabolicity for (1.2)—(1.3).

Lemma A.1. Let u be a local weak sub(super)-solution to (1.2)—(1.3). Then, for any
k € R, the truncation k &+ (u — k)+ is a local weak sub(super)-solution to (1.2)—(1.3).

The analysis has been carried out in Appendix A of [1] for ¢ = p — 1. However, the
same proof actually works for all p > 1 and g > 0 after minor changes.

In particular, when u is a local weak solution, u+ and u_ are non-negative, local weak
sub-solutions to (1.2)—(1.3). By Theorem 4.1 of [2], they are locally bounded and hence u
is also.

In order to formulate an analogue of Lemma A.l near the lateral boundary St for a
sub(super)-solution u to (1.4), consider the cylinder Qg s = Kgr(x,) % (t, — S, 1,) whose
vertex (X,, o) is attached to S7. Further, for a level k satisfying (2.2), we are concerned
with the following truncated extension of # in Qg s:

. {k £ (u—k)s inOps N Er.
k inQrs \ ET.

Moreover, the extension of A, defined by

A(x,t,u, é’) in QR,S NnEr,
¢1P=2¢ in Qrs \ ET,

is a Carathéodory function satisfying (1.3) with structure constants C, and C; replaced by
min{1, C,} and max{1, C; }, respectively. In this situation, the following lemma holds.

Alx,t,u,8) = {
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Lemma A.2. Suppose u is a sub(super)-solution to (1.4) with (1.3) and the level k satis-
fies (2.2). Let u,f be defined as above. Then u,ﬂf is a local weak sub(super)-solution to (1.2)
with Ain QRr.s.
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