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Sharp superlevel set estimates
for small cap decouplings of the parabola

Yugqiu Fu, Larry Guth and Dominique Maldague

Abstract. We prove sharp bounds for the size of superlevel sets {x eR2: | f(x)|>a},
where @ > 0 and f:R? — C is a Schwartz function with Fourier transform sup-
ported in an R~ !-neighborhood of the truncated parabola P 1. These estimates imply
the small cap decoupling theorem for P! of Demeter, Guth, and Wang (2020) and
the canonical decoupling theorem for P! of Bourgain and Demeter (2015). New
(¢4, LP) small cap decoupling inequalities also follow from our sharp level set esti-
mates.

1. Introduction

In this paper, we further develop the high/low frequency proof of decoupling for the
parabola [9] to prove sharp level set estimates which recover and refine the small cap
decoupling results for the parabola in [8]. We begin by describing the problem and our
results in terms of exponential sums. The main results in full generality are in §2.

For N > 1, R € [N, N?],and 2 < p, let D(N, R, p) denote the smallest constant so
that

(1.1) IQRI*I/
ORr

for any collection E C [—1, 1] with |E| ~ N consisting of ~ ﬁ-separated points, ag € C
with |ag| ~ 1, and any cube Qg C R? of sidelength R.

A corollary of the small cap decoupling theorem for the parabola in [8] is that if
2 < p<2+42sfor R = N¥, then

S ase((x.0)- ¢.82)| dxdi < DIN.R. p) NP/

E€E

(1.2) D(N.R, p) < C.N°®.

This estimate is sharp, up to the C, N ¢ factor, which may be seen by Khintchine’s inequal-
ity. The range 2 < p < 2 + 2s is the largest range of p for which D(N, R, p) may
be bounded by sub-polynomial factors in N. The case R = N?2 of (1.2) follows from
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the canonical ¢? decoupling theorem of Bourgain and Demeter for the parabola [5]. For
R < N? and the subset E = {k/N },1(\’:1, the inequality (1.1) is an estimate for the moments
of exponential sums over subsets smaller than the full domain of periodicity (i.e., N2 in
the z-variable). Bourgain investigated examples of this type of inequality in [3,4].

By a pigeonholing argument (see Section 5 of [9]), (1.2) follows from upper bounds
for superlevel sets U, defined by

Uy = {(x,z) €R?: ‘ 3 age((x.0)- (s,gz))‘ > a}.

E€E

In particular, (1.2) is equivalent, up to a log N factor, to proving that for any & > 0 and for
R = N°¥,

(1.3) a2 | Uy N QRr| < Cs REN'TSR?

when E and g satisfy the hypotheses following (1.1). In this paper, we improve the above
superlevel set estimate for all « > 0 strictly between N/2 and N .

Theorem 1.1. Let R € [N, N?]. For any & > 0, there exists C; < oo such that

ME Yeezlagl?  ifa®> R,

Oé4
U N Qr| = Ce N %des lag|* if N <a®> <R,
R? ifa® <N,

whenever 8 C [—1,1]isa 2 %-separated subset, |ag| < 1 foreach & € E, and Qg C R?
is a cube of sidelength R.

Our superlevel set estimates are essentially sharp, which follows from analyzing the
function F(x,7) = Y.V, e((x.1) - (n/N,n?/N?)). It is not known whether the implicit
constant in the upper bound of (1.2) goes to infinity with N except in the case that p = 6
and s = 2, when the same example F(x,7) = YN e((x.t) - (n/N,n%/N?)) shows
that D(N, N2,6) = (log N), see [2]. Roughly, the argument is that for each dyadic value
o € [N3/*, N], one can show by counting the “major arcs” that

af [{(x,t) € Qn2 i |F(x,1)| ~a}| = N*- N3,

Since there are ~ log N values of «, the lower bound for |, 0y | F|® follows. Theorem 1.1
implies that the corresponding superlevel set estimates (1.3) are not sharp for 1 < s < 2,
unless o« ~ N or «? ~ N, which leads to the following conjecture.

Conjecture 1.2. Lets € [1,2) and 2 < p < 2 + 2s. There exists C(s) > 0 so that
D(N.N*, p) = C(s).

A more refined version of Theorem 1.1 leads to the following essentially sharp (£9, L?)
small cap decoupling theorem, stated here for general exponential sums.
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Corollary 1.3. Let3/p +1/q < 1, and let R € [N, N2]. Then for each & > 0, there exists
C, < o0 so that

H Zaée((x’f) : (5752))H < CgNg(Nl_%_éR% + N%—éR%) (Z |a$|q)1/‘1'
£E€B

LP(BR) — p

In the above corollary, the assumptions are that E isa 2 %-separated subset of [—1, 1]

and that ag € C.

2. Main results

We state our main results in the more general set-up for decoupling. Let P! denote the
truncated parabola

{(t.1%) |t <1},

and write Ng—1(P') for the R~!-neighborhood of P! in R?, where R > 2. For a parti-
tion {y} of Ng-1(P') into almost rectangular blocks, an (¢2, L?) decoupling inequality is

1/2
2.1) 1£ILr@o = DR (DI os)
Y

in which £:R2 — C is a Schwartz function with supp / C Ng—1 (P!) and fy means the
Fourier projection onto y, defined precisely below. When we refer to canonical caps or
to canonical decoupling, we mean that y are approximately R~/ x R~ blocks corre-
sponding to the £2-decoupling of the paper [5]. In this paper, we allow y to be approximate
R~8 x R™! blocks, where 1/2 < B < 1. This is the “small cap” regime studied in [8].
We also consider (€7, L”) decoupling for small caps, which replaces (3_, | fy ||12,)1/ 2 by
Q) Ity ||Z)1/ 7 in the decoupling inequality above (see Corollary 2.3).

To precisely discuss the collection {y}, fixa 8 € [1/2,1]. Let = P (R, B) = {y} be
the partition of Nz-1(P!) given by

(2.2) || {G.0) e Mg (P k[RPIT! < x < (k + D[RPITY)
k| <[RF1—2

and the two end pieces
{(x,1) € N1 (P i x < =1+ [RETT L] {(x. 1) € Mg (PY) : 1 = [RP]™! < x}.

For a Schwartz function f:R2 — C with supp f C Ng-1 (P1), define for each y e P(R. B),
fw = [ Feyema
v

For a, b > 0, the notation a < b means that a < Ch, where C > 0 is a universal constant
whose definition varies from line to line, but which only depends on fixed parameters of
the problem. Also, a ~ b means C~'b < a < Cb for a universal constant C.
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Let Uy := {x € R? : | f(x)| > a}. In Section 5 of [9], through a wave packet decom-
position and series of pigeonholing steps, the bounds for D(R, p) in (2.1) follow (with an
additional power of (log R)) from bounds on the constant C(R, p) in

a” [Us| < C(R, p) #{y = fy # ODP2 Y N1 £13
Y

for any o > 0 and under the additional assumptions that || fy llec < 1, [|.fy 5 ~ |l fy |13 for
each y. Thus decoupling bounds follow from upper bounds on the superlevel set |U,|. In
this paper, we consider the question: given & > 0 and a partition {y}, how large can |Uy|
be, varying over functions f satisfying || f; [lc < 1 for each y? We answer this question
in the following theorem.

Theorem 2.1. Let B € [1/2,1] and R > 2. Let f:R? — C be a Schwartz function with
Fourier transform supported in Ng-1(P) satisfying || fylloo < 1 for all y € P(R, p).
Then for any a > 0,

R2ﬁ71 .
7z Zy”f)’”iZ(RZ) lf 052 > Rv

Ua V=R R = GRS BES 1/ 120psy i RE <0 <R,

ab

R2 if @2 < RB.

Each bound in Theorem 2.1 is sharp, up to the C, R® factor, which we show in §3.

Define notation for a distribution function for the Fourier support of a Schwartz func-
tion f with Fourier transform supported in Ng-1(P!) as follows. For each 0 < s < 2,
let

As) = sup #{y 1y Nw(s) # 0. f, # O},
w(s)

where w(s) is any arc of P! with projection onto the £;-axis equal to an interval of
length 5. The following theorem implies Theorem 2.1 and replaces factors of R? in
the upper bounds from Theorem 2.1 by expressions involving A(-), which see the actual
Fourier support of the input function f.

Theorem 2.2. Let 8 € [1/2,1] and R > 2. For any f with Fourier transform supported
in Ng-1(P1) satisfying || fylloo < 1for eachy € P(R, B),

1 . A(1)2
& max AT RTAG) L I A3 if & > e

|Uy| < Ce R?
A(1)2 . A(1)2
W= S I 113 if 0 < — i

in which the maxima are taken over dyadic s, R B <s < R71/2,
See §2.1 for a discussion of the proof of Theorem 2.2.

Corollary 2.3 ((/4, L?) small cap decoupling). Let3/p + 1/q < 1. Then

a1 B 1/q
||f||LP(BR) S CE RS (Rﬁ(l l/q) p(1+/3) _I_ Rﬂ(l/2 l/q)) (Z”fy”‘]{p(Rz))
Y

whenever f is a Schwartz function with Fourier transform supported in Ng-1(P1).
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The powers of R in the upper bound come from considering two natural sharp exam-
ples for the ratio ||f||fp(BR)/(Zy I fy ||Z)p/q. The first is the square root cancellation

example, where | f,| ~ yp, forall y and f = }_ e, f, where e, are &1 signs chosen
(using Khintchine’s inequality) so that ||f||£,,(BR) ~ RBPIZR?,

pla  RPP/2ZR2
» g — pBp(1/2-1/q)
1A/ (018)" 2 o = R |
y

The second example is the constructive interference example. Let f, = RI*A ﬁy, where 71,
is a smooth bump function approximating x,. Since |f| = | Zy fy| is approximately

constant on unit balls and | (0)| ~ R?, we have

pla RPP

b4 q - _ pBr(-1/9)—1-B
102/ (0H18) ™ % <gares = R .
Y

There is one more example which may dominate the ratio: The block example is f =
R'*F Zycg 7,,, where 6 is a canonical R™'/2 x R~ block. Since f = fg and | fy| is

approximately constant on dual ~ R'/2 x R blocks 6*, we have

rlq R(ﬂ_l/z)p R3/2
D q > — pB-1/2)p(1-1/9)+1/2-8
102/ (CI18) ™ 2 ~G=mmra s = R _
Y

One may check that the constructive interference examples dominate the block example
when 3/p + 1/q < 1. We do not investigate (/¢, L?) small cap decoupling in the range
3/p + 1/q > 1 in the present paper.

The paper is organized as follows. In §3, we demonstrate that Theorem 2.1 is sharp
using an exponential sum example. In §4, we show how Theorem 2.1 follows easily from
Theorem 2.2 and how after some pigeonholing steps, so does Corollary 2.3. Then in §5,
we develop the multi-scale high/low frequency tools we use in the proof of Theorem 2.2.
These tools are very similar to those developed in [9]. It appears that a more careful version
of the proof of Theorem 2.2 could also replace the C, R® factor by a power of (log R),
as is done for canonical decoupling in [9]. Finally, in §6, we prove a bilinear version of
Theorem 2.2 and then reduce to the bilinear case to finish the proof.

2.1. Overview of the proof of Theorem 2.2

Versions of the high/low method in which we analyze high-frequency and low-frequency
portions of functions separately have been used in [10] and [9]. The original small cap
decoupling result from [8] also uses a high/low argument to prove a certain refinement of
the planar Kakeya estimate.

The proof of Theorem 2.2 closely follows the argument from [9], which is summarized
in Section 2 of [9]. We briefly recall the high/low argument in [9], and will highlight the
new aspects of adapting the argument to small caps y.

We write gx = ), | fy|> for canonical caps 7 of dimensions R;l/ 2 % R;', where

Ry = Rk® € [1, R] for some fixed ¢ > 0. Fork = 1,..., N with gy = 34 | fo|?, we
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consider sets
Qr = {x : gg(x) high-dominated, gr41(x),..., gn (x) low-dominated}.

Here we say g (x) is low-dominated if gx (x) < 2|gx * 7;|(x), and high-dominated oth-
erwise. The function 7y is a smooth bump adapted to B ;12 (0) in the frequency space.
k

Essentially, the “low lemma” (Lemma 3.24 in [9]) says that when gk (x) is low-dominated,
we have |gr(x)] < |gk+1(x)|, and the “high lemma” (Lemma 3.25 in [9]) states that
| fo|* — | f.|* * 1, are essentially orthogonal, and therefore

/|gk—gk*ﬁk|2§[2|ffk|“.
17

Another important step in [9] was to observe that on U, N 2, one could prune the wave
packets of f to arrange for the upper bound | f, [cc X #6/c for all ti. These three
ingredients allowed a re-proof of the canonical cap decoupling of P! in [5].

Here is how we adapt the argument from [9] to the small cap case. Write G =
6, | .fo, |7 for small caps 6 of dimension R™1/2R7kex R~ In particular, Go= ", | fo|?
is the square function for the canonical caps 6, and equals to gn defined in the previous
paragraph. Then fork = 1,..., M with Gy =}, | fy |2, we consider sets

Ax = {x : Gg(x) high-dominated, Gg1(x),..., Gy (x) low-dominated}.

Here we say that G (x) is low-dominated if G (x) < 2|G * x;|(x), and high-dominated
otherwise. The function y; is a smooth bump adapted to Bg-1/2 g-+1.(0) in the fre-
quency space. Adopting the argument from [9], when Gy (x) is low-dominated, we would
have |G (x)| < |Gg+1(x)|, and when Gy (x) is high-dominated, we could exploit orthog-
onality properties of | fg, |* — | fg,|* * Yk as the supports of their Fourier transforms have
some quantitatively controlled overlap. In Theorem 2.2, we have the additional hypothe-
sis that || fy |0 < 1 for all y, which leads to a trivial upper bound of || fy, [0 < #y C Ok.
To prove Theorem 2.2 in the case involving Ag, it turns out that this trivial L bound
suffices, so we do not need to prune the wave packets to get an L bound on fj, of
the form #y /«. This allows us to greatly simplify the cases involving square functions at
intermediate small cap scales. In particular, we only need to consider the high set H on
which |Go(x)| < |Go * ¥~ g-s| and off of which we have the low-dominance inequality
Go(x) < 1Go * X <g-s8|- On the high set, we could simply combine the orthogonality-based
estimates of all intermediate scales into one estimate, which will be Lemma 5.12 below.
If Gy satisfies the low-dominance inequality, then we will have Gy < A(1) (Lemma 5.8
below), and we consider more high/low cases involving canonical block square func-
tions Zrk | fz.|* as in the previous paragraph. The low-dominance inequality Go < A(1)
for Gy is precisely what allows us to re-initiate the pruning process from [9] to guaran-
tee || fz, lloo ~ #y /o, which is more efficient to use in the cases involving canonical block
square functions. Aside from this difference in the pruning process, much of the remainder
of the argument resembles [9].

Compared with the argument in [9], we take a more unified approach of applying
the high/low method at every scale including the small cap scales 8y, while [9] uses the
high/low method to study a Kakeya-type problem for wavepackets at the canonical scale 6
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(see Section 5.2 of [9]) and combines it with a refined decoupling inequality of canonical
caps to infer small cap decoupling. Having a systematic high/low argument at every scale
allows us to get superlevel set estimates which are more accurate than the ones that can be
deduced from the small cap decoupling inequality in [9].

3. A sharp example

Because we will show that Theorem 2.2 implies Theorem 2.1, it suffices to show that
Theorem 2.1 is sharp, which we mean up to a C; R® factor. Write N = [ R?7. The function
achieving the sharp bounds is

N 2

F(x1,x3) = Z (_xl ]]i;zxz)n(xl X2),

where 7 is a Schwartz function satisfying 7 ~ 1 on [-R, R]? and supp 77 C Bg-1. We will
bound the set
Uy = {(x1,x2) € [-R, R]? : |F(x1,x2)| > a}.

Case 1. R < a?.

Suppose that @ ~ N, and note that F(0,0) = N and | F(x1,x2)| ~ N when |[(x1,x2)| <
1/103. Using the periodicity in the x; variable, there are ~ R/N many other heavy balls
where | F(x1,x2)| ~ N in [-R, R]?. For « in the range suppose that R < a? < N2, we
will show that Uy is dominated by larger neighborhoods of the heavy balls.

Let r = N2/a? and assume without loss of generality that r is in the range R® < r <
N2/R ~ R?*#~1 « N. The upper bound for |Uy| in Theorem 2.1 for this range is

N2 N2
|Ue| < Cg Ram ZHF ||2 ~ Cq R‘s—NR2

To demonstrate that this inequality is sharp, by the periodicity in x1, it suffices to show
that U, N B,| = r2. Let ¢,—1 be a nonnegative bump function supported in B,-1 /2 With
¢p-1 2 1on B,-1,4. Let n, = r*(¢,-1 * ¢,—1)” and analyze the L? norm || F||12(,,). By
Plancherel’s theorem,

k2

I1F 12 = [ 1F0~ /)Z o) r )
N

ZZi ((k k/,kz N(Zk/)2>)~N~N/r~r2=rN2.
k=1k'=1

Next we bound | F[|p4(p.,) above. It follows from the local linear restriction statement
(see Theorem 1.14, Proposition 1.27 and Exercise 1.32 in [7])

1158,y S CeROOr 1 £ 1 ae
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that
N
k k2 4
4
||F”L4(BRsr) ~ H X_:e(ﬁxl + FXZ) nr(xl,XZ) L4(BRge,)
N

k k2 4
- 8_3H A(___)‘ .
SCRr I;Ur § (N’Nz ) L4(R2)

The L* norm on the right-hand side is bounded above by

12 G0 = 00 [ e (3 ) s

Sy (r2)3/2]; (- (5 20 Jae ~ o

This leads to the upper bound || F ||4L4(BRer) < (log R)N*.

Finally, by dyadic pigeonholing, there is some A € [R™1990 N so that || F || iz ) <
(log R)A?|{x € Bge, : | F(x)| ~ A}| + CcR™2%90 The lower bound for ||F||iz(m) and the
upper bound for | F |7, (Bge, tell us that

A2rN? ~ 22| Fll7a,y S (log R)A*[{x € Brey 1 [F(x)| ~ A}| + CeA*RT20%
S (0g R) | FlJap,.,, + CeA* R S Co REN 4 Co AR,

Conclude that A2 < C, R* N2/r ~ C¢ R® o?. Assuming R is sufficiently large depending
on g,

2 ~ (log R)A2|{x € Brey : |F(x)| ~ A} < Co RE(N?/r)|{x € Bger : |F(x)| ~ A},
50 [{x € Brey : |[F(x)| ~ A} = C;'R™*r2 and A2 = C;'R™*N?/r ~ C'R™%02.

Case2. RP < a? <R.
Let ¢, a, and b be integers satisfying

(3.1) godd, 1<b<qg<N?3 (b,g)=1, and 0<a<gq.
Define the set M(q, a, b) to be
M(g.a,b) := {(x1,x2) € [0, N]x [0, N*] : |x1 — ¢N| < . %2 — 2N?| < 5 }-

Lemma 3.1. For each (q,a,b) # (q',a’,b’), both tuples satisfying (3.1), M(q,a,b) N
M(q',a',b") = 0@.

Proof. If b/q = b’ /q’, then using the relatively prime part of (3.1), b = b’ and g = ¢’.
Then we must have a # a’, meaning that if x1 is the first coordinate of a pointin M(q,a,b)
NM(q,a’,b’), then

la —a’'|N
q

> N7,

a a’
m—IOZ‘xl—gN‘—f-’xl—EN)i
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which is clearly a contradiction. The alternative is that b/q # b’/q’, in which case for x;
the second coordinate of a pointin M(q,a,b) N M(q',a’,b’),

1 !, I\ N2 2
i> ‘XZ_IZNZ‘+’X2_b_N2‘>M>N_>N2/3’
1010 ~ q q - qq' T qq ~
which is another contradiction. [

Lemma 3.2. Foreach (x1,x2) € M(q.,a.b), |F(x1,x2)| ~ N/q"/2, here meaning within
a factor of 4.

Proof. This follows from Proposition 13.4 in [7]. ]

Proposition 3.3. Let R? < o® < R be given. There exists v € [0, N2] satisfying

253
[{(x1.x2) € [0, RI? 1 [F(x1,x2 +0))| Z @} 2

as
Proof. First note that, by the N -periodicity in x,

{(x1.x2) € [0, RI? 1 [F(x1,x2 + )| = o}

2 112 € (0N [0, R £ [FGrn, 2 4+ ) 2 @)l

The function F is N2 periodic in x, but R < N2, so we need to find v € [0, N 2] making
the set in the lower bound above largest.

By Lemma 3.2, it suffices to count the tuples (g, a, b) satisfying (3.1), ¢ < N2/(16a?),
and |é—’N 2 —y| < R, where v is to be determined. Begin by considering the distribution of
points /g in [0, 1], where 1 <b < g ~ N2/a?, (b,q) = 1. As in the proof of Lemma 3.1,
ifb/q #b'/q' then |b/q —b'/q'| Z &®/N*. There are 2 3_, 2,2 ¢(q) many unique
points b/q in [0, 1] satisfying 1 <b < g ~ N2/a?, (b,q) = 1, with ¢ denoting the Euler
totient function. Use Theorem 3.7 in [1] to estimate Zq~N2/a2 o(q) ~ N*/a*, as long
as N/a is larger than some absolute constant. By the pigeonhole principle, there exists
some R/N?2 interval I C [0, 1] containing ~ [1:—: %] many points b/q with 1 <b < g ~
N2/a? and (b, q) = 1. There are also ~ N2 /a? many choices for a to complete the tuple
(¢, a.b) satisfying (3.1). Let ¢ denote the center of / and take v = ¢ N2 in the proposition
statement to conclude that

4

[0x1.02) € (10 N < [0, R £ [F(va,xz 4 0)| = 0] 2 g

which finishes the proof. ]

Note that Proposition 3.3 shows the sharpness of Theorem 2.1 in the range R <« < R

since 28 28
R 2 RT g2
?Zyj||Fy||2~a—6R R =

N3R?
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The sharpness of the trivial estimate |U, N [-R, R]?| < R? in the range o? < R? follows
from Case 2, since for o2 < R#B s

|Uy N [-R, R)?| > |U ﬂ—RR2>R—2ﬂ F,||? ~ R?
o \RP| 2 [Ugsiz N (=R RP| 2 g DIyl ~ R2.
14

4. Implications of Theorem 2.2

Proof of Theorem 2.1 from Theorem 2.2. First suppose that a? > WDRZ‘I)A(S)' Then

max A(s 'R A(s) < max(s'R7'RP)(sRP) = R?A~!
s s
R*$-1  ifa? > R,
<
~ | R?#/a?® if R <a® <R.

A 2
Now suppose that a? < m. Then

A2 _ {Rzﬁ—l ifa? > R,

o2 R*#ja? if R <a? <R.

Proof of Corollary 2.3 from Theorem 2.2. To see how this corollary follows from Theo-
rem 2.2, first use an analogous series of pigeonholing steps as in Section 5 of [9] to reduce
to the case where || fy |00 < 1 for all y and there exists C > 0 so that || f) |5 is either 0 or
comparable to C for all y. Split the integral

fur=" > s

R—1000§a 5R5

where Uy = {x : | f(x)| ~ «}, and assume via dyadic pigeonholing that
[ sariud

(ignoring the case that the set where | f| < R™'%%0 dominates the integral, which may
be handled trivially). The result of all of the pigeonholing steps is that the statement of
Corollary 2.3 follows from showing that

a?|Uy| < C, RE(RBP(I—I/q)—(HB) + Rﬂp(l/Z—l/q))A(l)p/q—l Z”f””%’
Y
where f satisfies the hypotheses of Theorem 2.2. The full range 3/p + 1/ < 1 follows
from p in the critical range 4 < p < 6, which we treat first.
Case4 < p <6.
There are two cases depending on which upper bound is larger in Theorem 2.2.
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First we assume the L4 bound holds, in which case

a®|Uy| < Coe REaP* max A(s ' R™1) A(s) Z||fy||§
s

p—4

/q
~ C¢ R? - 1max)t(s 'R 1))&(s)(X:nyH )
A(1)P4 /
S GRS man (R R H@) (LA )"

< € R A)PI=1D=0 g2 (S0 £ 0
14

Since p(1 —1/¢) — 3 > 0, we may use the bound A(1) < R to conclude that
A(1)PA-VD)=3 g2B—1 < pBr(-1/9)=3+28—1 — RAP(I-1/9)=(+h)

The other case is that the L® bound holds in Theorem 2.2. We may also assume that
a? > A(1) since otherwise we trivially have

- 41— rlq
&7 |Ual = 27270 YT 13 ~ 2P (3T £, 19)
14 Y

< RO (Y 40
Y

where we used that g > 2 since 4 < p <6and 3/p + 1/¢ < 1. Now using the assumptions
a? > A(1) and p < 6, we have

/
o [Ua] = Co RO P 21220 ( Y 1,18)""
Y

_ pla _ r/q
~ CREAMPIZVD (37 £ 18)7 5 CoRERPPAZVD (37 £ 10) 7
v ¥
Subcase 3 < p < 4. Suppose that & < RP/2. Then using L2-orthogonality,
B(p— B(p— _ rlq
o? [Ug] = RECD Y| fy 3 ~ RECD 20020 (37 £, )
y ¥

Since in this subcase, 1 — p/q > 1 — (p — 3) > 0, we are done after noting that
RE(P=Dy(1)1-Pla < REP1/2-1/0),

Now assume that & > R?/2 and use the p = 4 case above (noting that R*#(1-1/0)=(1+8) <
R4ﬁ(1/2—1/q)) to get
ot

a? Uyl < |Ual < R™2G-P ¢, RE R¥O/21D ()41 37 1,13

- B/2)4—
(RB/2)i=r -

< Co RERPPOPZZID 3 (1)Pla=1 3 £ |12,
Y
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Case 6 < p.

In this range, we use the trivial bound o < A(1) and the p = 6 case above (noting that
ROBU/2-1/a) < REBU-1/a)=(148)) 1 get

@ |Uy| < AM(1)P 76 a® |Uy| < A(1)P76 C, RE ROPU-VD=CHB) 3 (1)6/a=1 X7 £ |12

y
A(1)\ (p—6)(1-1/9) 1) -
_ ( = ) C, R RPPO-10)=(1+B) ) (yp/a IZ”fy”%
%
< C,R® RPBA—=1/q)—(1+8) )L(l)”/q_l Z“f””%' n
y

5. Tools to prove Theorem 2.2

The proof of Theorem 2.2 follows the high/low frequency decomposition and the pruning
approach from [9]. In this section, we introduce notation for different scale neighborhoods
of P1, a pruning process for wave packets at various scales, some high/low lemmas which
are used to analyze the high/low frequency parts of square functions, and a version of a
bilinear restriction theorem for P!.

Begin by fixing some notation, as above. Let 8 € [1/2, 1] and R > 2. The parameter
o > 0 describes the superlevel set

Up = {x € R?: | f(x)] = a}.

For £ > 0, we analyze scales Ry = R*®  noting that R~1/% < R;I/Z <1.Let N distinguish
the index so that Ry is closest to R. Since R and Ry differ at most by a factor of R?, we
will ignore the distinction between Ry and R in the rest of the argument.
Define the following collections, each of which partitions a neighborhood of P into
approximate rectangles:
(1) {y} is a partition of Ng-1(P') by approximate R~# x R~! rectangles, described
explicitly in (2.2).
(2) {6} is a partition of Ng-1 (P') by approximate R~'/2 x R~ rectangles. In particular,
let each 6 be a union of adjacent y.
(3) {tx} is a partition of N Ry (P') by approximate R,:l/ 2 x R;l rectangles. Assume
the additional property that y N 7p = @ or y C . Note that {zx } = {6}.
We will repeatedly make use of the hypothesis that f is a Schwartz function with
Fourier transform supported in Ng-1 (P!) and satisfies || f, |0 < 1 forall y € P (R, B).

5.1. A pruning step
We will define wave packets at each scale 7z, and prune the wave packets associated to f7,
according to their amplitudes.

For each , fix a dual rectangle 77 which is a 2R ,i/ 2 X 2Ry rectangle centered at the
origin and comparable to the convex set

{(x eR?:|x-&| <1, VE e i)
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Let T, be the collection of tubes T;, which are dual to 7, contain r;: , and which tile R2.
Next, we will define an associated partition of unity vr, - First let ¢(£) be a bump function

supported in [—1/4, 1/4]?. For each m € Z2, let
Umn) = [ B~y —m)d.
[-1/2,1/2]%

where ¢ is chosen so that ), .72 Ym(x) = ¢ [2 [¢|* = 1. Since |¢| is a rapidly decaying
function, for any n € N, there exists C,, > 0 such that

C, Cy
x)<c dy < .
Ym() < /[0,1]2 Ay —mPr @ = Ut x—mpy

Define the partition of unity th associated to tx to be WTrk (x) = Ym0 Ag,, where A,
is a linear transformation taking 7 to [—1/2, 1/2]? and A (Ty,) = m + [-1/2,1/2]%.
The important properties of 7, are (1) rapid decay off of T, and (2) Fourier support
contained in %rk.

To prove upper bounds for the size of U, we will actually bound the sizes of ~ ¢~
many subsets which will be denoted U, N Q, Uy, N H, and U, N L. The pruning pro-
cess sorts between important and unimportant wave packets on each of these subsets, as
described in Lemma 5.9 below.

Partition Ty = Tég U Teb into a “good” and a “bad” set as follows. Let § > 0 be a
parameter to be chosen in §6.2 and set

1

- g M)
o

To € Tf if Y7, follrome <
where M > 0 is a universal constant we will choose in the proof of Proposition 6.1.
Definition 5.1 (Pruning with respect to 7z ). For each 6 and 7)1, define the notation
D Vnfo and fy = ) S
TyeTy 6CtN-1
Foreachk < N, let
TE ={Ty € To, : [Vry S Loy < RMO A1)/,

fo= 2 v St ad fi= ) fg

Ty, eTg T CTp—1

IA

For each k, define the kth version of f tobe fk = Zrk frk
Lemma 5.2 (Properties of f%). (1) | fX(x)| < |fET(x)| <#y C .
@) [ fFlILe < €. RO®@ RMS (1) /ar.
(3) supp f C 27
(4) supp /X C(1+(ogR)™ )iy
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Proof. The first property follows because ) 7. €Ty, v, is a partition of unity, and

_ Z Y, R,

ET”’

Furthermore, by definition of frk *1 and iterating, we have
k+1 k1)
R <1 < YD 1t s DO IR S Y Il S Y 1A Sy C .
Tk+1CTk TN Crg 0Ct; yCri

where we used the assumption || f; [|oc < 1 for all y. Now consider the L> bound in the
second property. We write

k k+1

T (X) = Z 1/f "'k + Z szk fk-‘rl,‘L’k'
T, eT,k, Ty, E’]Efks'*’
xeR Ty, XER Ty,

The first sum has at most C R2¢ terms, and each term has norm bounded by RM3 A(1)/«,
by the definition of T# . By property (1), we may trivially bound fTiH by Rmaxy || fy [loo-
Butif x ¢ R°Ty, then Y1, (x) < R™'%%. Thus

_ 1/2 _
Yovn i = 2 RIOUR @I e < R max | fy oo,
Trk ETrk 5 Trk ETrk 5
xX¢R* Tfk x¢R® Trk

Since @ < [f(x)| £ 22, [ fylloo S A(1), (recalling the assumption that each || fy loo < 1),
we note R™2°0 < CR?¢ \(1)/a.
The third and fourth properties depend on the Fourier support of VT, » which is con-

tained in %‘L’k. Initiate a 2-step induction with base case k = N: ng has Fourier support
in 26 because of the above definition. Then

N N
ffN—l - Z o
0Ctn—1

has Fourier support in Ugcq,_, 26, which is contained in (1 + (log R)™!)ty_;. Since
each Y7, has Fourier support in %erl,

N—-1 __ 2 :
IN-1 I'[/TN 1 TN 1

Tey_1€Tey 0

has Fourier support in %TN—l + (1 + (log R)™Y)Ty_1 C 2tn—1. Iterating this reasoning
until k£ = 1 gives (3) and (4). [ ]
Definition 5.3. For each 7z, let w,, be the weight function adapted to 7;* defined by

Wr, (x) =wg o Rrk (x)

where
c

ol =1,
(14 [x[2/R)'O(1 + [y[2/ RY)'©

wi(x,y) =
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and R :R? — R? is the rotation taking T to [—R,i/z, R;/z] X [—Rg, Ry]. For each
Ty, € Ty, let wr, = Wg (x — cry, ), where Ty, is the center of T, . For s > 0, we also
use the notation wy to mean

c/

(5.1 ws(x) = m,

lwslly = 1.

The weights w;, , wg = wey, and ws are useful when we invoke the locally constant
property. By locally constant property, we mean generally that if a function f has Fourier
transform supported in a convex set A, then for a bump function g4 =1on A4, f = f * ¢4.
Since |@4| is an L!-normalized function which is positive on a set dual to A4, | f| * |@4]
is an averaged version of | f| over a dual set A*. We record some of the specific locally
constant properties we need in the following lemma.

Lemma 5.4 (Locally constant property). For each 1y and Ty, € T,
l f2 ||%oo(TTk) S| ful? *wg (x)  foranyx € Ty,.

For any collection of ~ s~' x s72 blocks 0 partitioning Ny—(P') and any s-ball B,

2 < 2 % ws(x X € B.
HQDM HLOO(B)NQZU@A s(x)  forany

Because the pruned versions of f and f;, have essentially the same Fourier supports
as the unpruned versions, the locally constant lemma applies to the pruned versions as
well.

Proof of Lemma 5.4. Let p;, be a bump function equal to 1 on 7; and supported in 27.
Then using Fourier inversion and Holder’s inequality,

| SO = [ S * P DI < 1Bzl | foel? * 152 ().

Since p;, may be taken to be an affine transformation of a standard bump function adapted
to the unit ball, ||z, ||1 is a constant. The function p, decays rapidly off of ¢/, so that
|pz, | < wy, . Since for any Ty, € Ty, , wy, (») is comparable for all y € Ty, , we have

sup |foy | % w, (x) < / fo PO sup we, (x — y)dy

XETrk XETtk
~ / |frk|2(y) Wy (x —y)dy, forallx € Tr,.

For the second part of the lemma, repeat analogous steps as above, except begin with pg,
which is identically 1 on a ball of radius 2s~! containing 6. Then

D 1o P =1 fo, % 06,0 S Y1 /o, 1P * 551 1(0),

O 05 05

where we used that each pg, is a translate of a single function ps-1. The rest of the argu-
ment is analogous to the first part. ]
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Definition 5.5 (Auxiliary functions). Let ¢(x): R? — [0, 0o) be a radial, smooth bump
function satisfying ¢(x) = 1 on By and supp ¢ C B,. Observe that

J
0(27%) = 27 E) + D [p(278) — (27 1E)],
j=—2
where J is defined by 2/ < [R#] < 27+, Then for each dyadic s = 2/, let
Nes(€) = p(276) —p(2711E) and  n_gey-1(§) = 0(27T1E).
Finally, fork = 1,..., N — 1, define
(€)= p(Ry2,x

Definition 5.6. Let G(x) =Y, | f5|? * wg, G*(x) = G * N<rre-1>and G"(x)=G(x)—
GY(x).Fork =1,...,N — 1, let

g(x) = Z| K12 yowe,,  gh(x) = gk * g, and gl (x) = gk — gv.

Definition 5.7. Define the high set as
H = {x € Bg: G(x) <2|G"(x)|}.
Foreachk =1,...,N — 1, let
Qi = {x € Br\ H : gk <2/g}], g1 < 2lg51yl - gv < 2lgk ]}
and foreach k = 1, ..., N. Define the low set as

L={xeBr\H:g <2lgil.....gn <2lg§|.G(x) <2|G*)|}.

5.2. High/low frequency lemmas

Lemma 5.8 (Low lemma). For each x, |G*(x)| < A(1) and |g,€ )] < grr1 ().

Proof. For each 6, by Plancherel’s theorem,
ol g1 = [ PG = ) g1 00 dy
- / Fo # Fol®) e n_ppn1 () dt
= ¥ [ T @ nagn € d,

y,y'CO

The integrand is supported in (y \ y’) N Bygp1-1- This means that the integral vanishes
unless y is within CR™# of y’ for some constant C > 0, in which case we write y ~ y’.
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Then

Z / O f fy (&) nerrp1(§) dE

y,y'CO

= ¥ [ R @@ de

| 8% CO
y~y'

Use Plancherel’s theorem again to get back to a convolution in x and conclude that

G e (O = | D2 D7 (fy Fy) % wo #icpan ()]
6 yy'co
y~y'

SY Y ISP we x [iiopren1 () S Zn Syl S A

0 yco

By an analogous argument as above, we have that

186G S Y IAEF2 s wey i) ().

Tk+1

where for each summand, wy, corresponds to the Tk containing 7. By definition,
k+1 2 2 :
| frkjrrl | <|fk B |. By the locally constant property, | £% |2 <| St |2 * we - It remains

to note that

Tk+1

w‘L’k+1 * wtk * |\ﬁk|(x) s w‘l,’k+1(‘x)

since 77 C 7, | and 7j is an L!'-normalized function that is rapidly decaying away from
By (0).

k+1
]

Lemma 5.9 (Pruning lemma). For any t,

‘ Z Jo — k+1(x)’ <C.R™Mq forallx € Q,
wCt 7w Ct
‘ Z S — Z frll(x)) <CR™M°q foralixelL.
T1Ct 711CT

Proof. By the definition of the pruning process, we have

N
fo= N+ (o=t == o+ Y (-,

m=k+1

with the understanding that ¥+ = £ and formally, the subscript  means f; = Zy ce Jy
and f* =3 . fin. We will show that each difference in the sum is much smaller
than or.
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Foreachm > k + 1 and 1,

[ fom(x)— fm+1(x)|:‘ Z wT,m(X)f”’“(x)‘ _ Z |wl/z( )fm“(x)lwl/z(x)

TrmeT” T €TL,
_ 1
S X R g W S s g S oy v )
Ty, €Tk,
- o 1/2 1/2
<R MBW Y I A ey Y ()
Tem €TE,

_ o
SRS Y S L Pl VW)

T €TL, Tom

— o 1/2
<R Mﬁm o T ety I P gz, ) Yt (6).
Topm s Tom €Tom

Letcz denote the center of 7~}m, and note the pointwise inequality

S 10T oo,y V12 () S RYZ e, (x — ¢z ).

Tem
which means that
_ o
|f7 ) = St ()] s RTMO pYo] RY? Y wo, (k=g VI Pl oo,
Tom €Tom
_ o
< R " A(l) R3/2 B Z Way, (X _Cfrm) |fm+1 ? * We, (CTrm)
T €To
< RpM m+112 ’
< A (1) | fom W, (X)
where we used the 1oca11y constant property in the second to last inequality and the point-
wise relation wy,, * we, < Wy, for the final inequality. Then
mx_m+1x‘<R— m+12*w ¥) < R—M$
| 3 o= o] s MU,Z@' e, (1) 5 R 2 ().

By the definition of ©; and Lemma 5.8, we have that g,,(x) < 2|gfn ()] <2Cgm+1(x)
< (2C)* ' G(x) < (2C)¢ ' A(1). We conclude that
|2 e - | 5 @O R M
TmCT

The claim for L follows immediately from the above argument, using the low-domi-
nance of gi for all k. =

Definition 5.10. Call the distribution function A associated to a function f (R, €)-nor-
malized if for any k and t,,

ARn')

A(R,:l/z)

#Hx Ctm: fr #0) <100
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Remark 5.11. The role of (R, €)-normalized distribution functions is to simplify notation.
It allows us to write all combinatorial quantities which arise in the high lemmas in terms
of the maximal number of y intersecting larger arcs, rather than counting the number of
intermediate-scale blocks intersecting larger arcs.

Lemma 5.12 (High lemma I). Assume that f has an (R, €)-normalized distribution func-
tion A(:). For each dyadic s, R B <s<R12

[ 16 % 5 CoR T R A6 LI B
Y

Proof. Organize the {y} into subcollections {6} in which each 6 is a union of y which
intersect the same ~ s-arc of P!, where here, for concreteness, ~ s means within a factor
of 2. Then by Plancherel’s theorem, since 7, = 7._,, we have for each 6,

| fol? * 71w (x)

/ foP (e — y) g () dy = / Jo % Fo(6)e ¥y (6) d
R2 R2
(5:2) -y [R I fo s T 6) 15 6) dE.

05.65C0

The support Of?@; &=/ e_z”ix'57‘9s/ (x)dx = fe; (—£) is contained in —6;. This means

that the support of ﬁgs * ?% (&) is contained in 65 — 6;. Since the support of n4(§) is
contained in the ball of radius 2s, for each 65 C 6, there are only finitely many 6] C 6 so
that the integral in (5.2) is nonzero. Thus we may write

G xileg(x) = D | fol? % wo x iy (x) = Y Y (fo, fo) * we * s (X),
0 0 6,0,Co
05~0)

where the second sum is over 6y, 8; C 6 with dist(6;, 8;) < 2s. Using the above pointwise
expression and then Plancherel’s theorem, we have

2
e 2 v v

/2|G*77~s| =/2‘Z > (fo, foy) * we * Vg
R R*"79 6,.6/co
Bib)]

— = 2

- [|X ¥ G Fardon,

9 6,.6,CH
0:~8)

For each 0, ng,esfceﬁwgs/(]/ﬂg: * 79;) is supported in 6 — 6, since each summand is sup-
ported in 65 — 6, and s, 0. C 6. For each & € R?, |€| > /2, the maximum number of 6 — 6
containing £ is bounded by the maximum number of @ intersecting an R~'/2 . s~ R=1/2.

arc of the parabola. Using that A(:) is (R, ¢)-normalized, this number is bounded above
by Ce REA(sT'R™Y)/A(R™Y/?).
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Since 7.5 is supported in the region |£| > s/2, by Cauchy—Schwarz,

/ ‘Z > (fex*fes)wems

0 0,0;Co
93~9’

A(rTIRTY) PPN 5
<c R Non
~ e A(R- 1/2) Z/}Rz ex;e(ﬁ% * for) Won~s

8,6,

A(r~IRTY) — o2

= CgRs A(R 1/2) Z/z eﬁe(fesfgé)*we * Mg
B~

A(rTIRTY) ) o2

SCR — A(R712) Z/ GZC;)V@J * we * |7l

It remains to analyze each of the integrals above:
2
2 ~ 2 = 2 ~
LIS aPrwestio,] <] X taPrwostigl] [ | 3 1faPrwesliol
R* g,co 850 R* 6,co
Bound the L* norms using the assumption that || f; ||c < 1 for all y:

| S sl ewe il 2 Sz s | A1 s 2@ 40
0sCo 0sCo

0,CO  yCoOy

Finally, using Young’s convolution inequality and the L?-orthogonality of the f,, we have

/Zm;s kg lioy] /Zm)slz SIA 2. .

0;Co 0sCo yCco

Lemma 5.13 (High lemma II). For each k,
2 3 k+1
/ |gk| <R82/ fk+1
Proof. By Plancherel’s theorem, we have

_ 2
/ |gk|2 / |gk gk _/ ‘Z( k+1*fr];€c+l)wrk Z( k+1*fri+l)wrk7]k

2
§ k+1 +1
/s|> gy | 2 S0

k+1 Tk

1/2 for some constant ¢ > 0. For

since (1 —7g) is supported in the region [§[ > ¢R;

each 7, fof FRHL %41 is supported in 2t — 21, using property (4) of Lemma 5.2, and

the maximum overlap of the sets {2t — 2%} in the region |§| > ¢R,

RTY2 p1/2
R, /Rk+1 < R

k+1 is bounded by
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Thus, using Cauchy—Schwarz,

k-‘rl +1 < & k-‘rl +1 2
‘/_WZ( )@ sz G ) g
[El>cR " T, [E1>cRy
k 1 1 k+1)2 2 3 k 14
<u¥§j/ (T D By = R ¢/|| RIS S Y NV Eelk

Tk+1

where we used Young’s inequality with [|wo, |1 < 1 and fk‘H =Y uiicn ft’;jll with

Cauchy—Schwarz again in the last inequality. ]

5.3. Bilinear restriction

We will use the following version of a local bilinear restriction theorem, which follows
from a standard Cérdoba argument [6], included here for completeness.

Theorem 5.14. Let S > 4,1/2> D > S™VY2 and let X C R? be any Lebesgue mea-
surable set. Suppose that T and t' are D-separated subsets of Ng-1(P'). Then, for a
partition {85} of Ng-1(P1) into ~ S7Y/2 x §~1-blocks, we have

[1rP@ P a7 [ stwwmdx

Ng1/2(X)

In the following proof, the exact definition of the ~ S~! x S~™! blocks g is not
important. However, by f; and f;/, we mean more formally f; = Z@sﬂr#ﬂ Jos and

Jo =2 osnwo Jos-

Proof. Let B be aball of radius S'/2 centered at a point in X . Let ¢ be a smooth function
satisfying ¢ > 1in B, @p decays rapidly away from B, and @3 is supported in the S~1/2
neighborhood of the origin. Then

/me%/mﬂww
XNB R2

Since S is a fixed parameter and 6 are fixed ~ S ~'/2 x §~1 blocks, simplify notation by
dropping the S. Expand the squared terms in the integral above to obtain

|REERIEDS /mmmmw
R 9; Nt AD
6;Nt'#0

By Placherel’s theorem, each integral vanishes unless
(5.3) (61— 62) N Ng-1/2 (0] — 605) # 0.

Next we check that the number of tuples (61, 6, 61, 6}) (with 6, 6, having nonempty
intersection with t and 61, 65 having nonempty intersection with t’) satisfying (5.3)
is O(D™Y).
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Indeed, suppose that § < £ < &” < £ satisfy
EE)eb, E.E)) ek, E.(EN) e, ")) eb,

and
S_ ‘i:/ — ?;:N _ g/// + 0(5—1/2).

Then, by the mean value theorem,
£ — () =26(E—¢&) forsome§ <& <&, and
(E//)z _ (S///)Z — 2%.2 (E// _ %.///) for some S// < 52 < EW-

Since (£1,£7) € 7 and (&2, £2) € 7/, we also know that |§; — & | > D. Putting everything
together, we have

18— (&) — (") - ED) =206¢E - &) —&E - &)
> 206 — &l —E|—cSTV2 = 2C —c) ST/
if either dist((&,£2), (€, (€')2)) or dist((€”, (€”)?), (£, (€"")?)) is larger than CD~1S~1/2,

Thus for a suitably large C, the heights will have difference larger than the allowed
O(S~"/2)-neighborhood imposed by (5.3). The conclusion is that

> [l;l o, fo, fo, fo, 9B > > ,/Rz o, fo, fo, fo, ¥

6;Nt#£0 01Nt#0 4(6,,0,)<CD~185-1/2
0/Nt'#0 01N’ #0 d(g{jgé)scD—ls—l/z

o[ (29:|f9|2>2¢3~

Using the locally constant property and summing over a finitely overlapping cover of R?
by S 1/2_palls B’ with centers cp’, we have

2 2
L. OIS RTES SILTD S WO
2
< |B|(; | ; 1) 05 N

2
1/2
SIBI( XS Yo 1ol x wswa(en)llog*lwis )
B 6

A

SB[ S Ul x wsis0) 0200 dy)’
0

< |B|*1(/B Yol #wgia()dy) < /B (1l v wsie)
[% 0

where we used that wgi/2 * (p;/z(y) < wg1/2 * yp(y) in the second to last inequality. m
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6. Proof of Theorem 2.2

Theorem 2.2 follows from the following proposition and a broad-narrow argument in §6.2.
First we prove a version of Theorem 2.2 where Uy, is replaced by a “broad” version of Uy.

6.1. The broad version of Theorem 2.2

Let § > 0 be a parameter we will choose in the broad/narrow analysis. With the nota-
tion £(t) =s we mean that t is an approximate s x s2 block which is part of a partition
of N,2(P1). For two non-adjacent blocks  and 7’ satisfying £(t) = £(¢') = R, define
the broad version of Uy to be

(6.1) Bro(r,7) = {x e R 1 ~ | fr(x) fr (O)|V2, (| ()] + | for(x)]) < ROPa}.

Proposition 6.1. Suppose that f satisfies the hypotheses of Theorem 2.2 and that has an
(R, &)-normalized distribution function A(-). Then

-1 p— . A(D)?
a—thaX/\(S 'R I)A(S)%:”fy“% Ucaz>m,

Bro (7, 7)| < Ce s ROROD S 2
’ (1 . A1
0(6) Zy“fl’”% lf(xzf msax)t(s_ll)e_l)k(s)'

Proof of Proposition 6.1. (1) Bounding |Bry(t,t") N H|. Using bilinear restriction, given
here by Theorem 5.14, we have

RS STV TR SR AT
UyNH

L(r)=L(r)=R~®

d(z,7)2R7?
2
< RO(S)/ <Z|f9|2 *le/z) '
Np1/2 Bro (z,T)NH) 2

By the locally constant property and the pointwise inequality w gi/2 * wg < wg for each 0,
we have that

D o 1fol? * wgiz S Gx).
0

Then

/ G2 dx
Np1/2 Bre(z,T)NH)

R

2
(62) = Z |QR1/2| ”G”Lw(QRl/zm(Bra(‘L’,t’)ﬂH))'
QR1/23
0 r1/2N(Bre (7,7 )NH)#D

For each x € H, G(x) < 2|G"(x)|. Also note the equality G"(x) = > G xn_g(x),
where the sum is over dyadic s in the range [Rf]™' < s < R™'/2. This is because the
Fourier support of G” is contained in Ug (6 — 6) \ B, gp1-1 for asufficiently small ¢ > 0.
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By dyadic pigeonholing, there is some dyadic s, [RF]™! <5 < R™1/2

bound in (6.2) is bounded by

, so that the upper

Yo2
(log R) Z [QRir2|IG * 1 ||L°°(QR1/2ﬂ(Bra(r,r’)ﬂH))'
Op1/2t
0 p1/2N(Bra (z,7)NH)#0

By the locally constant property, the above displayed expression is bounded by
(ogh) Y[ 16w o, S G0k [ 1640

Qp1/2t
0 p1/2NBro (v, 7)NH)

Use Lemma 5.12 to upper bound the above integral to finish bounding |Bry (7, ') N H|.
(2) Bounding |Bry(t, ') N Q. First write the trivial inequality

B ()Nl s Y / 1 forl
ot BN o forl 2~
d(z,7)zR™¢

By the definition of Bry (7, ') N Q4 and Lemma 5.9, for each x € Bry(z, T/) N Q4,
| fo () for ()]
< | fe @ for () = fEFLQOL+ 1 fe () = FEPL QLT Ol + LA o 5 (0
< CeROO R=MEG2 1| pltl () k1 (y)).

For M large enough in the definition of pruning (depending on the implicit universal
constant from the broad/narrow analysis which determines the set Bry(z, T’)) so that
RO® R=M?$ < R=5 and for R large enough depending on ¢ and §, we may bound each
integral by

2 2 k+1,2 k+1,2
muﬁws/ Fiaalal il

/{Bra (T, )N fr for |V 2~a} Bre (z,7/) N2

Repeat analogous bilinear restriction, high-dominated from the definition of 2, and
locally-constant steps from the argument bounding Br, (7, t/) N H to obtain

o [Bra(e.7) 1%l 5 RO [ 1l
R

Use Lemma 5.13 and Lemma 5.2 to bound the above integral, obtaining
A(1)?2
o [Bro(r,¥) Nl 5 (og B)* [ 16l < ROV ROV S S [y
Th+

Use L2-orthogonality and that | Jorl = fr’;’ﬂ | for each m to bound each integral above:

k+12 k+22 k+212 . g1 2
Lrnes [ aneese ¥ [ gnresese ¥ [ s

Tk+2CTh+1 Y CTkt1
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We are done with this case because

L . A(1)2
A(1)2 - mSaX/\(S 'RTYHA(s) if o > m’
2 = 27,2 if a2 A
o A(1)?/a if o = TR

(3) Bounding |Bry(t, ') N L|. Repeat the pruning step from the previous case to get

«“uonts Y[ LA .

Z(r)=€(r)=R’8 ra(T’T/)an(‘ftfr’|1/2"‘0‘}
d(z,t")ZR~S

Use Cauchy—Schwarz and the locally constant lemma for the bound | £} frﬂ < R9@g,,
and recall that by Lemma 5.8, g1 < C; R® A(1). Then

RO® / 1P 1/ fol < RO©OA(Y? / £l
Z Brg(z,7/)NL e Z R2 '

L(t)=L(t)=R"S L(t)=R—$
d(t,7)z RS

S ROOA> DI AKI5
y
Using the same upper bound for A(1)?/«? as in the previous case finishes the proof. =

6.2. Bilinear reduction

We will present a broad/narrow analysis to show that Proposition 6.1 implies Theorem 2.2.
In order to apply Proposition 6.1, we must reduce to the case that f has an (R, €)-
normalized distribution function A(-). We demonstrate this through a series of pigeon-
holing steps.

Proposition 6.1 implies Theorem 2.2. We will pigeonhole the f, so that roughly, for any
s-arc w of the parabola, the number

#Hy:yNo #0, f, #0}

is either O or relatively constant among s-arcs . For the initial step, write

{ty :Jy suchthat f, #0, y C ty} = Z An(A),
1<ASRBR—¢

where A is a dyadic number, Ay (1) = {ty : #y C iy ~ A}, #y C 7y means #{y C 7y :
fy #0},and #y C ty ~ A means A < #y C ty < 2A. Since there are < log R many A
in the sum, there exists some Ay such that

{1/ @) > @] < Clog B)|fx: ClogB| Y. foy ()] > af].

tNEAN(AN)
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Write
f V= Z Sy

INEAN(AN)

Continuing in this manner, we have

(T 3tk41 € Agr (i) such that Ty C ok = ) 5 Ar(A),

1<A<ri

where

Ak = {7k 1 Itkg1 € At ) St Tegr C e and #{y < £FF1 £0, y C e~ A)

and for some A,

[{x 1 (Cog RYN K| A1 ()| = | f(x)] > o}
< C(log R)[{x : (C(log RN *T f5 ()| = | f(x)| > a}l.

Jie = Z ri+1'

T €AE (Ag)

where

Continue this process until we have found 7; and A; so that
x| £()] > a}] < € (log R)OED [{x - €= (log ROV £ ()] > ).

The function f! now satisfies the hypotheses of Theorem 2.2 and the property that #y C
T, ~ Ag or#y C 1 = O forall k, 7. It follows that the associated distribution function A(-)
of flis (R, &)-normalized since

Am ~#y C1y = Z #y Coe ~ #He C 1) (Ar)

T Ctm

where we only count the y or 1z for which fy1 or fti is nonzero. Now we may apply
Proposition 6.1. Note that since log R < ¢~ LR? for all R > 1, the accumulated constant
from this pigeonholing process satisfies C¢  (log R)°¢ ™) < C, R®. It thus suffices to
prove Theorem 2.2 assuming that f is (R, €)-normalized.

Now we present a broad-narrow argument adapted to our set-up. Write K = R% for
some § > 0, which will be chosen later. Since

@l Y 1A
L(r)=K™1

there is a universal constant C > 0 so that

)] >KE max |fe(x) fr()]'/?
€(r)=€(r’)=K’1
7,7’ nonadj.

implies

/()] =C max |fe(x)].
{(r)=K"!
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If
|f(0)] < K€ max | fe () for ()] /2
L(t)=L(c)=K]
7,7/ nonadj.
and

K¢ max | fi(x) fe0)]'?<C max_ | fe(x)l;
L(D)=L(r)= L(r)=

7,7 nonad]

then we have

|l f()]=C (max | fz(xX)].
Using this reasoning, we obtain the first step in the broad-narrow inequality:

[f@I=C max [f(x)]+ K€ max | fe () for ()2
U(r)= (D)=L(r)=K""!

7,7/ nonadj.

C  max | fry ()|SKC|fr(x) frr (0)[112
U(zg)=K"1

Iterate the inequality 7 times (for the first term), where K™ ~ R'/2, to bound | f(x)| by

/()< C™  max [ fr(x)]
{(r)=R-1/2

+CMKC Y max max | fe () for ()12
£ E)~A o) =L(x)~K~1A
R A ;%<1 7,7/ C7, nonadj.
€ c max |f,0(x)|§KCIfr(x)fr/(x)ll/z
L(tg)=K"IA
0 CT

Recall that our goal is to bound the size of the set
Uy ={xeR?*:a <|f(x)]}.
By the triangle inequality and using the notation 6 for blocks 7 with £(z) = R/,

(63) |Ua| < [{x € R? 1o S C" max | o+ D > U@l

R 12<A<1 L(T)~A
AekKN  L(D)=L()~K 1A
7,7/ C7, nonadj.

where Uy (7, ) is the set
{x eR?:a < (10gR)CmKC|fr(x)f,/(x)|l/2,
C(LLEO+]fr()) £ K€ fe(x) for(x)] 2}

The first term in the upper bound from (6.3) is bounded trivially by A(R 1/ K >y 3.

By the assumption that || f,|looc < 1 for every y, we know that | f¢| 5 Rﬁ for any t.
Also assume without loss of generality that o > 1 (otherwise Theorem 2.2 follows from
L?-orthogonality). This means that there are ~ log R dyadic values of o’ between o
and R# so by pigeonholing, there exists &’ € [a/(C™K€), RP] so that

|Ua(z,7)| < (log R +10g(C™K©)) |Bros (7, 7).,
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where the set Bry/ (7, ') is defined in (6.1). By parabolic rescaling, there exists an affine
transformation 7 so that f; o T = g, and fp o T = g where 7 and 7’ are ~ K~!-
separated blocks in Na—2g-1(P!). Note that the functions g, and g, inherit the property
of being (A% R, g)-normalized in the sense required to apply Proposition 6.1 in each of the
following cases.

Case 1. Suppose that for some 8’ € [1/2,1], AT'R™# = (A2R)#'.

Then for each y € (R, B), f, o T = g, for some y € P(A%R, B’). Applying Propo-
sition 6.1 with functions g, and g, and level set parameter o’ leads to the inequality

Bry(z,7')] < K€a'}| < C, s REC™ KO
_ _ . A(A)?
i ARG Ll A @) > rod R

A(A)2 . A(p)?
(@)® Zycf”fy”% if (a/)2 = maxA (s~ TR=T)A(s) '

1
(@)*

Case 2. Now suppose that A~V R™F < (A2R)™1.
Let 0 be A™'R™! x R™! blocks, and let § be (A% R)™" x (A2R)™! blocks so that fj o
T =gg.Let B = maxé | /3] and divide everything by B in order to satisfy the hypotheses
lggllc/B < 1 forall . Let
; - A(As)
Als) = —————
)= Ta-TRT)
A(1)B?
maxg A(s~1(A2R)~1)A(s)
the maximum taken over (A2R)™! < s < (A2R)~!/2), use Proposition 6.1 with functions
g:/B and g/ B and level set parameter o’/ B to get the inequality

count the number of Q intersecting an s-arc. In the case (a)? > (with

|Bro(z. )|
B4

< Cs,gRSCmKO(l) 4 max
(a')* (A2R)-1<s<(AZR)-1/2

As™HAPRYTHAG) Y IS5/ B,
6ct
Note that since B < A(A™'R™1),

B? max A AR Y A(s) < max AT 'RTYHA(s)
(A2R)~1<s<(A2R)"1/2 A-1R-l1<s<R-1/2

and

;\(1)232 A(A)2A(ATIR™1)? I
A o) = <A A(A).
max A(s~ (AZR)T) A(s) ~ max  A(sT'RT)A(s) — (AT RTHAA)

A-1R-l1<s<R-1/2

(1) B2
maxg A(s—1(A2ZR)~1)A(s)

Then in the case (o) < , compute directly that

@)l B0/ ~ | £ fo @2, (S + e = Ko
AR [ AP IS max AT R0 LA

—1R-l<s<R-1/2 ~
yCt
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Using also that

STIAG03 =Y 1413

fct yC?

the bound for Case 2 is

ix € R? 1o ~ | fr(x) fr )2, (L) + 1 fo(0)]) < K€}

1 _ _
< Ces RECMKOW — AsTHAPR) YA Y LA 13
yCT

max
(a')* R-B<s<R-1/2

It follows from (6.3) and the combined Case 1 and Case 2 arguments above that

|Uy| < Co5 REC™ KOD

— — . A 2
L max  AGTRTAG LA ife> oo e

R B<s<R-1/2
A(1)? 2 fg2 < A2
6 Zy”fynz ifa” < msax)k(rlRfl)A(s)

Recall that K™ ~ R™1/2 and K = R so that

C&‘,S Rs Cm KO(I) < CE,S RScO((s*l)RO(l)tg.

Choosing § small enough so that RO(D% < Re finishes the proof. ]
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