© 2022 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Sharp superlevel set estimates for small cap decouplings of the parabola

Yuqiu Fu, Larry Guth and Dominique Maldague

Abstract. We prove sharp bounds for the size of superlevel sets $\{x \in \mathbb{R}^2 : |f(x)| > \alpha\}$, where $\alpha > 0$ and $f : \mathbb{R}^2 \to \mathbb{C}$ is a Schwartz function with Fourier transform supported in an R^{-1} -neighborhood of the truncated parabola \mathbb{P}^1 . These estimates imply the small cap decoupling theorem for \mathbb{P}^1 of Demeter, Guth, and Wang (2020) and the canonical decoupling theorem for \mathbb{P}^1 of Bourgain and Demeter (2015). New (ℓ^q, L^p) small cap decoupling inequalities also follow from our sharp level set estimates.

1. Introduction

In this paper, we further develop the high/low frequency proof of decoupling for the parabola [\[9\]](#page-29-0) to prove sharp level set estimates which recover and refine the small cap decoupling results for the parabola in [\[8\]](#page-29-1). We begin by describing the problem and our results in terms of exponential sums. The main results in full generality are in [§2.](#page-2-0)

For $N \ge 1$, $R \in [N, N^2]$, and $2 \le p$, let $D(N, R, p)$ denote the smallest constant so that

$$
(1.1) \qquad |Q_R|^{-1} \int_{Q_R} \left| \sum_{\xi \in \Xi} a_{\xi} e((x,t) \cdot (\xi, \xi^2)) \right|^p dx dt \le D(N, R, p) N^{p/2}
$$

for any collection $\Xi \subset [-1, 1]$ with $|\Xi| \sim N$ consisting of $\sim \frac{1}{N}$ -separated points, $a_{\xi} \in \mathbb{C}$ with $|a_{\xi}| \sim 1$, and any cube $Q_R \subset \mathbb{R}^2$ of sidelength R.

A corollary of the small cap decoupling theorem for the parabola in [\[8\]](#page-29-1) is that if $2 \le p \le 2 + 2s$ for $R = N^s$, then

$$
(1.2) \t\t D(N, R, p) \le C_{\varepsilon} N^{\varepsilon}.
$$

This estimate is sharp, up to the $C_{\varepsilon} N^{\varepsilon}$ factor, which may be seen by Khintchine's inequality. The range $2 \le p \le 2 + 2s$ is the largest range of p for which $D(N, R, p)$ may be bounded by sub-polynomial factors in N. The case $R = N^2$ of [\(1.2\)](#page-0-0) follows from

²⁰²⁰ Mathematics Subject Classification: Primary 42B15; Secondary 42B20. *Keywords*: Decoupling inequalities, superlevel set.

the canonical ℓ^2 decoupling theorem of Bourgain and Demeter for the parabola [\[5\]](#page-28-0). For $R < N^2$ and the subset $\mathbb{E} = \{k/N\}_{k=1}^N$, the inequality [\(1.1\)](#page-0-1) is an estimate for the moments of exponential sums over subsets smaller than the full domain of periodicity (i.e., N^2 in the t-variable). Bourgain investigated examples of this type of inequality in [\[3,](#page-28-1) [4\]](#page-28-2).

By a pigeonholing argument (see Section 5 of [\[9\]](#page-29-0)), [\(1.2\)](#page-0-0) follows from upper bounds for superlevel sets U_{α} defined by

$$
U_{\alpha} = \left\{ (x, t) \in \mathbb{R}^2 : \left| \sum_{\xi \in \Xi} a_{\xi} e((x, t) \cdot (\xi, \xi^2)) \right| > \alpha \right\}.
$$

In particular, [\(1.2\)](#page-0-0) is equivalent, up to a log N factor, to proving that for any $\alpha > 0$ and for $R = N^s$,

$$
(1.3) \t\t\t\t\alpha^{2+2s} |U_{\alpha} \cap Q_R| \le C_{\varepsilon} R^{\varepsilon} N^{1+s} R^2
$$

when Ξ and a_{ξ} satisfy the hypotheses following [\(1.1\)](#page-0-1). In this paper, we improve the above superlevel set estimate for all $\alpha > 0$ strictly between $N^{1/2}$ and N.

Theorem 1.1. Let $R \in [N, N^2]$. For any $\varepsilon > 0$, there exists $C_{\varepsilon} < \infty$ such that

$$
|U_{\alpha} \cap Q_R| \leq C_{\varepsilon} N^{\varepsilon} \begin{cases} \frac{N^2 R}{\alpha^4} \sum_{\xi \in \Xi} |a_{\xi}|^2 & \text{if } \alpha^2 > R, \\ \frac{N^2 R^2}{\alpha^6} \sum_{\xi \in \Xi} |a_{\xi}|^2 & \text{if } N \leq \alpha^2 \leq R, \\ R^2 & \text{if } \alpha^2 < N, \end{cases}
$$

whenever $\Xi \subset [-1,1]$ is $a \gtrsim \frac{1}{N}$ -separated subset, $|a_{\xi}| \leq 1$ for each $\xi \in \Xi$, and $Q_R \subset \mathbb{R}^2$ *is a cube of sidelength* R*.*

Our superlevel set estimates are essentially sharp, which follows from analyzing the function $F(x, t) = \sum_{n=1}^{N} e((x, t) \cdot (n/N, n^2/N^2))$. It is not known whether the implicit constant in the upper bound of [\(1.2\)](#page-0-0) goes to infinity with N except in the case that $p = 6$ and $s = 2$, when the same example $F(x, t) = \sum_{n=1}^{N} e((x, t) \cdot (n/N, n^2/N^2))$ shows that $D(N, N^2, 6) \gtrsim (log N)$, see [\[2\]](#page-28-3). Roughly, the argument is that for each dyadic value $\alpha \in [N^{3/4}, N]$, one can show by counting the "major arcs" that

$$
\alpha^{6} \cdot |\{(x,t) \in Q_{N^2} : |F(x,t)| \sim \alpha\}| \gtrsim N^4 \cdot N^3.
$$

Since there are $\sim \log N$ values of α , the lower bound for $\int_{Q_{N^2}} |F|^6$ follows. Theorem [1.1](#page-1-0) implies that the corresponding superlevel set estimates [\(1.3\)](#page-1-1) are not sharp for $1 \leq s < 2$, unless $\alpha \sim N$ or $\alpha^2 \sim N$, which leads to the following conjecture.

Conjecture 1.2. *Let* $s \in [1, 2)$ *and* $2 \le p \le 2 + 2s$ *. There exists* $C(s) > 0$ *so that*

$$
D(N, N^s, p) \leq C(s).
$$

A more refined version of Theorem [1.1](#page-1-0) leads to the following essentially sharp (ℓ^q, L^p) small cap decoupling theorem, stated here for general exponential sums.

Corollary 1.3. Let $3/p + 1/q \le 1$, and let $R \in [N, N^2]$. Then for each $\varepsilon > 0$, there exists $C_{\rm s} < \infty$ so that

$$
\Big\|\sum_{\xi\in\Xi}a_{\xi}e((x,t)\cdot(\xi,\xi^2))\Big\|_{L^{p}(B_R)}\leq C_{\varepsilon}N^{\varepsilon}\big(N^{1-\frac{1}{p}-\frac{1}{q}}R^{\frac{1}{p}}+N^{\frac{1}{2}-\frac{1}{q}}R^{\frac{2}{p}}\big)\Big(\sum_{\xi}|a_{\xi}|^{q}\Big)^{1/q}.
$$

In the above corollary, the assumptions are that Ξ is a $\gtrsim \frac{1}{N}$ -separated subset of $[-1, 1]$ and that $a_{\xi} \in \mathbb{C}$.

2. Main results

We state our main results in the more general set-up for decoupling. Let \mathbb{P}^1 denote the truncated parabola

$$
\{(t, t^2) : |t| \le 1\},\
$$

and write $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ for the R^{-1} -neighborhood of \mathbb{P}^1 in \mathbb{R}^2 , where $R \ge 2$. For a partition $\{\gamma\}$ of $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ into almost rectangular blocks, an (ℓ^2, L^p) decoupling inequality is

(2.1)
$$
|| f ||_{L^p(B_R)} \leq D(R, p) \left(\sum_{\gamma} ||f_{\gamma}||^2_{L^p(\mathbb{R}^2)} \right)^{1/2},
$$

in which $f: \mathbb{R}^2 \to \mathbb{C}$ is a Schwartz function with supp $\widehat{f} \subset \mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ and f_γ means the Fourier projection onto γ , defined precisely below. When we refer to canonical caps or to canonical decoupling, we mean that γ are approximately $R^{-1/2} \times R^{-1}$ blocks corresponding to the ℓ^2 -decoupling of the paper [\[5\]](#page-28-0). In this paper, we allow γ to be approximate $R^{-\beta} \times R^{-1}$ blocks, where $1/2 \le \beta \le 1$. This is the "small cap" regime studied in [\[8\]](#page-29-1). We also consider (ℓ^q, L^p) decoupling for small caps, which replaces $(\sum_{\gamma} ||f_{\gamma}||_p^2)^{1/2}$ by $(\sum_{\gamma} || f_{\gamma} ||_p^q)^{1/q}$ in the decoupling inequality above (see Corollary [2.3\)](#page-3-0).

To precisely discuss the collection $\{\gamma\}$, fix a $\beta \in [1/2, 1]$. Let $\mathcal{P} = \mathcal{P}(R, \beta) = \{\gamma\}$ be the partition of $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ given by

$$
(2.2) \qquad \bigsqcup_{|k| \le \lceil R^{\beta} \rceil - 2} \left\{ (x, t) \in \mathcal{N}_{R^{-1}}(\mathbb{P}^1) : k \lceil R^{\beta} \rceil^{-1} \le x < (k+1) \lceil R^{\beta} \rceil^{-1} \right\}
$$

and the two end pieces

$$
\{(x,t)\in \mathcal{N}_{R^{-1}}(\mathbb{P}^1): x< -1+\lceil R^{\beta}\rceil^{-1}\}\bigsqcup \{(x,t)\in \mathcal{N}_{R^{-1}}(\mathbb{P}^1): 1-\lceil R^{\beta}\rceil^{-1}\leq x\}.
$$

For a Schwartz function $f: \mathbb{R}^2 \to \mathbb{C}$ with supp $\widehat{f} \subset \mathcal{N}_{R^{-1}}(\mathbb{P}^1)$, define for each $\gamma \in \mathcal{P}(R,\beta)$,

$$
f_Y(x) := \int_Y \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi.
$$

For $a, b > 0$, the notation $a \lesssim b$ means that $a \leq Cb$, where $C > 0$ is a universal constant whose definition varies from line to line, but which only depends on fixed parameters of the problem. Also, $a \sim b$ means $C^{-1}b \le a \le Cb$ for a universal constant C.

Let $U_{\alpha} := \{x \in \mathbb{R}^2 : |f(x)| \ge \alpha\}$. In Section 5 of [\[9\]](#page-29-0), through a wave packet decomposition and series of pigeonholing steps, the bounds for $D(R, p)$ in [\(2.1\)](#page-2-1) follow (with an additional power of $(\log R)$ from bounds on the constant $C(R, p)$ in

$$
\alpha^{p} |U_{\alpha}| \leq C(R, p) \left(\# \{ \gamma : f_{\gamma} \neq 0 \} \right)^{p/2 - 1} \sum_{\gamma} \| f_{\gamma} \|_{2}^{2}
$$

for any $\alpha > 0$ and under the additional assumptions that $||f_\gamma||_\infty \lesssim 1$, $||f_\gamma||_p^p \sim ||f_\gamma||_2^2$ for each y. Thus decoupling bounds follow from upper bounds on the superlevel set $|U_{\alpha}|$. In this paper, we consider the question: given $\alpha > 0$ and a partition $\{\gamma\}$, how large can $|U_{\alpha}|$ be, varying over functions f satisfying $||f_\gamma||_\infty \lesssim 1$ for each γ ? We answer this question in the following theorem.

Theorem 2.1. Let $\beta \in [1/2, 1]$ and $R \ge 2$. Let $f : \mathbb{R}^2 \to \mathbb{C}$ be a Schwartz function with *Fourier transform supported in* $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ satisfying $||f_\gamma||_\infty \leq 1$ for all $\gamma \in \mathcal{P}(R, \beta)$. *Then for any* $\alpha > 0$,

$$
|U_{\alpha} \cap [-R, R]^2| \leq C_{\varepsilon} R^{\varepsilon} \begin{cases} \frac{R^{2\beta - 1}}{\alpha^4} \sum_{\gamma} ||f_{\gamma}||_{L^2(\mathbb{R}^2)}^2 & \text{if } \alpha^2 > R, \\ \frac{R^{2\beta}}{\alpha^6} \sum_{\gamma} ||f_{\gamma}||_{L^2(\mathbb{R}^2)}^2 & \text{if } R^{\beta} \leq \alpha^2 \leq R, \\ R^2 & \text{if } \alpha^2 < R^{\beta}. \end{cases}
$$

Each bound in Theorem [2.1](#page-3-1) is sharp, up to the $C_{\varepsilon} R^{\varepsilon}$ factor, which we show in [§3.](#page-6-0)

Define notation for a distribution function for the Fourier support of a Schwartz function f with Fourier transform supported in $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ as follows. For each $0 \le s \le 2$, let

$$
\lambda(s) = \sup_{\omega(s)} \# \{ \gamma : \gamma \cap \omega(s) \neq \emptyset, f_{\gamma} \neq 0 \},\
$$

where $\omega(s)$ is any arc of \mathbb{P}^1 with projection onto the ξ_1 -axis equal to an interval of length s. The following theorem implies Theorem [2.1](#page-3-1) and replaces factors of R^{β} in the upper bounds from Theorem [2.1](#page-3-1) by expressions involving $\lambda(\cdot)$, which see the actual Fourier support of the input function f .

Theorem 2.2. Let $\beta \in [1/2, 1]$ and $R \ge 2$. For any f with Fourier transform supported $\inf_{R \to 1} (\mathbb{P}^1)$ satisfying $||f_\gamma||_\infty \lesssim 1$ for each $\gamma \in \mathcal{P}(R,\beta)$,

$$
|U_{\alpha}| \leq C_{\varepsilon} R^{\varepsilon} \left\{ \frac{\frac{1}{\alpha^4} \max_{s} \lambda(s^{-1} R^{-1}) \lambda(s) \sum_{\gamma} ||f_{\gamma}||_2^2 \quad \text{if } \alpha^2 > \frac{\lambda(1)^2}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)}, \\ \frac{\lambda(1)^2}{\alpha^6} \sum_{\gamma} ||f_{\gamma}||_2^2 \quad \text{if } \alpha^2 \leq \frac{\lambda(1)^2}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)}, \end{array} \right.
$$

in which the maxima are taken over dyadic s, $R^{-\beta} \leq s \leq R^{-1/2}$.

See [§2.1](#page-4-0) for a discussion of the proof of Theorem [2.2.](#page-3-2)

Corollary 2.3 ((l^q , L^p) small cap decoupling). *Let* $3/p + 1/q \le 1$. *Then*

$$
|| f ||_{L^p(B_R)} \leq C_{\varepsilon} R^{\varepsilon} (R^{\beta(1-1/q)-\frac{1}{p}(1+\beta)} + R^{\beta(1/2-1/q)}) \left(\sum_{\gamma} ||f_{\gamma}||_{L^p(\mathbb{R}^2)}^q \right)^{1/q}
$$

whenever f is a Schwartz function with Fourier transform supported in $\mathcal{N}_{R^{-1}}(\mathbb{P}^1).$

The powers of R in the upper bound come from considering two natural sharp examples for the ratio $|| f ||_{L^p(B_R)}^p / (\sum_{\gamma} || f_{\gamma} ||_p^q)^{p/q}$. The first is the square root cancellation example, where $|f_{\gamma}| \sim \chi_{B_R}$ for all γ and $f = \sum_{\gamma} e_{\gamma} f_{\gamma}$ where e_{γ} are ± 1 signs chosen (using Khintchine's inequality) so that $|| f ||_{L^p(B_R)}^p \sim R^{\beta p/2} R^2$.

$$
||f||_{p}^{p}/\Big(\sum_{\gamma}||f_{\gamma}||_{p}^{q}\Big)^{p/q} \gtrsim \frac{R^{\beta p/2}R^{2}}{R^{\beta p/q}R^{2}} = R^{\beta p(1/2-1/q)}.
$$

The second example is the constructive interference example. Let $f_{\gamma} = R^{1+\beta} \check{\eta}_{\gamma}$, where η_{γ} is a smooth bump function approximating χ_{γ} . Since $|f| = |\sum_{\gamma} f_{\gamma}|$ is approximately constant on unit balls and $|f(0)| \sim R^{\beta}$, we have

$$
||f||_{p}^{p}/\Big(\sum_{\gamma}||f_{\gamma}||_{p}^{q}\Big)^{p/q} \gtrsim \frac{R^{\beta p}}{R^{\beta p/q}R^{1+\beta}} = R^{\beta p(1-1/q)-1-\beta}.
$$

There is one more example which may dominate the ratio: The block example is $f =$ $R^{1+\beta}$ $\sum_{\gamma \subset \theta} \breve{\eta}_{\gamma}$, where θ is a canonical $R^{-1/2} \times R^{-1}$ block. Since $f = f_{\theta}$ and $|f_{\theta}|$ is approximately constant on dual $\sim R^{1/2} \times R$ blocks θ^* , we have

$$
||f||_p^p / \Big(\sum_{\gamma} ||f_{\gamma}||_p^q\Big)^{p/q} \gtrsim \frac{R^{(\beta-1/2)p} R^{3/2}}{R^{(\beta-1/2)p/q} R^{1+\beta}} = R^{(\beta-1/2)p(1-1/q)+1/2-\beta}.
$$

One may check that the constructive interference examples dominate the block example when $3/p + 1/q \le 1$. We do not investigate (l^q, L^p) small cap decoupling in the range $3/p + 1/q > 1$ in the present paper.

The paper is organized as follows. In [§3,](#page-6-0) we demonstrate that Theorem [2.1](#page-3-1) is sharp using an exponential sum example. In [§4,](#page-9-0) we show how Theorem [2.1](#page-3-1) follows easily from Theorem [2.2](#page-3-2) and how after some pigeonholing steps, so does Corollary [2.3.](#page-3-0) Then in [§5,](#page-11-0) we develop the multi-scale high/low frequency tools we use in the proof of Theorem [2.2.](#page-3-2) These tools are very similar to those developed in [\[9\]](#page-29-0). It appears that a more careful version of the proof of Theorem [2.2](#page-3-2) could also replace the $C_{\varepsilon} R^{\varepsilon}$ factor by a power of (log R), as is done for canonical decoupling in [\[9\]](#page-29-0). Finally, in [§6,](#page-22-0) we prove a bilinear version of Theorem [2.2](#page-3-2) and then reduce to the bilinear case to finish the proof.

2.1. Overview of the proof of Theorem [2.2](#page-3-2)

Versions of the high/low method in which we analyze high-frequency and low-frequency portions of functions separately have been used in $[10]$ and $[9]$. The original small cap decoupling result from [\[8\]](#page-29-1) also uses a high/low argument to prove a certain refinement of the planar Kakeya estimate.

The proof of Theorem [2.2](#page-3-2) closely follows the argument from [\[9\]](#page-29-0), which is summarized in Section 2 of [\[9\]](#page-29-0). We briefly recall the high/low argument in [\[9\]](#page-29-0), and will highlight the new aspects of adapting the argument to small caps γ .

We write $g_k = \sum_{\tau_k} |f_{\tau_k}|^2$ for canonical caps τ_k of dimensions $R_k^{-1/2}$ $k^{-1/2} \times R_k^{-1}$, where $R_k = R^{ks} \in [1, R]$ for some fixed $\varepsilon > 0$. For $k = 1, ..., N$ with $g_N = \sum_{\theta} |f_{\theta}|^2$, we consider sets

$$
\Omega_k = \{x : g_k(x) \text{ high-dominated}, g_{k+1}(x), \dots, g_N(x) \text{ low-dominated}\}.
$$

Here we say $g_k(x)$ is low-dominated if $g_k(x) \leq 2|g_k * \check{\eta}_k|(x)$, and high-dominated otherwise. The function η_k is a smooth bump adapted to $B_{R_{k+1}^{-1/2}}(0)$ in the frequency space. Essentially, the "low lemma" (Lemma 3.24 in [\[9\]](#page-29-0)) says that when $g_k(x)$ is low-dominated, we have $|g_k(x)| \lesssim |g_{k+1}(x)|$, and the "high lemma" (Lemma 3.25 in [\[9\]](#page-29-0)) states that $|f_{\tau_k}|^2 - |f_{\tau_k}|^2 * \tilde{\eta}_k$ are essentially orthogonal, and therefore

$$
\int |g_k - g_k * \breve{\eta}_k|^2 \lessapprox \int \sum_{\tau_k} |f_{\tau_k}|^4.
$$

Another important step in [\[9\]](#page-29-0) was to observe that on $U_\alpha \cap \Omega_k$, one could prune the wave packets of f to arrange for the upper bound $|| f_{\tau_k} ||_{\infty} \leq \#\theta/\alpha$ for all τ_k . These three ingredients allowed a re-proof of the canonical cap decoupling of \mathbb{P}^1 in [\[5\]](#page-28-0).

 $\sum_{\theta_k} |f_{\theta_k}|^2$ for small caps θ_k of dimension $R^{-1/2}R^{-k\epsilon} \times R^{-1}$. In particular, $G_0 = \sum_{\theta} |f_{\theta}|^2$ Here is how we adapt the argument from [\[9\]](#page-29-0) to the small cap case. Write $G_k =$ is the square function for the canonical caps θ , and equals to g_N defined in the previous paragraph. Then for $k = 1, ..., M$ with $G_M = \sum_{\gamma} |f_{\gamma}|^2$, we consider sets

$$
\Lambda_k = \{x : G_k(x) \text{ high-dominated}, G_{k+1}(x), \dots, G_M(x) \text{ low-dominated}\}.
$$

Here we say that $G_k(x)$ is low-dominated if $G_k(x) \leq 2|G_k * \check{\chi}_k|(x)$, and high-dominated otherwise. The function χ_k is a smooth bump adapted to $B_{R^{-1/2}R^{-(k+1)\epsilon}}(0)$ in the fre-quency space. Adopting the argument from [\[9\]](#page-29-0), when $G_k(x)$ is low-dominated, we would have $|G_k(x)| \lesssim |G_{k+1}(x)|$, and when $G_k(x)$ is high-dominated, we could exploit orthogonality properties of $|f_{\theta_k}|^2 - |f_{\theta_k}|^2 * \tilde{\chi}_k$, as the supports of their Fourier transforms have some quantitatively controlled overlap. In Theorem [2.2,](#page-3-2) we have the additional hypothesis that $|| f_y ||_{\infty} \lesssim 1$ for all γ , which leads to a trivial upper bound of $|| f_{\theta_k} ||_{\infty} \lesssim \#\gamma \subset \theta_k$. To prove Theorem [2.2](#page-3-2) in the case involving Λ_k , it turns out that this trivial L^{∞} bound suffices, so we do not need to prune the wave packets to get an L^{∞} bound on f_{θ_k} of the form $\frac{H\gamma}{\alpha}$. This allows us to greatly simplify the cases involving square functions at intermediate small cap scales. In particular, we only need to consider the high set H on which $|G_0(x)| \lesssim |G_0 * \chi_{\geq R^{-\beta}}|$ and off of which we have the low-dominance inequality $G_0(x) \lesssim |G_0 * \chi_{\leq R^{-\beta}}|$. On the high set, we could simply combine the orthogonality-based estimates of all intermediate scales into one estimate, which will be Lemma [5.12](#page-18-0) below. If G_0 satisfies the low-dominance inequality, then we will have $G_0 \lesssim \lambda(1)$ (Lemma [5.8](#page-15-0)) below), and we consider more high/low cases involving canonical block square functions $\sum_{\tau_k} |f_{\tau_k}|^2$ as in the previous paragraph. The low-dominance inequality $G_0 \lesssim \lambda(1)$ for G_0 is precisely what allows us to re-initiate the pruning process from [\[9\]](#page-29-0) to guarantee $|| f_{\tau_k} ||_{\infty} \lesssim \#\gamma/\alpha$, which is more efficient to use in the cases involving canonical block square functions. Aside from this difference in the pruning process, much of the remainder of the argument resembles [\[9\]](#page-29-0).

Compared with the argument in [\[9\]](#page-29-0), we take a more unified approach of applying the high/low method at every scale including the small cap scales θ_k , while [\[9\]](#page-29-0) uses the high/low method to study a Kakeya-type problem for wavepackets at the canonical scale θ (see Section 5.2 of [\[9\]](#page-29-0)) and combines it with a refined decoupling inequality of canonical caps to infer small cap decoupling. Having a systematic high/low argument at every scale allows us to get superlevel set estimates which are more accurate than the ones that can be deduced from the small cap decoupling inequality in [\[9\]](#page-29-0).

3. A sharp example

Because we will show that Theorem [2.2](#page-3-2) implies Theorem [2.1,](#page-3-1) it suffices to show that Theorem [2.1](#page-3-1) is sharp, which we mean up to a $C_{\varepsilon} R^{\varepsilon}$ factor. Write $N = \lceil R^{\beta} \rceil$. The function achieving the sharp bounds is

$$
F(x_1, x_2) = \sum_{k=1}^{N} e\left(\frac{k}{N}x_1 + \frac{k^2}{N^2}x_2\right) \eta(x_1, x_2),
$$

where η is a Schwartz function satisfying $\eta \sim 1$ on $[-R, R]^2$ and supp $\widehat{\eta} \subset B_{R^{-1}}$. We will bound the set

$$
U_{\alpha} = \{(x_1, x_2) \in [-R, R]^2 : |F(x_1, x_2)| \ge \alpha\}.
$$

Case 1. $R < \alpha^2$.

Suppose that $\alpha \sim N$, and note that $F(0,0) = N$ and $|F(x_1,x_2)| \sim N$ when $|(x_1,x_2)| <$ $1/10^3$. Using the periodicity in the x_1 variable, there are $\sim R/N$ many other heavy balls where $|F(x_1, x_2)| \sim N$ in $[-R, R]^2$. For α in the range suppose that $R < \alpha^2 < N^2$, we will show that U_{α} is dominated by larger neighborhoods of the heavy balls.

Let $r = N^2/\alpha^2$ and assume without loss of generality that r is in the range $R^{\epsilon} < r <$ $N^2/R \sim R^{2\beta-1} \ll N$. The upper bound for $|\widetilde{U_{\alpha}}|$ in Theorem [2.1](#page-3-1) for this range is

$$
|U_{\alpha}| \leq C_{\varepsilon} R^{\varepsilon} \frac{N^2}{\alpha^4 R} \sum_{\gamma} ||F_{\gamma}||_2^2 \sim C_{\varepsilon} R^{\varepsilon} \frac{N^2}{\alpha^4 R} N R^2.
$$

To demonstrate that this inequality is sharp, by the periodicity in x_1 , it suffices to show that $|U_\alpha \cap B_r| \gtrsim r^2$. Let ϕ_{r-1} be a nonnegative bump function supported in $B_{r-1/2}$ with $\phi_{r-1} \gtrsim 1$ on $B_{r-1/4}$. Let $\eta_r = r^4(\phi_{r-1} * \phi_{r-1})^\vee$ and analyze the L^2 norm $||F||_{L^2(\eta_r)}$. By Plancherel's theorem,

$$
||F||_{L^{2}(\eta_{r})}^{2} = \int |F|^{2} \eta_{r} \sim \int \Big| \sum_{k=1}^{N} e\Big(\frac{k}{N}x_{1} + \frac{k^{2}}{N^{2}}x_{2}\Big)\Big|^{2} \eta_{r}(x_{1}, x_{2})
$$

=
$$
\sum_{k=1}^{N} \sum_{k'=1}^{N} \widehat{\eta}_{r}\Big(\xi\Big(\frac{k-k'}{N}, \frac{k^{2} - (k')^{2}}{N^{2}}\Big)\Big) \sim N \cdot N/r \cdot r^{2} = rN^{2}.
$$

Next we bound $||F||_{L^4(B_{R^{\varepsilon}})}$ above. It follows from the local linear restriction statement (see Theorem 1.14, Proposition 1.27 and Exercise 1.32 in [\[7\]](#page-28-4))

$$
||f||^4_{L^4(B_{R^{\varepsilon}r})}\lesssim C_\varepsilon R^{O(\varepsilon)}r^{-3}||\widehat{f}||^4_{L^4(\mathbb{R}^2)}
$$

that

$$
\|F\|_{L^{4}(B_{R^{\varepsilon}r})}^{4} \sim \Big\|\sum_{k=1}^{N} e\Big(\frac{k}{N}x_{1} + \frac{k^{2}}{N^{2}}x_{2}\Big)\,\eta_{r}(x_{1},x_{2})\Big\|_{L^{4}(B_{R^{\varepsilon}r})}^{4}
$$

$$
\lesssim C_{\varepsilon}R^{\varepsilon}r^{-3}\,\Big\|\sum_{k=1}^{N}\widehat{\eta}_{r}\Big(\xi-\Big(\frac{k}{N},\frac{k^{2}}{N^{2}}\Big)\Big)\Big\|_{L^{4}(\mathbb{R}^{2})}^{4}.
$$

The $L⁴$ norm on the right-hand side is bounded above by

$$
\int_{B_2} \Big| \sum_{k=1}^N \widehat{\eta}_r \Big(\xi - \Big(\frac{k}{N}, \frac{k^2}{N^2} \Big) \Big)^4 d\xi \lesssim (Nr^{-1})^3 \int_{B_2} \sum_{k=1}^N \Big| \widehat{\eta}_r \Big(\xi - \Big(\frac{k}{N}, \frac{k^2}{N^2} \Big) \Big)^4 d\xi
$$

$$
\lesssim (Nr^{-1})^3 (r^2)^3 \int_{B_2} \sum_{k=1}^N \Big| \widehat{\eta}_r \Big(\xi - \Big(\frac{k}{N}, \frac{k^2}{N^2} \Big) \Big) \Big| d\xi \sim N^4 r^3.
$$

This leads to the upper bound $||F||^4_{L^4(B_{R^{\varepsilon}}r)} \lesssim (\log R)N^4$.

Finally, by dyadic pigeonholing, there is some $\lambda \in [R^{-1000}, N]$ so that $||F||_{L^2(\eta_r)}^2 \lesssim$ $(\log R)\lambda^2 |\{x \in B_{R^{\varepsilon}} : |F(x)| \sim \lambda\}| + C_{\varepsilon}R^{-2000}$. The lower bound for $||F||^2_{L^2(\eta_r)}$ and the upper bound for $||F||^4_{L^4(B_{R^{\varepsilon_r}})}$ tell us that

$$
\lambda^2 r N^2 \sim \lambda^2 \|F\|_{L^2(\eta_r)}^2 \lesssim (\log R) \lambda^4 |\{x \in B_{R^{\varepsilon} r} : |F(x)| \sim \lambda\}| + C_{\varepsilon} \lambda^4 R^{-2000}
$$

\$\lesssim (\log R) \|F\|_{L^4(B_{R^{\varepsilon} r})}^4 + C_{\varepsilon} \lambda^4 R^{-2000} \lesssim C_{\varepsilon} R^{\varepsilon} N^4 + C_{\varepsilon} \lambda^4 R^{-2000}.

Conclude that $\lambda^2 \lesssim C_{\varepsilon} R^{\varepsilon} N^2/r \sim C_{\varepsilon} R^{\varepsilon} \alpha^2$. Assuming R is sufficiently large depending on ε ,

$$
rN^2 \sim (\log R)\lambda^2 |\{x \in B_{R^{\varepsilon} r} : |F(x)| \sim \lambda\}| \lesssim C_{\varepsilon} R^{\varepsilon} (N^2/r) |\{x \in B_{R^{\varepsilon} r} : |F(x)| \sim \lambda\}|,
$$

so $|\{x \in B_{R^{\varepsilon} r} : |F(x)| \sim \lambda\}| \gtrsim C_{\varepsilon}^{-1} R^{-\varepsilon} r^2$ and $\lambda^2 \gtrsim C_{\varepsilon}^{-1} R^{-\varepsilon} N^2 / r \sim C_{\varepsilon}^{-1} R^{-\varepsilon} \alpha^2$.
Case 2. $R^{\beta} < \alpha^2 \le R$.

Let q , a , and b be integers satisfying

(3.1)
$$
q \text{ odd}, \quad 1 \le b \le q \le N^{2/3}, \quad (b, q) = 1, \quad \text{and} \quad 0 \le a \le q.
$$

Define the set $M(q, a, b)$ to be

 $M(q, a, b) := \{(x_1, x_2) \in [0, N] \times [0, N^2] : |x_1 - \frac{a}{q}N| \leq \frac{1}{10^{10}}, \quad |x_2 - \frac{b}{q}N^2| \leq \frac{1}{10^{10}}\}.$

Lemma 3.1. *For each* $(q, a, b) \neq (q', a', b')$, *both tuples satisfying* [\(3.1\)](#page-7-0)*,* $M(q, a, b) \cap$ $M(q', a', b') = \emptyset.$

Proof. If $b/q = b'/q'$, then using the relatively prime part of [\(3.1\)](#page-7-0), $b = b'$ and $q = q'$. Then we must have $a \neq a'$, meaning that if x_1 is the first coordinate of a point in $M(q, a, b)$ $\cap M(q, a', b')$, then

$$
\frac{2}{10^{10}} \ge |x_1 - \frac{a}{q} N| + |x_1 - \frac{a'}{q} N| \ge \frac{|a - a'|N}{q} \ge N^{1/3},
$$

which is clearly a contradiction. The alternative is that $b/q \neq b'/q'$, in which case for x_2 the second coordinate of a point in $M(q, a, b) \cap M(q', a', b')$,

$$
\frac{2}{10^{10}} \ge \left| x_2 - \frac{b}{q} N^2 \right| + \left| x_2 - \frac{b'}{q'} N^2 \right| \ge \frac{|b'q - bq'|N^2}{qq'} \ge \frac{N^2}{qq'} \ge N^{2/3},
$$

which is another contradiction.

Lemma 3.2. *For each* $(x_1, x_2) \in M(q, a, b)$, $|F(x_1, x_2)| \sim N/q^{1/2}$, here meaning within *a factor of* 4*.*

Proof. This follows from Proposition 13.4 in [\[7\]](#page-28-4).

Proposition 3.3. Let $R^{\beta} < \alpha^2 \le R$ be given. There exists $v \in [0, N^2]$ satisfying

$$
|\{(x_1,x_2)\in[0,R]^2:|F(x_1,x_2+v))|\geq\alpha\}|\gtrsim\frac{R^2N^3}{\alpha^6}.
$$

Proof. First note that, by the N-periodicity in x_1 ,

$$
|\{(x_1, x_2) \in [0, R]^2 : |F(x_1, x_2 + v))| \ge \alpha\}|
$$

$$
\ge \frac{R}{N} |\{(x_1, x_2) \in ([0, N] \times [0, R]) : |F(x_1, x_2 + v))| \ge \alpha\}|.
$$

The function F is N^2 periodic in x_2 , but $R < N^2$, so we need to find $v \in [0, N^2]$ making the set in the lower bound above largest.

By Lemma [3.2,](#page-8-0) it suffices to count the tuples (q, a, b) satisfying $(3.1), q \leq N^2/(16\alpha^2)$ $(3.1), q \leq N^2/(16\alpha^2)$, and $|\frac{b}{q}N^2 - v| \le R$, where v is to be determined. Begin by considering the distribution of points b/q in [0, 1], where $1 \le b \le q \sim N^2/\alpha^2$, $(b,q) = 1$. As in the proof of Lemma [3.1,](#page-7-1) if $b/q \neq b'/q'$, then $|b/q - b'/q'| \gtrsim \alpha^2/N^4$. There are $\gtrsim \sum_{q \sim N^2/\alpha^2} \varphi(q)$ many unique points b/q in [0, 1] satisfying $1 \le b \le q \sim N^2/\alpha^2$, $(b,q) = 1$, with φ denoting the Euler totient function. Use Theorem 3.7 in [\[1\]](#page-28-5) to estimate $\sum_{q\sim N^2/\alpha^2} \varphi(q) \sim N^4/\alpha^4$, as long as N/α is larger than some absolute constant. By the pigeonhole principle, there exists some R/N^2 interval $I \subset [0, 1]$ containing $\sim \lceil \frac{N^4}{\alpha^4} \frac{R}{N^2} \rceil$ many points b/q with $1 \le b \le q$ N^2/α^2 and $(b,q) = 1$. There are also $\sim N^2/\alpha^2$ many choices for a to complete the tuple (q, a, b) satisfying [\(3.1\)](#page-7-0). Let c denote the center of I and take $v = cN^2$ in the proposition statement to conclude that

$$
|\{(x_1,x_2)\in([0,N]\times[0,R]):|F(x_1,x_2+v))|\geq\alpha\}|\gtrsim\frac{RN^4}{\alpha^6},
$$

which finishes the proof.

Note that Proposition [3.3](#page-8-1) shows the sharpness of Theorem [2.1](#page-3-1) in the range $R^{\beta} < \alpha \leq R$ since

$$
\frac{R^{2\beta}}{\alpha^6} \sum_{\gamma} \|F_{\gamma}\|_2^2 \sim \frac{R^{2\beta}}{\alpha^6} R^{\beta} R^2 = \frac{N^3 R^2}{\alpha^6}.
$$

 \blacksquare

The sharpness of the trivial estimate $|U_\alpha \cap [-R, R]^2| \lesssim R^2$ in the range $\alpha^2 < R^\beta$ follows from Case 2, since for $\alpha^2 < R^{\beta}$,

$$
|U_{\alpha} \cap [-R, R]^2| \geq |U_{R^{\beta/2}} \cap [-R, R]^2| \gtrsim \frac{R^{2\beta}}{(R^{\beta/2})^6} \sum_{\gamma} ||F_{\gamma}||_2^2 \sim R^2.
$$

4. Implications of Theorem [2.2](#page-3-2)

Proof of Theorem [2.1](#page-3-1) *from Theorem* [2.2](#page-3-2). First suppose that $\alpha^2 > \frac{\lambda(1)^2}{\max_s \lambda(s^{-1}R^{-1})\lambda(s)}$. Then

$$
\max_{s} \lambda(s^{-1}R^{-1})\lambda(s) \lesssim \max_{s} (s^{-1}R^{-1}R^{\beta})(sR^{\beta}) = R^{2\beta - 1}
$$

$$
\leq \begin{cases} R^{2\beta - 1} & \text{if } \alpha^{2} > R, \\ R^{2\beta}/\alpha^{2} & \text{if } R^{\beta} \leq \alpha^{2} \leq R. \end{cases}
$$

Now suppose that $\alpha^2 \leq \frac{\lambda(1)^2}{\max_s \lambda(s^{-1}R^{-1})\lambda(s)}$. Then

$$
\frac{\lambda(1)^2}{\alpha^2} \lesssim \begin{cases} R^{2\beta-1} & \text{if } \alpha^2 > R, \\ R^{2\beta}/\alpha^2 & \text{if } R^{\beta} \le \alpha^2 \le R. \end{cases}
$$

Proof of Corollary [2.3](#page-3-0) *from Theorem* [2.2](#page-3-2)*.* To see how this corollary follows from Theorem [2.2,](#page-3-2) first use an analogous series of pigeonholing steps as in Section 5 of [\[9\]](#page-29-0) to reduce to the case where $||f_\gamma||_\infty \lesssim 1$ for all γ and there exists $C > 0$ so that $||f_\gamma||_p^p$ is either 0 or comparable to C for all γ . Split the integral

$$
\int |f|^p = \sum_{R^{-1000} \leq \alpha \leq R^{\beta}} \int_{U_{\alpha}} |f|^p + \int_{|f| < R^{-1000}} |f|^p,
$$

where $U_{\alpha} = \{x : |f(x)| \sim \alpha\}$, and assume via dyadic pigeonholing that

$$
\int |f|^p \lesssim \alpha^p |U_\alpha|
$$

(ignoring the case that the set where $|f| \leq R^{-1000}$ dominates the integral, which may be handled trivially). The result of all of the pigeonholing steps is that the statement of Corollary [2.3](#page-3-0) follows from showing that

$$
\alpha^{p}|U_{\alpha}| \leq C_{\varepsilon} R^{\varepsilon} (R^{\beta p(1-1/q)-(1+\beta)} + R^{\beta p(1/2-1/q)}) \lambda(1)^{p/q-1} \sum_{\gamma} ||f_{\gamma}||_2^2,
$$

where f satisfies the hypotheses of Theorem [2.2.](#page-3-2) The full range $3/p + 1/q \le 1$ follows from p in the critical range $4 \le p \le 6$, which we treat first.

Case
$$
4 \leq p \leq 6
$$
.

There are two cases depending on which upper bound is larger in Theorem [2.2.](#page-3-2)

First we assume the $L⁴$ bound holds, in which case

$$
\alpha^{p}|U_{\alpha}| \leq C_{\varepsilon} R^{\varepsilon} \alpha^{p-4} \max_{s} \lambda(s^{-1}R^{-1}) \lambda(s) \sum_{\gamma} ||f_{\gamma}||_{2}^{2}
$$

$$
\sim C_{\varepsilon} R^{\varepsilon} \frac{\alpha^{p-4}}{\lambda(1)^{p/q-1}} \max_{s} \lambda(s^{-1}R^{-1}) \lambda(s) \left(\sum_{\gamma} ||f_{\gamma}||_{p}^{q} \right)^{p/q}
$$

$$
\lesssim C_{\varepsilon} R^{\varepsilon} \frac{\lambda(1)^{p-4}}{\lambda(1)^{p/q-1}} \max_{s} (R^{\beta} s^{-1} R^{-1}) (R^{\beta} s) \left(\sum_{\gamma} ||f_{\gamma}||_{p}^{q} \right)^{p/q}
$$

$$
\lesssim C_{\varepsilon} R^{\varepsilon} \lambda(1)^{p(1-1/q)-3} R^{2\beta-1} \left(\sum_{\gamma} ||f_{\gamma}||_{p}^{q} \right)^{p/q}.
$$

Since $p(1 - 1/q) - 3 \ge 0$, we may use the bound $\lambda(1) \lesssim R^{\beta}$ to conclude that $\lambda(1)^{p(1-1/q)-3} R^{2\beta-1} \leq R^{\beta p(1-1/q)-3\beta+2\beta-1} = R^{\beta p(1-1/q)-(1+\beta)}.$

The other case is that the $L⁶$ bound holds in Theorem [2.2.](#page-3-2) We may also assume that $\alpha^2 > \lambda(1)$ since otherwise we trivially have

$$
\alpha^{p} |U_{\alpha}| \leq \lambda(1)^{p/2 - 1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2} \sim \lambda(1)^{p/2 - 1 + 1 - p/q} \Big(\sum_{\gamma} ||f_{\gamma}||_{p}^{q}\Big)^{p/q}
$$

$$
\lesssim R^{\beta p(1/2 - 1/q)} \Big(\sum_{\gamma} ||f_{\gamma}||_{p}^{q}\Big)^{p/q}
$$

where we used that $q \ge 2$ since $4 \le p \le 6$ and $3/p + 1/q \le 1$. Now using the assumptions $\alpha^2 > \lambda(1)$ and $p \leq 6$, we have

$$
\alpha^p |U_\alpha| \leq C_\varepsilon R^\varepsilon \alpha^{p-6} \lambda(1)^2 \lambda(1)^{1-p/q} \Big(\sum_\gamma \|f_\gamma\|_p^q \Big)^{p/q}
$$

$$
\sim C_\varepsilon R^\varepsilon \lambda(1)^{p(1/2-1/q)} \Big(\sum_\gamma \|f_\gamma\|_p^q \Big)^{p/q} \lesssim C_\varepsilon R^\varepsilon R^{\beta p(1/2-1/q)} \Big(\sum_\gamma \|f_\gamma\|_p^q \Big)^{p/q}.
$$

Subcase $3 \le p < 4$. Suppose that $\alpha < R^{\beta/2}$. Then using L^2 -orthogonality,

$$
\alpha^p |U_{\alpha}| \leq R^{\frac{\beta}{2}(p-2)} \sum_{\gamma} ||f_{\gamma}||_2^2 \sim R^{\frac{\beta}{2}(p-2)} \lambda(1)^{1-p/q} \Big(\sum_{\gamma} ||f_{\gamma}||_p^q \Big)^{p/q}.
$$

Since in this subcase, $1 - p/q \ge 1 - (p - 3) > 0$, we are done after noting that

$$
R^{\frac{\beta}{2}(p-2)}\lambda(1)^{1-p/q} \leq R^{\beta p(1/2-1/q)}.
$$

Now assume that $\alpha \ge R^{\beta/2}$ and use the $p = 4$ case above (noting that $R^{4\beta(1-1/q)-(1+\beta)}$ $R^{4\beta(1/2-1/q)}$ to get

$$
\alpha^{p} |U_{\alpha}| \leq \frac{\alpha^{4}}{(R^{\beta/2})^{4-p}} |U_{\alpha}| \leq R^{-\frac{\beta}{2}(4-p)} C_{\varepsilon} R^{\varepsilon} R^{4\beta(1/2-1/q)} \lambda(1)^{4/q-1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2}
$$

$$
\leq C_{\varepsilon} R^{\varepsilon} R^{\beta p(1/2-1/q)} \lambda(1)^{p/q-1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2}.
$$

Case $6 < p$.

In this range, we use the trivial bound $\alpha \leq \lambda(1)$ and the $p = 6$ case above (noting that $R^{6\beta(1/2-1/q)} < R^{6\beta(1-1/q)-(1+\beta)}$ to get

$$
\alpha^{p} |U_{\alpha}| \leq \lambda(1)^{p-6} \alpha^{6} |U_{\alpha}| \leq \lambda(1)^{p-6} C_{\varepsilon} R^{\varepsilon} R^{6\beta(1-1/q)-(1+\beta)} \lambda(1)^{6/q-1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2}
$$

= $\left(\frac{\lambda(1)}{R^{\beta}}\right)^{(p-6)(1-1/q)} C_{\varepsilon} R^{\varepsilon} R^{p\beta(1-1/q)-(1+\beta)} \lambda(1)^{p/q-1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2}$
 $\leq C_{\varepsilon} R^{\varepsilon} R^{p\beta(1-1/q)-(1+\beta)} \lambda(1)^{p/q-1} \sum_{\gamma} ||f_{\gamma}||_{2}^{2}.$

5. Tools to prove Theorem [2.2](#page-3-2)

The proof of Theorem [2.2](#page-3-2) follows the high/low frequency decomposition and the pruning approach from [\[9\]](#page-29-0). In this section, we introduce notation for different scale neighborhoods of \mathbb{P}^1 , a pruning process for wave packets at various scales, some high/low lemmas which are used to analyze the high/low frequency parts of square functions, and a version of a bilinear restriction theorem for \mathbb{P}^1 .

Begin by fixing some notation, as above. Let $\beta \in [1/2, 1]$ and $R \ge 2$. The parameter $\alpha > 0$ describes the superlevel set

$$
U_{\alpha} = \{x \in \mathbb{R}^2 : |f(x)| \ge \alpha\}.
$$

For $\varepsilon > 0$, we analyze scales $R_k = R^{k\varepsilon}$, noting that $R^{-1/2} \le R_k^{-1/2} \le 1$. Let N distinguish the index so that R_N is closest to R. Since R and R_N differ at most by a factor of R^{ε} , we will ignore the distinction between R_N and R in the rest of the argument.

Define the following collections, each of which partitions a neighborhood of $\mathbb P$ into approximate rectangles:

- (1) $\{\gamma\}$ is a partition of $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ by approximate $R^{-\beta} \times R^{-1}$ rectangles, described explicitly in [\(2.2\)](#page-2-2).
- (2) $\{\theta\}$ is a partition of $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ by approximate $R^{-1/2} \times R^{-1}$ rectangles. In particular, let each θ be a union of adjacent γ .
- (3) $\{\tau_k\}$ is a partition of $\mathcal{N}_{R_k^{-1}}(\mathbb{P}^1)$ by approximate $R_k^{-1/2}$ $k_k^{-1/2} \times R_k^{-1}$ rectangles. Assume the additional property that $\gamma \cap \tau_k = \emptyset$ or $\gamma \subset \tau_k$. Note that $\{\tau_N\} = \{\theta\}.$

We will repeatedly make use of the hypothesis that f is a Schwartz function with Fourier transform supported in $\mathcal{N}_{R^{-1}}(\mathbb{P}^1)$ and satisfies $||f_\gamma||_\infty \leq 1$ for all $\gamma \in \mathcal{P}(R,\beta)$.

5.1. A pruning step

We will define wave packets at each scale τ_k , and prune the wave packets associated to f_{τ_k} according to their amplitudes.

For each τ_k , fix a dual rectangle τ_k^* which is a $2R_k^{1/2} \times 2R_k$ rectangle centered at the origin and comparable to the convex set

$$
\{x \in \mathbb{R}^2 : |x \cdot \xi| \le 1, \ \forall \xi \in \tau_k\}.
$$

Let \mathbb{T}_{τ_k} be the collection of tubes T_{τ_k} which are dual to τ_k , contain τ_k^* $\frac{k}{k}$, and which tile \mathbb{R}^2 . Next, we will define an associated partition of unity $\psi_{T_{\tau_k}}$. First let $\varphi(\xi)$ be a bump function supported in $[-1/4, 1/4]^2$. For each $m \in \mathbb{Z}^2$, let

$$
\psi_m(x) = c \int_{[-1/2, 1/2]^2} |\widetilde{\varphi}|^2 (x - y - m) \, dy,
$$

where c is chosen so that $\sum_{m\in\mathbb{Z}^2}\psi_m(x)=c\int_{\mathbb{R}^2}|\breve{\varphi}|^2=1$. Since $|\breve{\varphi}|$ is a rapidly decaying function, for any $n \in \mathbb{N}$, there exists $C_n > 0$ such that

$$
\psi_m(x) \leq c \int_{[0,1]^2} \frac{C_n}{(1+|x-y-m|^2)^n} dy \leq \frac{\tilde{C}_n}{(1+|x-m|^2)^n}.
$$

Define the partition of unity $\psi_{T_{\tau_k}}$ associated to τ_k to be $\psi_{T_{\tau_k}}(x) = \psi_m \circ A_{\tau_k}$, where A_{τ_k} is a linear transformation taking τ_k^* * to $[-1/2, 1/2]^2$ and $A_{\tau_k}(T_{\tau_k}) = m + [-1/2, 1/2]^2$. The important properties of $\psi_{T_{\tau_k}}$ are (1) rapid decay off of T_{τ_k} and (2) Fourier support contained in $\frac{1}{2}\tau_k$.

To prove upper bounds for the size of U_α , we will actually bound the sizes of $\sim \varepsilon^{-1}$ many subsets which will be denoted $U_\alpha \cap \Omega_k$, $U_\alpha \cap H$, and $U_\alpha \cap L$. The pruning process sorts between important and unimportant wave packets on each of these subsets, as described in Lemma [5.9](#page-16-0) below.

Partition $\mathbb{T}_{\theta} = \mathbb{T}_{\theta}^{g}$ $\frac{g}{\theta} \sqcup \mathbb{T}_{\theta}^{b}$ into a "good" and a "bad" set as follows. Let $\delta > 0$ be a parameter to be chosen in [§6.2](#page-24-0) and set

$$
T_{\theta} \in \mathbb{T}_{\theta}^{g} \quad \text{if} \quad \|\psi_{T_{\theta}} f_{\theta}\|_{L^{\infty}(\mathbb{R}^2)} \leq R^{M\delta} \frac{\lambda(1)}{\alpha}
$$

;

where $M > 0$ is a universal constant we will choose in the proof of Proposition [6.1.](#page-22-1)

Definition 5.1 (Pruning with respect to τ_k). For each θ and τ_{N-1} , define the notation

$$
f_{\theta}^N = \sum_{T_{\theta} \in \mathbb{T}_{\theta}^S} \psi_{T_{\theta}} f_{\theta} \quad \text{and} \quad f_{\tau_{N-1}}^N = \sum_{\theta \subset \tau_{N-1}} f_{\theta}^N.
$$

For each $k < N$, let

$$
\mathbb{T}_{\tau_k}^g = \{ T_{\tau_k} \in \mathbb{T}_{\tau_k} : \|\psi_{T_{\tau_k}} f_{\tau_k}^{k+1}\|_{L^{\infty}(\mathbb{R}^2)} \le R^{M\delta} \lambda(1)/\alpha \},
$$

$$
f_{\tau_k}^k = \sum_{T_{\tau_k} \in \mathbb{T}_{\tau_k}^g} \psi_{T_{\tau_k}} f_{\tau_k}^{k+1} \text{ and } f_{\tau_{k-1}}^k = \sum_{\tau_k \subset \tau_{k-1}} f_{\tau_k}^k.
$$

For each k, define the kth version of f to be $f^k = \sum_{\tau_k} f_{\tau_k}^k$.

Lemma 5.2 (Properties of f^k). (1) $|f_{\tau_k}^k(x)| \leq |f_{\tau_k}^{k+1}(x)| \leq #\gamma \subset \tau_k$. (2) $|| f_{\tau_k}^k ||_{L^\infty} \leq C_\varepsilon R^{O(\varepsilon)} R^{M\delta} \lambda(1)/\alpha.$

(3) supp $f_{\tau_k}^k \subset 2\tau_k$. (4) $\sup p f_{\tau_{k-1}}^k \subset (1 + (\log R)^{-1}) \tau_{k-1}.$ *Proof.* The first property follows because $\sum_{T_{\tau_k} \in \mathbb{T}_{\tau_k}} \psi_{T_{\tau_k}}$ is a partition of unity, and

$$
f_{\tau_k}^k = \sum_{T_{\tau_k} \in \mathbb{T}_{\tau_k}^g} \psi_{T_{\tau_k}} f_{\tau_k}^{k+1}.
$$

Furthermore, by definition of $f_{\tau_k}^{k+1}$ and iterating, we have

$$
|f_{\tau_k}^k| \leq |f_{\tau_k}^{k+1}| \leq \sum_{\tau_{k+1} \subset \tau_k} |f_{\tau_{k+1}}^{k+1}| \leq \cdots \leq \sum_{\tau_N \subset \tau_k} |f_{\tau_N}^N| \leq \sum_{\theta \subset \tau_k} |f_{\theta}| \leq \sum_{\gamma \subset \tau_k} |f_{\gamma}| \lesssim \#\gamma \subset \tau_k,
$$

where we used the assumption $||f_{\gamma}||_{\infty} \lesssim 1$ for all γ . Now consider the L^{∞} bound in the second property. We write

$$
f_{\tau_k}^k(x) = \sum_{\substack{T_{\tau_k} \in \mathbb{T}_{\tau_k}^g, \\ x \in R^{\varepsilon}T_{\tau_k}}} \psi_{T_{\tau_k}} f_{\tau_k}^{k+1} + \sum_{\substack{T_{\tau_k} \in \mathbb{T}_{\tau_k, \lambda}, \\ x \notin R^{\varepsilon}T_{\tau_k}}} \psi_{T_{\tau_k}} f_{k+1, \tau_k}.
$$

The first sum has at most $CR^{2\varepsilon}$ terms, and each term has norm bounded by $R^{M\delta}\lambda(1)/\alpha$, by the definition of $\mathbb{T}_{\tau_k}^g$. By property (1), we may trivially bound $f_{\tau_k}^{k+1}$ by $R \max_{\gamma} || f_{\gamma} ||_{\infty}$. But if $x \notin R^{\varepsilon}T_{\tau_k}$, then $\psi_{T_{\tau_k}}(x) \leq R^{-1000}$. Thus

$$
\bigg| \sum_{\substack{T_{\tau_k} \in \mathbb{T}_{\tau_k}^g, \\ x \notin R^{\epsilon} T_{\tau_k}}} \psi_{T_{\tau_k}} f_{\tau_k}^{k+1} \bigg| \leq \sum_{\substack{T_{\tau_k} \in \mathbb{T}_{\tau_k}^g, \\ x \notin R^{\epsilon} T_{\tau_k}}} R^{-500} \psi_{T_{\tau_k}}^{1/2}(x) \| f_{\tau_k}^{k+1} \|_{\infty} \leq R^{-250} \max_{\gamma} \| f_{\gamma} \|_{\infty}.
$$

Since $\alpha \lesssim |f(x)| \lesssim \sum_{\gamma} ||f_{\gamma}||_{\infty} \lesssim \lambda(1)$, (recalling the assumption that each $||f_{\gamma}||_{\infty} \lesssim 1$), we note $R^{-250} \leq CR^{2\epsilon} \lambda(1)/\alpha$.

The third and fourth properties depend on the Fourier support of $\psi_{T_{\tau_k}}$, which is contained in $\frac{1}{2}\tau_k$. Initiate a 2-step induction with base case $k = N: f_\theta^N$ has Fourier support in 2θ because of the above definition. Then

$$
f_{\tau_{N-1}}^N = \sum_{\theta \subset \tau_{N-1}} f_{\theta}^N
$$

has Fourier support in $\bigcup_{\theta \subset \tau_{N-1}} 2\theta$, which is contained in $(1 + (\log R)^{-1})\tau_{N-1}$. Since each $\psi_{T_{\tau_{N-1}}}$ has Fourier support in $\frac{1}{2}\tau_{N-1}$,

$$
f_{\tau_{N-1}}^{N-1} = \sum_{T_{\tau_{N-1}} \in \mathbb{T}_{\tau_{N-1},\lambda}} \psi_{\tau_{N-1}} f_{\tau_{N-1}}^N
$$

has Fourier support in $\frac{1}{2}\tau_{N-1} + (1 + (\log R)^{-1})\tau_{N-1} \subset 2\tau_{N-1}$. Iterating this reasoning until $k = 1$ gives (3) and (4).

Definition 5.3. For each τ_k , let w_{τ_k} be the weight function adapted to τ_k^* κ_k^* defined by

$$
w_{\tau_k}(x) = w_k \circ R_{\tau_k}(x)
$$

where

$$
w_k(x, y) = \frac{c}{(1+|x|^2/R_k)^{10}(1+|y|^2/R_k^2)^{10}}, \quad ||w||_1 = 1,
$$

and R_{τ_k} : $\mathbb{R}^2 \to \mathbb{R}^2$ is the rotation taking τ_k^* k^* to $[-R_k^{1/2}]$ $\left[\frac{k^{1/2}}{k}, R_k^{1/2} \right] \times \left[-R_k, R_k \right]$. For each $T_{\tau_k} \in \mathbb{T}_{\tau_k}$, let $w_{T_{\tau_k}} = w_{\tau_k}(x - c_{T_{\tau_k}})$, where $c_{T_{\tau_k}}$ is the center of T_{τ_k} . For $s > 0$, we also use the notation w_s to mean

(5.1)
$$
w_s(x) = \frac{c'}{(1+|x|^2/s^2)^{10}}, \qquad \|w_s\|_1 = 1.
$$

The weights w_{τ_k} , $w_{\theta} = w_{\tau_N}$, and w_s are useful when we invoke the locally constant property. By locally constant property, we mean generally that if a function f has Fourier transform supported in a convex set A, then for a bump function $\varphi_A \equiv 1$ on A, $f = f * \widetilde{\varphi_A}$. Since $|\widetilde{\varphi}_A|$ is an L^1 -normalized function which is positive on a set dual to A, $|f| * |\widetilde{\varphi}_A|$ is an averaged version of $|f|$ over a dual set A^* . We record some of the specific locally constant properties we need in the following lemma.

Lemma 5.4 (Locally constant property). *For each* τ_k *and* $T_{\tau_k} \in \mathbb{T}_{\tau_k}$ *,*

$$
||f_{\tau_k}||_{L^{\infty}(T_{\tau_k})}^2 \lesssim |f_{\tau_k}|^2 * w_{\tau_k}(x) \quad \text{for any } x \in T_{\tau_k}.
$$

For any collection of $\sim s^{-1} \times s^{-2}$ *blocks* θ_s *partitioning* $\mathcal{N}_{s^{-2}}(\mathbb{P}^1)$ *and any s*-*ball B*,

$$
\Big\|\sum_{\theta_s}|f_{\theta_s}|^2\Big\|_{L^{\infty}(B)}\lesssim \sum_{\theta_s}|f_{\theta_s}|^2*w_s(x) \text{ for any } x\in B.
$$

Because the pruned versions of f and f_{τ_k} have essentially the same Fourier supports as the unpruned versions, the locally constant lemma applies to the pruned versions as well.

Proof of Lemma [5.4](#page-14-0). Let ρ_{τ_k} be a bump function equal to 1 on τ_k and supported in $2\tau_k$. Then using Fourier inversion and Hölder's inequality,

$$
|f_{\tau_k}(y)|^2 = |f_{\tau_k} * \widetilde{\rho_{\tau_k}}(y)|^2 \le ||\widetilde{\rho_{\tau_k}}||_1 |f_{\tau_k}|^2 * |\widetilde{\rho_{\tau_k}}|(y).
$$

Since ρ_{τ_k} may be taken to be an affine transformation of a standard bump function adapted to the unit ball, $\|\widetilde{\rho_{\tau_k}}\|_1$ is a constant. The function $\widetilde{\rho_{\tau_k}}$ decays rapidly off of τ_k^* $\frac{k}{k}$, so that $|\widetilde{\rho_{\tau_k}}| \lesssim w_{\tau_k}$. Since for any $T_{\tau_k} \in \mathbb{T}_{\tau_k}$, $w_{\tau_k}(y)$ is comparable for all $y \in T_{\tau_k}$, we have

$$
\sup_{x \in T_{\tau_k}} |f_{\tau_k}|^2 * w_{\tau_k}(x) \le \int |f_{\tau_k}|^2(y) \sup_{x \in T_{\tau_k}} w_{\tau_k}(x - y) dy
$$

$$
\sim \int |f_{\tau_k}|^2(y) w_{\tau_k}(x - y) dy, \quad \text{for all } x \in T_{\tau_k}.
$$

For the second part of the lemma, repeat analogous steps as above, except begin with ρ_{θ_k} which is identically 1 on a ball of radius $2s^{-1}$ containing θ_s . Then

$$
\sum_{\theta_s} |f_{\theta_s}(y)|^2 = \sum_{\theta_s} |f_{\theta_s} * \widetilde{\rho_{\theta_s}}(y)|^2 \lesssim \sum_{\theta_s} |f_{\theta_s}|^2 * |\widetilde{\rho_{s-1}}|(y),
$$

where we used that each ρ_{θ_s} is a translate of a single function $\rho_{s^{-1}}$. The rest of the argument is analogous to the first part.Г **Definition 5.5** (Auxiliary functions). Let $\varphi(x)$: $\mathbb{R}^2 \to [0, \infty)$ be a radial, smooth bump function satisfying $\varphi(x) = 1$ on B_1 and supp $\varphi \subset B_2$. Observe that

$$
\varphi(2^{-2}\xi) = \varphi(2^{J+1}\xi) + \sum_{j=-2}^{J} [\varphi(2^{j}\xi) - \varphi(2^{j+1}\xi)],
$$

where *J* is defined by $2^J \leq \lceil R^{\beta} \rceil < 2^{J+1}$. Then for each dyadic $s = 2^j$, let

$$
\eta_{\sim s}(\xi) = \varphi(2^j \xi) - \varphi(2^{j+1} \xi)
$$
 and $\eta_{\leq [R^{\beta}]^{-1}}(\xi) = \varphi(2^{J+1} \xi)$.

Finally, for $k = 1, \ldots, N - 1$, define

$$
\eta_k(\xi) = \varphi(R_{k+1}^{1/2}x).
$$

Definition 5.6. Let $G(x) = \sum_{\theta} |f_{\theta}|^2 * w_{\theta}$, $G^{\ell}(x) = G * \check{\eta}_{\leq [R^{\beta}]^{-1}}$, and $G^h(x) = G(x) G^{\ell}(x)$. For $k = 1, \ldots, N - 1$, let

$$
g_k(x) = \sum_{\tau_k} |f_{\tau_k}^{k+1}|^2 * w_{\tau_k}, \quad g_k^{\ell}(x) = g_k * \check{\eta}_k, \quad \text{and} \quad g_k^h(x) = g_k - g_k^{\ell}.
$$

Definition 5.7. Define the high set as

$$
H = \{x \in B_R : G(x) \le 2|G^h(x)|\}.
$$

For each $k = 1, \ldots, N - 1$, let

$$
\Omega_k = \{x \in B_R \setminus H : g_k \le 2|g_k^h|, g_{k+1} \le 2|g_{k+1}^{\ell}|, \dots, g_N \le 2|g_N^{\ell}|\}
$$

and for each $k = 1, \ldots, N$. Define the low set as

$$
L = \{x \in B_R \setminus H : g_1 \le 2|g_1^{\ell}|, \dots, g_N \le 2|g_N^{\ell}|, G(x) \le 2|G^{\ell}(x)|\}.
$$

5.2. High/low frequency lemmas

Lemma 5.8 (Low lemma). *For each* x , $|G^{\ell}(x)| \lesssim \lambda(1)$ and $|g^{\ell}_k(x)| \lesssim g_{k+1}(x)$.

Proof. For each θ , by Plancherel's theorem,

$$
|f_{\theta}|^{2} * \check{\eta}_{<\lceil R^{\beta} \rceil^{-1}}(x) = \int_{\mathbb{R}^{2}} |f_{\theta}|^{2} (x - y) \, \check{\eta}_{<\lceil R^{\beta} \rceil^{-1}}(y) \, dy
$$

=
$$
\int_{\mathbb{R}^{2}} \hat{f}_{\theta} * \hat{\overline{f}}_{\theta}(\xi) \, e^{-2\pi i x \cdot \xi} \, \eta_{<\lceil R^{\beta} \rceil^{-1}}(\xi) \, d\xi
$$

=
$$
\sum_{\gamma, \gamma' \subset \theta} \int_{\mathbb{R}^{2}} e^{-2\pi i x \cdot \xi} \, \hat{f}_{\gamma} * \hat{\overline{f}}_{\gamma'}(\xi) \, \eta_{<\lceil R^{\beta} \rceil^{-1}}(\xi) \, d\xi.
$$

The integrand is supported in $(\gamma \setminus \gamma') \cap B_{2\lceil R^{\beta} \rceil^{-1}}$. This means that the integral vanishes unless γ is within $CR^{-\beta}$ of γ' for some constant $C > 0$, in which case we write $\gamma \sim \gamma'$.

Then

$$
\sum_{\gamma,\gamma'\subset\theta}\int_{\mathbb{R}^2}e^{-2\pi ix\cdot\xi}\,\widehat{f}_{\gamma}\ast\widehat{\overline{f}}_{\gamma'}(\xi)\,\eta_{<\lceil R^{\beta}\rceil^{-1}}(\xi)\,d\xi
$$
\n
$$
=\sum_{\substack{\gamma,\gamma'\subset\theta\\ \gamma\sim\gamma'}}\int_{\mathbb{R}^2}e^{-2\pi ix\cdot\xi}\,\widehat{f}_{\gamma}\ast\widehat{\overline{f}}_{\gamma'}(\xi)\,\eta_{<\lceil R^{\beta}\rceil^{-1}}(\xi)\,d\xi.
$$

Use Plancherel's theorem again to get back to a convolution in x and conclude that

$$
|G * \check{\eta}_{< \lceil R^\beta \rceil^{-1}}(x)| = \Big| \sum_{\theta} \sum_{\substack{\gamma, \gamma' \subset \theta \\ \gamma \sim \gamma'}} (f_\gamma \overline{f}_{\gamma'}) * w_\theta * \check{\eta}_{< \lceil R^\beta \rceil^{-1}}(x) \Big|
$$

$$
\lesssim \sum_{\theta} \sum_{\gamma \subset \theta} |f_\gamma|^2 * w_\theta * |\check{\eta}_{< \lceil R^\beta \rceil^{-1}}|(x) \lesssim \sum_{\gamma} \|f_\gamma\|_{\infty}^2 \lesssim \lambda(1).
$$

By an analogous argument as above, we have that

$$
|g_k^{\ell}(x)| \lesssim \sum_{\tau_{k+1}} |f_{\tau_{k+1}}^{k+1}|^2 * w_{\tau_k} * |\check{\eta}_k|(x),
$$

where for each summand, w_{τ_k} corresponds to the τ_k containing τ_{k+1} . By definition, $|f_{\tau_{k+1}}^{k+1}| \leq |f_{\tau_{k+1}}^k|$. By the locally constant property, $|f_{\tau_{k+1}}^k|^2 \lesssim |f_{\tau_{k+1}}|^2 \ast w_{\tau_{k+1}}$. It remains to note that

$$
w_{\tau_{k+1}} * w_{\tau_k} * |\check{\eta}_k|(x) \lesssim w_{\tau_{k+1}}(x)
$$

since $\tau_k^* \subset \tau_{k+1}^*$ and $\check{\eta}_k$ is an L^1 -normalized function that is rapidly decaying away from $B_{R_{k+1}^{1/2}}(0).$

Lemma 5.9 (Pruning lemma). *For any* τ ,

$$
\left| \sum_{\tau_k \subset \tau} f_{\tau_k} - \sum_{\tau_k \subset \tau} f_{\tau_k}^{k+1}(x) \right| \le C_{\varepsilon} R^{-M\delta} \alpha \quad \text{for all } x \in \Omega_k,
$$

$$
\left| \sum_{\tau_1 \subset \tau} f_{\tau_1} - \sum_{\tau_1 \subset \tau} f_{\tau_1}^1(x) \right| \le C_{\varepsilon} R^{-M\delta} \alpha \quad \text{for all } x \in L.
$$

Proof. By the definition of the pruning process, we have

$$
f_{\tau} = f_{\tau}^{N} + (f_{\tau} - f_{\tau}^{N}) = \dots = f_{\tau}^{k+1}(x) + \sum_{m=k+1}^{N} (f_{\tau}^{m+1} - f_{\tau}^{m}),
$$

with the understanding that $f^{N+1} = f$ and formally, the subscript τ means $f_{\tau} = \sum_{\gamma \subset \tau} f_{\gamma}$ and $f_{\tau}^{m} = \sum_{\tau_{m} \subset \tau} f_{\tau_{m}}^{m}$. We will show that each difference in the sum is much smaller than α .

 \blacksquare

For each $m > k + 1$ and τ_m ,

$$
|f_{\tau_m}^m(x) - f_{\tau_m}^{m+1}(x)| = \Big| \sum_{T_{\tau_m} \in \mathbb{T}_{\tau_m}^b} \psi_{T_{\tau_m}}(x) f_{\tau_m}^{m+1}(x) \Big| = \sum_{T_{\tau_m} \in \mathbb{T}_{\tau_m}^b} |\psi_{T_{\tau_m}}^{1/2}(x) f_{\tau_m}^{m+1}(x)| \psi_{T_{\tau_m}}^{1/2}(x)
$$

\n
$$
\lesssim \sum_{T_{\tau_m} \in \mathbb{T}_{\tau_m}^b} R^{-M\delta} \frac{\alpha}{\lambda(1)\lambda} \|\psi_{T_{\tau_m}} f_{\tau_m}^{m+1}\|_{L^{\infty}(\mathbb{R}^2)} \|\psi_{T_{\tau_m}}^{1/2} f_{\tau_m}^{m+1}\|_{L^{\infty}(\mathbb{R}^2)} \psi_{T_{\tau_m}}^{1/2}(x)
$$

\n
$$
\lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} \sum_{T_{\tau_m} \in \mathbb{T}_{\tau_m}^b} \|\psi_{T_{\tau_m}}^{1/2} f_{\tau_m}^{m+1}\|_{L^{\infty}(\mathbb{R}^2)}^2 \psi_{T_{\tau_m}}^{1/2}(x)
$$

\n
$$
\lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} \sum_{T_{\tau_m} \in \mathbb{T}_{\tau_m}^b} \sum_{\tilde{T}_{\tau_m}} \|\psi_{T_{\tau_m}} |f_{\tau_m}^{m+1}|^2\|_{L^{\infty}(\tilde{T}_{\tau_m})} \psi_{T_{\tau_m}}^{1/2}(x)
$$

\n
$$
\lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} \sum_{T_{\tau_m}, \tilde{T}_{\tau_m} \in \mathbb{T}_{\tau_m}^b} \|\psi_{T_{\tau_m}}\|_{L^{\infty}(\tilde{T}_{\tau_m})} \|\|f_{\tau_m}^{m+1}|^2\|_{L^{\infty}(\tilde{T}_{\tau_m})} \psi_{T_{\tau_m}}^{1/2}(x).
$$

Let $c_{\tilde{T}_{\tau_m}}$ denote the center of \tilde{T}_{τ_m} , and note the pointwise inequality

$$
\sum_{T_{\tau_m}} \|\psi_{T_{\tau_m}}\|_{L^{\infty}(\widetilde{T}_{\tau_m})} \,\psi_{T_{\tau_m}}^{1/2}(x) \lesssim R_m^{3/2} \,w_{\tau_m}(x-c_{\widetilde{T}_{\tau_m}}),
$$

which means that

$$
|f_{\tau_m}^m(x) - f_{\tau_m}^{m+1}(x)| \lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} R_m^{3/2} \sum_{\tilde{T}_{\tau_m} \in T_{\tau_m}} w_{\tau_m}(x - c_{\tilde{T}_{\tau_m}}) || |f_{\tau_m}^{m+1}|^2 ||_{L^{\infty}(\tilde{T}_{\tau_m})}
$$

$$
\lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} R_m^{3/2} \sum_{\tilde{T}_{\tau_m} \in T_{\tau_m}} w_{\tau_m}(x - c_{\tilde{T}_{\tau_m}}) |f_{\tau_m}^{m+1}|^2 * w_{\tau_m}(c_{\tilde{T}_{\tau_m}})
$$

$$
\lesssim R^{-M\delta} \frac{\alpha}{\lambda(1)} |f_{\tau_m}^{m+1}|^2 * w_{\tau_m}(x),
$$

where we used the locally constant property in the second to last inequality and the pointwise relation $w_{\tau_m} * w_{\tau_m} \lesssim w_{\tau_m}$ for the final inequality. Then

$$
\Big|\sum_{\tau_m\subset\tau}f_{\tau_m}^m(x)-f_{\tau_m}^{m+1}(x)\Big|\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}\sum_{\tau_m\subset\tau}|f_{\tau_m}^{m+1}|^2*w_{\tau_m}(x)\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}g_m(x).
$$

By the definition of Ω_k and Lemma [5.8,](#page-15-0) we have that $g_m(x) \le 2|g_m^{\ell}(x)| \le 2Cg_{m+1}(x)$ $\leq \cdots \leq (2C)^{\varepsilon^{-1}} G(x) \lesssim (2C)^{\varepsilon^{-1}} \lambda(1)$. We conclude that

$$
\Big|\sum_{\tau_m \subset \tau} f_{\tau_m}^m(x) - f_{\tau_m}^{m+1}(x)\Big| \lesssim (2C)^{\varepsilon^{-1}} R^{-M\delta} \alpha.
$$

The claim for L follows immediately from the above argument, using the low-dominance of g_k for all k .

Definition 5.10. Call the distribution function λ associated to a function $f(R, \varepsilon)$ -normalized if for any k and τ_m ,

$$
\#\{\tau_k \subset \tau_m : f_{\tau_k} \neq 0\} \le 100 \, \frac{\lambda(R_m^{-1/2})}{\lambda(R_k^{-1/2})}.
$$

Remark 5.11. The role of (R, ε) -normalized distribution functions is to simplify notation. It allows us to write all combinatorial quantities which arise in the high lemmas in terms of the maximal number of ν intersecting larger arcs, rather than counting the number of intermediate-scale blocks intersecting larger arcs.

Lemma 5.12 (High lemma I). Assume that f has an (R, ε) -normalized distribution func*tion* $\lambda(\cdot)$ *. For each dyadic s,* $R^{-\beta} \leq s \leq R^{-1/2}$ *,*

$$
\int_{\mathbb{R}^2} |G * \breve{\eta}_{\sim s}|^2 \lesssim C_{\varepsilon} R^{2\varepsilon} \lambda(s^{-1} R^{-1}) \lambda(s) \sum_{\gamma} \|f_{\gamma}\|_2^2.
$$

Proof. Organize the $\{\gamma\}$ into subcollections $\{\theta_s\}$ in which each θ_s is a union of γ which intersect the same $\sim s$ -arc of \mathbb{P}^1 , where here, for concreteness, $\sim s$ means within a factor of 2. Then by Plancherel's theorem, since $\overline{\eta}_{\sim s} = \gamma_{\sim s}$, we have for each θ ,

$$
|f_{\theta}|^2 * \check{\eta}_{\sim s}(x) = \int_{\mathbb{R}^2} |f_{\theta}|^2 (x - y) \check{\eta}_{\sim s}(y) dy = \int_{\mathbb{R}^2} \hat{f}_{\theta} * \hat{\overline{f}}_{\theta}(\xi) e^{-2\pi i x \cdot \xi} \eta_{\sim s}(\xi) d\xi
$$

(5.2)
$$
= \sum_{\theta_s, \theta_s' \subset \theta} \int_{\mathbb{R}^2} e^{-2\pi i x \cdot \xi} \hat{f}_{\theta_s} * \hat{\overline{f}}_{\theta_s'}(\xi) \eta_{\sim s}(\xi) d\xi.
$$

The support of $\widehat{\overline{f}}_{\theta'_{\delta}}(\xi) = \int e^{-2\pi i x \cdot \xi} \overline{f}_{\theta'_{\delta}}(x) dx = \overline{\widehat{f}}_{\theta'_{\delta}}(-\xi)$ is contained in $-\theta'_{\delta}$. This means that the support of $\hat{f}_{\theta_s} * \hat{f}_{\theta_s'}(\xi)$ is contained in $\theta_s - \theta_s'$. Since the support of $\eta_{\sim s}(\xi)$ is contained in the ball of radius 2s, for each $\theta_s \subset \theta$, there are only finitely many $\theta_s' \subset \theta$ so that the integral in (5.2) is nonzero. Thus we may write

$$
G * \check{\eta}_{\sim s}(x) = \sum_{\theta} |f_{\theta}|^2 * w_{\theta} * \check{\eta}_{\sim s}(x) = \sum_{\theta} \sum_{\substack{\theta_s, \theta'_s \subset \theta \\ \theta_s \sim \theta'_s}} (f_{\theta_s} \overline{f}_{\theta'_s}) * w_{\theta} * \check{\eta}_{\sim s}(x),
$$

where the second sum is over θ_s , $\theta'_s \subset \theta$ with $dist(\theta_s, \theta'_s) < 2s$. Using the above pointwise expression and then Plancherel's theorem, we have

$$
\int_{\mathbb{R}^2} |G * \check{\eta}_{\sim s}|^2 = \int_{\mathbb{R}^2} \Big| \sum_{\theta} \sum_{\substack{\theta_s, \theta'_s \subset \theta \\ \theta_s \sim \theta'_s}} (f_{\theta_s} \overline{f}_{\theta'_s}) * w_{\theta} * \check{\eta}_{\sim s} \Big|^2
$$

$$
= \int_{\mathbb{R}^2} \Big| \sum_{\substack{\theta} \theta_s, \theta'_s \subset \theta \\ \theta_s \sim \theta'_s} (\widehat{f}_{\theta_s} * \widehat{\overline{f}}_{\theta'_s}) \widehat{w}_{\theta} \eta_{\sim s} \Big|^2.
$$

For each θ , $\sum_{\theta_s, \theta_s' \subset \theta, \theta_s \sim \theta_s'} (\widehat{f}_{\theta_s} * \overline{f}_{\theta_s'})$ is supported in $\theta - \theta$, since each summand is supported in $\theta_s - \theta'_s$ and θ_s , $\theta'_s \subset \theta$. For each $\xi \in \mathbb{R}^2$, $|\xi| > s/2$, the maximum number of $\theta - \theta'_s$ containing ξ is bounded by the maximum number of θ intersecting an $R^{-1/2} \cdot s^{-1} R^{-1/2}$. arc of the parabola. Using that $\lambda(\cdot)$ is (R,ε) -normalized, this number is bounded above by $C_{\varepsilon} R^{\varepsilon} \lambda (s^{-1} R^{-1}) / \lambda (R^{-1/2}).$

Since $\eta_{\sim s}$ is supported in the region $|\xi| > s/2$, by Cauchy–Schwarz,

$$
\int_{\mathbb{R}^2} \Big| \sum_{\theta} \sum_{\theta_s, \theta_s' \subset \theta} (\widehat{f}_{\theta_s} * \widehat{\overline{f}}_{\theta_s'}) \widehat{w}_{\theta} \eta_{\sim s} \Big|^2 \n\lesssim C_{\varepsilon} R^{\varepsilon} \frac{\lambda (r^{-1} R^{-1})}{\lambda (R^{-1/2})} \sum_{\theta} \int_{\mathbb{R}^2} \Big| \sum_{\substack{\theta_s, \theta_s' \subset \theta \\ \theta_s \sim \theta_s'}} (\widehat{f}_{\theta_s} * \widehat{\overline{f}}_{\theta_s'}) \widehat{w}_{\theta} \eta_{\sim s} \Big|^2 \n= C_{\varepsilon} R^{\varepsilon} \frac{\lambda (r^{-1} R^{-1})}{\lambda (R^{-1/2})} \sum_{\theta} \int_{\mathbb{R}^2} \Big| \sum_{\substack{\theta_s, \theta_s' \subset \theta \\ \theta_s \sim \theta_s'}} (f_{\theta_s} \overline{f}_{\theta_s'}) * w_{\theta} * \widecheck{\eta}_{\sim s} \Big|^2 \n\lesssim C_{\varepsilon} R^{\varepsilon} \frac{\lambda (r^{-1} R^{-1})}{\lambda (R^{-1/2})} \sum_{\theta} \int_{\mathbb{R}^2} \Big| \sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 * w_{\theta} * |\widecheck{\eta}_{\sim s}| \Big|^2.
$$

It remains to analyze each of the integrals above:

$$
\int_{\mathbb{R}^2} \Big|\sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 * w_{\theta} * |\widecheck{\eta}_{\sim s}| \Big|^2 \lesssim \Big\|\sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 * w_{\theta} * |\widecheck{\eta}_{\sim s}| \Big\|_{\infty} \int_{\mathbb{R}^2} \sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 * w_{\theta} * |\widecheck{\eta}_{\sim s}|.
$$

Bound the L^{∞} norms using the assumption that $|| f_{\gamma} ||_{\infty} \lesssim 1$ for all γ :

$$
\Big\|\sum_{\theta_s\subset\theta}|f_{\theta_s}|^2*w_{\theta} *|\check{\eta}_{\sim s}|\Big\|_{\infty}\lesssim \sum_{\theta_s\subset\theta}\|f_{\theta_s}\|_{\infty}^2\lesssim \sum_{\theta_s\subset\theta}\Big\|\sum_{\gamma\subset\theta_s}|f_{\gamma}|\Big\|_{\infty}^2\lesssim \lambda(R^{-1/2})\,\lambda(s).
$$

Finally, using Young's convolution inequality and the L^2 -orthogonality of the f_γ , we have

$$
\int_{\mathbb{R}^2} \sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 * w_{\theta} * |\check{\eta}_{\sim s}| \lesssim \int_{\mathbb{R}^2} \sum_{\theta_s \subset \theta} |f_{\theta_s}|^2 = \sum_{\gamma \subset \theta} ||f_{\gamma}||_2^2.
$$

Lemma 5.13 (High lemma II). *For each* k*,*

$$
\int_{\mathbb{R}^2} |g_k^h|^2 \lesssim R^{3\varepsilon} \sum_{\tau_k} \int_{\mathbb{R}^2} |f_{\tau_{k+1}}^{k+1}|^4.
$$

Proof. By Plancherel's theorem, we have

$$
\int_{\mathbb{R}^2} |g_k^h|^2 = \int_{\mathbb{R}^2} |g_k - g_k^\ell|^2 = \int_{\mathbb{R}^2} \left| \sum_{\tau_k} (\widehat{f_{\tau_k}^{k+1}} \ast \overline{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k} - \sum_{\tau_k} (\widehat{f_{\tau_k}^{k+1}} \ast \overline{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k} \eta_k \right|^2
$$
\n
$$
\leq \int_{|\xi| > cR_{k+1}^{-1/2}} \left| \sum_{\tau_k} (\widehat{f_{\tau_k}^{k+1}} \ast \widehat{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k} \right|^2
$$

since $(1 - \eta_k)$ is supported in the region $|\xi| > cR_{k+1}^{-1/2}$ for some constant $c > 0$. For each τ_k , $\widehat{f_{\tau_k}^{k+1}} * \widehat{f_{\tau_k}^{k+1}}$ is supported in $2\tau_k - 2\tau_k$, using property (4) of Lemma [5.2,](#page-0-2) and
the maximum overlap of the sets $(2\tau_k - 2\tau_k)$ in the region $|\xi| > \epsilon R^{-1/2}$ is bounded by the maximum overlap of the sets $\{2\tau_k - 2\tau_k\}$ in the region $|\xi| \ge cR_{k+1}^{-1/2}$ is bounded by $\sim R_k^{-1/2}$ $\frac{-1}{k}$ / $R_{k+1}^{-1/2} \lesssim R^{\varepsilon}$.

Thus, using Cauchy–Schwarz,

$$
\int_{|\xi| > c R_{k+1}^{-1/2}} \Big| \sum_{\tau_k} (\widehat{f_{\tau_k}^{k+1}} * \widehat{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k} \Big|^2 \lesssim R^{\varepsilon} \sum_{\tau_k} \int_{|\xi| > c R_{k+1}^{-1/2}} |(\widehat{f_{\tau_k}^{k+1}} * \widehat{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k}|^2
$$

$$
\leq R^{\varepsilon} \sum_{\tau_k} \int_{\mathbb{R}^2} |(\widehat{f_{\tau_k}^{k+1}} * \widehat{f_{\tau_k}^{k+1}}) \widehat{w}_{\tau_k}|^2 = R^{\varepsilon} \sum_{\tau_k} \int_{\mathbb{R}^2} |f_{\tau_k}^{k+1}|^2 * w_{\tau_k}|^2 \leq R^{3\varepsilon} \sum_{\tau_{k+1}} \int_{\mathbb{R}^2} |f_{\tau_{k+1}}^{k+1}|^4,
$$

where we used Young's inequality with $||w_{\tau_k}||_1 \lesssim 1$ and $f_{\tau_k}^{k+1} = \sum_{\tau_{k+1} \subset \tau_k} f_{\tau_{k+1}}^{k+1}$ with Cauchy–Schwarz again in the last inequality.

5.3. Bilinear restriction

We will use the following version of a local bilinear restriction theorem, which follows from a standard Córdoba argument [\[6\]](#page-28-6), included here for completeness.

Theorem 5.14. Let $S \geq 4$, $1/2 \geq D \geq S^{-1/2}$, and let $X \subset \mathbb{R}^2$ be any Lebesgue measurable set. Suppose that τ and τ' are D-separated subsets of $\mathcal{N}_{S^{-1}}(\mathbb{P}^1)$. Then, for a partition $\{\theta_S\}$ of $\mathcal{N}_{S^{-1}}(\mathbb{P}^1)$ into $\sim S^{-1/2} \times S^{-1}$ -blocks, we have

$$
\int_X |f_\tau|^2(x) |f_{\tau'}|^2(x) dx \lesssim D^{-2} \int_{\mathcal{N}_{S^{1/2}}(X)} \left| \sum_{\theta_S} |f_{\theta_S}|^2 * w_{S^{1/2}}(x) \right|^2 dx.
$$

In the following proof, the exact definition of the $\sim S^{-1} \times S^{-1}$ blocks θ_S is not important. However, by f_{τ} and $f_{\tau'}$, we mean more formally $f_{\tau} = \sum_{\theta_S \cap \tau \neq \emptyset} f_{\theta_S}$ and $f_{\tau'} = \sum_{\theta_S \cap \tau' \neq \emptyset} f_{\theta_S}.$

Proof. Let *B* be a ball of radius $S^{1/2}$ centered at a point in X. Let φ_B be a smooth function satisfying $\varphi_B \gtrsim 1$ in B, φ_B decays rapidly away from B, and $\widehat{\varphi_B}$ is supported in the $S^{-1/2}$ neighborhood of the origin. Then

$$
\int_{X\cap B} |f_{\tau}|^2 |f_{\tau'}|^2 \lesssim \int_{\mathbb{R}^2} |f_{\tau}|^2 |f_{\tau'}|^2 \varphi_B.
$$

Since S is a fixed parameter and θ_S are fixed $\sim S^{-1/2} \times S^{-1}$ blocks, simplify notation by dropping the S. Expand the squared terms in the integral above to obtain

$$
\int_{\mathbb{R}^2} |f_{\tau}|^2 |f_{\tau'}|^2 \varphi_B = \sum_{\substack{\theta_i \cap \tau \neq \emptyset \\ \theta'_i \cap \tau' \neq \emptyset}} \int_{\mathbb{R}^2} f_{\theta_1} \overline{f}_{\theta_2} f_{\theta'_2} \overline{f}_{\theta'_1} \varphi_B.
$$

By Placherel's theorem, each integral vanishes unless

(5.3)
$$
(\theta_1 - \theta_2) \cap \mathcal{N}_{S^{-1/2}}(\theta_1' - \theta_2') \neq \emptyset.
$$

Next we check that the number of tuples $(\theta_1, \theta_2, \theta'_1, \theta'_2)$ (with θ_1, θ_2 having nonempty intersection with τ and θ'_1 , θ'_2 having nonempty intersection with τ') satisfying [\(5.3\)](#page-20-0) is $O(D^{-1})$.

Indeed, suppose that $\xi < \xi' < \xi'' < \xi'''$ satisfy

$$
(\xi, \xi^2) \in \theta_1, \quad (\xi', (\xi')^2) \in \theta_2, \quad (\xi'', (\xi'')^2) \in \theta'_1, \quad (\xi''', (\xi''')^2) \in \theta'_2,
$$

and

$$
\xi - \xi' = \xi'' - \xi''' + O(S^{-1/2}).
$$

Then, by the mean value theorem,

$$
\xi^2 - (\xi')^2 = 2\xi_1(\xi - \xi') \quad \text{for some } \xi < \xi_1 < \xi', \text{ and}
$$
\n
$$
(\xi'')^2 - (\xi''')^2 = 2\xi_2(\xi'' - \xi''') \quad \text{for some } \xi'' < \xi_2 < \xi'''.
$$

Since $(\xi_1, \xi_1^2) \in \tau$ and $(\xi_2, \xi_2^2) \in \tau'$, we also know that $|\xi_1 - \xi_2| \ge D$. Putting everything together, we have

$$
|\xi^2 - (\xi')^2 - ((\xi'')^2 - (\xi''')^2)| = 2|\xi_1(\xi - \xi') - \xi_2(\xi'' - \xi''')|
$$

\n
$$
\geq 2|\xi_1 - \xi_2||\xi - \xi'| - cS^{-1/2} \geq (2C - c)S^{-1/2}
$$

if either dist((ξ, ξ^2) , $(\xi', (\xi')^2)$) or dist($(\xi'', (\xi'')^2)$, $(\xi''', (\xi''')^2)$) is larger than $CD^{-1}S^{-1/2}$. Thus for a suitably large C , the heights will have difference larger than the allowed $O(S^{-1/2})$ -neighborhood imposed by [\(5.3\)](#page-20-0). The conclusion is that

$$
\sum_{\substack{\theta_i \cap \tau \neq \emptyset \\ \theta'_i \cap \tau' \neq \emptyset}} \int_{\mathbb{R}^2} f_{\theta_1} \overline{f}_{\theta_2} f_{\theta'_2} \overline{f}_{\theta'_1} \varphi_B = \sum_{\substack{\theta_1 \cap \tau \neq \emptyset \\ \theta'_1 \cap \tau' \neq \emptyset}} \sum_{\substack{d(\theta_1, \theta_2) \leq CD^{-1}S^{-1/2} \\ d(\theta'_1, \theta'_2) \leq CD^{-1}S^{-1/2}}} \int_{\mathbb{R}^2} f_{\theta_1} \overline{f}_{\theta_2} f_{\theta'_2} \overline{f}_{\theta'_1} \varphi_B
$$
\n
$$
\lesssim D^{-2} \int_{\mathbb{R}^2} \left(\sum_{\theta} |f_{\theta}|^2 \right)^2 \varphi_B.
$$

Using the locally constant property and summing over a finitely overlapping cover of \mathbb{R}^2 by $S^{1/2}$ -balls B' with centers c_{B} ', we have

$$
\int_{\mathbb{R}^2} \left(\sum_{\theta} |f_{\theta}|^2 \right)^2 \varphi_B \le \sum_{B'} |B| \left\| \sum_{\theta} |f_{\theta}|^2 \right\|_{L^{\infty}(B')}^2 \|\varphi_B\|_{L^{\infty}(B')}
$$

\n
$$
\le |B| \left(\sum_{B'} \left\| \sum_{\theta} |f_{\theta}|^2 \right\|_{L^{\infty}(B')} \|\varphi_B^{1/2}\|_{L^{\infty}(B')} \right)^2
$$

\n
$$
\lesssim |B| \left(\sum_{B'} \sum_{\theta} |f_{\theta}|^2 * w_{S^{1/2}}(c_{B'}) \|\varphi_B^{1/2}\|_{L^{\infty}(B')} \right)^2
$$

\n
$$
\lesssim |B|^{-1} \left(\int_{\mathbb{R}^2} \sum_{\theta} |f_{\theta}|^2 * w_{S^{1/2}}(y) \varphi_B^{1/2}(y) dy \right)^2
$$

\n
$$
\lesssim |B|^{-1} \left(\int_B \sum_{\theta} |f_{\theta}|^2 * w_{S^{1/2}}(y) dy \right)^2 \le \int_B \left(\sum_{\theta} |f_{\theta}|^2 * w_{S^{1/2}} \right)^2,
$$

where we used that $w_{S^{1/2}} * \varphi_B^{1/2}$ $B_B^{1/2}(y) \lesssim w_{S^{1/2}} * \chi_B(y)$ in the second to last inequality.

6. Proof of Theorem [2.2](#page-3-2)

Theorem [2.2](#page-3-2) follows from the following proposition and a broad-narrow argument in [§6.2.](#page-24-0) First we prove a version of Theorem [2.2](#page-3-2) where U_α is replaced by a "broad" version of U_α .

6.1. The broad version of Theorem [2.2](#page-3-2)

Let $\delta > 0$ be a parameter we will choose in the broad/narrow analysis. With the notation $\ell(\tau) = s$ we mean that τ is an approximate $s \times s^2$ block which is part of a partition of $\mathcal{N}_{s^2}(\mathbb{P}^1)$. For two non-adjacent blocks τ and τ' satisfying $\ell(\tau) = \ell(\tau') = R^{-\tilde{\delta}}$, define the broad version of U_α to be

$$
(6.1) \ \text{Br}_{\alpha}(\tau, \tau') = \{x \in \mathbb{R}^2 : \alpha \sim |f_{\tau}(x)f_{\tau'}(x)|^{1/2}, \ (|f_{\tau}(x)| + |f_{\tau'}(x)|) \leq R^{O(\delta)}\alpha\}.
$$

Proposition 6.1. *Suppose that* f *satisfies the hypotheses of Theorem* [2.2](#page-3-2) *and that has an* (R, ε) -normalized distribution function $\lambda(\cdot)$. Then

$$
|\mathrm{Br}_{\alpha}(\tau,\tau')| \leq C_{\varepsilon,\delta} R^{\varepsilon} R^{O(\delta)} \begin{cases} \frac{1}{\alpha^{4}} \max_{s} \lambda(s^{-1} R^{-1}) \lambda(s) \sum_{\gamma} ||f_{\gamma}||_{2}^{2} & \text{if } \alpha^{2} > \frac{\lambda(1)^{2}}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)},\\ \frac{\lambda(1)^{2}}{\alpha^{6}} \sum_{\gamma} ||f_{\gamma}||_{2}^{2} & \text{if } \alpha^{2} \leq \frac{\lambda(1)^{2}}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)}.\end{cases}
$$

Proof of Proposition [6.1](#page-22-1). (1) *Bounding* $|Br_{\alpha}(\tau, \tau') \cap H|$. Using bilinear restriction, given here by Theorem [5.14,](#page-20-1) we have

$$
\alpha^4 |\mathrm{Br}_{\alpha}(\tau, \tau') \cap H| \lesssim \sum_{\substack{\ell(\tau) = \ell(\tau) = R^{-\delta} \\ d(\tau, \tau') \gtrsim R^{-\delta}}} \int_{U_{\alpha} \cap H} |f_{\tau}|^2 |f_{\tau'}|^2
$$

$$
\lesssim R^{O(\delta)} \int_{\mathcal{N}_{R^{1/2}}(\mathrm{Br}_{\alpha}(\tau, \tau') \cap H)} \Big(\sum_{\theta} |f_{\theta}|^2 * w_{R^{1/2}} \Big)^2.
$$

By the locally constant property and the pointwise inequality $w_{R1/2} * w_{\theta} \lesssim w_{\theta}$ for each θ , we have that

$$
\sum_{\theta} |f_{\theta}|^2 * w_{R^{1/2}} \lesssim G(x).
$$

Then

$$
\int_{\mathcal{N}_{R^{1/2}}(\text{Br}_{\alpha}(\tau,\tau')\cap H)} |G(x)|^2 dx
$$
\n(6.2)\n
$$
\leq \sum_{\substack{Q_{R^{1/2}}:\\Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau')\cap H)\neq\emptyset}} |Q_{R^{1/2}}| \|G\|_{L^{\infty}(Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau')\cap H))}^2.
$$

For each $x \in H$, $G(x) \le 2|G^h(x)|$. Also note the equality $G^h(x) = \sum_{s} G * \tilde{\eta}_{\sim s}(x)$, where the sum is over dyadic s in the range $\lceil R^{\beta} \rceil^{-1} \lesssim s \lesssim R^{-1/2}$. This is because the Fourier support of G^h is contained in $\cup_{\theta}(\theta - \theta) \setminus B_{c \lceil R^{\beta} \rceil^{-1}}$ for a sufficiently small $c > 0$.

By dyadic pigeonholing, there is some dyadic s, $\lceil R^{\beta} \rceil^{-1} \lesssim s \lesssim R^{-1/2}$, so that the upper bound in [\(6.2\)](#page-22-2) is bounded by

$$
log R) \sum_{\substack{Q_{R^{1/2}}:\\Q_{R^{1/2}} \cap (\text{Br}_{\alpha}(\tau,\tau') \cap H) \neq \emptyset}} |Q_{R^{1/2}}| \|G \ast \check{\eta}_{\sim_{S}}\|_{L^{\infty}(Q_{R^{1/2}} \cap (\text{Br}_{\alpha}(\tau,\tau') \cap H))}^{2}.
$$

By the locally constant property, the above displayed expression is bounded by

$$
(\log R) \sum_{\substack{Q_{R^{1/2}}:\\Q_{R^{1/2}} \cap (\text{Br}_{\alpha}(\tau,\tau') \cap H)}} \int_{\mathbb{R}^2} |G \ast \check{\eta}_{\sim s}|^2 w_{Q_{R^{1/2}}} \lesssim (\log R) \int_{\mathbb{R}^2} |G \ast \check{\eta}_{\sim s}|^2.
$$

Use Lemma [5.12](#page-18-0) to upper bound the above integral to finish bounding $|Br_{\alpha}(\tau, \tau') \cap H|$.

(2) *Bounding* $|Br_{\alpha}(\tau, \tau') \cap \Omega_k|$. First write the trivial inequality

$$
\alpha^4 |\mathrm{Br}_{\alpha}(\tau,\tau') \cap \Omega_k| \leq \sum_{\substack{\ell(\tau) = \ell(\tau) = R^{-\delta} \\ d(\tau,\tau') \gtrsim R^{-\delta}}} \int_{\mathrm{Br}_{\alpha}(\tau,\tau') \cap \Omega_k \cap \{ |f_{\tau}f_{\tau'}|^{1/2} \sim \alpha \}} |f_{\tau}|^2 |f_{\tau'}|^2.
$$

By the definition of $\text{Br}_{\alpha}(\tau, \tau') \cap \Omega_k$ and Lemma [5.9,](#page-16-0) for each $x \in \text{Br}_{\alpha}(\tau, \tau') \cap \Omega_k$,

$$
|f_{\tau}(x)f_{\tau'}(x)|
$$

\n
$$
\leq |f_{\tau}(x)||f_{\tau'}(x) - f_{\tau'}^{k+1}(x)| + |f_{\tau}(x) - f_{\tau}^{k+1}(x)||f_{\tau'}^{k+1}(x)| + |f_{\tau}^{k+1}(x)f_{\tau'}^{k+1}(x)|
$$

\n
$$
\lesssim C_{\varepsilon} R^{O(\delta)} R^{-M\delta} \alpha^2 + |f_{\tau}^{k+1}(x)f_{\tau'}^{k+1}(x)|.
$$

For M large enough in the definition of pruning (depending on the implicit universal constant from the broad/narrow analysis which determines the set $Br_{\alpha}(\tau, \tau')$ so that $R^{O(\delta)}R^{-M\delta} \leq R^{-\delta}$, and for R large enough depending on ε and δ , we may bound each integral by

$$
\int_{\{\mathrm{Br}_{\alpha}(\tau,\tau')\cap\Omega_k\cap\{|f_{\tau}f_{\tau'}|^{1/2}\sim\alpha\}}|f_{\tau}|^2|f_{\tau'}|^2\lesssim \int_{\mathrm{Br}_{\alpha}(\tau,\tau')\cap\Omega_k}|f_{\tau}^{k+1}|^2|f_{\tau'}^{k+1}|^2.
$$

Repeat analogous bilinear restriction, high-dominated from the definition of Ω_k , and locally-constant steps from the argument bounding $Br_{\alpha}(\tau, \tau') \cap H$ to obtain

$$
\alpha^4 |\mathrm{Br}_{\alpha}(\tau,\tau') \cap \Omega_k| \lesssim R^{O(\delta)} \int_{\mathbb{R}^2} |g_k^h|^2.
$$

Use Lemma [5.13](#page-19-0) and Lemma [5.2](#page-0-2) to bound the above integral, obtaining

$$
\alpha^4 |\mathrm{Br}_{\alpha}(\tau,\tau') \cap \Omega_k| \lesssim (\log R)^4 \int_{\mathbb{R}^2} |g_k^h|^2 \lesssim R^{O(\delta)} R^{O(\varepsilon)} \frac{\lambda(1)^2}{\alpha^2} \sum_{\tau_{k+1}} \int_{\mathbb{R}^2} |f_{\tau_{k+1}}^{k+1}|^2.
$$

Use L^2 -orthogonality and that $|f_{\tau_m}^m| \leq |f_{\tau_m}^{m+1}|$ for each *m* to bound each integral above:

$$
\int_{\mathbb{R}^2} |f_{\tau_{k+1}}^{k+1}|^2 \leq \int_{\mathbb{R}^2} |f_{\tau_{k+1}}^{k+2}|^2 \leq C \sum_{\tau_{k+2} \subset \tau_{k+1}} \int_{\mathbb{R}^2} |f_{\tau_{k+2}}^{k+2}|^2 \leq \cdots \leq C^{\varepsilon^{-1}} \sum_{\gamma \subset \tau_{k+1}} \int_{\mathbb{R}^2} |f_{\gamma}|^2.
$$

We are done with this case because

$$
\frac{\lambda(1)^2}{\alpha^2} \leq \begin{cases}\n\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s) & \text{if } \alpha^2 > \frac{\lambda(1)^2}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)},\\ \n\lambda(1)^2/\alpha^2 & \text{if } \alpha^2 \leq \frac{\lambda(1)^2}{\max_{s} \lambda(s^{-1} R^{-1}) \lambda(s)}.\n\end{cases}
$$

(3) *Bounding* $|Br_{\alpha}(\tau, \tau') \cap L|$. Repeat the pruning step from the previous case to get

$$
\alpha^6|\text{Br}_{\alpha}(\tau,\tau')\cap L|\lesssim \sum_{\substack{\ell(\tau)=\ell(\tau)=R^{-\delta}\\d(\tau,\tau')\gtrsim R^{-\delta}}}\int_{\text{Br}_{\alpha}(\tau,\tau')\cap L\cap\{|f_{\tau}f_{\tau'}|^{1/2}\sim\alpha\}}|f_{\tau}^1f_{\tau'}^1|^2|f_{\tau}f_{\tau'}|.
$$

Use Cauchy–Schwarz and the locally constant lemma for the bound $|f_\tau^1 f_{\tau'}^1| \lesssim R^{O(\varepsilon)} g_1$, and recall that by Lemma [5.8,](#page-15-0) $g_1 \n\leq C_{\varepsilon} R^{\varepsilon} \lambda(1)$. Then

$$
R^{O(\varepsilon)}\sum_{\ell(\tau)=\ell(\tau)=R^{-\delta}}\int_{\text{Br}_{\alpha}(\tau,\tau')\cap L}|g_{1}|^{2}|f_{\tau}f_{\tau'}|\leq R^{O(\varepsilon)}\lambda(1)^{2}\sum_{\ell(\tau)=R^{-\delta}}\int_{\mathbb{R}^{2}}|f_{\tau}|^{2}\n\n\lesssim R^{O(\varepsilon)}\lambda(1)^{2}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}.
$$

Using the same upper bound for $\lambda(1)^2/\alpha^2$ as in the previous case finishes the proof. \blacksquare

6.2. Bilinear reduction

We will present a broad/narrow analysis to show that Proposition [6.1](#page-22-1) implies Theorem [2.2.](#page-3-2) In order to apply Proposition [6.1,](#page-22-1) we must reduce to the case that f has an (R, ε) normalized distribution function $\lambda(\cdot)$. We demonstrate this through a series of pigeonholing steps.

Proposition [6.1](#page-22-1) *implies Theorem* [2.2](#page-3-2). We will pigeonhole the f_{γ} so that roughly, for any s-arc ω of the parabola, the number

$$
\#\{\gamma:\gamma\cap\omega\neq\emptyset,\ f_\gamma\neq 0\}
$$

is either 0 or relatively constant among s -arcs ω . For the initial step, write

$$
\{\tau_N : \exists \gamma \text{ such that } f_\gamma \neq 0, \ \gamma \subset \tau_N\} = \sum_{1 \leq \lambda \lesssim R^\beta R^{-\varepsilon}} \Lambda_N(\lambda),
$$

where λ is a dyadic number, $\Lambda_N(\lambda) = \{\tau_N : \# \gamma \subset \tau_N \sim \lambda\}, \# \gamma \subset \tau_N$ means $\#\{\gamma \subset \tau_N : \pi \sim \lambda\}$ $f_{\gamma} \neq 0$, and $\#\gamma \subset \tau_N \sim \lambda$ means $\lambda \leq \#\gamma \subset \tau_N < 2\lambda$. Since there are $\leq \log R$ many λ in the sum, there exists some λ_N such that

$$
|\{x : |f(x)| > \alpha\}| \le C(\log R) \Big| \Big\{ x : C(\log R) \Big| \sum_{\tau_N \in \Lambda_N(\lambda_N)} f_{\tau_N}(x) \Big| > \alpha \Big\} \Big|.
$$

Write

$$
f^N = \sum_{\tau_N \in \Lambda_N(\lambda_N)} f_{\tau_N}.
$$

Continuing in this manner, we have

$$
\{\tau_k : \exists \tau_{k+1} \in \Lambda_{k+1}(\lambda_{k+1}) \text{ such that } \tau_{k+1} \subset \tau_k\} = \sum_{1 \leq \lambda \leq r_k} \Lambda_k(\lambda),
$$

where

$$
\Lambda_k(\lambda) = \{ \tau_k : \exists \tau_{k+1} \in \Lambda_{k+1}(\lambda_{k+1}) \text{ s.t. } \tau_{k+1} \subset \tau_k \text{ and } \#\{\gamma : f_{\gamma}^{k+1} \neq 0, \ \gamma \subset \tau_k\} \sim \lambda \}
$$

and for some λ_k ,

$$
|\{x : (C(\log R))^{N-k} | f^{k+1}(x) | \ge |f(x)| > \alpha\}|
$$

\$\le C(\log R)|\{x : (C(\log R))^{N-k+1} | f^k(x) | \ge |f(x)| > \alpha\}|\$,

where

$$
f_k = \sum_{\tau_k \in \Lambda_k(\lambda_k)} f_{\tau_k}^{k+1}.
$$

Continue this process until we have found τ_1 and λ_1 so that

$$
|\{x : |f(x)| > \alpha\}| \le C^{\varepsilon^{-1}} (\log R)^{O(\varepsilon^{-1})} |\{x : C^{\varepsilon^{-1}} (\log R)^{O(\varepsilon^{-1})} |f^1(x)| > \alpha\}|.
$$

The function f^1 now satisfies the hypotheses of Theorem [2.2](#page-3-2) and the property that $\#\gamma \subset$ $\tau_k \sim \lambda_k$ or #y $\subset \tau_k = 0$ for all k, τ_k . It follows that the associated distribution function $\lambda(\cdot)$ of f^1 is (R,ε) -normalized since

$$
\lambda_m \sim \#\gamma \subset \tau_m = \sum_{\tau_k \subset \tau_m} \#\gamma \subset \tau_k \sim (\#\tau_k \subset \tau_m)(\lambda_k)
$$

where we only count the γ or τ_k for which f_γ^1 or $f_{\tau_k}^1$ is nonzero. Now we may apply Proposition [6.1.](#page-22-1) Note that since $\log R \le \varepsilon^{-1} R^{\varepsilon}$ for all $R \ge 1$, the accumulated constant from this pigeonholing process satisfies $C^{\varepsilon^{-1}}(\log R)^{O(\varepsilon^{-1})} \leq C_{\varepsilon} R^{\varepsilon}$. It thus suffices to prove Theorem [2.2](#page-3-2) assuming that f is (R, ε) -normalized.

Now we present a broad-narrow argument adapted to our set-up. Write $K = R^{\delta}$ for some $\delta > 0$, which will be chosen later. Since

$$
|f(x)| \leq \sum_{\ell(\tau)=K^{-1}} |f_{\tau}(x)|,
$$

there is a universal constant $C > 0$ so that

$$
|f(x)| > K^C \max_{\substack{\ell(\tau) = \ell(\tau') = K^{-1} \\ \tau, \tau' \text{ nonadj.}}} |f_{\tau}(x) f_{\tau'}(x)|^{1/2}
$$

implies

$$
|f(x)| \leq C \max_{\ell(\tau)=K^{-1}} |f_{\tau}(x)|.
$$

If

$$
|f(x)| \leq K^C \max_{\substack{\ell(\tau) = \ell(\tau') = K^{-1} \\ \tau, \tau' \text{ nonadj.}}} |f_{\tau}(x) f_{\tau'}(x)|^{1/2}
$$

and

$$
K^C \max_{\substack{\ell(\tau) = \ell(\tau') = K^{-1} \\ \tau, \tau' \text{ nonadj.}}} |f_{\tau}(x) f_{\tau'}(x)|^{1/2} \leq C \max_{\ell(\tau) = K^{-1}} |f_{\tau}(x)|,
$$

then we have

$$
|f(x)| \leq C \max_{\ell(\tau)=K^{-1}} |f_{\tau}(x)|.
$$

Using this reasoning, we obtain the first step in the broad-narrow inequality:

$$
|f(x)| \leq C \max_{\ell(\tau) = K^{-1}} |f_{\tau}(x)| + K^{C} \max_{\substack{\ell(\tau) = \ell(\tau') = K^{-1} \\ \tau, \tau' \mod j, \\ \ell(\tau_0) = K^{-1}}} |f_{\tau}(x)f_{\tau'}(x)|^{1/2}.
$$

Iterate the inequality m times (for the first term), where $K^m \sim R^{1/2}$, to bound $|f(x)|$ by

$$
|f(x)| \lesssim C^m \max_{\ell(\tau) = R^{-1/2}} |f_{\tau}(x)|
$$

+
$$
C^m K^C \sum_{\substack{\ell(\tau) \sim \Delta \\ \Delta \in K^{\mathbb{N}}}} \max_{\ell(\tau) \sim \Delta} \max_{\substack{\ell(\tau) = \ell(\tau') \sim K^{-1} \Delta \\ \tau, \tau' \subset \tilde{\tau}, \text{ nonadj.} \\ \ell(\tau_0) = K^{-1} \Delta \\ \tau_0 \subset \tilde{\tau}}} |f_{\tau}(x) f_{\tau'}(x)|^{1/2}.
$$

Recall that our goal is to bound the size of the set

$$
U_{\alpha} = \{x \in \mathbb{R}^2 : \alpha \le |f(x)|\}.
$$

By the triangle inequality and using the notation θ for blocks τ with $\ell(\tau) = R^{-1/2}$,

$$
(6.3) |U_{\alpha}| \leq |\{x \in \mathbb{R}^2 : \alpha \lesssim C^m \max_{\theta} |f_{\theta}(x)|\}| + \sum_{\substack{R^{-1/2} < \Delta < 1 \\ \Delta \in K^{\mathbb{N}}} \sum_{\substack{\ell(\tilde{\tau}) \sim \Delta \\ \ell(\tau) = \ell(\tau') \sim K^{-1} \Delta \\ \tau, \tau' \subset \tilde{\tau}, \text{ nonadj.}}} |U_{\alpha}(\tau, \tau')|,
$$

where $U_{\alpha}(\tau, \tau')$ is the set

$$
\{x \in \mathbb{R}^2 : \alpha \lesssim (\log R) C^m K^C |f_\tau(x) f_{\tau'}(x)|^{1/2},
$$

$$
C(|f_\tau(x)| + |f_{\tau'}(x)|) \leq K^C |f_\tau(x) f_{\tau'}(x)|^{1/2} \}.
$$

The first term in the upper bound from [\(6.3\)](#page-26-0) is bounded trivially by $\frac{\lambda (R^{-1/2})^2}{\alpha^4}$ $rac{(-1/2)^2}{\alpha^4} \sum_{\gamma} ||f_{\gamma}||_2^2.$ By the assumption that $||f_\gamma||_\infty \lesssim 1$ for every γ , we know that $|f_\tau| \lesssim R^\beta$ for any τ . Also assume without loss of generality that $\alpha > 1$ (otherwise Theorem [2.2](#page-3-2) follows from L²-orthogonality). This means that there are \sim log R dyadic values of α' between α and R^{β} so by pigeonholing, there exists $\alpha' \in [\alpha/(C^m K^C), R^{\beta}]$ so that

$$
|U_{\alpha}(\tau,\tau')| \lesssim (\log R + \log(C^{m} K^{C})) |\text{Br}_{\alpha'}(\tau,\tau')|,
$$

where the set $\text{Br}_{\alpha'}(\tau, \tau')$ is defined in [\(6.1\)](#page-22-3). By parabolic rescaling, there exists an affine transformation T so that $f_{\tau} \circ T = g_{\tau}$ and $f_{\tau'} \circ T = g_{\tau'}$ where τ and τ' are $\sim K^{-1}$. separated blocks in $\mathcal{N}_{\Delta^{-2}R^{-1}}(\mathbb{P}^1)$. Note that the functions g_{τ} and $g_{\tau'}$ inherit the property of being $(\Delta^2 R, \varepsilon)$ -normalized in the sense required to apply Proposition [6.1](#page-22-1) in each of the following cases.

Case 1. Suppose that for some $\beta' \in [1/2, 1]$, $\Delta^{-1}R^{-\beta} = (\Delta^2 R)^{-\beta'}$.

Then for each $\gamma \in \mathcal{P}(R,\beta)$, $f_{\gamma} \circ T = g_{\gamma}$ for some $\gamma \in \mathcal{P}(\Delta^2 R, \beta')$. Applying Propo-sition [6.1](#page-22-1) with functions g_{τ} and $g_{\tau'}$ and level set parameter α' leads to the inequality

$$
|Br_{\alpha'}(\tau, \tau')| \leq K^C \alpha' \}| \leq C_{\varepsilon, \delta} R^{\varepsilon} C^m K^{O(1)}
$$

\$\times \begin{cases} \frac{1}{(\alpha')^4} \max_{R^{-\beta} < s < R^{-1/2}} \lambda(s^{-1} R^{-1}) \lambda(s) \sum_{\gamma \subset \tilde{\tau}} ||f_{\gamma}||_2^2 & \text{if } (\alpha')^2 > \frac{\lambda(\Delta)^2}{\max\limits_{s} \lambda(s^{-1} R^{-1}) \lambda(s)},\\ \frac{\lambda(\Delta)^2}{(\alpha')^6} \sum_{\gamma \subset \tilde{\tau}} ||f_{\gamma}||_2^2 & \text{if } (\alpha')^2 \leq \frac{\lambda(\Delta)^2}{\max\limits_{s} \lambda(s^{-1} R^{-1}) \lambda(s)}. \end{cases}

Case 2. Now suppose that $\Delta^{-1}R^{-\beta} < (\Delta^2 R)^{-1}$.

Let $\tilde{\theta}$ be $\Delta^{-1}R^{-1} \times R^{-1}$ blocks, and let $\underline{\tilde{\theta}}$ be $(\Delta^2 R)^{-1} \times (\Delta^2 R)^{-1}$ blocks so that $f_{\tilde{\theta}}$ \circ $T = g_{\tilde{\theta}}$. Let $B = \max_{\tilde{\theta}} |f_{\tilde{\theta}}|$ and divide everything by B in order to satisfy the hypotheses $||g_{\tilde{\theta}}||_{\infty}$ / $B \le 1$ for all $\tilde{\theta}$. Let

$$
\tilde{\lambda}(s) := \frac{\lambda(\Delta s)}{\lambda(\Delta^{-1}R^{-1})}
$$

count the number of $\tilde{\theta}$ intersecting an s-arc. In the case $(\alpha')^2 > \frac{\tilde{\lambda}(1)B^2}{\tilde{\lambda}(-1)A^2I}$ $\frac{\lambda(1)B}{\max_s \tilde{\lambda}(s^{-1}(\Delta^2 R)^{-1})\tilde{\lambda}(s)}$ (with the maximum taken over $(\Delta^2 R)^{-1} < s < (\Delta^2 R)^{-1/2}$, use Proposition [6.1](#page-22-1) with functions g_{τ}/B and g_{τ}/B and level set parameter α'/B to get the inequality

$$
|Br_{\alpha'}(\tau,\tau')|
$$

\n
$$
\leq C_{\varepsilon,\delta} R^{\varepsilon} C^{m} K^{O(1)} \frac{B^{4}}{(\alpha')^{4}} \max_{(\Delta^{2} R)^{-1} < s < (\Delta^{2} R)^{-1/2}} \tilde{\lambda}(s^{-1} (\Delta^{2} R)^{-1}) \tilde{\lambda}(s) \sum_{\tilde{\theta} \subset \tilde{\tau}} ||f_{\tilde{\theta}}||_{2}^{2} / B^{2}.
$$

Note that since $B \leq \lambda (\Delta^{-1} R^{-1}),$

$$
B^{2} \max_{(\Delta^{2}R)^{-1} < s < (\Delta^{2}R)^{-1/2}} \tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1}) \tilde{\lambda}(s) \le \max_{\Delta^{-1}R^{-1} < s < R^{-1/2}} \lambda(s^{-1}R^{-1}) \lambda(s)
$$

and

$$
\frac{\tilde{\lambda}(1)^2 B^2}{\max\limits_{s} \tilde{\lambda}(s^{-1}(\Delta^2 R)^{-1})\tilde{\lambda}(s)} \leq \frac{\lambda(\Delta)^2 \lambda(\Delta^{-1} R^{-1})^2}{\max\limits_{\Delta^{-1} R^{-1} \leq s \leq R^{-1/2}} \lambda(s^{-1} R^{-1})\lambda(s)} \leq \lambda(\Delta^{-1} R^{-1})\lambda(\Delta).
$$

Then in the case $({\alpha}')^2 \leq \frac{\tilde{\lambda}(1)B^2}{\tilde{\lambda}(1-\lambda)^2}$ $\frac{\lambda(1)B^2}{\max_s \tilde{\lambda}(s^{-1}(\Delta^2 R)^{-1})\tilde{\lambda}(s)}$, compute directly that

$$
(\alpha')^4 |\{x \in \mathbb{R}^2 : \alpha' \sim |f_{\tau}(x)f_{\tau'}(x)|^{1/2}, \ (|f_{\tau}(x)| + |f_{\tau'}(x)|) \leq K^C \alpha' \}|
$$

\$\lesssim \lambda (\Delta^{-1} R^{-1}) \lambda (\Delta) \int_{\mathbb{R}^2} (|f_{\tau}|^2 + |f_{\tau'}|^2) \lesssim \max_{\Delta^{-1} R^{-1} < s < R^{-1/2}} \lambda (s^{-1} R^{-1}) \lambda(s) \sum_{\gamma \subset \tilde{\tau}} ||f_{\gamma}||_2^2\$.

Using also that

$$
\sum_{\tilde{\theta}\subset \tilde{\tau}} \|f_{\tilde{\theta}}\|_2^2 \leq \sum_{\gamma\subset \tilde{\tau}} \|f_{\gamma}\|_2^2,
$$

the bound for Case 2 is

$$
|\{x \in \mathbb{R}^2 : \alpha' \sim |f_{\tau}(x)f_{\tau'}(x)|^{1/2}, \ (|f_{\tau}(x)| + |f_{\tau'}(x)|) \leq K^C \alpha' \}|
$$

$$
\leq C_{\varepsilon,\delta} R^{\varepsilon} C^m K^{O(1)} \frac{1}{(\alpha')^4} \max_{R^{-\beta} < s < R^{-1/2}} \lambda(s^{-1} (\Delta^2 R)^{-1}) \lambda(s) \sum_{\gamma \subset \tilde{\tau}} ||f_{\gamma}||_2^2.
$$

It follows from [\(6.3\)](#page-26-0) and the combined Case 1 and Case 2 arguments above that

$$
|U_{\alpha}| \leq C_{\varepsilon,\delta} R^{\varepsilon} C^{m} K^{O(1)}
$$

\$\times \begin{cases} \frac{1}{\alpha^{4}} \max\limits_{R-\beta < s < R^{-1/2} \\ \frac{\lambda(1)^{2}}{\alpha^{6}} \sum_{\gamma} \|f_{\gamma}\|_{2}^{2} & \text{if } \alpha > \frac{\lambda(1)^{2}}{\max\limits_{s} \lambda(s^{-1}R^{-1})\lambda(s)}, \\ \frac{\lambda(1)^{2}}{\alpha^{6}} \sum_{\gamma} \|f_{\gamma}\|_{2}^{2} & \text{if } \alpha^{2} \leq \frac{\lambda(1)^{2}}{\max\limits_{s} \lambda(s^{-1}R^{-1})\lambda(s)}. \end{cases}

Recall that $K^m \sim R^{-1/2}$ and $K = R^{\delta}$ so that

$$
C_{\varepsilon,\delta} R^{\varepsilon} C^m K^{O(1)} \leq C_{\varepsilon,\delta} R^{\varepsilon} C^{O(\delta^{-1})} R^{O(1)\delta}.
$$

Choosing δ small enough so that $R^{O(1)\delta} < R^{\epsilon}$ finishes the proof.

Funding. L. G. is supported by a Simons Investigator grant. D. M. is supported by the National Science Foundation under Award No. 2103249.

References

- [1] Apostol, T. M.: *[Introduction to analytic number theory](https://doi.org/10.1007/978-1-4757-5579-4)*. Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
- [2] Bourgain, J.: [Fourier transform restriction phenomena for certain lattice subsets and applica](https://doi.org/10.1007/BF01896020)[tions to nonlinear evolution equations. I. Schrödinger equations.](https://doi.org/10.1007/BF01896020) *Geom. Funct. Anal.* 3 (1993), no. 2, 107–156.
- [3] Bourgain, J.: [Decoupling, exponential sums and the Riemann zeta function.](https://doi.org/10.1090/jams/860) *J. Amer. Math. Soc.* 30 (2017), no. 1, 205–224.
- [4] Bourgain, J.: [Decoupling inequalities and some mean-value theorems.](https://doi.org/10.1007/s11854-017-0035-2) *J. Anal. Math.* 133 (2017), 313–334.
- [5] Bourgain, J. and Demeter, C.: The proof of the l ² [decoupling conjecture.](https://doi.org/10.4007/annals.2015.182.1.9) *Ann. of Math. (2)* 182 (2015), no. 1, 351–389.
- [6] Córdoba, A.: [The Kakeya maximal function and the spherical summation multipliers.](https://doi.org/10.2307/2374006) *Amer. J. Math.* 99 (1977), no. 1, 1–22.
- [7] Demeter, C.: *[Fourier restriction, decoupling, and applications](https://doi.org/10.1017/9781108584401)*. Cambridge Studies in Advanced Mathematics 184, Cambridge University Press, Cambridge, 2020.

п

- [8] Demeter, C., Guth, L. and Wang, H.: [Small cap decouplings.](https://doi.org/10.1007/s00039-020-00541-5) *Geom. Funct. Anal.* 30 (2020), no. 4, 989–1062.
- [9] Guth, L., Maldague, D. and Wang, H.: Improved decoupling for the parabola. To appear in *J. Eur. Math. Soc. (JEMS)*, doi:[10.4171/JEMS/1295.](https://doi.org/10.4171/JEMS/1295)
- [10] Guth, L., Solomon, N. and Wang, H.: [Incidence estimates for well spaced tubes.](https://doi.org/10.1007/s00039-019-00519-y) *Geom. Funct. Anal.* 29 (2019), no. 6, 1844–1863.

Received July 28, 2021; revised August 15, 2022. Published online November 16, 2022.

Yuqiu Fu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02142-4307, USA; yuqiufu@mit.edu

Larry Guth

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02142-4307, USA; lguth@math.mit.edu

Dominique Maldague

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02142-4307, USA; dmal@mit.edu