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On model spaces and density of functions
smooth on the boundary

Adem Limani and Bartosz Malman

Abstract. We characterize the model spaces K‚ in which functions with smooth
boundary extensions are dense. It is shown that such approximations are possible if
and only if the singular measure associated to the singular inner factor of ‚ is con-
centrated on a countable union of Beurling–Carleson sets. In fact, we use a duality
argument to show that if there exists a restriction of the associated singular meas-
ure which does not assign positive measure to any Beurling–Carleson set, then even
larger classes of functions, such as Hölder classes and large collections of analytic
Sobolev spaces, fail to be dense. In contrast to earlier results on density of functions
with continuous extensions to the boundary in K‚ and related spaces, the existence
of a smooth approximant is obtained through a constructive method.

1. Introduction and main results

A special feature of the spaces of analytic functions which appear in several operator
model theories is that it is often difficult to obtain any explicit example of a non-trivial
function that is contained in such a space and has boundary values of some degree of
regularity, be it continuous, differentiable or smooth. This principle certainly applies to
the classical model spaces K‚, where the identifiable elements of the space are often
limited to the reproducing kernel functions. However, being subspaces of the Hardy space,
a function in K‚ behaves at least somewhat well on the boundary, in the sense that it
admits an almost everywhere defined boundary function. Our goal here is to carry out the
investigation of how well such a boundary function can behave for a dense subset of the
model space, and more precisely we will focus on differentiable boundary functions.

We will work in the open unit disk D of the complex plane C, and our boundary func-
tions will thus be living on the unit circle T . We assume the readers familiarity with the
usual facts regarding the Hardy spacesHp on D and the boundary behaviour of functions
in these spaces (all of it can, for instance, be found in [9]). In this setting, a model space
is constructed in the following way. Let � be a finite positive singular Borel measure on T
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and construct the associated singular inner function

(1.1) S�.z/ D exp
�
�

Z
T

� C z

� � z
d�.�/

�
; z 2 D:

Pick also an arbitrary convergent Blaschke product

B.z/ D

1Y
nD1

janj

an

an � z

1 � anz
; z 2 D;

and set ‚ WD BS� . The space ‚H 2 D ¹‚f W f 2 H 2º is then a closed subspace of H 2,
and the model space is defined as its orthogonal complement:

K‚ D H
2
	‚H 2:

According to the classical theorem of Beurling, any closed subspace ofH 2 invariant under
the backward shift f 7! .f .z/� f .0//=z is a model spaceK‚, for some inner function‚.
The reproducing kernels of these spaces are given by

(1.2) k‚.�; z/ D
1 �‚.�/‚.z/

1 � �z
�

It is clear from this expression that the kernel functions inherit the boundary behaviour of
the inner function ‚, which can in general be very irregular. Throughout this paper, we
shall rely on various standard facts about the model spaces, thus we refer the reader to any
standard book on the topic, such as [7], Chapter 8.

During his investigation of the boundary behaviour of model space functions on very
fine sets, Aleksandrov established in [1] the density of the intersection A \ K‚ in K‚,
where A denotes the disk algebra, the algebra of analytic functions in D with continuous
extensions to the boundary. It has been later found in [2] and [3] that Aleksandrov’s result
admits a generalization to a wider class of spaces, with proofs using non-constructive
approaches based on duality. A natural question is if approximation by functions extending
continuously to the boundary is close to the best that one can possibly obtain for a general
model space. Similarly, one can ask: what conditions need to be met in order to allow
approximation by some more regular class of functions?

Let E � T be a closed set of Lebesgue measure zero and consider the complementary
open set T n E D U , which can be written as a countable union U D [kIk of disjoint
maximal open circular arcs Ik . Let jIkj denote the length of the arc Ik . The set E is a
Beurling–Carleson set if the following entropy condition is satisfied:X

k

jIkj log
� 1

jIkj

�
<1:(1.3)

Beurling–Carleson sets are characterized as the zero sets on T of analytic functions on D
with very regular extensions to the boundary. Indeed, Carleson proved in [6] that for any
such set E and any positive integer n, there exists an analytic function with zero set pre-
cisely E such that all its derivatives up to order n extend continuously to the boundary.
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We will denote by An the class of analytic functions on D with derivatives of order n
extending continuously to the boundary, and we also define

A1 WD

1\
nD1

An:

Novinger in [13] and Taylor and Williams in [16] extended Carleson’s result and showed
that Beurling–Carleson sets are also zero sets of functions in A1. For 0 < p � 1, we
will also need to define the analytic Sobolev spaces W 1;p

a on the unit disc D. That is,

(1.4) W 1;p
a D ¹f 2 Hol.D/ W f; f 0 2 Lp.D; dA/º;

where dA denotes the normalized area-measure on D. We regard these spaces as closed
subspaces of the classical Sobolev spaces on D, equipped with the standard Sobolev metric
kf kW 1;p WD kf kLp C kf

0kLp .
Dyakonov and Khavinson found in [8] that there exist model spaces K‚ with the

property that W 1;p
a \ K‚ D ¹0º, for any p > 1. According to their result, this happens

precisely when ‚ D S� and the singular measure � has the property that �.E/ D 0 for
any Beurling–Carleson set E. Conversely, they show that the model space K‚ contains
a non-zero function in A1 if either ‚ has a Blaschke factor or if �.E/ > 0 for some
Beurling–Carleson setE. It is straightforward to show (see Proposition 2.2) that any finite
positive singular Borel measure � on T can be expressed as a sum

(1.5) � D �C C �K ;

where the two measures are mutually singular, �C is essentially concentrated on Beurling–
Carleson sets, in the sense that there exists an increasing sequence of Beurling–Carleson
sets ¹Enºn�1 such that limn!1 �C .En/ D �C .T /, while �K.E/ D 0 for any Beurling–
Carleson set. Measures which do not assign positive measure to Beurling–Carleson sets
have notably appeared in the work of Korenblum in [11] and Roberts in [15], as the
class of singular measures which induce cyclic singular inner functions on the Bergman
spaces. The prominent examples of singular measures � which do not assign mass to
Beurling–Carleson sets are provided by those enjoying the following growth restriction
on their modulus of continuity: �.I / . jI j log.1=jI j/, for all arcs I � T . For instance,
see Frostman’s theorem in Appendix D of [10] on the existence of such measures. In the
decomposition in (1.5), we shall refer to the measure �C as the Beurling–Carleson part,
and the measure �K as the Korenblum–Roberts part. The main result of our investigation
is the following.

Theorem 1.1. Let ‚ D BS� be an inner function with Blaschke product B and singular
inner function S� with associated singular measure � on T . Then the following conditions
are equivalent:

(i) A1 \K‚ is dense in K‚,

(ii) W
1;p
a \K‚ is dense in K‚, for any 1 < p � 1,

(iii) the Korenblum–Roberts part �K of � is trivial. That is, � D �C .
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It is worth to remark that the proof of Theorem 1.1 actually shows that for any inner
function ‚, the closure of W 1;p

a \ K‚ in K‚ for p > 1 and the closure of A1 \ K‚
in K‚ are both equal to the subspace K‚C

� K‚.
Note that the equivalence of (i) and (ii) means that for a wide range of analytic function

spaces M, the density of M \K‚ in K‚ is equivalent to condition (iii) of Theorem 1.1.
For instance, the analytic Hölder class ƒ˛a , consisting of analytic functions on D with
Hölder continuous boundary values on T of order ˛ 2 .0; 1/, is a subset ofW 1;p

a for all p
satisfying p < 1=.1 � ˛/. Thus it follows that ƒ˛a \K‚ is dense in K‚ for ˛ > 0 if and
only if condition (iii) holds.

The method we employ to establish the density results is to a large extent construct-
ive. For each function f in an admissible model space, we construct explicitly a smooth
approximant, and the approach is based on co-analytic Toeplitz operators and smoothing
out the boundary singularities of the function f by multiplication with a suitable Toeplitz
operator symbol. More precisely, every model space K‚ satisfying property (iii) in The-
orem 1.1 contains an increasing sequence of model spaces ¹K‚nº such that [n�1K‚n is
dense in K‚ and the functions in each K‚n are sufficiently well-behaved at the bound-
ary so that one can find a co-analytic multiplier h making hf smooth on T , for each
f 2 K‚n . The Riesz projection then maps hf back into the model space and preserves
smoothness. A properly constructed sequence of such symbols ¹hnºn will give us a cor-
responding sequence of co-analytic Toeplitz operators which smooth out the singularities
and converges to the identity (see Corollary 3.3).

It seems that the approach can be generalized to other spaces with similar properties
and on which the co-analytic Toeplitz operators are bounded. For instance, one can easily
see that our constructive approach carries over to model subspaces of Hp-spaces for p 2
.1;1/. Those spaces can be defined as those f 2 Hp for which the function ‚f on T
coincides with boundary values of a co-analytic function with a zero at the origin. Our
approach breaks down for p � 1 and p D 1, but nevertheless Theorem 1.1 as stated,
holds even for p 2 .0; 1�, as long as the model spaces are appropriately defined, and for
p D 1 if we replace the norm topology on H1 with the usual weak* topology. For
more details on this, see [12]. In the cases p 2 .0; 1� [ ¹1º, we know of no constructive
approach to establish the existence of approximants.

To our knowledge, the result on density in model spaces of functions with continuous
extensions to the boundary T so far has not seen a constructive proof, even in the case
p D 2. Our approach breaks down as well. The main difference is that the set of boundary
singularities of a function in a general model space is much worse than the set of singular-
ities of functions in K‚ where ‚ is carried by a sequence of Beurling–Carleson sets, and
that the co-analytic Toeplitz operators and related projections are not good at preserving
boundary continuity.

Our theorem treats the density of analytic Sobolev spaces W 1;p
a for p > 1. When

0 < p < 1, the situation is simple, since then the spaces W 1;p
a contain all the bounded

analytic functions, and thus W 1;p
a \ K‚ is obviously dense in K‚, for all inner func-

tions ‚. In the case of p D 1, little is known and the problem seems interesting. In the
proof of the necessity of condition (iii) in Theorem 1.1, we use a duality argument and
a technique from [8] which employs a deep result by Korenblum and Roberts from [11]
and [15]. This result asserts that the inner functions associated with singular measures
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which do not assign positive measure to Beurling–Carleson sets are cyclic vectors for the
forward shift operator on the Bergman spaces. An extension of the result to the spaceW 1;1

a

seems to be related to the open problem of determining if the condition �.E/ D 0 for any
Beurling–Carleson set is sufficient for the associated singular inner function S� to be a
weak* cyclic vector for the forward shift operator on the Bloch space. Similar remarks
regarding connections to this open problem also appeared in [8], and we refer the reader
to [5] and [4] for further details and progress on this question. Notably, weak* cyclicity
has been established for a particular example of a singular inner function in [4], and con-
sequently there exists an inner function ‚ such that W 1;1

a \K‚ D ¹0º. In particular, this
means that there are model spaces which do not contain non-trivial functions in the so-
called Wiener algebra, which consists of analytic functions with a Taylor series which
converges absolutely in the closed disk D. As a curious fact, we note that if we replace
converges absolutely by converges uniformly, then the situation is completely different:
functions with uniformly convergent Taylor series are always dense in K‚, for any ‚.
This fact has been observed in [12].

This paper is organized as follows. In the preliminary Section 2 we have gathered
some background results which will be relevant in the later proofs. Section 3 contains the
main technical argument, which is the construction of a certain sequence of smoothing
functions which converge to the identity. The last section is devoted to the proof of our
main result.

2. Preliminaries

We gather a few auxiliary results that will be useful in the proof of the main theorem.

2.1. Riesz and Herglotz transforms

Let PCWL2.T /! H 2 denote the Riesz projection given by

PCf .z/ WD

Z
T

f .�/

1 � � z
dm.�/; z 2 D;

and the Herglotz transform by

Hf.z/ WD

Z
T

� C z

� � z
f .�/ dm.�/; z 2 D;

where dm denotes the normalized Lebesgue measure on T . The following result is well
known and simple (see, for instance, [9]). Below, C1.T / denotes the class of infinitely
differentiable functions on T . We state it below for the sake of future references.

Proposition 2.1. The Riesz projection PC and the Herglotz transform H map C1.T /
into A1.
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2.2. A decomposition of singular measures

We present the abstract decomposition result for singular measures which was stated in
the introduction. The result is readily established and certainly is not new. A version of it
has been briefly mentioned in [15].

Proposition 2.2. Let � be a positive finite singular Borel measure on T . Then � decom-
poses uniquely as a sum of mutually singular measures

(2.1) � D �C C �K

such that there exists an increasing sequence of Beurling–Carleson sets ¹Enºn�1 satisfy-
ing

lim
n!1

�C .En/ D �C .T /

and �K vanishes on every Beurling–Carleson set.

Sketch of proof. Let ¹Enºn�1 be a sequence of Beurling–Carleson sets such that

lim
n!1

�.En/ D sup ¹�.E/ W E � T Beurling–Carleson set º:

Since finite unions of Beurling–Carleson sets are still Beurling–Carleson sets, we may
assume that the collection ¹Enºn�1 is increasing. Now let �jE and �jEc denote the restric-
tions of � to E D [n�1En and Ec , respectively. It is now straightforward to see that we
can take �C D �jE and �K D �jE

c , and that such a decomposition is unique.

2.3. Functionals on analytic Sobolev spaces

Let 1 < q < 1 and denote the classical Bergman spaces by Lqa, which are the closed
subspaces of Lq.D; dA/ consisting of analytic functions on D. Recall also the definition
of the analytic Sobolev spaces W 1;p

a in (1.4). The following is a well-known Cauchy
duality result (see, for instance, [14]).

Proposition 2.3. Let 1<p <1 and qDp=.p�1/. Then for every g 2Lqa and f 2W 1;p
a

we have that

(2.2) lim
r!1�

Z
T
f .r�/ g.r�/ dm.�/

exists, and there exists a constant Cp > 0, only depending on p, such that

(2.3) sup
0<r<1

ˇ̌̌ Z
T
f .r�/ g.r�/ dm.�/

ˇ̌̌
� Cp kf kW 1;p kgkLq :

Thus the spaces W 1;p
a and Lqa are duals to each other under the Cauchy dual-pairing

in (2.2).
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2.4. An estimate for evaluations at the boundary

LetE �T be a closed set of Lebesgue measure zero, let � be a measure which is supported
on E, and set ‚ D S� . It is well known that ‚, as well as each function f 2 K‚, has
an analytic continuation to a neighbourhood of any point in T n E (see, for instance,
Theorem 8.2.4 in [7]). In fact, the evaluation of any derivative of a function in K‚ at any
� 2 T nE is a bounded linear functional on K‚. A standard limiting argument will show
us that the function

D 3 z 7!
� @
@�

�n
k‚.�; z/

is a member of K‚ for any � 2 T nE, and

(2.4) f .n/.�/ D

Z
T
f .�/

� @
@�

�n
k‚.�; �/ dm.�/; f 2 K‚;

where @=@� denotes differentiation with respect to �. Moreover, we have the following
important estimate for the norm of these evaluations.

Proposition 2.4. In the setting described above, there exists a constant Cn > 0 such that
for any � 2 T nE we have

jf .n/.�/j � Cnkf k2

� 2nC1X
kD0

j‚.k/.�/j
�
; f 2 K‚:

Proof. Fix an arbitrary � 2 T nE. It follows from (2.4) that the square of the norm of the
evaluation functional f 7! f .n/.�/ in K‚ is given by� @

@�

�n
k‚.�; �/

2
2
D

� @
@z

�n� @
@�

�n
k‚.�; z/jzD�;

where the equality follows from the reproducing property applied to the analytic function
z 7! . @

@�
/nk‚.�; z/. To estimate this last expression, let � 2 T n E and observe that in a

neighbourhood of � we have a Taylor expansion

k‚.�; �/ D
‚.�/

�

�‚.�/ �‚.�/
� � �

�
D
‚.�/

�

1X
kD1

‚.k/.�/

kŠ
.� � �/k�1:

Since all derivatives of ‚ in a neighbourhood of � are continuous, we can now go ahead
and differentiate n times with respect to � and then n times with respect to �, and then
evaluate at � D �. It is now evident from the Leibniz product rule that we in this way end
up with a finite number (depending on n) of terms of the form

pl;k.�; �/‚
.l/.�/‚.2nC1�l/.�/;

for 1 � k; l � n, where each pl;k is a polynomial expression in �; �. Taking modulus and
using the simple estimate 2ab � a2 C b2 for a; b > 0, we obtainˇ̌̌� @

@z

�n� @
@�

�n
k‚.�; z/jzD�

ˇ̌̌
� Cn

� 2nC1X
kD0

j‚.k/.�/j2
�
� Cn

� 2nC1X
kD0

j‚.k/.�/j
�2
;

where Cn > 0 is independent of �. The desired estimate now follows.
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3. A smoothing approximation to the identity

We will make use of a construction, initially due to Carleson in [6] and later refined by
Taylor and Williams in [16]. LetE be a Beurling–Carleson set on T , with complementary
open set U that decomposes into U D [kIk , where Ik are disjoint maximal circular arcs
of T . Without loss of generality, we may assume that none of the arcs include the point
1 2 T . Then, if Ik is extending from ˛k D e

iak to ˇk D eibk , we will have 0 � ak < bk <
2� and because E is a Beurling–Carleson set, by definition we have thatX

k

.bk � ak/ log
� 1

bk � ak

�
<1:

Taylor and Williams use this assumption to construct a function h.t/ defined for t 2
Œ0; 2��, with the properties that h.t/D1 on the complement of the union of the intervals
.ak ; bk/, on those intervals h is of class C1 and

lim
t!aC

k

h.t/ D lim
t!b�

k

h.t/ D1;

in such a way that h.t/ is integrable on Œ0; 2�/ and the outer function

(3.1) g.z/ D exp
�
�

1

2�

Z 2�

0

eit C z

eit � z
h.t/ dt

�
belongs A1 with zero set precisely equal to E. Moreover, and this is crucial for our
further purposes, the construction of Taylor and Williams is so that

(3.2) E �

1\
nD1

®
� 2 T W g.n/.�/ D 0

¯
:

Further details of their construction can be found in Theorem 3.3 of [16].
Let ıE .z/ denote the distance from a point z 2 D n E to the set E. It follows easily

from (3.2) that

(3.3) jg.k/.z/j � Cn ıE .z/
n

for any n � 0, g.k/ being the kth derivative. Indeed, if z 2 D and w 2 E is a point such
that jz � wj D ıE .z/, then let L be the line segment between z and w. We have

jg.z/j D jg.z/ � g.w/j D
ˇ̌̌ Z
L

g0.s/ ds
ˇ̌̌
� ıE .z/ � sup

s2L

jg0.s/j:

Applying the same reasoning to g0.s/, we obtain

jg.z/j � ıE .z/
2
� sup
s2L

jg00.s/j

and we can iterate to obtain (3.3) for k D 0. The estimate for the derivatives g.k/; k � 1,
follows in the same way from the invariance of (3.2) under differentiation.
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Proposition 3.1. Let � be a positive singular measure supported on a Beurling–Carleson
set E, let B be a finite Blaschke product, and set ‚ D BS� . If g 2 A1 satisfies (3.2),
then for any function f 2 K‚, we have that f g is of class C1.T /.

Proof. The function f g is already C1 on the complement of the set E, since both f
and g are. Recall thatB is a finite Blaschke product, thus it is analytic across T . A straight-
forward induction argument shows that for any integer n � 0, there exists a constant
C.n/ > 0, only depending on n, such that

j‚.n/.�/j � C.n/

Z
E

1

j1 � ��j2n
d�.�/ � C.n/ıE .�/

�2n �.T /; � 2 D nE:

Together with Proposition 2.4 and (3.3), this implies that derivatives of any order of
f .eit /g.eit / tend to zero as eit ! E. It follows that f g 2 C1.T /.

We will now modify the construction of the function g above to obtain a sequence
of analytic functions which smooths out singularities of functions in our spaces and con-
verges to the identity.

Proposition 3.2. Let � be a positive measure supported on a Beurling–Carleson set E,
let B a finite Blaschke product, and set‚D BS� . Then there exists a sequence of analytic
functions ¹Hnºn�1 in A1 with the following properties:
(i) the boundary function of f Hn is of class C1.T / for any f 2 K‚,

(ii) limn!1Hn.�/ D 1 holds for Lebesgue almost every � 2 T ,

(iii) supn kHnk1 <1.

Proof. Let  n be an increasing sequence of C1-functions with 0 �  n � 1, compactly
supported in the interval .0; 1/, and such that  n.t/ D 1 for all t 2 Œ1=n; 1 � 1=n�. Let
U D[1

kD1
.ak ; bk/ be as defined in the beginning of the section and consider the functions

�n.t/ D

nX
kD1

 n ..t � ak/=.bk � ak// :

Certainly, �n is C1 and limn!1 �n.t/D 1 almost everywhere with respect to the Lebes-
gue measure. Note that each �n is identically equal to zero in a sufficiently small neigh-
bourhood of any of the endpoints of the intervals appearing in the decomposition of U .
Let the function h and the corresponding analytic function g given by (3.1) be as in the
construction by Williams and Taylor described above. It follows from the construction
that h�n is a C1-function, and that h.1 � �n/ converges pointwise to zero almost every-
where, which by the dominated convergence theorem applied to jh.1� �n/j � jhj implies
that

(3.4) lim
n!1

Z 2�

0

h.t/.1 � �n.t// dt D 0:

We set

Hn.z/ D exp
�
�

1

2�

Z 2�

0

eit C z

eit � z
h.t/.1 � �n.t// dt

�
:
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Note that certainly Hn are uniformly bounded, so (iii) is satisfied. By construction, any
point � D eit with t 2 U will have an open neighbourhood around it on which h.1 � �n/
vanishes for sufficiently large n. Thus for sufficiently large n, the functions Hn will have
analytic continuations to a neighbourhood of any fixed � D eit with t 2 U . By (3.4), we
deduce that limn!1Hn.�/D 1 for each such �. Thus limn!1Hn.�/D 1 for almost every
� 2 T , which is the assertion in (ii). We can writeHn D gFn, where Fn is the exponential
of the Herglotz transform of h�n. Since h�n belongs to C1.T /, we have that Fn has
a boundary function in C1.T / by Proposition 2.1. According to Proposition 3.1, we
now conclude that f Hn D f gFn is of class C1.T / for any f 2 K‚, which proves the
assertion in (i).

We have the following immediate corollary.

Corollary 3.3. Let � be a positive singular measure supported on a Beurling–Carleson
set E, let B be a finite Blaschke product, and set ‚ D BS� . Then there exists a sequence
of Toeplitz operators TnWK‚! K‚ \A1 which converge to the identity operator in the
strong operator topology.

Proof. The operators Tn are given by Tnf D PCHnf , where ¹Hnºn�1 is the sequence
constructed in Proposition 3.2. From (i) of that same proposition together with Proposi-
tion 2.1, we get that Tnf 2A1, and sinceK‚ is well known to be invariant under Toeplitz
operators with co-analytic symbols, we conclude that Tnf 2 K‚ \A1 for all f 2 K‚.
According to (ii) and (iii) of Proposition 3.2, we may apply the dominated convergence
theorem to deduce that Tn converges to the identity in the strong operator topology.

4. Proof of the main result

4.1. Proof of the sufficiency

Note that Corollary 3.3 essentially establishes a constructive approximation scheme in the
special case when the singular measure � in the definition of the singular inner part of ‚
is carried by a single Beurling–Carleson set. Our task here is thus limited to carrying out
a simple verification that we can extend our approximations to a measure � supported on
a countable union of such sets.

Proof of (iii)) (i) of Theorem 1.1. Let‚D BS� , where B is a Blaschke product and S�
is a singular inner function with corresponding singular measure �. Suppose that the
Korenblum–Roberts part �K vanishes. Then it follows from Proposition 2.2 that there
exists an increasing sequence of Beurling–Carleson sets ¹Enºn, such that �.En/! �.T /
as n ! 1. Let ¹anºn�1 be the sequence of zeros of B , let Bn be the finite Blaschke
product with zeros at a1; : : : ; an, and let S�n be the singular inner function defined by the
measure �n which is the restriction of � to the Beurling–Carleson setEn. For‚nDBnS�n ,
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we have that K‚n � K‚, because ‚n divides ‚. Moreover, we haveZ
T
j‚n �‚j

2dm D
Z

T
j1 � .B=Bn/S���n j

2 dm D 2 � 2Re
Z

T
.B=Bn/S���n dm

D 2 � 2
� Y
k�nC1

jakj
�

exp.�n.T / � �.T //:

The last expression clearly tends to zero as n!1, and thus we can conclude that
limn!1 k‚n �‚k2 ! 0. Let PK‚ denote the orthogonal projection from H 2 onto K‚.
It is easy to see that this projection is given by

PK‚f D f �‚PC‚f;

wherePC is the Riesz projection. LetPK‚n denote the corresponding projection ontoK‚n.
Then, for f 2 K‚ we have that

f � PK‚nf D ‚nPC‚nf D ‚nPC.‚n �‚/f C‚nPC‚f D ‚nPC.‚n �‚/f:

According to the above identity and the simple fact that j‚nj D 1 on T , we get that for
any f 2 H1 \K‚,

kf � PK‚nf k2 � kf k1 k‚n �‚k2 ! 0; n!1:

Now sinceH1 \K‚ is dense inK‚ and the sequence of projections PK‚n are uniformly
bounded on K‚, it follows that PK‚n converges in the strong operator topology to the
identity on K‚.

Let f 2 K‚ be an arbitrary function. By the above development, for any " > 0

there exists a function f" 2 K‚ which is contained in a subspace K‚" � K‚ to which
Corollary 3.3 applies and such that kf � f"k2 < "=2. By Corollary 3.3, there exists
a sequence of Toeplitz operators ¹Tnºn�1 such that Tnf" 2 K‚ \ A1, and such that
kf" � Tnf"k2 < "=2 for sufficiently large n. Thus kf � Tnf"k2 < ", and A1 \ K‚ is
dense in K‚.

4.2. Proof of the necessity

Finally, we prove the necessity of the structure of the singular measure to ensure smooth
approximations being possible. In contrast to the previous section, our approach is non-
constructive and we use duality.

Proof of (ii)) (iii) of Theorem 1.1. Let ‚ D BS� be an inner function such that (iii)
fails, that is, the Korenblum–Roberts part �K is not identically zero. Now factorize ‚ D
‚CSK , where ‚C D BS�C

and SK D S�K
, and observe that a simple computation

involving reproducing kernels establishes the orthogonal decomposition

K‚ D K‚C
˚‚CKSK

:

Our aim is to prove that no non-zero function belonging to the subspace ‚CKSK
can

be approximated by W 1;p
a \ K‚, for any p > 1. To this end, let p > 1 be arbitrary
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and fixed. Since �K.E/ D 0 for every Beurling–Carleson set E � T , the Korenblum–
Roberts theorem (see Theorem 1 in [11] or Theorem 2 in [15]) implies that the singular
inner function SK is a cyclic vector on the Bergman spaces Lqa, for any q > 1. That
is, the subspace SKL

q
a is dense in Lqa. Now let f 2 H1 \ KSK

� L
q
a and pick a

sequence of analytic polynomials ¹pnºn�1 such that SKpn ! f in Lqa, as n ! 1.
Since multiplication with the bounded analytic function ‚C is a continuous operation
on Lqa, we have that ‚pn ! ‚Cf in Lqa. Observe that the limit function ‚Cf belongs
to K‚, since ‚CKSK

� K‚. According to Proposition 2.3, the Cauchy dual-pairing
with an Lqa-function induces a bounded linear functional on W 1;p

a , where p > 1 satis-
fies p D q=.q � 1/. In particular, this implies that for any g 2 W 1;p

a \K‚ we have the
following:Z

T
‚C .�/ f .�/ g.�/ dm.�/ D lim

n!1

Z
T
‚.�/pn.�/ g.�/ dm.�/ D 0:

The last equality follows from the fact that g is orthogonal to ‚pn, for each n � 1. This
shows that‚Cf 2 .W

1;p
a \K‚/

? for any bounded function f 2KSK
, hence we actually

get the inclusion ‚CKSK
� .W

1;p
a \K‚/

?. This obviously implies that W 1;p
a \K‚ is

not dense in K‚, for any p > 1.
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