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Equivalence of critical and subcritical sharp
Trudinger–Moser inequalities in fractional dimensions

and extremal functions

José Francisco de Oliveira and João Marcos do Ó

Abstract. We establish critical and subcritical sharp Trudinger–Moser inequalities
for fractional dimensions on the whole space. Moreover, we obtain asymptotic lower
and upper bounds for the fractional subcritical Trudinger–Moser supremum from
which we can prove the equivalence between critical and subcritical inequalities.
Using this equivalence, we prove the existence of maximizers for both the subcritical
and critical associated extremal problems. As a by-product of this development, we
can explicitly calculate the value of the critical supremum in some special situations.

1. Introduction

Let 0 < R �1, ˛; � � 0 and q � 1 be real numbers. Let Lq
�
D L

q

�
.0;R/ be the weighted

Lebesgue space defined as the set of all measurable functions u on .0; R/ such that

kukLq
�
D

8̂<̂
:
� R R

0
ju.r/jq d��

�1=q
<1 if 1 � q <1;

ess sup
0<r<R

ju.r/j <1 if q D1;

where we are denoting

(1.1)
Z R

0

f .r/ d�� D !�

Z R

0

f .r/r�dr; 0 < R � 1;

with !� defined by

!� D
2�.�C1/=2

�..� C 1/=2/
; with �.x/ D

Z 1
0

tx�1e�t dt:

In the case that � is a positive integer number, !� agrees precisely with the known
spherical volume element for Euclidean space R�C1. In fact, according to the formalism
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in [33], the integration of a radially symmetric function f .r/ in a .� C 1/-dimensional
fractional space is given by (1.1), when R D1. Integration over non-integer dimensional
spaces is often used in the dimensional regularization method as a powerful tool to obtain
results in statistical mechanics and quantum field theory [7,30,35]. For a deeper discussion
on this subject, we suggest [36] and the references therein.

We emphasize that the Lebesgue spaces Lq
�

is also related with the classical Hardy
inequality [19], see [13, 29] for more details. In addition, we can use Lq

�
-spaces to define

Sobolev type spaces that are suitable to investigate a general class of differential operators
which includes the p-Laplacian, p � 2, and k-Hessian operators in the radial form, see
for instance [6,18,29] and references therein. Indeed, as observed by P. Clément et al. [6],
if we consider XR D X

1;p
R .˛; �/, ˛; � � 0, p > 1 and 0 < R �1, as the set of all locally

absolutely continuous functions on the interval .0;R/ such that limr!R u.r/D 0, u 2 Lp
�

and u0 2 Lp˛ , then XR becomes a Banach space endowed with the norm

kuk D
�
kuk

p

L
p
�

C ku0k
p

L
p
˛

�1=p
:

Further, we can distinguish two special behaviors for the weighted Sobolev spaces XR.
Namely, the Sobolev case, when the condition

(1.2) ˛ � p C 1 > 0

holds, and the Trudinger–Moser case if

(1.3) ˛ � p C 1 D 0:

In the Sobolev case (1.2), the value

p� WD p�.˛; p; �/ D
.� C 1/p

˛ � p C 1

is the critical exponent for the embedding

X
1;p
R .˛; �/ ,! Lq� :

Indeed, for the bounded situation 0 < R <1, one has the following continuous embed-
ding:

X
1;p
R .˛; �/ ,! Lq� ; if q 2 .1; p�� and min¹�; �º � ˛ � p:

Moreover, in the strict case q < p�, the embedding is also compact. In contrast, for the
Trudinger–Moser case one has the compact embedding

(1.4) X
1;p
R .˛; �/ ,! Lq� ; if q 2 .1;1/ and � � 0:

However, XR ,! L1� does not hold, as one can see taking u.r/ D ln.ln.eR=r//.
It is worth pointing out that the weighted Sobolev spaces XR are employed by several

authors to investigate existence of solutions for a large class of differential equations. We
recommend [6,8,9,13,17,22] for a general class of radial operators, and for the k-Hessian
equation [11, 12, 14], and recently [15]. This paper deals with intrinsic properties of XR,
which are related with sharp variational inequalities. In this direction, let us first recall
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some previous results. Firstly, the embedding in (1.4) does not find its threshold in the
weighted Lebesgue spaces Lq� , instead, in [10] it was proved a sharp inequality of the
Trudinger–Moser type (see [28,34]) forXR which gets embedded into an weighted Orlicz
space determined by exponential growth. In fact, let us denote

�˛;� D .� C 1/!
1=˛
˛ and jBRj� D

Z R

0

d�� :

Then, in [10] the authors proved the following.

Theorem A. Let 0 < R <1, ˛ � 1, � � 0 and p D ˛ C 1 be real numbers. Then,

(i) we have exp.�jujp=.p�1// 2 L1
�
, for any � > 0 and u 2 X1;pR .˛; �/;

(ii) there exists c > 0 depending only on ˛; p and � such that

(1.5) sup
ku0k

L
p
˛
�1

1

jBRj�

Z R

0

e�juj
p=.p�1/

d��

²
� c if � � �˛;� ;
D1 if � > �˛;� I

(iii) the supremum in (1.5) is attained for all 0 < � � �˛;� .

In this paper we are mainly interested in the unbounded case when R D 1. Here,
according to [9], for the Sobolev case, we also have the following continuous embedding:

(1.6) X1;p1 .˛; �/ ,! L
q

�
if q 2 Œp; p�� and � � ˛ � p:

Also, the embeddings (1.6) are compact under the strict conditions � > ˛ � p and p <
q < p�. In the Trudinger–Moser case, it holds the continuous embeddings

(1.7) X1;p1 .˛; �/ ,! L
q

�
for all q 2 Œp;1/;

which are compact in the strict case q > p.
We recall the following Trudinger–Moser type inequality of the scaling invariant form

obtained in [10].

Theorem B. Assume p � 2, ˛ D p � 1 and � � 0. For any � < �˛;� , there exists a
positive constant Cp;�;� such that, for all u 2 X1;p1 .˛; �/, ku0kLp˛ � 1,Z 1

0

'p
�
� juj

p
p�1
�

d�� � Cp;�;�kuk
p

L
p
�

;

where

(1.8) 'p.t/ D e
t
�

k0�1X
kD0

tk

kŠ
D

X
j2N Wj�p�1

tj

j Š
; t � 0;

with k0 D min¹j 2 N W j � p � 1º. The constant �˛;� is sharp in the sense that the
supremum is infinity when � � �˛;� .

Theorem B is the fractional dimension counterpart of the result in S. Adachi and
K. Tanaka [2]. We also refer to [4, 16, 31] concerning related work for the classical
Sobolev spaces. Our first result in this paper yields a precise asymptotics result on the
above inequality.
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Theorem 1.1. Assume p � 2, ˛ D p � 1 and � � 0. For any 0 � � < �˛;� , we denote

TMSC.�; ˛; �/ D sup
ku0k

L
p
˛
�1

1

kuk
p

L
p
�

Z 1
0

'p
�
� juj

p
p�1
�

d�� :

Then there exist positive constants c.˛; �/ and C.˛; �/ such that, when � is close enough
to �˛;� ,

c.˛; �/

1 � .�=�˛;� /p�1
� TMSC.�; ˛; �/ �

C.˛; �/

1 � .�=�˛;� /p�1
�

Moreover, the constant �˛;� is sharp in the sense that TMSC.�˛;� ; ˛; �/ D1.

One of the goals of this paper is to investigate the critical regime � D �˛;� . In this
case, we will firstly prove the following.

Theorem 1.2. Assume p � 2, ˛ D p � 1 and � � 0. For any 0 � � � �˛;� , we denote

TMC.�; ˛; �/ D sup
kuk�1

Z 1
0

'p
�
� juj

p
p�1
�

d�� :

Then TMC.�;˛; �/ is finite. The constant �˛;� is sharp. In addition, we have the following
identity: for all � � �˛;� ,

(1.9) TMC.�; ˛; �/ D sup
�2.0;�/

�1 � .�=�/p�1
.�=�/p�1

�
TMSC.�; ˛; �/:

For classical Sobolev spaces, the critical supremum TMC.�; ˛; �/ was first investig-
ated by B. Ruf in [32] and Y. Li and B. Ruf in [27]. There has been a growing interest in
this kind of inequalities during the last decades, and a wide literature is available, see for
instance [5, 20, 21, 23, 24, 26] and the references therein. We note that the boundedness of
TMC.�;˛;�/ has already been investigated in [1]. In this work we give a new proof for the
boundedness which enables in particular to get a useful relation between TMSC.�; ˛; �/
and TMC.�; ˛; �/ given by (1.9).

Another interesting question about the suprema TMSC.�; ˛; �/ and TMC.�; ˛; �/,
and for Trudinger–Moser inequalities in general, is whether extremal functions exist or
not. Inspired by recent approaches in [5, 24–26], we will employ the identity (1.9) to
investigate this question. Firstly, on the subcritical supremum TMSC.�; ˛; �/ we are able
to prove the following.

Theorem 1.3. Let ˛;p and � satisfy the assumptions of Theorem 1.1. Then the fractional
subcritical supremum TMSC.�; ˛; �/ is attained.

By using Theorem 1.3 and the identity (1.9), we will first prove the following attain-
ability result for the fractional critical supremum TMC.�; ˛; �/.

Theorem 1.4. Let ˛; p and � be under the assumptions of Theorem 1.2.

(i) If k0 > p � 1 and 0 < � < �˛;� , then TMC.�; ˛; �/ is attained.

(ii) If k0 D p � 1 and 0 < � < �˛;� , then TMC.�; ˛; �/ is attained whenever

TMC.�; ˛; �/ >
�p�1

.p � 1/Š
�
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Theorem 1.4 has already been obtained in [1]; however, our proof here is new and
relies on the critical and subcritical equivalence given in Theorem 1.2. In addition, fol-
lowing [20] we also are able to characterize precisely the attainability of TMC.�; ˛; �/ for
the case .ii/ above. In order to get this, we define the value �� D ��.˛; �/ 2 Œ0; �˛;� / by

�� D inf
®
� 2 .0; �˛;� / W TMC.�; ˛; �/ is attained

¯
;

when TMC.�; ˛; �/ is attained for some � 2 .0; �˛;� /. If TMC.�; ˛; �/ is not attained for
any � 2 .0; �˛;� /, then we set �� D1.

Theorem 1.5. Let k0 D p � 1 and ˛; � be as in Theorem 1.2. Suppose �� < �˛;� . Then

(i) TMC.�; ˛; �/ is attained for �� < � < �˛;� .

(ii) The function � W .��; �˛;� /! R given by �.�/ D .p�1/Š

�p�1
TMC.�; ˛; �/ is strictly

increasing. Moreover, by setting TMC.0; ˛; �/ D 0, there holds

(1.10) TMC.�; ˛; �/

8̂̂̂<̂
ˆ̂:
D

�p�1

.p � 1/Š
; for � 2 Œ0; ���;

>
�p�1

.p � 1/Š
; for � 2 .��; �˛;� /;

and in particular,

(1.11) �� D inf
®
� 2 .0; �˛;� / W TMC.�; ˛; �/ > �p�1=.p � 1/Š

¯
:

(iii) If p > 2, we have �� D 0 and thus TMC.�; ˛; �/ is attained for any .0; �˛;� /.

As a consequence of Theorem 1.5, since TMC.�; 1; �/ is not attained for � small
enough (cf. Theorem 1.3 in [1]), Theorem 1.5 provides

TMC.�; 1; �/ D sup
kuk�1

Z 1
0

'2.� juj
2/ d�� D �; 8 � 2 Œ0; ���:

The rest of this paper is organized as follows. In Section 2, we show Theorem 1.1.
Section 3 is devoted to the subcritical and critical equivalence stated in Theorem 1.2. In
Section 4 we will prove the existence of extremal functions for both subcritical TMSC
and critical TMC fractional Trudinger–Moser suprema in Theorem 1.3 and Theorem 1.4.
The proof of Theorem 1.5 is given in Section 5.

2. Sharp subcritical Trudinger–Moser inequality: Proof of
Theorem 1.1

In this section, we will prove the asymptotic behavior for the supremum TMSC.�; ˛; �/
for the subcritical Trudinger–Moser inequality in Theorem 1.1.

2.1. Some elementary properties

Note that from the definition (1.1) and the change of variables s D � r , we have

(2.1)
Z 1
0

f .� r/ d�� D
1

��C1

Z 1
0

f .s/ d�� ; � > 0:
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Thus, by setting u� .r/ D � u.� r/; with �; � > 0 and u 2 X1;p1 .˛; �/, we can write

(2.2) ku0�k
p

L
p
˛
D
.��/p

�˛C1
ku0k

p

L
p
˛

and ku�k
q

L
q
�

D
�q

��C1
kuk

q

L
q
�

; q � p:

Also, we observe that

(2.3)
'p.�t/ � �

p�1'p.t/; if 0 � � � 1;

'p.�t/ � �
p�1'p.t/; if � � 1;

where 'p.t/ is given by (1.8).

Lemma 2.1. For all q � 1 and " > 0, it holds

.x C y/q � .1C "/.q�1/=q xq C .1 � .1C "/�1=q/1�qyq; x; y � 0:

Proof. Since x 7! xq , x � 0, is a convex function, we have

.x C y/q D
� 1

.1C "/1=q
.1C "/1=qx C

�
1 �

1

.1C "/1=q

��
1 �

1

.1C "/1=q

��1
y
�q

�
1

.1C "/1=q
.1C "/xq C

�
1 �

1

.1C "/1=q

�1�q
yq :

Henceforth suppose that the condition ˛ � p C 1 D 0 holds. The next result ensures
that the subcritical supremum TMSC.�; ˛; �/ can be normalized.

Lemma 2.2.

TMSC.�; ˛; �/ D sup
ku0k

L
p
˛
Dkuk

L
p
�
D1

Z 1
0

'p
�
� juj

p
p�1
�

d�� :

Proof. It is sufficient to show that

TMSC.�; ˛; �/ � sup
ku0k

L
p
˛
Dkuk

L
p
�
D1

Z 1
0

'p
�
� juj

p
p�1
�

d�� :

In order to get this, for each u 2 X1;p1 n ¹0º, with ku0kLp˛ � 1, we set

v.r/ D
u.� r/

ku0kLp˛
; with � D

� kukp
L
p
�

ku0k
p

L
p
˛

�1=.�C1/
:

Since we are supposing ˛ � p C 1 D 0, (2.2) yields

kv0kLp˛ D kvkL
p
�
D 1:

Then, from (2.1) and (2.3) it follows thatZ 1
0

'p
�
�jvj

p
p�1
�

d�� D
1

��C1

Z 1
0

'p

�
1

ku0k
p=.p�1/

L
p
˛

� juj
p
p�1

�
d��

�

�
ku0k

p

L
p
˛

kuk
p

L
p
�

�
1

ku0k
p

L
p
˛

Z 1
0

'p
�
� juj

p
p�1
�

d�� D
1

kuk
p

L
p
�

Z 1
0

'p
�
� juj

p
p�1
�

d�� ;

which completes the proof.
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2.2. Proof of Theorem 1.1

Let u 2 X1;p1 , with ku0kLp˛ � 1. From the Pólya–Szegö inequality obtained in [1, 3], we
can assume that u is a non-increasing function. Also, by Lemma 2.2 it is sufficient to
analyze the case kukLp

�
D 1.

Initially, we will prove that

(2.4) TMSC.�; ˛; �/ �
C.˛; �/

1 � .�=�˛;� /p�1
�

Let us denote
Au D ¹r > 0 W ju.r/j

p > 1 � .�=�˛;� /
p�1
º:

We observe that for all jt j � 1 it holds
(2.5)

'p
�
�jt j

p
p�1
�
D

X
j2N Wj�p�1

�j

j Š
jt j

jp
p�1 �

X
j2N Wj�p�1

�j

j Š
jt jp � jt jp

1X
jD0

�j

j Š
D e�jt jp:

Hence, if Au D ; and consequently u � 1 in .0;1/, the inequality (2.5) yields

(2.6)
Z 1
0

'p
�
� juj

p
p�1
�

d�� � e�
Z 1
0

jujp d�� �
e�˛;�

1 � .�=�˛;� /p�1
�

So we can assume Au 6D ;. Thus, there exists Ru > 0 such that Au D .0; Ru/; because
we are assuming u is a non-increasing function. Analogously to (2.6), we obtainZ 1

Ru

'p
�
� juj

p
p�1
�

d�� �
Z
¹u�1º

'p
�
� juj

p
p�1
�

d��

� e�
Z
¹u�1º

jujp d�� �
e�˛;�

1 � .�=�˛;� /p�1
�

Now observe that

(2.7) jBRu j� D

Z Ru

0

d�� �
1

1 � .�=�˛;� /p�1

Z 1
0

jujp d�� �
1

1 � .�=�˛;� /p�1
�

For r 2 .0; Ru/, we set

v.r/ D u.r/ �
�
1 �

� �

�˛;�

�p�1�1=p
:

It is clear that v 2X1;pRu .˛; �/ and kv0kLp˛ .0;Ru/ � 1. Also, by choosing "D .�˛;�=�/p � 1
and q D p=.p � 1/ in Lemma 2.1, we have

juj
p
p�1 � .1C "/

1
p jvj

p
p�1 C

�
1 �

1

.1C "/.p�1/=p

�� 1
p�1
�
1 �

� �

�˛;�

�p�1� 1
p�1

D
�˛;�

�
jvj

p
p�1 C 1:
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Hence, the Trudinger–Moser type inequality (1.5) and (2.7) implyZ Ru

0

'p

�
� juj

p
p�1

�
d�� �

Z Ru

0

e� juj
p
p�1 d�� � e�

Z Ru

0

e�˛;� jvj
p
p�1 d��

� c˛;� e
�
jBRu j� �

c˛;� e
�˛;�

1 � .�=�˛;� /p�1
�

Remark 2.3. At this point, we note that we have proved that

TMSC.�; ˛; �/ �
C.˛; �/

1 � .�=�˛;� /p�1

for any � < �˛;� not necessarily close to �˛;� .

This proves (2.4). Next, we will prove the opposite inequality

TMSC.�; ˛; �/ �
c.˛; �/

1 � .�=�˛;� /p�1
�

To see this, let us consider the sequence

(2.8) un.r/ D
1

!
1=p
˛

8̂̂̂̂
<̂
ˆ̂̂:
� n

� C 1

�.p�1/=p
; if 0 � r � e�n=.�C1/;�� C 1

n

�1=p
ln
1

r
; if e�n=.�C1/ < r < 1;

0; if r � 1:

Since that ˛ D p � 1, it follows that

ku0nk
p

L
p
˛
D 1 and kunk

p

L
p
�

D
c

n

h
npe�n C

Z n

0

sp e�s ds
i

for some c D c.˛; �/ > 0. Thus, since
R1
0
spe�sds D �.p C 1/ > 0, there are c1 D

c1.˛; �/ > 0 and n1 2 N such that

kunk
p

L
p
�

�
c1

n
; 8n � n1:

On the other hand,Z 1
0

'p
�
�junj

p
p�1
�

d�� �
Z e�n=.�C1/

0

'p

� �

�˛;�
n
�

d�� D
!�

� C 1
'p

� �

�˛;�
n
�
e�n

D
!�

� C 1

h
e.�=�˛;��1/n �

� k0�1X
jD0

� �

�˛;�

�j nj
j Š

�
e�n

i
�

!�

� C 1

h
e.�=�˛;��1/n �

� k0�1X
jD0

nj

j Š

�
e�n

i
:
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Thus, for all n � n1,

TMSC.�; ˛; �/ �
1

kunk
p

L
p
�

Z 1
0

'p
�
�junj

p
p�1
�

d��

� c2

h
ne.�=�˛;��1/n �

� k0�1X
jD0

nj

j Š

�
ne�n

i
D

c2

1 � .�=�˛;� /p�1

�
1 �

� �

�˛;�

�p�1�h
ne�.1��=�˛;� /n �

� k0�1X
jD0

nj

j Š

�
ne�n

i
;(2.9)

for some c2 D c2.˛; �/ > 0. Now, we can choose n2 � n1 such that�
1 �

� �

�˛;�

�p�1� � k0�1X
jD0

nj

j Š

�
ne�n �

1

e5
; 8n � n2 and 0 � � < �˛;� :

Hence, for all n � n2,

TMSC.�; ˛; �/ �
c2

1 � .�=�˛;� /p�1

h�
1 �

�

�˛;�

�
ne�.1��=�˛;� /n � e�5

i
:

Now, if ˛ is close enough to �˛;� such that .1� �=�˛;� /�1 � n2, by picking n 2 N such
that �

1 �
�

�˛;�

��1
� n � 4

�
1 �

�

�˛;�

��1
;

we obtain
TMSC.�; ˛; �/ �

c2

1 � .�=�˛;� /p�1

�
e�4 � e�5

�
:

Finally, from (2.9), for � D �˛;� we have

TMSC.�˛;� ; ˛; �/ � c2
h
n �

� k0�1X
jD0

nj

j Š

�
ne�n

i
!1; as n!1:

3. Equivalence of critical and subcritical Trudinger–Moser
inequalities

The aim of this section is to prove the critical and subcritical equivalence given in The-
orem 1.2. We observe that we are not assuming that TMC.�˛;� ; ˛; �/ is finite in our
argument.

Lemma 3.1. For any 0 < � � �˛;� and 0 < � < � ,

TMSC.�; ˛; �/ �
� .�=�/p�1

1 � .�=�/p�1

�
TMC.�; ˛; �/:

In particular, if TMC.�˛;� ; ˛; �/ is finite, then TMSC.�; ˛; �/ is finite.



J. F. de Oliveira and J. M. do Ó 1082

Proof. Let u 2 X1;p1 , with ku0kLp˛ D 1 and kukLp
�
D 1. Set

ut .r/ D
��
�

�.p�1/=p
u.t r/; with t D

� .�=�/p�1

1 � .�=�/p�1

�1=.�C1/
:

By (2.2) we get

ku0tk
p

L
p
˛
D

��
�

�p�1
ku0k

p

L
p
˛
D

��
�

�p�1
;

kutk
p

L
p
�

D

��
�

�p�1 kukpLp
�

t�C1
D 1 �

��
�

�p�1
:

Hence ku0tk
p

L
p
˛
C kutk

p

L
p
�

D 1 and we haveZ 1
0

'p
�
� juj

p
p�1
�

d�� D t�C1
Z 1
0

'p
�
� jut j

p
p�1
�

d�� �
� .�=�/p�1

1 � .�=�/p�1

�
TMC.�; ˛; �/:

Since u 2 X1;p1 , with ku0kLp˛ D 1 and kukLp
�
D 1, is arbitrary, in view of Lemma 2.2, we

conclude the proof.

3.1. Proof of Theorem 1.2

Let u 2 X1;p1 such that 0 < ku0kp
L
p
˛
C kuk

p

L
p
�

� 1. Assume that

ku0kLp˛ D # 2 .0; 1/ and kuk
p

L
p
�

� 1 � #p:

If 1=2 < # < 1, we set

ut .r/ D
u.t r/

#
; with t D

�1 � #p
#p

�1=.�C1/
> 0:

From (2.2), we can write

ku0tkLp˛ D
ku0kLp˛
#

D 1;

kutk
p

L
p
�

D
1

#p
1

t�C1
kuk

p

L
p
�

�
1 � #p

#p t�C1
D 1:

Hence, for any � � �˛;� , Theorem 1.1 (cf. Remark 2.3) yieldsZ 1
0

'p
�
� juj

p
p�1
�

d�� � t�C1
Z 1
0

'p
�
#

p
p�1 �˛;� jut j

p
p�1
�

d��

� t�C1 TMSC
�
#

p
p�1�˛;� ; ˛; �

�
�

�1 � #p
#p

� C.˛; �/

1 �
�
#p=.p�1/�˛;�

�˛;�

�p�1
D

�1 � #p
#p

� C.˛; �/
1 � #p

D
C.˛; �/

#p
� 2pC.˛; �/:
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If 0 < # � 1=2, setting
v.r/ D 2u.r=#/

we have
kv0kLp˛ D 2ku

0
kL

p
˛
� 1;

kvk
p

L
p
�

D 2p #�C1 kuk
p

L
p
�

� 2p #�C1 .1 � #p/ � 2p #�C1:

Consequently, Theorem 1.1 providesZ 1
0

'p
�
� juj

p
p�1
�

d�� �
1

#�C1

Z 1
0

'p
�
2
�

p
p�1�˛;� jvj

p
p�1
�

d��

� 2p TMSC
�
2�p=.p�1/ �˛;� ; ˛; �

�
� C.˛; �/

� 2p

1 � 2�p

�
:

Since u2X1;p1 , with kuk� 1, is arbitrary, we obtain TMC.�;˛;�/ <1, for any � ��˛;� .
Next we will show that the constant�˛;� is sharp. To see this, we use the sequence .un/

in (2.8) again. Indeed, we have

ku0nk
p

L
p
˛
D 1 and kunk

p

L
p
�

D O
�1
n

�
; as n!1:

Now, for �n 2 .0; 1/ such that

�pn .1C kunk
p

L
p
�

/ D 1; with �n D 1 �O
� 1

n1=p

�
! 1; as n!1;

we set
vn.r/ D �nun.r/:

Then

kv0nk
p

L
p
˛
C kvnk

p

L
p
�

D �pn ku
0
nk
p

L
p
˛
C �pn kunk

p

L
p
�

D �pn C �
p
n kunk

p

L
p
�

D 1:

In addition, for any � > �˛;� ,Z 1
0

'p
�
� jvnj

p
p�1
�

d�� �
Z e�n=.�C1/

0

�
e

n�
�˛;�

�
p=.p�1/
n

�

k0�1X
kD0

1

kŠ

� n�
�˛;�

�k
�

kp
p�1
n

�
d��

D
!�

� C 1

h
e.n�=�˛;� / �

p=.p�1/
n �n

�O
� .n�n/k0�1

en

�i
!C1; as n!1:

Now we are going to show that

(3.1) TMC.�; ˛; �/ D sup
�2.0;�/

�1 � .�=�/p�1
.�=�/p�1

�
TMSC.�; ˛; �/:

By Lemma 3.1, we obtain

(3.2) sup
�2.0;�/

�1 � .�=�/p�1
.�=�/p�1

�
TMSC.�; ˛; �/ � TMC.�; ˛; �/:
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To obtain the reverse inequality, let .un/ be a maximizing sequence of TMC.�; ˛; �/,
that is, un 2 X

1;p
1 , 0 < ku0nk

p

L
p
˛
C kunk

p

L
p
�

� 1, such that

TMC.�; ˛; �/ D lim
n

Z 1
0

'p
�
� junj

p
p�1
�

d�� :

We set

u�n.r/ D
u.�nr/

ku0nkLp˛
; with �n D

�1 � ku0nkpLp˛
ku0nk

p

L
p
˛

�1=.�C1/
> 0:

Then

ku0�nkL
p
˛
D 1 and ku�nk

p

L
p
�

D
1

ku0nk
p

L
p
˛

1

��C1n

kunk
p

L
p
�

D

kunk
p

L
p
�

1 � ku0nk
p

L
p
˛

� 1:

Consequently,Z 1
0

'p
�
� junj

p
p�1
�

d�� D ��C1n

Z 1
0

'p
�
�ku0nk

p
p�1

L
p
˛
ju�n j

p
p�1
�

d��

� ��C1n TMSC
�
�ku0nk

p
p�1

L
p
˛
; ˛; �

�
D

�1 � ku0nkpLp˛
ku0nk

p

L
p
˛

�
TMSC

�
�ku0nk

p
p�1

L
p
˛
; ˛; �

�
� sup
�2.0;�/

�1 � .�=�/p�1
.�=�/p�1

�
TMSC.�; ˛; �/:

Hence, we obtain

(3.3) TMC.�; ˛; �/ � sup
�2.0;�/

�1 � .�=�/p�1
.�=�/p�1

�
TMSC.�; ˛; �/:

Now, (3.1) follows from (3.2) and (3.3).

4. Existence of extremal functions

In this section we will prove the existence of extremal functions for both subcritical
and critical Trudinger–Moser inequalities Theorem 1.3 and Theorem 1.4. First of all, we
present the following radial type lemma.

Lemma 4.1. For each u 2 X1;p1 .˛; �/, p � 2, we have the inequality

ju.r/jp �
C

r
˛C�.p�1/

p

kukp; 8r > 0;

where C > 0 depends only on ˛, p and � . In addition,

lim
r!1

r
˛C�.p�1/

p ju.r/jp D 0:
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Proof. Let u 2 X1;p1 .˛; �/ be arbitrary. For any r > 0, we have

ju.r/jp D �

Z 1
r

d

ds
.ju.s/jp/ ds � p

Z 1
r

ju.s/jp�1ju0.s/j ds:

Hence

r
˛C�.p�1/

p ju.r/jp � p

Z 1
r

ju.s/jp�1 s�.p�1/=p ju0.s/j s˛=p ds

and the Young inequality yields

r
˛C�.p�1/

p ju.r/jp � C
h Z 1

r

ju.s/jp d�� C
Z 1
r

ju0.s/jp d�˛
i
;

for some C > 0 depending only on ˛, p and � . This proves the result.

4.1. Maximizers for the subcritical Trudinger–Moser inequality

Let .un/�X
1;p
1 be a maximizing sequence to the subcritical Trudinger–Moser supremum

TMSC.�; ˛; �/. From Lemma 2.2, we may suppose that

TMSC.�; ˛; �/ D lim
n

Z 1
0

'p
�
� junj

p
p�1
�

d�� ;

ku0nkLp˛ D kunkL
p
�
D 1;

un * u weakly in X1;p1 :

From the compact embedding (1.7), we also may assume that

(4.1) un ! u in Lq
�
; q > p; and un.r/! u.r/ a.e in .0;1/:

Of course, we also have

ku0kLp˛ � 1 and kukLp
�
� 1:

At this point we observe that there exist C D C.p;�/ > 0 such that

(4.2) 'p
�
�t

p
p�1
�
�
�k0

k0Š
t
k0p
p�1 � C 'p

�
�t

p
p�1
�
t

p
p�1 ; t � 0:

Let " > 0 be arbitrary. From Lemma 4.1, there exists R > 0 such that jun.r/j � ", for all
r � R. Hence, from (4.2) and Theorem B we obtainZ 1

R

h
'p
�
� junj

p
p�1
�
�
�k0

k0Š
junj

k0p
p�1

i
d�� � C.p;�/

Z 1
R

'p
�
�junj

p
p�1
�
junj

p
p�1 d��

� C.p;�/ "
p
p�1

Z 1
R

'p
�
�junj

p
p�1
�

d��

� C.p;�; �/ "
p
p�1 :
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Also, we have (cf. (4.1))

'p
�
�junj

p
p�1
�
�
�k0

k0Š
junj

k0p
p�1 ! 'p

�
� juj

p
p�1
�
�
�k0

k0Š
juj

k0p
p�1 a.e in .0; R/, as n!1.

In addition, by setting vn.r/D un.r/� un.R/ for all r 2 .0;R/, we have vn 2X
1;p
R .˛; �/

with kv0nkLp˛ � 1. Moreover, from Lemma 2.1, for any q > 1,

junj
p=.p�1/

� q1=p jvnj
p=.p�1/

C
�
1 � q�.p�1/=p

��1=.p�1/
"p=.p�1/:

By choosing q > 1 close to 1 such that q.pC1/=p� < �˛;� , Theorem A yields

(4.3)

Z R

0

h
'p
�
�junj

p
p�1
�
�
�k0

k0Š
junj

k0p
p�1

iq
d�� �

Z R

0

h
'p
�
�junj

p
p�1
�iq

d��

�

Z R

0

eq�junj
p
p�1 d�� � C.p; q; ˛; �/

Z R

0

e�˛;� jvnj
p
p�1 d��

� C.p; q; �; �; R/:

Thus, we may use Vitali’s convergence theorem to obtain

lim
n!1

Z R

0

h
'p
�
�junj

p
p�1
�
�
�k0

k0Š
junj

k0p
p�1

i
d�� D

Z R

0

h
'p
�
� juj

p
p�1
�
�
�k0

k0Š
juj

k0p
p�1

i
d�� :

Now, using the Brezis–Lieb lemma together with (4.1), we have

lim
n!1

Z 1
0

junj
k0p
p�1 d�� D

8<:
Z 1
0

juj
k0p
p�1 d�� ; if k0 > p � 1;

1; if k0 D p � 1:

Hence, if k0 > p � 1,

TMSC.�; ˛; �/ D lim
n

Z 1
0

'p
�
� junj

p
p�1
�

d��

D lim
n

h Z 1
0

�
'p
�
� junj

p
p�1
�
�
�k0

k0Š
junj

k0p
p�1

�
d�� C

�k0

k0Š

Z 1
0

junj
k0p
p�1 d��

i
�

Z R

0

�
'p
�
� juj

p
p�1
�
�
�k0

k0Š
juj

k0p
p�1

�
d�� C C.p;�; �/ "

p
p�1 C

�k0

k0Š

Z 1
0

juj
k0p
p�1 d��

�

Z 1
0

'p
�
� juj

p
p�1
�

d�� C C.p;�; �/ "
p
p�1 :

Letting "! 0, we have

TMSC.�; ˛; �/ �
Z 1
0

'p
�
� juj

p
p�1
�

d�� :

It follows that 0 < kukLp
�
� 1 and thus

TMSC.�; ˛; �/ �
1

kuk
p

L
p
�

Z 1
0

'p
�
� juj

p
p�1
�

d��
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which completes the proof in the case k0 > p � 1. If k0 D p � 1, we can write

TMSC.�; ˛; �/ D lim
n

Z 1
0

�
'p
�
�junj

p
p�1
�
�
�k0

k0Š
junj

p
�

d�� C
�k0

k0Š

�

Z R

0

�
'p
�
� juj

p
p�1
�
�
�k0

k0Š
jujp

�
d�� C C.p;�; �/ "

p
p�1 C

�k0

k0Š

�

Z 1
0

�
'p
�
� juj

p
p�1
�
�
�k0

k0Š
jujp

�
d�� C C.p;�; �/ "

p
p�1 C

�k0

k0Š
�

Letting "! 0, it follows that

(4.4) TMSC.�; ˛; �/ �
Z 1
0

�
'p
�
� juj

p
p�1
�
�
�k0

k0Š
jujp

�
d�� C

�k0

k0Š
�

Moreover, for any w 2 X1;p1 .˛; �/ with kw0kLp˛ D kwkLp� D 1 we haveZ 1
0

'p
�
�jwj

p
p�1
�

d�� �
�k0

k0Š

Z 1
0

jwjp d�� C
�k0C1

.k0 C 1/Š

Z 1
0

jwj
p.k0C1/
p�1 d�� :

This implies that TMSC.�;˛; �/ > �k0=k0Š. Thus, from (4.4), we get 0 < kukLp
�
� 1 and

TMSC.�; ˛; �/ �
1

kuk
p

L
p
�

Z 1
0

�
'p
�
� juj

p
p�1
�
�
�k0

k0Š
jujp

�
d�� C

�k0

k0Š

D
1

kuk
p

L
p
�

Z 1
0

'p
�
� juj

p
p�1
�

d�� ;

and the result is proved.

4.2. Maximizers for the critical Trudinger–Moser inequality

Next we combine Theorems 1.2 and 1.3 to demonstrate Theorem 1.4. Firstly, for 0 < s <
�˛;� , we set

f .s/ D TMSC.s; ˛; �/ and g.s/ D TMC.s; ˛; �/:

Hence, Theorem 1.2 yields

(4.5) g.�/ D sup
s2.0;�/

�1 � .s=�/p�1
.s=�/p�1

�
f .s/:

Lemma 4.2. f is a continuous function on .0; �˛;� /.

Proof. By using Theorem 1.3, we can pick "n # 0 and un 2 X
1;p
1 , with ku0nkLp˛ � 1 and

kunkLp
�
D 1, such that

f .s C "n/ D

Z 1
0

'p
�
.s C "n/ junj

p
p�1
�

d�� :



J. F. de Oliveira and J. M. do Ó 1088

Then

(4.6) 0 � f .s C "n/ � f .s/ �

Z 1
0

�
'p
�
.s C "n/junj

p
p�1
�
� 'p

�
sjunj

p
p�1
��

d�� :

Without loss of generality, we also may assume that (cf. (1.7))

un * u weakly in X1;p1 ;

un ! u in Lq
�
; q > p; and un.r/! u.r/ a.e in .0;1/.

In particular,

'p
�
.s C "n/jun.r/j

p
p�1
�
� 'p

�
sjun.r/j

p
p�1
�
! 0 a.e in .0;1/.

In the same way as in (4.3), we can use Lemma 4.1 and Theorem A to obtain a positive
constant C.p; q; s; �; R/ such thatZ R

0

�
'p
�
.s C "n/junj

p
p�1
�
� 'p

�
sjunj

p
p�1
��q d�� � C.p; q; s; �; R/;

for some q > 1 and for all R > 0. It follows thatZ R

0

�
'p
�
.s C "n/junj

p
p�1
�
� 'p

�
sjunj

p
p�1
��

d�� ! 0:

On the other hand, for R large enough, Lemma 4.1 yields

jun.r/j � 1; for every n 2 N; r � R:

ThenZ 1
R

�
'p
�
.s C "n/ junj

p
p�1
�
� 'p

�
s junj

p
p�1
��

d��

D

Z 1
R

X
j2N W j�p�1

h .s C "n/j
j Š

�
sj

j Š

i
junj

jp
p�1 d��

�

X
j2N W j�p�1

h .s C "n/j
j Š

�
sj

j Š

i Z 1
R

junj
p d�� � Œ'p.s C "n/ � 'p.s/�! 0:

From (4.6), we obtain

0 � f .s C "n/ � f .s/! 0; as n!1:

Similarly, we also have that

0 � f .s/ � f .s � "n/! 0; as n!1:

Now, in order to ensure the existence of an extremal function for TMC.�; ˛; �/ when
0 < � < �˛;� , it is sufficient to show that

(4.7) lim sup
s!0C

�1 � .s=�/p�1
.s=�/p�1

�
f .s/ < g.�/
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and

(4.8) lim sup
s!��

�1 � .s=�/p�1
.s=�/p�1

�
f .s/ < g.�/:

Indeed, (4.7), (4.8) together with (4.5) and Lemma 4.2 ensure the existence of s� 2 .0; �/
such that

(4.9) g.�/ D
�1 � .s=�/p�1
.s�=�/p�1

�
f .s� /:

Let u� be an extremal function for TMSC.s� ; ˛; �/ ensured by Theorem 1.3. Set

v� .r/ D
�s�
�

� p�1
p
u� .� r/;

where

� D

� .s�=�/p�1ku�kpLp
�

1 � .s�=�/p�1

� 1
�C1

:

From (2.2), it follows that

kv�k
p
D kv0�k

p

L
p
˛
C kv�k

p

L
p
�

D

�s�
�

�p�1�
ku0�k

p

L
p
˛
C ��.�C1/ku�k

p

L
p
�

�
� 1:

We also have (cf. (4.9))

TMC.�; ˛; �/ D
1 � .s=�/p�1

.s�=�/p�1
��C1

ku�k
p

L
p
�

Z 1
0

'p
�
� jv� j

p
p�1
�

d��

D

Z 1
0

'p
�
� jv� j

p
p�1
�

d�� :

Hence, v� is an extremal function of TMC.�; ˛; �/. Now, since

lim sup
s!��

�1 � .s=�/p�1
.s=�/p�1

�
f .s/ D 0 < g.�/;

it is clear that (4.8) holds.
Next, we will prove that (4.7) holds. Firstly, we provide the following useful estimate.

Lemma 4.3. For all q � p and 0 < � < �˛;� , we have

sup
ku0k

L
p
˛
�1; kuk

p

L
p
�

D1

Z 1
0

e� juj
p
p�1
jujq d�� � c

for some c D c.�; ˛; �; q/ > 0.
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Proof. We proceed as in Theorem 1.1. Indeed, let u 2 X1;p1 n ¹0º, with ku0kLp˛ � 1 and
kuk

p

L
p
�

D 1. From the Pólya–Szegö inequality obtained in [1], we can assume that u is a

non-increasing function. We writeZ 1
0

e� juj
p
p�1
jujq d�� D

Z
¹u<1º

e� juj
p
p�1
jujq d�� C

Z
¹u�1º

e� juj
p
p�1
jujq d�� :

Of course we haveZ
¹u<1º

e� juj
p
p�1
jujq d�� � e�

Z
¹u<1º

jujq d�� � e�
Z
¹u<1º

jujp d�� � e�:

Set
Iu D ¹r > 0 W u.r/ � 1º:

Without loss of generality, we can assume Iu 6D ;. Thus, there is Ru > 0 such that Iu D
.0; Ru/. Now, if

v.r/ D u.r/ � 1; r 2 .0; Ru/;

we have v 2 X1;pRu .˛; �/ and kv0kLp˛ � 1. Also, from Lemma 2.1 we have

jujp=.p�1/ � .1C "/1=p jvjp=.p�1/ C c1."; ˛; �/;

for some c1 D c1."; ˛; �/ > 0. Hence, by choosing " > 0 small enough and � > 1 such
that �.1C "/1=p �

��1
� �˛;� , the Hölder inequality and Theorem A imply

(4.10)

Z Ru

0

e� juj
p
p�1
jujq d�� �

� Z Ru

0

juj�q d��
�1=� � Z Ru

0

e
��
��1 juj

p
p�1

d��
�.��1/=�

� C."; ˛; �; �; �/ kuk
q

L
�q
�

� Z Ru

0

e�˛;� jvj
p
p�1 d��

�.��1/=�
� C."; ˛; �; �; �/ kuk

q

L
�q
�

�
jBRu j�

�.��1/=�
:

Finally, since

jBRu j� D

Z Ru

0

d�� �
Z Ru

0

jujp d�� � kukLp
�
D 1

and (cf. (1.7))
kuk

q

L
�q
�

� Ckukq � C.˛; �; q; �/;

the inequality (4.10) gives the result.

Since we are supposing TMC.�; ˛; �/ > �k0=k0Š; when k0 D p � 1, to complete the
proof of (4.7), and then the proof of Theorem 1.4, it is now enough to prove the following.

Lemma 4.4. For each 0 < � < �˛;� , we have

lim sup
s!0C

h1 � .s=�/p�1
.s=�/p�1

i
f .s/

8̂<̂
:
D 0; if k0 > p � 1;

�
�k0

k0Š
; if k0 D p � 1:
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Proof. Let .sn/ be an arbitrary sequence such that sn # 0. From Theorem 1.3, we can find
a sequence .un/ � X

1;p
1 , with ku0nkLp˛ � 1 and kunkLp

�
D 1, such that

f .sn/ D
s
k0
n

k0Š

Z 1
0

junj
k0p
p�1 d�� C sk0C1n

X
j�k0C1

Z 1
0

s
j�.k0C1/
n

j Š
junj

jp
p�1 d��

D
s
k0
n

k0Š

Z 1
0

junj
k0p
p�1 d�� C sk0C1n

1X
`D0

Z 1
0

s`n
.`C k0 C 1/Š

junj
`p
p�1C

.k0C1/p
p�1 d�� :

Since .`C k0 C 1/Š � `Š and in view of Lemma 4.3, we can write

f .sn/ �
s
k0
n

k0Š

Z 1
0

junj
k0p
p�1 d�� C sk0C1n

Z 1
0

e� junj
p
p�1
junj

.k0C1/p
p�1 d��

�
s
k0
n

k0Š

Z 1
0

junj
k0p
p�1 d�� C sk0C1n c.�; ˛; �/:

It follows that

(4.11)

�1 � .sn=�/p�1
.sn=�/p�1

�
f .sn/

�

�1 � .sn=�/p�1
.1=�/p�1

�sk0�.p�1/n

k0Š

h Z 1
0

junj
k0p
p�1 d�� C c.�; ˛; �/k0Šsn

i
:

Case 1: k0 > p � 1.

From (1.7) and (4.11), we obtain�1 � .sn=�/p�1
.sn=�/p�1

�
f .sn/! 0; as n!1:

Case 2: k0 D p � 1.

We have�1 � .sn=�/p�1
.sn=�/p�1

�
f .sn/�

�1 � .sn=�/p�1
.1=�/p�1

� 1

k0Š

�
1C c.�;˛;�/sn

�
!
�k0

k0Š
; as n!1:

The proof is completed.

5. Proof of Theorem 1.5

In this section, we will analyze the attainability of TMC.�; ˛; �/ when the condition k0 D
p � 1 holds.

Lemma 5.1. For any � 2 .0; �˛;� /, we have

(5.1) TMC.�; ˛; �/ �
�k0

k0Š
�

In addition, if p > 2, the above inequality becomes strict.
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Proof. We follow the argument of Ishiwata [21]. Let u 2X1;p1 .˛; �/ be such that kuk D 1,
and set

ut .r/ D t
1=p u.t1=.�C1/ r/:

We can easily show that

ku0tk
p

L
p
˛
D tku0k

p

L
p
˛

and kutk
q

L
q
�

D t .q�p/=pkuk
q

L
q
�

; 8 q � p:

In particular, for each t > 0 small enough, if �t D .t C .1 � t /kuk
p

L
p
�

/�1=p we have

k�tutk
p
D t �

p
t ku

0
k
p

L
p
˛
C �

p
t kuk

p

L
p
�

D 1:

Noticing that �pt ! 1=kuk
p

L
p
�

as t ! 0C, then for vt D �tut we have

(5.2)

TMC.�; ˛; �/ �
Z 1
0

'p
�
� jvt j

p
p�1

�
d��

�
�k0

k0Š

Z 1
0

jvt j
p d�� C

�k0C1

.k0 C 1/Š

Z 1
0

jvt j
p.k0C1/
p�1 d��

D
�p�1

.p � 1/Š

h
�
p
t kuk

p

L
p
�

C
�

p
�

p
p�1Cp

t kuk
p2

p�1

L
p2=.p�1/
�

t
1
p�1

i
!

�p�1

.p � 1/Š
; as t ! 0:

This proves (5.1). Moreover, if p > 2, we observe that the function

hp;�;� .t/ D �
p
t kuk

p

L
p
�

C
�

p
�
p=.p�1/Cp
t kuk

p2=.p�1/

L
p2=.p�1/
�

t1=.p�1/

satisfies hp;�;� .0/D 1 and h0
p;�;�

.t/ > 0 for t > 0 small enough. Hence, the result follows
from (5.2).

Lemma 5.2.

.i/ The function � 7! .p�1/Š

�p�1
TMC.�; ˛; �/ is non-decreasing for 0 < � � �˛;� .

.ii/ Let 0 < �1 < �2 � �˛;� . Suppose that TMC.�1; ˛; �/ is attained. Then

.p � 1/Š

�
p�1
2

TMC.�2; ˛; �/ >
.p � 1/Š

�
p�1
1

TMC.�1; ˛; �/;

and TMC.�2; ˛; �/ is also attained.

Proof. (i) Since

.p � 1/Š

�p�1
'p
�
� jt j

p
p�1
�
D .p � 1/Š

1X
jDp�1

�j�.p�1/

j Š
t
jp
p�1 ;
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it is clear that for all t 6D 0,

(5.3)
.p � 1/Š

�
p�1
1

'p
�
�1jt j

p
p�1
�
<
.p � 1/Š

�
p�1
2

'p
�
�2jt j

p
p�1
�
; 0 < �1 < �2 � �˛;� :

Thus, .i/ is proved.
.ii/ Since TMC.�1; ˛; �/ is attained, we can pick u 2 X1;p1 such that kuk D 1 and

TMC.�1; ˛; �/ D
Z 1
0

'p
�
�1juj

p
p�1
�

d�� :

Thus, Lemma 5.1 and (5.3) yield

.p � 1/Š

�
p�1
2

TMC.�2; ˛; �/ �
.p � 1/Š

�
p�1
2

Z 1
0

'p
�
�2 juj

p
p�1

�
d��

>
.p � 1/Š

�
p�1
1

Z 1
0

'p
�
�1 juj

p
p�1

�
d�� D

.p � 1/Š

�
p�1
1

TMC.�1; ˛; �/ � 1:

Then we have that .p�1/Š
�
p�1
2

TMC.�2; ˛; �/ > 1, and thus part (ii) of Theorem 1.4 asserts that

TMC.�2; ˛; �/ is attained.

Proof of Theorem 1.5. (i) It follows directly from Lemma 5.2 and the definition of ��.
(ii) From Lemma 5.2, the function � 7! .p�1/Š

�p�1
TMC.�; ˛; �/ is strictly increasing on

.��; �˛;� /. Next, we will show that

(5.4) TMC.��; ˛; �/ D
�
p�1
�

.p � 1/Š
�

For our convention TMC.0; ˛; �/ D 0, we may assume �� 2 .0; �˛;� /. From Lemma 5.1,
if (5.4) is not true we must have

TMC.��; ˛; �/ >
�
p�1
�

.p � 1/Š
�

Thus, since �� < �˛ , Theorem 1.4(ii) implies that TMC.��; ˛; �/ is achieved for some
u� 2 X

1;p
1 . Also, we have

lim
�!��

Z 1
0

'p
�
� ju�j

p
p�1
�

d�� D
Z 1
0

'p
�
��ju�j

p
p�1
�

d�� D TMC.��; ˛; �/ >
�
p�1
�

.p � 1/Š
�

Hence, if � 2 .0; ��/ is sufficiently close to ��, we must have

TMC.�; ˛; �/ �
Z 1
0

'p
�
� ju�j

p
p�1
�

d�� >
�
p�1
�

.p � 1/Š
>

�p�1

.p � 1/Š
�

Thus, for such a � 2 .0;��/, Theorem 1.4(ii) implies that TMC.�;˛;�/ is achieved, which
contradicts the definition of ��. This proves (5.4). Now, from (5.4) and Lemma 5.2(ii), for
each � 2 .��; �˛;� /, the supremum TMC.�; ˛; �/ is attained and we also have

(5.5)
.p � 1/Š

�p�1
TMC.�; ˛; �/ >

.p � 1/Š

�
p�1
�

TMC.��; ˛; �/ D 1:



J. F. de Oliveira and J. M. do Ó 1094

In addition, Lemma 5.1, Theorem 1.4(ii) and the definition of �� yield

(5.6) TMC.�; ˛; �/ D
�p�1

.p � 1/Š
; for each � 2 Œ0; ���:

Now, it is clear that (5.5) and (5.6) give (1.10). Finally, let us denote

�� D inf
®
� 2 .0; �˛;� / W TMC.�; ˛; �/ > �p�1=.p � 1/Š

¯
:

Then, Theorem 1.4(ii) yields �� � ��. If �� < ��, we can pick �0 2 .��; ��/ for which
we must have

.p � 1/Š

�
p�1
0

TMC.�0; ˛; �/ >
.p � 1/Š

�
p�1
�

TMC.��; ˛; �/ D 1;

that is,

TMC.�0; ˛; �/ >
�
p�1
0

.p � 1/Š
;

which contradicts the definition of ��. Hence (1.11) holds. Finally, .iii/ follows directly
from Lemma 5.1.
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