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Extensions of a residually finite group
by a weakly sofic group are weakly sofic

Lev Glebsky

Abstract. In this paper, we show that residually-finite-by-weakly-sofic extensions
are weakly sofic. More precisely, we show that if in an exact sequence of groups
1 ! N ,! K � G ! 1 the group G is residually finite and N is weakly sofic,
then K is weakly sofic.

1. Introduction

In [8, 15], sofic groups have been defined in relation with the Gottschalk surjunctivity
conjecture. It is an open question whether all groups are sofic. There is a hope that a non-
sofic group may be constructed as an extension of a residually finite group by a finite
one, [1, 10]. Notice, however, that an extension of an amenable group by a sofic group is
sofic, [5]. (We say that a group K is an extension of G by N if there is an exact sequence
1! N ,! K� G ! 1.)

The main result of [2] is an example of a non-approximable by .U.n/; k � k2/ group.
This example is a residually-finite-by-finite extension, it is not clear whether this example
is a non-sofic group. Here, in contrast, we prove that every residually-finite-by-weakly-
sofic extension is weakly sofic. In particular, residually-finite-by-residually-finite exten-
sions are weakly sofic. It is an easy fact that all sofic groups are weakly sofic. The other
inclusion is an open question.

The main result of the article is the following theorem.

Theorem 1.1. Let H be a normal subgroup of a group K. If H is weakly sofic and
G D K=H is residually finite, then K is weakly sofic.

Let us describe our approach to proving Theorem 1.1. Without loss of generality we
may consider finitely generated K and G. By the Krasner–Kaloujnine embedding the-
orem, see [3, 11], any extension of G by H is embeddable in the (unrestricted) wreath
product H o G. (Throughout this article, “wreath product” means “unrestricted wreath
product”, as well as “direct product” means “unrestricted direct product”.) So, it suffices
to show that H o G is weakly sofic. Recall that the wreath product H o G is a semidirect
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productHG ÌG with an action .g:f /.x/D f .xg/, for g 2G and f 2HG . In particular,
.f; g/.f 0; g0/D .f .g:f 0/; gg0/. To show the weak soficity ofH oG we use the following
characterization of weakly sofic groups.

Lemma 1.2. Let K be a group. The following are equivalent:
1) K is weakly sofic;
2) every system of equations solvable in all finite groups is solvable over K;
3) K is a subgroup of a quotient of a direct product of finite groups. (The direct product

may by uncountable.)

This lemma is shown in [6] for a finitely generated group K. We prove it in full gen-
erality in Section 3. Let Sys.Fin/ be the set of systems of equations solvable in all finite
groups, see Definition 3.1 for details. Let OG be the profinite completion of G. Now we are
ready to formulate the main technical result that implies Theorem 1.1.

Theorem 1.3. Let QH be a direct product of finite groups and G a finitely generated resid-
ually finite group. Let Nw 2 Sys.Fyn/. Then Nw is solvable over QH oG in QH o OG. . QH o OG is
an abstract wreath product, that is, we consider discontinuous functions f 2 QH OG as well.)

Notice, that if X is a subgroup of Y , then, naturally, H o X is a subgroup of H o Y .
(We include HX ,! HY as f ! Qf , where Qf jX D f and Qf .y/ D 1 for y 62 X .) We
will use such an inclusion in different places of the text as “obvious” without defining it
explicitly. In particular, QH o G ,! QH o OG, and Definition 3.1 makes sense in the context
of Theorem 1.3.

We finish the introduction by describing the structure of the paper. In order to make
the article more self-contained, we give definitions of sofic and weakly sofic groups in
the next section. Section 3 recalls some definitions and results about group equations and
establishes notations and terminology we are using. In the same section we show how
Theorem 1.3 implies Theorem 1.1. In Section 4 we recall some definitions and notations
of profinite completions of residually finite groups. In Section 5 we define an Na-universal
solution and prove its existence. In Section 6 we finish the proof of Theorem 1.3.

2. Sofic and weakly sofic groups

The idea behind the concepts of sofic and weakly sofic groups is an approximation of
a group by symmetric groups and by finite groups, respectively. For various equivalent
definitions of sofic groups, see [7,12,14]. We will follow [7,14]. LetG be a group and let S
be a group with a bi-invariant metric d . Bi-invariant means that d.x; y/ D d.sx; sy/ D
d.xs; ys/ for every x; y; s 2 S . For X; Y � G, let XY D ¹xy j x 2 X; y 2 Y º.

Definition 2.1. Let ˆ � G, 1 2 ˆ. Let ˛ and " be non-negative real numbers. A map
�W .ˆˆ/! S is called .ˆ; ˛; "/-homomorphism to a group S with a metric d if
• 8x; y 2 ˆ; d.�.x/�.y/; �.xy// � ",
• �.1/ D 1,
• d.�.x/; 1/ � ˛ for x 2 ˆ, x ¤ 1.
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Remark. There is more general definition of .ˆ; ˛; "/-homomorphism where ˛ is not a
real number but a function ˛ WG ! R such that ˛.1/ D 0 and ˛.g/ > 0 for g ¤ 1. Now,
the third condition of Definition 2.1 is changed by d.�.x/; 1/ � ˛.x/, see [14]. We do not
need this more general definition to describe sofic and weakly sofic groups.

Let Sym.X/ be a symmetric group on a finite set X . The Hamming distance d on
Sym.X/ is defined as d.g; h/ D 1

jX j
j¹x 2 X j g.x/ ¤ h.x/ºj.

Definition 2.2. A group G is sofic if for any finite ˆ � G, 1 2 ˆ, and for any " > 0,
there exists a .ˆ; 1=2; "/-homomorphism to a finite symmetric group with the Hamming
distance.

Remark. There are several equivalent definitions. We can make an apparently more re-
strictive condition by changing .ˆ; 1=2; "/-homomorphisms with .ˆ; 1� "; "/-homomor-
phisms. We can consider as well less restrictive conditions applying the definition of
.ˆ; ˛; "/-homomorphism with a function ˛ WG ! R as described in the above Defini-
tion 2.1, see [14]. All these definitions are equivalent due to the so called amplification
trick for the Hamming metric, see [4].

Definition 2.3. A group G is weakly sofic if for any finite ˆ � G, 1 2 ˆ, and for any
" > 0, there exists a .ˆ;1=2;"/-homomorphism to a finite group with a bi-invariant metric.

Remark. One can see that conditions of Definition 2.3 are weaker than those of Defin-
ition 2.2. So sofic groups are weakly sofic. The other inclusion is an open question:
although all finite groups are embeddable into finite symmetric groups, not all bi-invariant
metric on a finite group is a restriction of a corresponding Hamming metric.

Immediately, by definition, it follows that soficity as well as weak soficity are local
properties: K is sofic (weakly sofic) if any of its finitely generated subgroup is sofic
(weakly sofic) respectively. Another useful simple fact: if G is sofic (weakly sofic), then
any subgroup of G is sofic (weakly sofic).

3. Group equations

For a set X , we use the notation X� D
S
n2N X

n. Let Ny D .y1; y2; : : : ; yj ; : : : / and Nx D
.x1; x2; : : : ; xj ; : : : / be countable sets of symbols for constants and variables, respectively.
Let F D F. Ny; Nx/ be the free group freely generated by Ny and Nx. Let Nw 2 F �. Notice that
Nw 2 F r .y1; : : : ; yk ; x1; : : : ; xn/ for some k; n; r 2 N. By substitution, Nw defines a map
Gk �Gn ! Gr for any group G. Consider the system of equations Nw D 1.

Definition 3.1. We say that Nw is solvable in a group G if the sentence

8Na 2 G�; 9 Nx 2 G� such that Nw. Na; Nx/ D 1

is valid. We say that a system Nw is solvable over a group G in H , H > G, if the sentence

8Na 2 G�; 9 Nx 2 H� such that Nw. Na; Nx/ D 1

is valid. We say that Nw is solvable over a group G if it is solvable over G in someH > G.
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Denote by Sys.G/ � F � the set of all finite systems of equations solvable in G.
Let Sys.Fin/ D

T
jGj<1 Sys.G/. Specifying Corollary 19 of [6] for K D Fin proves

Lemma 1.2 for finitely generated K. In order to show Lemma 1.2 in full generality, we
need the following two propositions about direct products of groups. (These propositions
are probably well known, but we give a proof here for completeness.) In what follows, we
say “X is a subquotient of Y ” if X is a subgroup of a quotient of Y .

Proposition 3.2. Let I be the set of all finitely generated subgroups of a groupK. LetHi ,
i 2 I , be an indexed family of groups such that i is embeddable in Hi . Then K is a
subquotient of the direct product

Q
i2I Hi .

Proof. Notice that I is partially ordered by inclusion. Let

N D
°
˛ 2

Y
i2I

Hi
ˇ̌
9j 2 I such that 8i � j; ˛i D 1

±
:

Using the fact that I is a lattice, we show thatN is a normal subgroup of
Q
i2I Hi . Indeed,

let ˛; ˇ 2 N and let j˛ (jˇ ) be such that ˛.i/ D 1 for i � j˛ (ˇ.i/ D 1 for i � jˇ ). Then
˛iˇi D 1 for every i > hj˛; jˇ i. This shows that N is a subgroup. Notice that ˛ has the
same support as its conjugate ˛�1. It follows that N is normal.

Now consider a map K !
Q
i2I Hi , g! ˛.g/, where

˛i .g/ D

²
1 if g 62 i;
g if g 2 i:

(Without loss of generality, we assume that i < Hi .) The composition of the map g !
˛.g/ with the natural quotient map

Q
i2I Hi !

Q
i2I Hi=N defines an inclusion K ,!Q

i2I Hi=N . Indeed, ˛.g/ 2 N if and only if g D 1 by the definitions of ˛ and N . On the
other hand, .˛.g/˛.h/˛�1.gh//i D 1 for i > hg; hi. So, ˛.g/˛.h/˛�1.gh/ 2 N .

Proposition 3.3. Let I and J be sets, and let Hij , i 2 I; j 2 J , be an indexed family of
groups. Let Ni G

Q
j2J Hij . ThenY
i2I

�Y
j2J

Hij =Ni

�
Š

Y
.i;j /2I�J

Hij

.Y
i2I

Ni :

Proof. It is almost a tautology; consider the natural inclusion
Q
i Ni ,!

Q
.i;j /Hij .

Proof of Lemma 1.2. The implication 3)) 2) follows as “w is solvable in Gi”) “w is
solvable in

Q
Gi”) “w is solvable in a quotient of

Q
Gi”.

The implication 2)) 1). As every equation from Sys.Fin/ is solvable over K, it is
solvable over every finitely generated subgroup of K. So, by [6], every finitely generated
subgroup of K is weakly sofic. Weak sofisity is a local property. It follows that K is
weakly sofic.

The implication 1) 3) is valid for every finitely generated subgroup of K. So, every
finitely generated subgroup ofK is a subquotient of a direct product of finite groups. SoK
is a subquotient of a direct product of finite groups by Propositions 3.2 and 3.3.
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3.1. Proof of Theorem 1.1

In this subsection we show how Theorem 1.1 follows from Theorem 1.3 and Lemma 1.2.
Let H be weakly sofic and let G be a residually finite group. Let Nw. Ny; Nx/ 2 Sys.Fin/.
By Lemma 1.2, it suffices to show that Nw is solvable over H o G. By Lemma 1.2 again,
we know that H < QH=M for some direct product of finite groups QH and M G QH . There
is a natural inclusion H o G ,! QH=M o G. Let Na 2 .H oG/k < . QH=M oG/k . Let Qa 2
. QH o G/k be a preimage of Na under the natural homomorphism QH o G ! QH=M o G. By
Theorem 1.3, there is a solution Qy 2 . QH o OG/n of the equation Nw. Qa; Qy/ D 1. Obviously,
an image of Qy under the homomorphism QH o OG ! QH=M o OG gives us a solution Ny of
Nw. Na; Ny/ D 1 in QH=M o OG.

4. Profinite completion

Let G be a finitely generated residually finite group. Let M D ¹N G G j G=N is finiteº,
the set of co-finite normal subgroups of G. The order N 4 M $ N � M turns M
into a directed partially ordered set, see [13] for details. For N 2M, we denote GN D
G=N . For N;M 2M, N � M , let �M;N WGM ! GN be the natural homomorphisms.
So, I D .GN ; �M;N ;M/ is an inverse projective system of finite groups. Its inverse limit
OG D lim I GN is the profinite completion of G, see [13]. A group OG comes naturally

with compatible epimorphisms �N W OG ! GN and an inclusion G ,! OG. The restriction
of �N on G is just the natural map G ! G=N D GN ; compatibility means that �N D
�M;N ı �M for every N �M . We will use the following notations. For g 2 OG (g 2 GM ),
let gN D �N .g/ (gN D �M;N .g/), respectively. If NgD .g1;g2; : : : ;gk/2 OGk , define NgN D
..g1/N ; : : : ; .gk/N /; if Nf D .f1; : : : ; fk/, define Nf Ng D .f1g1; : : : ; fkgk/. We will often
use these notations in the situation when Ng 2 GkN and Nf 2 .HGN /k , so, Nf Ng 2 .H oGN /k .

Let Nw 2 .F. Ny; Nx//r , j Nyj D k and j Nxj D n.
Let g; h 2 OG. By construction, g ¤ h if and only if gN ¤ hN for some N 2M. So

the following lemma is valid.

Lemma 4.1. Let Na 2 OGk and Nu 2 OGn be such that Nw. NaN ; NuN / D 1 for every N 2M.
Then Nw. Na; Nu/ D 1.

5. An Na-universal solution for Nw

Let G be a finitely generated residually finite group and let OG be its profinite completion.
Fix Nw 2 F r . Ny; Nx/ \ Sys.Fin/ with j Nyj D k, j Nxj D n, and j Nwj D r . Let Na 2 OGk .

Definition 5.1. Nu 2 OGn is called an Na-universal solution for Nw if the following statement
is true:

8finite group ˆ; 8N 2M; 8 Nf 2.ˆGN /k ; 9 N� 2.ˆGN /n such that Nw. Nf NaN ;N� NuN / D 1:

Lemma 5.2. Each Nw has an Na-universal solution Nu 2 OGn.
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Proof. For N 2M, we use the notation MN D ¹M 2M j N �M º. In particular, MN

is finite and N 2MN . Let ˆ be a finite group. Define

XˆN D ¹ Nu2.GN /
n
j 8M 2MN ; 8 Nf 2.ˆ

GM /k ; 9 N�2.ˆGM /n s.t. Nw. Nf NaM ;N� NuM / D 1º;

and
XN D

\
jˆj�1

XˆN

By definition, �N;M .XN / � XM for N � M . Notice that Nu 2 X D lim I XN would
provide a proof of the lemma. So it suffices to show that X ¤ ;, or alternatively (by
the properties of inverse limits of finite sets) that XN ¤ ; for all N 2M. Fix N 2M.
Suppose, seeking for a contradiction, thatXN D;. As the setsXˆN are finite, it follows that

X
ˆ1
N \ X

ˆ2
N \ � � � \ X

ĵ

N D ; for some finite groups ˆ1; ˆ2; : : : ; ĵ . But then XˆN D ;
for ˆ D ˆ1 �ˆ2 � � � � ĵ .

So it suffices to show that XˆN ¤ ; for every finite group ˆ. Fix a finite group ˆ.
Let QDM D .ˆGM /m, with m D jˆjkjGM j. Notice that QDM has m different projections
Prj W QDM ! ˆGM . Define now Prj W QDk

M ! .ˆGM /k as follows: Prj .f1; f2; : : : ; fk/ D
.Prj .f1/; Prj .f2/; : : : ; Prj .fk//. By the choice of m, there exists a universal Nf 2 Dk

M in
the sense that among Prj . Nf /, all elements of .ˆGM /k appear. Let DN D

Q
M2MN

QDM .
A group GN has a natural action on ˆGM for M 2MN :

.g:f /.x/ D f .xgM /; where g 2 GN ; f 2 ˆGM :

SoGN has an action onDN defined componentwise as above. Consider the corresponding
semidirect product DN Ì GN . As explained above, we may choose Nf 2 Dk

N such that
every its QDk

M component is universal. Notice that the set

QXˆN D ¹.
N�; Nu/ 2 DN ËGN j Nw. Nf NaN ; N� Nu/ D 1º

is nonempty as DN Ì GN is a finite group and Nw 2 Sys.Fin/. On the other hand, XˆN is
the projection of QXˆN on Nu by the universality of Nf .

6. Proof of Theorem 1.3

Let Nu D .u1; : : : ; un/ 2 OGn be an Na-universal solution for Nw 2 Sys.Fin/. Let ˆ be a finite
group and let � D hG; Nui � OG. Consider ˆ� as a compact topological group with respect
to the Tichonov (direct product) topology. First of all we prove Theorem 1.3 for QH D ˆ.
The proof is topological and uses the profinite topology on � and the Tichonov topology
on ˆ� . Denote by R.ˆ/ � ˆ� the set of continuous function with respect to the profinite
topology on � .

Lemma 6.1. Let Nf 2 R.ˆ/k . Then there exists N� 2 R.ˆ/n that solves the equation
Nw. Nf Na; N� Nu/ D 1.

Proof. Let Nf 2 R.ˆ/k . It follows that Nf D Qf ı  for some  W � ! �N , N 2M, and
Qf 2 .ˆ�N /k . By the universality of Nu, it follows that there exists Q� 2 .ˆ�N /n such that
Nw. Qf NaN ; Q� NuN / D 1. Then for N� D Q� ı  , we get Nw. Nf Na; N� Nu/ D 1.
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Lemma 6.2. The set R.ˆ/ is dense in ˆ� (with respect to the Tichonov topology).

Proof. Indeed, for any finite A � � there is a homomorphism  from � to a finite group
such that  jA is injective. The lemma follows by the definition of the Tichonov topology.

For Nf 2 ˆ� , we are going to find a solution of Nw. Nf Na; Nx/ D 1 in ˆ o � . The solution
we are looking for is in the form Nx D N� Nu for some N� 2 .ˆ�/n. Its existence follows by
Lemmas 6.1 and 6.2, and the compactness ofˆ� . Indeed, let Nfj 2 .R.ˆ//k be a sequence
converging to f W Nfj ! Nf as j !1. By Lemma 6.1, there are N�j 2 .ˆ�/n that solve
the equation Nw. Nfj Na; N�j Nu/ D 1. By the compactness of ˆ� , we may assume, passing to
a subsequence, that N�j ! N�. Notice that the action of � is continuous on ˆ� and that
the � part of Nw. Nf Na; N� Nu/ is independent of Nf and N�, and equals to 1. So, we conclude that
Nw. Nf Na; N� Nu/ D limj!1 Nw. Nfj Na; N�j Nu/ D 1. This proves Theorem 1.3 for QH D ˆ. To finish

the proof for direct products of finite groups, it suffices to notice that .
Q
ˆi /

G Š
Q
ˆGi ,

and one may find a solution componentwise.

7. Concluding remarks

It is also known that amenable-by-weakly-sofic extensions are weakly sofic, [9]. A class of
sofic groups may be considered as a class of groups generalizing amenable and residually
finite groups. Some proofs that works for amenable and residually finite groups may be
generalized for sofic groups. So, is it possible to combine somehow the techniques of the
present paper and those from [9] to prove that sofic-by-weakly-sofic extensions are weakly
sofic?

The question whether residually-finite-by-residually finite extensions are sofic remains
unanswered. Although there is a similar characterization of sofic groups: a groupG is sofic
if and only if every equation solvable in all permutation groups is solvable over G. The
problem is that solvability in permutation groups is not enough to prove, say, the existence
of universal solutions.
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