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Geometry and holonomy of indecomposable cones

Dmitri Alekseevsky, Vicente Cortés and Thomas Leistner

Abstract. We study the geometry and holonomy of semi-Riemannian, time-like
metric cones that are indecomposable, i.e., which do not admit a local decompos-
ition into a semi-Riemannian product. This includes irreducible cones, for which the
holonomy can be classified, as well as non-irreducible cones. The latter admit a par-
allel distribution of null k-planes, and we study the cases k D 1 in detail. We give
structure theorems about the base manifold and in the case when the base manifold
is Lorentzian, we derive a description of the cone holonomy. This result is obtained
by a computation of certain cocycles of indecomposable subalgebras in so.1; n� 1/.

1. Introduction

1.1. Background

Cone constructions are a valuable tool in differential geometry to study overdetermined
PDEs on manifolds. They are applied in conformal [15,16] and projective geometry [4,32]
but the most striking example is Bär’s classification of Riemannian manifolds with real
Killing spinors [5]. Bär’s observation that real Killing spinors on a Riemannian manifold
.M; g/ correspond to parallel spinors on the cone

. LM D R>0 �M; Lg D dr2 C r2g/;

allows to apply several fundamental results in differential geometry: Berger’s list of irre-
ducible Riemannian holonomy groups [10] and the classification of those that belong to
manifolds with parallel spinors by Wang [33], the understanding of the geometric struc-
tures that correspond to these holonomy groups, and finally Gallot’s theorem [20] that
the cone . LM; Lg/ over a complete manifold .M; g/ is either flat or irreducible. This res-
ult allows to determine the geometry of .M; g/: If the cone . LM; Lg/ is flat, then .M; g/
has constant sectional curvature 1, and if the cone is irreducible, the geometry of .M; g/
is determined by the special holonomy of the cone (Ricci-flat Kähler, hyper-Kähler, or
exceptional).

One of the motivations to study semi-Riemannian cones is the Killing spinor equa-
tion on semi-Riemannian manifolds, but indefinite cones already become relevant in the
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Riemannian context. Indeed, imaginary Killing spinors on a Riemannian manifold .M;g/
correspond to parallel spinors on the time-like cone

(1.1) . yM D R>0 �M; yg D �dr2 C r2g/:

Riemannian manifolds with imaginary Killing spinors were classified by Baum in [6, 7]
without using the cone construction, but our results about Lorentzian cones in [2] allow to
reprove Baum’s classification.

Another motivation stems from supergravity (and string theory), where semi-Rieman-
nian cones play a two-fold role. One the one hand, they appear as scalar geometries (of
arbitrary dimension) in the superconformal formulation of supergravity theories, on the
other hand, they can be used to study space-times which are part of supersymmetric solu-
tions of the equations of motion of theories of (Poincaré) supergravity or of string theories.
In the latter case, the supersymmetry equations can be analysed by passing to the time-
like cone over the Lorentzian space-time manifold, which is a semi-Riemannian cone of
index 2.

A generalisation of Bär’s method to indefinite semi-Riemannian manifolds has two
aspects: a holonomy classification of indefinite semi-Riemannian cones and the descrip-
tion of the corresponding geometry of the base. Both tasks face several difficulties in the
semi-Riemannian context. The fundamental difficulty is that for metrics of arbitrary sig-
nature the holonomy group may not act completely reducibly: there are semi-Riemannian
manifolds whose holonomy group admits an invariant subspace that is degenerate for the
metric. As a consequence, those manifolds cannot be decomposed into a product of man-
ifolds with irreducible holonomy, as it is the case for Riemannian manifolds. Hence, in
an indefinite semi-Riemannian context, irreducibility has to be replaced by indecompos-
ability. A semi-Riemannian manifold is indecomposable if its holonomy representation
(i.e., the representation of the holonomy algebra on the tangent space) does not admit an
invariant subspace that is non-degenerate for the metric. By the splitting theorems of de
Rham [12] and Wu [34], such metrics do not have a local decomposition into product
metrics, hence the term indecomposable. Therefore, a generalisation of Bär’s method to
semi-Riemannian geometry requires two steps:

(A) Generalise Gallot’s theorem to the case of semi-Riemannian cones.
(B) For indecomposable semi-Riemannian cones, describe the holonomy of the cone

and the local geometry of the base.
The problem in (A) was solved in [2], where we studied decomposable indefinite semi-
Riemannian cones and obtained a generalisation of Gallot’s result. In fact, we showed that
a cone over a complete and compact semi-Riemannian manifold is either flat or indecom-
posable. The results in [2] have been generalised in the compact and in the complete case
in [26–28]. Further results about decomposable cones have been obtained in Theorems 5
and 6 of [14]. Cones over Lorentzian Sasaki manifolds and their holonomy were studied
in the decomposable and indecomposable case in [18, 19].

1.2. Results

In this article we deal with problem (B), i.e., we study the local geometry of the base
and the holonomy of the cone in the case when the cone is indecomposable. This setting
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naturally splits into two different scenarios: the holonomy of the cone is irreducible, or it
admits an invariant subspace that is totally null but no non-degenerate invariant subspace.
The irreducible case is well understood as there is Berger’s classification of irreducible
holonomy groups [10], which we describe in Section 2.2 with the following result.

Theorem 1.1. If . yM; yg/ is a time-like cone with irreducible holonomy algebra g, then g
is isomorphic to one of the following Lie algebras:

so.t; s/; u.p; q/; su.p; q/ � so.2p; 2q/; sp.p; q/ � so.4p; 4q/;

so.n;C/ � so.n; n/; gC
2 � so.7; 7/; spin.7;C/ � so.8; 8/;

g2 � so.7/; spin.7/ � so.8/;

g2.2/ � so.3; 4/; spin.3; 4/ � so.4; 4/:

More interesting is the non-irreducible indecomposable case, where a holonomy clas-
sification is only available in specific situations [8, 9, 17–19, 25]. Here the cone admits
a totally null vector distribution of rank k > 0 that is invariant under parallel transport
or, equivalently, its space of sections is invariant under differentiation with respect to the
Levi-Civita connection. In general, this case is rather difficult and no general holonomy
classification is known. However, the parallel vector distribution determines the local
structure of the base. This became obvious in [2] where we studied the case of Lorentzian
indecomposable cones. As mentioned, some of our motivation comes from the equations
of motion of supersymmetric theories of gravity, where the space-time metric is Lorent-
zian (that is of index 1). Hence, we will focus on cones that have index 2, that is, signature
.2;n� 2/. For these the totally null parallel vector distribution is of rank 1, i.e., a null line,
but many of our results will hold for cones in arbitrary signature. We deal with the case of
of rank 2, i.e., with parallel null planes, in Section 7 of [3]. In Section 3 we describe the
local structure of the base as well as of the cone:

Theorem 1.2. Let . yM; yg/ be the time-like cone over a semi-Riemannian manifold .M;g/.
If the cone admits a parallel null line field L, then locally there is a parallel trivializing
section of L. Moreover, on a dense open subset yMreg� yM , the metric yg is locally isometric
to a warped product of the form

(1.2) zg0 D 2dudv C u2g0;

with a semi-Riemannian metric g0, and the metric g is locally of the form

g D ds2 C e2sg0:

In the case when the above decompositions hold globally (see Theorem 3.5), the situ-
ation can be summarised in the commutative diagram

(1.3)

signature .t C 1; s/ . yM; yg/ . zM; zg0/

signature .t; s/ .M; g/

signature .t; s � 1/ .M0; g0/

isometry  

ygD�dr2Cr2g
cone

double warp

zg0D2dudvCu2g0

gDds2Ce2sg0

warp
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Here zM D RC � R� �M0, see (3.1) for the definition of  . This result motivates the
study of metrics of the form (1.2) in Section 4. Such metrics have a parallel null vector
field @v , and it was shown in [24] that their holonomy algebra zg D hol.zg0/ is con-
tained in hol.g0/ Ë Rt;s , where .t; s/ is the signature of the metric g0, and moreover
that prso.n/.zg/ D hol.g0/. For a Lorentzian metric zg, i.e., when g0 is Riemannian, it was
shown in [2, 24] that we have, in fact,

zg D hol.g0/ ËRn;

which means that the holonomy of the cone is determined solely by the holonomy of the
metric g0. In higher signatures, i.e., when g0 is not Riemannian, this is no longer true, as
examples will show. Our approach is to consider the ideal of translations in hol.zg0/,

T WD hol.zg0/ \Rt;s;

and use this for a first, purely algebraic study of indecomposable subalgebras in the sta-
biliser of a null vector. This will be carried out in Section 5.1, which is the most technical
section of the paper. The key observation is that

zg=T D ¹.X; '.X// j X 2 hol.g0/º; with ' 2 Z1.hol.g0/;R
t;s=T /;

where Z1.hol.g0/;Rt;s=T / denotes the cocycles of hol.g0/ with values in Rt;s=T . For
example, in order to obtain results for time-like cones over Lorentzian manifolds, we
will compute Z1.g;R1;n�1=T /, for indecomposable subalgebras g of so.1; n� 1/ (these
belong to one of four types according to [8]). In Section 6 we apply these algebraic results
to obtain the following theorem.

Theorem 1.3. Let g0 be a Lorentzian metric on an n-dimensional simply connected man-
ifold M and zg0 the metric of signature .2; n/ on RC � R �M defined in (1.2). If the
holonomy of zg0 acts indecomposably and with invariant null line, then

hol.zg0/ D hol.g0/ ËR1;n�1;

or g0 admits a parallel null vector field and zg0 admits two linearly independent parallel
null vector fields that are orthogonal to each other.

This theorem shows that if the holonomy of zg0 is not equal to the semi-direct product
hol.g0/ËR1;n�1, then zg0, and hence the cone admits a parallel null plane (which in addi-
tion is spanned by two parallel null vector fields). We study the case of cones admitting a
totally null parallel 2-plane in Section 7 of [3].

2. Preliminaries

2.1. Fundamental properties of time-like cones

Let .M; g/ be a semi-Riemannian manifold and let yM WD RC �M , with the metric

(2.1) yg WD �dr2 C r2g;
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be the time-like cone or just the cone over .M; g/. We denote by

� D r
@

@r

the Euler vector field. The Levi-Civita connection yr of yg reduces to the Levi-Civita con-
nection r of g in the following way:

(2.2) yr� D IdTM ; yrXY D rXY C g.X; Y /�;

where here and in the following formulae X; Y;Z 2 X.M/, and the curvature is given as

(2.3) � yR D 0; yR.X; Y /Z D R.X; Y /Z C g.Y;Z/X � g.X;Z/Y:

Hence, for the Ricci tensor, we obtain that

(2.4) � yRic D 0; yRic.X; Y / D Ric.X; Y /C .n � 1/g.X; Y /:

This leads to the following observations.

Proposition 2.1. Let . yM; yg/ be the cone over .M; g/.

(1) .M; g/ has constant curvature �1 if and only if the cone . yM; yg/ is flat.

(2) If . yM; yg/ is Einstein, then it is Ricci-flat.

(3) If .M; g/ is Einstein with Ric D .1 � n/g, then . yM; yg/ is Ricci-flat.

Finally, we recall the important known fact that the existence of a time-like vector
field �, with r� D Id, characterises cones locally, see, for example, [21] or Lemma 1
of [14]. We include the proof here for expository reasons.

Proposition 2.2. Let . yM; yg/ be a semi-Riemannian manifold of dimension n C 1 that
admits a time-like vector field � such that yr� D Id. Then there are local coordinates
.r; x1; : : : xn/ such that yg is of the form

yg D �dr2 C r2gij .x1; : : : ; xn/ dxi dxj ;

where i; j run from 1 to n, gij D gij .x1; : : : ; xn/ are functions of the xk coordinates only
and we use the Einstein summation convention.

Proof. The vector field � defines a positive function r via

yg.�; �/ D �r2:

Differentiating this relation gives

2rdr D d.r2/ D �d.yg.�; �// D �2g.�; �/ D �2�[;

where the musical isomorphism [ denotes the metric dual with respect to yg. Hence,

�[ D �d
�r2
2

�
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is exact and therefore � D �yrr2=2 is a gradient vector field. The level sets of the func-
tion r are orthogonal to � and we can fix coordinates .x1; : : : ; xn/ on the level sets such
that .r; x1; : : : ; xn/ are local coordinates on yM . In these coordinates the metric has the
form

g D �dr2 C ygij .r; x1; : : : ; xn/ dxi dxj ;

and � D r@r holds. Since Or� D Id, the vector field � is homothetic, L� yg D 2yg, which
implies that

ygij .r; x
1; : : : ; xn/ D r2gij .x

1; : : : ; xn/

for some functions gij .x1; : : : ; xn/ of the xi coordinates.

2.2. The holonomy of irreducible cones

For irreducible cones, the possible holonomy groups are known from the Berger list [10],
which comprises the orthogonal algebra and the three lists (2.5)–(2.7) below. In the fol-
lowing, let h � so.t C 1; q/ be the irreducible holonomy algebra of a semi-Riemannian
manifold . yM; yg/, i.e., one of the entries in Berger’s list. For each possible h, we will now
determine if it can be the holonomy algebra of a cone.

Case 1: hD so.t C 1; s/. This is the holonomy algebra of a generic semi-Riemannian
manifold of signature .t C 1; s/.

Proposition 2.3. Let .M; g/ be a semi-Riemannian manifold of signature .t; s/ and of
constant curvature � ¤ �1 and let . yM; yg/ be the time-like cone over .M; g/. Then we
have hol. yM; yg/ D so.t C 1; s/.

Proof. The curvature endomorphisms of .M; g/ are of the form

R.X; Y / D �.g.Y; � /X � g.X; � /Y /:

Since the holonomy algebra contains all curvature endomorphisms, equation (2.3) shows
that

so.t; s/ � hol. yM; yg/;

where so.t; s/ is included as the stabiliser of the vector � . Moreover, equations (2.2)–(2.3)
show that

.yrX yR/.Y;Z/� D � yR.X; Y /Z D �2.g.Y;Z/X � g.X;Z/Y /:

This establishes hol. yM; yg/ D so.t C 1; s/.

Case 2: h is the holonomy of an irreducible symmetric space or one of the following
algebras:

(2.5)

sp.1/˚ sp.p; q/ � so.2p; 2q/;

sl.2;R/˚ sp.m;R/ � so.2m; 2m/;

sl.2;C/˚ sp.m;C/ � so.4m; 4m/;

where p C q and m are greater than 1. In the first case the metric is quaternionic Kähler
of signature .4p; 4q/ and in the second it is quaternionic para-Kähler. Examples of the
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third type are obtained by complexifying manifolds with holonomy of the first two types,
as discussed below. In these examples, . yM; yg/ is Einstein with nonzero Einstein constant,
see Theorem 3 of [1]. Hence, these cases can be excluded as holonomy of cones, by
Proposition 2.1.

Case 3: h is one of the following:

(2.6)

u.p; q/; su.p; q/ � so.2p; 2q/; sp.p; q/ � so.4p; 4q/;

g2 � so.7/; spin.7/ � so.8/;

g2.2/ � so.3; 4/; spin.3; 4/ � so.4; 4/:

The geometric structures corresponding to these algebras do exist on cones over semi-
Riemannian manifolds with certain structures. In fact, the following relations between
structure on the base .M; g/ and on the cone are well known (see, for example, [5] for the
Riemannian case and [23] for the indefinite cases, and references therein):

(i) The cone over a (semi-Riemannian) Sasaki, Einstein–Sasaki or 3-Sasaki man-
ifold is, respectively, a Kähler, Ricci-flat Kähler or hyper-Kähler manifold and
hence has holonomy contained in u.p; q/, su.p; q/ or sp.p; q/.

(ii) The cone over a strict nearly-Kähler manifold of dimension 6, Riemannian or of
signature .2; 4/, has a parallel G2- or G2.2/-structure and hence has holonomy
contained in g2 or g2.2/. Similarly, the cone over a nearly para-Kähler manifold,
with jrJ j2 ¤ 0, has holonomy contained in g2.2/, see Proposition 3.1 of [11].

(iii) The cone over a 7-manifold with a nearly-parallel G2-structure, Riemannian or
of signature .3; 4/, has a parallel Spin.7/- or Spin.3; 4/-structure and hence has
holonomy contained in spin.7/ or spin.3; 4/.

The question remains, whether the holonomy of the cone is not only contained but actually
equal to one of the algebras in the list (2.6). In the Riemannian setting (which corresponds
to the case where the base of the time-like cone is negative definite), this can be estab-
lished by using Gallot’s theorem that the (space-like) cone over a complete Riemannian
manifold .M; g/ is either flat or irreducible, and then by constructing a complete .M; g/
with the corresponding structure. For indefinite metrics, several gaps open up in this argu-
ment: our generalisation of Gallot’s theorem in [2] assumes that .M; g/ is compact and
complete and implies that the cone is flat or indecomposable, but not necessarily irredu-
cible. Hence, even if one constructed compact and complete indefinite semi-Riemannian
manifolds with the above structures, the cone would not have to be irreducible, and hence
its holonomy could be an indecomposable, non-irreducible subalgebra of the algebras
in (2.6). We suspect, however, that for a “generic” semi-Riemannian manifold with one of
the above structures, the cone has holonomy equal to the algebras in (2.6). An explicit way
of constructing examples of cones with special holonomy is given below in Remark 2.7.

Case 4: h is one of the following algebras:

(2.7)
so.n;C/ � so.n; n/; sl.2;C/˚ sp.m;C/ � so.4m; 4m/;

gC
2 � so.7; 7/; spin.7;C/ � so.8; 8/:

Examples can be obtained by complexification as we will explain now in detail. In the case
of sl.2;C/˚ sp.m;C/, the metric is Einstein of nonzero scalar curvature (incompatible
with a cone), whereas in the two exceptional cases, it is Ricci-flat.
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Realisation of complex holonomy algebras. Let .M; g/ be a connected real analytic
manifold endowed with a real analytic semi-Riemannian metric. Then it is easy to see
that M can be embedded into a connected complex manifold MC with the following
properties.

(1) There exists an atlas of MC such that each of its charts 'WU ! Cn is real-valued
on U \M and the restrictions 'jU\M WU \M !Rn, U \M ¤ ;, form an atlas
of M .

(2) The metric coefficients gij .x/with respect to the real coordinates xD .x1; : : : ;xn/
D 'jU\M are given by real power series converging in U \M .

(3) The power series gij .z/ in the holomorphic coordinates z D .z1; : : : ; zn/ D '

converges in U for all i; j .
It follows that we can define a holomorphic symmetric tensor field gC on MC by

gC
jU D

X
gij .z/ dzi dzj :

The tensor field is non-degenerate on a neighbourhood of M , and by restriction, we can
always assume that it is non-degenerate on MC . Then it defines what is called a holo-
morphic Riemannian metric onMC . We will call .MC; gC/ a complexification of .M;g/.
Recall that a pair consisting of a complex manifold and a holomorphic Riemannian metric
on that manifold is called a holomorphic Riemannian manifold. Note that .MC; gC/ is
unique as a germ of holomorphic Riemannian manifold along M .

We define the holonomy algebra of a holomorphic Riemannian manifold .MC; gC/

at p 2MC as the Lie algebra spanned by all the skew-symmetric endomorphisms

..rC/kv1;:::;vkR
C/.vkC1; vkC2/ 2 so.T 1;0p MC/ Š so.TpM/C;

where v1; : : : ;vkC2 2T
1;0
p MC and k� 0. HererC denotes the (holomorphic) Levi-Civita

connection of gC and RC its curvature tensor.

Proposition 2.4. Let .MC; gC/ be a complexification of a connected semi-Riemannian
manifold .M; g/. Then the holonomy algebra of .MC; gC/ is given by the complexifica-
tion hC of the holonomy algebra h of .M; g/.

Proof. By the Ambrose–Singer theorem, for real analytic semi-Riemannian manifolds, we
know that h is spanned by all the endomorphisms .rkv1;:::;vkR/.vkC1; vkC2/ 2 so.TpM/,
where v1; : : : ; vkC2 2 TpM and k � 0. From the definition of gC as complex-analytic
extension of g, it is clear that the Levi-Civita connection rC of gC coincides with the
complex-analytic extension of the Levi-Civita connection r of g. The same relation holds
for the curvature tensors and their covariant derivatives. This implies the proposition.

Next we consider the real analytic manifold N of dimension 2n underlying the com-
plex manifold MC . It carries a corresponding integrable complex structure J and we can
identify .N; J / with MC . We endow N with the real analytic semi-Riemannian metric

(2.8) gN WD 2RegC:
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Note that gN can be considered as a (fibrewise) real bilinear form on TN by means of the
canonical identification

TN Š T 1;0N; X 7! X1;0 D
1

2
.X � iJX/:

The factor 2 in (2.8) is chosen so that gC is obtained by restricting (the complex bilinear
extension of) gN to T 1;0N .

We observe that the metric gN can be defined on the real analytic manifoldN underly-
ing any holomorphic Riemannian manifold .MC; gC/ irrespective of whether .MC; gC/

is a complexification of a semi-Riemannian manifold .M; g/.

Theorem 2.5. Let .MC; gC/ be a connected holomorphic Riemannian manifold and
.N; gN / the corresponding semi-Riemannian manifold. Then .N; gN / has neutral sig-
nature and its holonomy algebra is isomorphic to the holonomy algebra of .MC; gC/.

Proof. Note first that gN .J � ; J � /D �gN , since gN is of type .2; 0/C .0; 2/ with respect
to J . This implies that gN has neutral signature, since J it maps a maximal definite sub-
space of TpN to a maximal definite subspace of the same dimension and of opposite
signature.

We consider first the Lie algebra so.TpN/, p 2 N , with respect to gN and its subal-
gebra

so.TpN/
J
WD ¹A 2 so.TpN/ j ŒA; J � D 0º:

The latter can be considered as a complex Lie algebra with the complex structureA 7! JA.
Indeed, JA is gN -skew-symmetric as the product of a symmetric with a commuting skew-
symmetric endomorphism. The symmetry of J follows from the fact that J is an anti-
isometry squaring to minus one.

Now we claim that so.TpN/
J is canonically isomorphic to the complex Lie algebra

so.T 1;0p N/ with respect to gC . Using the metric gN , we can identify so.TpN/
J with

the set of real points in
V
2;0 TpN ˚

V
0;2 TpN and the latter can be identified withV

2;0 TpN Š
V
2 T 1;0M by projecting to the .2; 0/-component. Finally, using the met-

ric gC , we can identify
V
2 T 1;0M with so.T 1;0p N/. This yields a canonical isomorphism

(2.9) ˆW so.TpN/
J
! so.T 1;0p N/

of complex vector spaces. It simply maps A 2 so.TpN/
J to its restriction to T 1;0N .

Therefore, it is even an isomorphism of Lie algebras.
Next we show, for all v1; : : : vkC2 2 TpN , that under the canonical isomorphism (2.9),

the tensor .rN /kv1;:::;vkR
N .vkC1; vkC2/ is mapped to .rC/kw1;:::;wkR

C.wkC1; wkC2/,
where wj D v1;0j , rN denotes the Levi-Civita connection of gN and RN its curvature.
This implies the theorem, in virtue of the Ambrose–Singer theorem. First we show thatrN

can be constructed from the holomorphic connection rC . Let r 0 be the unique connection
in .TN /C with the following properties:

(1) r 0ZW D r
C
ZW for all holomorphic vector fields Z;W on MC .

(2) r 0
NZ
W D 0 for all holomorphic vector fields Z;W on MC .

(3) r 0 is real, that is, it restricts to a connection in TN .
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Notice that the above properties imply that the subbundles T 1;0N and T 0;1N are r 0-
parallel and, hence, that r 0J D 0. Moreover, using these properties, it is straightforward
to check that r 0 is metric torsion-free, since rC is. This implies that r 0 (when considered
as a connection in TN ) coincides with the Levi-Civita connection rN . As a consequence,
we see that rNJ D 0, and thus .rN /kv1;:::;vkR

N .vkC1; vkC2/ 2 so.TpN/
J . Now letX;Y

be real vector fields on an open set U � N which are infinitesimal automorphisms of J .
Then we have the formula

(2.10) .rNX Y /
1;0
D r

C
X1;0

Y 1;0:

This follows immediately from the defining properties of r 0 DrN , by decomposingX D
Z C NZ and Y D W C NW , where Z D X1;0; W D Y 1;0 are holomorphic. From (2.10),
we deduce that��

.rN /kv1;:::;vkR
N .vkC1; vkC2/

�
vkC3

�1;0
D
�
.rC/kw1;:::;wkR

C.wkC1; wkC2/
�
wkC3;

for all v1; : : : ; vkC3 2 TpN , where we recall that wj D v
1;0
j . Since the left-hand side is

precisely
ˆ
�
.rN /kv1;:::;vkR

N .vkC1; vkC2/
�
wkC3;

we can conclude that

ˆ
�
.rN /kv1;:::;vkR

N .vkC1; vkC2/
�
D .rC/kw1;:::;wkR

C.wkC1; wkC2/;

finishing the proof.

This leads to the following consequence.

Corollary 2.6. The complex holonomies

(2.11) so.n;C/ � so.n; n/; gC
2 � so.7; 7/; spin.7;C/ � so.8; 8/

are holonomy algebras of time-like cones.

Proof. This follows from the above considerations and from the fact that the compact
real forms of the complex holonomy algebras in (2.11) can be realised by timelike cones
over negative definite manifolds. Indeed, if . yM; yg/ is a time-like cone with holonomy
so.n/, g2 � so.7/, or spin.7/ � so.8/, then there is the Euler vector field � 2 �.T yM/.
Hence, the real analytic metric ygC on yMC has the holomorphic Euler vector field �C ,
with yrC �C D Id. On the real manifoldN D yMC , we then have that �D 2Re �C satisfies
rN�D Id, as a consequence of equation (2.10) applied here to N D yMC instead ofMC .
By Proposition 2.2, we then get that N is locally a cone, which, by Theorem 2.5, has one
of the complex holonomies in (2.11) as holonomy algebra.

This proof can be made more explicit in local coordinates. Locally the metric yg is of
the form

yg D �dr2 C r2gij .xk/ dxi dxj ;

with Euler vector field � D r@r 2 �.T yM/. The analytic metric ygC on yMC then is of the
form

ygC
D �du2 C u2gij .zk/ dzi dzj
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with coordinates .uD r C is; z1; : : : ; zn/, where zk D xk C iyk , and holomorphic Euler
vector field �C D u@u, with yrC�C D Id. Then the metric yh D 1

2
gN on N D yMC is

given by

yh D �dr2 C ds2 C .r2 � s2/Re.gij .zk/ dzi dzj / � 2rs Im.gij .zk/ dzi dzj /:

One can directly check that �D r@r C s@s satisfiesrN�D Id. Moreover, the cone coordin-
ate with respect to yh is given by � D

p
r2 � s2, which satisfies yh.�; � / D �� d�.

Remark 2.7. Finally, we note that it is possible to construct examples of pseudo-Rieman-
nian cones with these holonomies using different real forms of the complexified metrics
and Proposition 2.4 and Corollary 2.6. For example, SL.2;R/� SL.2;R/ admits a unique
left-invariant nearly pseudo-Kähler structure, which is a different real form of the com-
plexification of the Riemannian nearly Kähler structure on SU.2/ � SU.2/, see [30].
Hence, the cone metrics are different real forms of the holomorphic cone metric. Since
the cone over SU.2/ � SU.2/ has holonomy g2, the cone over SL.2;R/ � SL.2;R/ must
have holonomy equal to g2.2/.

2.3. Manifolds with parallel null line bundle

In the following manifolds with a parallel null line bundle will be crucial. In this section
we will collect some facts about them.

Let .M; g/ be a semi-Riemannian manifold with a parallel null line bundle L, i.e., L
is a rank 1 subbundle of TM , the fibres of which are null with respect to the metric g and
invariant under parallel transport with respect to the Levi-Civita connection r of g. This
implies that every non-vanishing section � 2 �.L/ satisfies

(2.12) r� D ˛ ˝ �;

for a uniquely determined 1-form ˛. Any vector field that satisfies equation (2.12) for
some 1-form ˛ is called a recurrent vector field.

Proposition 2.8. Let � be a recurrent vector field on a connected semi-Riemannian mani-
fold .M;g/. Then the function f D g.�;�/ is either everywhere positive, negative or zero.
In particular, � can only have zeros if f � 0.

Proof. The equation (2.12) yields the ODE X.f / D 2˛.X/f for every vector field X .
These ODEs imply that if f vanishes at a point, then f vanishes in a neighbourhood of
this point. Due to the continuity of f , this shows that M is a disjoint union of the three
open sets ¹f > 0º, ¹f < 0º and ¹f D 0º. Now, since M is connected, the proposition
follows.

Hence, locally, the existence of a parallel null line bundle is equivalent to the existence
of a recurrent null vector field, where we recall that a vector field � is null if g.�; �/ D 0
and � does not vanish, Definition 3 in Chapter 3 of [29]. Moreover, a nowhere vanishing
recurrent vector field � can be rescaled to parallel vector field � � �, for a non-vanishing
function �, if and only if the 1-form ˛ is exact. Indeed, if ˛ D dh, then

r.e�h�/ D 0;
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so that � D e�h and � � � is parallel. Conversely, if � � � is parallel, then

0 D R.X; Y /� D d˛.X; Y /�

for all X; Y 2 TM .
Hence, on simply connected manifolds .M; g/, nowhere vanishing recurrent vector

fields can be rescaled to parallel ones if and only if ˛ is closed. The choice we have when
locally choosing a recurrent vector field that spans a null line bundle L can be used to find
special recurrent sections of L.

Lemma 2.9. Let L be a parallel null line bundle. Then locally there is a recurrent gradient
vector field � which spans L. This vector field satisfies r� D h�[ ˝ � for a function h.

Proof. Since L is parallel, the hyperplane distribution L? D ¹X 2 TM j g.X; L/ D 0

is parallel and hence involutive. Hence, by Frobenius’ theorem, L? is integrable and the
integral manifolds are given as f � constant for some local function f . Hence, L? D
ker.df /, and the gradient � WD grad.f / of f spans L. Then � is recurrent, i.e., we have
r� D ˛ ˝ �. But then � D grad.f / implies that

0 D d�[ D ˛ ^ �[;

which shows that ˛ D h�[ for a local function h.

3. Cones with parallel null lines

In this section we assume that the cone (2.1) over a semi-Riemannian manifold .M; g/
admits a null line that is invariant under parallel transport. We will show that locally this
implies that the cone admits a parallel null vector field and that the base .M; g/ is locally
an exponential extension of a semi-Riemannian manifold .M0;g0/, see Definition 3.2. The
total space of the cone will then be shown to be locally isometric to a double warped exten-
sion . zM; zg/ of .M0; g0/, see Definition 3.2. This will generalise our results for Lorentzian
cones in Section 9 of [2].

Proposition 3.1. Let . yM; yg/ be a timelike cone and assume that . yM; yg/ admits a parallel
null line L. Then the following hold:

(i) The set yMreg, where L is not perpendicular to the Euler vector field �, is open and
dense and invariant under the flow of �. So, in particular, yMreg D yMreg, where
Mreg WD yMreg \M .

(ii) L is flat and, hence, locally (and globally if M is simply connected) there is a
parallel null vector field that spans L.

Proof. By passing to the universal cover of . yM; yg/, that is, to the cone over the universal
cover of M , we can assume that M and yM are simply connected. Hence, we can assume
that the parallel null line L is spanned by a nowhere vanishing recurrent vector field �
on . yM; yg/. Then we decompose

� D f � CZ;
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where Z is tangent to M and nowhere vanishing. We claim that the function f cannot
vanish on a nonempty open set. If it did, formulae (2.2) would give

˛.X/Z D yrX� D rXZ C g.X;Z/�

on the open set, and hence g.X;Z/ D 0 for all X 2 TM , which is a contradiction. This
proves that the open set yMreg D ¹p 2 yM j f .p/ 6D 0º is dense. The invariance of yMreg
under the homothetic flow of � follows from the invariance of L under the flow. The latter
is obtained by writing the Lie derivative as L� D

yr� � Id and using that L is parallel.
On yMreg, we have

d˛.X; �/� D yR.X; �/� D 0

and
d˛.X; Y /� D yR.X; Y /� D yR.X; Y /Z 2 TM;

for X; Y 2 TM . This implies d˛ D 0, since yMreg is dense, proving that L is flat.

In the next proposition we describe an example of a cone with a parallel null line
before showing that every example is locally of this form.

Definition 3.2. Let .M0; g0/ be a semi-Riemannian manifold. Then the warped products
.M D R �M0; g D ds2 C e2sg0/ and . zM D RC � R� �M0; zg D 2dudv C u2g0/
will be called the exponential extension and the double warped extension of .M0; g0/,
respectively.

Proposition 3.3. Let .M0;g0/ be a semi-Riemannian manifold. The time-like cone . yM; yg/

over the exponential extension .M; g/ of .M0; g0/ is globally isometric to the double
warped extension . zM; zg/ of .M0; g0/. In particular, the cone admits the parallel null
vector field @v .

Proof. The cone metric over .M; g/ is given by

yg D �dr2 C r2ds2 C r2 e2sg0;

with r 2 RC and s 2 R. For the diffeomorphism

 W yM D RC �R �M0 3 .r; s; p/(3.1)

7!
�
u D res; v D �1

2
re�s; p

�
2 zM D RC �R� �M0;

one checks that
. �1/�yg D 2dudv C u2g0:

This proves the statement.

Theorem 3.4. Let . yM; yg/ be a time-like cone over a semi-Riemannian manifold .M; g/.
Assume that . yM; yg/ admits a parallel null line L. Then the open dense subset yMreg �

. yM; yg/, cf. Proposition 3.1, is locally isometric to the double warped extension . zM; zg/

of a semi-Riemannian manifold .M0; g0/, and the open dense subset Mreg � .M; g/ is
locally isometric to the exponential extension of .M0; g0/.
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Proof. Since we have to show the existence of a local isometry, by Proposition 3.1, we
can assume that L admits a parallel trivializing section �. We write the parallel null vector
field � on yM as

� D Of � C OZ;

with OZ a nowhere vanishing vector field tangent to M and Of a smooth function on yM .
We will show that OZ defines a vector field Z on M . From

Œ�; OZ�D�d Of .�/�C Œ�;��D�d Of .�/� � yr� �D�d Of .�/� ��D�.d Of .�/C Of /� � OZ;

with Œ�; OZ� being tangent to M , we get, on the one hand, that

d Of .�/C Of D r@r . Of /C Of D 0

and, on the other, that
Œ�; OZ�C OZ D 0:

The first equation shows that Of D 1
r
f , with f a function on M , and the second that

OZ D 1
r
Z, with Z D r OZ a vector field on M , i.e., Œ�; Z� D 0. Hence, we have

� D
1

r
.f � CZ/:

Differentiating in direction of X 2 TM , by (2.2), we get

0 D r yrX� D .df .X/C g.X;Z//� C f X CrXZ;

which shows that Z D �grad.f /, where grad denotes the gradient with respect to g, and

(3.2) rZ D �f Id:

Hence, the distribution Z? on M is integrable and its leafs are given by the level sets
of f . The vector field Z is not only a gradient but also a conformal vector field, since
from (3.2), we compute

LZ g D �2fg:

Note also that onMreg D yMreg \M , the vector fieldZ is transversal to the level sets of f .
This follows from df .Z/D g.grad.f /;Z/D�g.Z;Z/D�f 2. Hence, locally onMreg,
the metric g is given as

g D
.df /2

f 2
C f 2g0;

where c2g0 is the metric g restricted to a level set ¹f D cº. Setting s D logjf j and using
Proposition 3.3, this equation proves the statement in the theorem.

The local geometry described in this theorem is summarised in diagram (1.3) in the
introduction. We also have the following global result.

Theorem 3.5. Let . yM; yg/ be a time-like cone over a simply connected and space-like
complete semi-Riemannian manifold .M; g/. Assume that . yM; yg/ admits a parallel null
line L which is nowhere perpendicular to � . Then . yM; yg/ is isometric to the double warped
extension . zM; zg/ of a semi-Riemannian manifold .M0; g0/ and .M; g/ is isometric to the
exponential extension of .M0; g0/, cf. Definition 3.2.
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Proof. Since M (and thus yM ) is simply connected, the flat line bundle L (see Proposi-
tion 3.1) admits a parallel section �¤ 0. By assumption, the function yg.�; �/ has no zeros.
As in the proof of Theorem 3.4, we can thus write

� D
1

r
.f � CZ/

for a nowhere vanishing function f andZ D�grad.f / onM DMreg. ThenZ0 D 1
f
Z is

a space-like geodesic unit vector field, as follows from g.Z;Z/ D f 2 and equation (3.2):

rZZ
0
D �

df .Z/

f 2
Z �Z D 0:

From the space-like completeness assumption, we conclude that Z0 is complete, giving
rise to a global diffeomorphism M ' R �M0 under which the metric takes the form
g D ds2 C e2sg0.

Remark 3.6. The assumption that L is nowhere perpendicular to � in Theorem 3.5 cannot
be dropped. In fact, the universal covering of anti-de Sitter space is simply connected and
complete but any parallel line distribution over the time-like cone is somewhere perpen-
dicular to � . In fact, a complete Lorentzian metric of constant negative curvature cannot
be globally written in the form ds2 C e2sg0, since the latter metric is incomplete, see
Proposition 2.5 of [2]. Locally, it admits such description, where the Lorentzian metric g0
is moreover flat.

In the following we will study metrics of the form zg D 2dudv C u2g0. For brevity,
we will drop the index 0 at g0.

4. Metrics of the form zg D 2dudv C u2g

4.1. Levi-Civita connection, curvature and holonomy

Let g be a semi-Riemannian metric (of signature .t; s/) on a manifold M of dimension n.
We want to study the geometry and the holonomy of metrics of signature .t C 1; s C 1/
of the form

(4.1) zg D 2dudv C u2g;

from now on to be considered on the maximal domain zM WD RC � R �M � RC �
R� �M . Such metrics admit a 2-dimensional solvable group of homotheties given by
.u; v; p/ 7! .eru; erv C s; p/. Its infinitesimal generators are the parallel null vector
field @v and the homothetic vector field U D u@u C v@v .

There are obvious inclusions ofM D ¹1º � ¹0º �M � zM , TM � T zM and �.TM/�

�.T zM/. Using these identifications, the Levi-Civita connection of zg can be expressed by

(4.2) zrXY D rXY � ug.X; Y /@v and zrX@u D
1

u
X;

with X 2 TM , Y 2 �.TM/, r the Levi-Civita connection of g, and all other derivatives
either vanish or they are determined by the vanishing of the torsion of r. Note that the
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homothetic vector field U D u@u C v@v satisfies zrU D Id. Moreover, for the curvature
of zg, one computes that

(4.3) @v zR D @u zR D 0; zR.X; Y /Z D R.X; Y /Z for all X; Y;Z 2 TM;

where R is the curvature tensor of .M; g/. Note that this implies, for an arbitrary tensor
field Q, that

(4.4) zr@u
zrXQ D zrX zr@uQ for all X 2 �.TM/.

For the derivatives of zR, we get the following formulae, which determine all possible
derivatives. First we observe that

(4.5) .zr@u
zR/.@u; X/ D 0;

for all X 2 TM . For the q-th derivative in @u-direction, we compute

(4.6) .zr@u � � �
zr@u
zR/.X; Y /Z D

.�1/q.q C 1/Š

uq
R.X; Y /Z:

Moreover, a simple induction shows

.zrX1 � � �
zrXp
zR/.X; Y /Z D .rX1 � � � rXpR/.X; Y /Z(4.7)

�u

pX
iD1

.rX1

i
"
� � � rXpR/.X; Y;Z;Xi /@v;

for allXi ;X;Y;Z;W 2 TM , where the symbol
i
": : : indicates the omission of the i th term.

In general, a straightforward computations shows the following.

Proposition 4.1. The .p C q/th derivative of zR is determined by the relations

@v zr
k zR D 0; .zr@u

zrX1 � � �
zrXp
zR/.Y;Z/.W / D .zrX1

zr@u
zrX2 � � �

zrXp
zR/.Y;Z/.W /;

and the formula

.zr@u � � �
zr@u
zrX1 � � �

zrXp
zR/.X; Y /Z

D
c.p; q/

uq

�
.rX1 � � � rXpR/.X; Y /Z � u

pX
iD1

.rX1

i
"
� � � rXpR/.X; Y;Z;Xi /@v

�
;

where c.p; 0/ D 1 and c.p; q/ D .�1/q.p C 2/ � � � .p C q C 1/ when q � 1.

Our aim is to study the holonomy of metrics zg D 2dudvC u2g. Since @v is a parallel
vector field on . zM; zg/, the holonomy of . zM; zg/ is contained in the stabiliser of the vec-
tor @v at a point. By splitting T zM D R@v ˚ TM ˚ R@u, where span¹@v; @uº D TM?,
and fixing an orthonormal basis in TpM , we can identify so.TpM;g/' so.t; s/ and have
hol.M; g/ � so.t; s/. Hence, we can identify the stabiliser of @v in so.t C 1; s C 1/ with
so.t C 1; s C 1/@v D so.t; s/ ËRt;s , and we get that

(4.8) hol. zM; zg/ � so.t; s/ ËRt;s D

´0@0 g.w; �/ 0

0 A �w

0 0 0

1A ˇ̌̌̌ˇ A 2 so.t; s/; w 2 Rt;s
µ
;
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where the matrices are with respect to the splitting T zM D R@v ˚ TM ˚ R@u and the
identification TpM D Rt;s . With these identifications, there are two projections

prso.t;s/W hol. zM; zg/! so.t; s/; prRt;s W hol. zM; zg/! Rt;s;

to the linear part A and the translational part w in (4.8) of so.t C 1; s C 1/@v D so.t; s/ Ë
Rt;s . Since derivatives of the curvature are contained in the holonomy algebra, Proposi-
tion 4.1 implies that

(4.9)

prso.t;s/

�
zr
q

@u
zrX1 � � �

zrXp
zR/.Y;Z/

�
D

c

uq
.rX1 � � � rXpR/.Y;Z/;

prRt;s

�
zr
q

@u
zrX1 � � �

zrXp
zR/.Y;Z/

�
D

c

uq�1

pX
iD1

.rX1

i
"
� � � rXpR/.Y;Z/Xi ;

where Xi ; Y;Z 2 TpM and c is a nonzero constant.
A first description of the holonomy of . zM; zg/ was obtained in [24]. This description

is the first part of the following proposition.

Proposition 4.2 (Theorem 4.2 of [24]). Let g be a semi-Riemannian metric on M with
holonomy algebra hol.g/ and zg the metric zg D 2dudv C u2g on RC �R �M . Then

hol.zg/ � hol.g/ ËRt;s � so.t; s/ ËRt;s D so.t C 1; s C 1/@v

and
prso.t;s/.hol.zg// D hol.g/:

Moreover, if .M; g/ admits a nonzero parallel vector field X , then

hol.zg/ � hol.g/ ËX?;

where X? � TpM denotes the subspace orthogonal to Xp with respect to g.

Proof. The proof of the first part of the proposition was given in [24] and uses equa-
tions (4.2) to compute explicitly the parallel transport in . zM; zg/. Indeed, let z
 W Œt0; t1�! zM

be a piecewise smooth curve given by z
.t/ D .u.t/; v.t/; 
.t// with a curve 
 in M .
Let Y.t/ be a parallel vector field along 
 with respect to r and tangential to M . Then
one checks that the vector field

zY .t/ D
1

u.t/
Y.t/C f .t/ � @v

is parallel with respect to zr along z
 , where f .t/ D
R t
t0
g
.s/. P
.s/; Y.s// ds. In particular,

the parallel transport of Z 2 T.u.t0/;v.t0/;
.t0//M along z
 is given by

zPz
 .Z/ D
1

u.t1/
P
 .Z/C

� Z t1

t0

g
.t/. P
.t/;P
 jŒt0;t�.Z// dt
�
@vjz
.t1/:

This implies that for a loop z
 starting and ending at .u; v; p/ 2 zM , we have that

prso.t;s/.
zPz
 / D

1

u
P
 ;

which shows that prso.t;s/.hol.zg// D hol.g/.
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For the second part, in the case where .M; g/ admits a parallel vector field X , the
statement follows from the Ambrose–Singer holonomy theorem and the second equation
in (4.9) as .rX1 � � � rXpR/.Y;Z;Xi ; X/ D 0 for all Xi 2 TM if X is parallel.

Note that this does not establish the inclusion hol.g/ � hol.zg/. Hence, for a metric
of the form zg D 2dudv C u2g, this result allows for the possibility that hol.zg/ is not
completely determined by hol.g/. Indeed, for the space of translations in hol.zg/

T WD hol.zg/ \Rt;s;

we have the following possibilities:
(1) T D Rt;s: In this case the holonomy of zg is completely determined by the holo-

nomy of g and we have hol.zg/ D hol.g/ ËRt;s .
(2) T 6D Rt;s: In this case we can distinguish two situations:

(a) hol.g/ � hol.zg/, in which case there is a subspace of translations T ¨ Rt;s

such that hol.zg/ D hol.g/ Ë T ,
(b) hol.g/ 6� hol.zg/.

In both cases in (2), it seems as if hol.g/ does not determine hol.zg/ completely and that
further knowledge about the geometry of g is needed in order to decide whether (a) or (b)
occur, to determine T , etc. In Sections 5 and 6 we will study these questions further, first
purely algebraically and then using geometric properties of zg. But first we will give some
examples.

4.2. Locally symmetric spaces and other examples

4.2.1. Locally symmetric spaces. Here we consider manifolds . zM; zg/ that arise via the
construction (4.1) from semi-Riemannian locally symmetric spaces .M; g/.

Theorem 4.3. Let .M; g/ be a semi-Riemannian locally symmetric space, i.e., a semi-
Riemannian manifold withrRD 0. For .M;g/, we consider the metric zgD 2dudvCu2g
on zM D RC �R �M . Then

hol zp. zM; zg/ D holp.M; g/ Ë T;

where T D holp.M; g/V , with V D TpM and zp D .1; 0; p/ 2 zM .

Proof. As a consequence of the Ambrose–Singer theorem and rR D 0, we have that

(4.10) holp.M; g/ D span
®
R.X; Y /jp W X; Y 2 TpM

¯
:

The curvature zR of . zM; zg/ satisfies equation (4.3), which, together with equation (4.10),
shows that gD hol.M;g/ is contained in zgD holp. zM; zg/. Moreover, by Proposition 4.1,
we have that

.zr@u � � �
zr@u
zrX1
zR/.X; Y /Z D

c

uq�1
R.X; Y;Z;X1/@v;

for a nonzero constant c and X; Y; Z; X1 2 TM , and all other derivatives of zR are zero.
This implies the claim.
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Corollary 4.4. Let .M; g/ be a semi-Riemannian locally symmetric space, which is loc-
ally the product of (non-flat) irreducible symmetric spaces. Then

hol zp. zM; zg/ D holp.M; g/ Ë TpM:

Example 4.5. The following example shows that Corollary 4.4 does not extend to in-
decomposable symmetric spaces such as the Cahen–Wallach space of dimension n D
mC 2,

.M; g/ D
�
Rn; gCW D 2dx dz C

mX
i;jD1

�ijy
iyj dz2 C

mX
iD1

.dyi /2
�
;

where .x; y1; : : : ; ym; z/ are global coordinates on RmC2 and where S D .�ij / is a
constant symmetric matrix with det.S/ 6D 0. In this case, we have hol.M; g/ D Rm �
so.1; m C 1/@x D so.m/ Ë Rm and T D span.@x ; @1; : : : ; @m/, where @i D @=@yi . We
will explain these Lie algebras in more detail later on.

4.2.2. pp-waves and plane waves. The pp-waves are Lorentzian manifolds that are gen-
eralisations of Cahen–Wallach spaces. Again we consider M D Rn D RmC2 with global
coordinates .x; y1; : : : ; ym; z/ and f a function f D f .y1; : : : ; ym; z/ of y1; : : : ; ym

and z but not of x. Then a general pp-wave metric on RmC2 is given by

(4.11) g D 2dx dz C 2f .y1; : : : ; ym; z/ dz2 C
mX
iD1

.dyi /2:

The Levi-Civita connection and the curvature are determined by

r@x D 0; r@i @j D 0; r@z@i D @if @x ; r@z@z D @zf @x �

mX
iD1

@if @i ;

and
@x R D 0; R.@i ; @j / D 0; R.@i ; @z ; @z ; @j / D �@i@jf:

In the basis .@x ; @1; : : : ; @m; @z � f @x/ the metric is given by

� D

0@0 0 1

0 1m 0

1 0 0

1A;
and we can write the curvature and its derivatives as endomorphisms in so.�/ as

.rX1 � � � rXpR/.@i ; @z/(4.12)

D

0@0 .X1 � � �Xp@i@j .f //
m
jD1 0

0 0 �.X1 � � �Xp@i@j .f //
m
jD1

0 0 0

1A;
where the Xi are constant vector fields on M D Rn. As for Cahen–Wallach spaces, their
holonomy algebra is contained in (and equal to, if the Hessian @i@jf of f is invertible)
Rm � so.1;mC 1/@x and hence abelian.
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Now we consider the semi-Riemannian manifold . zM; zg/ of signature .2;mC 2/ for a
given pp-wave .M; g/ of dimension n D mC 2. Then, by setting

Aqrk1���ks i WD .
zr
q

@u
zr
r
@z
zr@k1
� � � zr@ks

zR/.@i ; @z/;

equations (4.9) in this case are

(4.13)

prso.1;n�1/.Aqrk1���ks i / D
c

uq

0@0 .@k1 � � � @ks@i@j f
.r//mjD1 0

0 0
:::

0 0 0

1A ;
prR1;n�1.Aqrk1���ks i /D

c

uq�1

�
s@k1 � � � @ks@if

.r/@xC

mX
jD1

@k1 � � � @ks@i@jf
.r�1/@j

�
:

where f .r/ denotes the r-th derivative of f with respect to the coordinate z. This shows
that hol. zM; zg/ � hol.M; g/ Ë @?x , with @? D span.@x ; @1; : : : ; @m/, as claimed in Pro-
position 4.2. In general, these projections could be coupled to each other, but for a special
case, we can say more as follows.

Proposition 4.6. Let .M; g/ be a pp-wave as in (4.11) but with the condition that f does
not depend on z, i.e., f D f .y1; : : : ; yn/ and such that det.@i@jf / 6D 0 at one point or,
more generally, such that at one point,

(4.14) span
®
d.@k1 � � � @kpf / j p � 1; k1; : : : ; kp 2 m

¯
D .Rm/�;

where m D ¹1; : : : ; mº. Then

hol. zM; zg/ D hol.M; g/ Ë @?x :

Proof. We evaluate formulae (4.9) for r D 1. Since f is independent of z, we have f 0D 0,
and hence

prso.1;mC1/

�
.zr@z
zr@k1
� � � zr@kp

zR/.@i ; @z/
�
D 0

and

prR1;mC1

�
.zr@z
zr@k1
� � � zr@kp

zR/.@i ; @z/
�
D

mX
jD1

@k1 Š � � � @kp@i@jf @j :

If det.@i@jf / 6D 0 (or if (4.14) holds at one point), this shows that span.@1; : : : ; @m/ �
hol. zM; zg/\R1;mC1. This space, however, is not invariant under hol.M;g/ and is mapped
under the adjoint representation in hol. zM; zg/ to R@x , so that we have hol. zM; zg/ D

hol.M; g/ Ë @?x .

This proposition can be clearly generalised to functions f that are polynomial, say of
degree d , in z (and have arbitrary dependence on the yi ). It suffices to replace r D 1 in
the proof with r D d C 1 and the condition on f by the corresponding condition on f .d/.
It does not hold, however, for general f as the following example shows.

Example 4.7. Let f .y; z/ D ezy2 and g a plane wave metric1 on R3 defined by f ,

g D 2dx dz C ezy2dz2 C dy2:

1Plane waves are pp-waves for which the function f is a quadratic polynomial in the yi ’s with z-dependent
coefficients, i.e., f .y1; : : : ; ym; z/ D

Pm
i;jD1 fij .z/y

iyj , with .fij .z// a symmetric matrix of functions
of z 2 R.
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Its curvature and derivatives thereof are given by equation (4.12) as follows:

r@yR D 0; .r
.r/

@z
R/.@y ; @z/ D 2

0@0 ez 0

0 0 �ez

0 0 0

1A DW A.z/;
for all r � 0. Its holonomy algebra is 1-dimensional. When we now consider the metric zg,
formula (4.13) shows that

.zr
q

@u
zr
r
@z
zR/.@y ; @z/ D

c

uq

0@0 2u ezdy 0

0 A.z/ �2u ez@y
0 0 0

1A
and

.zr
q

@u
zr
r
@z
zr@y
zR/.@y ; @z/ D

2c

uq�1
ez @x ;

with all other derivatives of the curvature being zero. Since zg is analytic, its holonomy
is determined by the derivatives of the curvature at a point, say at v D x D y D z D 0
and u D 1, and it is spanned by the two matrices arising from .zr

q

@u
zrr
@z
zR/.@y ; @z/ and

.zr
q

@u
zrr
@z
zr@y
zR/.@y ; @z/,0BBBB@

0 0 1 0 0

0 0 1 0 0

0 0 0 �1 �1

0 0 0 0 0

0 0 0 0 0

1CCCCA;
0BBBB@
0 0 0 1 0

0 0 0 0 �1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1CCCCA:
This shows that the holonomy of zg is abelian and is neither purely translational nor a
semi-direct sum of hol.g/ with a Lie algebra of translations.

4.3. Lift of parallel objects

In this section we analyse how parallel objects on .M; g/, such as vector fields and vector
distributions, lift to . zM; zg/. First we analyse how certain vector fields on M lift to zM .

Lemma 4.8. Let � be a homothetic gradient vector field on .M;g/, i.e., a vector field with

(4.15) r� D a Id;

for a constant a 2 R and such that �[ is not only closed but exact, �[ D df for a smooth
function f . Then the vector field z�, defined by

z� D f @v C
1

u
� � a@u;

is parallel for zr. In particular, if � is parallel for .M; g/, then z� D f @v C 1
u
� is parallel

for . zM; zg/.

Proof. First note that condition (4.15) implies that �[ is closed, i.e., locally we can always
find a function f such that �[ D df . Then we compute

zr@u
z� D �

1

u2
� C

1

u
zr@u � D 0;
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because of (4.2). Moreover, for every X 2 TM , we have that

zrX
z� D df .X/@v C

a

u
X � g.�;X/@v � azrX@u D 0;

again by (4.2) and df D �[.

In a similar way we can prove:

Lemma 4.9. Let L be a parallel null line bundle on .M; g/. Then the totally null 2-plane
bundle P on . zM; zg/ spanned by @v and L is parallel for zr.

Proof. This follows from applying equation (4.2) to a recurrent null vector field � span-
ning L and @v being parallel for zr.

The following proposition will be used in Section 6 for the proof of Theorem 1.3.

Proposition 4.10. Let .M; g/ be a manifold with parallel null line bundle L. Assume that
the metric zg D 2dudv C u2g admits a recurrent vector field in the span of @v and L that
is not a multiple of @v . Then locally g admits a parallel null vector field in L.

Proof. By Lemma 2.9, we can assume that L is spanned by a recurrent gradient vector
field � D grad.f /, i.e., with �[ D df and r� D � ˝ �, where � is a multiple of �[. Then
the vector field

z� D f @v C
1

u
�

satisfies

zr@u
z� D 0;(4.16)

zrX
z� D

1

u
�.X/� D �.X/.z� � f @v/ for X 2 TM:(4.17)

Without loss of generality, the assumption implies that zg admits a recurrent vector field of
the form � D z� C h@v for a function h. It defines a one-form ˛ by zr� D ˛ ˝ �. Then the
fact that @v is parallel and equation (4.16) immediately show that

@uh D ˛.@u/ D @vh D ˛.@v/ D 0:

Equation (4.17) implies that

zrX� D �.X/z� C .dh.X/ � f �.X//@v:

Hence, the equation zr� D ˛ ˝ � implies that ˛ D � and

dh D .f C h/�:

Differentiating this and taking into account that df ^ � D dh ^ � D 0 gives

0 D .f C h/ d�:

If d� 6D 0 this implies h D �f . This contradicts the above dh D .f C h/� , as it would
imply that h and hence f are constant. So we must have d� D 0. This however implies
that one can rescale � to a parallel null vector field.
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Finally, for parallel distributions of .M; g/, we get the following.

Lemma 4.11. Let W � TM be a parallel distribution on .M; g/. Then the distribution
R@v ˚W � T zM is parallel.

Proof. The distribution W is locally spanned by vector fields W1; : : : ; Wk . Then one
checks that, for zWi WD @v C 1

u
Wi , we have zr@u zWi D 0 and

zrX zWi D �g.X;Wi /@v C
1

u
rXWi 2 R@v ˚W for all X 2 TM .

5. Results about indecomposable subalgebras of so.t C 1; s C 1/

In this section we will prove several algebraic results about indecomposable subalgebras
of so.t C 1; s C 1/ stabilising a null line or a null vector. We will use these results in the
next section when studying further the holonomy of metrics of the form zgD 2dudvCu2g.

5.1. Indecomposable subalgebras stabilising a null vector

In this section we will fix some notations and observe some fundamental facts about
indecomposable subalgebras of so.t C 1; s C 1/ stabilising a null vector. In particular,
in this section we will see why the vector space Z1.g; V / of 1-cocycles of a Lie algebra g
with values in a g-module V comes into play. Recall that

(5.1) Z1.g; V / WD
®
'Wg� ˝ V j '.ŒX; Y �/ D X '.Y / � Y '.X/ for all X; Y 2 g

¯
and

H 1.g; V / WD
Z1.g; V /

dV
;

where
dWV ! Z1.g; V /; dv.X/ WD Xv; v 2 V; X 2 g:

Let zV be a semi-Euclidean vector space of signature .t C 1; s C 1/ with metric zg and
let e˙ be two null vectors such that zg.e�; eC/ D 1. We split zV D L� ˚ V ˚ LC, with
L˙ DR � e˙ and V D .L�˚LC/?, which is equipped with the metric g D zgjV�V . With
respect to this splitting, the stabiliser of L� in so. zV /, denoted by so. zV /L� , is given as

so. zV /L� D .R˚ so.V // Ë V

D

´
.a;X; v/ WD

0@a �v[ 0

0 X v

0 0 �a

1A ˇ̌̌̌
ˇ a 2 R; X 2 so.V /; v 2 V

µ
:

The action of so. zV /L� on zV D L� ˚ V ˚ LC Š R˚ V ˚R is given by

(5.2) .a;X; v/ �

0@ru
s

1A D 0@ar � g.v; u/XuC sv

�as

1A:
Furthermore, we record the formula for the Lie bracket in so. zV /L� :

(5.3) Œ.a; X; v/; .b; Y;w/� D .0; ŒX; Y �; .X C a/w � .Y C b/v/:
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The stabiliser of the vector e� is given as so. zV /e� D so.V /Ë V , i.e., it is obtained by
requiring a to be zero in the above formulae. Note that, the adjoint action of so. zV /e� D
so.V / Ë V preserves the ideal V , whereas the linear action on zV does not preserve the
subspace V � zV .

Furthermore, note that there are natural projections prV and prso.V / on V and so.V /.
For a subalgebra zg � so.V / Ë V , we call g WD prso.V /.zg/ the linear part of zg and T WD
zg \ V the translations in zg. Note that zg � g Ë V but, in general, g 6� zg.

Proposition 5.1. Let zg � so. zV /e� D so.V / Ë V be a subalgebra, g its linear part and T
the translations in zg. Then:

(1) T is an ideal in zg.

(2) T � V is invariant under g, and consequently g acts on V=T .

(3) We have an inclusion of Lie algebras zg=T � g Ë V=T .

(4) There is a ' 2 Z1.g; V=T / such that zg=T D ¹.X; '.X// j X 2 gº.

(5) If T has a g-invariant complement T 0, then there is a ' 2 Z1.g; T 0/ such that

zg D h' Ë T; where h' D ¹.X; '.X// 2 zg j X 2 gº:

Proof. Items (1), (2) and (3) are obvious from the definitions. For item (4), we define
'.X/ D vmod T if .X; v/ 2 zg. Since .X; v/ 2 zg and .X;w/ 2 zg implies that v �w 2 T ,
this map is well defined. From equation (5.3), we see that ' is an element in Z1.g; V=T /.
Finally, item (5) follows easily from item (4) using the identification V=T D T 0 as g-
modules.

Theorem 5.2. Let zg � so. zV /e� D so.V / Ë V be a subalgebra acting indecomposably
on zV . Let g � so.V / and T � V be, respectively, the linear part and translational ideal
of zg.

(1) If T has a g-invariant complement T 0 andH 1.g; V /D 0, then, up to conjugation
in so.V / Ë V , zg D g Ë T and T ? is degenerate or zero. In particular, if T is
nondegenerate and H 1.g; V / D 0, then T D V .

(2) If T is degenerate such that L D T \ T ? is a null line (this is the case, for
example, when T is degenerate and g Lorentzian) and if the representation of g
on V=L? satisfies thatH 1.g; V=L?/ D 0, then, up to conjugation in so.V / Ë V ,
zg preserves L.

Proof. (1) First assume V D T ˚ T 0 is a g-invariant decomposition. In virtue of Propos-
ition 5.1, zg D h' Ë T , for some ' 2 Z1.g; T 0/. Since Z1.g; V / D dV and Z1.g; T 0/ �
Z1.g; V /, we find a v 2 V such that

'.X/ D Xv for all X 2 g.

Then every element .X; '.X// D .X;Xv/ 2 h' can be conjugated to X by a conjugation
with the translation given by v, i.e., with

(5.4) Av D

0@1 �v[ �1
2
g.v; v/

0 1 v

0 0 1

1A:
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Indeed, for each X 2 g, we get

Av

0@0 �.Xv/[ 0

0 X Xv

0 0 0

1AA�1v D
0@0 0 0

0 X Xv

0 0 0

1AA�v D
0@0 0 0

0 X 0

0 0 0

1A ;
using that X 2 so.V /. This shows that after conjugation with a translation, we have that
g � zg. Hence, zg D g Ë T , where T D zg \ V . Note that this already implies that T is
nonzero, because otherwise zg D g � so.V /, which contradicts indecomposability. Since
T is g invariant, also the orthogonal complement T ? of T in V is g invariant. Then equa-
tion (5.2) shows that T ? � zV is also invariant under the action of T � so. zV / on zV , and
therefore T ? is zg-invariant. Hence, by indecomposability of zg, T ? has to be degenerate
or zero.

(2) Assume that T is degenerate such that L WD T \ T ? is a null line. By item (2) of
Proposition 5.1,L is invariant under g. Moreover, by item (5) of Proposition 5.1, there is a
' 2 Z1.g; V=T / such that zg=T D ¹.X; '.X// j X 2 gº � g Ë V=T . Hence, if z'Wg! V

is a lift of ', we can write zg D hz' C T , where hz' D ¹.X; z'.X// 2 g Ë V j X 2 gº.
Note that, since T may not have an invariant complement, in general, we do not have that
z' 2 Z1.g; V / and neither that hz' is a subalgebra.

Let L? be the hyperplane in V that is orthogonal to L. We have L � T � L?, and
hence, by formula (5.2), L is annihilated by the translations T in zg D hz' C T . It remains
to show that L is invariant under hz' , unless g acts trivially on L. For this we consider the
projection � WV=T � V=L? and distinguish two cases:

Case 1: � ı 'Wg! V=L? is zero. This means that the image of the lift z' is contained
in L?. This, however, implies that L is not only invariant under g but also under zg D
hz' C T . Indeed, from formula (5.2), it follows, for an element .X; z'.X// 2 hz' and ` 2 L,
that .X; z'.X// � `D X � `� g.z'.X/; `/e� D X � ` 2 L, since z'.X/ 2 L? and g leaves L
invariant. Hence, in this case L is zg-invariant.

Case 2: � ı 'W g! V=L? is not zero, i.e., the image of z' is not contained in L?. In
this case, similarly to (1), we try to find a conjugation with a translation that shows that L
is invariant under hz' (after conjugation). For v 2 V to be determined, we consider the
associated translation Av as in equation (5.4). Then, as in case 1, for an element

.X; z'.X// D

0@0 �.z'.X//[ 0

0 X z'.X/

0 0 0

1A;
we get that

(5.5) Av.X; z'.X//A
�1
v D

0@0 �.z'.X/ �Xv/[ 0

0 X z'.X/ �Xv

0 0 0

1A:
Fix ` 2 L and Ò 2 V such that g.`; Ò/ D 1. Then define 0 6D � 2 g� and � 2 g� by

z'.X/D �.X/ ÒmodL? andX`D��.X/`, forX 2 g. This is summarised in .X; z'.X// �
`D��.X/e� � �.X/`. It also implies thatX Ò D �.X/ Òmod L?, i.e., �Wg! gl.V=L?/
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is the induced representation of g on V=L?. Note that ' 2 Z1.g; V=T / induces the non-
zero element ' WD � ı ' 2 Z1.g; V=L?/. So H 1.g; V=L?/ D 0 implies that

'.X/ D X.c Òmod L?/ D cX Òmod L? D c�.X/ Òmod L?;

and thus z'.X/ D c�.X/ Òmod L? for some c ¤ 0.
Now, in equation (5.4), we set v WD c Ò. Taking into account that g. Ò; `/ D 1, for-

mula (5.5) shows that

Av.X; z'.X//A
�1
v � ` D �.�.X/ � c�.X//e� � �.X/` D ��.X/`:

This shows that after conjugation with a translation the null line L is invariant under hz'
and hence under zg.

Example 5.3. Consider g D Rn � so.n/ Ë Rn D so.1; nC 1/e0 , where e0 2 R1;nC1 is
a null vector. Then, for T D R � e0, one can check that zg D g Ë T � so.2; nC 2/e� is
indecomposable. Similarly, for T D span.e0; : : : en/, zg D g Ë T is indecomposable. Note
that the latter is the holonomy algebra of a . zM; zg/ for a Cahen–Wallach space .M; gCW/

of dimension nC 2 presented in Example 4.5.

5.2. Indecomposable subalgebras with completely reducible linear part

The main result of this section is Theorem 5.5, which is a generalisation to arbitrary sig-
nature of a result in [8] for an indecomposable stabiliser in so.1; nC 1/ of a null vector.2

It gives a description of all indecomposable subalgebras zg � so. zV /e� D so.V / Ë V with
completely reducible linear part and non-degenerate translational part.

The main results of this and the next section use a result about Lie algebra cohomo-
logy,3 which we will present first. In the following, for a g-module V , we denote by V g

the g invariant vectors,

V g
D
®
v 2 V j Xv D 0 for all X 2 g

¯
:

Theorem 5.4 (Theorem 13 of [22], Theorem 2.28 of [31]). Let g be a Lie algebra and V
a g-module, both finite-dimensional and over a field F of characteristic zero. Assume that
there is an ideal b in g such that:

(1) there is a subalgebra h in g such that g D h Ë b, and

(2) V and g are completely reducible as h-modules.

Then
Hp.g; V / '

X
iCjDp

H i .h;F/˝H j .b; V /g:

In particular, when p D 1,

(5.6) H 1.g; V / ' H 1.b; V /g C .h=Œh; h�/� ˝ V g:

2We point out that in [8] a similar result for the stabiliser in so.1; nC 1/ of a null line is given.
3We do have self-contained proofs of Theorems 5.5 and 5.7 that do not use Theorem 5.4, but for the sake of

brevity we do not present them here as they are longer.
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The original version of this theorem is due to Hochschild and Serre, Theorem 13
of [22], in which the existence of h was not assumed but that g=b is semisimple. Solleveld
proved the generalisation that is given here in his Master’s thesis, Theorem 2.28 of [31].
Equation (5.6) for p D 1 follows from the facts that H 0.h;F/ D F , H 0.b; V / D V b and
that H 1.h;F/ is isomorphic to .h=Œh; h�/�.

Now we turn to the main result of this section. We use the same conventions as in
Section 5.1.

Theorem 5.5. Let zg � so. zV /e� D so.V / Ë V be an indecomposable subalgebra which
satisfies the following properties:

(1) g D prso.V /.zg/ acts completely reducibly on V , and

(2) the translational ideal T D zg \ V is non-degenerate.

Under these assumptions, let g D z˚ g0 be the decomposition of g into its centre and the
semisimple derived Lie algebra. Then g acts trivially on T ? and T 6D 0. Moreover, there
is a linear map 'W g! T ? with 'jg0 D 0 such that after conjugation in so.V / Ë V , zg is
of the form zg D h' Ë T , where

(5.7) h' D
®
.X; '.X// 2 so.V / Ë V j X 2 g

¯
;

and the image of ' is co-null in T ?, i.e., .im'/? � T ? is totally null.

The proof of this theorem is based on a lemma which will follow from Theorem 5.4.
Since V is a completely reducible module, g is reductive and hence g D z˚ g0, where
g0D Œg;g� is semisimple, z is the centre of g and we denote the projection to z by �zWg! z.

Lemma 5.6. Let V be a semi-Euclidean vector space and let g � so.V / be a Lie subal-
gebra which acts completely reducibly on V . Then

Z1.g; V / D dV ˚ �.Z1.z; V g//;

where z the centre of g and �WZ1.z; V g/! Z1.g; V / is the inclusion �.'/ D ' ı �z with
�zWg! z. In particular,

H 1.g; V / ' H 1.z; V g/:

Proof. First note that, for ' 2 Z1.z; V g/ D Hom.z; V g/, �.'/ is indeed a cocycle in
Z1.g; V /. Moreover, with V completely reducible, we have V g \ gV D ¹0º and hence
that

dV \ �.Z1.z; V g// D ¹0º:

It remains to show that
H 1.g; V / ' Z1.z; V g/:

But we can apply Theorem 5.4 to g, b D z and h D g0 to get, from equation (5.6),

H 1.g; V / ' H 1.z; V /g:

Therefore, it remains to show that H 1.z; V /g is isomorphic to Z1.z; V g/. We note that

H 1.z; V /g D
®
Œ'� 2 H 1.z; V / j ' 2 Z1.z; V / W 8X 2 g; 9v 2 V;X' D dzv

¯
;



D. Alekseevsky, V. Cortés and T. Leistner 1132

where dzW V ! Z1.z; V /, dzv D dvjz is the differential of z. Clearly, Z1.z; V g/ injects
into H 1.z; V /g by mapping a cocycle to its equivalence class in H 1.z; V /g, but we have
to show that this is surjective.

For this, note that if Œ'� 2 H 1.z; V /g, then ' 2 Z1.z; V / is such that for each X 2 g,
there is a vX 2 V such that

X'.Z/ D ZvX :

This defines a linear map O'Wg! V=V z by the relation

O'.X/ D vX C V
z:

Since Z 2 z, we have

ZvŒX;Y � D ŒX; Y �'.Z/ D Z.XvY � YvX /;

and so O' is a cocycle, i.e., O' 2 Z1.g; V=V z/. This induces a linear map

‰WH 1.z; V /g 3 Œ'� 7! Œ O'� 2 H 1.g; V=V z/;

which clearly has the kernel Z1.z; V g/. Therefore,

H 1.z; V /g=Z1.z; V g/ ' im.‰/ � H 1.g; V=V z/:

Now we use again equation (5.6) in Theorem 5.4 to get that

H 1.g; V=V z/ ' H 1.z; V=V z/g:

The last step in the proof is to show thatH 1.z; V=V z/D ¹0º. For this we setW WD V=V z

and we have to show that Z1.z; W / D dzW . The z-module W is an orthogonal sum of
2-dimensional indecomposable modulesWi andZ1.z;W /D˚iZ1.z;Wi /. Therefore, we
can assume without loss of generality thatW DW1 is 2-dimensional. Let us denote by I a
generator of the 1-dimensional Lie algebra so.W / such that I 2D � Id, �D˙1. Then there
exists 0¤ � 2 z� such that Xv D �.X/Iv for all X 2 z and v 2W . Given ' 2 Z1.z;W /,
we have

0 D X'.Y / � Y'.X/ D �.X/I'.Y / � �.Y /I'.X/;

for all X; Y 2 z. The latter equation implies that there exists a vector v 2 W such that

I'.X/ D �.X/v for all X 2 z.

This shows that ' D ��˝ Iv D �dzv 2 dW and hence that H 1.z; V=V z/ D ¹0º.
This implies that im.‰/ D ¹0º, and hence Z1.z; V g/ D H 1.z; V /g ' H 1.g; V /.

Now we are in a position to prove Theorem 5.5.

Proof of Theorem 5.5. From Proposition 5.1 we have that zg D h' Ë T , where h' is given
by equation (5.7), with ' 2 Z1.g; T ?/. It remains to verify that 'jg0 D 0. Lemma 5.6
shows that, up to conjugation of zg in so.V / Ë V by a translation in T ?, we have ' 2
�.Z1.z; T ? \ V g//. This shows that ' vanishes on g0 and takes values in T ? \ V g. The
g-invariant decomposition

T ? D .T ? \ V g/
?

˚ gT ?
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shows that the subspace gT ? � V is non-degenerate. Let us check that it is not only
invariant under g but also under zg. For this, it suffices to observe that, by our description
of zg and the fact that im ' � T ? \ V g, the translational part of any element of zg is
contained in .T ? \ V g/ ˚ T . Therefore, it is perpendicular to gT ?, which shows that
gT ? � V � zV is zg-invariant. Since zg is indecomposable, this proves that gT ? D 0.

Note that this implies that T 6D 0, because otherwise T ? D V , and hence g D 0 and
zg D T D 0, which contradicts the indecomposability of zg.

Finally, let .im'/? be the orthogonal space of im' in T ? and let W be a g-invariant
complement of im ' \ .im '/? in .im '/?. Then W is non-degenerate. Again it is not
only g-invariant but also zg-invariant because the translational part of any element in zg is
contained in .im'/˚ T andW � .im'/? � T ?. Since zg is indecomposable, this shows
that W D 0, and hence that .im'/? � im'.

5.3. Cohomology of indecomposable subalgebras in so.1; n C 1/

In this section we compute the 1-cocycles for subalgebras g of so.1; n C 1/ that act
indecomposably on V D R1;nC1. Such a subalgebra is either irreducible, in which case it
is equal to so.1; nC 1/, see [13], and hence H 1.g; V / D 0, or admits a parallel null-line
L D L� D Re�. That such a subalgebra belongs to one of the four types discussed in the
proof of Lemma 5.7 below, was proven in [8].

In the following, we will use equations (5.2) and (5.3) and the identifications in Sec-
tion 5.1 with . zV ; zg;V;g/ replaced by .V;g;V0; g0/. Note that g0D gjV0�V0 is the standard
Euclidean scalar product on V0 D Rn. We will use the standard decomposition V D
R � e� ˚ V0 ˚ R � eC and the notation g0 D prso.V0/

.g/, g00 D Œg0; g0�, z D z.g0/ for
a subalgebra g � so.V /L.

Theorem 5.7. Let V DR � e�˚ V0˚R � eC be the Minkowski space with null vectors e˙
and Euclidean vector space V0, and let g � so.V /L � so.V / be an indecomposable
subalgebra. Then

H 1.g; V / D 0;

or g annihilates e�.

Proof. First note that if dim.V / D 2, i.e., V0 D 0, then

g D so.1; 1/ D R
�
1 0

0 �1

�
;

and H 1.g; V / is clearly trivial.
If dim.V / � 3, then according to [8], any indecomposable subalgebra g of so.V /L,

belongs to one of four different types. Two of them annihilate e�, whereas the other two
act non-trivially on R � e�. The latter are given as follows, where z denotes the centre of
g0 D z˚ g00 with g00 D Œg0;g0� semisimple:

(1) g D .R˚ g0/ Ë V0. We can set

b WD .R˚ z/ Ë V0;

and then g=b D g00 is semisimple and acts completely reducibly on V D Re� ˚
V0 ˚ReC.
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(2) g D .hf ˚ g00/ Ë V0, with 0 ¤ f 2 z� and hf D ¹.f .Z/;Z/ j Z 2 zº � R˚ z.
Here we set

b WD hf Ë V0;
so that g=b D g00 acts again completely reducibly on V .

Now we apply Theorem 5.4 to g, the ideal b as given in the above and g00 D g=b.
Since g00 is semisimple, the second summand in (5.6) vanishes and we get

H 1.g; V / ' H 1.b; V /g:

In order to determineH 1.b; V /, we can apply Theorem 5.4 again, this time to b, the ideal
aD V0 and the subalgebra hDR˚ z in case (1) and hD hf in case (2). In both cases h is
abelian and acts completely reducibly on b and on V , so the assumptions of Theorem 5.4
are satisfied and we get

H 1.b; V / ' H 1.a; V /b C h� ˝ V b:

Since for both types of g, b scales e� and contains a D V0, we have that V b D ¹0º,
cf. (5.2). So, it remains to show that .H 1.a; V /b/g D H 1.a; V /g is trivial. Even though
a D V0 is abelian, we cannot apply Lemma 5.6 to find H 1.a; V /, because a does not
act completely reducibly on V . Instead, we first note that if dim.a/ D dim.V0/ D 1, then
Z1.a; V / D a� ˝ V , dV D a� ˝ .Re� ˚ V0/, and the line a� ˝ eC � Z1.a; V / pro-
jects isomorphically onto H 1.a; V /. From (5.2) we see that the action of an element
.a; X; v/ 2 g on H 1.a; V / is given by multiplication with �a. Since for both types of g
there are elements with a¤ 0, we conclude thatH 1.a;V /gD 0. Thus, we can assume that
dim.V0/ � 2. Then ' 2 Z1.a; V / splits into components ' D .'�; '0; 'C/ with respect
to V D R � e� ˚ V0 ˚ R � eC, with '˙ 2 a� and '0 2 V �0 ˝ V0. From (5.2) we see that
u 2 V0 D a acts on .v�; v; vC/ 2 V as

u � .v�; v; vC/ D .�u
>v; vCu; 0/:

Since a is abelian, the cocycle condition for ' yields

u>'0.v/ � v
>'0.u/ D 0; 'C.u/v � 'C.v/u D 0;

for all u; v 2 V0. Since dim.V0/ � 2, the second equation implies that 'C D 0. The first
equation implies that '0 is a symmetric endomorphism of V0. This shows thatZ1.a; V /D
V �0 ˚ S.V0/ and that

H 1.a; V / ' S0.V0/;

where S.V0/ and S0.V0/ denote the symmetric and the symmetric trace-free endomorph-
isms of V0, respectively. Hence, every element Œ'� 2 H 1.a; V /g can be represented by
a symmetric trace free-matrix S . Therefore, the equation that Œ'� is g-invariant, which
means that for every .a;X; v/ 2 g, there is a .w�; w;wC/ 2 V such that

.a;X; v/ � ' D d.w�; w;wC/;

becomes, by (5.2),

.a;X; v/.'.u// � '.Œ.a;X; v/; .0; 0; u/�/ D

0@ �v>Su

ŒX; S�u � aSu

0

1A D 0@�w>uwCu

0

1A;



Geometry and holonomy of indecomposable cones 1135

for all u 2 V0. This implies that

ŒX; S� D .wCIdC aS/:

Taking the trace yields wC D 0 and multiplying both sides by S and taking the trace gives

a tr.S2/ D tr.ŒX; S�S/ D 0:

Since we can chose a 6D 0 for both types, this implies that tr.S2/ D 0. With S symmetric,
we obtain that S D 0, hence H 1.a; V /g D ¹0º and consequently that H 1.g; V / D 0.

Remark 5.8. Similar arguments can be used to determine H 1.g; V / for the other two
types of indecomposable subalgebras of so.V /L, those that leave invariant the null vec-
tor e� (notations as in Lemma 5.7; for details about these subalgebras, see [8]). One of
them is of the form g D g0 Ë V0 and by applying to above arguments to b WD z Ë V0, one
can show that

H 1.g; V / D S0.V0/
g0 ˚ z� ˚ .V

g0
0 /�;

where S0.V0/g0 denotes the trace-free, symmetric matrices that commute with g0.
A similar statement holds for the remaining fourth type, where g D .hf ˚ g00/ Ë T0,

with 0 6D T0 ¨ V0 invariant under g0 such that T ?0 � ker.g0/? and

hf D ¹.0;Z; f .Z// j Z 2 zº; with f W z! T ?0 surjective.

Here one can apply the above strategy to b WD hf Ë T0. However, since the result is some-
what technical and we do not need it for what follows, we will not give the details here.

Finally, we study the two types of indecomposable subalgebras of so.1; nC 1/ that
stabilise the null line L but act non-trivially on L, i.e., the types considered in the previous
theorem.

Proposition 5.9. Let V D R � e� ˚ V0 ˚ R � eC be the Minkowski space with null vec-
tors e˙, and let g� so.V /L � so.V / be an indecomposable subalgebra stabilising a null
line L D Re� but acting non-trivially on L. Let � 2 g� be defined by the representation
of g on V=L?, i.e.,

.a;X; v/Œu� D �.a;X; v/Œu�; i.e., �.a;X; v/ D �a

(according to formula (5.2)). Then, every ' 2 Z1.g; V=L?/ � g� is a multiple of � or,
equivalently, Z1.g; V=L?/ D d.V=L?/, i.e., H 1.g; V=L?/ D ¹0º.

Proof. First we consider the type g D .R˚ g0/ Ë V0. Note that we do not exclude the
case V0 D 0, for which g D so.1; 1/. For a 6D 0, every ' 2 Z1.g; V=L?/ satisfies

0 D '.Œ.a; 0; 0/; .0; X; 0/�/ D �a'.0;X; 0/;

for all X 2 g0. Hence, 'jg0 D 0. Similarly, we get

a'.0; 0; v/ D '.Œ.a; 0; 0/; .0; 0; v/�/ D �a'.0; 0; v/;

for all v 2 Rn. Hence, 'jV0 D 0. This implies that ' is a multiple of �.
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Now we assume that g D .R�0 ˚ k/ Ë V0, where k D ker f ˚ g00 � z˚ g00 D g0 D
prso.n/g, f 2 z�, �0 D .1; Z0/ and Z0 2 z is a vector in the centre z of g0 such that
f .Z0/ D 1. In particular, dim.V0/ � 2. For X 2 k, we obtain

0 D '.Œ�0; .0; X; 0/�/ D �'.0;X; 0/;

i.e., 'jk D 0. Moreover, for all v 2 Rn, from the cocycle condition, we get

�'.0; 0; v/ D '.Œ�0; .0; 0; v/�/ D '.0; 0; .1CZ0/v/ D '.0; 0; v/C '.0; 0;Z0v/;

i.e., that

(5.8) '.0; 0;Z0v/ D �2'.0; 0; v/:

Applying equation (5.8) twice, one obtains

'.0; 0;Z20v/ D �2'.0; 0;Z0v/ D 4'.0; 0; v/:

Since Z0 2 so.n/, its square Z20 is diagonalisable with only nonpositive eigenvalues.
Hence, we get that 'jV0 D 0. This implies that ' is a multiple of �.

6. Holonomy of metrics zg D 2dudv C u2g

In this section we will use the geometric lifting properties of metrics of the form zg D
2dudv C u2g derived in Section 4 and the algebraic results of Section 5 in order study
the holonomy of zg. For cones over manifolds .M; g/ of arbitrary signature but with com-
pletely reducible holonomy, Theorem 5.5 has the following consequences.

Corollary 6.1. Let g be a semi-Riemannian metric of signature .t; s/ on a manifold M ,
the holonomy algebra hol.g/ of which acts completely reducibly. Consider the metric

zg D 2dudv C u2g

on zM D RC �R�M and assume that the holonomy zg WD hol.zg/ of zg acts indecompos-
ably, i.e., without a proper non-degenerate invariant subspace, and that the translational
ideal T WD zg \ V is non-degenerate. Then

hol.zg/ D hol.g/ Ë V:

Proof. First Proposition 4.2 gives that g D prso.t;s/.zg/ D hol.g/. Then Theorem 5.5
applied to zg shows that gT ? D 0. If T ? 6D ¹0º, then g admits a non-degenerate paral-
lel vector field which, according to Lemma 4.8, would lift to a non-degenerate parallel
vector field for zg. This is excluded by the assumption of indecomposability of zg.

As an aside, let us record the consequence of Theorem 5.5 for Lorentzian metrics of
the form zg D 2dudv C u2g. We have obtained this result in Section 9 of [2].

Corollary 6.2. Let g be a Riemannian metric in dimension n and zg D 2dudv C u2g a
Lorentzian metric. If the holonomy of zg acts indecomposably, then

hol.zg/ D hol.g/ ËRn:



Geometry and holonomy of indecomposable cones 1137

In the main result of this section we deal with metrics zg over Lorentzian metrics g.

Theorem 6.3. Let g be a Lorentzian metric on an n-dimensional simply connected mani-
foldM and zg D 2dudvC u2g of signature .2; n/ on RC �R �M . If the holonomy of zg
acts indecomposably, then

hol.zg/ D hol.g/ ËR1;n�1;

or g admits a parallel null vector field and zg admits two linearly independent parallel null
vector fields that are orthogonal to each other.

Proof. Set zg WD hol.zg/, g WD hol.g/ and V WD R1;n�1. Let T D zg \ V be the pure
translations in zg. We have to show that T D V , in which case we have that zg D g Ë V ,
or that g admits an invariant null vector. Hence, we assume from now on that T 6D V . By
Proposition 4.2, we have that zg � g Ë V with g D prso.1;nC1/.zg/ and T is g invariant.

Since g is a holonomy algebra, we can apply the Wu splitting theorem and obtain
g D g1 ˚ � � � ˚ gk and

V D R1;n�1 D V0 ˚
? V1 ˚

? V2 ˚
?
� � � ˚

? Vk ;

with gi acting trivially on Vj for i 6D j , and all the Vi ’s are non-degenerate, with V0 a
trivial representation and Vi indecomposable for i D 1; : : : ; k. Since we assume that zg
acts indecomposably, zg does not admit non-degenerate parallel vector fields. Therefore,
Lemma 4.8 implies that V0 D ¹0º. Hence, we can choose the Vi in a way that V1 is the
Minkowski space and indecomposable for g1, and the remaining Vi are Euclidean and
irreducible for gi . Note that for i D 2; : : : ; k, we have that gi � so.ni /, where ni D
dim.Vi /. Moreover, we can write

g Ë V D .g1 ˚ � � � ˚ gk/ Ë .V1 ˚ � � � ˚ Vk/ D .g1 Ë V1/˚ � � � ˚ .gk Ë Vk/:

Not only T but also Ti D zg \ Vi is g-invariant. Hence, we have, for i D 2; : : : ; k,
that Ti D ¹0º or Ti D Vi , and that T1 is degenerate, trivial or equal to V1. The same holds
for Pi D prViT containing Ti .

Since V1 is indecomposable but not necessarily irreducible, we have to consider sev-
eral cases for T .

Case 1: T is indefinite, i.e., of signature .1; dim.T / � 1/. In this case we have that
T \ V1 D V1 and that T ? is positive definite and hence a direct sum of irreducibles that
can be arranged such that T ? D V`C1 ˚ � � � ˚ Vk with 1 � ` � k � 1 (recall that T 6D ¹0º
and that we are working under the assumption T 6D V ). We apply Theorem 5.5 to the
following data.

We define zW WDRe�˚T ?˚ReC and a representation �W zg! so. zW /e� by �.X;v/D
.X jT? ; prT?.v//. Since T ? is positive definite, we have T \ T ? D ¹0º, so by its very
definition, �.zg/ satisfies that �.zg/ \ T ? D ¹0º. On the other hand, �.zg/ satisfies the
assumptions of Theorem 5.5. Hence, with �.zg/ \ T ? D ¹0º, the projection of �.zg/ onto
so.T ?/ acts trivially on T ?. But this contradicts the fact that T ? D V`C1 ˚ � � � ˚ Vk ,
where the Vi ’s are irreducible for prso.1;n�1/.zg/ and hence for prso.T?/.�.zg//.
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Case 2: T is positive definite (including the case T D 0), i.e., T \ V1 D ¹0º in virtue
of the indecomposability of the g1-module V1. In this case T ? is non-degenerate and
V1 � T

?, i.e.,

T ? D V1 ˚ � � � ˚ V` and T D V`C1 ˚ � � � ˚ Vk :

Set
g� D g1 ˚ � � � ˚ g` and gC D g`C1 ˚ � � � ˚ gk ;

where gC D zC C g0C is reductive with centre zC and derived algebra g0C, and g1 is either
irreducible or indecomposable but with an invariant null line L.

In the case when g1 acts irreducibly on V1, g acts completely reducibly on V and,
since T is positive definite, we can apply Corollary 6.1 to get a contradiction to T 6D V .

Hence, we can assume that g1 is contained in the stabiliser of the null line L, i.e.,
g1 � so.V1/L. Since gC acts trivially on T ?, the Vi ’s are irreducible for i D `C 1; : : : ; k,
and g� acts trivially on T , we have that

(6.1) V g� \ T ? D V g:

As in Proposition 5.1, there is a ' 2Z1.g; T ?/ such that zgD h' Ë T . Then forX˙ 2 g˙,
we have

0 D '.ŒXC; X��/ D X�'.XC/:

Hence, using equality (6.1), we obtain '.gC/ � V g� \ T ? D V g. If 'jgC 6D 0, we con-
clude that V g is a non-trivial subspace of T ? and thus V g D L. Hence, if 'jgC 6D 0,
there is a non-zero vector in L that is annihilated by g and therefore the metric g admits a
parallel null vector field.

Hence, for case 2, we can assume that 'jgC D 0 and we are left with

'Wg� ! T ? D V1 ˚ � � � ˚ V`:

Then for Xi 2 gi and Xj 2 gj , with i; j 2 ¹1; : : : ; `º, and i 6D j , we have

0 D Xi'.Xj / �Xj'.Xi /;

and hence

(6.2) Xi'.Xj / D 0:

Since the Vj�2 are irreducible, this relation for j D 1 implies that

'jg1 2 Z
1.g1; V1/:

On the other hand, for j � 2, we have that

'jgj 2 Z
1.gj ; L˚ Vj /;

where L is the g-invariant null line. If we write ' D '1C � � � C '` with 'i Wg�! Vi , then
relation (6.2) implies that if there exists Xj 2 gj for some j � 2 such that '1.Xj / 6D 0,
and thus '1.gj /DL, then g1 and hence g acts trivially onL. The latter case implies again
that the metric g admits a parallel null vector field.
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Hence, we have obtained that g admits a parallel null vector field or that ' D '1 C
� � � C '`, with 'i 2 Z1.gi ; Vi / for i D 1; : : : `. Since the Vi for i � 2 are irreducible, we
have that Z1.gi ; Vi / D dVi , by Lemma 5.6. The case i D 1 is covered by Lemma 5.7,
where we have shown that H 1.g1; V1/ D 0 whenever g does not admit a parallel null
vector field. Hence, if g does not admit a parallel null vector field, we obtain from (1) in
Theorem 5.2 that T ? is degenerate or zero. But this contradicts T 6D V and that T ? in
case 2 is non-degenerate.

Case 3: T is degenerate, i.e., there is a g-invariant null line L D T \ T ?. Our aim is
to apply point (2) in Theorem 5.2 and Proposition 5.9. First note that g and therefore the
indecomposable subalgebra g1 � so.V1/ both leave T and hence the null line L invariant.
If g1 acts trivially on L, then g acts trivially on L and the metric g admits a parallel null
vector field. Therefore, we can assume that g1 does not act trivially on L. This means that
we can apply Proposition 5.9 to g1 and L? \ V1 to get that

Z1.g1; V1=.L
?
\ V1// D d.V1=.L? \ V1//:

On the other hand, we note that there is a canonical identification

V=L? ' V1=.L
?
\ V1/;

which shows that g2 ˚ � � � ˚ gk acts trivially on V=L?. Hence,

Z1.g; V=L?/ D Z1.g1; V1=.L
?
\ V1// D d.V=L?/:

Hence, H 1.g; V=L?/ D 0 and we can apply (2) in Theorem 5.2, which implies that, up
to conjugation, zg leaves invariant a null line L. This means that . zM; zg/ admits a recurrent
null vector field in the span of @v and L (even a recurrent section in L). But in this situ-
ation, Proposition 4.10 ensures the existence of a parallel null vector field on .M; g/.
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