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Removable sets for Newtonian Sobolev spaces and a
characterization of p-path almost open sets

Anders Björn, Jana Björn and Panu Lahti

Abstract. We study removable sets for Newtonian Sobolev functions in metric
measure spaces satisfying the usual (local) assumptions of a doubling measure and
a Poincaré inequality. In particular, when restricted to Euclidean spaces, a closed set
E � Rn with zero Lebesgue measure is shown to be removable for W 1;p.Rn n E/
if and only if Rn n E supports a p-Poincaré inequality as a metric space. When
p > 1, this recovers Koskela’s result (Ark. Mat. 37 (1999), 291–304), but for p D 1,
as well as for metric spaces, it seems to be new. We also obtain the corresponding
characterization for the Dirichlet spaces L1;p . To be able to include p D 1, we first
study extensions of Newtonian Sobolev functions in the case p D 1 from a noncom-
plete space X to its completion yX . In these results, p-path almost open sets play an
important role, and we provide a characterization of them by means of p-path open,
p-quasiopen and p-finely open sets. We also show that there are nonmeasurable p-
path almost open subsets of Rn, n � 2, provided that the continuum hypothesis is
assumed to be true. Furthermore, we extend earlier results about measurability of
functions with Lp-integrable upper gradients, about p-quasiopen, p-path open and
p-finely open sets, and about Lebesgue points forN 1;1-functions, to spaces that only
satisfy local assumptions.

1. Introduction

The first-order analysis on metric spaces makes it possible to define Sobolev-type spaces
also on nonopen subsets of Rn. This, in particular, leads to questions about extensions
and restrictions of Sobolev functions, as well as about the gradients of such restrictions in
arbitrary (possibly nonmeasurable) sets. In this paper, we address some of these questions
in rather general metric spaces and sets.

Standard assumptions in the area are that the metric space is complete and equipped
with a globally doubling measure supporting a global p-Poincaré inequality. The integra-
bility exponent for Sobolev functions and their gradients is often assumed to be p > 1,
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since this gives reflexive spaces and provides useful tools. At the same time, in many
concrete situations, it is desirable to consider noncomplete spaces and to relax the global
assumptions to local ones. Last, but not least, the case p D 1 is also attracting a lot of
interest.

It was shown by Koskela [44, Theorem C] that a closed set E � Rn of zero Lebesgue
measure is removable for the Sobolev space W 1;p.Rn n E/, with p > 1, if and only if
Rn nE supports a p-Poincaré inequality. One of our results is that a similar equivalence
holds also for p D 1 and for metric spaces, even noncomplete ones and with only local
Poincaré inequalities. Moreover, we do not require E to be closed, only that its comple-
ment � is p-path almost open, i.e., for p-almost every curve 
 , the preimage 
�1.�/ is
a union of an open set and a set of zero 1-dimensional Lebesgue measure.

When specialized to weighted Euclidean spaces, as in Heinonen–Kilpeläinen–Martio
[36], these results (obtained in Theorems 5.4 and 5.9) can be formulated as follows. Here
we follow the notation of [36] and denote the weighted Sobolev and Dirichlet spaces
by H 1;p.�; �/ and L1;p.�; �/, respectively. These spaces coincide with yN 1;p.�/ and
yDp.�/, with respect to �, as defined in Section 5, see the discussion after Theorem 5.4.

Theorem 1.1. Let 1 � p <1 and d�D wdx, where w is a p-admissible weight on Rn

in the sense of [36]. Let � D Rn nE, where �.E/ D 0. Assume that � is p-path almost
open, which in particular holds if � is open. Then the following statements are equivalent:

(a) E is removable for the Sobolev space H 1;p.�;�/.

(b) E is removable for the Dirichlet space L1;p.�;�/.

(c) .�;�/ supports a global p-Poincaré inequality.

Note that every set � with �.� \ @�/ D 0 is p-path almost open, by Theorem 1.3.
When� is not open and in the metric setting, the Sobolev and Dirichlet spaces have to be
interpreted by means of upper gradients as in Section 2.

Removable sets for Sobolev spaces is a classical topic, also related to sets of capacity
zero and to singularities of quasiconformal mappings. We refer to Koskela [44] for further
references and a much more extensive discussion. Among other results in [44], p-porous
sets contained in a hyperplane were shown to be removable for H 1;p (and equivalently
for the p-Poincaré inequality).

Removable sets for Poincaré inequalities in metric spaces were studied in Koskela–
Shanmugalingam–Tuominen [46]. Their results on porous sets, together with our The-
orems 1.1, 5.4 and 5.9, therefore provide examples of removable sets for Sobolev and
Dirichlet spaces, see [46, Theorems A, B and Proposition 3.3]. Removability for Dirichlet
spaces was not discussed in [44] or [46].

As mentioned in [46, p. 335], Koskela’s proof can be generalized to metric spaces
with global assumptions, provided that E is compact, its complement is connected and
p > 1. We approach the problem from a different angle, though similar methods lie behind
some of our arguments as well. Namely, we rely on extensions of Newtonian (Sobolev)
functions from a noncomplete metric space X to its completion yX , recently considered
in [8] for p > 1.

To be able to handle also p D 1, we therefore first prove the following extension
result. In addition, as in [8], we replace the global assumptions of a doubling measure and
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a 1-Poincaré inequality by weaker local conditions. These local assumptions, as well as
the Newtonian and Dirichlet spaces N 1;p.X/ and Dp.X/, will be defined in Section 2.

Theorem 1.2. Assume that the doubling property and the 1-Poincaré inequality hold
within an open set � � X in the sense of Definition 2.5. Let �^ D yX n X n�, where
the closure is taken in the completion yX of X . Let u 2D1.�/. Then there is Ou 2D1.�^/

such that Ou D u CX1 -q.e. in � and the minimal 1-weak upper gradients gu WD gu;� of u
and g Ou WD g Ou;�^ of Ou, with respect to � and �^, respectively, satisfy

g Ou � A0gu a.e. in �;

where A0 is a constant depending only on the doubling constant and both constants in the
1-Poincaré inequality within �. In particular, the function Ou can be taken to be

(1.1) Ou.x/ D lim sup
r!0

«
yB.x;r/\�

ud�; x 2 �^:

If � is also 1-path open in yX , then we can, in the above conclusion (except for (1.1)),
take Ou � u and g Ou � gu in �.

The idea of the proof is to approximate u by discrete convolutions that immediately
extend to �^. This goes back to the aforementioned paper by Koskela [44, Theorem C]
and is similar to [8] and Heikkinen–Koskela–Tuominen [34]. When 1 < p <1, one can
use the reflexivity of Lp to extract a weakly converging subsequence from the p-weak
upper gradients of these discrete convolutions. In the case p D 1, we instead show that the
sequence of 1-weak upper gradients is equi-integrable, and then apply the Dunford–Pettis
theorem to obtain a weakly converging subsequence. In this way, at the limit we obtain
the desired function Ou 2 D1.�^/. Just as in the case p > 1 considered in [8], we do not
know whether it is ever necessary to have A0 > 1.

To replace the usual global assumptions by similar local ones in our results, we apply
a recent result of Rajala [51] about approximations by uniform domains. In particular,
we extend results about measurability of functions with Lp-integrable upper gradients
(from [41]), about p-quasiopen, p-path open and p-finely open sets (from [10], [11]
and [48]), and about Lebesgue points for N 1;1-functions (from [43]), to spaces that only
satisfy local assumptions, see Section 3 and Proposition 4.11. These localized results are
useful later on in the paper.

Observe that in Theorem 1.2 we do not require� to be measurable in yX , see Section 4
for details. It is not known if� can satisfy the assumptions in Theorem 1.2 and at the same
time be nonmeasurable in yX . Nevertheless, in Section 6 we construct a measurable set
in R2, with full measure and satisfying the conclusions in Theorems 1.1 and 1.2 (except
for the last part), but which is not even p-path almost open in R2.

The role of p-path (almost) open sets in our arguments is that they preserve minimal
p-weak upper gradients and sets with zero capacity, see Lemmas 4.1, 4.2 and Björn–
Björn [5, Proposition 3.5]. In Section 7, we study these sets in more detail and prove the
following characterization, which combines Theorems 3.7 and 7.3.

Theorem 1.3. Assume that X is locally compact and that � is locally doubling and sup-
ports a local p-Poincaré inequality, 1 � p < 1. Let U � X be measurable. Then the
following are equivalent:
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(a) U is p-path almost open.

(b) U D V [N , where V is p-path open and �.N/ D 0.

(c) U D V [N , where V is p-quasiopen and �.N/ D 0.

(d) U D V [N , where V is p-finely open and �.N/ D 0.

The p-path almost open sets were introduced in [5] and the implication (b))(a) was
proved therein [5, Lemma 3.2]. Since p-quasiopen, p-path open and p-finely open sets
are measurable (under the above assumptions), the characterization in Theorem 1.3 is not
possible for nonmeasurable p-path almost open sets. At the same time, we show that there
are nonmeasurable p-path almost open subsets of Rn, n � 2, provided that the continuum
hypothesis is assumed. Together with Theorem 1.3 and Example 7.7, this answers Open
problem 3.4 in [5].

Quasiopen and finely open sets have earlier been used in various areas of mathemat-
ics. For example, quasiopen sets appear naturally as minimizing sets in shape optimiza-
tion problems, see e.g. Buttazzo–Dal Maso [19], Buttazzo–Shrivastava [20, Examples 4.3
and 4.4] and Fusco–Mukherjee–Zhang [28]. They are also level sets of Sobolev functions
and are thus (together with p-finely open sets) suitable for the theory of Sobolev spaces,
see Kilpeläinen–Malý [42], Malý–Ziemer [49] and Fuglede [26, 27]. In this context, our
Theorems 1.1, 5.4 and 5.9 fully characterize removable singularities with zero measure for
Sobolev (and Dirichlet) spaces on p-quasiopen (and thus also p-finely open) sets. Finely
open sets define the fine topology and are closely related to superharmonic functions. Fine
potential theory on finely open sets has been studied since the 1940s, see Cartan [22] (the
linear case, p D 2).

2. Upper gradients and Newtonian spaces

We assume throughout the paper, except for Section 5, that 1 � p < 1 and that X D
.X; d; �/ is a metric space equipped with a metric d and a positive complete Borel mea-
sure � such that 0 < �.B/ <1 for all balls B � X .

It follows thatX is separable and Lindelöf. To avoid pathological situations we assume
that X contains at least two points. Proofs of the results in this section can be found in the
monographs Björn–Björn [4] and Heinonen–Koskela–Shanmugalingam–Tyson [38].

A curve is a continuous mapping from an interval, and a rectifiable curve is a curve
with finite length. Unless said otherwise, we will only consider curves that are non-
constant, compact and rectifiable, and thus each curve can be parameterized by its arc
length ds. A property is said to hold for p-almost every curve if it fails only for a curve
family � with zero p-modulus. Here the p-modulus of � is

Modp;X .�/ WD inf
�

Z
X

�p d�;

with the infimum taken over all nonnegative Borel functions � on X such that
R


� ds � 1

for each 
 2 � .
Following Heinonen–Koskela [37], we next introduce upper gradients (called very

weak gradients in [37]).
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Definition 2.1. A Borel function gWX! Œ0;1� is an upper gradient of a function uWX!
R WD Œ�1;1� if for all curves 
 W Œ0; l
 �! X ,

(2.1) ju.
.0// � u.
.l
 //j �

Z



g ds;

where the left-hand side is considered to be1 whenever at least one of the terms therein
is infinite. If gWX! Œ0;1� is measurable and (2.1) holds for p-almost every curve, then g
is a p-weak upper gradient of u.

The p-weak upper gradients were introduced in Koskela–MacManus [45]. It was also
shown therein that if g 2 Lploc.X/ is a p-weak upper gradient of u, then one can find
a sequence ¹gj º1jD1 of upper gradients of u such that kgj � gkLp.X/ ! 0. If u has an
upper gradient in Lploc.X/, then it has an a.e. unique minimal p-weak upper gradient
gu 2 L

p
loc.X/ in the sense that gu � g a.e. for every p-weak upper gradient g 2 Lploc.X/

of u, see Shanmugalingam [54] and Hajłasz [30]. Following Shanmugalingam [53], we
define a version of Sobolev spaces on the metric space X .

Definition 2.2. For a measurable function uWX ! R, let

kukN 1;p.X/ D

� Z
X

jujp d�C inf
g

Z
X

gp d�
�1=p

;

where the infimum is taken over all upper gradients g of u. The Newtonian space on X is

N 1;p.X/ D ¹u W kukN 1;p.X/ <1º:

The quotient space N 1;p.X/=�, where u � v if and only if ku � vkN 1;p.X/ D 0, is a
Banach space and a lattice, see Shanmugalingam [53]. We also define

Dp.X/ D
®
u W u is measurable, finite a.e. and has an upper gradient in Lp.X/

¯
:

This definition deviates from the definition in [4, Definition 1.54] in that it requires the
functions to be finite a.e., which will be useful in e.g. Theorem 5.7, see Remark 5.8.
The two definitions coincide whenever X supports a local p-Poincaré inequality, since
any measurable function with an upper gradient in Lp.X/ then belongs to L1loc.X/, see
[4, Proposition 4.13] and [8, p. 50].

In this paper we assume that functions inN 1;p.X/ andDp.X/ are defined everywhere
(with values in R), not just up to an equivalence class in the corresponding function space.
This is important for upper gradients to make sense.

For a measurable set E � X , the Newtonian space N 1;p.E/ is defined by consid-
ering .E; d jE ; �jE / as a metric space in its own right. We say that u 2 N 1;p

loc .E/ if for
every x 2 E, there exists a ball Bx 3 x such that u 2 N 1;p.Bx \E/. The spaces Lp.E/,
L
p
loc.E/, D

p.E/ and Dp
loc.E/ are defined similarly. If u; v 2 Dp

loc.X/, then gu D gv a.e.
in the set ¹x 2 X W u.x/ D v.x/º. In particular for c 2 R, we have gmin¹u;cº D gu�¹u<cº
a.e. Moreover, if u; v 2 Dp.X/, then jujgv C jvjgu is a p-weak upper gradient of uv.

It is easily verified by gluing curves together that if g1 and g2 are upper gradients for
a function u in the open sets G1 and G2, respectively, then g1�G1 C g2�G2 is an upper
gradient for u in G1 [ G2. From this, it follows that if u 2 N 1;p.Gj /, j D 1; 2, then
u 2 N 1;p.G1 [G2/. A similar sheaf property holds for Dp .
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Definition 2.3. The (Sobolev) capacity of a set E � X is the number

CXp .E/ D inf
u
kuk

p

N 1;p.X/
;

where the infimum is taken over all u 2 N 1;p.X/ such that u D 1 on E.

We say that a property holds CXp -quasieverywhere (CXp -q.e.) if the set of points for
which the property fails has zero CXp -capacity. The capacity is the correct gauge for dis-
tinguishing between two Newtonian functions. Namely, if v 2N 1;p.X/, then u� v if and
only if u D v CXp -q.e. Moreover, if u; v 2 Dp

loc.X/ and u D v a.e., then u D v CXp -q.e.
In this paper we will use many different CXp -capacities with respect to different metric
spaces X ; this will always be carefully denoted in the superscript.

Definition 2.4. An R-valued function u, defined on a set E � X , is CXp -quasicontinuous
if for every " > 0 there is an open setG �X such that CXp .G/ < " and ujEnG is R-valued
and continuous.

For a ball B D B.x; r/ with centre x and radius r , we let �B D B.x; �r/. In metric
spaces, it can happen that balls with different centres and/or radii denote the same set.
We will, however, make the convention that a ball comes with a predetermined centre and
radius. In this paper, balls are assumed to be open.

Definition 2.5. The measure � is doubling within an open set � � X if there is C > 0

(depending on �) such that �.2B/ � C�.B/ for all balls B � �.
Similarly, the p-Poincaré inequality holds within an open set � if there are constants

C > 0 and �� 1 (depending on�) such that for all ballsB ��, all integrable functions u
on �B , and all upper gradients g of u in �B ,

(2.2)
«
B

ju � uB j d� � CrB

� «
�B

gp d�
�1=p

;

where uB WD
ª
B
ud� WD

R
B
ud�=�.B/ and rB is the radius of B .

Each of these properties is called local if for every x 2 X there is r > 0 (depending
on x) such that the property holds within B.x; r/. The property is called semilocal if it
holds within every ball B.x0; r0/ inX . If moreover C and � are independent of x0 and r0,
then it is called global.

Note that there is a difference between a property holding within�� X (i.e., for balls
taken in the underlying space X ) and on �, seen as a metric space in its own right, where
balls are taken with respect to �.

The p-Poincaré inequality can equivalently be defined using p-weak upper gradients.
We will need the following characterization of the p-Poincaré inequality showing that it
is enough to test with bounded u 2 N 1;p.X/.

Lemma 2.6. Let� � X be open. Assume that there are constants C > 0 and � � 1 such
that (2.2) holds for all balls B � � and all bounded u 2 N 1;p.X/. Then the p-Poincaré
inequality holds within � with the same constants C and �.

Below and later, we write uC D max¹0; uº and u� D max¹0;�uº.
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Proof. Let B D B.x; r/ � � be a ball, let u be an integrable function on �B , and let g
be an upper gradient of u in �B . We may assume that g 2 Lp.�B/, as otherwise there is
nothing to prove. Thus, u 2 Dp.�B/.

For j D 1; 2; : : : , let Bj D B.x; .1 � 2�j /r/,

uj D max¹min¹u; j º;�j º and vj D .1 � 2
jC1r dist.x; �Bj //C uj ;

extended by zero outside �B . Then vj 2 N 1;p.X/ is bounded and g is an upper gradient
of vj in �Bj . Thus, (2.2) applied to vj and Bj gives«

Bj

juj � .uj /Bj j d� D

«
Bj

jvj � .vj /Bj j d� � CrBj

� «
�Bj

gp d�
�1=p

:

The result now follows from the fact that uj ! u in L1.B/ as j !1.

3. From global to local assumptions

In this section we show how a recent result due to Rajala [51, Theorem 1.1] can be used to
lift results, that have earlier been obtained under global assumptions, to spaces with only
local assumptions. This will be useful later in our considerations. The main idea in this
localization approach is to see suitable neighbourhoods of points in X as “good” metric
spaces in their own right. Since balls may be disconnected and need not support a Poincaré
inequality, they do not in general serve as such good neighbourhoods. Even when a ball,
or its closure, is connected it can fail to support a Poincaré inequality and the measure may
fail to be globally doubling on it. Instead, closures of the uniform domains constructed by
Rajala [51] will do the job, since they are compact, support global Poincaré inequalities
and the measure is globally doubling on them.

Recall that a space is geodesic if every pair of points can be connected by a curve
whose length equals the distance between the points, and that a domain is an open con-
nected set. A domain G � X is uniform if there is a constant A � 1 such that for every
pair x; y 2 G there is a curve 
 W Œ0; l
 � ! G with 
.0/ D x and 
.l
 / D y such that
l
 � Ad.x; y/ and

dist.
.t/; X nG/ �
1

A
min¹t; l
 � tº for 0 � t � l
 :

As usual, dist.x;¿/ D1. Moreover, X is globally doubling if there is a constant N such
that every ball B.x; r/ can be covered by N balls with radii 1

2
r .

The following result was proved in [51] under the assumption that X is quasiconvex.
In particular, it applies to geodesic spaces because their quasiconvexity constant is 1.

Theorem 3.1 (Rajala [51, Theorem 1.1]). Let X be a geodesic metric space and let
U � X be a bounded domain. If U is globally doubling and " > 0, then there is a uniform
domain G such that

¹x 2 U W dist.x;X n U/ � "º � G � U:
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Note that if U D X , then X itself is a uniform domain and G D U D X above. In
the definition of uniform domains it is often assumed that G   X . Allowing G D X , as
in [51], is convenient when formulating Theorems 3.1 and 3.2.

In [51] it is assumed that X is globally doubling, and approximation from outside by
uniform domains is also deduced. However, when approximating from inside as in Theo-
rem 3.1, it is easy to see that in the proof in [51], it is enough to apply [51, Lemma 2.1]
with respect to U . It is therefore enough to assume that U is globally doubling, which
makes it possible to deduce the following result.

Theorem 3.2. Assume that the p-Poincaré inequality and the doubling property for �
hold (with constants CPI, � and C�) within B1 D B.x1; r1/. Also assume that ƒB1 is
compact, where ƒ D 3C 3�CPI. Then there is a bounded uniform domain G such that

�B1 b G � 1
6
B1; where � D 1

60ƒ
:

Moreover, �jG and �j
G

are globally doubling and support global p-Poincaré inequalities
on the metric spaces G and G, respectively.

Note that ƒ is independent of �, as in [6, Lemma 4.9] and [4, Theorem 4.32]. As
usual, by E b G we mean that E is a compact subset of G.

Remark 3.3. Note that G, being uniform, satisfies the so-called corkscrew condition.
Applying Theorem 2.8 in Björn–Shanmugalingam [17] to A D G and letting � ! 0 in
[17, (2.2)] shows that �.@G/ D 0.

Proof of Theorem 3.2. Define the inner metric

din;ƒB1
.x; y/ D inf length.
/;

where the infimum is taken over all curves 
 � ƒB1 connecting x and y. Let

Y D ¹x 2 ƒB1 W din;ƒB1
.x; x1/ <1º

be the rectifiably connected component of ƒB1 containing x1. As ƒB1 is compact, it
follows from Ascoli’s theorem that .Y; din;ƒB1

/ is a geodesic metric space. By Björn–
Björn [6, Lemma 4.9], every pair of points x; y 2 1

5
B1 can be connected by a curve in

ƒB1, of length at most 9ƒd.x; y/. Hence, both 1
6
B1 and

Bin WD ¹x 2 Y W din;ƒB1
.x; x1/ <

1
6
r1º

are open and �B1 b Bin �
1
6
B1 � Y . The reason for using the inner metric is that inner

balls are always connected, while standard balls, such as 1
6
B1, need not be connected.

By [6, Proposition 3.4], the ball 1
6
B1 is globally doubling. As d and din;ƒB1

are
comparable within 1

6
B1, also .Bin; din;ƒB1

/ is globally doubling. Since .Bin; din;ƒB1
/ is

connected, we can therefore apply Theorem 3.1 with respect to .Y; din;ƒB1
/ and obtain a

uniform domain G such that �B1 b G � Bin. Note that since d and din;ƒB1
are compa-

rable within 1
5
B1 and dist.1

6
B1; X n Y / �

1
30
r1, uniformity is the same with respect to

.Y; din;ƒB1
/ and .X; d/ (although the uniformity constants may be different).
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By Björn–Shanmugalingam [17, Lemmas 2.5 and 4.2],�jG is globally doubling onG.
Next, we use [17, Theorem 4.4], to see that �jG supports a global p-Poincaré inequality
on G. Since the proof of [17, Theorem 4.4] only uses balls contained (together with their
dilations) in G, the proof applies under our assumptions. As �.@G/ D 0, by Remark 3.3,
the same conclusions hold for �j

G
. (To see that the Poincaré inequality holds on G, one

only needs to observe that if g is an upper gradient of u onG, then gjG is an upper gradient
of ujG on G, see also [8, Proposition 3.6] for further details.)

One result that can be obtained using Theorem 3.2 is the following extension of Theo-
rem 1.11 in Järvenpää–Järvenpää–Rogovin–Rogovin–Shanmugalingam [41]. Since local
assumptions are inherited by open subsets, it directly applies also to open��X (in place
of X ), cf. Remark 4.8.

Theorem 3.4. Assume that X is locally compact and that � is locally doubling and sup-
ports a local p-Poincaré inequality. Let g 2 Lploc.X/ be an upper gradient of uWX ! R.
Then u 2 Lploc.X/ and u is in particular measurable.

Proof. Let x 2 X . It follows from Theorem 3.2 that there is a bounded uniform domain
Gx 3 x such that Gx is compact and �j

Gx
is globally doubling and supports a global

p-Poincaré inequality on Gx . In particular, gj
Gx
2 Lp.Gx/ is an upper gradient of uj

Gx

in Gx and Theorem 1.11 in [41] shows that uj
Gx

is measurable and belongs to Lploc.Gx/.
As X is Lindelöf it follows that u is measurable on X and u 2 Lploc.X/.

Another consequence of Rajala’s theorem is a characterization of p-path open sets
under local assumptions. These sets will play a prominent role in our studies, since they
preserve minimal p-weak upper gradients and sets with zero capacity, see Lemmas 4.1
and 4.2 below and Björn–Björn [5, Proposition 3.5]. The relation between p-path open
and p-path almost open sets will be studied in Section 7.

Definition 3.5. A set G � A is p-path open in A � X if for p-almost every curve

 W Œ0; l
 �! A, the set 
�1.G/ is (relatively) open in Œ0; l
 �. Further, G � A is p-path
almost open in A � X if for p-almost every curve 
 W Œ0; l
 �! A, the set 
�1.G/ is the
union of an open set and a set with zero 1-dimensional Lebesgue measure.

The p-modulus Modp.�/ of the exceptional curve family � can equivalently be mea-
sured within X or A, provided that A is equipped with the appropriate restriction Q� of �
to A. Since A may be nonmeasurable, Q� is defined by letting

Q�. zE/ D inf
®
�.E/ W E � zE and E is a Borel set with respect to X

¯
for Borel sets zE in A, and then completing Q�. This makes Q� a complete Borel regular
measure on A, which coincides with the restriction �jA when A is �-measurable. It also
follows that every Borel function Q� on A has a Borel extension � to X such thatZ

A

Q� d Q� D

Z
X

� d�:

Hence, Modp;A.�/ D Modp;X .�/ as claimed. The relation between Q� and � is quite
similar to the relation between � and O� as discussed in the beginning of Section 4 and in
the corrigendum of Björn–Björn [8], and the relation between �X and �Y in Section 5.
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The two properties in Definition 3.5 are transitive, as shown by the following result.
Note also that it follows from [4, Proposition 2.45] that if 1 � p < q andG is q-path open
(resp. q-path almost open) in X , then G is p-path open (resp. p-path almost open) in X .

Lemma 3.6. Assume that G1 � G2 � G3 and that G2 is p-path almost open in G3.
Then G1 is p-path almost open in G2 if and only if it is p-path almost open in G3. The
corresponding result also holds if “p-path almost open” is replaced by “p-path open”
throughout.

Proof. If G1 is p-path almost open in G3, then it is p-path almost open in G2 (in view of
the discussion above) simply because every curve in G2 is a curve in G3.

Conversely, assume that G1 is p-path almost open in G2. Let �j , j D 1; 2, be the
family of curves 
 in GjC1 such that 
�1.Gj / is not a union of an open set and a set of
measure zero. Let � 0 be the family of curves in G3 which contain a subcurve in �1. Then
by assumption, [4, Lemma 1.34 (c)] and the discussion above,

Modp;G3.�
0/ � Modp;G3.�1/ D Modp;G3.�2/ D 0:

Next take a curve 
 W Œ0; l
 �! G3 such that 
 … �2 [ � 0. Then 
�1.G2/ is a union of
an open set A and a set of measure zero. Since A � R, it can be written as a countable or
finite union of pairwise disjoint open intervalsAj . EachAj can be written as an increasing
countable union of compact intervals, and since 
 … � 0, we see that Aj \ 
�1.G1/ is a
union of an open set and a set of measure zero. Hence, 
�1.G1/ is a union of an open set
and a set of measure zero. As Modp;G3.�2 [ �

0/ D 0, we have shown that G1 is p-path
almost open in G3.

The p-path open case is similar.

Next, we shall characterize p-path open sets in terms of p-quasiopen and p-finely
open sets, under local assumptions. Such characterizations have been done under global
assumptions, and as earlier in this section we will show how to “lift” them to local
assumptions.

A set V � X is p-quasiopen if for every " > 0 there is an open set G � X such that
CXp .G/ < " and G [ V is open. Every p-quasiopen set is measurable by [5, Lemma 9.3].
The family of p-quasiopen sets does not form a topology (in general) but it is closed under
countable unions.

If E � A are bounded subsets of X , then the variational capacity of E with respect
to A is

capXp .E;A/ D inf
u

Z
X

gpu d�;

where the infimum is taken over all u 2 N 1;p.X/ such that u � 1 on E and u D 0 on
X n A. (If no such function u exists, then capXp .E;A/ D1.)

A set E � X is p-thin at x 2 X if

(3.1)
Z 1

0

�capXp .E \ B.x; r/; B.x; 2r//

capXp .B.x; r/; B.x; 2r//

�1=.p�1/ dr
r
<1
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when p > 1, and if

(3.2) lim
r!0

capX1 .E \ B.x; r/; B.x; 2r//
capX1 .B.x; r/; B.x; 2r//

D 0

when p D 1. (The quotients in (3.1) and (3.2) are interpreted as 1 if the denominators
therein are zero.) Note that, under the assumptions of Theorem 3.7 presented below,
capXp .B.x; r/; B.x; 2r// is comparable to �.B.x; r//=rp for sufficiently small r , by e.g.
the proof of [4, Proposition 6.16], and so the latter quantity could also be used in (3.1)
and (3.2), as was done in e.g. Lahti [48].

A set V � X is p-finely open if X n V is p-thin at each point x 2 V . The family of
p-finely open sets forms the p-fine topology.

The following theorem gives the equivalence of (b)–(d) in Theorem 1.3, since we have
�.Z/ D 0 whenever CXp .Z/ D 0 (this follows directly from Definition 2.3).

Theorem 3.7. Assume that X is locally compact and that � is locally doubling and sup-
ports a local p-Poincaré inequality: Let U � X . Then the following are equivalent:

(a) U is p-path open.

(b) U is p-quasiopen.

(c) U D V [Z, where V is p-finely open and CXp .Z/ D 0.

When X is complete and � is globally doubling and supports a global p-Poincaré
inequality, these characterizations are due to Björn–Björn–Latvala [9, Theorem 4.9], [10,
Theorem 1.4], Björn–Björn–Malý [11, Theorem 1.1], Shanmugalingam [54, Remark 3.5],
and Lahti [48, Corollary 6.12] combined with Hakkarainen–Kinnunen [32, Theorems 4.3
and 5.1]. We will use these results, and the proof below just shows how to lift them to
local assumptions, without repeating the arguments.

Proof. We start by some preliminary observations. By Theorem 3.2, for every x 2 X
there is a bounded uniform domain Gx 3 x such that Gx is compact and �jGx is globally
doubling and supports a global p-Poincaré inequality on Gx . As X is Lindelöf, there is a
countable cover ¹Gj º1jD1 of X , where Gj D Gxj .

We also note for later use that Proposition 3.3 in [11] (applied both to Gj and to X as
the underlying space) implies that U \Gj is p-quasiopen with respect to Gj if and only
if it is p-quasiopen with respect toGj , which in turn is equivalent to it being p-quasiopen
with respect to X .

(a)) (b) For each j , the set Uj WD U \ Gj is p-path open in Gj . By Theorem 1.1
in [11], we see that Uj is p-quasiopen with respect toGj , and by the above argument also
with respect to X . Hence, U D

S1
jD1 Uj is p-quasiopen in X .

(b)) (a) This is proved in Shanmugalingam [54, Remark 3.5], without any assump-
tions on X .

To prove the equivalence with (c), note that in the case p > 1, a setW �Gj is p-finely
open with respect to Gj if and only if for every x 2 W ,Z rx

0

�
capGjp .B.x; r/ nW;B.x; 2r//

capGjp .B.x; r/; B.x; 2r//

�1=.p�1/
dr

r
<1;
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where rx > 0 is such that B.x; 2rx/ � Gj . Clearly, for 0 < r < rx and A � B.x; r/,

(3.3) capGjp .A;B.x; 2r// D capXp .A;B.x; 2r//;

and hence W is p-finely open with respect to Gj if and only if it is p-finely open with
respect to X . The equality (3.3) holds also in the case p D 1 and implies directly that
W � Gj is 1-finely open with respect to Gj if and only if it is 1-finely open with respect
to X .

(b)) (c) By the above argument, Uj WD U \Gj is p-quasiopen with respect to Gj .
Theorem 4.9 in [9] (for p > 1) and [48, Corollary 6.12] combined with [32, Theorems 4.3
and 5.1] (for p D 1) show that it can be written as Uj D Vj [ Zj , where Vj is p-finely
open with respect to Gj (and equivalently X ) and CGjp .Zj / D 0. Hence,

S1
jD1 Vj is p-

finely open with respect to X . Moreover, it follows from e.g. [4, Lemma 2.24] that the
capacities CGjp and CXp have the same zero sets in Gj and so CXp .

S1
jD1Zj / D 0. Since

U D
S1
jD1 Vj [

S1
jD1Zj , (c) holds.

(c)) (b) For each j , the set V \ Gj is p-finely open in X and thus in Gj , by the
above observation. Also

CGjp .Z \Gj / � C
X
p .Z/ D 0:

It then follows from [10, Theorem 1.4] (for p > 1) and [48, Corollary 6.12] combined
with [32, Theorems 4.3 and 5.1] (for p D 1) that the set Uj WD .V \ Gj / [ .Z \ Gj / is
p-quasiopen with respect to Gj , and thus also with respect to X , by the above argument.
Hence, U D

S1
jD1 Uj is p-quasiopen in X .

Theorems 1.2 and 1.3 in [11] can be extended similarly. See also Corollary 4.10 below
and Björn–Björn [6, Theorem 9.1].

4. Extending N 1;1-functions to the completion yX

The main goal of this section is to prove Theorem 1.2. We let yX be the completion of X
with respect to the metric d . The metric immediately extends to yX . We extend the measure
to yX by defining

O�.E/ D �.E \X/ for every Borel set E � yX;

and then complete it to obtain a Borel regular measure O�. Saksman [52, Lemma 1] used a
similar construction when studying globally doubling measures.

Now yX nX either has zero O�-measure or is O�-nonmeasurable. In both cases, we have
O�in. yX nX/ D 0, where the inner measure O�in is defined by

O�in.E/ D sup¹ O�.A/ W A � E is O�-measurableº(4.1)

D sup¹ O�.A/ W A � E is a Borel set in yXº:

The latter equality follows from the fact that O� is a complete Borel regular measure. More-
over,

O�.E/ D �.E \X/ for every O�-measurable set E � yX;
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and thus for E � X , we have

(4.2) �.E/ D 0 if and only if O�.E/ D 0:

It also follows that every �-measurable (respectively, Borel) function uWX ! R has a
O�-measurable (respectively, Borel) extension OuW yX ! R such that OujX D u and

(4.3)
Z
yX

Oud O� D

Z
X

ud�;

whenever at least one of the integrals exists. Conversely, it follows from the above defini-
tion of O� that vjX is �-measurable (respectively, Borel) and

(4.4)
Z
X

v d� D

Z
yX

v d O�;

whenever vW yX ! R is O�-measurable (respectively, Borel) and one of the integrals exists.
See the corrigendum of Björn–Björn [8] for further details; the O�-nonmeasurable case was
unfortunately overlooked in the original paper.

The following two auxiliary results relate notions on yX to the same notions on p-path
(almost) open sets.

Lemma 4.1. Assume that � � yX is O�-measurable and p-path almost open in yX , p � 1,
and that u 2 Dp

loc.�/. If G � � \ X is �-measurable and p-path almost open in �,
then the minimal p-weak upper gradients gu;G and Ogu;� of u with respect to .G; �/ and
.�; O�/, respectively, coincide a.e. in G.

Note that by Lemma 3.6, G is p-path almost open in � if and only if it is p-path
almost open in yX .

Proof. This is proved verbatim as in Proposition 3.5 in Björn–Björn [5], with the obvious
interpretations of the integrals with respect to O�. The only additional observation needed
is that if � is a family of curves in G, then by (4.3) and (4.4),

(4.5) Modp;G.�/ D inf
�

Z
G

�p d� D inf
�

Z
�\X

�p d� D inf
O�

Z
�

O�p d O� D Modp;�.�/;

where the infima are taken over all � 2 Lp.G; �/, � 2 Lp.� \X;�/ and O� 2 Lp.�; O�/
satisfying for all 
 2 � , respectively,Z




� ds � 1 and
Z



O� ds � 1:

Lemma 4.2. Let G � X be �-measurable and p-path open in yX , p � 1, and E � G.
Then CGp .E/ D 0 if and only if C yXp .E/ D 0.

Proof. By [4, Proposition 1.48], we have thatCGp .E/D 0 if and only if both�.E/D 0 and
Modp;G.�GE /D 0, where �GE consists of all curves 
 �G which hitE, i.e., 
�1.E/¤¿.

A similar equivalence holds for C yXp .E/ D 0 and

�
yX
E D ¹
 �

yX W 
�1.E/ ¤ ¿º:
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SinceG is p-path open in yX , for Mod
p; yX

-almost all curves 
 2 � yXE , the preimage 
�1.G/
is relatively open in Œ0; l
 � and nonempty, and thus 
 contains a nonconstant subcurve

 0 2 �GE . Hence, by [4, Lemma 1.34 (c)] and (4.5),

Mod
p; yX

.�
yX
E / � Modp;G.�GE /:

The reverse inequality is trivial. Together with (4.2), this concludes the proof.

The following examples show that there is no hope to obtain Lemma 4.2 for �-
measurable sets that are only p-path almost open in yX .

Example 4.3. Let X D Rn (unweighted), p � 1, E D ¹x 2 Rn W jxj D 1º and

G D Rn n
1[
kD1

¹x W jxj D 1˙ 2�kº:

Then G is the union of an open set and a set of Lebesgue measure zero, and is thus p-
path almost open for all p � 1, by Theorem 1.3. Moreover, yX D Rn and C yXp .E/ > 0 D
CGp .E/. Indeed, the characteristic function �E 2 N 1;p.G/ is admissible for CGp .E/ and
has zero as a p-weak upper gradient with respect to G. At the same time, the .n � 1/-
dimensional Hausdorff measure of E is nonzero, and so by Adams [1, equation (12),
p. 122] or Hakkarainen–Kinnunen [32, Theorems 4.3 and 5.1],C yXp .E/> 0 holds for pD 1
and thus for all p � 1. When p > n, one can also choose E D ¹0º and

G D Rn n
1[
kD1

¹x W jxj D 2�kº or G D ¹0º:

Example 4.4. For ˛ > 1, letG D ¹x D .x0; xn/ 2Rn W jx0j � x˛n � 1º be a closed cusp in
X D yX D Rn, n � 2, equipped with the measure d�.x/ D jxjˇ dx, where ˇ > �n. Note
that � is globally doubling and supports a global 1-Poincaré inequality on Rn, by Corol-
lary 15.35 in Heinonen–Kilpeläinen–Martio [36] and Theorem 1 in Björn [16]. Since G
is the union of an open set and a set of Lebesgue measure zero, it is p-path almost open
for all p � 1, by Theorem 1.3. Testing with uj .x/ D min¹1;�.log xn/=j º shows that

CGp .¹0º/ D 0 if 1 < p � ˛.n � 1/C ˇ C 1 or 1 D p < ˛.n � 1/C ˇ C 1,

whileC yXp .¹0º/ > 0 for p >max¹nCˇ;1º, by [36, Example 2.22], and for pD 1� nCˇ,
by Hakkarainen–Kinnunen [32, Theorems 4.3 and 5.1]. Note that for each p � 1 it is
possible to find ˇ > �n so that C yXp .¹0º/ > 0 D C

G
p .¹0º/.

Recall that for an open set � in X , we let

�^ D yX nX n�;

where the closure is taken in yX . This makes �^ into the largest open set in yX such that
� D �^ \X . Note that X^ D yX . We denote balls with respect to yX by yB or yB.x; r/ D
¹y 2 yX W d.x;y/ < rº, and balls with respect toX byB . The inclusion yB.x; r/�B.x; r/^

can be strict.
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If a function uW yX ! R has a (1-weak) upper gradient g on yX , then clearly gjX is
a (1-weak) upper gradient of ujX . The converse is not true in general, as seen e.g. in
X D R nQ � R D yX , but Theorem 1.2 provides a converse under suitable assumptions.

For p > 1 the result corresponding to Theorem 1.2 was obtained in Björn–Björn [8,
Theorem 4.1], where the reflexivity of Lp was used through the application of [4, Lem-
ma 6.2]. We shall now explain how Theorem 1.2 can be obtained for p D 1 using the
Dunford–Pettis theorem (see e.g. Ambrosio–Fusco–Pallara [2, Theorem 1.38]) instead of
reflexivity. In both cases, the proof is based on discrete convolutions and their gradients,
as in Koskela [44, proof of Theorem C] and Heikkinen–Koskela–Tuominen [34].

Definition 4.5. Given a measurable setH �X , a sequence ¹giº1iD1 of functions inL1.H/
is equi-integrable if the following two conditions are satisfied:

(a) For any " > 0, there is a measurable set A � H with �.A/ <1 such thatZ
HnA

jgi j d� < " for i D 1; 2; : : : :

(b) For any " > 0, there exists ı > 0 such that whenever D � H is measurable and
�.D/ < ı, then Z

D

jgi j d� < " for i D 1; 2; : : : :

Let �� 1 and let��X be an open set such that the doubling property holds within�.
For each k D 1; 2; : : : , consider a Whitney-type covering of � by balls ¹Bikºi with radii
rik � 1=k and a subordinate Lipschitz partition of unity ¹'ikºi so that

(i) the balls 1
5
Bik are pairwise disjoint, and 80�Bik � � for all i ;

(ii) the balls ¹10�Bikºi have bounded overlap

(4.6)
X
i

�10�Bik .x/ � m; x 2 �I

(iii) if 10�Bik \ 10�Bjk ¤ ¿, then rjk � 2rik ;
(iv) each 'ik is a nonnegative C=rik-Lipschitz function vanishing outside 2Bik ;
(v)

P
i 'ik D 1 in �.

Here m and C are constants depending only on � and the doubling constant C� of �
within �.

For each fixed k, we can construct the covering as follows: For each x 2 �, let tx be
the smallest nonnegative integer such that

(4.7) rx WD
2�tx

k
�

dist.x;X n�/
80�

:

SinceX is separable and ¹B.x;rx/ºx2� covers�, we can use the 5B-covering lemma (see
e.g. Heinonen–Koskela–Shanmugalingam–Tyson [38, p. 60]) to find an at most countable
cover of � by balls Bik WD B.xik ; rik/, rik D rxik , such that the balls 1

5
Bik are pairwise

disjoint. Property (i) is now easy to verify. For (iii), when 10�Bik \ 10�Bjk ¤ ¿, we
have from (4.7),

80�rjk � dist.xjk ; X n�/ � dist.xik ; X n�/C 10�.rjk C rik/;
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so that 7rjk � dist.xik ; X n�/=10�C rik . From (4.7) we get

rjk �
1

k
and min

° 1
k
;

dist.xik ; X n�/
80�

±
< 2rik :

Combining these gives

7rjk � min
° 7
k
;

dist.xik ; X n�/
10�

±
C rik < 17rik ;

and, by construction, the quotient rjk=rik can only take dyadic values.
For a fixed i , let Ji D ¹j W 10�Bik \ 10�Bjk ¤¿º. If j 2 Ji , then it follows from (iii)

that Bjk � 40�Bik . The ball 40�Bik is a globally doubling metric space, by Björn–
Björn [6, Proposition 3.4], with a doubling constant only depending on C�. As the balls
¹B.xjk ;

1
10
rik/ºj2Ji are pairwise disjoint, property (ii) is satisfied with m only depending

on � and C�.
Finally, a Lipschitz partition of unity satisfying (iv) and (v) can now be constructed as

in [38, pp. 104–105].
The following lemma is a special case of Hakkarainen–Kinnunen–Lahti–Lehtelä [33,

Lemma 4.2 and Remark 4.3]; see also Franchi–Hajłasz–Koskela [25, Lemma 6] for an
earlier very similar result. The last statement in the lemma is obtained using the Dunford–
Pettis theorem (see e.g. Ambrosio–Fusco–Pallara [2, Theorem 1.38]).

Lemma 4.6. Assume that � is doubling within an open set � and for each k D 1; 2; : : : ,
let ¹Bikºi be the above Whitney-type covering of �. For g 2 L1.�/ define the functions

gk WD

1X
iD1

�Bik

«
10�Bik

g d�; k D 1; 2; : : : :

Then the sequence ¹gkº1kD1 is equi-integrable. Moreover, a subsequence of gk converges
weakly in L1.�/ to a function Qg satisfying Qg � mg a.e. in �, where m is as in (4.6).

Proof of Theorem 1.2. We want to extend u2D1.�/ and its minimal 1-weak upper gradi-
ent gu WD gu;� to �^. Consider the above Whitney-type covering and Lipschitz partition
of unity (extended continuously to �^).

As in the proofs of Heikkinen–Koskela–Tuominen [34, Lemma 5.3] and Björn–Björn
[8, Theorem 4.1], it can be shown that for each k D 1; 2; : : : and some C0, depending only
on the doubling and Poincaré constants within�, the constant functions C0

ª
10�Bik

gu d�

are upper gradients of

uk WD
X
j

uBjk'jk in yBik WD yB.xik ; rik/;

where xik are the centres of Bik . Hence,

gk WD C0
X
i

� yBik

«
10�Bik

gu d�
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is an upper gradient of uk in �^. Moreover, by (4.6) and the doubling property of �, we
have for every Lebesgue point x 2 � of u that

juk.x/ � u.x/j D
ˇ̌̌ X
2Bik3x

.uBik � u.x//'ik.x/
ˇ̌̌
�

X
2Bik3x

«
Bik

ju � u.x/j d�! 0

as k ! 0. Since � is doubling within � and u 2 L1loc.�/ (see Remark 4.8 below), u has
Lebesgue points a.e., by e.g. Heinonen [35, Theorem 1.8]. We thus conclude that uk ! u

a.e. in �.
Lemma 4.6 shows that the sequence ¹gkº1kD1 � L

1.�/ is equi-integrable and there
exists a subsequence (also denoted ¹gkº1kD1) converging weakly in L1.�/ (and hence
also in L1.�^/) to a function g such that g � C0mgu a.e. in �.

Mazur’s lemma, applied repeatedly to the subsequences ¹gkº1kDj , for j D 1; 2; : : : ,
provides us with convex combinations of gk converging to g inL1.�^/, such that the cor-
responding convex combinations of uk converge a.e. to the function Ou WD lim supk!1 uk
on �^, which has g as a 1-weak upper gradient (with respect to �^), see the proof of
[4, Proposition 2.3]. In particular, Ou 2D1.�^/. Since OuD u a.e. in� and u; Ou 2D1.�/,
also Ou D u C�1 -q.e. in �, and thus CX1 -q.e. in � by Lemma 2.24 in [4].

If � is 1-path open in yX , then also the capacities C�1 and C yX1 have the same zero sets
in�, by Lemma 4.2. This shows that we may choose Ou D u in�. Lemma 4.1 then shows
that gu D g Ou a.e. within �.

Finally, if Qu is defined to be the right-hand side of (1.1), then Ou D Qu at all Lebesgue
points of Ou, i.e., C yXp -q.e. in �^, by the proof of Proposition 4.11 below with yG D �^.
Hence, Ou may also be chosen so that it satisfies (1.1).

Remark 4.7. (a) The simple exampleX D�DR n ¹0ºwith u.x/D �.0;1/.x/.1� jxj/C
demonstrates that under local assumptions on the measure �, functions in N 1;p.�/ may
fail to have extensions even to Dp

loc.�
^/ when p � 1. A partial remedy for this situation

is provided by Proposition 4.9 below.
(b) Under semilocal assumptions for � (see Definition 2.5), the conclusion of Theo-

rem 1.2 clearly holds for all bounded �. If � is unbounded, the semilocal assumptions
do not imply the doubling property and the 1-Poincaré inequality within �, and so Theo-
rem 1.2 is not directly available. However, if� is 1-path open in yX , then so is�\B.x;k/
for every k and some fixed x 2�. Since the doubling property and the 1-Poincaré inequal-
ity hold within each � \ B.x; k/, applying Theorem 1.2 for each k and letting k !1
shows that the conclusion holds with A0 D 1 also for �.

(c) Theorem 1.2 is formulated under assumptions holding within �. The correspond-
ing result [8, Theorem 4.1] for p > 1 can also be formulated similarly, with the proof
given in [8] still applying.

Remark 4.8. The extension result in Theorem 1.2 makes it possible to obtain quasicon-
tinuity and Lebesgue points for local Newtonian functions on noncomplete spaces under
local assumptions. If X supports a local 1-Poincaré inequality, then N 1;1

loc .�/ D D
1
loc.�/

for every open � � X ; this follows as in [4, Proposition 4.14]. Moreover, since local
assumptions are inherited by open subsets, the results in the rest of this section directly
apply also to open � � X . We therefore formulate them using N 1;1

loc .X/ rather than
N 1;1

loc .�/ D D
1
loc.�/.
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Proposition 4.9. Assume that � is locally doubling and supports a local 1-Poincaré
inequality on X . Then for every u 2 N 1;1

loc .X/, there is an open set yG � X in yX and
a function Ou 2 N 1;1

loc .
yG/ such that u D Ou CX1 -q.e. on X . Moreover, yG is locally compact

and �j yG is locally doubling and supports a local 1-Poincaré inequality. If X is 1-path
open in yX , then one can choose Ou � u and g Ou � gu in X .

Note that the set yG in general depends on u, cf. Björn–Björn [8, Example 4.7].

Proof. SinceX is Lindelöf, we can find a countable cover ofX by ballsBj DB.xj ; rj /�
X such that u 2 N 1;1.Bj / and both the 1-Poincaré inequality and the doubling property
for � hold within each Bj , j D 1; 2; : : : . Let yBj D yB.xj ; rj / and yG D

S1
jD1
yBj .

Using Theorem 1.2, we can extend ujBj to Ouj 2 N 1;1. yBj / so that Ouj D u CX1 -q.e.
in Bj , j D 1; 2; : : : . Then Oui D Ouj a.e. (and hence C yX1 -q.e.) in yBi \ yBj for all i; j . We
can thus construct Ou 2 N 1;p

loc .
yG/ so that Ou D u CX1 -q.e. in X and g Ou � Ajgu a.e. in Bj ,

where Aj is the constant provided by Theorem 1.2 in Bj . Hence, Ou 2 N 1;1
loc .
yG/. If X is

1-path open in yX , then it follows from the last part of Theorem 1.2 that we can choose
Ou � u and g Ou � gu in X .

The local doubling property and the local 1-Poincaré inequality for �j yG follow from
Björn–Björn [8, Propositions 3.3 and 3.6]. Consequently, each yBj (and thus also yG) is
locally compact, by [8, Proposition 3.9].

The following two results are now relatively easy consequences of the above exten-
sion to yG � yX and the corresponding results in complete spaces. Recall the definition of
quasicontinuity from Definition 2.4.

Corollary 4.10. Assume that � is locally doubling and supports a local 1-Poincaré in-
equality on X , and that X is 1-path open in yX . Then every u 2 N 1;1

loc .X/ is CX1 -quasi-
continuous.

Proof. Find a locally compact open set yG � yX and a function Ou 2 N 1;1
loc .
yG/ as in Propo-

sition 4.9 with Ou � u in X and so that �j yG is locally doubling and supports a local
1-Poincaré inequality. It then follows from Theorem 9.1 in Björn–Björn [6] that Ou is C yG1 -
quasicontinuous on yG, which immediately yields that u is CX1 -quasicontinuous on X ,
since CX1 is dominated by C yG1 .

Proposition 4.11. Assume that � is locally doubling and supports a local 1-Poincaré
inequality on X . Then every u 2 N 1;1

loc .X/ has Lebesgue points CX1 -q.e., and moreover
the extension Ou in Proposition 4.9 can be given by

(4.8) Ou.x/ D lim sup
r!0

«
yB.x;r/\X

ud�; x 2 yG:

The proof below shows that the limit

lim
r!0

«
B.x;r/

ud�
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actually exists for C yX1 -q.e. x 2 X , even though it only equals u.x/ for CX1 -q.e. x. In
general, CX1 � C

yX
1 , but it follows from Lemma 4.2 that they have the same zero sets if X

is 1-path open in yX .

Remark 4.12. Even when X is complete, the Lebesgue point result in Proposition 4.11
generalizes earlier results obtained under global assumptions, as in Kinnunen–Korte–
Shanmugalingam–Tuominen [43, Theorem 4.1 and Remark 4.7]. Therein, �.X/ D 1
is assumed, but we shall now explain how the Lebesgue point result from [43, Theo-
rem 4.1 and Remark 4.7] can be obtained also for a complete metric space X equipped
with a globally doubling measure � supporting a global 1-Poincaré inequality and satisfy-
ing �.X/ <1. (Under these assumptions, �.X/ <1 if and only if X is bounded.) We
will use this fact when proving Proposition 4.11.

For this, let zX D X �R, equipped with the product metric

d zX ..x; t/; .y; s// D max¹d.x; y/; jt � sjº

and the product measure
d Q�.x; t/ D d�.x/ dt:

Note that Q�. zX/ D 1. By Björn–Björn [7, Theorem 3 and Remark 4], Q� is globally dou-
bling and supports a global 1-Poincaré inequality. Let � be a Lipschitz cut-off function
on R such that � D 1 in Œ�1; 1� and � D 0 outside Œ�2; 2�. If u 2 N 1;1.X/, then

Qu.x; t/ WD u.x/�.t/ 2 N 1;1. zX/

and [43, Theorem 4.1 and Remark 4.7] implies that Qu has Lebesgue points at C zX1 -q.e.
x 2 zX . Clearly, for 0 < r < 1,«

B.x;r/�.�r;r/

Qud Q� D 2r

«
B.x;r/

ud� and Q�.B.x; r/ � .�r; r// D 2r�.B.x; r//;

which implies that x 2 X is a Lebesgue point of u if and only if .x; t/ 2 zX is a Lebesgue
point of Qu for some (and equivalently all) t 2 .�1; 1/. Hence, if E � X is the set of
non-Lebesgue points of u, then C zX1 .E � .�1; 1// D 0 and for every " > 0, there exists
Qv 2 N 1;1. zX/, with an upper gradient g, such that Qv � 1 on E � .�1; 1/ andZ

zX

.j Qvj C g/ d Q� < 2":

Then there exists t 2 .�1; 1/ such that

(4.9)
Z
X

.jv.x; t/j C g.x; t// d�.x/ < ":

Clearly, g. � ; t / is an upper gradient of v. � ; t / with respect to X and v. � ; t / is admissible
for CX1 .E/. It therefore follows from (4.9) that CX1 .E/ < ". Letting "! 0 now shows
that CX1 .E/ D 0 and so u has Lebesgue points CX1 -q.e. in X .

Proof of Proposition 4.11. Find yG and Ou 2 N 1;1
loc .
yG/ as in Proposition 4.9. Let x 2 yG.

As yG is locally compact, it follows from Theorem 3.2 that there is a bounded uniform do-
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mainGx in yX such that x 2Gx b yG and such that �jGx is globally doubling and supports
a global p-Poincaré inequality on Gx , where the closure is taken with respect to yX . In
particular, Ou 2 N 1;1.Gx/.

By [43, Theorem 4.1 and Remark 4.7] and the argument in Remark 4.12, Ou has
Lebesgue points CGx1 -q.e. in Gx . By Lemma 4.2, the capacities CGx1 and C yX1 have the
same zero sets in Gx . Hence, as yG is Lindelöf, Ou has Lebesgue points C yX1 -q.e. in yG, and
so u has Lebesgue points CX1 -q.e. in X .

Finally, if Qu is given by the right-hand side of (4.8), then Ou D Qu at all Lebesgue points
of Ou, i.e., C yXp -q.e. in yG. Hence, Ou may also be chosen so that it satisfies (4.8).

Even for u 2 N 1;1.X/, (the proof of) Proposition 4.9 only guarantees an extension
in the local Newtonian space N 1;1

loc .
yG/ (but with yG independent of u), unless X is 1-

path open in yX . However, under slightly stronger uniform assumptions we can obtain the
following partial nonlocal conclusion, which also includes p > 1, see [8, Remark 4.10].

Proposition 4.13. Assume that there are constants C�, CPI and � such that for each
x 2 X , there is rx > 0 such that � is doubling within Bx D B.x; rx/ with constant C�,
and � supports a p-Poincaré inequality within Bx with constants CPI and �. Then there
is an open set yG � X in yX such that for every u 2 N 1;p.X/, the function Ou given by (4.8)
satisfies Ou D u CXp -q.e. on X and belongs to N 1;p. yG/. If also rx is independent of x,
then we may choose yG D yX .

Such assumptions are called semiuniformly local, and uniformly local in the case
where rx is independent of x, in [6, Definition 6.1]. Riemannian manifolds always sup-
port at least semiuniformly local assumptions and often uniformly local ones. Uniformly
local assumptions are natural e.g. on Gromov hyperbolic spaces, see Björn–Björn–Shan-
mugalingam [14,15] and Butler [18]. Semiuniformly local assumptions were also used by
e.g. Holopainen–Shanmugalingam [39].

Proof. Let yBx D yB.x; rx/ and yG D
S
x2X

yBx . By [8, Proposition 4.8 and the proof of
Lemma 4.6] (for p > 1) or Proposition 4.11 and the proof of Proposition 4.9 (for p D 1),
we get that Ou 2 N 1;p

loc .
yG/. By [8, Theorem 4.1] (for p > 1) and Theorem 1.2 (for p D 1),

we see that g Ou � A0gu a.e. in X , where A0 only depends on p, C�, CPI and �. Thus,Z
yG

j Oujp d O� D

Z
X

jujp d� <1 and
Z
yG

g
p

Ou
d O� � A

p
0

Z
X

gpu d� <1;

i.e., Ou 2 N 1;p. yG/. If rx is independent of x, then clearly yG D yX .

5. Removable sets for Newtonian spaces

We assume in this section that 1 � p <1 and that Y D .Y; d; �Y / is a metric measure
space equipped with a metric d and a positive complete Borel measure �Y such that
0 < �Y .B/ <1 for all balls B � Y . Moreover, X � Y is such that Y � yX . We also let
E D Y nX and assume that the inner measure satisfies

(5.1) �Y;in.E/ WD sup¹�Y .A/ W A � E is �Y -measurableº D 0:
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Our main interest in this section is removability of sets with zero measure, i.e., when
X � Y are two metric spaces with �Y .Y n X/ D 0. In order to be able (as before) to
include the case when Y D yX and X is a nonmeasurable subset of Y , we merely impose
the condition (5.1). This will only necessitate a little extra care in some of the formulations.
At the end of this section we give examples of nonmeasurable removable sets with zero
inner measure. Removability of sets with positive measure is a different topic, related
to extension domains, see e.g. Hajłasz–Koskela–Tuominen [31] and Björn–Shanmugalin-
gam [17, Section 5]. As in (4.1), it follows from (5.1) that

�Y;in.E/ D sup¹�Y .A/ W A � E is a Borel set in Y º:

Since we want Y to satisfy our standing assumption that balls have positive measure,
necessarily Y � yX D yY . In the nonmeasurable case, we cannot just let �X D �Y jX , but
need to define �X by letting

(5.2) �X .A \X/ D �Y .A/ for every �Y -measurable set A � Y:

This is well-defined since �Y;in.E/ D 0, and makes �X into a complete Borel regular
measure on X , which coincides with the restriction �Y jX when X is �Y -measurable.

We note that q.e. defined equivalence classes may depend on whether the capacity
is CXp or C Yp , whereas the a.e. condition coincides in both spaces, due to (4.2). So for
simplicity we restrict the discussion to removability with respect to the following spaces,
where we implicitly assume that uWX ! R is defined pointwise in X :

yN 1;p.X/ D ¹u W u D v a.e. for some v 2 N 1;p.X/º;

yDp.X/ D ¹u W u D v a.e. for some v 2 Dp.X/º:

In both cases we define gu D gv . This is well-defined a.e. and independent of the choice
of v such that v D u a.e. The spaces yN 1;p.Y / and yDp.Y / are defined similarly.

Definition 5.1. The set E D Y nX is removable for yN 1;p.X/ if yN 1;p.X/D yN 1;p.Y / in
the sense that yN 1;p.X/ D ¹ujX W u 2 yN

1;p.Y /º. If moreover gu;X D gu;Y a.e. in X for
every u 2 yN 1;p.Y /, then E is isometrically removable for yN 1;p.X/.

Removability and isometric removability for yDp.X/ are defined similarly.

It is easily seen that removability for yN 1;p is the same as for the corresponding spaces
of a.e.-equivalence classes

(5.3) yN 1;p.X/=
ae
� and yN 1;p.Y /=

ae
�;

where u ae
� v if u � v D 0 a.e. However, to make it clearer what exactly is meant, espe-

cially in the nonmeasurable case, we prefer to work with the spaces yN 1;p of pointwise
defined functions. In fact, the proofs below show that when E is removable, then any
�Y -measurable extension of u from X to Y will do the job.

Note also that the quotient spaces in (5.3) are Banach spaces. Since we have clearly
kukN 1;p.X/ � kukN 1;p.Y /, the bounded inverse theorem shows that the norms in these
spaces are equivalent when E is removable for yN 1;p.X/.

As a first observation we deduce the following result.
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Proposition 5.2. If C Yp .E/D 0, thenE D Y nX is isometrically removable for yN 1;p.X/

and yDp.X/.

Note that no assumptions on Y are needed (other than the standing assumptions from
the beginning of this section) and that X is automatically measurable in this case, since
�Y .E/ D 0 (which follows directly from Definition 2.3).

Proof. Let Ou 2 yDp.X/ and let u 2 Dp.X/ be such that u D Ou a.e. in X . Let g be any
p-weak upper gradient of u in X . Extend u and g by 0 to Y n X . Note that as X is
measurable so are u and g. Since C Yp .E/ D 0, it follows from [4, Proposition 1.48] that
p-almost no curve in Y hitsE. Hence, g is a p-weak upper gradient of u also on Y . Since
u D Ou a.e. in X , any extension of Ou to Y will coincide with u a.e. in Y and so belongs
to yDp.Y /. Thus, E is isometrically removable both for yN 1;p.X/ and yDp.X/.

Example 5.3. Let Y D Rn, n � 2, 1 � p � n and let E � Rn be a countable or finite
set. Then it is well known that CRn

p .E/ D 0, and thus E is isometrically removable for
yN 1;p.Rn nE/ and yDp.Rn nE/, by Proposition 5.2.

IfE �H is dense in a hyperplaneH , thenE DH is not removable for yN 1;p.Rn nE/
nor for yDp.Rn nE/. This follows from Theorem 5.4 below since Rn nH is disconnected
and hence does not support any global Poincaré inequality.

This shows that removability for nonclosed sets cannot be achieved by only studying
removability of their closures. In Proposition 6.4 we give a much more general result
which includes this example as a special case.

The following is the main result in this section.

Theorem 5.4. Assume that �Y is globally doubling and supports a global p-Poincaré
inequality on Y . Consider the following statements:

(a) E is removable for yN 1;p.X/.

(b) E is removable for yDp.X/.

(c) E is isometrically removable for yN 1;p.X/.

(d) E is isometrically removable for yDp.X/.

(e) X supports a global p-Poincaré inequality with the same C and � as on Y .

(f) X supports a global p-Poincaré inequality.

Then (c), (d)) (e)) (f)) (b)) (a).
If in addition X is p-path almost open in Y , then (a)–(f) are all equivalent.

As mentioned in the introduction, this generalizes Theorem C in Koskela [44], see
also Koskela–Shanmugalingam–Tuominen [46, p. 335]. Koskela obtained such a char-
acterization of removability for W 1;p.Rn n E/ on unweighted Rn, with p > 1 and E
closed (and thus X D Rn n E open and hence p-path almost open). In the classical situ-
ation, on unweighted Rn, our result thus extends Koskela’s result to p D 1. The classical
Sobolev spaces W 1;p.Rn/ and W 1;p.Rn nE/, for E closed, coincide with yN 1;p.Rn/=

ae
�

and yN 1;p.Rn nE/=
ae
� (with the same norm), respectively, by Theorem 7.13 in Hajłasz [30]

(or [4, Corollary A.4]). This is true also in weighted Euclidean spaces, for p-admissible
weights when p > 1, see [4, Proposition A.12]. (A weightw is p-admissible if d�Dwdx
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is a globally doubling measure supporting a global p-Poincaré inequality.) For p D 1 and
a 1-admissible weight, Proposition 4.26 in Cheeger [23], together with the arguments in
[4, Propositions A.11 and A.12], implies that the norms are comparable, see also Eriksson-
Bique–Soultanis [24].

Theorem 6.1 below shows that the assumptions in Theorem 5.4 can be fulfilled with-
out X being p-path almost open in Y D yX , and that even in this case, it is possible
that (a)–(f) all hold. Some of the implications hold under weaker assumptions and we
begin with deducing them.

Proposition 5.5. If E is removable for yDp.X/, then it is removable for yN 1;p.X/.

Proof. Let u 2 yN 1;p.X/. Since u 2 yDp.X/ and E is removable for yDp.X/, there exists
Ou 2 yDp.Y / such that Ou D u in X . As k OukLp.Y / D kukLp.X/ <1 by (5.2), we see that
Ou 2 yN 1;p.Y /. Hence, E is removable for yN 1;p.X/.

Proposition 5.6. Assume that�X is doubling and supports a p-Poincaré inequality within
an open set � � X . Then E \�^ is removable both for yN 1;p.�/ and yDp.�/.

Proof. By Proposition 5.5 (with � in place of X ), it suffices to prove removability for
yDp.�/. Let Ou 2 yDp.�/. Then there is u 2 Dp.�/ such that u D Ou a.e. in �. By The-

orem 1.2 (when p D 1) and [8, Theorem 4.1] (when p > 1, see Remark 4.7 (c)), there
exists v 2 Dp.�^/ such that v D u CXp -q.e. in �. Since v D Ou a.e. in �, any �Y -
measurable extension of Ou to Y \�^ will coincide with v a.e. in Y \�^ and so belongs
to yDp.Y \�^/. Hence, E \�^ is removable for yDp.�/.

Theorem 5.7. The set E is isometrically removable for yN 1;p.X/ if and only if it is iso-
metrically removable for yDp.X/.

Proof. Assume first thatE is isometrically removable for yDp.X/. By Proposition 5.5, the
set E is removable for yN 1;p.X/. As the removability for yDp.X/ is isometric, it follows
directly from the definition that E is isometrically removable also for yN 1;p.X/.

Conversely, assume that E is isometrically removable for yN 1;p.X/. Let u 2 yDp.X/

and let v 2 Dp.X/ be such that v D u a.e. in X . First consider the case when u � 0, so
that we can assume also v � 0. Fix x0 2 X and let

uk.x/ D .1 � dist.x; BX .x0; k//Cmin¹v.x/; kº; k D 1; 2; : : : :

Then uk 2 N 1;p.X/ and there is Ouk 2 N 1;p.Y / such that Ouk D uk a.e. in X , and thus
CXp -q.e. in X . As OukC1 � Ouk a.e., it follows from Corollary 1.60 in [4] that OukC1 � Ouk
C Yp -q.e., and thus we can choose OukC1 so that OukC1 � Ouk everywhere. Hence, Ou D
limk!1 Ouk is well-defined pointwise.

Next, let Og D gu;X , extended measurably to Y nX . By the isometric removability and
truncation, g Ouk ;Y D guk ;X � Og a.e. in BY .x0; k/, and thus Og is a p-weak upper gradient
of Ouk in BY .x0; k/. Since, by (5.2),

�Y .¹x 2 Y W j Ou.x/j D 1º/ D �X .¹x 2 X W jv.x/j D 1º/ D 0;
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it follows from [4, Lemma 1.52] that Og is a p-weak upper gradient of Ou in each BY .x0; k/
and hence in Y . Therefore, Ou 2 Dp.Y /, and clearly Ou D u a.e. in X . Now any �Y -
measurable extension of u will coincide with Ou a.e. in Y and so belongs to yDp.Y /. For
general u we write u D uC � u�, extend uC and u� as above, and take their difference.
Thus, E is isometrically removable for yDp.X/.

Remark 5.8. In the proof of Theorem 5.7, we used the fact that functions in Dp.X/ are
finite a.e. when applying [4, Lemma 1.52]. This is the reason why our definition ofDp.X/

slightly deviates from the one in [4], see Section 2. It may also be more natural to only
consider functions that are finite a.e.

Proof of Theorem 5.4. (c), (d) This follows from Theorem 5.7.
(c)) (e) Let u2N 1;p.X/� yN 1;p.X/. AsE is isometrically removable for yN 1;p.X/,

there is Ou 2 N 1;p.Y / such that Ou D u a.e. in X and g Ou;Y D g Ou;X D gu;X a.e. in X , see
Section 2. Let BX D BX .x; r/ be a ball inX , and let BY D BY .x; r/ be the corresponding
ball in Y . Then, in view of (5.2) and using the Poincaré inequality on Y ,«

BX

ju � uBX j d�X D

«
BY

j Ou � OuBY j d�Y

� Cr
� «

�BY

g
p

Ou;Y
d�Y

�1=p
D Cr

� «
�BX

g
p
u;X d�X

�1=p
:

Thus,X supports a global p-Poincaré inequality with the same constantsC and � as on Y ,
by Lemma 2.6.

(e)) (f) This is trivial.
(f)) (b) It follows directly from (5.2) that �X is globally doubling on X . Hence, this

implication follows from Proposition 5.6.
(b)) (a) This follows from Proposition 5.5.
Finally, if X is p-path almost open in Y , then (a)) (c) by Lemma 4.1.

Under local assumptions we obtain the following result. Recall that local assumptions
are inherited by open sets and thus X and Y in the following theorem can be replaced by
� \X and �, respectively, for any open set � � Y , cf. Remark 4.8.

Theorem 5.9 (Local version). Assume that �Y is locally doubling and supports a local
p-Poincaré inequality on Y . Consider the following statements:

(a) E is removable for yN 1;p.X/.

(b) E is removable for yDp.X/.

(c) E is isometrically removable for yN 1;p.X/.

(d) E is isometrically removable for yDp.X/.

(e) Whenever x 2X and the Poincaré inequality (2.2) holds for a ball BY .x; r/ in Y ,
it holds for the ball BX .x; r/ in X with the same constants C and �.

(f) There is a cover of Y by at most countably many ballsBY;j DBY .xj ; rj /, xj 2X ,
such that the p-Poincaré inequality holds within each ball BX;j D BX .xj ; rj /.
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Then
(a)( (b)( (c), (d)) (e)) (f):

If in addition X is p-path almost open in Y , then (a)–(f) are all equivalent.

Note that Y D R with E D ¹0º shows that in order for the equivalences in the last
part to hold, it is not possible to replace (f) by the assumption that “X supports a local
p-Poincaré inequality”.

Proof. (c), (d) This follows from Theorem 5.7.
(d)) (b) This is trivial.
(b)) (a) This follows from Proposition 5.5.
(c) ) (e) The proof of this implication is similar to the proof of the corresponding

implication in Theorem 5.4.
(e) ) (f) Since Y is Lindelöf and supports a local p-Poincaré inequality, this is

straightforward.
Now assume that X is p-path almost open in Y .
(a)) (c) This follows from Lemma 4.1.
(f)) (b) Since �Y is locally doubling on Y , we may assume that the cover BY;j has

been chosen so that �Y is doubling within each BY;j . It follows directly from (5.2) that
�X is doubling within each BX;j . Let Ou 2 yDp.X/. Then there is u 2 Dp.X/ such that
u D Ou a.e. in X . Note that Y � yX .

Using Theorem 1.2 (when pD 1) and [8, Theorem 4.1] (when p >1), we can find uj 2
Dp.BY;j / such that uj D u CXp -q.e. in BX;j , j D 1; 2; : : : . As ui ; uj 2Dp.BY;i \BY;j /

and the set ¹y 2 BY;i \ BY;j W ui .y/ ¤ uj .y/º has measure zero, it must be of zero C Yp -
capacity for all i; j . We can thus construct v 2Dp

loc.Y / such that v D uj C Yp -q.e. in BY;j ,
j D 1; 2; : : : , and hence v D u CXp -q.e. in X .

SinceX is p-path almost open in Y , we have guj ;Y Dgu;X a.e. inBX;j , by Lemma 4.1.
As every curve 
 in Y is compact, it can be covered by finitely many BY;j . From this it
follows that gu;X (extended measurably to Y n X ) is a p-weak upper gradient also of v
in Y , and thus v 2Dp.Y /. Since v D Ou a.e. in X , any �Y -measurable extension of Ou will
belong to yDp.Y /. Hence, E is removable for yDp.X/.

The following result, albeit a bit trivial, gives us plenty of examples of nonmeasurable
removable sets with zero inner measure. Consider e.g. Y to be the von Koch snowflake
curve (see e.g. [4, Example 1.23]) andX � Y be any nonmeasurable subset with full outer
measure.

Proposition 5.10. Assume that there are no or p-almost no curves in Y , i.e., Modp;Y .�/
D 0, where � is the collection of all nonconstant rectifiable curves in Y . Then any E � Y
satisfying (5.1) is isometrically removable for yN 1;p.X/ and yDp.X/.

Proof. In this case gu D 0 a.e. for every measurable function u on X or Y , and so
yN 1;p.X/ D N 1;p.X/ D Lp.X/ and yN 1;p.Y / D N 1;p.Y / D Lp.Y /. It thus follows

directly from (5.2) that E is removable for yN 1;p.X/. Since gu;X D gu;Y a.e. in X , the
removability is isometric. By Theorem 5.7, E is isometrically removable for yDp.X/.
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6. Extension from a non-p-path almost open set

We are now going to construct a set X � R2 which satisfies the assumptions in Theo-
rem 1.2 but is not p-path almost open in R2. However, its complement is isometrically
removable for yN 1;p.X/ and yDp.X/.

We first construct a planar Cantor set C � Œ0; 1�� Œ0; 1� as follows. LetH0 D Œ0; 1� and
for every k D 0; 1; : : : , letHkC1 be the set obtained by removing from the centre of every
interval inHk the open interval of length 2�2k�1. Then let C D

T1
kD1.Hk �Hk/, which

is a planar Cantor set. This set projects (orthogonally) onto full intervals on the lines

(6.1) y D ˙1
2
x C c and y D ˙2x C c;

but has zero length projections on all other lines. This is easy to check by sketching the
set H1 �H1 and then noting the self-similarity of the construction. In particular, C has
1-dimensional Hausdorff measure 0 < H1.C / <1 (where the latter inequality is easy
to show).

The Cantor set C is often called the four corners Cantor set, as well as the Garnett–
Ivanov set in complex analysis, since Garnett [29] and Ivanov [40, footnote on p. 346]
(independently) showed that it is removable for bounded analytic functions.1

Let next ¹qj º1jD1 be an enumeration of Q2 and define

(6.2) A D

1[
jD1

.qj C C/;

i.e., we shift C by all rational numbers and take the union. We are now going to show the
following properties for X D R2 n A.

Theorem 6.1. Let X D R2 n A, where A � R2 is as in (6.2). Also let �0 be a nonempty
open subset of R2 and � D �0 \ X , all sets being equipped with the Lebesgue mea-
sure L2. Then the following are true:

(a) A \�0 is isometrically removable for yN 1;p.�/.

(b) X supports a global 1-Poincaré inequality.

(c) � is not p-path almost open in R2.

This in particular shows that the assumptions and conclusions in Theorem 1.2, as well
as in the corresponding Theorem 4.1 in Björn–Björn [8] for 1 < p <1, can be fulfilled
even if � is not p-path almost open in yX . Similarly, it shows that the assumptions in
Theorem 5.4 can be fulfilled withoutX being p-path almost open in Y D yX , and that even
in this case, it is possible that (a)–(f) all hold. Moreover, the conclusions in Theorem 1.1
hold.

Proof. (a) Let u 2 N 1;p.�/. Then u is absolutely continuous on p-almost every curve
in �, by Proposition 3.1 in Shanmugalingam [53] (or [4, Theorem 1.56]). Let l be any
line which is not among those in (6.1). The orthogonal projection of C , and thus of A,
on l has zero length. Hence, almost every line in R2, which is perpendicular to l , does not

1For the historically interested reader it may be worth noting that Veltmann [56] considered planar Cantor
sets in 1882 before Cantor [21, p. 590 (p. 407 in Acta Math.)] published his ternary set in 1883.
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intersect A. Thus, by [4, Lemmas 2.14 and A.1], u is absolutely continuous along the
intersection of almost every such line with�0 and the corresponding directional derivative
u0
d

of u satisfies ju0
d
j � gu;� a.e. (Note that L2.�0 n�/ D 0.)

In particular, u 2 ACL.�0/, and thus u 2 W 1;p.�0/ D yN 1;p.�0/=
ae
�, by e.g. Theo-

rem 2.1.4 in Ziemer [57]. Since we have only excluded four directions of lines for l , the
distributional gradient of u satisfies jruj � gu;� a.e. in �0. Thus,

gu;�0 D jruj � gu;� a.e. in �0,

by Theorem 7.13 in Hajłasz [30] (or [4, Corollary A.4]), while the reverse inequality is
trivial. Hence, A is isometrically removable for yN 1;p.�/.

(b) This now follows directly from (a) and Theorem 5.4.
(c) Consider the family �0 of all lines ¹
.t/ WD .t=

p
5; .2t C c/=

p
5/ W t 2Rºc2R. The

crucial property of the Cantor set C is that if any such line intersects Œ0; 4�i � � Œ0; 4�i �,
then it intersects 4�iC � C , i D 0; 1; : : : , though only in a set of zero 1-dimensional
Lebesgue measure. Thus, if any line 
 2 �0 intersects qj C Œ0; 4�i � � Œ0; 4�i � for some
indices i; j , then it intersects qj C 4�iC .

Fix 
 2 �0, t 2 R and " > 0. We then find i; j such that 4�i < "=2 and


.t/ 2 qj C Œ0; 4
�i � � Œ0; 4�i �:

As explained above, the line 
 intersects qj C 4�iC and so there is s 2 R with js � t j < "
such that 
.s/ 2 qj C 4�iC � A. It follows that 
�1.A/ is dense in R but of zero 1-
dimensional Lebesgue measure. The lines 
 2 �0 are not rectifiable curves since they
are not of finite length, but we can define � as the collection of all compact line seg-
ments on these lines that also belong to �0. Let 
 W Œ0; l
 �! �0, 
 2 � , be an arc-length
parameterized curve. Then by the above argument, 
�1.A/ is dense in Œ0; l
 � but of zero
1-dimensional Lebesgue measure, and so 
�1.�/ D Œ0; l
 � n 
�1.A/ is not the union of
an open set and a set of zero 1-dimensional Lebesgue measure. By [4, Lemma A.1], we
also have Modp;R2.�/ > 0 for all 1 � p <1. In conclusion,� is not p-path almost open
in R2.

In the rest of this section, we provide examples of removable sets E fulfilling the
assumptions in Theorem 5.4, with X D Y n E that is p-path almost open but not p-path
open.

Example 6.2. Let p > 2 and let Y be the so-called bow-tie

Y D ¹.x1; x2/ 2 R2 W x1x2 � 0º;

E D ¹.x1; x2/ 2 R2 W x1 D 0 or x2 D 0º n ¹.0; 0/º;
X D Y nE:

We equip Y with the Lebesgue measure, which is globally doubling on Y . Then Y sup-
ports a global p-Poincaré inequality, by [4, Example A.23]. The same proof also shows
that X supports a global p-Poincaré inequality. By Theorem 1.3, X is p-path almost
open in Y . Thus, by Theorem 5.4, E is isometrically removable for yN 1;p.X/. Note that
the closure E (taken in Y or, equivalently, R2) separates Y and thus is not removable
for yN 1;p.Y nE/.
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Since p > 2, it is well known that CR2

p .¹xº/DCR2

p .¹0º/ > 0 for x 2R2. It is not diffi-
cult to see that C Yp .¹xº/ �

1
4
CR2

p .¹xº/ for x 2 Y . Thus, by definition, every p-quasiopen
set in Y is open. By Theorem 3.7, every p-path open set in Y is open, and in particular X
is not p-path open.

By adding a weight, we now modify the previous example to cover all p � 1.

Example 6.3. Let Y , E and X be as in Example 6.2, but this time we equip Y with
the measure d� D w dx, where w.x/ D jxj�1, which is globally doubling on Y . Then Y
supports a global 1-Poincaré inequality, by [4, Example A.24]. The same proof also shows
that X supports a global 1-Poincaré inequality. By Theorem 1.3, X is p-path almost open
in Y for every p � 1. Thus, by Theorem 5.4, E is isometrically removable for yN 1;p.X/.
Note that E separates Y and thus is not removable for yN 1;p.Y nE/.

We shall see that X is not p-path open in Y for any p � 1. This will be done by
showing that E is not 1-thin at 0 D .0; 0/ and hence that X is not 1-finely open. Since
C Y1 .¹0º/ > 0, by [4, Example A.24 and Lemma 6.15], it then follows from Theorem 3.7
that X is not 1-path open in Y .

Let u be a function admissible for capY1.E \ B.0; b/; B.0; 2b// and let g be an upper
gradient of u. Then for each 0 < a < b,Z 2b

0

g.a; t/w.a; t/ dt �
1

2
p
2b

Z 2b

0

g.a; t/ dt �
1

2
p
2b
;

since g is an upper gradient, u.a; 0/ D 1 and u.a; 2b/ D 0. It follows thatZ
B.0;2b/

gw dx �

Z b

0

Z 2b

0

g.a; t/w.a; t/ dt da � b
1

2
p
2b
D

1

2
p
2
:

Hence, by taking infimum over all such u and g, we see that

capY1.E \ B.0; b/; B.0; 2b// �
1

2
p
2
:

Testing with u.x/ D min¹.2b � jxj/=b; 1ºC shows that

capY1.B.0; b/; B.0; 2b// � �;

and so E is not 1-thin at 0 by the definition (3.2), and thus X is not 1-path open in Y .

With a bit more work we can create similar examples of removable setsE with non-p-
path open complements in unweighted Rn. Moreover, it can be done so that any E 0 � E
with p-path open complement is not removable.

We start with the following result. As in Example 5.3 this gives a lot of examples of
removable sets whose closure is not removable.

Proposition 6.4. Let � � Rn, n � 2, be open and equipped with the Lebesgue mea-
sure Ln. LetE �� be a set with .n� 1/-dimensional Hausdorff measure Hn�1.E/D 0.
Then E is isometrically removable for yN 1;p.� nE/ for every p � 1.

Proof. The proof is essentially identical to the proof of Theorem 6.1 (a). However, this
time we do not have any exceptional directions as given by (6.1).
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Example 6.5. Let Y D Rn, n � 3, equipped with the Lebesgue measure Ln, and let
A � Œ0; 1� be a nonempty set of zero 1-dimensional Lebesgue measure. Let ¹qj º1jD1 be an
enumeration of Q and let X D Rn nE, where

E D

� 1[
i;jD1

.qj C 2
�iA/

�
�Rn�2 � ¹0º:

Let p > 2 � d , where 0 � d � 1 is the Hausdorff dimension of A. Note that all p > 1
are included when dimH A D 1 and L1.A/ D 0. It follows from Proposition 6.4 that E
is removable for yN 1;p.X/. As E is contained in the hyperplane H WD Rn�1 � ¹0º, X is
a union of the open set Rn nH and a set of measure zero, and thus p-path almost open
in Rn, by Theorem 1.3. We shall now show that X is not p-path open in Rn.

By Theorem 3.7, this amounts to showing thatCRn

p .X n fine-intX/>0, with fine-intX
denoting the p-fine interior of X , which consists of all points x 2 X for which

(6.3)
1X
iD0

�capRn

p .B.x; 2
�i / \E;B.x; 21�i //

capRn

p .B.x; 2
�i /; B.x; 21�i //

�1=.p�1/
<1;

see Malý–Ziemer [49, Theorem 2.136]. We alert the reader that it is not enough to show
that CRn

p .X n intX/ > 0, since e.g. the complement of any countable dense set in Rn,
n � p, is p-path open but has empty interior.

By [36, Lemma 12.10], (6.3) is equivalent to the p-thinness condition (3.1). It is clear
that (6.3) holds for all x 2 X nH . For x D .x1; : : : ; xn/ 2 X \H and r D 21�i , i D
1; 2; : : : , find

y D .y1; : : : ; yn/ 2 H; with y1 2 Q and jx � yj < 1
2
r D 2�i :

Let
Ai WD 2

�iA �Rn�2 � ¹0º; i D 0; 1; : : : :

Then, by the scaling property and translation invariance of capRn

p together with the con-
struction of E,

capRn

p .B.x; r/ \E;B.x; 2r// � capRn

p .B.y;
1
2
r/ \ .y C Ai /; B.y;

5
2
r//

D 2�i.n�p/ capRn

p .A0 \ B.0; 1/; B.0; 5//

DW C0 r
n�p:

Since A0 is .d C n � 2/-dimensional and p > 2 � d , it follows from e.g. Heinonen–
Kilpeläinen–Martio [36, Theorem 2.26] that C0 > 0. It is crucial here that C0, by its
definition above, only depends on the set A fixed at the beginning, and not on the ball
B.x; r/. Similarly,

capRn

p .B.x; r/; B.x; 2r// D Cr
n�p for some C > 0:

Hence, for all r D 21�i , i D 1; 2; : : : ,�capRn

p .B.x; r/ \E;B.x; 2r//

capRn

p .B.x; r/; B.x; 2r/

�1=.p�1/
�
C0

C
> 0;
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and inserting this into the Wiener criterion (6.3) shows that x … fine-intX , and hence
fine-intX D Rn nH . Moreover, H nE has infinite .n � 1/-dimensional Hausdorff mea-
sure and thus by e.g. [36, Theorem 2.26] again,

CRn

p .X n fine-intX/ D CRn

p .H nE/ > 0;

i.e., X is not p-path open, by Theorem 3.7.
It also follows that if E 0 � E is any set such that X 0 D Rn n E 0 is p-path open (and

Ln.E 0/ D 0), then CRn

p .H \X 0/ D 0. Since H \ X 0 separates X 0, it follows that X 0

cannot support a p-Poincaré inequality and thus E 0 is not removable for yN 1;p.X 0/, by
Theorem 5.4. Thus, the removability of E cannot be achieved by considering larger sets
with p-path open complements.

7. p-path almost open sets

Despite the example given in Theorem 6.1, p-path almost open sets played a rather central
role in our studies of removable sets in Section 5. In this section, we therefore characterize
p-path almost open sets, and in particular answer Open problem 3.4 in Björn–Björn [5],
which asked whether every p-path almost open set can be written as a union of a p-
path open set and a set of a measure zero. We give an affirmative answer for measurable
sets, under natural assumptions. At the same time, we also answer it in the negative for
nonmeasurable sets in unweighted Rn, n� 2, and give a measurable counterexample with
a nondoubling underlying measure on R.

We call a setN � X p-path negligible if for p-almost every arc-length parameterized
curve 
 , we have L1.
�1.N // D 0, where L1 denotes the 1-dimensional Lebesgue mea-
sure. (Recall that we only consider rectifiable curves.) A p-path negligible set is obviously
p-path almost open.

It is easy to check that a set of measure zero is p-path negligible, see Shanmugalin-
gam [53, proof of Lemma 3.2] (or [4, Lemma 1.42]). Conversely, we have the following
result.

Proposition 7.1. Assume that � is locally doubling and supports a local p-Poincaré
inequality. Let N � X be measurable and p-path negligible. Then �.N/ D 0.

Proposition 7.5 below shows that the measurability assumption cannot be dropped.

Proof. First we make the following observation: if u 2 N 1;p.X/, then the minimal p-
weak upper gradient satisfies gu D 0 a.e. in N . To see this, note that for p-almost every
curve 
 , we have L1.
�1.N // D 0 and soZ




gu ds D

Z



gu�XnN ds:

Thus, gu�XnN is also a p-weak upper gradient of u, and then by the minimality of gu, we
must have gu D 0 a.e. in N .

In order to prove that �.N/ D 0, suppose instead that �.N/ > 0. Then there exists a
point x 2 N of density one, see e.g. Heinonen [35, Theorem 1.8]. For each i D 1; 2; : : : ,
let Bi D B.x; i�1/ and �i .y/ D .1� i dist.y;Bi //C. Then g�i � i�2Bi and in fact g�i �
i�2BinN , by the earlier observation.
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By the local p-Poincaré inequality, we have for all sufficiently large i that the sphere
@5
2
Bi is nonempty and

(7.1)
«
3Bi

j�i � ci j d� �
C

i

� «
3Bi

gp�i d�
�1=p

;

where ci WD
ª
3Bi

�i d� is the integral average. Considering the cases ci � 1
2

and ci � 1
2

separately, we conclude that the left-hand side satisfies«
3Bi

j�i � ci j d� �
min¹�.Bi /; �.3Bi n 2Bi /º

2�.3Bi /
�

1

C 0
;

by the local doubling property (and for large i ). On the other hand, the right-hand side
satisfies

1

i

� «
3Bi

gp�i d�
�1=p

�

��.3Bi nN/
�.3Bi /

�1=p
;

which tends to zero as i !1, since x is a density point of N . This contradicts (7.1), and
so we have the result.

Next we prove the following characterization of p-path almost open sets. Note that it
applies also to nonmeasurable sets.

Theorem 7.2. Assume that X is locally compact and that � is locally doubling and sup-
ports a local p-Poincaré inequality. Then U � X is p-path almost open if and only if
it can be written as a union U D V [ N , where V is p-path open and N is p-path
negligible.

Recall that under these assumptions, a set is p-path open if and only if it is p-quasi-
open, by Theorem 3.7.

Proof. If U D V [N , where V is p-path open andN is p-path negligible, then it is easy
to see that U is p-path almost open.

Conversely, suppose that U is p-path almost open. Now the family � of curves 
 , for
which 
�1.U / is not the union of an open set and a set of zero 1-dimensional Lebesgue
measure, has zero p-modulus, i.e., there is a Borel function 0 � � 2 Lp.X/ such thatR


� ds D1 for every 
 2 � , see [4, Proposition 1.37].
Assume first that U is bounded and letB be a ball containing a 1-neighbourhood of U .

Define
u.x/ D min

°
1; inf




Z



.�C �B/ ds
±
; x 2 X;

where the infimum is taken over all rectifiable curves (including constant curves) from x

to X n U . Then u D 0 in X n U , and �C �B is an upper gradient of u, by Björn–Björn–
Shanmugalingam [12, Lemma 3.1] (or [4, Lemma 5.25]). By Corollary 1.10 in Järvenpää–
Järvenpää–Rogovin–Rogovin–Shanmugalingam [41] (or Theorem 3.4), u is measurable.
As u and U are bounded and � 2 Lp.X/, it follows that u 2 N 1;p.X/.

Let V D ¹x 2 U W u.x/ > 0º D ¹x 2 X W u.x/ > 0º and N D U n V . Then V is p-
path open, since u 2 N 1;p.X/ is (absolutely) continuous on p-almost every curve in X ,
by Proposition 3.1 in Shanmugalingam [53] (or [4, Theorem 1.56]). It remains to show
that N is p-path negligible. Assume it is not. Then there necessarily is an arc-length
parameterized curve y
 for which L1.D/ > 0, where D WD y
�1.N /, but

R
y

� ds <1.
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Let x 2 N and 0 < ı � 1. As u.x/ D 0, there are arc-length parameterized curves

j W Œ0; l
j �! X , j D 1; 2; : : : , such that 
j .0/ D x, 
j .l
j / 2 X n U andZ


j

.�C �B/ ds � 2
�j�1ı:

SinceB contains a 1-neighbourhood ofU , necessarily l
j � 2
�j�1ı. We define a curve 
x

as follows. Let L0 D 0,

Li D 2

iX
jD1

l
j � 2

1X
jD1

l
j DW L � 2ı

1X
jD1

2�j�1 D ı for i D 1; 2; : : : ;


x D

´

j .t � Lj�1/ for Lj�1 � t � Lj�1 C l
j ;

j .Lj � t / for Lj�1 C l
j � t � Lj ;

and 
x.L/ WD x. Then 
x W Œ0; L�! X is an arc-length parameterized curve with


x.0/ D x D 
x.Lj / D 
x.L/ and 
x.Lj C l
jC1/ 2 X n U for all j D 1; 2; : : : ,

with Lj C l
jC1!L as j !1. Also, length.
x/ D L � ı and
R

x
� ds � ı. In essence,


x is a short “zigzagging loop” at x which intersects X n U arbitrarily close to its end
point.

Now take a dense set ¹skº1kD1 �D. For every k D 1; 2; : : : , we find such a zigzagging
loop y
k WD 
xk at xk D y
.sk/, with ly
k � 2

�k and
R
y
k
�ds � 2�k . Next we define a curve 


that is obtained from y
 by adding the “loops” y
k at the points xk , for k D 1; 2; : : : . More
precisely, first let l D

P1
kD1 ly
k . Then define the function

f W Œ0; ly
 �! Œ0; ly
 C l �; f .t/ WD �.Œ0; t �/ with � D L1
C

1X
kD1

ly
kısk ;

where ısk are Dirac measures at the points sk . Now f �1 is defined on a subset of Œ0; ly
 C l �
and it is 1-Lipschitz. We define a curve 
 on Œ0; ly
 C l � as follows. For t 2 f .Œ0; ly
 �/, let

.t/D y
.f �1.t//. If t 2 Œ0; ly
 C l � n f .Œ0; ly
 �/, then for some k D 1; 2; : : : , the number t
belongs to an interval of length ly
k which does not intersect f .Œ0; ly
 �/ apart from the right
end point f .sk/. Define 
 to be the curve y
k on this interval. Note that 
 is a 1-Lipschitz
mapping and that length.
/ D ly
 C l . Thus, 
 is arc-length parameterized, and so it is
indeed a “curve” in our sense.

Since y
.D/ � N , we also get 
.f .D// � N . Moreover, since f �1 is 1-Lipschitz,
L1.f .D// � L1.D/ > 0 and so 
 travels a positive length in N . Let t WD f .�/ 2 f .D/
and " > 0. Then by the construction of f , together with the density of ¹skº1kD1 in D, we
can find k and j0.k/ such that limk!1 j0.k/ D1 and

jf .sk/ � t j D jf .sk/ � f .�/j � jsk � �j C
X

j�j0.k/

ly
j � jsk � �j C 2
1�j0.k/ < ":

By the construction of the zigzagging loop y
k , there is a sequence tl % f .sk/ such that

.tl / 2 X n U for l D 1; 2; : : : . Since " > 0 was arbitrary, we conclude that t is not in
the interior of 
�1.U /. Thus, no t 2 f .D/ is an interior point of 
�1.U /, and since we
had L1.f .D// > 0, 
�1.U / is not the union of a relatively open set and a set of zero
L1-measure. This shows that 
 2 � .
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At the same time,Z



� ds D

Z
y


� ds C

1X
kD1

Z
y
k

� ds �

Z
y


� ds C

1X
kD1

2�k D

Z
y


� ds C 1 <1:

This contradicts the choice of �. Thus, N is in fact a p-path negligible set and we have
the result for bounded sets U .

If U is p-path almost open and unbounded, we know that each U \ B.x0; j / is a
disjoint union of a p-path open set Vj and a p-path negligible setNj , j D 1; 2; : : : , where
x0 2 X is fixed. Now we can write U as the union

U D

1[
jD1

Vj [

1[
jD1

Nj ;

where
S1
jD1 Vj is obviously p-path open and

S1
jD1Nj is p-path negligible.

Finally, we obtain the following natural characterization of measurable p-path almost
open sets. This answers Open problem 3.4 in Björn–Björn [5] in the affirmative for mea-
surable sets, under natural assumptions.

Theorem 7.3. Assume that X is locally compact and that � is locally doubling and sup-
ports a local p-Poincaré inequality. Suppose that U � X is measurable. Then U � X is
p-path almost open if and only if it can be written as U D V [ N , where V is p-path
open and �.N/ D 0.

Under these assumptions, it follows from Theorem 3.7 that every p-path open set is
p-quasiopen and thus measurable. Hence, it follows from Proposition 7.5 below that the
measurability assumption in Theorem 7.3 cannot be dropped.

Proof. If U is p-path almost open, then by Theorem 7.2 we know that it is a union
U D V [ N 0, where V is p-path open and N 0 is p-path negligible. Then U D V [ N ,
where N D N 0 n V is also p-path negligible. By Theorem 3.7, V is measurable. As U is
measurable by assumption, so isN DU nV . Thus, by Proposition 7.1, we have�.N/D 0.

Conversely, if U D V [N , where V is p-path open and �.N/D 0, then N is p-path
negligible by [4, Lemma 1.42], and hence U is p-path almost open by Theorem 7.2.

A natural question is whether there exist nonmeasurable p-path almost open sets. If
there are no nonconstant rectifiable curves in X , as e.g. on the von Koch snowflake curve,
then all sets are p-path open as well as p-path almost open, and thus there are plenty
of nonmeasurable p-path open and p-path almost open sets. But what can happen under
natural assumptions, such as doubling and a Poincaré inequality?

First consider the 1-dimensional case.

Proposition 7.4. Let X D R be equipped with a locally doubling measure � supporting
a local p-Poincaré inequality. Then every p-path almost open set G is a union of an open
set and a set of measure zero, and is in particular measurable.

Proof. By Björn–Björn–Shanmugalingam [13, Theorem 1.2], d�Dwdx andw is a local
Ap-weight. Let a > 0 and 
 W Œ�a; a�! R with 
.t/D t . If � � 0 is a function admissible
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in the definition of Modp;X .¹
º/ and p > 1, then

1 �

Z



� ds D

Z a

�a

�w1=pw�1=p dx �
� Z a

�a

�p d�
�1=p� Z a

�a

w�1=.p�1/ dx
�.p�1/=p

:

Taking infimum over all such � and in view of the local Ap-condition [13, equation (5.1)],
we see that the single curve family ¹
º has positive p-modulus. (The calculation is similar
when p D 1.) Thus, necessarily 
�1.G/D G \ Œ�a; a� is a union of an open set and a set
of measure zero. Hence, also G D

S1
kD1.G \ Œ�k; k�/ is a union of an open set and a set

of measure zero.

The same argument applies to any connected metric graph X equipped with a locally
doubling measure � supporting a local p-Poincaré inequality, where each edge is con-
sidered to be a segment. To see this, first note that there are at most a countable number
of vertices and edges, and that �.¹xº/ D 0 for each x 2 X , see [4, Corollary 3.9]. It fol-
lows that the set of vertices has zero measure. On each open edge, � is given by a locally
p-admissible weight, by [13, Theorem 4.6], and we can apply the argument above.

On the contrary, in higher dimensions there always exist nonmeasurable p-path almost
open sets, at least if we assume the continuum hypothesis.

Proposition 7.5. Assume that the continuum hypothesis is true. Let X D Rn, n � 2, be
equipped with a measure d�Dwdx such that 0 <w 2L1loc.R

n/. Then there is a nonmea-
surable dense p-path negligible set S . In particular, S is a nonmeasurable dense p-path
almost open set.

In particular, Proposition 7.5 applies to p-admissible weights w, as studied exten-
sively in Heinonen–Kilpeläinen–Martio [36] when p > 1. Note that � and the Lebesgue
measure Ln have the same measurable sets.

We shall use Sierpiński sets to prove Proposition 7.5. A Sierpiński set S is an uncount-
able subset of Rn such that E \ S is at most countable for every set E of Lebesgue
measure Ln.E/ D 0. Such sets exist if we assume the continuum hypothesis, see Sier-
piński [55] (Proposition C26 in [55, p. 80] gives the existence for R, while in the para-
graph just before Proposition C26a in [55, p. 81], it is explained how to deduce the exis-
tence for R2) and Morgan [50, Theorem 7, p. 86] (for Rn). On the other hand, there are
other models of set theory containing ZFC (Zermelo–Fraenkel’s system plus the axiom of
choice) for which the existence of Sierpiński sets fails, e.g. if one adds Martin’s axiom
for @1, see Kunen [47, Exercise V.6.29].

Let S � Rn, n � 2, be a Sierpiński set and A � S . Then A \H � S \H is at most
countable for every hyperplane H . If A is measurable, then it follows from Fubini’s theo-
rem that Ln.A/ D 0, but then A D A \ S is at most countable. Thus, every uncountable
subset of S is nonmeasurable. In particular, S itself is nonmeasurable. Conversely it is
easy to show that if S � Rn, n � 1, is an uncountable set such that every uncountable
subset is nonmeasurable, then S is a Sierpiński set.

In fact, there exist Sierpiński sets with additional, perhaps surprising, properties. For
example, Bienias–Gła̧b–Rałowski–Żeberski [3, Theorem 5.5] have shown that in R2 there
is a Sierpiński set that intersects every line in at most two points. (This is again assuming
the continuum hypothesis.)
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When proving Proposition 7.5 we will need the following lemma, which is no doubt
well known. As we have not found a good reference, we provide a short proof.

Lemma 7.6. Let 
 W Œ0; l
 �! X be an arc-length parameterized curve. Then

L1.
�1.x// D 0 for every x 2 X:

Proof. The metric derivative

j P
 j.t/ WD lim
h!0

d.
.t C h/; 
.t//

jhj

satisfies j P
 j.t/D 1 for a.e. t 2 Œ0; l
 �, see e.g. Hajłasz [30, Corollary 3.7]. At the same time,
clearly j P
 j.t/ D 0 at every point t of density one for the closed set 
�1.¹xº/ (provided
that the limit exists), and thus at a.e. t 2 
�1.¹xº/.

Proof of Proposition 7.5. By the assumptions on the measure �, it has the same zero sets
and the same measurable sets as the Lebesgue measure Ln. As mentioned above, there
exists a Sierpiński set S 0 � Rn. It is easy to see that a countable union of Sierpiński sets
is a Sierpiński set, and hence S D

S
q2Qn.S 0 C q/ is a dense Sierpiński set.

If 
 W Œ0; l
 � ! Rn is an arc-length parameterized curve, then 
.Œ0; l
 �/ \ S is at
most countable, since Ln.
.Œ0; l
 �// D 0. Lemma 7.6 and the countable additivity of the
Lebesgue measure L1 then imply that L1.
�1.S// D 0. As this holds for every curve 
 ,
the set S is p-path negligible for every p. However, S is nonmeasurable with respect
to Ln, and thus also with respect to �.

We end the paper by constructing a measurable p-path almost open set which cannot
be written as a union of a (quasi)open set and a set of measure zero. Note that the measure
is not doubling and does not support a Poincaré inequality.

Example 7.7. Let X D R, equipped with the measure L1 C ı0, where ı0 is the Dirac
measure at 0. Then Cp.¹xº/ � 2 for all x 2 X and hence all quasiopen sets in X are open.
The interval Œ0; 1/ cannot therefore be written as a union of a quasiopen set and a set of
measure zero. However, it is still p-path almost open for any p � 1, by Lemma 7.6.

For an example with a nonatomic measure, equip R � .R nQ/n�1 with the measure
.L1 C ı0/ �Ln�1 and consider U D Œ0; 1/ � ..0; 1/ nQ/n�1, n � 2.
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