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Factorization of the normalization of the Nash blowup
of order n of An by the minimal resolution

Enrique Chávez-Martínez

Abstract. We show that the normalization of the Nash blowup of order n of the toric
surface singularity An can be factorized by the minimal resolution of An. The result
is obtained using the combinatorial description of these objects.

Introduction

The Nash blowup of an algebraic variety is a modification that replaces singular points by
limits of tangent spaces at non-singular points. It was proposed to achieve a resolution of
singularities by iterating this process [16, 20]. This question has been treated in [1, 5, 12,
13,15,16,18,21,22]. The particular case of toric varieties is treated in [7,10–12,14] using
their combinatorial structure.

There is a generalization of Nash blowups, called higher Nash blowups or Nash blow-
ups of order n, that was proposed by Takehiko Yasuda. This modification replaces singular
points by limits of infinitesimal neighborhoods of certain order at non-singular points. In
particular, the higher Nash blowup looks for resolution of singularities in one step [23].
Yasuda proves that this is true for curves in characteristic zero, but conjectures that is false
in general, proposing as a counterexample the toric surface A3.

There are several papers that deal with higher Nash blowups in the special case of
toric varieties. The usual strategy for this special case is to translate the original geometric
problem into a combinatorial one and then try to solve the latter. So far, the combinatorial
description of higher Nash blowups of toric varieties has been obtained using Gröebner
fans or higher-order Jacobian matrices.

The use of Gröebner fans for higher Nash blowups of toric varieties was initiated in [6].
Later, this tool was further developed in [22] to show that the Nash blowup of order n of
the toric surface singularity A3 is singular for any n > 0, over the complex numbers. This
problem was later revisited to show that it also holds in prime characteristic [9].

The techniques from [22] can be used to compute the Gröebner fan of the normaliz-
ation of higher Nash blowup of An for some n’s. Those computations suggest that the
essential divisors of the minimal resolution of An appear in the normalization of the Nash
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blowup of order n of An for some n’s. The main goal of this paper is to show that this
happens for all n. In particular, this implies that the normalization of the Nash blowup of
order n of An factors through its minimal resolution (see Corollary 1.9).

The approach to study higher Nash blowups of toric varieties using a higher order
Jacobian matrix was initiated in [4]. That paper deals with a conjecture proposed by Yas-
uda concerning the semigroup associated to the higher Nash blowup of formal curves.
There it was proved that the conjecture is true in the toric case but false in general. This
was achieved by studying the properties of the higher order Jacobian matrix of monomial
morphisms. In this paper we follow a similar but more general approach.

The normalization of the higher Nash blowup of An is a toric variety associated to a
fan that subdivides the cone determining An, see [4,11]. An explicit description of this fan
could be obtained by effectively computing all minors of the corresponding higher order
Jacobian matrix. This is a difficult task given the complexity of the matrix for large n.
However, for the problem we are interested in, we do not require an explicit description
of the entire fan.

The rays that subdivide the cone of An to obtain its minimal resolution can be expli-
citly specified. Thus, in order to show that these rays appear in the fan associated to the
normalization of the higher Nash blowup, we need to be able to control only certain minors
of the matrix. A great deal of this paper is devoted to construct combinatorial tools that
allow us to accomplish that goal.

1. The main result

In this section we state the main result of this work. First, we introduce some notation that
will be constantly used throughout this paper. From now on, n will always denote a fixed
positive natural number.

Notation 1.1. Let ; ˇ 2 Nt and v 2 N2.
(1) We denote by �i .ˇ/ the projection to the i -th coordinate of ˇ.
(2)  � ˇ if and only if �i ./ � �i .ˇ/ for all i 2 ¹1; : : : ; tº. In particular,  < ˇ if

and only if  � ˇ and �i ./ < �i .ˇ/ for some i 2 ¹1; : : : ; tº.

(3)
�
ˇ


�
WD
Qt
iD1

�
�i .ˇ/
�i ./

�
.

(4) jˇj D
Pt
iD1 �i .ˇ/.

(5) ƒt;n WD ¹ˇ 2 Nt j 1 � jˇj � nº. In addition, �t;n WD jƒt;nj D
�
nCt
n

�
� 1.

(6) Nv WD
��
v
˛

��
˛2ƒ2;n

2 N�2;n . We order the entries of this vector increasingly using

graded lexicographical order on N�2;n .
(7) Let An WD . 1 1 n

0 1 nC1 /.
(8) Given J � ƒ3;n, let mJ WD

P
ˇ2J Anˇ 2 N2.

Let X � Cs be an irreducible algebraic variety of dimension d . For a non-singular
point x 2 X , the C-vector space .mx=m

nC1
x /_ has dimension �d;n, where mx denotes

the maximal ideal of x.
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Definition 1.2 ([16,17,23]). With the previous notation, consider the morphism of Gauss:

Gn W X n Sing.X/! Gr.�d;n;C�s;n/; x 7! .mx=m
nC1
x /_;

where Sing.X/ denotes the singular locus of X and Gr.�d;s;C�s;n/ is the Grassmanian of
vector subspaces of dimension �d;n in C�s;n .

Denote by Nashn.X/ the Zariski closure of the graph of Gn. Call �n the restriction
to Nashn.X/ of the projection of X � Gr.�d;n;C�s;n/ to X . The pair .Nashn.X/; �n/ is
called the Nash blowup of X of order n.

This entire paper is devoted to study some aspects of the higher Nash blowup of the An

singularity. Let us recall its definition and the notation we will use.

Definition 1.3. Consider the cone �n D R�0¹.0; 1/; .nC 1;�n/º � .R2/_. We denote
by An the normal toric surface corresponding to �n, i.e., An D V.xz � y

nC1/.

In [4], the higher Nash blowup is studied through a higher-order Jacobian matrix. It is
worth mentioning that there are other versions of higher order Jacobian matrices [2, 3, 8].
In the context of toric varieties, that matrix gave place to the following definition.

Definition 1.4 ([4, Proposition 2.4]). Let J � ƒ3;n be such that jJ j D �2;n. We define
the matrix

LcJ WD
�
cˇ
�
ˇ2J

;

where

cˇ D
X
�ˇ

.�1/jˇ� j
�
ˇ



�
An 2 N�2;n :

We order the rows of this matrix increasingly using graded lexicographical order on
J � ƒ3;n. In addition, we denote

SAn WD
®
J � ƒ3;n j jJ j D �2;n and detLcJ ¤ 0

¯
:

Proposition 1.5 ([4, Proposition 3.15]). Let In D hxmJ j J 2 SAni. Then Nashn.An/ Š

BlIn.An/, where BlIn.An/ is the blowup of An centered on In.

Abusing the notation, let In D ¹mJ 2 R2 j J 2 SAnº. The set In defines an order
function:

ordIn W �n ! R; v 7! min
mJ2In

hv;mJ i:

This function induces the following cones:

�mJ WD
®
v 2 �n j ordIn.v/ D hv;mJ i

¯
:

These cones form a fan †.In/ WD
S
mJ2In

�mJ . This fan is a refinement of � .

Proposition 1.6. With the previous notation, we have

Nashn.An/ Š X†.In/;

where Nashn.An/ is the normalization of the Nash blowup of An of order n and X†.In/
is the normal variety corresponding to †.In/.
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Proof. By the previous proposition we have that Nashn.An/ is a monomial blowup. The
result follows from Proposition 5.1 and Remark 4.6 of [11].

Definition 1.7. Let†0n be the subdivision of �n given by the rays generated by .k; 1� k/,
for each k 2 ¹1; : : : ; nº. We denote by A0n the normal toric surface corresponding to †0n.
It is well known that A0n is the minimal resolution of An.

Moreover, for each k 2 ¹1; : : : ; nº, consider the function

fk W N
2
! Z; v 7! h.k; 1 � k/; vi:

The goal of this paper is to prove the following result about the shape of the fan†.In/.

Theorem 1.8. For each k 2 ¹1; : : : ; nº, there exists Jk ; J 0k 2 SAn
such that fk.mJk / D

fk.mJ 0
k
/� fk.mJ / for all J 2 SAn

. In particular, the rays generated by .k;1� k/ appear
in the fan †.In/.

Corollary 1.9. Let A0n be the minimal resolution of An and let Nashn.An/ be the normal-
ization of the higher Nash blowup of An of order n. Then there exists a proper birational
morphism �WNashn.An/! A0n such that the following diagram commutes:

Nashn.An/
�

//

((

A0n

��

An:

Proof. The result follows by Theorem 1.8.

2. A particular basis for the vector space C�2;n

As stated in Theorem 1.8, we need to find some subsets J �ƒ3;n such that the determinant
of LcJ is non-zero. This will be achieved by reducing the matrix LcJ to another matrix
given by vectors formed by certain binomial coefficients. In this section, we prove that
those vectors are linearly independent. We will see that this is equivalent to finding some
basis of the vector space C�2;n .

The following results are stated for the field C, but can be generalized for any field of
characteristic 0.

Definition 2.1. Consider a sequence � D .z; d0; d1; d2; : : : ; dr /, where z 2 Z=2Z,
d0 D 0, ¹diºriD1 �N n ¹0º and

Pr
iD0 di D n. We denote by� the set of all these possible

sequences.

With this set let us define a subset of vectors of N2.

Definition 2.2. Let �D .z; d0; d1; : : : ; dr / 2�. We construct a set of vectors ¹vj;�ºnjD1 �
N2 as follows. For each j 2 ¹1; : : : ; nº, there exists an unique t 2 ¹1; : : : ; rº such thatPt�1
iD0 di < j �

Pt
iD0 di . This implies that j D

Pt�1
iD0 di C c, where 0 < c � dt . Then
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we define

vj;� D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

�X
i odd
i<t

di C c; 0
�

if z D 1 and t odd;

�
0;
X
i even
i<t

di C c
�

if z D 1 and t even;

�
0;
X
i odd
i<t

di C c
�

if z D 0 and t odd;

� X
i even
i<t

di C c; 0
�

if z D 0 and t even:

In addition, for each j 2 ¹1; : : : ; nº, we let

Tj;� WD
®
vj;�; vj;� C .1; 1/; : : : ; vj;� C .n � j /.1; 1/

¯
:

Furthermore, we set v0;� WD .1; 1/ and T0;� WD ¹.1; 1/; : : : ; .n; n/º. We define

T� WD

n[
jD0

Tj;�:

Finally, recalling Notation 1.1, we define
xT� D ¹Nv 2 C�2;n j v 2 T�º:

Remark 2.3. Notice that this construction depends only on �. Moreover, geometrically,
this construction is equivalent to taking vectors in an ordered way on the axes of N2.

Example 2.4. Let nD 6 and �D .1;0;1;1;1;1;2/. For j D 3we have that d0C d1C d2<
3D d0C d1C d2C d3. Then t D 3, v3;� D .2; 0/ and T3;� D ¹.2; 0/; .3; 1/; .4; 2/; .5; 3/º.
T� is computed similarly and can be seen in Figure 1.

Now we give some basic properties of Definition 2.2.

Lemma 2.5. Let � 2 � and u; v 2 N2. Then we have the following properties:
(1) If u ¤ v, then Nu ¤ Nv.

(2) j xT�j D �2;n.

(3) If vj;� D .l; 0/ or vj;� D .0; l/, then l � j .

(4) �i .v/ � n for all v 2 T� and i 2 ¹1; 2º.

(5) If vj;� D .0; p/, then for all q < p, there exists l < j such that vl;� D .0; q/.
If vj;� D .p; 0/, then for all q < p, there exists l < j such that vl;� D .q; 0/.

(6) If vj;� D .0; l/, then ¹vi;�º
j
iD1 D ¹.0; t/º

l
tD1 [ ¹.s; 0/º

j�l
sD1 If vj;� D .l; 0/, then

¹vi;�º
j
iD1 D ¹.0; t/º

j�l
tD1 [ ¹.s; 0/º

l
sD1.

Proof. (1) Since u ¤ v, �1.u/ ¤ �1.v/ or �2.u/ ¤ �2.v/. Suppose the first case; the
other is analogous. By definition, Nu D

��
u
˛

��
˛2ƒ2;n

. Notice that .1; 0/ 2 ƒ2;n. Then

Nu D

��
u

˛

��
D
�
�1.u/; : : :

�
¤
�
�1.v/; : : :

�
D

��
v

˛

��
D Nv:
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Figure 1. Example of T� for � D .1; 0; 1; 1; 1; 1; 2/

(2) Notice that for each j 2 ¹1; : : : ; nº, jTj;�j D n� j C 1 and jT0;�j D n. This implies
jT�j D .nC 1/.nC 2/=2 � 1 D �2;n. By the previous item, we have that j xT�j D �2;n.

(3) Let t � r be such that j D
Pt�1
iD0 di C c. By definition, we have l D

P
i odd
i<t

di C c

or l D
P
i even
i<t

di C c. In any case, l � j .

(4) Let v 2 T� . If v 2 T0;� , then v D .p;p/, with p � n. If v … T0;� , by Definition 2.2,
we have that v D vj;� C p.1; 1/, with p � n � j . Then

�i .v/ D �i .vj;�/C �i .p.1; 1// D �i .vj;�/C p � j C p � n:

(5) Let t � r be such that j D
Pt�1
iD0 di C c. Consider the case vj;� D .0;p/. Suppose

that t is odd. By Definition 2.2, p D
P
i odd
i<t

di C c and z D 0. Let q < p. Then q DP
i odd
i<t 0

di C c
0, where t 0 is odd, t 0 < t and c0 � dt 0 or t 0D t and c0 <c. In any case, consider

l D
Pt 0�1
iD0 di C c

0. Since t 0 is odd and z D 0, then we get vl;� D .0;
P
i odd
i<t 0

di C c
0/ D

.0; q/. If t is even, we have that p D
P
i even
i<t

di C c and z D 1. In this case the proof is

identical. If vj;� D .p; 0/, the argument is analogous.
(6) If vj;� D .0; l/, by the previous point, we have that ¹.0; t/ºltD1 � ¹vi;�º

j
iD1. On the

other hand, we have that there exists ¹i1; : : : ; ij�lº such that ip � j and vip ;� … ¹.0; t/º
j
tD1
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for all p 2 ¹1; : : : ; j � lº. Since ip < j for all p, using the previous point, we obtain
that vip ;� D .sp; 0/ for some sp 2 N, and also ¹vip ;�º

j�l
pD1 D ¹.s; 0/º

j�l
sD1. This implies that

¹vi;�º
n
iD1 D ¹.0; t/º

l
tD1 [ ¹.s; 0/º

n�l
sD1.

2.1. Linear independence of xT�

By Lemma 2.5 (2), we know that the cardinality of xT� is �2;n. In order to prove that it is a
basis of C�2;n , we only have to see that it is linearly independent. For that, we need some
preliminary lemmas.

Lemma 2.6. Let 0 < c0 < c1 < � � � < cl be natural numbers. Then

det
��
ci

j

��
0�i�l
0�j�l

¤ 0:

In particular, the set of vectors
®��

ci
j

��
0�j�l

2 ClC1 j 0 � i � l
¯

is linearly independent.

Proof. For each j � l , consider the polynomial bj .x/ D x.x � 1/ � � � .x � j C 1/=j Š

and b0 D 1. Notice that for x 2 N, we have bj .x/ D
�
x
j

�
and deg bj .x/ D j for all

j 2 ¹0; : : : ; lº. Thus, ��
ci

j

��
0�i�l
0�j�l

D
�
bj .ci /

�
0�i�l
0�j�l

:

We show that the columns of this matrix are linearly independent. Let ˛0; : : : ; ˛l 2 C be
such that

Pl
jD0 j̨ bj .ci / D 0 for each i 2 ¹0; : : : ; lº. Consider f .x/ D

Pl
jD0 j̨ bj .x/.

Then ¹c0; : : : ; clº are roots of f .x/. Since deg f .x/ � l , we obtain that f .x/ D 0. Since
deg bj .x/ D j , we conclude j̨ D 0 for all j .

As we mentioned before, the goal is to prove that given � 2 �, the set of vectors xT� is
linearly independent on C�2;n . Consider

(2.1)
X
Nv2xT�

a Nv Nv D N0 2 C�2;n :

Fix this notation for the next results.

Lemma 2.7. Let l; m; n 2 N be such that 1 � l � n and m � n � l C 1. Let � 2 �.
Suppose that E D ¹.c1; l/; : : : ; .cm; l/º (resp. ¹.l; c1/; : : : ; .l; cm/º) is contained in T� , for
some 0 < c1 < � � � < cm. Moreover, suppose that for each u 2 T� nE such that �2.u/ � l
(resp. �1.u/ � l), we have that a Nu D 0. Then for all v 2 E, we obtain that a Nv D 0.

Proof. Consider the set of vectorsD D ¹.0; l/; .1; l/; : : : ; .n� l; l/º �ƒ2;n (respectively
¹.l; 0/; .l; 1/; : : : ; .l; n� l/º). Let u 2 T� nE. If �2.u/ < l (resp. �1.u/ < l), then

�
u
˛

�
D 0

for all ˛ 2 D. If �2.u/ � l (respectively �1.u/ � l), by hypothesis a Nu D 0. Consider
�˛WC�2;n ! C the projection on the ˛-th coordinate. Therefore, �˛.a Nu Nu/ D 0 for all
u 2 T� nE and ˛ 2 D. This impliesX

v2E

�˛.a Nv Nv/ D
X
Nv2xT�

�˛.a Nv Nv/ D 0 for all ˛ 2 D.
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Since ˛ D .j; l/ (resp. .l; j /) with 0 � j � n � l and v D .ci ; l/ (resp. .l; ci )), with
1 � i � m, we obtain that �˛. Nv/ D

�
ci
j

�
. Thus,

mX
iD1

a Nv

�
ci

j

�
D

X
v2E

�˛.a Nv Nv/ D 0;

for all 0 � j � n � l . By Lemma 2.6, we obtain that a Nv D 0 for all v 2 E.

Lemma 2.8. Let � D .z; d0; d1; : : : ; dr / 2 � and 1 � l < j � n.

• If vl;� D .pl ; 0/ and vj;� D .pj ; 0/, then

�1.vj;� C .n � j /.1; 1// � �1.vl;� C .n � l/.1; 1//:

The equality holds if and only if there exists 1 � t � r such that

t�1X
iD0

di < l < j �

tX
iD0

di :

• If vl;� D .0; pl / and vj;� D .0; pj /, then

�2.vj;� C .n � j /.1; 1// � �2.vl;� C .n � l/.1; 1//:

The equality holds if and only if there exists 1 � t � r such that

t�1X
iD0

di < l < j �

tX
iD0

di :

Proof. Suppose that z D 1. By Definition 2.2 and the fact l < j , pl D
P
i odd
i<t

di C ct

and pj D
P
i odd
i<t 0

di C ct 0 , for some odd numbers t � t 0 � r , where ct � dt and ct 0 � dt 0 .

Moreover, by definition, l D
Pt�1
iD0 di C ct and j D

Pt 0�1
iD0 di C ct 0 . Then

�1.vj;� C .n � j /.1; 1// D pj C .n � j / D n �
X
i even
i<t 0

di � n �
X
i even
i<t

di

D pl C .n � l/ D �1.vl;� C .n � l/.1; 1//:

Notice that the equality holds if and only if t 0 D t . For the other three cases (z D 1,
vl;� D .0; pl /, vj;� D .0; pj /; z D 0, vl;� D .pl ; 0/, vj;� D .pj ; 0/; z D 0, vl;� D .0; pl /,
vj;� D .0; pj /) the proof is analogous.

Now we are ready to prove the first important result of the section.

Proposition 2.9. Let � 2 �. Then xT� is linearly independent.

Proof. Let � D .z; d0; d1; : : : ; dr / and suppose that z D 1. Define the numbers

dC; r D
X
i�r
i odd

di ; d�; r D
X
i�r
i even

di :

Notice that, by Definition 2.1, we have that n D dC; r C d�; r .
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Claim 1. For all v 2 T� such that �2.v/ > n� dC; r or �1.v/ > n� d�; r , we obtain that
a Nv D 0 in (2.1).

Assume Claim 1 for the moment. For each 0� s � dC; r , define the setEs D ¹v 2 T� j
�1.v/ D s and �2.v/ � d�; rº. Notice that

jEsj � d�; r C 1 D n � dC; r C 1 � n � s C 1:

Using Claim 1 and taking sD dC; r we obtain the conditions of Lemma 2.7. Therefore,
a Nv D 0 for all v 2 EdC; r . Now we can repeat the same argument for s D dC; r � 1. Apply-
ing this process in a decreasing way for each s 2 ¹0; : : : ;dr;Cº, we obtain that a Nv D 0 for all
v 2

SdC; r
sD0 Es . Then for v 2 T� , we have three possibilities: v 2

SdC; r
sD0 Es , �1.v/ > dC; r ,

or �2.v/ > d�; r . In any case, we obtain that a Nv D 0 by the previous argument or Claim 1.
This implies that xT� is linearly independent.

Proof of Claim 1. For each 1 � l � r , define

dC; l D
X
i�l
i odd

di ; d�; l D
X
i�l
i even

di :

We prove Claim 1 by induction on l . By definition, we have that dC;1 D d1 and
d�;1 D 0. Therefore, we only have to prove that if �2.v/ > n � d1, then a Nv D 0.

Claim 2. For all v 2 T� such that �2.v/ > n � d1, we have that �1.v/ � �2.v/.

Proof of Claim 2. We proceed to prove Claim 2 by contrapositive. Let v 2 T� be such
that �2.v/ > �1.v/. This implies that v D .0; �2.v/ � �1.v// C �1.v/.1; 1/ D vj;� C

�1.v/.1; 1/ for some j � n, where �1.v/ � n � j , by Definition 2.2. By Lemma 2.5 (5),
there exists i < j such that vi;� D .0; 1/. Moreover, by Definition 2.2, i D d1 C 1. By
Lemma 2.8, we obtain

�2.v/ D �2.vj;� C �1.v/.1; 1// � �2.vj;� C .n � j /.1; 1//

� �2.vd1C1;� C .n � d1 � 1/.1; 1//

D n � d1;

concluding the proof of Claim 2.

For each s 2 ¹n � d1 C 1; : : : ; nº, we define the set E.s/ D ¹v 2 T� j �2.v/ D sº.
By Lemma 2.5 (4) and Claim 2, we have that for each s 2 ¹n � d1 C 1; : : : ; nº, we have
jE.s/j � n� s C 1. Now we are in the conditions of Lemma 2.7. Applying the lemma for
each s in a descendant way, we obtain the result for l D 1.

Now suppose that Claim 1 is true for l , i.e., for all v 2 T� such that �2.v/ > n� dC; l
or �1.v/ > n � d�; l for some l � 1, we have that a Nv D 0 and we prove for l C 1. We
have two cases: l odd or l even. We prove the case l odd, the other case is analogous.
Since l is odd, we obtain that dC; l D dC; lC1 and d�; l C dlC1 D d�; lC1. Then, by the
induction hypothesis, we only need to check that for all v 2 T� such that n � d�; lC1 <
�1.v/ � n� d�; l and �2.v/ � n� dC; l , we have a Nv D 0. For this, we are going to apply
Lemma 2.8 in an iterative way. By definition, vPl

iD0 di ;�
D .dC; l ; 0/.
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Claim 3. For all v 2 T� such that �1.v/� n� d�; lC1C 1, we have that �2.v/ > �1.v/�
dC; l � 1.

Proof of Claim 3. We proceed to prove Claim 3 by contrapositive. Let v 2 T� be such that
�2.v/ � �1.v/ � dC; l � 1. This implies that v D .�1.v/ � �2.v/; 0/ C �2.v/.1; 1/ D

vj;� C �2.v/.1; 1/, where �2.v/ � n � j , by Definition 2.2. Since �1.v/ � �2.v/ �
dC; l C 1, by Lemma 2.5 (5), there exists i < j such that vi;� D .dC; l C 1; 0/. Moreover,
by Definition 2.2, i D

PlC1
pD0 dp C 1. By Lemma 2.8, we obtain

�1.v/ D �1.vj;� C �2.v/.1; 1// � �1.vj;� C .n � j /.1; 1//

� �1

�
vPlC1

pD0 dpC1;�
C

�
n �

lC1X
pD0

dp � 1
�
.1; 1/

�
D dC; l C 1C n �

lC1X
pD0

dp � 1 < n � d�; lC1 C 1;

concluding the proof of Claim 3.

For each s 2 ¹n � d�; lC1 C 1; : : : ; n � d�; lº, we define the set E.s/ D ¹v 2 T� j
�1.v/ D s and �2.v/ � n � dC; lº. Notice that, by Claim 3, we have that for each s 2
¹n � d�; lC1 C 1; : : : ; n � d�; lº, jE.s/j � .n � dC; l / � .s � dC; l � 1/ D n � s C 1.
By the induction hypothesis, we are in the conditions of Lemma 2.7 for s D n � d�; l .
Applying the lemma for each s in a descendant way, we conclude the proof of Claim 1.

In the case z D 0, Claim 1 becomes: for each v 2 T� such that �2.v/ > n � d�; r or
�1.v/ > n � dC; r , we have a Nv D 0. The proof of this case is analogous.

2.2. Moving Tj;� along a diagonal preserves linear independence

Proposition 2.9 shows that xT� is a basis of C�2;n for all � 2 �. Our following goal is to
show that we can move the set Tj;� along a diagonal without losing the linear independ-
ence for all j 2 ¹1; : : : ; nº. First we need the following combinatorial identities.

Lemma 2.10 ([19, Chapter 1]). Given n;m; p 2 N, we have the following identities:
(1)

�
n
m

��
m
p

�
D
�
n
p

��
n�p
m�p

�
.

(2)
P
j .�1/

j
�
n�j
m

��
p
j

�
D
�
n�p
m�p

�
D
�
n�p
n�m

�
.

(3)
P
j

�
n

m�j

��
p
j

�
D
�
nCp
m

�
.

(4)
P
j

�
n�p
m�j

��
p
j

�
D
�
n
m

�
.

Lemma 2.11. For all m 2 N, we have that .m;m/ 2 spanC¹.1; 1/; : : : ; .n; n/º.

Proof. Recalling Notation 1.1, for each j 2 ¹1; : : : ; nº, consider the vector

vj D

jX
iD1

.�1/j�i
�
j

i

�
.i; i/:
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Notice that for all j 2 ¹1; : : : ; nº, we have vj 2 spanC¹.1; 1/; : : : ; .n; n/º. We claim that
.m;m/ D

Pn
jD1

�
m
j

�
vj . Recall that .i; i/ WD

��
.i;i/
˛

��
˛2ƒ2;n

. Therefore, we have to prove
the identity: �

m

p � q

��
m

q

�
D

nX
jD1

jX
iD1

.�1/j�i
�
m

j

��
j

i

��
i

q

��
i

p � q

�
;

for all 1 � p � n and 0 � q � p. By Lemma 2.10 (1), we obtain the identities:

nX
jD1

jX
iD1

.�1/j�i
�
m

j

��
j

i

��
i

q

��
i

p � q

�

D

nX
jD1

jX
iD1

.�1/j�i
�
m

j

��
j

q

��
j � q

i � q

��
i

p � q

�

D

nX
jD1

jX
iD1

.�1/j�i
�
m

q

��
m � q

j � q

��
j � q

i � q

��
i

p � q

�

D

�
m

q

� nX
jD1

jX
iD1

.�1/j�i
�
m � q

j � q

��
j � q

i � q

��
i

p � q

�
:

With this, the claim is reduced to prove that�
m

p � q

�
D

nX
jD1

jX
iD1

.�1/j�i
�
m � q

j � q

��
j � q

i � q

��
i

p � q

�
:

Now we have the following identities, where the second identity comes from the reindex-
ing i 7! l � i , and the fourth identity by Lemma 2.10 (2):

nX
jD1

jX
iD1

.�1/j�i
�
m � q

j � q

��
j � q

i � q

��
i

p � q

�

D

nX
jD1

.�1/j
�
m � q

j � q

�� jX
iD1

.�1/i
�
j � q

i � q

��
i

p � q

��
D

nX
jD1

.�1/j
�
m � q

j � q

��X
i

.�1/j�i
�
j � i

p � q

��
j � q

i

��
D

nX
jD1

.�1/j
�
m � q

j � q

�
.�1/j

�X
i

.�1/i
�
j � i

p � q

��
j � q

i

��
D

nX
jD1

�
m � q

j � q

��
q

p � j

�
:
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Finally, we have the following identities, where the first identity comes from replacing j
with j C q (we can make this change since for values of l less than q,

�
m�q
j�q

�
D 0, on

the other hand, if j C q > n > p, then
�
q
p�j

�
D 0). The second identity comes from

Lemma 2.10 (3):
nX

jD1

�
m � q

j � q

��
q

p � j

�
D

nX
jD1

�
m � q

j

��
q

.p � q/ � j

�
D

�
m

p � q

�
;

proving the claim.

Lemma 2.12. For all a; r 2 N and l � n, we have that
lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

�
.aC r C j; r C i C j / D N0:

Proof. The proof is by induction on r . First, consider r D 0. We need to show that for all
.p � q; q/ 2 ƒ2;n,

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

��
aC j

p � q

��
i C j

q

�
D 0:

Notice that
lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

��
aC j

p � q

��
i C j

q

�
(2.2)

D

lX
iD0

n�lC1X
jD0

.�1/n�lC1CjCi
�
n � l C 1

j

��
aC j

p � q

��
i C j

q

��
l

i

�

D

n�lC1X
jD1

.�1/n�lC1Cj
�
n � l C 1

j

��
aC j

p � q

�� lX
iD0

.�1/i
�
i C j

q

��
l

i

��
:

Now we have the following identity, where the first identity comes from the reindexing
i 7! l � i and the second comes from Lemma 2.10 (2):

lX
iD0

.�1/i
�
i C j

q

��
l

i

�
D .�1/l

lX
iD0

.�1/i
�
l C j � i

q

��
l

i

�
D .�1/l

�
j

q � l

�
:

Replacing this identity in the sum (2.2) and using Lemma 2.10 (1), we obtain
n�lC1X
jD0

.�1/nC1Cj
�
n � l C 1

j

��
aC j

p � q

��
j

q � l

�
(2.3)

D

n�lC1X
jD0

.�1/nC1Cj
�
n � l C 1

q � l

��
n � q C 1

j � q C l

��
aC j

p � q

�

D .�1/nC1
�
n � l C 1

q � l

� n�lC1X
jD0

.�1/j
�

n � q C 1

.n � l C 1/ � j

��
aC j

p � q

�
:
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Replacing j by n� l C 1� j on the sum (2.3) and using Lemma 2.10 (2), we obtain that

n�lC1X
jD0

.�1/j
�

n � q C 1

.n � l C 1/ � j

��
aC j

p � q

�

D

n�lC1X
jD0

.�1/n�lC1�j
�
aC .n � l C 1/ � j

p � q

��
n � q C 1

j

�
D

�
aC q � l

p � n � 1

�
:

Since p � n, the claim is true for r D 0.
Now suppose that the statement is true for r � 1, i.e.,

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n� lC1

j

��
aC .r�1/Cj

p � q

��
.r�1/C iCj

q

�
D 0;

and we have to show that
lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n � l C 1

j

��
aC r C j

p � q

��
r C i C j

q

�
D 0;

for all .p � q; q/ 2 ƒ2;n.
Using basic properties of binomial coefficients, we have�
aC r C j

p � q

��
r C i C j

q

�
D

�
aC .r�1/Cj

p � q

��
.r�1/C iCj

q

�
C

�
aC .r�1/Cj

p � q

��
.r�1/C iCj

q � 1

�
C

�
aC .r�1/Cj

p � q � 1

��
.r�1/C iCj

q

�
C

�
aC .r�1/Cj

p � q � 1

��
.r�1/C iCj

q � 1

�
:

Then
lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n � l C 1

j

��
aC r C j

p � q

��
r C i C j

q

�

D

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n� lC1

j

��
aC .r�1/Cj

p � q

��
.r�1/C iCj

q

�

C

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n� lC1

j

��
aC .r�1/Cj

p � q

��
.r�1/C iCj

q � 1

�

C

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n � lC1

j

��
aC .r�1/Cj

p � q � 1

��
.r�1/C iCj

q

�

C

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1�j
�
n� lC1

j

��
aC .r�1/Cj

p � q � 1

��
.r�1/C iCj

q � 1

�
D 0:
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Notice that each element of ¹.p � q; q/; .p � q; q � 1/; .p � q � 1; q/; .p � q � 1; q � 1/º
belongs to ƒ2;n or has a negative entry. In any case, by the induction hypothesis, each of
the four sums are zero, obtaining the result.

Corollary 2.13. For all a; r 2 N and l � n, we have that

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

�
.r C i C j; aC r C j / D N0:

Proof. We need to prove that

lX
iD0

.�1/i
�
l

i

� n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

��
r C i C j

p � q

��
aC r C j

q

�
D 0;

for all .p � q; q/ 2 ƒ2;n. Notice that, by the definition ofƒ2;n, if .p � q; q/ 2 ƒ2;n, then
.q; p � q/ 2 ƒ2;n. With this and the previous lemma, we obtain the result.

Definition 2.14. Let � 2�, ¹vi;�ºniD1 and ¹Ti;�ºniD1 �N2 as in Definition 2.2. We define
the set

Ti;� C r
#»
1 WD ¹v C .r; r/ j v 2 Ti;�º;

for all i 2 ¹1; : : : ; nº and r 2 N.

Now we are ready to show the other important result of this section. As we mentioned
before, the goal is to show that we can move the sets Tj;� along a diagonal without losing
the linear independence. We are going to prove this with some additional properties.

Proposition 2.15. Let � 2 �, l 2 ¹1; : : : ; nº and .r1; : : : ; rl / 2 Nl . Then we have

spanC

°
Nv 2 C�2;n

ˇ̌
v 2 T0;� [

l[
iD1

.Ti;� C ri
#»
1 /
±
D spanC

°
Nv 2 C�2;n

ˇ̌
v 2

l[
iD0

Ti;�

±
:

In particular, vl;� C .r; r/ 2 spanC¹ Nv 2 C�2;n j v 2
Sl
iD0 Ti;�º, for all r 2 N.

Proof. Consider the notation &.T / D spanC¹ Nv 2 C�2;n j v 2 T º, where T � C2.
Let � 2 �. The proof is by induction on l . Consider l D 1. There are two cases,

v1;� D .1; 0/ or v1;� D .0; 1/. Suppose that v1;� D .1; 0/. Consider the sums

f0;r D

nX
jD0

.�1/nCj
�
n

j

�
.1C r C j; r C j /;

f1;r D

nX
jD0

.�1/nCj
�
n

j

�
.1C r C j; 1C r C j /:

Applying Lemma 2.12 for a D 1 and l D 1, we obtain that

(2.4) f1;r � f0;r D N0 for all r 2 N.
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By Lemma 2.11, we have that®
.1C r C j; 1C r C j /

¯n
jD0
� &.T0;�/;

for all r; j 2 N. In particular, f1;r 2 &.T0;�/. Moreover, since v1;� D .1; 0/, for r D 0, we
have that f0;0 � .1C n; n/ 2 &.T1;�/. Then

.1C n; n/ D f1;0 � f0;0 C .1C n; n/ 2 &.T1;�/:

Notice that the coefficient of .1; 0/ is not zero. By elementary results of linear algebra,
we have that

&.T0;� [ T1;�/ D &.¹T0;� [ T1;�º n ¹.1; 0/º [ ¹.1C n; n/º/ D &.T0;� [ .T1;� C 1
#»
1 //:

Applying the same argument for r D 1 in (2.4), we obtain that

&.T0;� [ .T1;� C 1
#»
1 // D &

�
¹T0;� [ .T1;� C 1

#»
1 /º n ¹.2; 1/º [ ¹.2C n; 1C n/º

�
D &.T0;� [ .T1;� C 2

#»
1 //:

Repeating the argument r1 times for each r and putting together all the identities, we
obtain that

&.T0;� [ T1;�/ D &.T0;� [ .T1;� C r1
#»
1 //:

This completes the proof for l D 1 and v1;� D .1; 0/. For v1;� D .0; 1/, the proof is
analogous using Corollary 2.13.

Now suppose that the statement is true for l � 1 and let .r1; : : : ; rl / 2 Nl . We claim
that

&
� l�1[
iD0

Ti;� [ .Tl;� C rl
#»
1 /
�
D &

� l[
iD0

Ti;�

�
:

Assume this claim for the moment. By the induction hypothesis, we have that

&
�
T0;� [

l�1[
iD1

.Ti;� C ri
#»
1 /
�
D &

� l�1[
iD0

Ti;�

�
:

This implies that

&
�
T0;� [

l[
iD1

.Ti;� C ri
#»
1 /
�
D &

� l[
iD0

Ti;�

�
:

Now we proceed to prove the claim. There are two cases, vl;� D .a; 0/ or vl;� D .0;a/,
where 0 < a � l by Lemma 2.5 (3). Suppose that vl;� D .a; 0/. For each i 2 ¹0; : : : ; lº
and r 2 N, consider the sum

fi;r D

n�lC1X
jD0

.�1/n�lC1Cj
�
n � l C 1

j

�
.aC r C j; i C r C j /:
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Applying Lemma 2.12 for l and a, we have that

lX
iD0

.�1/i
�
l

i

�
fi;r D N0:

By Lemma 2.5 (6), we have that®
.a � 1; 0/; : : : ; .1; 0/; .0; 1/; : : : ; .0; l � a/

¯
D
®
vi;�

¯l�1
iD1
:

Notice that if i D a, then .aC r C j /.1; 1/2 spanC¹ Nv�C�2;n j v 2T0;�º by Lemma 2.11.
If 1 � i < a, then

.a � i; 0/C .i C r C j; i C r C j / D .aC r C j; i C r C j /;

and if a < i � l , then

.0; i � a/C .a � i; a � i/C .i C r C j; i C r C j / D .aC r C j; i C r C j /:

By the induction hypothesis, we obtain that®
.aC r C j; i C r C j /

¯n�lC1
jD0

� &
� l�1[
iD0

Ti;�

�
;

for all i 2 ¹1; : : : ; lº, r 2 N. In particular, fi;r 2 &.
Sl�1
iD0 Ti;�/ for all i 2 ¹1; : : : ; lº.

Moreover, since vl;� D .a;0/, for r D 0, we have that f0;0 � .aC n � l C 1; n � l C 1/ 2
&.Tl;�/. Then

.aC n � l C 1; n � l C 1/

D �

� lX
iD0

.�1/i
�
l

i

�
fi;0

�
C .aC n � l C 1; n � l C 1/ 2 &

� l[
iD0

Ti;�

�
:

Applying the same argument as in the case l D 1, we obtain

&
� l[
iD0

Ti;�

�
D &

� l�1[
iD0

Ti;� [ .Tl;� C 1
#»
1 /
�

D &
� l�1[
iD0

Ti;� [ .Tl;� C 2
#»
1 /
�

:::

D &
� l�1[
iD0

Ti;� [ .Tl;� C rl
#»
1 /
�
:

Now suppose that vl;� D .0; a/. In this case we have that®
.0; a � 1/; : : : ; .0; 1/; .1; 1/; .1; 0/; : : : ; .l � a; 0/

¯
D
®
vi;�

¯l�1
iD0
;

obtaining ®
.i C r C j; aC r C j /

¯n�lC1
jD0

2 &.Ti;�/:

The proof is analogous using Corollary 2.13.
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3. Proof of Theorem 1.8

In this section we give the proof of the main theorem. We first associate to each � 2 � a
unique J� 2 SAn with certain properties. Secondly, we construct a distinguished element
J�k for each k 2 ¹1; : : : ; nº and prove that there exists another element J� 2 SAn with the
same value with respect to an order function. Finally, we prove that J�k is minimal in SAn
with respect to the previous function.

Definition 3.1. Let � 2 �, ¹vi;�ºniD1 and ¹Ti;�ºniD1 � N2 as in Definition 2.2. Consider
ri;� WD n � �2.vi;�/ for all i 2 ¹1; : : : ; nº. We define the set

T 0� WD T0;� [

n[
iD1

.Ti;� C ri;�
#»
1 /;

where Ti;� C ri;�
#»
1 comes from Definition 2.14.

Example 3.2. Let n D 6 and � D .1; 0; 1; 1; 1; 1; 2/. By Definition 2.2, we have that
v1;� D .1; 0/, v2;� D .0; 1/, v3;� D .2; 0/, v4;� D .0; 2/, v5;� D .3; 0/ and v6;� D .4; 0/.
By definition, we obtain that r1;� D 0, r2;� D 6, r3;� D 0, r4;� D 12, r5;� D 0 and r6;� D 0.
Thus,

T 0� D T0;� [ T1;� [ .T2� C 6
#»
1 / [ T3;� [ .T4;� C 12

#»
1 / [ T5;� [ T6;�;

where

T2;� C 6 D ¹.6; 7/; .7; 8/; .8; 9/; .9; 10/; .10; 11/º;

T4;� C 12 D ¹.12; 14/; .13; 15/; .14; 16/º:

Remark 3.3. Recall Notation 1.1. Let ˇ; ˇ0 2 ƒ3;n be such that ˇ ¤ ˇ0. Then Anˇ ¤
Anˇ

0. This is a consequence of jˇj � n and jˇ0j � n and the fact that the smallest relation
among .1; 0/, .1; 1/ and .n; nC 1/ is .nC 1/.1; 1/ D 1.1; 0/C 1.n; nC 1/.

Proposition 3.4. For each � 2 �, there exists a unique J� � ƒ3;n such that

An � J� WD ¹An � ˇ 2 N2
j ˇ 2 J�º D T

0
�:

Moreover, J� 2 SAn .

Proof. We need to show that for each v 2 T 0� , there exists a unique element ˇ 2ƒ3;n such
that Anˇ D v. The uniqueness comes from Remark 3.3.

Now, let v 2 T 0� . Then v 2 T�;0 or v 2
Sn
iD1 T�;i C r�;i

#»
1 . For the first case we have

that v D .t; t/ with t � n. In this case we take ˇ D .0; t; 0/. For the second case we have

v D vi;� C .s; s/C ri;�.1; 1/ D vi;� C .s; s/C n�2.vi;�/.1; 1/;

where s � n � i . By Definition 2.2, vi;� D .q; 0/ or vi;� D .0; q/, where q � i . Then

v D .q C s; s/ or v D .nq C s; .nC 1/q C s/:

For these, we take ˇD .q; s; 0/ and ˇD .0; s; q/, respectively. Using the previous inequal-
ities, we obtain that ˇ 2 ƒ3;n.
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Figure 2. Example of T 0� , with � D .1; 0; 1; 1; 1; 1; 2/.

Now we have to see that J� 2 SAn . Since �2;n D jT�j D jT 0�j D jJ�j, we only have to
see that detLcJ� ¤ 0. Let ¹ˇ1; ˇ2; : : : ; ˇ�2;nº D J� be such that ˇ1 � ˇ2 � � � � � ˇ�2;n ,
where � denotes the lexicographic order. Notice that if ˇ0 < ˇ (see Notation 1.1), then
ˇ0 � ˇ. By the definition of LcJ� , we need to check that

det
� X
�ˇi

.�1/jˇi� j
�
ˇi



�
An

�
1�i��2;n

¤ 0:

For this, we will show below that we can transform the previous matrix into .Aˇi /1�i��2;n
using elementary row operations. This implies the result since we have that AnJ� D T 0�
and ¹v 2 Z�2;n j v 2 T 0�º is linearly independent by Propositions 2.9 and 2.15.

Fix the �2;n-row. Consider ˇ�2;n � 1;�2;n � � � � � r�2;n ;�2;n , where ¹i;�2;nº
�2;n
iD1 D

¹ 2 ƒ3;n j  < ˇ�2;nº. We can write this row as the sum

Anˇ�2;n C .�1/
jˇ�2;n�1;�2;n j

�
ˇ�2;n
1;�2;n

�
An1;�2;n

C � � � C .�1/
jˇ�2;n�r�2;n

;�2;n
j
�

ˇ�2;n
r�2;n ;�2;n

�
Anr�2;n ;�2;n

:
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Since Anˇ�2;n 2 T
0
� , we have that ˇ�2;n have the shape .q; s; 0/ or .0; s; q/, with

s C q � n andAnˇ�2;n equals one of .qC s; s/ or .nqC s; .nC 1/qC s/. Since 1;�2;n <
ˇ�2;n , we obtain that 1;�2;n have the shape .q0; s0; 0/ or .0; s0; q0/, with s0 < s or q0 < q.
Thus, An1;�2;n have the shape .q0 C s0; s0/ or .nq0 C s0; .nC 1/q0 C s0/. In any case, we
have that An1;�2;n 2 T

0
� .

By the first part of the proposition, we have that 1;�2;n D ˇi , for some i < �2;n. Then

we subtract .�1/jˇ�2;n�1;�2;n j
� ˇ�2;n
1;�2;n

�
-times the row i to the row �2;n in the matrix LcJ� .

Notice that if  < ˇi , we have  < ˇ�2;n . Thus, we obtain that

Anˇ�2;n C c2An2;�2;n C � � � C cr�2;nAnr�2;n ;�2;n

is the new �2;n-row, for some constants ¹c2; : : : ; cr�2;n º �Z. Applying the same argument
for each i;�2;n in a increasing way, we turn the �2;n-th row into Anˇ�2;n .

Applying this process to the other rows of LcJ in an ascending way, we obtain the
matrix .Aˇi /1�i��2;n :

3.1. A distinguished element of SAn
Definition 3.5. Let n2N n ¹0º, 1� k�n, dk;0D 0 and consider fk WN2!Z from Defin-
ition 1.7. If fk..1; 0// � fk..n; nC 1//, we take zk D 1. If fk..n; nC 1// < fk..1; 0//,
we take zk D 0.

Now, we define dk;l for l > 0 in an iterative way. Let

dk;l D min
°
n �

l�1X
jD0

dk;j ; tl � sl

±
;

where

tl D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

max
°
m 2 N

ˇ̌
m � fk..1; 0// � fk

�� l�1X
j even

dk;j C 1
�
.n; nC 1/

�±
if zk D 1 and l odd;

max
°
m 2 N

ˇ̌
m � fk..n; nC 1// � fk

�� l�1X
j odd

dk;j C 1
�
.1; 0/

�±
if zk D 1 and l even;

max
°
m 2 N

ˇ̌
m � fk..n; nC 1// � fk

�� l�1X
j even

dk;j C 1
�
.1; 0/

�±
if zk D 0 and l odd;

max
°
m 2 N

ˇ̌
m � fk..1; 0// � fk

�� l�1X
j odd

dk;j C 1
�
.n; nC 1/

�±
if zk D 0 and l even;

and

sl D

8̂̂<̂
:̂
0 if l D 1;Pl�1

j odd dk;j if l odd and l > 1;Pl�1
j even dk;j if l even:
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If
Pl
jD1 dk;j < n, we define dk;lC1. Otherwise, we finish the process and we define

�k D .zk ; dk;0; : : : ; dk;r /.

Example 3.6. Let n D 6 and k D 3. We have that d3;0 D 0. On the other hand, we have

f3..1; 0// D 3 < 4 D f3..6; 7//:

Then z3 D 1. For l D 1, we have that

t1 D max
®
m 2 N j m � 3 D m � f3..1; 0// � f3..6; 7// D 4

¯
D 1;

and s1 D 0. Then
d3;1 D min¹6; 1 � 0º D 1:

Now we compute d3;2. By definition,

t2 D max
®
m 2 N j m � 4 D m � f3..6; 7// � f5.2.1; 0// D 6

¯
D 1;

and s2 D 0. This implies that

d3;2 D min¹6 � 1 D 5; 1 � 0º D 1:

In an analogous way we obtain that d3;3 D 1 and d3;4 D 1. Now we compute d3;5. We
have that

t5 D max
®
m 2 N j m � 3 D m � f3..1; 0// � f5.3.6; 7// D 12

¯
D 4;

and s3 D d3;1 C d3;3 D 2. Then

d3;5 D min¹6 � 1 � 1 � 1 � 1 D 2; 4 � 2 D 2º D 2:

Since n �
P3
jD0 dk;j D 0, we completed the process. Thus, �3 D .1; 0; 1; 1; 1; 1; 2/.

Lemma 3.7. Let 1 � k � n and �k be as in Definition 3.5. Then we have the following
properties:

(1) dk;l > 0 for all l 2 ¹1; : : : ; rº. In particular, �k 2 �.

(2) For each i 2 ¹1; : : : ; nº, we let l 2 ¹1; : : : ; rº be the unique element such thatPl�1
jD0 dk;j < i �

Pl
jD1 dk;j . Then we have the following inequalities:

fk.vi;�k /C ri;�k � fk

�� lX
j even

dk;j C 1
�
.n; nC 1/

�
if zk D 1 and l odd;

fk.vi;�k /C ri;�k � fk

�� lX
j odd

dk;j C 1
�
.1; 0/

�
if zk D 1 and l even;

fk.vi;�k /C ri;�k � fk

�� lX
j even

dk;j C 1
�
.1; 0/

�
if zk D 0 and l odd;

fk.vi;�k /C ri;�k � fk

�� lX
j odd

dk;j C 1
�
.n; nC 1/

�
if zk D 0 and l even:
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(3) Let i 0; i 2 N n ¹0º be such that
Pl�1
jD0 dk;j < i < i

0 �
Pl
jD0 dk;j , for some l 2

¹1; : : : ; rº. Then

fk.vi;�k /C ri;�k � fk.vi 0;�k /C ri 0;�k :

(4) For all 1 � i < i 0 � n, we have that

fk.vi;�k C ri;�k .1; 1// � fk.vi 0;�k C ri 0;�k .1; 1//:

(5) If l > 2 and fk.vl;�k C rl;�k .1; 1// D fk.vl�1;�k C rl�1;�k .1; 1//, then we have
fk.vl;�k C rl;�k .1; 1// � fk.vl�2;�k C rl�2;�k .1; 1//C 2.

Proof. (1) By construction n�
Pl�1
jD0 dk;j > 0. Then, by Definition 3.5, we only have to

check that tl � sl > 0. Notice that, by definition, t1 > 0 and s1 D 0. This implies that the
statement is true for l D 1. Now suppose that l > 1. We have four cases: zk D 1 and l
odd; zk D 1 and l even; zk D 0 and l odd; zk D 1 and l even. Consider zk D 1 and l odd.
By the definition of tl�1,

fk..tl�1 C 1/.n; nC 1// > fk

�� l�2X
j odd

dk;j C 1
�
.1; 0/

�
:

Since l is odd,
Pl�2
j odd dk;j D

Pl�1
j odd dk;j . It follows that

fk

�� l�2X
j odd

dk;j C 1
�
.1; 0/

�
D fk

�� l�1X
j odd

dk;j C 1
�
.1; 0/

�
D fk..sl C 1/.1; 0//:

On the other hand, notice that if dk;l�1 D n �
Pl�2
jD0 dk:j , then n D

Pl�1
jD0 dk;j , and

so there is no dk;l , which is a contradiction. This implies that dk;l�1 D tl�1 � sl�1. Thus,

fk..tl�1 C 1/.n; nC 1// D fk..dk;l�1 C sl�1 C 1/.n; nC 1//:

Since l � 1 is even and sl�1 D
Pl�2
j even dk;j , we have that dk;l�1 C sl�1 D

Pl�1
j even dk;j .

Then

fk

�� l�1X
j even

dk;j C 1
�
.n; nC 1/

�
> fk..sl C 1/.1; 0//:

By the definition of tl , we obtain that tl � sl C 1, and so tl � sl > 0. The other three cases
are analogous.

(2) Let i 2 ¹1; : : : ; nº and l 2 ¹1; : : : ; rº. We have four cases: zk D 1 and l odd;
zk D 1 and l even; zk D 0 and l odd; zk D 1 and l even. Suppose that zk D 1 and l odd.
In this case, by definition, vi;�k D .

Pl�1
j odd dk;j C c/.1; 0/ with c � dk;l , ri;�k D 0 and

sl D
Pl�1
j odd dk;j . Then

l�1X
j odd

dk;j C c �

l�1X
j odd

dk;j C dk;l D sl C dk;l � tl :
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By the definition of tl , we have that

fk.vi;�k /C ri;�k D fk

�� l�1X
j odd

dk;j C c
�
.1; 0/

�
� fk

�� l�1X
j even

dk;j C 1
�
.n; nC 1/

�
:

Since l is odd, we have that
Pl�1
j even dk;j D

Pl
j even dk;j . This implies the inequality that

we need.
Now suppose that zk D 1 and l even. In this case, by the definition of �k , we have

that vi;�k D .
Pl�1
j even dk;j C c/.0; 1/, with c � dk;l , ri;� D n.

Pl�1
j even dk;j C c/ and sl DPl�1

j even dk;j . Using the above and the linearity of fk , we obtain

fk.vi;�k /C ri;�k D fk.vi;�k /C fk.ri;�k .1; 1// D fk.vi;�k C ri;�k .1; 1//

D fk

�� l�1X
j even

dk;j C c
�
.n; nC 1/

�
:

Since
l�1X
j even

dk;j C c �

l�1X
j even

dk;j C dk;l � tl ;

by the definition of tl , we obtain the inequality

fk.vi;�k /C ri;�k D fk

�� l�1X
j even

dk;j C c
�
.n; nC 1/

�
� fk

�� l�1X
j odd

dk;j C 1
�
.1; 0/

�
:

Since l is even, we have that
Pl�1
j odd dk;j D

Pl
j odd dk;j , obtaining the result.

The other two cases are analogous.
(3) The hypothesis implies that i D

Pl�1
jD0 dk;j C ci and i 0 D

Pl�1
jD0 dk;j C ci 0 , where

0 < ci < ci 0 � dk;l . We have four cases: zk D 1 and l odd; zk D 1 and l even; zk D 0
and l odd; zk D 1 and l even. Consider zk D 1 and l even. By Definition 2.2, vi;�k D
.0;
Pl�1
j even dk;j C ci / and vi 0;�k D .0;

Pl�1
j even dk;j C ci 0/. Then

fk.vi;�k /C ri;�k D .1 � k/
� l�1X
j even

dk;j C ci

�
C n

� l�1X
j even

dk;j C ci
�

D .n � k C 1/
� l�1X
j even

dk;j

�
C .n � k C 1/ci

� .n � k C 1/
� l�1X
j even

dk;j

�
C .n � k C 1/ci 0

D .1 � k/
� l�1X
j even

dk;j C ci 0
�
C n

� l�1X
j even

dk;j C ci 0
�

D fk.vi 0;�k /C ri 0;�k :

The other three cases are analogous.
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(4) We fix in this proof the auxiliary notation ıl D
Pl
jD0 dk;j , for all l 2 N.

Let 1 � i < i 0 � n. Let 1 � l � l 0 � r be such that i D ıl�1 C ci and i 0 D ıl 0�1 C ci 0 ,
where 0 < ci � dk;l and 0 < ci 0 � dk;l 0 . By hypothesis, we have that l � l 0. If l D l 0, the
result follows from (3). Suppose that l < l 0, this implies that l 0 D l C c with c > 0.

We have four cases (zk D 1 and l odd; zk D 1 and l even; zk D 0 and l odd; zk D
0 and l even). Consider zk D 0 and l even. By Definition 2.2, we have that vi;�k D
.
Pl�1
j even dk;j C ci ; 0/. By (2), we have that

fk.vi;�k /C ri;�k � fk

�� lX
j odd

dk;j C 1
�
.n; nC 1/

�
:

On the other hand, by Definition 2.2, we obtain that vılC1;�k D .0;
Pl
j odd dk;j C 1/. Then

fk.vılC1;�k /C rılC1;�k D fk

��
0;

lX
j odd

dk;j C 1
�
C n �

� lX
j odd

dk;j C 1
�
.1; 1/

�

D fk

�� lX
j odd

dk;j C 1
�
.n; nC 1/

�
� fk.vi;�k /C ri;�k :

Now, if c > 1, by (2) and knowing that l C 1 is odd, we obtain that

fk.vılC1;�k /C rılC1;�k � fk

�� lC1X
j even

dk;j C 1
�
.1; 0/

�
:

Using Definition 2.2, we have the vector vılC1C1;�k D .
PlC1
j even dk;j C 1; 0/. Then

fk.vılC1;�k /C rılC1;�k � fk

�� lC1X
j even

dk;j C 1
�
.1; 0/

�
D fk.vılC1C1;�k / D fk.vılC1C1;�k /C rılC1C1;�k :

Repeating this argument c times, we obtain

fk.vi;�k /C ri;�k � fk.vılC1;�k /C rılC1;�k

� fk.vılC1C1;�k /C rılC1C1;�k
:::

� fk.vıl 0�1C1;�k /C rıl 0�1C1;�k

� fk.vi 0;�k /C ri 0;�k ;

where the last inequality comes from (3). The other cases are analogous.
(5) Notice that if k D n, fn.t.n; nC 1//D t for all t 2 ¹1; : : : ; nº and fn..1; 0// D n.

Then, by Definition 3.5, �n D .0; 0; n/, i.e., vj;�n D .0; j / for all j 2 ¹1; : : : ; nº. In
particular, fn.vi;�n C ri;�n.1; 1// < fn.vj;�n C rj;�n.1; 1// if 1 � i < j � n. Then we
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cannot have the conditions of the lemma. Analogously, if k D 1, �1 D .1; 0; n/, and
f1.vi;�1 C ri;�1.1; 1// < f1.vj;�1 C rj;�1.1; 1//, for all 1 � i < j � n. This implies that if
there exists l 2 ¹1; : : : ; nº such that fk.vl;�k C rl;�k .1; 1//D fk.vl�1;�k C rl�1;�k .1; 1//,
then we have that k 2 ¹2; : : : ; n � 1º.

Now, we suppose that there exists l 2 ¹1; : : : ; nº such that fk.vl;�k C rl;�k .1; 1// D
fk.vl�1;�k C rl�1;�k .1; 1//. If vl;�k D .0; s/ and vl�1;�k D .0; s � 1/, then

fk.vl;�k C rl;�k .1; 1// D s.n � k C 1/

> .s � 1/.n � k C 1/

D fk.vl�1;�k C rl�1;�k .1; 1//:

In an analogous way, we obtain a contradiction if vl;�k D .t; 0/ and vl�1;�k D .t � 1; 0/.
This implies that vl;�k D .t; 0/ and vl�1;�k D .0; s/ or vl;�k D .0; s/ and vl�1;�k D .t; 0/.
Consider the first case, the other case is analogous. By definition,

(3.1) fk.vl;�k C rl;�k .1; 1// D fk..t; 0// D fk..0; s/C .ns; ns//;

By Lemma 2.5 (5), we deduce that vl�2;�k D .0; s� 1/ or vl�2;�k D .t � 1;0/. Suppose
that vl�2;�k D .0; s � 1/. Then we have

fk.vl;�k C rl;�k .1; 1// D fk..0; s/C .ns; ns//

D fk.s.n; nC 1//

D s.n � k C 1/

D .s � 1/.n � k C 1/C n � k C 1

D fk..s � 1/.n; nC 1//C n � k C 1

� fk.vl�2;�k C rl�2;�k .1; 1//C 2;

where the first equality comes from equation (3.1) and the last inequality comes from
k � n � 1.

Now suppose that vl�2;�k D .t � 1; 0/. In an analogous way, we obtain that

fk.vl;�k C rl;�k .1; 1// D fk..t; 0// D k.t � 1/C k

� fk.vl�2;�k C rl�2;�k .1; 1//C 2;

where the first equality comes from equation (3.1) and the last inequality comes from
k � 2. Obtaining the result.

The previous lemma will be constantly used in the rest of the section.

Proposition 3.8. Let k 2 ¹1; : : : ;nº. Let �k 2� be from Definition 3.5. Then vn;�k D .0;k/
or vn;�k D .n � k C 1; 0/.

Proof. Suppose the statement is not true. By definition, we have that
Pr
jD0 dk;j D n.

Using Lemma 2.5 and since vn;�k is not .n � k C 1; 0/ or .0; k/, we have that there
exists m < n such that vm;�k D .n � k C 1; 0/ or vm;�k D .0; k/. Let l � r be such that
m D

Pl�1
jD0 dk;j C c and 0 < c � dk;l .
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We have four cases: zk D 1 and l odd; zk D 1 and l even; zk D 0 and l odd; zk D 0
and l even. Consider z D 1 and l odd. In this case, by Definition 2.2, we have that vm;�k D
.
Pl�1
j odd dk;j C c; 0/ D .n � k C 1; 0/. Hence,

Pl�1
j odd dk;j C c D n � k C 1. Then

n � k C 1 D m �

l�1X
j even

dk;j < n �

l�1X
j even

dk;j :

This implies that
Pl�1
j even dk;j C 1 < k. Thus,

fk

�� l�1X
j even

dk;j C 1
�
.n; nC 1/

�
< fk.k.n; nC 1// D k.n � k C 1/

D fk..n � k C 1; 0// D fk.vm;�k /C rm;�k :

This is a contradiction to Lemma 3.7 (2).
Now, suppose that zk D 1 and l even. For this case, by Definition 2.2, we have that

vm;�k D .0; k/ and k D
Pl�1
j even dk;j C c. Then

k D

l�1X
j even

dk;j C c D m �

l�1X
j odd

dk;j < n �

l�1X
j odd

dk;j :

This implies that
Pl�1
j odd dk;j C 1 < n � k C 1. Thus,

fk

�� l�1X
j odd

dk;j C 1
�
.1; 0/

�
< fk..n � k C 1/.1; 0// D k.n � k C 1/

D fk.k.n; nC 1// D fk..0; k/C k � n.1; 1//

D fk.vm;�k /C rm;�k :

This is a contradiction to Lemma 3.7 (2). The other two cases are analogous.

Recall that for J 2 SAn , we denote mJ D
P
ˇ2J Anˇ.

Corollary 3.9. Let n 2 N n ¹0º and 1 � k � n. Then there exists � 2 � such that � ¤ �k
and fk.mJ� / D fk.mJ�k /.

Proof. By the previous proposition, we have that vn;�k D .n� kC 1; 0/ or vn;�k D .0; k/.
By Lemma 2.5 (6), we obtain that ¹vi;�k º

n�1
iD1 D ¹.t; 0/º

n�k
tD1 [ ¹.0; s/º

k�1
sD1 . Moreover, we

can deduce that vn�1;�k is .n � k; 0/ or .0; k � 1/.
Suppose that vn�1;�k D .n � k; 0/. This implies that there exists p < n � 1 such that

vp;�k D .0; k � 1/. Moreover, by Definition 2.2, we obtain that p D
Pr�1
jD0 dk;j and for

all p < q � n � 1, we have that vq;�k D .n � k � .n � 1 � q/; 0/ D .q C 1 � k; 0/. In
particular, sr D p C 1 � k (recall Definition 3.5). Since

.n � k C 1/ � fk..1; 0// D fk..n � k C 1; 0// D fk.k.n; nC 1//

D k � fk..n; nC 1//;
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we obtain that tr D n � k C 1. By Definition 3.5, we have that

dk;r D min
°
n �

r�1X
jD0

dk;j ; tr � sr

±
D min¹n � p; n � k C 1 � .p C 1 � k/º D n � p:

This implies that
Pr
jD0 dk;j D n, i.e., the process completes, and dk;r � 2. In the case

of vn�1;�k D .0; k � 1/, we obtain that dk;r � 2 using the same argument. In any case,
we obtain that dk;r � 2. Then we define � D .z0; d 00; d

0
1; : : : ; d

0
r ; d
0
rC1/, where z0 D zk ,

d 0i D dk;i for all i < r , d 0r D dk;r � 1 and d 0rC1 D 1.
By construction,

Pn
jD0d

0
j Dn and d 0j >0 for all j 2¹1; : : : ;nº. This implies that � 2�.

On the other hand, we have that vj;�k D vj;� for all j � n � 1 and vn;� D .n � k C 1; 0/
if vn;�k D .0; k/ or vn;� D .0; k/ if vn;�k D .n � k C 1; 0/. Since fk.k.n; n C 1// D
fk..n � k C 1; 0//, we obtain that fk.mJ� / D fk.mJ�k /.

Example 3.10. Let nD6 and kD3. By Example 3.6, we obtain that �3D.1;0;1;1;1;1;2/.
Using the construction of the proof of Corollary 3.9, we obtain that �D.1;0;1;1;1;1;1;1/.

3.2. J�k 2 SAn is minimal with respect to fk

Lemma 3.11. Let ˇ0; ˇ 2 N3 be such that ˇ0 � ˇ (Recall Notation 1.1). Then

fk.Anˇ
0/ � fk.Anˇ/:

Proof. This is a straightforward computation.

Lemma 3.12. Let ˇ 2 N3 be such that Anˇ ¤ v C q.1; 1/ for all v 2 T 0�k and q 2 N.
Then fk.Anˇ/ � fk.v/ for all v 2 T 0�k .

Proof. We claim that fk.v/� k.n� kC 1/� fk.Anˇ/ for all v 2 T 0�k and for all ˇ 2N3

with the conditions of the lemma.
We are going to prove the first inequality of the claim. By Definition 3.1, we have

that T 0�k D T0;�k [
Sn
jD1 Tj;�k C rj;�k

#»
1 , where T0;�k D ¹.q; q/º

n
qD1, rj;�k D n � �2.vj;�k /

and Tj;�k C rj;�k
#»
1 D ¹vj;�k C .p C rj;�k /.1; 1/º

n�j
pD0. By Proposition 3.8, we have that

vn;�k D .0; k/ or vn;�k D .n � k C 1; 0/. Moreover, by Lemma 2.5 (5), we have that
¹vj;�k º

n�1
jD1 D ¹.t; 0/º

n�k
tD1 [ ¹.0; s/º

k�1
sD1 .

By definition, Tn;�k C rn;�k
#»
1 D ¹vn;�k C rn;�k .1; 1/º. Since we know the two pos-

sibilities for vn;�k , we obtain that fk.vn;�k C rn;�k .1; 1// D k.n � k C 1/. On the other
hand, if v 2 T0;�k , we have that v D .q; q/ with q � n. Since 1 � k � n, we obtain that
fk.v/D q � n� k.n� kC 1/. With this, we only have to check the desired inequality for
v 2

Sn�1
jD1¹vj;�k C .p C rj;�k /.1; 1/º

n�j
pD0. This implies that v D vj;�k C .p C rj;�k /.1; 1/,

for 1 � j � n � 1 and 0 � p � n � j .
Suppose that vj;�k D .t; 0/ for some t � j , and recall that t � n � k. Then

fk.v/ D fk.vj;�k C .p C rj;�k /.1; 1// D fk..t; 0//C p C rj;�k

� kt C n � j � kt C n � t D .k � 1/t C n

� .k � 1/.n � k/C n D nk � k2 C k:
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Now suppose that vj;�k D .0; s/ for some s � j and recall that s < k. Then

fk.v/ D fk.vj;�k C .p C rj;�k /.1; 1// D fk..0; s/C p.1; 1/C n � s.1; 1//

D fk.s.n; nC 1//C p � s.n � k C 1/C .n � j /

� s.n � k C 1/C .n � s/ � s.n � k C 1/C .n � k/C .k � s/

� s.n � k C 1/C .k � s/.n � k/C .k � s/ D nk � k2 C k:

This proves the first inequality of the claim. For the second inequality, notice that

Anˇ D �1.ˇ/.1; 0/C �2.ˇ/.1; 1/C �3.ˇ/.n; nC 1/

D .�1.ˇ/; 0/C .�2.ˇ/; �2.ˇ//C .n�3.ˇ/; n�3.ˇ/C �3.ˇ//

D .�1.ˇ/; �3.ˇ//C .�2.ˇ/C n�3.ˇ//.1; 1/

D .�1.ˇ/ � �3.ˇ/; 0/C .�2.ˇ/C .nC 1/�3.ˇ//.1; 1/:

Similarly, we obtain the expression

Anˇ D .0; �3.ˇ/ � �1.ˇ//C .�1.ˇ/C �2.ˇ/C n�3.ˇ//.1; 1//:

Working with the first expression of Anˇ and applying fk to this vector, we obtain that

fk.Anˇ/ D fk..�1.ˇ/ � �3.ˇ/; 0/C .�2.ˇ/C .nC 1/�3.ˇ//.1; 1//

D fk..�1.ˇ/ � �3.ˇ/; 0//C �2.ˇ/C .nC 1/�3.ˇ/

D k.�1.ˇ/ � �3.ˇ//C �2.ˇ/C .nC 1/�3.ˇ/:

By the hypothesis over ˇ and recalling that ¹vj;�k º
n�1
jD1 D ¹.t; 0/º

n�k
tD1 [ ¹.0; s/º

k�1
sD1 , we

obtain two cases, �1.ˇ/� �3.ˇ/� n� kC 1 or �3.ˇ/� �1.ˇ/� k. If �1.ˇ/� �3.ˇ/�
n � k C 1, then

fk.Anˇ/ D k.�1.ˇ/ � �3.ˇ//C �2.ˇ/C .nC 1/�3.ˇ/

� k.n � k C 1/C �2.ˇ/C .nC 1/�3.ˇ/

� k.n � k C 1/:

If �3.ˇ/ � �1.ˇ/ � k, in particular, �3.ˇ/ � k, then

fk.Anˇ/ D k.�1.ˇ/ � �3.ˇ//C �2.ˇ/C .nC 1/�3.ˇ/

D .nC 1/�3.ˇ/ � k�3.ˇ/C k�1.ˇ/C �2.ˇ/

D .n � k C 1/�3.ˇ/C k�1.ˇ/C �2.ˇ/

� .n � k C 1/k C k�1.ˇ/C �2.ˇ/

� nk � k2 C k:

In any case, we obtain that fk.Anˇ/ � k.n � k C 1/ for all ˇ 2 N3 with the conditions
of the lemma, as claimed.

Lemma 3.13. Let v D vl;�k C q.1; 1/ 2 N2 with l � n and q � n � l C 1C rl;�k . Then
fk.v/ � fk.u/ for all u 2 T0;�k [

Sl
jD1 Tj;�k C rj;�k

#»
1 .
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Proof. We proceed by induction over l . Consider l D 1. Then v D v1;�k C q.1; 1/, with
q � nC r1;�k and we need to prove that fk.v/� fk.u/ for all u 2 T0;�k [ T1;�k C r1;�k

#»
1 .

If u 2 T1;�k C r1;�k
#»
1 , then uD v1;�k C .pC r1;�k /.1; 1/, with p � n� 1. It follows that

fk.v/ D fk.v1;�k C q.1; 1// D fk.v1;�k /C q

� fk.v1;�k /C nC r1;�k � fk.v1;�k /C p C r1;�k

D fk.v1;�k C p C r1;�k .1; 1// D fk.u/:

If u 2 T0;�k , then u D p.1; 1/, with p � n. By Definition 2.2, v1;�k D .1; 0/ or v1;�k D
.0; 1/. Thus, fk.v/ D k C q � k C n or fk.v/ D .1 � k/C q � nC .n � k C 1/. Since
k 2 ¹1; : : : ; nº, in any case we have that

(3.2) fk.v/ > n � p D fk.u/:

We conclude that it is true for l D 1.
Now, suppose that it is true for all l 0 < l , i.e., fk.vl 0;�k C q

0.1; 1// � fk.u/ for all
u 2 T0;�k [

Sl 0

jD1 Tj;�k C rj;�k
#»
1 and q0 � n� l 0C 1C rl 0;�k . Let vD vl;�k C q.1;1/with

q � n � l C 1C rl;�k . If u 2 Tl;�k C rl;�k
#»
1 , we have that u D vl;�k C .p C rl;�k /.1; 1/,

with p � n � l . Then

fk.v/ D fk.vl;�k /C q � fk.vl;�k /C n � l C 1C rl;�k

� fk.vl;�k /C p C rl;�k D fk.vl;�k C .p C rl;�k /.1; 1// D fk.u/:

Thus fk.v/ � fk.u/ for all u 2 Tl;�k C rl;�k
#»
1 . Consider u 2 Tl�1;�k C r�k ;l�1

#»
1 . By

definition, u D vl�1;�k C .p C rl�1;�k /.1; 1/ with p � n � l C 1. By Lemma 3.7 (4),
fk.vl;�k C rl;�k .1; 1// � fk.vl�1;�k C rl�1;�k .1; 1//. Then

fk.v/ D fk.vl;�k /C q � fk.vl;�k /C n � l C 1C rl;�k

D fk.vl;�k C rl;�k .1; 1//C n � l C 1 � fk.vl�1;�k C rl�1;�k .1; 1//C p

D fk.vl�1;�k C .p C rl�1;�k /.1; 1// D fk.u/:

Obtaining that the statement is true for all u 2 Tl�1;�k C rl�1;�k
#»
1 .

Suppose fk.vl;�k C rl;�k .1; 1// � fk.vl�1;�k C rl�1;�k .1; 1//C 1. Obtaining that

fk.v/ � fk.vl;�k C rl;�k .1; 1//C n � l C 1

� fk.vl�1;�k C rl�1;�k .1; 1//C n � l C 2:

Then, by the induction hypothesis over l � 1, we have that fk.v/ � fk.u/ for all u 2
T0;�k [

Sl�1
jD1 Tj;�k C rj;�k

#»
1 , obtaining the result.

Now suppose that fk.vl;�k C rl;�k .1; 1// D fk.vl�1;�k C rl�1;�k .1; 1//. For this, we
have two cases, l D 2 or l > 2. If l D 2, by (3.2), we have that

fk.v/ D fk.v2;�k /C q � fk.v2;�k /C n � 1C r2;�k

D fk.v2;�k C r2;�k .1; 1//C n � 1 D fk.v1;�k C r1;�k .1; 1//C n � 1

D fk.v1;�k C .n � 1C r1;�k /.1; 1// � n � fk.u/;
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for all u 2 T0;�k . If l > 2, then for all u 2 T0;�k
SSl�2

jD1 Tj;�k C rj;�k
#»
1 , we have that

fk.v/ � fk.vl;�k C rl;�k .1; 1//C n � l C 1

� fk.vl�2;�k C rl�2;�k .1; 1//C n � l C 3 � fk.u/;

where the second inequality comes from Lemma 3.7 (5) and the last inequality comes
from the induction hypothesis over l � 2, obtaining the result.

Now we are ready to prove the other important result of this section.

Proposition 3.14. Let �k 2� and its respective J�k 2 SAn . Then for all J 2 SAn , we have
that fk.mJ�k / � fk.mJ /.

Proof. Let J D ¹ˇ1; : : : ; ˇ�2;nº 2 SAn . By the definition of SAn , det.cˇi /1�i��2;n ¤ 0,
where cˇi WD

P
�ˇi

.�1/jˇi� j
�
ˇi


�
An (recall Notation 1.1).

Fixing the ˇ1-th row of this matrix and using basic properties of determinants, we
obtain that

0 ¤ det.cˇi /1�i��2;n D
X
�ˇ1

.�1/jˇi� j
�
ˇi



�
det

0BBB@
An

cˇ2
:::

cˇ�2;n

1CCCA :
Since the determinant is not zero, this implies that there exists ˇ01 � ˇ1 such that

det

0BBB@
Anˇ

0
1

cˇ2
:::

cˇ�2;n

1CCCA ¤ 0:
Applying this process for each row, we obtain a set of vectors B D ¹ˇ0iº

�2;n
iD1 � ƒ3;n

such that ˇ0i � ˇi for all i 2 ¹1; : : : ; �2;nº and with the property det.Anˇ0i /1�i��2;n ¤ 0.
The goal is to construct a bijective correspondence 'WB! T 0�k , such that fk.Anˇ0i /�

fk.'.ˇ
0
i //. Consider the set vj;�k C L WD ¹vj�k C p.1; 1/ j p 2 Nº. Now, consider the

following partition of B:

B0 D ¹ˇ
0
i 2 B j Anˇ

0
i 2 T

0
�k
º;

B1 D ¹ˇ
0
i 2 B j Anˇ

0
i 2 .vj;�k C L/ n Tj;�k C rj;�k

#»
1 for some j 2 ¹1; : : : ; nºº;

B2 D ¹ˇ
0
i 2 B j Anˇ

0
i D q.1; 1/ for some q > nº;

B3 D ¹ˇ
0
i 2 B j Anˇ

0
i … .vj;�k C L/ for all j 2 ¹0; : : : ; nºº;

For all ˇ0i 2 B0, we define '.ˇ0i /D Anˇ
0
i . Since det.Anˇ0i /1�i��2;n ¤ 0, we have that

'.ˇ0i / ¤ '.ˇ
0
j / for all ˇ0i ; ˇ

0
j 2 B0.
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Now, if B1 ¤ ;, we rearrange B in such a way that ¹ˇ01; ˇ
0
2; : : : ; ˇ

0
mº D B1. Consider

ˇ01 2 B1. By the construction of B1, there exist l � n and q 2 N such that Anˇ01 D
vl;�k C q.1; 1/. By Proposition 2.15, we have that

Anˇ
0
1 2 spanC

°
v 2 C�2;n j v 2

l[
jD0

Tj;�k

±
D spanC

°
v 2 C�2;n j v 2 T0;�k [

l[
jD1

Tj;�k C rj;�k
#»
1
±
:

This implies that Anˇ01 D
P
v2T0;�k[

Sl
jD1 Tj;�kCrj;�k

#»
1
avv, for some constants av 2 C.

Using again basic properties of the determinant, we obtain that there exists uˇ 01 2 T0;�k [Sl
jD1 Tj;�k C rj;�k

#»
1 such that

det

0BBBB@
uˇ 01
Anˇ

0
2

:::

Anˇ
0
�2;n

1CCCCA ¤ 0:
Applying this process for each element of B1, we obtain the vectors ¹uˇ 0j º

m
jD1. We define

'.ˇ0j /D uˇ 0j for all j 2 ¹1; : : : ;mº. Now, we need to check that ' is injective on B0 [B1
and fk.Anˇ0i / � fk.'.ˇ

0
i //.

Notice that, by construction,

det

0BBBBBBBBB@

uˇ 01
:::

uˇ 0m

Anˇ
0
mC1
:::

Anˇ
0
�2;n

1CCCCCCCCCA
¤ 0:

This implies that uˇ 0i ¤ uˇ 0j for all 1 � i < j � m. In particular, we have that uˇ 0i ¤ uˇ 0j .
Moreover, using the same argument, we have that uˇ 0i ¤ Anˇ

0
j D '.ˇ

0
j / for all ˇ0j 2 B0.

Thus, ' is injective on B0 [ B1.
On the other hand, Anˇ0i D vl;�k C q.1; 1/ … Tl;�k C rl;�k

#»
1 for some l � n. This

implies that q � n � l C 1C rl;�k . Then

fk.Anˇ
0
i / D fk.vl;�k C q.1; 1// D fk.vl;�k /C q

� fk.vl;�k /C n � l C 1C rl;�k

D fk.vl;�k C .n � l C 1C rl;�k /.1; 1// � fk.uˇ 0i /;

where the last inequality comes from Lemma 3.13, obtaining the desired inequality.
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For all ˇ0i 2 B2, we have that Anˇ0i D q.1; 1/, for some q > n. By Lemma 2.11, we
have that Anˇ0i D

P
v2T0;�k

avv. Applying the same method for the elements of B1, we
can define ' with the properties that we need.

Since jT 0�k j D jBj D �2;n, we have that jB3j D jT�k n ¹'.ˇ
0
j / j ˇ

0
j 2 B0 [B1 [B2ºj.

Then we take '.ˇ0i /D v, with v 2 T�k n ¹'.ˇ
0
j / j ˇ

0
j 2 B0 [B1 [B2º, in such a way that

'.ˇ0i / ¤ '.ˇ
0
j / for all ˇ0i ; ˇ

0
j 2 B3 and ˇ0i ¤ ˇ

0
j .

By construction, we obtain that ' is a bijective correspondence and by the definition
of B3 and Lemma 3.12, we have that fk.Anˇ0i / � fk.'.ˇ

0
i // for all ˇ0i 2 B3. Then

fk.mJ / D
X
ˇi2J

fk.Anˇi / �
X
ˇ 0i2B

fk.Anˇ
0
i /

�

X
ˇ 0i2B

fk.'.ˇ
0
i // D

X
b2T 0�k

fk.v/ D fk.mJ�k /;

where the first inequality comes from Lemma 3.11 and the second comes from the con-
struction of '.

Now we are ready to prove Theorem 1.8.

Proof. By Proposition 3.4, J�k 2 SAn . By corollary 3.9, there exists J� 2 SAn such that
J� ¤ J�k and fk.mJ� /Dfk.mJ�k /. From Proposition 3.14, we obtain ordIn..k; 1 � k//D

fk.mJ�k /. This implies that .k; 1 � k/ 2 �mJ� \ �mJ�k .
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